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Abstract. An expression has extracted from the OGRAN project theory, which provides
connection between numerical values of noise factor F and achieved displacement resolution
and antenna’s threshold signal in metric variations. Noise factor and “reception bandwidth”
connects across displacement resolution. There is defined analytical expression and numerical
value for design displacement resolution (sensitivity) on the base intention F = 1. It has appeared
that the extracted analytical expression for readout resolution does not correspond to applied
Pound-Drever-Hall technique and AURIGA circuitry. This requires an improvement in
theoretical design. The achieved resolution value 2-10"'° cm/Hz!? is matched to the value for
metric sensitivity in pulse /i, = 10718, which is 15 dB higher than the thermal sensitivity limit.

1. Threshold signal of a bar detector
The effect of a gravitational wave is represented as an equivalent force F acting on the test body as the
cylindrical acoustic resonator (bar) [1];
FG = hmMmOZL/Z. (1)

Here A, is amplitude of metric variation; L, wo and M are length, resonant frequency and equivalent
mass of the oscillator.

Force is registered through the mechanical displacement that it causes.

While relaxation time 7.ris long, amplitude of forced oscillations of an oscillator increases linearly;
at the end of exposure it reaches the value [1]

AA = Fet(2Maxn) L,

where T is duration of forecast supernova burst pulse.

Certain antenna “sensitivity bandwidth” appears Afs= (1/7).

Oscillator is in state of permanent thermal Brownian motion; corresponding energy is kz7/2.

Motion has form of a narrow-band stochastic quasi-harmonic process x(£) = A(£) cos[wot + @(5)].

The amplitude and phase change stochastically and slowly. With phase coincidence, signal creates
amplitude variation AA.

Under strong metric variation affect, thin dissipation effects that determine an oscillator quality factor
Q are irrelevant. Consequently, no significant requirements are imposed on accuracy of coincidence of
frequency of quasi-harmonic metric signal and resonance frequency of the oscillator wo.

During the time t of signal exposition, stochastic variations of amplitude take place. Its average
statistical value is [2]

op = (2kpTT/Mwite)"/* = (kpTT/QMwg)/>.
Here there is dependence on quality factor.
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From comparison of signal and fluctuation variations, threshold signal is determined. This is how a
short pulse should detect by a resonant bar antenna.

For general case of arbitrary phase mismatch, the process is represented using quadrature
components x(f) = Ac(?)coswot + As(f)sinwot. The components Ac and As are highlighted by
synchronous detection. The algorithm for primary data processing has implemented in the "ULITKA"
detector [3,4].

In 2005, development of a full-scale facility OGRAN (L = 2 m, M=~ 1000 kg and £ = wo /2m=
1300 Hz) has begun [5]. Somewhat earlier, development of the pilot model had begun (L =~ 0.5 m and
M =~ 50 kg). In 2004 [6], the first article appeared with the title: «Gravitational wave experiments and
Baksan project «OGRAN». The article presents calculation formulas provided by theory (GWA
sensitivity analysis), formed in 1996 [7]. In conjunction with predefined parameter values the
“theoretical basis” of the OGRAN project had formed. This basis has confirmed in the final article on
the pilot model [8].

In 2013, the Moscow adjustment period of full-scale facility OGRAN had completed; the facility has
moved to Baksan Neutrino Observatory of the Institute for Nuclear Research of RAS into camera inside
the mount. As result, two articles has published [9,10]; in modern view of OGRAN foundation has
presented: “Under optimal filtration procedure, the minimum registered perturbation of the OGRAN
optical length in the bandwidth Afs= (1/7) is read as” [9]:

hnin = (4/L)y (kgT/Mw§)(1/Quot) ~ 1072°\[FAf,Hz1/2. 2

Here F'is a noise factor; it represents an unique scheme for registration of mechanical displacements
and its properties. Further, intended parameters have substituted into the formula: /=1 and Afs = 100
Hz [9]; then forecast of antenna’s sensitivity in variations of metrics is A, = 107", The astrophysical
forecast T = 10 ms has become the base parameter. This is intention as of 2014; it is result of evolution
of indevour and aspirations, because earlier in 2004, the more optimistic forecast had presented; it was
assumed that antenna should register pulses of T = 1 ms [6]; well-selected set of parameter values in
formula for noise factor had allowed to obtain the value /"= 1. Then expressions (2) for Afs= 1000 Hz
provide forecast estimation of /i, = 3:107"°. In [6] the forecast some differs numerically because, in
particular, parameters of full-scale acoustic oscillator had not known definitely.

Change in theoretical basis in 2014 has led to change in “design sensitivity”. This term and numerical
value has announced once in [6] for the OGRAN pilot model as 1076 cm/Hz!2. This indicator for the
full-scale facility has not announced yet, while this term mentions sometimes and somewhere. In article
[10], the similar value of 3-107'® cm/Hz'"? has presented without connection with experimental data. The
pilot model had intended to achieve extra high sensitivity of the registration scheme. In it, the calculation
of design sensitivity has not opened.

The task of the presented report is to define and calculate design sensitivity for the OGRAN GW
antenna to compare it with test result achieved in 2013 [9,10,11].

The expressions (2) has presented as approximate. The analytical expression for spectral density has
obtained when changing t = 1/Af. As alternative, it is possible to derive the exact expression of this
spectral density and avoid non-exact intermediate analytical transfigurations. So, the expression (1)
connects metric variation amplitude and force affecting the oscillator. The Nyquist force is also affected;
it is expressed as spectral density: GH(f) = 4kzTH, = 4kTMwy/Q, where H, is oscillator viscosity. When
comparing the forces, we find directly the spectral density of antenna’s metric limit thermal threshold
signal Syo(f) = (4/L)2kzT(MQwo3)1. The threshold signal expression takes the view:

hmin = (ShOAfS'P) 1/2, (3)

Substituting parameter values, we get the more exact estimation (Sz9)1/2= 1.7-10-19 Hz-1/2 for
Q=105 [9,10]. It is noticeably different from (2). The exact value is required to specify the resultant
value of "reception bandwidth". In article [12] for bar without readout mirrors the first measured value
0O = 1.6-10° has presented, and the limit threshold value of (S0)1/2= 1.5-10-1° Hz-/2 had calculated.

2. Noise factor in the OGRAN theory
Antenna’s registration scheme becomes meaningful when F > 1.
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In the OGRAN project, the laser optoelectronic scheme uses Fabry-Perot interferometer; its mirrors
has fixed at top ends of the cylinder. The scheme registers interferometer eigenfrequency deviations dv,
and small displacements Jx are defined by calculation through the ratio (v = ¢/A)

6x _ v
~ = 4)

Fabry-Perot interferometer has used in AURIGA GW detector in the room-temperature version. The
full scheme and its description has published and available at the AURIGA website in master's thesis of
L.Conti of 1995 [13] and somewhere else in proceedings. This scheme had later presented in the article
[14]. In the scheme, Pound-Drever-Hall (PDH) [15,16] technique is applied. Moreover, the article [16]
contains formula for maximum achievable resolution of the displacement meter for GW experiment
without taking into account laser noise.

In 1996 (soon), the SAI MSU had published the paper [ 7] with title: “Room-temperature gravitational
bar-detector with cryogenic level of sensitivity”. Here the theory of article [17] had simplified and
elaborated, and term “noise factor” has entered into consideration. Certain optimism in sensitivity
presented in the title [7] is because the new PDH technique effectively eliminates noise of laser power
technical phenomenological fluctuations, whereas this noise was significant in [17,18]. Afterwards, the
presented sensitivity analyze has become the theory of the OGRAN project [6].

MSU has certain groundwork in theoretical investigations on Fabry-Perot application to
displacement measurement. There is the article “A combined optical-acoustical gravitational antenna”
[17]. The formula for resolution of displacement measurer with a F-P resonator has presented by
Braginskii [ 18]. Moreover, MSU has significant hardware experience [19,20,21,22] in addition to review
[5].

Institute of Laser Physics (ILP) RAS has relevant hardware experience too; there is the article with
the title [23]: “Use of narrow optical resonances for measuring small displacements and for building
gravity-wave detectors”. Here the steep slope of the spectral line of methane had used. Moreover, ILP
possesses extensive groundwork in Pound-Drever-Hall technology. According to collaborated
“Agreement in Intentions”, “ILP RAS works out, mounts and adjusts the optoelectronic part of the
facility”. In fact, ILP has created the meter of small mechanical oscillations. Much earlier, such
measurers had created by MSU; now this work became the task of ILP, and SAI MSU accomplishes
scientific control.

At MSU, the displacement meters had investigated and developed separately from the probe body
[24,25,26]; small vibration were created by a rigid plate with electrostatic force actuator in quasi-static
mode. In the OGRAN project, this stage of development has skipped, and the facility should be
considered as a whole during customization. As a consequence, SAI MSU and INR RAS has increased
essentially their participation in adjustment.

INR represents interest of the Presidium of RAS in the project and from 2006 INR assists hardware
adjusters of SAI MSU in study of readout circuitry functioning; there are a number of reports and articles
[26,27,28,29]. In report [26], influence of intrinsic laser frequency fluctuations had considered and it
had shown how to suppress them; the feedback depth should be increased at least to value K¢ = 1000
(60 dB) [27]. This led to the need to expand the frequency response of the servo amplifier that controls
retuning of laser radiation frequency [30] in order to prevent self-excitation in locked feedback loop. In
turn, this has required introduction of electro-optical crystal (EOC) inside the laser cavity as a third,
high-speed laser frequency retuning device. This fast control has presented in the functional scheme
[31]. Accordingly, the value Kr= 2000 has realized [8].

In article [28] there has considered the residual amplitude modulation (RAM) of laser radiation and
noise that it induces. Certain efforts have presented at the report [11], thesis [32] and articles [33,34] to
suppress this modulation.

Under theoretical consideration of GW antenna in a complex, there have proposed two versions of
excess noise origin [35,36].

The OGRAN theory has established the expression for the noise factor as a part of general design
procedure [7,6,9]:
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F = (2M/7)\/Ge/Gr. (5)
Here Gr is spectral density of bar noise
Gr®) =2kTMwo/nQ. (6)
Spectral density G. of readout “optical noise” [10] is defined as [7, 37, 38]
G.(w) = Bog*(2hvinP)(M/2nN)’. @)

Here N is the “sharpness or the effective number of reflections” in the FP resonator, B is “the
phenomenological factor that indicates by how many times laser noise exceeds the Poisson level” [10],
n is a photodiode yield. In (7) P is “optical power”; there is not complete certainty in its definition. So,
in previous articles [17,18] P is incident power at the interferometer. In [9] it is “effective power”. In
[39] outside the project, P is the “optical power available at the photodetector”. This ambiguity is
consequence of incompleteness of optoelectronic circuit functioning theory.

In (5) the noise factor is a function of astrophysical forecast . The formula for it has transformed to

the “suitable” form [9,10]:
F=(@)E) ) ®

This format simplifies selection of parameter values to calculate the desired value ' = 1. Substituting
parameter values P=0.01 W, t = 0.01 s [9,10] and as examples N = 3-10° and B = 10, we find F = 1.
The formula (8) is convenient for a theorist-designer making general sensitivity forecast; it shows that
“the task has a solution”. Executor should implement this set of figures in hardware.

In the initial OGRAN article [6] (t = 102 s) one can read: “For the designed OGRAN optical
parameters: P=(1—-3) W, B = (1 —10), A= 1.064 p, n=0.8, N=(10°-10%) one can find the estimation
F = 1.” So, in the example presented above, making substitutions T=0.001 s and P =1 W, we also get
F = 1. An acceptable version of initial design set of parameters is formed, which is used below in the
formula for calculated (design) resolution value of an optoelectronic meter.

According to reference in intermediate final article [8], “the presented values constitute the
theoretical basis of the OGRAN project.”

In 2014 intended astrophysical forecast duration T has changed. Comparison of above selected
parameters shows that increase in duration t in design permits hardware worker reduce significantly
power of laser radiation P according to (8). This is result of an attempt to register power of 1 W by
creating two complex photodetectors with 16 photodiodes each using light splitting cubes [31,8,10].
This is a response to technical reality. The next parameter to be revised is the laser excess noise factor
B.

In addition, perspective is associated with increasing the parameter N = 1/(1 — R) [17]; here R is
energy reflectance of interferometer mirrors. For this, there had been acquired mirrors of high quality
manufactured by the LAM factory Lyon (France) [40,9,10,33,34]. “A serious problem in the process of
OGRAN assembling was a method of mirror installation so as the high quality mirrors require a clear
atmosphere conditions” [9]. The clean room as a “laminar box” with dust protection has designed and
erected in the BNO INR chamber around the facility in 2015. Results of mirror replacing have presented
in articles [33,34].

In the article [8], in sensitivity forecast, calculation there used two base values: Afs= 1000 Hz (t=1
ms) and /= 10. Also, further there has proposed to decrease in bandwidth towards Afs =10 Hz, because
it should lead to increase in sensitivity. On this way, as the first step we put Afs = 100 Hz; it means t =
10 ms. Replacing this time value in the expressions (5), (8) we obtain the value /' = 1. Thus, we have
obtained just the same pair of parameter values on which the sensitivity analysis in articles [9,10] has
based. Thus, the transition to desired value F = 10 already in 2010 means change of intention
preventively.

Further in this way, supposing Afs = 10 Hz [8] we obtain the value of F = 0.1. It is a significant
departure from reality in forecast. Actually, value of F' » 1 is realized in the facility so far.
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The initial sensitivity forecast calculations assume values of B = (1 =+ 10); it means practical absence
of technical noise in laser radiation. This initial optimism, as indicated above, had based on employment
of new advanced and complicated PDH technique.

To take into account significant real excess noise in hardware tests, the conclusion has made that
acceptable values of factor B may be expanded in the range: B = 1+1000 [9,10]. So, according to the
final article on the pilot model [8], excessive technical noise did not allow observing (revealing) thermal
noise of the bar. Final estimate of displacement resolution has estimated as 4-107'¢ m/Hz " [11]. This
level of noise makes it impossible to identify thermal noise at the spectrogram [8]. Further, in the full-
scale facility, joint efforts of two institutes succeed in definition and reduction of dominant noise source
as 0f 2010-2012, and thermal noise has revealed quite confidently [41].

In articles [37,38], value range B = (1 + 10) in the noise factor formula provides a capacious source
of perspective again.

3. Latent content of the OGRAN theory

The task is to find connection between two result sensitivity signicatives. The first is the initial threshold
signal A, jointed with the noise factor [7]. The second signicative is a novel - the “reception
bandwidth”. This signicative has introduced in [9,10]. It based on sensitivity result representation in
the AURIGA project as a graph at Fig.7 [42] of metric variation spectral density; there the novelty is
apportionment the abscissa distance in frequency 10 Hz (865-855) between two points with the ordinate
of 10" Hz "2,

The reception bandwidth unequivocally relates to the actual achieved displacement resolution.

To define mentioned connection, we should deep into the theory of the OGRAN project to extract
the analytical expression for displacement resolution.

There is also a relationship between displacement resolution expression and noise factor expression.
Thus, displacement resolution is the third, intermediate significance.

While the noise factor formula is convenient for a design theorist, it is desirable to add to it no less
convenient formula for hardware developer measuring resolution directly, because the noise factor
formula “with a clear physical sense” is not relevant in test. In particular, one should strive to ensure
that traditional correspondence between theoretical introduction and result value inside an article;
absence of this connection some signs of theory's inadequacy become not meaningful.

The example of desired correspondence is contained in the fragment of the report [31] on the pilot
model. So, we read: “Experiments, had shown sensitivity of ~ (1 +2) - 10-'* cm/Hz!"? for this setup while
theoretical estimation was ~ 3 - 107'> cm/Hz!2. The reason for this mismatch was revealed as technical
noise of detection system.”

These affirmations allow us to conclude that the required design formula really exists, albeit in a
latent form. Moreover, that the presented test result differs moderately from the calculated value.

In the next article [8] there has written: “The equivalent limiting (theoretically expected) spectral
density of noise displacements is 0.5-10"'* cm/Hz".” In both sources, obviously, values of parameters
in calculation formula differ. In the message [31], as earlier [6] and later [8], test resultant signicative
has presented in the displacement noise format.

In the AURIGA detector, there is significant difference between measured values and calculated ones
[42,8].

Meanwhile, the aim of scientific part of instrument development is to achieve coincidence of test
result with previously calculated numerical value within limits of measurement errors and accuracy of
parameter determination. It is advisable to solve this problem without choosing an appropriate value for
parameter B.

Revealing of appropriate resolution formula in OGRAN theory may be considered as the inherent
part of general design procedure; the sought formula should connect rigidly with antenna’s design
sensitivity.

Information about displacement measurement using FP interferometer exists outside the referred
above articles. So, the formula for displacement resolution can revealed in the article [17]:
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Ax = 2 M paf,
27N | 7P

Parameter N is not measureable, whereas a generally accepted term “finesse” F=n (I — R)™! is used

[16,14]. It determines relative transmission bandwidth of an interferometer at the level of -3 dB. This
value has determined experimentally in the OGRAN facility by scanning interferometer transmission
function using scanning retune of laser light frequency vi. with the piezoceramic actuator (driver) [30].

The value F has announced as 3000 [9,10]. The brief derivation of above finesse expression has
implemented in [36]. Accordingly, we get the relation N = F/r, and then

A |hv

Elsewhere, this formula has presented in the article [18]; details of its derivation has presented in
monography [2]. Without technical noise (B = 1) displacement resolution formula has presented outside
the project in the article [39] at page 262. At the beginning of the OGRAN project, the formula (9)
without technical noise had presented to ILP RAS as the initial scientific foundation to hardware
implementation of the optoelectronic displacement readout; certain optimism with laser noise was due
to PDH technique virtue. Later, certain efforts to derive ‘readout noise spectral density’ in improved
form has presented in [12,40].

The project OGRAN theory contains the required analytical expression for displacement noise in
latent form. In order to extract it, we should refer to the base article [ 7]. One can find there the expression
for spectral density G of the equivalent stochastic force Fy, formally applied to massive body of the
equivalent oscillator

Gyv= Gr+ G+ |Z[G.. (10)

Here Gyis spectral density of inverse fluctuation force acting by readout circuit; this force represents
stochastic component of photon flux pressure.

The third term |Z,°G. in (10) is output noise of registration circuit adducted to the measured value,
in this case, to force. Here Z, is the oscillator mechanical impedance: Z, = M [jo + 28 + 0¢*/(jo)], 26 =
o/2Q. Spectral density G, contains information about the optical registration scheme, which extremely
high resolution is the aim of presenting scientific and engineering development.

It had shown that Gy« Gg[7]; this is in contrast to MSU’s capacitive displacement meters [19,20,25].
To find displacement noise, we write out the equation of motion

Mx+H, x+k, x=F .

Here x(7) is instantaneous coordinate, k, is oscillator stiffness.

The solution of this equation "in spectra" allows us to find an analytical expression for spectral
density of total displacement noise Gx:

Gxo) = GN/(1)2|Z,U|2: GT/0)2|Z”|2 + Go/®* = Gxr + Gxs. (11)

The first term represents thermal displacement noise of the bar. The sense of the second term is
spectral density of optoelectronic scheme noise. The frequency range near resonance (® =~ ®o) is of
interest here. There is important consequence for determining spectral density of optoelectronic readout
noise:

Gxs ((D) = Ge((D)/(Doz. (12)

Thus, the general relationship between displacement resolution and noise factor has determined.

Substituting expressions (6) and (7) into (11), we have obtained the specific noise expression

(Aw =27f'- wo):
GX(f) _ 4kpTQ 1 +B nhv( 2 )2' (13)

Mw3 1+(dw/5)? 7P \nN
It is expression for spectral density of total displacement noise, observed by developer-adjuster in
experiment (test) at output spectrogram at the figure 4 in [9] or at the figure 6 in [10]. The first term
describes quantitatively thermal noise of the bar as the narrow resonant peak. The second term has no
dependence on frequency; it represents spectrum “background”. It is the formula for resolution of
displacement measurer
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This expression contains parameters of the design set of parameters. Substituting the mentioned
values N =3 -10° (F=9.5-10°), P=1W, n = 0.7, B = 10, we obtain variant of design sensitivity
estimation Ax = 3-107" cm/Hz'>.

The formula (14) has scientific view. However, its engineering significance is reduced by arbitrary
defined parameter B = 1+1000 [9,10]. In the AURIGA project “laser power noise spectral density” has
measured quite accurately [14]; laser frequency noise has mentioned; but its relative contribution has
estimated as negligible [14,42]. It is a consequence of smallness of the “transducer-cavity length”.

The formula and the presented theory do not take into account significant energy losses in the
interferometer mirrors due to multiple reflections. Phenomenologically this effect has observed and
fixed in the facility. It defines sufficient decrease in signal transmission in the readout and accordingly
decrease in sensitivity (resolution) of displacement meter. To describe this effect the term “interference
contrast” has introduced in [8]. Its measured values are of 0.3 in [9] and of 0.2 in [10]. In addition, we
read: “... due to losses in the light guide elements and the interference contrast ~10% the real value of
effective power is P = 0.01W”, whereas “the power of radiation that reached the photodiodes was P =
50 mW.”

The attempt to derive analytical dependence of signal transmission and displacement resolution on
these energy losses had devoted in the article [12]. The solution that is more adequate has presented in
the article [28].

The formula (14) corresponds to the conceptual scheme of Braginskii [18,2]. The resulting formulas
for displacement resolution (9), (14) describe Braginskii's conceptual laser scheme as of 1967 too. Slight
differences in coefficients [18,39] is due to some uncertainty in interpretation of parameter P and the
value Gr(6) in [7,17]. The Pound-Drever-Hall scheme differs significantly. It uses not transmitted beam,
but reflected one.

The functional optoelectronic scheme of OGRAN facility has attached to the article [6]. It repeats
the AURIGA scheme [13,14]. This scheme has also presented clearly in [8,10,31,37]. In the AURIGA
PDH circuit laser radiation is phase modulated by high frequency Q (~ 10 MHz). The beam reflected
from the interferometer falls on photodiode; variable power component has the form 6P = Dp(ve — V)
sinQt. Here Dp is a decrement [16,28]. After synchronous detection, a sign alternating discriminator
characteristic of the automatic control system of laser frequency is formed. When v, —v = 0, zero voltage
is presented at output of the synchronous detector and further to retune laser frequency. When the
feedback loop is locked, the AURIGA circuit implements fast auto-tuning of laser frequency; it exactly
follows fast signal variations dv of interferometer mode frequency (4). In this way frequency
manipulated laser radiation is formed; signal and noise encode in laser radiation frequency.

Under condition S/N = 1, the threshold displacement signal in radiation has determined [26]:

A hv

Here Pc is a carrier power spectral component of phase modulated laser radiation at a photodiode;
Pc= P/2 [16]. When 1 = 1 expression (15) coincides with the resolution expression in the article [16].
There signal and noise are presented at input of the photodetector as variations of laser radiation power,
whereas the formula (15) presents signal and noise containing in laser frequency deviations.

Formulas (14) and (15) present shot noise of photoelectrons and in this sense have single physical
meaning. This consideration gives occasion to neglect difference in descriptions of two registration
schemes in the OGRAN theory. When focusing on their difference, one can understand the origin of
excess noise in the PDH optoelectronic registration scheme [35].

Frequency manipulated radiation is fed to the interferometer of discriminator, second PDH channel.
It uses the slope of sign alternating discriminator characteristic. On this slope frequency deviations
transforms into voltage variations in output of the facility. The slope is easily measured. Through the
slope steepness, the output voltage noise is recalculated (adducted) to frequency noise at test
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spectrogram and then using (4) - to displacement noise of the facility. The channel discriminator
introduces its intrinsic noise; it has not taken into account by the formula (14), and in the noise factor
formula. Account of the discriminator's contribution has presented in the report [27].

Regardless analytical expressions, we can use the numerical value of displacement resolution. To
connect it with factor F we use the expression (12). The numerous value of noise factor can determined.
In addition, we can determine the design value of sensitivity.

4. Consequences and estimates

The readout system registers fast variations in eigenfrequency of the FP resonator, and achieved resultant
frequency noise value is available at spectrograms. Noise in this format converts into resultant
displacement noise by means of the ratio (4). These two noise dimensions correspond to left and right
scales at spectrograms in articles [9,10,38]; where 8x/dv = 0.7-10"'? cm/Hz.

The best-achieved resolution can be revealed as background at test low-resolution spectrograms at
fig. 6 of [10] and at fig. 3 of [9]. In addition, this important numerical value has pointed out in the text
[10]: “The measured level of the spectral density of the total antenna noise (background above which a
thermal peak dominates) in the operating antenna range is ~ 0.003 Hz/Hz!2.”

Recalculation (4) gives the value of ~ 2 - 107'* cm/Hz!2. Just the same value has announced in the
previous report [11] as a manifestation of ILP RAS competence.

To transform this achieved result into metric format, the absolute and relative height of the thermal
peak on the first test low-resolution spectrogram at fp =~ 1300 Hz should be determined. We can see on
the spectrogram that the peak height is of 0.3 Hz/Hz'!?; it corresponds to 2 -107* cm/Hz"2. This absolute
height coincides with the value calculated by means of the general formula (13) in the term of the heat
peak. The relative height A is of 100 or 40 dB. This important achievement has fixed in the synopsis
[42]: “The level of intrinsic fluctuations of the optical displacement sensor has been practically reached,
which is two orders of magnitude lower than the level of the thermal acoustic resonance noise.”

At two points of resonance curve in (13) thermal noise spectral density is equal to background.
Distance between them is Afy. Using the expression for shape of the thermal noise curve (13), the
bandwidth corresponding the level of - 40 dB is Afio = Afao = AAfo = Afo/ O, where Afo=0.013 Hz. Within
the specified frequency bandwidth Afyo = 1.3 Hz, thermal noise dominates, and limit achievable spectral
density is Su(f).

There is a graph of spectral density of metric variations at the fig. 5 of [9]. This graph is result of
processing the experimental data, which has simultaneously represented by the previous spectrum at the
fig. 4 as displacement noise. Spectrogram at the fig.5 is connected with spectrogram at the fig. 4 by
means of the formula (G)"? = (Gx)"*/K.,, where Ky, = xu/hm = Q(L/12)/[1+ (Aw/8)?]"2. It is a product of
analytical conversion algorithm. In the lowest small part of the spectrum at the fig. 5 (inside frequency
bandwidth Afio) the spectral density is constant: Syo(f).

Outside the band Afno, metric spectral density increases sharply and there are two spectrum sections
increasing with distancing from the resonant frequency fp. This spectrum exactly determined
analytically; it is analogous in sense to metric spectrum in the article [42]. The bar thermal peak and this
conversion are scientific contribution of SAI MSU into the OGRAN collaboration, whereas ILP
provides the unique displacement measurer and its actual noise.

There is decision to extend the bandwidth up to reception bandwidth Afi... We are to calculate the
distance in frequency between two points with ordinates of 10! Hz"'"? on the metric graph [9,10]. When
using the shape of the resonant curve (13) the distance is determined by relation completing the
transformation algorithm:

Afrec = Ao [107Y HzV2/(Sho) "] ~ 8 Hz. (16)

However, articles [9,10] present the value of Afi.c =4 Hz. To implement the proper calculation and
explain the divergence in figures, we should consider the other, high-resolution spectrogram at fig. 4
[9]. In it, the visual relative peak height is A = 30, and then Afho = Af30 = 0.4 Hz. In addition, since in
articles [9, 10] the approximate value of (S)"? = 102° Hz''2 has established, we obtain using (16) Afrec
~ 10Afno =4 Hz.
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To connect displacement resolution with noise factor we apply expression (12). Spectral density of
achieved displacement noise has the numerical value of G®) = 6.3-10* m?*/Hz. For the value
wo= 8.2-10° 5!, we find G(®) = 4.2-102” m?/s. For thermal noise we have Gr(w) = 2.2-10""° N*/Hz.
Then, for T = 102 s according (5) we find F =~ 30. According (3) we find conjugate metric threshold
signal Amin = 9-107, It corresponds to Afrec =~ 8 Hz.

Design displacement resolution (sensitivity) we can find when F = 1; the estimate is of 0.7-107'
cm/Hz'"? as a response to “main technical challenge” [9]. It means A = 3000, Afyo = 40 Hz and Afrec =
250 T'.

Hardware executors should realize this outstanding design resolution value; it considers in the sense
that has presented in [6]. This is response to the challenge [9]. For this purpose, it is planned to increase
interferometer finesse and reduce the contribution of excess noise.

The intermediate value of signal spectrum bandwidth of Afs = 250 Hz is of interest. It means
intermediate value t =4 ms [7]; then F' = 2.5, hyi, = 4.3-107°. This is moderate distinction of 8 dB from
limit thermal threshold.

If the main part of signal pulse energy locates within the bandwidth Afio =40 Hz (t =25 ms), thermal
noise dominates, and maximum achievable antenna’s sensitivity Sy is realized.

In this case, according to the concept (challenge), a pulse with bandwidth of 100 Hz has detected
when the condition F = 1 is fulfilled. Some mismatch in band widths has revealed, which is subject to
further comprehension.

The article [8] the question is raised for further understanding and elaboration; we read: ... the main
question of the pilot experiment is the closeness of the results to the aforementioned theoretical bound.”
Also, in the article [9] “problems” have pointed out. Similarly, the more significant aspect has arisen in
comprehending the OGRAN project theory. Namely, it is shown that executor must reduce the threshold
signal of the displacement measurer by 30 times. In this case, value 4, changes by the factor of 5.5 (15
dB) from the calculated result of 10-8.to thermal limit 1.7-10". This difference between the current
metric threshold signal and the limit one can consider as moderate and acceptable. Similarly, when
establishing the reception bandwidth, somewhat arbitrary 6-fold widening of band Afio has led to
moderate and permissible decrease in sensitivity in comparison with the thermal limit one. The question
is to admit the achieved threshold signal in metric of 107!¥ sufficient to stop making efforts to further
improvement the readout scheme. This means recognition of the achieved resolution of readout circuit
as satisfactory and the scientific part of the OGRAN project is completed. As an alternative version, the
formula (2) is not valid for engineering application for the case F'# 1.

In principle, the noise factor expression as of 1996 requires redefinition to avoid values F < 1. This
has done in articles [38,39] and before in report [29].

5. Conclusions
The procedure for preliminary design of sensitivity of bar gravitational antenna is selection of such set
of parameter values in the noise factor formula to realize the value F'= 1 when registering pulse from
supernova burst with duration T = 1 ms [6]. Based on results of tests of the pilot model, significant
difficulties have appeared with realization in hardware required values of photodiode power P and
excess laser noise factor B. The initial intention has corrected [8,9,10] by increasing pulse duration to
value of T = 10 ms. Then the task of calculating the desired value ' = 1 has obtained its solution.

Deepening into of the OGRAN project theory [7] the general analytical relationship (12) has revealed
between expression for the noise factor and expression for displacement resolution of registration
scheme. Regardless of extracted specific expression for resolution, the corresponding numerical
relationship has defined; namely, the achieved value of resolution 2-10"'3 cm/Hz"? [11] has assigned the
value of F =30 and value of threshold signal in metric of A, = 1075,

There has determined analytical dependence of design displacement resolution on initial intention of
F=1 and there has determined its numerical value of 0.7-10"' cm/Hz!"2. While returning to astrophysical
forecast of T = 1 ms the required resolution of readout is 0.7-10"'7 cm/Hz!>.
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The expression for displacement resolution has restored coherence of the OGRAN theory - from
initial intention towards engineering realization. The extracted formula does not provide adequate
description of features of the registration scheme implemented in hardware. In this way, the analytical
expression for value G. in the formula for noise factor must be much more complex. The absence of
connection between theory and experiment allows designer to present inadequate theoretical relations.
This may be a reason for difficulties in comprehension of the Pound-Drever-Hall registration scheme
operation and, in particular, in determining origin of excessive technical noise in the facility.

References

[1] Rudenko V N and Bichak J 1987 Gravitational waves in general relativity and methods of their
detection - in Russian (Moscow: Moscow University Press) p 270

[2] Braginsky V B, Manukin A B 1977 Measurement of weak forces in physics experiments (Chicago:
Univ. of Chicago Press)

[3] Gusev A V, Kulagin V V, Oreshkin S I, Rakhmanov A N, Rudenko V N, Serdobol’skii A V,
Tsepkov A N, Tsyganov A V and Motylev A M 1997 Astronomy Reports 41 248

[4] Gavrilyuk YuM, Gusev A V, Krysanov V A, Kulagin V V, Motylev A M, Oreshkin S I, Rudenko
V N, Silin V A and Tsepkov A N 2012 Astronomy Reports 56 638

[5] Rudenko V N 2017 Phys. Usp. 60 830

[6] Bezrukov L B, Popov S M, Rudenko V N, Serdobolskii A V and Skvortsov M N 2004
Astrophysics & Cosmology after Gamow Proc. Int. Conf. (Preprint gr-qc/0411083v1)

[7] Gusev AV, Kulagin V V and Rudenko V N 1996 Gravitation & Cosmology 2 68

[8] Bezrukov L B, Kvashnin N L, Motylev A M, Oreshkin S I, Popov S M, Rudenko V N, Samoilenko
A A, Skvortsov M N, Tsepkov A N, Cheprasov S A and Yudin I S 2010 Instruments and
Experimental Techniques 53 423

[9] Bagaev S N, Bezrukov L B, Kvashnin N L, Krysanov V A, Motylev A M, Oreshkin S I, Popov S
M, Rudenko V N, Samoilenko A A, Skvortsov M N and Yudin I S 2014 Rev. Sci. Instrum. 85
065114

[10] Bagaev S N, Bezrukov L B, Kvashnin N L, Motylev A M, Oreshkin S I, Popov S M, Rudenko V
N, Samoilenko A A, Skvortsov M N and Yudin | S 2015 Instruments and Experimental
Techniques 58 257

[11] Vishnyakov V I, Ignatovich S M, Kvashnin N L, Popov S M, Rudenko V N, Samoilenko A A,
Skvortsov M N and Yudin I S 2013 Tech. Digest Int. Symp. MPLP-2013, Novosibirsk, Russia
pp 179

[12] Gusev A V, Rudenko V N, Cheprasov S A and Bassan M 2008 Class. Quant. Grav. 25 055006

[13] Conti L 1995 Master’s thesis

[14] Conti L, Cerdonio M, Taffarello L, Zendri J P, Ortolan A, Rizzo C, Ruoso G, Prodi G A, Vitale
S, Cantatore G and Zavattini E 1998 Rev. Sci. Instrum. 69 554

[15] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl.
Phys. B3197

[16] Black E D 2001 Am. J. Phys. 69 79

[17] Kulagin V V, Polnarev A G and Rudenko V N 1986 Sov. Phys. JETP 64 915

[18] Braginskii V B 1968 Soviet physics JETP 26 831

[19] Braginskii V B, Mitrofanov V P and Rudenko V N 1971 Prib. Tekh. Eksp. 4 241

[20] Krysanov V A, Kuklachov M I and Rudenko V N 1979 Prib. Tekh. Eksp. 4 240

[21] Krysanov V A and Rudenko V N 1984 Prib. Tekh. Eksp. 3 199

[22] Yelfimov S V, Krysanov V A and Rudenko V N 1987 Preprint No.32/87 MSU-dept.phys

[23] Bagaev S N, Dychkov A S and Chebotaev V P 1981 JETP Lett 33 79

[24] Braginsky V B, Panov V A, Petnikov VG and Popel'nyuk V D 1977 Prib. Tekh. Eksp. 1 234

[25] Braginsky V B, Panov V A and Popel'nyuk V D 1981 JETP Letters 33 405

[26] Krysanov V A 2007 Proc. Int. meeting PIRT-2007 (Moscow: BMSTU) 55

10



PIRT 2021 IOP Publishing

Journal of Physics: Conference Series 2081 (2021) 012024 doi:10.1088/1742-6596/2081/1/012024

[27] Krysanov V A 2008 Tech. Digest Int. Symp. MPLP, 2008 (Novosibirsk) 168

[28] Krysanov V A 2011 Gravitation and Cosmology 17 97

[29] Krysanov V A 2015 Proc. Int. meeting PIRT-2015 (Moscow: BMSTU) 230

[30] Okhapkin M V, Skvortsov M N, Belkin A M, Kvashnin N L and Bagayev S N 2002 Optics
Communcations 203 359

[31] Rudenko V N, Popov S M, Samoilenko A A, Oreshkin S I and Cheprasov S A 2007 Proc. Int.
meeting PIRT-2007 (Moscow: BMSTU) 49

[32] Yudin IS 2015 Author's abstract of PhD thesis (Novosibirsk)

[33] Rudenko V N, Kvashnin N L, Lugovoi A A, Oreshkin S I, Popov S M, Samoylenko A A,
Skvortsov M N and Yudin I S 2020 Physics of Atomic Nuclei 83 1682

[34] Rudenko V N, Gavrilyuk Yu M, Gusev A V, Krichevskiy D P, Oreshkin S I, Popov S M and
Yudin I S 2020 Int. J. Modern Phys. A 35 2040007

[35] Krysanov V A 2018 Journal of Physics Conf- Ser. 1051 012020

[36] Krysanov V A 2020 Journal of Physics Conf. Ser. 1557 012044

[37] Kulagin V V, Oreshkin S I, Popov S M, Rudenko V N, Skvortsov M N and Yudin I S 2016
Gravitation and Cosmology 22 374

[38] Kulagin V V, Oreshkin S I, Popov S M, Rudenko V N and Yudin I S 2016 Phys. of Atomic Nuclei
79 1552

[39] Grishchuk L, Kulagin V, Rudenko V and Serdobolski A 2005 Class. Quantum Grav. 22 245

[40] Popov S M, Samoilenko A A, Cheprasov S A and Yudin I S 2011 Gravitation & Cosmology 17
94

[41] Bezrukov L B, Kvashnin N L, Motylev A M, Oreshkin S I, Popov S M, Rudenko V N, Samoilenko
A A, Skvortsov M N and Yudin I S 2014 Proc. Int. meeting PIRT-2013 (Moscow: BMSTU)
23

[42] Conti L, De Rosa M, Marin F, Taffarello L and Cerdonio M 2003 J. Appl. Phys. 93 3589

11



