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Cosmological neutrino mass bounds are becoming increasingly stringent. The latest limit within
ΛCDM from Planck 2018þ ACT lensingþ DESI is

P
mν < 0.072 eV at 95% CL, very close to the

minimum possible sum of neutrino masses (
P

mν > 0.06 eV), hinting at vanishing or even “negative”
cosmological neutrino masses. In this context, it is urgent to carefully evaluate the origin of these
cosmological constraints. In this paper, we investigate the robustness of these results in three ways:
(i) we check the role of potential anomalies in Planck CMB and DESI BAO data; (ii) we compare the
results for frequentist and Bayesian techniques, as very close to physical boundaries subtleties in the
derivation and interpretation of constraints can arise; (iii) we investigate how deviations from ΛCDM,
potentially alleviating these anomalies, can alter the constraints. From a profile likelihood analysis, we
derive constraints in agreement at the ∼10% level with Bayesian posteriors. We find that the weak
preference for negative neutrino masses is mostly present for Planck 18 data, affected by the well-known
“lensing anomaly.” It disappears when the new Planck 2020 HiLLiPoP is used, leading to significantly
weaker constraints. Additionally, the pull toward negative masses in DESI data stems from the z ¼ 0.7
bin, which contains a BAO measurement in ∼3σ tension with Planck expectations. Without this bin, and
in combination with HiLLiPoP, the bound relaxes to

P
mν < 0.11 eV at 95% CL. The recent preference

for dynamical dark energy alleviates this tension and further weakens the bound. As we are at the dawn
of a neutrino mass discovery from cosmology, it will be very exciting to see if this trend is confirmed by
future data.

DOI: 10.1103/PhysRevD.110.123537

I. INTRODUCTION: NEUTRINO MASS BOUNDS
AS OF MID 2024

In April 2024, the DESI collaboration presented the most
stringent bound on the sum of neutrino masses within the
standard cosmological model [1]

X
mν < 0.072 eV ½95% CL�; ð1Þ

obtained by combining their new DESI-Y1 baryon acoustic
oscillation data (BAO) [2,3] with Planck [4–6] and ACT
data [7,8] (see also [9,10] for further updated constraints
within ΛCDM1).
The bound in Eq. (1) should be compared with the

minimum possible value of the sum of neutrino masses
given the observed mass squared differences from neutrino
oscillation experiments. Taking them from NuFITv5.3 [12]
and by taking mν;lightest → 0, one finds at 5σ CL

X
mν > 0.057 eV ≃ 0.06 eV ½NO�; ð2Þ

X
mν > 0.096 eV ≃ 0.10 eV ½IO�; ð3Þ
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1Note that an absolute neutrino mass bound (i.e., from the
laboratory and therefore independent upon the assumed cosmo-
logical model) has been recently updated by the KATRIN
experiment to

P
mν < 0.93 eV at 90% CL [11] when following

the Feldman-Cousins prescription. This limit is currently much
weaker than the cosmological ones.
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depending upon the neutrino mass ordering. At present,
there is no strong preference for either ordering from global
analyses of neutrino oscillation data, see [12–14].
Clearly, the current cosmological limit is very close to

the minimal value in normal ordering and already disfavors
to some degree the inverted one. Importantly, the limit in
Eq. (1) is so close to the minimum physical boundary that
statistical statements about the neutrino mass need to be
taken with care. However, cosmological limits are typ-
ically derived within a Bayesian framework, and as such
will depend upon the priors used. While the dependence
may be weak when the likelihood largely dominates over
the prior, and far away from physical boundaries, it has
already been established that neutrino masses are strongly
sensitive to the choice of prior [15–18], even with
DESI [1]. Moreover, and perhaps even more surprising,
there is still no hint of a nonzero mass in the posterior
probability density, and in fact, it has been argued that
cosmological data may favor a negative effective neutrino
mass [19–21]. While this could be the result of a
statistical fluctuation or a systematic effect, it could
potentially be the indication of new phenomena in
cosmology with groundbreaking implications.
Given the current situation, it is urgent to carefully

analyze the origin and behavior of the present constraints
on neutrino masses from cosmology. In this paper, we set as
goals to investigate simultaneously: (i) the data that have
been used and the role of potential statistical anomalies in
those data, (ii) the statistical methods used to derive the
results, and whether unwarranted effects in the Bayesian
analysis drive the preference for negative neutrino masses,
and (iii) the extent upon which they rely on the assumption
of the standard ΛCDM model.
In order to tackle these questions, we perform an

extensive comparison of cosmological neutrino mass
bounds derived both from a Bayesian and a frequentist
standpoint. In particular, the use of a frequentist analysis
framework can lead to new insight into the sensitivity of the
bound on the statistical procedure adopted, and can help in
addressing the role of priors in the Bayesian limits. In
addition, as we build the likelihood profile of the sum of
neutrino masses in light of various datasets, it is possible to
extrapolate to the unphysical region and study the potential
preference for negative masses, as performed in previous
analyses of the neutrino mass in cosmology [22–24]. Our
analysis is complementary to recent Bayesian method that
rely on the use of an “effective neutrino mass” to model the
effect of a negative neutrino mass [19,21], and although it
comes with its own set of approximations, it by-passes the
need for an arbitrary definition which will necessarily miss
part of the physical effect that a real model would have.
Second, to address the questions of the robustness of

the bound to the choice of data, we perform series of
analyses comparing results from the latest BAO data
from DESI [2,3], previous ones from SDSS [24], the

compilation of uncalibrated supernova (SN) distances from
Pantheon+ [25], and most importantly the latest versions
of the Planck likelihoods based on the 2020 PR4 data
release [26]. This is key because Planck currently domi-
nates the neutrino mass bounds and because these latest
likelihoods not only contain roughly Oð10%Þ more stat-
istical power than the 2018 (PR3) release, but importantly
because they have a much better handle of a number of
systematic effects (see [26] for details). Importantly, the
known lensing anomaly which was present at the 2.8σ level
in the Planck 2018 Plik likelihood [4] is only present in the
2020 implementations at the 1.7σ or 0.75σ levels, for the
CamSpec [27,28] and HiLLiPoP [29,30] likelihoods,
respectively. This is well known to have an impact on
the inference of neutrino masses [31–33]. Yet, Eq. (1) does
not make use of these newer data, and should thus be
explicitly checked. In particular, we test the impact of the
anomaly on the bounds in two ways: first, by simply
updating the data to match the newer release (as in [10,20])
and second, by explicitly marginalizing over the Alens
parameter [4,34], that scales the amplitude of the lensing
power spectrum.
Finally, we investigate why the bound in Eq. (1) is so

strong, despite the statistical power of DESI-Y1 BAO data
being a priori not larger (though competitive) than that of
the entire SDSS sample. We believe that this is crucial as
the community expects upcoming measurements from
DESI and Euclid to actually pin-down the absolute neutrino
mass scale in cosmology within the next few years, see
e.g. [35–38]. If these collaborations do not report any
measurement of the neutrino mass, their analyses will
clearly signal a breakdown of the standard cosmological
model and possibly even new physics in the neutrino sector.
This could point toward decaying neutrinos [39–45],
nonstandard cosmic neutrino backgrounds [46–51], or
neutrinos with a time-varying mass [52–59]. Yet, before
making such claims, it is important to note that DESI data
are in some (arguably small) 2σ level tension with Planck.
In fact, there are two BAO measurements at z ¼ 0.5 and
z ¼ 0.7 that are driving the tension with Planck (respec-
tively at the 2.8σ and 2.6σ level), and that seem somewhat
at odds with SDSS results as well. This raises the questions
of the role of those data points in driving the strong bound
in Eq. (1). In addition, when combined with Planck and
Pantheon+ (or other SN compilation) the compilation of
data seem to favor dynamical dark energy over ΛCDM [1].
Such preference is known to also alter the bound given by
Eq. (1). Within our joint Bayesian and frequentist frame-
work, we will thus explicitly check the role of those
potential outlier points, as well as the preference for a
deviation from ΛCDM in driving the hint of negative
neutrino mass, and the strong neutrino mass bounds.
The rest of our study is structured as follows: first, in

Sec. II we briefly review the main cosmological implica-
tions of massive neutrinos. We will highlight the crucial
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role of Planck data as well as why BAO data can
significantly tighten the constraints on the neutrino mass.
In Sec. III we outline the various data sets that we will use,
and describe the statistical procedure (both frequentist and
Bayesian) that we use to analyse the data and derive
bounds. In Sec. IV we present our main results focusing
first on analyses with Planck data only, exploring in detail
the role of the lensing anomaly; we then perform compre-
hensive analysis of Planck and BAO data, comparing in
particular DESI and SDSS; and finally, check the impact of
considering extensions to ΛCDM. In Sec. V we specifically
address the potential cosmological preference for a negative
neutrino mass. Finally, in Sec. VI we draw our conclusions.
Additional material supporting our findings, including
posterior distributions, correlations and comparisons with
previous works, is provided in the Appendixes.

II. COSMOLOGICAL IMPACT
OF THE NEUTRINO MASS

The existence of the cosmic neutrino background (CνB)
is a key prediction of the Standard Model of cosmology
[60]. The CνB would have formed in the early Universe at
temperatures of ∼2 MeV [61], and according to the ΛCDM
model, we should be living in a Universe filled with a
number density of neutrinos of nν ≃ 56=cm3 per helicity
state. These neutrinos gravitate today primarily as a result
of their mass and in fact their energy density today is not
negligible

Ωνh2 ¼
P

mνnν
ρcrit

≃
P

mν

93.2 eV
≃ 0.0012

P
mν

0.12 eV
: ð4Þ

This is Oð1Þ% of the dark matter energy density.
The implications of the neutrino mass in cosmology

have been explored and discussed in depth and length, see
[60–65] for reviews. In essence, the cosmological impli-
cations of neutrino masses can be understood as follows:
(1) Neutrinos are always a relevant component of the
energy density of the Universe and therefore contribute to
its expansion rate, H ∝ ffiffiffi

ρ
p

. (2) Neutrinos were propagat-
ing ultrarelativistically until the Universe cooled down
to Tν ≃mν=3 which occurs at zNRν ≃ 190mν=ð0.1 eVÞ.
(3) As a result of their ultrarelativistic speeds, neutrinos
are not able to cluster on scales smaller than L ≃
20 Mpc 0.1 eV=mν today. In consequence, and for massive
neutrinos which become nonrelativistic after recombination
mν ≲ 0.6 eV, one of their main cosmological implications
is to suppress the amount of structure formation on scales
smaller than L ≃ 20 Mpc 0.1 eV=mν. This suppression is
of course strongly dependent upon the energy density
neutrinos represent in the Universe which is directly
proportional to the neutrino masses as given in Eq. (4).
This discussion clearly highlights that the best way to
search for the neutrino mass is arguably by directly
observing probes of the Large Scale Structure in the

Universe. This is one of the primary goals of the ongoing
DESI and Euclid surveys (see [35–37]). Nevertheless, as of
today the bound on the neutrino mass is dominated by
Planck with the aid of BAO and Supernova measurements
to break relevant parameter degeneracies.
How is then Planck sensitive to the neutrino mass if

neutrinos with mν < 0.6 eV became nonrelativisitic after
the CMB was formed? There are two effects that matter
[66]: First, as a result of neutrinos traveling at relativistic
speeds, they lead to a suppression of the matter power
spectrum. This reduces the lensing that CMB photons
experience on their way from the last scattering surface
until today, and this in turn leads to sharper peaks in the
CMB power spectrum. This effect is depicted in Fig. 1. In
this figure, several other cosmological parameters have
been fixed: the total matter densities of baryons (ωb) and
dark matter ðωcdmÞ, the Thomson optical width to reioni-
zation τ, the shape and amplitude of the primordial matter
power spectrum (ns and As), as well as the angular scale of
the first CMB peak, θs. From Fig. 1 we can clearly see that
the main constraining power for neutrino masses from
Planck will come from rather small angular scales.
Importantly, this lensing effect is also dependent upon
what the values of As and ωm are.
Secondly,

P
mν impacts the angular diameter distance to

the last-scattering surface as neutrinos contribute to the
Universe’s expansion. It is however possible to exploit the
geometrical degeneracy in the CMB by adjusting H0 to
compensate the effect of

P
mν on the last scattering surface

and ensure the angular diameter distance to the last-
scattering surface is left unaffected. This is done in
Fig. 1, by keeping θs fixed, and requires a smaller H0.
However, in this process Ωm ≡ ωm=h2 will increase as a
result of the necessary decrease in the reduced Hubble

FIG. 1. Impact of a nonzero neutrino mass on the TT power
spectrum. Inspired by Fig. 26.2 of [67] but showing the Planck
error bars taken from the binned PR3 data release [68]. Note that
it is precisely in the range of angular scales where the main
impact of neutrino masses appears where the lensing anomaly is
present in some Planck likelihood implementations.
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parameter h≡H0=100 km=s=Mpc. This suggests that an
accurate probe of the late-time expansion history can help
break the geometrical degeneracy (namely Ωm and/or H0)
and further constrain

P
mν.

Therefore, in order to make precise inferences on the
neutrino mass from CMB observations one needs to have
(i) a very good understanding of how the CMB is being
lensed on small angular scales, (ii) control over As and ωm,
and (iii) control over Ωm and more generally the expansion
history at late-times.
In this context, regarding (i), the Planck legacy analysis

did report the so-called “lensing anomaly” which can impact
the inferences on the neutrino masses. The anomaly was
parametrized introducing an ad hoc variable Alens to change
the lensing power relative to its actual physical value, so as to
account for possible systematic uncertainties, and Planck
data preferred values of Alens > 1. However, the magnitude
of the Alens was known to vary depending on the specific
likelihood (and specific CMB dataset) used to perform the
analysis. While the anomaly is 2.8σ with the official Planck
collaboration 2018 TTTEEE likelihood, dubbed plik, it is
reduced after the final PR4 data release to the 1.7σ level with
the alternative CamSpec [27,28] likelihood, and down to
0.75σ with the HiLLiPoP [29,30] one.
Importantly, the CamSpec and HiLLiPoP likelihoods

have been recently updated since the 2018 analysis, in light
of a new set of maps produced by the Planck collaboration
called NPIPE. The NPIPE maps exploit a number of
improvements in the processing of time ordered data to
allow for an increase in the signal-to-noise ratio at small
scales. They also allow to use a larger sky fraction, and
incorporate a better handling of a number of systematic
errors thanks to dedicated mock data. This results in a
roughly ∼10% stronger constraining power on ΛCDM
parameters, and importantly, the lensing anomaly seems to
be significantly reduced or even absent in those data. In
fact, it has been shown that they lead to weaker bounds toP

mν than the Plik 2018 likelihood, see [10,28,30].
Regarding (ii), the best way to obtain better measure-

ments on As is from large scale CMB polarization mea-
surements which will be provided by LiteBIRD [69] but on
a ∼10 year timescale. Importantly, regarding (iii), the
improvement is happening now, as DESI is taking data
and has published already the 1st year data release, while
Euclid is on space and will start collecting data in one year
as well. In this regard, it is important to highlight that the
compatibility between the new DESI-Y1 data and Planck is
at the 2σ level, and is thus worse than for SDSS. As a result,
this (arguably small) tension may impact the neutrino mass
bound. This is illustrated in Fig. 2, where we compare
constraints under ΛCDM in the Ωm −H0rd plane from
SDSS, DESI and DESI without the data points at z ¼ 0.7.
We also superimpose the posteriors from a fit to Planck
2018 (with lensing), highlighting the correlations withP

mν with colored points. As argued in Ref. [1], it is

clear that the mismatch inH0rd between SDSS and DESI is
driving the discrepancy, and a stronger bound to

P
mν.

However, removing the data points at z ¼ 0.7 can signifi-
cantly shift the mean of the posterior distributions (by about
∼0.8σ) without affecting the error bars. This suggests than
an analysis without these data points may lead to signifi-
cantly weaker bounds, and would argue in favor of a
potential statistical fluke driving these bounds.
In summary, it is very important to understand how

relevant are possible systematic effects in Planck CMB data
on our inferences of the neutrino mass in cosmology, as
well as what are the implications of adding different sets
of BAO data. This is particularly the case given that the
direct combination of Planckþ DESI-Y1 BAO yields a
bound

P
mν < 0.072 eV which is very close to the

minimum allowed value from neutrino oscillation experi-
ments

P
mν > 0.06 eV.

III. DATA AND METHODOLOGY

A. Cosmological data: CMB, BAO, and supernova

In what follows, we will first perform a comprehensive
analysis of the bound on neutrino masses coming from
considering Planck data alone, to highlight the role of
potential anomalies (whether a statistical fluke or a sys-
tematic effect) in the data, and how subsequent data
releases have affected those bounds. To that end, we
consider the following likelihood combinations:

(i) Planck18-PR3—We consider the default plik
Planck legacy likelihoods for both TT, TE, EE high

FIG. 2. Implications of BAOmeasurements ofΩm andH0rd forP
mν inferences. We show the posterior density contours using

Planck data (gray and dots), as well as the regions favored by the
full SDSS BAO sample (in blue), DESI-Y1 (in red), and DESI-
Y1 without the z ¼ 0.7 bin, which contains a 2.6σ outlier (in
black dashed). We can clearly see that the z ¼ 0.7 leads to a
relevant shift on the parameter space with implications for the
neutrino mass.
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l spectra as well as the large scale (low l) EE
polarization likelihood SimAll, and also the large
scale TT Commander likelihood.

(ii) CamSpec22-PR4—We consider the new
Planck_CamSpec_NPIPE12_7_TTTEEE like-
lihood for both TT, TE, EE high l spectra [27,28] as
well as the large scale (low l) EE polarization
likelihood SimAll and the large scale TT Com-
mander one.

(iii) HiLLiPoP23-PR4—We consider the new
HiLLiPoP [30] likelihood for both TT, TE, EE
high l spectra, and the LoLLiPoP [29,70] EE, EB
and BB low l spectra.

(iv) Lensing-PR3—Unless otherwise stated (no
lensing) we also consider the reconstructed gravi-
tational lensing potential power spectra from Planck
PR3 [5].2 We note, however, that there is a newer
PR4 one [6], as well as a complementary one by
ACT [7,8]. Including these datasets will not alter our
conclusions and will only improve the bound by
∼10% [compare Eq. (1) with Eq. (5)].

Second, we will investigate the role of BAO data, and
the impact of potential statistical fluctuations within DESI
data on the bounds. We include the following data
combinations:

(i) DESI-Y1—We consider the full set of BAO data as
reported in [1,2].

(ii) DESI-Y1-no07—We consider the full set of BAO
data as reported in [1,2] but without including the
two data points at z ¼ 0.7. Since this corresponds
precisely to the redshift of dark energy domination
and this bin contains a data point in ∼3σ tension3

with Planck predictions, it is interesting to explore
its impact on the

P
mν bound to understand what

would happen if these outliers are not confirmed by
future data, as highlighted in Fig. 2.

(iii) SDSS-full—We consider the full set of BAO data
from SDSS as detailed in [24].

(iv) DESI-Y1þSDSS—We consider the DESI and
SDSS combination as done in [1] that makes use
of the BAO measurements from the survey with the
largest effective volume in a given redshift bin. Note
that this includes the DESI-Y1 BAO measurements
at z ¼ 0.7 which are in ∼3σ tension with Planck
ΛCDM predictions.

Finally, we also consider analyses including un-
calibrated luminosity distance-redshift measurements from
type Ia SN:

(i) SN-Pantheon—We make use of the Pantheonþ
catalog of uncalibrated luminosity distance of type
Ia supernovae (SNeIa) in the range 0.01 < z < 2.3
[25]. We note that there are alternative compilations
such as the Union3 [72] and DES-Y5 SNeIa [73]
that could be used. We do not anticipate them to
strongly impact our conclusions. We leave a dedi-
cated analysis to future work.

B. Analysis methodology: comparing Bayesian
and frequentist framework

In the cosmology community, it has become standard to
perform analyses through a Bayesian framework, as those
are typically numerically less expensive than frequentists
analyses given the very large number of (cosmological and
nuisance) parameters that must be considered. These also
have the claimed advantage to incorporate prior knowledge
(or lack thereof) in a straightforward manner, as priors are
rooted in the definition of the posterior distribution within
Bayes theoreom. In addition, there are now advanced tools
(based on the notion of Bayesian evidence) to perform
model comparison that are routinely used in cosmology,
and can (somewhat) easily tackle the problem known as
“look elsewhere effect” in the frequentist framework, and
quantify the abstract notion of “Occam’s razor” that is often
put forward. Yet, given that cosmology bounds on the sum
of neutrino masses are pushing against the physical
boundary, they can be affected by prior effects: the
credible intervals built from the Bayesian posteriors
become largely influenced by the choice of priors, rather
than the data likelihood. As the choice of priors carry a
level of arbitrariness, these effects can lead to constraints
that are not robust. This is particularly relevant given the
current context, and the apparent strength of the cosmo-
logical bound.
Indeed, over the past years, almost the entirety of each

subsequent data release increased progressively the existing
bound, with a preferred value at

P
mν ¼ 0 and barely any

hint for a nonvanishing value, which is surprising and
worth investigating. In fact, present constraints have almost
exhausted the available parameter space given the lower
bound from neutrino oscillations and are already in
significant tension with the minimal value implied by an
inverted ordering, still allowed by oscillation results. In this
context, subtleties when deriving the limits must be taken
into consideration. In a Bayesian framework, the results
are therefore prior-dependent (see, e.g., Ref. [1]), as the
preferred value appears to always be the smallest possible
one given the prior (i.e.,

P
mν ¼ 0, 0.06 or 0.1 eV when

disregarding the results from oscillations or assuming a
normal or inverted ordering, respectively) and thus (arti-
ficially) relax the larger the minimal allowed mass is.

2We stress that the intrinsic lensing induced smoothing of the
CMB peaks is always included.

3Out of the 22 BAO data points, most of them are in good
agreement with Planck ΛCDM predictions, but there are two
DESI-Y1 data points at z ¼ 0.5 and z ¼ 0.7 which deviate by
∼2.8σ and ∼2.6σ, respectively. Given a total of 22 total
measurements of BAO, the chances of this occurring (assuming
Gaussian and uncorrelated errors) is of only ∼1.8%, see [71]. We
further note that the DESI-Y1 BAO measurements at z ¼ 0.7 are
also in some tension with the old SDSS ones at similar redshifts.
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As an alternative to the Bayesian approach, and to
compare and contrast the results, we make use of the
frequentist framework, relying on a series of χ2 optimiza-
tions at fixed neutrino mass, to build a profile likelihood
and derive confidence intervals. The main advantages of the
frequentist approach are that (i) constraints are insensitive
to the specific choice of priors, and (ii) the presence of the
physical boundary can be accounted for in a statistically
consistent manner [74]. Thus, a direct comparison between
the two approaches may provide a better handle on the
relevance of these subtleties, as well as on the robustness of
the cosmological bound.
All power spectra in our study are obtained from the

Boltzmann code CLASS [75]. The main physical quantity
impacting cosmological observations is the total energy
density in nonrelativistic neutrinos and as such, for sim-
plicity, we model the neutrinos as fully degenerate with a
mass mν ¼

P
mν=3, and unless specified, vary it within

the prior rangemν ∈ ½0; 1� eV. Cosmological data cannot be
sensitive to the mass splittings and this choice can only
cause relatively small changes in Δχ2, see e.g. [23]. We
additionally vary the following six cosmological parame-
ters, within large flat priors (when applicable): the angular
size of the sound horizon θs, the physical baryon ωb and
dark matter ωcdm densities, the amplitude As and tilt ns of
the primordial power spectrum for scalar modes, the optical
depth to reionization τreio.
On the Bayesian side, we perform a Markov Chain

Monte Carlo (MCMC) sampling of the posterior distribu-
tion, using the publicly available MontePython code [76,77].
Cosmological and nuisance parameters are varied accord-
ing to the “fast” and “slow” parameters decomposition [78].
The chains are then marginalized with GetDist [79] in order
to extract the bounds. On the frequentist side, instead of
posterior marginalization, the relevant procedure is like-
lihood profiling, which requires the minimization of the χ2

function for a fixed value of the parameter of interest
(
P

mν in our case), varying simultaneously the N − 1
remaining cosmological and nuisance parameters. In par-
ticular, the various likelihood combinations described in
Sec. III contain of the order of N ∼ 20–25 parameters
making the minimization a highly nontrivial task. In this
context, we have opted to perform the numerical minimi-
zation with the simulated annealing algorithm implemented
in Procoli [80].4 Although this procedure is straightforward,
the HiLLiPoP likelihood requires significantly more care to
successfully converge. We attribute this to the fact that
HiLLiPoP is the sole CMB likelihood that is not binned,

and is therefore noisier than the others. For this reason, our
profiling is not performed over a regular grid of

P
mν. This

is, however, not a major cause for concerns, since to
properly calibrate the frequentist test statistics we will in
any case fit the likelihood profiles. In addition, we can
extrapolate the resulting fits to the unphysical negative
neutrino mass region, allowing us to asses the potential
preference for negative masses recently displayed by some
datasets and discussed in [19–21].
Consequently, in order to gauge the impact of approach-

ing the physical boundary at
P

mν ¼ 0, we will choose
two different prescriptions to extract the frequentist bound:
(1) Bounded Likelihood (B.L.): focusing only on the

physical region
P

mν > 0, we derive the bound via
the standard Δχ2 cut assuming Wilks’ theorem, see
e.g. [84].

(2) Feldman-Cousins (F.C.): we fit the χ2 profile in the
physical region to a parabola and extrapolate into
the unphysical region so as to find where the true
minimum would lie. It is then possible to extract the
corrected upper bound from Table X of Ref. [74].
Compared with the previous procedure, this pre-
scription has the advantage of guaranteeing proper
coverage of the interval. However, it relies on the
extrapolation in order to find the position and depth
of the minimum.

In order to assess whether a χ2 profile is Gaussian and the
Feldman-Cousins method can be safely applied, we will
perform a parabolic fit of all points that lie below a
certain Δχ2max. By varying this parameter in the interval
Δχ2max ∈ ½2; 4�, we can have a measure of how much the
best-fit parabola or, equivalently, the F.C. bound, depends
on the amount of points that are being fit. Following this
method, we will only quote frequentist bounds on the
profiles that exhibit stable best-fit parabolas. We find that
this is the case for all of the analyses and that the limits
derived from the Feldman-Cousins procedure do not
appreciatively depend upon Δχ2max.

IV. COSMOLOGICAL NEUTRINO MASS BOUNDS:
A FREQUENTIST VS BAYESIAN COMPARISON

A. Planck only analyses

1. Planck Legacy vs Planck 2020 likelihoods

In Fig. 3 we compare the profile likelihoods for the
neutrino mass using the latest implementations of the
Planck likelihoods. We also show the first Planck 2013
results from [22] in red that already highlighted the
potential preference for “negative” neutrino masses. We
show results from the 2018 legacy PR3 (black) as well as
the latest implementations of the PR4 data release using
CamSpec (green) and HiLLiPoP (blue). As discussed in the
introduction, these implementations feature different levels
of lensing discrepancies which are critical for neutrino

4We note that there are other public codes available such as
Prospect [81] and CAMEL [82]. While Prospect also relies on a
simulated annealing algorithm and would likely provide similar
results as Procoli, CAMEL relies on the quasi-Newtonian optimizer
Minuit [83]. We have not been able to obtain converged likelihood
profiles with CAMEL, highlighting one of the difficulties in the
frequentist approach.
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mass inferences. The lensing anomaly in the Planck18-
PR3 one is 2.8σ, in CamSpec22-PR4 it is 1.7σ, while in
HiLLiPoP23-PR4 it is only 0.75σ. From Fig. 3, one can
see that the strength of the neutrino mass bound directly
anti-correlates with the level of the anomaly, and can relax
by up to a factor of 2 when going from Planck18-PR3 to
HiLLiPoP23-PR4. One can also clearly notice that the
extrapolation to the unphysical region indicates preference
for negative neutrino masses for Planck18-PR3 and
CamSpec22-PR4, the two likelihoods that carry some
residual lensing anomaly. However, for HiLLiPoP23-
PR4, which has no statistically significant Alens anomaly,
the minimum of the χ2 is consistent with positive (albeit
small) neutrino masses.
In Table I we explicitly show the 95% CL bounds on

the neutrino mass for the various likelihoods. Given the
impact of the lensing anomaly in plik and CamSpec, their
preference for a best-fit in the negative mass region is very
strong. As such, our samples in the physical region lie very
far from the Δχ2 minimum where the Gaussian approxi-
mation holds and the extrapolation has extremely large
uncertainties as shown in Fig. 3. Therefore, the simple
Feldman-Cousins prescription when a Gaussian behavior
is observed cannot be implemented in these two cases.
Instead, a full boostraping of the parameter space to calibrate
the test statistic and correctly asses at which values of the
Δχ2 lay the cuts for the confidence levels of interest would
be needed. This procedure would be extremely computing-
expensive and is unfortunately not feasible. On the other

hand, for the HiLLiPoP implementation (which does not
feature a lensing anomaly), solid frequentits limits can be
obtained. A direct comparison shows that this frequentists
and Bayesian bounds agree within 20%.

FIG. 3. Profile likelihoods for the neutrino masses within ΛCDM for three different versions of the Planck likelihoods: Planck18-
PR3, CamSpec22-PR4, and HiLLiPoP23-PR4. For comparison purposes we also show the Planck 2013 results from [22] in red
where the potential trend for a best fit in the “negative” regime was first highlighted. We clearly see that the bound on the neutrino
masses changes significantly for each implementation of the likelihood, being HiLLiPoP the one giving the looser constraints. Solid and
dashed lines correspond to parabolic fits where the Δχ2 points up to 4 or 2 were used in the fit, respectively.

TABLE I. Upper limits at 95% CL on the neutrino mass within
ΛCDM using various Planck likelihoods. We show the Bayesian
limits compared with the two frequentist approaches
(B:L: ¼ Bounded Likelihood, and F:C: ¼ Feldman − Cousins)
described in Sec. III B. We do not quote frequentist F.C. bounds
for Planck18-PR3 and CamSpec22-PR4 (no lensing) due to
their non-Gaussian behavior in the physical region, which
precludes a reliable extrapolation into the unphysical regime.

Planck only 95% CL
P

mν (eV)

Frequentist

Model Planck likelihood Bayesian B.L. F.C.

No lensing likelihood
ΛCDM Planck18-PR3 0.24 0.17 � � �

CamSpec22-PR4 0.33 0.28 � � �
HiLLiPoP23-PR4 0.51 0.40 0.39

ΛCDMþ Alens Planck18-PR3 0.82 0.91 0.88
CamSpec22-PR4 0.78 0.97 0.93
HiLLiPoP23-PR4 0.68 0.77 0.76

With lensing likelihood
ΛCDM Planck18-PR3 0.25 0.20 0.18

CamSpec22-PR4 0.21 0.19 0.18
HiLLiPoP23-PR4 0.34 0.33 0.32
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2. The impact of Alens

To investigate further the potential preference for neg-
ative neutrino masses and the role of the lensing anomaly in
driving this preference, we show in Fig. 4 the results from
analyses that vary in addition the Alens parameter that
controls the lensing of temperature and polarization fluc-
tuations (Cϕϕ

L ¼ AlensC
ϕϕ
L jΛCDM [34]). This parameter is

well known to be correlated with the neutrino mass [4], and
this is confirmed through our frequentist analysis, see the
right panel of Fig. 15. From Fig. 4 one can see that the χ2

parabolas become all more or less similar, and that when
the Alens parameter is allowed to vary we find no preference
for a negative neutrino mass. Therefore, our sampling of the
Δχ2 in the physical region is now closer to the minimum
and we can reliably extrapolate and derive robust frequent-
ist confidence levels also for Planck18-PR3 and
CamSpec22-PR4. These are reported in Table I.
We see that the neutrino mass bounds can be relaxed by
up to a factor of ∼2 when the Alens parameter is introduced,
becoming comparable to the latest laboratory bounds. This
is in agreement with the findings of [33]. Importantly, when
the Alens parameter is allowed to vary, the profile like-
lihoods resemble Gaussians and we are able to obtain
frequentist limits for

P
mν. Direct comparison between

Bayesian and frequentist limits shows a 10%–20% agree-
ment depending upon the specific likelihood.
Though the Alens parameter is unphysical, this exercise

clearly highlights the importance of internal inconsistencies
in Planck CMB data for inferences of the neutrino mass
in cosmology. Marginalizing over these anomalies, it is
remarkable that Planck constrains become only as strong as
direct laboratory bounds. However, we stress that this is

only part of the cosmological constraining power, as we
have ignored the Lensing-PR3 likelihood, which pro-
vide additional sensitivity to CMB lensing, as well as
BAO and SNe data that are sensitive to the background
effects of neutrinos.
In Fig. 5 we show the results but now including the

Lensing-PR3 lensing likelihood and with the physical
condition Alens ¼ 1. By comparing the results with those
without lensing in Fig. 3 we can clearly see that while the
impact on the Planck18-PR3 analysis is mild at the
level of the 2σ limit, the extrapolated behavior to negative
neutrino masses shows significantly weaker support for a
negative best fit. This is because the lensing likelihood
does not feature a lensing anomaly. The shift for the
CamSpec22-PR4 and HiLLiPoP23-PR4 cases is sub-
stantially more pronounced and as shown in Table I the
95% CL limit improves by a factor of 1.5 when the lensing
likelihood is added. We note that for the dataset combi-
nation HiLLiPoP23-PR4+Lensing-PR3 the minimi-
zation procedure was rather challenging highlighting that a
nonglobal minimum of the χ2 at around

P
mν ∼ 0.2 eV

may be present. In Appendix A we show the Bayesian
posterior in Fig. 11 and there is a priori no evidence for
multimodality in it.

B. Planck+BAO: A close look at the DESI results

As discussed in Sec. II, there are two critical effects of
the neutrino mass in the CMB: one is on CMB lensing at
small angular scales (high l), see Fig. 1, and the other is
on the angular diameter distance to recombination, which
lead to a strong correlation with other cosmological
parameters such as Ωm, see Fig. 2. This is why including
the Lensing-PR3 likelihood and BAO data is critical, as
they can help break degeneracies between

P
mν and other

cosmological parameters, and allow for an increased

FIG. 4. Neutrino mass profile likelihoods using the full Planck
temperature and polarization data for ΛCDM allowing to vary
the unphysical Alens parameter which is strongly correlated withP

mν. We can see that the bounds are significantly relaxed and
comparable to the KATRIN laboratory upper limit.

FIG. 5. Neutrino mass profile likelihoods using the full Planck
temperature, polarization and lensing data for ΛCDM. This
should be compared with Fig. 3 that does not include lensing.
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sensitivity of the neutrino mass when combined with CMB
observations (note that geometric BAO data on their own
are not sensitive to the neutrino mass).
In particular, as stated in the introduction, one of the

main goals of our study is to understand why the bound
from Planckþ DESI-Y1 is so strong, and whether it really
points to negative neutrino masses.
In order to gauge how unexpected is the result from

Planckþ DESI-Y1, it is instructive to first estimate the
sensitivity of this data combination to neutrino mass, as for
instance done in Ref. [85]. To do so, we perform a mock
data analysis, making use of the MontePython and the
Fake_planck_realistic likelihood [85], that we combine with
our own mock likelihood of DESI-Y1, that simply makes
use of the covariance matrix from the data, replacing the
measurements with a fiducial model prediction. For the
fiducial, we study three configurations:

P
mν ¼ 0, 0.06,

0.1 eV, fixing the other ΛCDM parameters as reconstructed
from Planck18-PR3þ Lensingþ BAO [4]. We run
MCMC chains, and show the reconstructed posteriors in
Fig. 6. It is clear that the real data (black line) provide
significantly stronger constraints than expected, and in fact,
our mock data suggests that the combination of Planckþ
DESI-Y1 has the sensitivity necessary to detect at small
significance nonzero neutrino masses, assuming these
respect the laboratory lower limits. Barring issue with
our mock likelihoods, it is thus clear that there is some
“anomaly” in the real data (whether due to a fluke, or new
physics). As already discussed and as we will elaborate in
the following with analyses of the real data, the two results
that seem to be driving this unexpected constraints beyond
the sensitivity are Planck likelihoods through the lensing
anomaly and the DESI-Y1 data at z ¼ 0.7. Indeed, when
we compare instead the posterior for HiLLiPoP, with a
significantly reduced lensing anomaly, and remove the

DESI outliers, the posterior is much closer to the expected
sensitivity as shown by the purple line in Fig. 6. When in
presence of such anomalous behavior from the actual data
when compared to the expected sensitivities, an alternative
method to the Feldman-Cousins analysis was proposed by
Lokhov and Tkachov [86] ensuring also proper coverage
when deriving the confidence intervals but conservatively
replacing the anomalous results pushing into the unphysical
region with the expected sensitivity in absence of a signal.
Since we find that the main contributors driving the
anomalous results can be identified and that their impact
can be almost entirely removed for instance through the
HiLLiPoPþ DESI-Y1 combination, we prefer not to
implement this method as it would hide the different
behaviors of the different datasets and cosmological models
we want to analize and compare here. However, we do find
the comparison with the expected sensitivities presented in
Fig. 6, on which the LT method is based, very illustrating.
Furthermore, we can compare our expected sensitivities
of Planckþ DESI-Y1 to the ones obtained in previous
forecasts using the full DESI reach [85]. We find a 1σ
sensitivity of ∼0.06 eV while for Planckþ DESI-full
Ref. [85] reports a 1σ sensitivity of 0.04 eV. This highlights
what is the level of improvement expected from the
additional 5 years of BAO data, although an even higher
sensitivity can of course be obtained from a full shape
analysis of the matter power spectrum, see [35–38].
We now turn to the real data. In Fig. 7 we show the

analyses of Planck data5 combined with: (a) DESI-Y1 BAO
results, (b) the full SDSS combination (which have a
similar statistical power in the Ωm vs H0rd plane as
DESI-Y1, see Fig. 2), (c) the DESI/SDSS BAO combina-
tion that takes the BAO results at each redshift bin from
the survey that has greatest statistical power, and (d) the
DESI-Y1 BAO combination but without the z ¼ 0.7 bin
that contains data which deviate by ∼3σ from ΛCDM
predictions. Importantly, in all dataset combinations,
we consider separately the three latest Planck likelihood
implementations.
First, from panel (a), we confirm that the extrapolation of

the results from Planckþ DESI-Y1 to the unphysical
region seem to favor negative masses. However, in our
approach, given uncertainties in the profile represented by
the bands, the preference remains at low statistical signifi-
cance. In fact, we find that it is the combination with
HiLLiPoP23-PR4 that seems to lead to the largest
preference (reaching at most ∼1σ). This may appear
counter-intuitive given results presented in previous sec-
tion. We attribute this to the fact that HiLLiPoP23-PR4
has the weakest constraining power on neutrino masses,
and thus the statistical power from DESI can be more
pronounced. Second, by comparing the results from
Planckþ DESI-Y1 and Planckþ SDSS in panel (b), oneFIG. 6. Reconstructed posterior distribution of

P
mν in a mock

analysis of Planck18 − PR3þ Lensingþ BAO with three
configurations:

P
mν ¼ 0, 0.06, 0.1 eV. We also show the

posterior reconstructed from the real data for comparison. 5We stress that Lensing-PR3 is now included in the analysis.
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can clearly see that the bound on the neutrino mass are
significantly weaker in the latter case and that the
preference for negative neutrino masses further decrease.
This is particularly striking for HiLLiPoP23-PR4
that is now fully compatible with positive masses.
However, when comparing the Planckþ DESI-Y1 and
Planckþ DESI-Y1þ SDSS [panel (c)] one notices that
the profiles are quite similar and only slightly shifted
toward more positive values for the latter case. This
suggests that the low-z data points from DESI, that are
replaced by SDSS is this analysis, do not play a significant
role in the preference for negative neutrino masses. Rather,
we can compare the results from PlanckþDESI-Y1 and
PlanckþDESI-Y1no07 [panel (d)] which excludes the
outliers at z ¼ 0.7. We find that removing these data points
loosens the bound and also makes all likelihood

combinations to peak at around
P

mν ≃ 0, thus removing
the potential preference for negative neutrino masses.
Although it is obvious that removing two data points from
DESI-Y1 is not a valid statistical procedure, this exercise
shows that DESI-Y1 BAO data at z ¼ 0.7 have a very
significant impact on the neutrino mass bound.We note that
the DESI-Y1þ SDSS BAO combination does include
these outliers in the combination as the effective volume
of DESI is already larger than that of SDSS at z ¼ 0.7.
Finally, although Fig. 7 shows that the form of the

profiles (in particular the extrapolation) is different for the
three Planck implementations, the differences at the level of
the 95% CL bound is only at the 10%–20% level, depend-
ing upon the specific BAO data used. This is good news
because it shows that the potentially large systematic shifts
on

P
mν when using Planck CMB data alone are not

FIG. 7. Profile likelihoods of the neutrino mass within ΛCDM when using Planckþ BAO data comparing scenarios with DESI-Y1
(a), the full SDSS data (b), the combination of DESI-Y1þ SDSS (c), and the DESI-Y1 dataset but removing the ouliers at z ¼ 0.7 (d).
We can clearly notice that systematically the HiLLiPoP23 likelihood implementation gives the weakest constraints, and that the two
BAO measurements at z ¼ 0.7 have a significant impact on both the bound on the neutrino mass as well as the potential preference for a
negative best fit.
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present at the same level when CMB lensing and geometric
BAO data are included. Our results are in qualitative
agreement with the recent Bayesian analysis of [10].

C. Planck+DESI+SN: Impact of the Dark Energy
equation of state

So far, we have explored constraints to
P

mν assuming a
flat ΛCDM background, and showed how BAO data can
help strengthen the bound by breaking the degeneracy with
Ωm. However, in models with more parameters controlling
the late-time expansion history, it is expected that addi-
tional degeneracies with the neutrino masses will appear.
Chief among those is the well-known degeneracy with the
equation of state of dark energy, w (see, e.g., [87].) Given
the tentative evidence for a time-varying equation of
state of dark energy from DESI when combined with
SN data [1], it is relevant to explore how it can impact the
bound on the neutrino masses. Following [1], we model the
equation of state of dark energy to vary according to
the Chevalier-Polarski-Linder parametrization wðaÞ ¼
w0 þ ð1 − aÞwa [88,89], where a is the scale factor, and
vary w0 ∈ ½−3; 2� and wa ∈ ½−3; 1�.
In Fig. 8 we show the likelihood profile of

P
mν built

from the combination of Planck, DESI-Y1 BAO and the
SN Pantheon sample, in ΛCDM (in black) and in the
w0waCDM cosmology (in green). One can see that when
the equation of state of dark energy is allowed to vary the
bound on the neutrino mass is relaxed, in good agreement
with [1]. We find, however, that the 95% bound can be
roughly 30% weaker for HiLLiPoP than with Plik or
CamSpec. Interestingly we also note that the potential
evidence for a negative neutrino mass vanishes.
Something important to highlight is that, while allowing

for the equation of state of dark energy to vary relaxes the
bound on the neutrino mass, the best fit for the equation of
state differs significantly from the cosmological constant
value and in particular suggests that w0 ≳ −1 today. Thus,
while the bound may be relaxed, large neutrino masses

would require dark energy to behave very differently than a
cosmological constant. We note that if one restricts the
analysis to constant equation of state, namely wðaÞ ¼ w0

where only w0 is allowed to vary, the bound on the neutrino
mass remains very similar to that in ΛCDM, see [1].
Lastly, we investigate whether varying the Alens param-

eter may remove the preference for negative neutrino
masses, despite the inclusion of DESI-Y1 BAO and SN
data. Our results are shown in Fig. 8 in blue. One can notice
that this shifts the best fit to the positive regime and that the
bound becomes again a factor of ∼2 weaker than when
compared to the standard case where Alens ¼ 1. This
suggests that, regardless of the behavior of DESI data, it
is the lensing anomaly that dominates the preference for
negative neutrino masses. Note though, that removing
(most of) the constraining power from lensing by including
Alens does not remove all the sensitivity to neutrino masses
altogether. While the constraints relax, they remain sig-
nificantly stronger than laboratory ones when BAO and
SNIa data are included, in the ball park of

P
mν ≲

0.2–0.3 eV depending on which CMB likelihood is used.

D. Frequentists vs Bayesian limits: The impact of
statistical choices on the neutrino mass bound

Until now, we have focused our attention on profile
likelihoods, as these allowed us to investigate the prefer-
ence for negative neutrino masses. In this section we will
study how the confidence intervals built from the profile
likelihood compare with the Bayesian credible intervals
built from the posteriors. While the two statistical
approaches address distinct questions and thus do not need
to necessarily coincide, we find the comparison useful to
understand how dependent is the derived constraint on the
choice of the statistical procedure. Moreover, if the like-
lihood is Gaussian and when assuming flat, noninformative
priors on the parameter under study, the two approaches
should coincide. Therefore, the comparison allows to asses
the role of possible prior effects in the bound given by

FIG. 8. Neutrino mass profile likelihoods for Planckþ DESI-Y1þ Pantheonþ dataset combinations. We show ΛCDM in black,
varying the equation of state of dark energy in green, and allowing for Alens to vary in blue. In the left panel we show the results for plik,
in the middle for CamSpec, and in the right panel for Hillipop. We clearly see a similar behavior for all of them and the potential
preference for a negative best fit to disappear when the equation of state of dark energy is allowed to vary.
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Eq. (1) as well as deviations from Gaussianity. Notice that
the extrapolations to negative masses performed in our
work as well as in Ref. [10,24] rely on the Gaussianity of
the likelihood and posterior respectively. Similarly, the
study of Ref. [21] relies on a linear expansion of the
dependence of the observables with

P
mν which, per Wilks

theorem, would imply a Gaussian behavior. The fact that
these analyses do not coincide (see Sec. V for a full
comparison) implies that the Gaussian behavior approxi-
mation is violated at some degree. As we will show and
discuss below, we find that the differences between the
Bayesian and frequentist approaches are at the 10% level,

which provides a useful estimation of the size of the
uncertainties introduced by these approximations. We refer
to Appendix A for the posterior distributions.
Our results are summarized in Table II for analyses that

combine Planckþ BAO data, and in Table III for those
that also include SN data from the Pantheon sample. These
tables include three estimates of the bound to neutrino
masses: the Bayesian limit at 95% CL, those derived using
Feldman-Cousins procedure (F.C.), as well as those
using the naive bounded maximum likelihood (B.L.)
(Δχ2 ¼ 3.84), all at the same confidence level. First, we
generally notice a very good agreement between the two

TABLE II. Upper limits at 95% CL on the neutrino mass within ΛCDM using various dataset combinations
of Planckþ BAO data. We show the Bayesian limits compared with the two frequentist approaches
(B:L: ¼ Bounded Likelihood, and F:C: ¼ Feldman-Cousins) described in Sec. III B. We also report the Gaussian
fit for our profile likelihoods.

Planckþ BAO 95% CL
P

mν (eV)

Frequentist

BAO data Planck likelihood Bayesian B.L. F.C. Gaussian fit

SDSS-full Planck18-PR3 0.114 0.116 0.113 −0.018� 0.068
CamSpec22-PR4 0.115 0.108 0.106 −0.026� 0.067
HiLLiPoP23-PR4 0.151 0.146 0.146 0.007� 0.071

DESI-Y1 Planck18-PR3 0.084 0.074 0.071 −0.047� 0.057
CamSpec22-PR4 0.079 0.069 0.067 −0.045� 0.053
HiLLiPoP23-PR4 0.102 0.085 0.083 −0.038� 0.060

DESI-Y1þ SDSS Planck18-PR3 0.096 0.086 0.082 −0.033� 0.058
CamSpec22-PR4 0.088 0.080 0.077 −0.032� 0.054
HiLLiPoP23-PR4 0.112 0.099 0.097 −0.016� 0.058

DESI-Y1-no07 Planck18-PR3 0.107 0.096 0.092 −0.036� 0.065
CamSpec22-PR4 0.101 0.089 0.087 −0.048� 0.066
HiLLiPoP23-PR4 0.125 0.114 0.114 −0.012� 0.064

TABLE III. Upper limits at 95% CL on the neutrino mass using Planckþ BAO þ SN data within extended
ΛCDM models, including a time-varying equation of state of dark energy, as well as varying the Alens parameter.
We show the Bayesian limits compared with the two frequentist approaches (B:L: ¼ Bounded Likelihood, and
F:C: ¼ Feldman-Cousins) described in Sec. III B. We also report the Gaussian fit for our profile likelihoods,
obtained from the points below Δχ2 ¼ 4.

Planckþ DESI-Y1þ Pantheonþ 95% CL
P

mν (eV)

Frequentist

Model Planck likelihood Bayesian B.L. F.C. Gaussian fit

ΛCDM Planck18-PR3 0.093 0.087 0.088 −0.025� 0.056
CamSpec22-PR4 0.089 0.080 0.078 −0.033� 0.055
HiLLiPoP23-PR4 0.112 0.099 0.098 −0.034� 0.066

w0waCDM Planck18-PR3 0.177 0.163 0.163 −0.019� 0.092
CamSpec22-PR4 0.167 0.161 0.164 0.006� 0.079
HiLLiPoP23-PR4 0.213 0.205 0.207 0.024� 0.092

ΛCDM þ Alens Planck18-PR3 0.242 0.268 0.260 0.060� 0.102
CamSpec22-PR4 0.204 0.220 0.210 0.050� 0.079
HiLLiPoP23-PR4 0.180 0.187 0.181 0.046� 0.068
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frequentists approaches, with differences between them at
the ≲5% level only. This suggests that the fact that the
minimum lie beyond the physical region does not signifi-
cantly affect the bounds to neutrino masses. Second,
and interestingly, we also notice a very good agreement
between the frequentists and Bayesian limits. In fact, we
find, that the frequentists limits are in many cases ∼10%
stronger than the Bayesian ones. For example, considering
the dataset combination of Plikþ DESI, we find at
95% CL:

X
mν < 0.084 eV ½Bayesian�; ð5aÞ

X
mν < 0.074 eV ½Bounded–Likelihood�; ð5bÞ

X
mν < 0.071 eV ½Feldman–Cousins�: ð5cÞ

One clearly sees that the three are very similar, with the
frequentist ones being slightly more stringent. While the
two approaches need not necessarily agree, this could be
due to two effects. First, it is possible that there are mild
prior effects in the Bayesian analysis, that go in the
direction of relaxing the bound. Second, it can be difficult
to find the absolute minimum of the χ2 for each simulated
value of

P
mν for such a large parameter space. If the

simulated annealing methods fails to cool to the absolute
minimum, the slightly larger values of the χ2 would lead to
slightly tighter frequentist constraints. Nevertheless and
regardless of its origin, this effect is only around the 10%
level, and we thus conclude that the constraints are robust to
the choice of statistical method up to that level of differ-
ence. Let us additionally note that the Bayesian constraint
we derive here is slightly different than Eq. (1). This is
because the DESI collaboration used more constraining
CMB lensing data, combining Planck lensing PR4 with
ACT lensing, rather than Planck lensing PR3 as we do here.
Nevertheless, we do not expect that using this lensing data
would change the overall trend.
So far we have included in our analyses values for

neutrino masses down to the massless limit,
P

mν ¼ 0, but
we know from the laboratory that there are physical
boundaries at either

P
mν ¼ 0.06 eV for NO or at

P
mν ¼

0.10 eV for IO. To gauge the impact of those experimental
lower limits on the cosmological neutrino mass bound, we
run dedicated Bayesian analyses restricting the prior toP

mν following either the NO or IO constraints. For the
frequentist limit, it is sufficient to consider these boundaries
as lower limits in our Δχ2 curves. This procedure yields

X
mν < 0.121 eV ½NO-Bayesian�; ð6aÞ

X
mν < 0.106 eV ½NO-Bounded-Likelihood�; ð6bÞ

X
mν < 0.096 eV ½NO-Feldman-Cousins�; ð6cÞ

and for the inverted ordering case
X

mν < 0.152 eV ½IO-Bayesian�; ð7aÞ
X

mν < 0.138 eV ½IO-Bounded-Likelihood�; ð7bÞ
X

mν < 0.127 eV ½IO-Feldman-Cousins�: ð7cÞ

Since in these scenarios the physical boundary is further
away from the best fit of the Δχ2, the Feldman-Cousins
correction becomes more relevant and we observe a larger
difference compared to the naive bound one would derive
simply assuming the applicability of Wilk’s theorem,
although it is still within 10%. The difference between
the frequentist and Bayesian constraints also increases,
with up to 20% difference between the Feldman-Cousins
result and the Bayesian posterior. Let us stress that, for
this particular dataset, the inverted ordering assumption has
a p-value of only 1%.
Importantly, we have highlighted before that there are

two effects that significantly pull the bound on the neutrino
mass in Eq. (1): (i) the lensing anomaly present in some
of the Planck likelihoods, and (ii) the outliers in DESI-Y1
at z ¼ 0.7. In this context, to be maximally conservative,
one can consider the combination of HiLLiPoPþ
DESIY1no07 for which there is no lensing anomaly in
the Planck likelihood and where the outliers in DESI-Y1
data have been removed. The relevant Bayesian and
frequentist limits from HiLLiPoPþ DESIY1no07 read:

X
mν < 0.125 eV ½Bayesian�; ð8aÞ

X
mν < 0.114 eV ½Bounded-Likelihood�; ð8bÞ

X
mν < 0.114 eV ½Feldman-Cousins�: ð8cÞ

Here we can see again a ∼10% agreement between
Bayesian and frequentist approaches.
When considering the physical boundary for normal

ordering, the constraints read
X

mν < 0.160 eV ½NO-Bayesian�; ð9aÞ
X

mν < 0.132 eV ½NO-Bounded-Likelihood�; ð9bÞ
X

mν < 0.125 eV ½NO-Feldman-Cousins�: ð9cÞ

and for the inverted ordering case

X
mν < 0.179 eV ½IO-Bayesian�; ð10aÞ

X
mν < 0.156 eV ½IO-Bounded-Likelihood�; ð10bÞ

X
mν < 0.146 eV ½IO-Feldman-Cousins�: ð10cÞ
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Where, as before, the FC corrections become more relevant
given the larger distance between the best fit and the
physical boundary.
Finally, we can compare our Bayesian bounds with other

recent studies. In particular, our limit for the Planck PR3þ
DESIþ Pantheon perfectly agrees with the one reported in
[9]. Reference [10] also presented analyses including various
versions of the new Planck likelihoods. For the data
combination Plikþ DESI and HiLLiPoPþ DESI (with or
without SN), we find bounds that are∼10%–20% looser that
those reported in [10]. However, for the case HiLLiPoPþ
SDSS=DESI we find the same limit as [10]. Given that we
agree with Ref. [9] when the very same data is considered,
but also with Ref. [10] when a subset of the DESI dataset
is considered, we conjecture that the differences in the
limits may stem from a different implementation of the
full DESI likelihood. Our implementation matches
the one in the Cobaya public repository [90].

V. DO COSMOLOGICAL DATA PREFER A
“NEGATIVE” NEUTRINO MASS?

It has been recently emphasized in [19–21] that cosmo-
logical data may prefer “negative” neutrino masses and that
such a preference for unphysical values, if not due to a
statistical fluke or an unknown systematic effect, may hint for
new physics in cosmology. In their analysis, the Authors of
[19,20] define an “effective neutrino mass” which, when
taking negative values, generates an increase of power in the
CMB lensing potential, an effect that is opposite to that of

positive neutrino masses. In [21] an alternative definition is
adopted which also accounts for the other effects of neutrino
masses in cosmological observables (in particular on the
angular diameter distance, but not only). In this paper, to
gauge the preference for neutrino mass, we have simply
extrapolated through a Gaussian fit the behavior of our
profiledΔχ2. Even though the extrapolation introduces some
degree of uncertainty, that we have quantified with the
procedure detailed in Sec. III B, it provides a complementary
way to assess the preference for negative values displayed by
the different datasets analyzedwithout the need for an explicit
(arbitrary)modeling of the effect of negative neutrinomasses.
A similar approach, extrapolating instead aGaussian fit to the
posterior distribution, was adopted in Refs. [10,24].
Our results agree overall fairly well with all previous

works [10,19–21] considering the different treatments
performed in each of them. Our main results and the
comparison to previous analyses are shown in Fig. 9 (see
also Appendix B). In particular, Ref. [21] argued that
the Gaussian extrapolation in [10] underestimates the
preference for negative masses of present data. Indeed,
Refs. [19–21] find rather more negative best fits through
their analyses with their respective “effective masses”
peaking around −0.15 eV (see purple and orange lines
in Fig. 9). We do find some preference for negative neutrino
masses in datasets including both the Planck likelihoods
affected by the lensing anomaly (Plik 2018 in Fig. 9 but
also CamSpec in previous sections) and the full DESI Y1
BAO data (black line). However, this preference is

FIG. 9. Profile likelihoods for the dataset combinations of Planck18-PR3þ DESI-Y1 (black), HiLLiPoP23-PR4 (blue),
Planck18-PR3þ DESI-Y1-no07 (red), HiLLiPoP23-PR4þ DESI-Y1-no07 (green), and compared with χ2eff ¼ −2 logP from [20]
(purple) and [21] (orange), which have treatments for “negative” neutrino masses. By comparing the black and blue curves we can
clearly see that the bound on the neutrino mass gets relaxed if the HiLLiPoP likelihood (which does not contain a lensing anomaly) is
used. However, it is clear from the extrapolated parabolas that there is still some preference for a negative neutrino mass. This, however,
disappears when the DESI BAO data at z ¼ 0.7 which contains a ∼3σ outlier is removed (see red and green curves).
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significantly weaker, with a best fit at
P

mν ≃ −0.05 eV in
agreement with the extrapolation of the posterior shown
in [10] and the comparison and discussion in [21].
More importantly, Ref. [21] only considered the CamSpec

Planck likelihood. We find here that this dataset has a
preference for negative neutrino masses, because of the
presence of a residual lensing anomaly, and that it can be
reduced when using alternative likelihoods. Indeed, we find
a preference for negative neutrino masses when Planck 2018
is analyzed on its own. Switching for the HiLLiPoP23-
PR4 version of Planck (largely unaffected by the lensing
anomaly), there is no preference for negative masses, and the
bound significantly relaxes. The preference reappears for
HiLLiPoP23-PR4when DESI-Y1 BAO data are included
because these data have a lower constraining power toP

mν. Nevertheless, Fig. 9 shows that the bound on
P

mν

relaxes when changing from plik 2018 to HiLLiPoP (black
vs blue lines) or when removing the z ¼ 0.7 outlier bin in
DESI (black vs red lines). Finally, when the z ¼ 0.7 bin is
removed and the HiLLiPoP implementation are both con-
sidered, the preference for negative masses essentially
disappears (green line) and the bound is about a factor 2
weaker. Let us note that the authors of [20] did investigate
the persistence of their effective negative neutrino mass
signal when PR4 likelihoods are used. However, the analyses
were not performed for HiLLiPoP23-PR4 but rather
for the CamSpec22-PR4 likelihood, where the lensing
anomaly is still present, albeit at a reduced level.
Reference [20] does show that the preference for negative
masses is relaxed in this scenario at a level that, naively,
seems consistent with the reduced presence of the anomaly
in CamSpec. In this context, it would be very interesting to
explore the potential preference for a “negative” neutrino
mass following the implementation of [19–21] but using the
HiLLiPoP likelihood and also in the absence of the z ¼ 0.7
outliers that we have shown pull the neutrino mass bound
significantly. Given our results, and if our hypotheses are
correct, the preference for negative neutrino masses would
vanish in that case.
From our results, we conclude that there is no significant

nor compelling evidence for negative neutrino masses from
cosmology. We do confirm some mild preference when
Planck likelihoods affected by the lensing anomaly are
adopted, pointing toward a potential residual systematic
effect in these implementations. We also find that the
z ¼ 0.7 bin of DESI, in some tension with Planck data,
push toward negative values. If these outliers are con-
firmed, it will be interesting to see how the preference for
negative masses evolves in the future. For now, and in
agreement with [10], we conclude there is no compelling
evidence for negative masses from present datasets and that
present constraints are still perfectly compatible with the
results from neutrino oscillations. We believe that a key
check to see if cosmological data does prefer effective
“negative” neutrino masses is to do a cosmological analysis
using the HiLLiPoP likelihood implementation.

VI. CONCLUSIONS

Recent cosmological constraints on the sum of neutrino
masses (

P
mν) already disfavor its minimum value if the

mass ordering is inverted and allowvery little parameter space
even for normal ordering [1]. Some analyses combining
additional datasets even start to rule out theminimumvalue ofP

mν for a normal ordering [9], seemingly implying tension
between cosmological probes and neutrino oscillation experi-
ments. In this context, we have critically assessed the
constraints on

P
mν from cosmological observables inves-

tigating their robustness against different statistical methods
and determining which observables mainly dominate the
budding tension with oscillations results.
To this end, we have analyzed the constraints on

P
mν

from different datasets both through the usual Bayesian
approach and through complementary frequentist methods.
For the latter, given the proximity of the best fit to the
physical boundary of the parameter space, we have extrapo-
lated the likelihood profiles into the unphysical region so as
to apply the appropriate correction [74]. This also allowed us
to explore the preference of some datasets for negative
neutrino masses recently reported in [10,19–21].
From the simulations and results presented in Sec. IV we

conclude that:
(i) Bayesian and frequentist limits on the neutrino mass

agree very well and within 10% precision—The
agreement between the Bayesian and frequentist
bounds on

P
mν is very good. Regarding the

frequentist constraints, an extrapolation into the
unphysical region of negative neutrino masses was
performed to apply the appropriate correction
[74] to the confidence intervals. Even though this
procedure introduces a certain degree of uncertainty,
we quantified the range of variation with the number
of points for larger values of

P
mν and χ2 included

and verified that the impact on the confidence
intervals derived is negligible. Moreover, we also
compared these with the naive cuts at the values of
Δχ2 implied byWilks theorem without venturing into
the unphysical region and found almost identical
results. When comparing these frequentist confidence
intervals with the Bayesian credible regions with flat
priors on

P
mν we find good agreement between

both approaches but consistently tighter results for the
frequentist method, by about ∼10%. We thus con-
clude that the cosmological constraints on

P
mν are

robust at this level against variations of the statistical
method employed to derive them.

(ii) The potential preference for “negative” neutrino
mass bounds is strongly dependent upon the Planck
likelihood implementation used in the analysis—
When investigating the constraints derived exclu-
sively from Planck data, we find radically different
behaviors between the Plik, CamSpec and HiLL-
iPoP implementations. Indeed, the preference for
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unphysical negative masses and hence the strongest
constraints on

P
mν are obtained for Plik and, to a

lesser degree CamSpec, and absent for HiLLiPoP,
with a factor ∼2 weaker constrain. This tendency for
weaker constraints for the CamSpec or HiLLiPoP
implementations was also recently confirmed in
Ref. [10]. These results seem closely correlated to
the presence of the lensing anomaly in these data-
sets, which is reduced in the CamSpec and almost
absent in the HiLLiPoP implementations. To confirm
this observation, we performed analyses including
the Alens parameter and marginalizing over its value.
Interestingly, these analyses yielded the weakest
constraints for the datasets more strongly affected
by the anomaly. In particular, the Plik and CamSpec
constraints in combination with other datasets relax
by more than a factor 2. We conclude that, when the
lensing anomaly is not present in the Planck like-
lihood either through use of the HiLLiPoP imple-
mentation or the inclusion and marginalization over
Alens, the combined results of Planck with DESI and
Pantheon relax to about

P
mν < 0.11 eV or evenP

mν < 0.2 eV, both at 95% CL, and in good
agreement with both the normal and inverted order-
ings currently allowed by neutrino oscillation data.

(iii) DESI-Y1 BAO measurements at z ¼ 0.7 pull the
neutrino mass bound significantly and also induce
some preference for negative values—When com-
bining Planck with BAO data from DESI we observe
a mild preference for unphysical negative neutrino
masses, and hence a more stringent constraint. This
mild preference for negative masses even appears for
the HiLLiPoP implementation, for which it is absent
when analyzed alone or in combination with other
datasets. Upon closer examination, this preference
seems to be driven mostly the BAO measurements at
z ¼ 0.7, out of which the angular one is in ∼3σ
tension with Planck expectations. Indeed, when
removing this bin, the preference for negative
masses disappears and the corresponding constraints
relax accordingly. Similarly, if SDSS BAO data is
used instead of DESI, constraints relax by about a
50% in all cases considered. Thus, given the
unexpectedly strong constraint derived when includ-
ing the full DESI dataset, it will be very interesting
to confirm if the present trend is confirmed with
higher statistics from upcoming DESI data releases.

(iv) The hint of dynamical dark energy relaxes the
neutrino mass bound and removes the preference
for “negative” masses—The results presented by the
DESI collaboration [1] favor a dynamical equation
of state for Dark Energy parametrized through w0

and wa when extending the ΛCDM. We find that our
analyses including this effect also relax significantly
the constraints on

P
mν by a factor 2 in all cases

analyzed, in agreement with the results of [1,19,21].
In addition, the preference for negative neutrino mass
disappears, suggesting that it may be an artifact of
using the wrong cosmological model. More data are
necessary to test whether the hint of dynamical dark
energy, and the related artificially strong constraints
to neutrino mass, are due to a statistical fluke, a
systematic error, or a real deviation from ΛCDM.

All in all, we find it is premature to infer significant
tension between present cosmological probes and neutrino
oscillation data, and that the preference for unphysical
negative masses is not yet compelling. A critical test of this
statement would be to have the results for the models
including “effective negative” neutrino masses using the
HiLLiPoP likelihood implementation of the Planck data
which does not feature a lensing anomaly. In any case, this
is a very exciting period as we should be on the brink of a
discovery of the absolute neutrino mass from cosmology.
This would represent an indirect confirmation of the cosmic
neutrino background and set a target for laboratory experi-
ments aiming to kinematically measure the neutrino mass
or, even more interestingly, its potential Majorana nature. If
in the upcoming years a discovery is not made despite
unprecedentedly small statistical and systematic errors, it
will be a clear call for a change of paradigm, potentially
signaling new physics such as neutrino decays [39–45],
nonstandard thermodynamic histories [46–51], or time
varying masses [52–59]. It is clear that upcoming years
are of utmost importance for neutrino cosmology, as
whether neutrino masses are detected or not, we are on
the verge of a major breakthrough.
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APPENDIX A: POSTERIOR DISTRIBUTIONS

In this appendix we draw the
P

mν posterior distributions for some of our analyses. In particular, we present in Fig. 10
the Bayesian analog of Fig. 3. Second, the Bayesian analyses for the different Planckþ BAO combinations are shown in
Fig. 12 (see Fig. 7 for their frequentist counterpart). Lastly, the Planckþ DESI-Y1þ Pantheonþ posteriors are presented
in Fig. 13, where we are using the same datasets as in the frequentist analyses of Fig. 8.
For the comparison between the bounds extracted from the Bayesian and frequentist approaches, we refer the reader

to Tables I–III.

FIG. 10. Posterior distributions for the same dataset combinations as in Fig. 3 but analyzed within a Bayesian framework.

FIG. 11. Posterior distributions for the same dataset combinations as in Fig. 5 but analyzed within a Bayesian framework.

CRITICAL LOOK AT THE COSMOLOGICAL NEUTRINO MASS … PHYS. REV. D 110, 123537 (2024)

123537-17



APPENDIX B: COMPARISON WITH OTHER
GAUSSIAN EXTRAPOLATIONS

For the sake of assessing the robustness of our results
when performing the extrapolation of the likelihood pro-
files into the unphysical

P
mν region, we compare our

results with those of other works, such as Refs. [10,21].

In these works, a similar procedure was performed but
within a bayesian framework: the authors fitted to a
Gaussian their posterior in the physical region and extrapo-
lated to negative masses.
The comparison is shown in Fig. 14, where we plot our

Δχ2 profiles and their −2 logP for similar datasets. We find

FIG. 12. Posterior distributions for the same dataset combinations as in Fig. 7 but analyzed within a Bayesian framework.

FIG. 13. Posterior distributions for the same dataset combinations as in Fig. 8 but analyzed within a Bayesian framework.
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an overall agreement in the preference for a best fit in the
negative neutrino mass region, suggesting that the con-
clusions drawn from the extrapolation are not largely
dependent on the statistical procedure employed.

APPENDIX C: CORRELATIONS WITH OTHER
PARAMETERS

It has been shown that extending the standard
cosmological model either with the Alens parameter or
by adding a dynamical dark energy equation of state

wðaÞ ¼ w0 þ ð1 − aÞwa, the cosmological bound on
neutrino masses can be substantially relaxed and thus
reduce the tension with oscillation data. In Fig. 15 we
present the correlations of

P
mν with w0 and Alens, as

derived from our frequentist and Bayesian analyses
by plotting the w0 (left panel) and Alens (right panel)
values of the profile likelihood points as well as the
Bayesian contours. Most interestingly, as previously
stated, HiLLiPoP23-PR4 yields the closest Alens
value to ΛCDM.

FIG. 14. Comparison between our Δχ2 profiles and their gaussian extrapolation with the corresponding extrapolated −2 logP of
Refs. [10,21].

FIG. 15. Correlations of
P

mν with w0 and Alens. The points are extracted from our profile likelihoods for the
Planckþ DESI-Y1þ Pantheonþ combination, while the shaded regions correspond to the Bayesian credible intervals at 1 and 2σ.
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