
Probing the Universe with Gravitational Waves 
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II Prologue 
Gravitational wave (GW) astronomy has ushered in a new era of understanding the Cosmos. It ofers a unique 

window into the most extreme events in the universe and deepens our understanding of its main actors, Black Holes. 
Beginning with an exploration of the origin and nature of the main GW source compact objects that includes two pieces 
of work, a population-informed study of the spin distribution of the binary black holes detected by the LIGO/Virgo 
collaboration in GWTC-1 and O3 Discovery Papers and a phenomenological investigation of dense Black Holes-
only clusters with practical implications for future simulations. Following the cosmic trail to their Earthly arrival, 
we shift the focus to the detectors and present an analysis that characterizes the Gaussian noise intrinsic to any 
interferometer and the statistics to quantify the signifcance of any detection. We conclude the research included in 
this thesis with two studies focusing on parameter estimation, our best method of describing a given detector signal 
under the hypothesis of compact binary coalescence (CBC) origin. The frst work emphasizes modern techniques 
used in the computation of the posterior distributions of the parameters, improving the current speed and fexibility 
of the algorithms. The second one presents an exhaustive analysis of an exotic sub-solar mass candidate from the 
second observing run of LIGO/Virgo. Together, these studies contribute to a narrative that not only refnes our 
understanding of astrophysical phenomena but also poses intriguing questions about the nature of dark matter and 
the BH populations in our Universe, with a focus on the possibility of a primordial origin. Now we delve into the 
main results of all the research works included in this thesis. 
In the frst of the original works composing this thesis [1], we study the spin distribution of the underlying population 

of binary black holes detected by LIGO/Virgo, leveraging data from the GWTC-1 catalogue and the initial four 
binary black hole events from run O3. Using the Bayesian inference framework and four phenomenologically informed 
spin priors we fnd compelling population evidence for low spin magnitude and a preference for small and isotropic 
individual spins. These results support the idea that LIGO/Virgo black holes are primordial in origin and prompted 
us to pursue research in this line. 
In the second article [2], we focus on gravitational wave interferometers, representing our best eforts to understand 

the arrival of a gravitational wave signal to Earth and its detection. We perform an in-depth theoretical study of 
stationary Gaussian noise, which represents an irreducible component of the background noise in any interferometer. 
We fnd that, even though it is uncorrelated in frequencies, there is an important correlation in time that depends on 
the template and the shape of the noise power spectral density (PSD). 
Acknowledging this result, we compute from frst principles the false alarm rate (FAR) of a gravitational wave 

template in Gaussian noise, which is defned as the number of occurrences per unit of time that the template’s 
matched flter signal-to-noise ratio (SNR) with the noise goes over a threshold ρ. We fnd that this theoretical FAR 
that we call Gaussian FAR can be well approximated by the usual expression for uncorrelated noise if we replace the 
sampling rate with an efective sampling rate that depends on the parameters of the template, the noise PSD and 
the threshold ρ. This allows us to defne a minimum SNR threshold that our catalogue of events needs to meet if we 
want to keep events generated from Gaussian noise below a certain FAR. 
As a fnal result of this publication, we apply our theoretical formulas to the GWTC-3 events. Under the assump-

tion that the multidimensional posterior distribution function (PDF) for the parameters as sampled via parameter 
estimation represents our best characterization of a given candidate, we can defne a FAR per posterior sample. This 
is translated into a false alarm probability (FAP) for the candidate when considering the entire distribution. Using 
this, we fnd that Gaussian noise fuctuations could be the source of GW200308 173609 and GW200322 091133, rather 
than being true GW events. 
The third published work [3] introduces new methods for gravitational wave data analysis, focusing on the devel-

opment and optimisation of Reduced Order Quadrature (ROQ) techniques. ROQ methods can greatly reduce the 
computational cost of GW likelihood evaluations, and therefore speed up parameter estimation analyses. We improve 
upon previous ROQ construction algorithms allowing for more efcient bases in regions of parameter space that were 
previously challenging. In particular, we use singular value decomposition (SVD) methods to characterize the wave-
form space and choose a reduced-order basis close to optimal. We also propose improved algorithms for the selection 
of empirical interpolation nodes, greatly reducing the error added by the empirical interpolation model. 
The main part in which I contributed was in the computational calculations and simulations using the constructed 

ROQ bases ranging from 4s to 256s for CBC waveforms including precession and higher order modes. We performed 
likelihood error tests and P-P tests to validate them. The likelihood tests consist of a comparison of the log-likelihoods 
evaluated using the standard waveform with those obtained using the ROQ approximation, both calculated over the 
same injected signals in Gaussian noise. The percent-percent or P-P tests represent a simulation-based validation 
procedure where, again, we inject several signals with random parameters inside the range of validity of our ROQ 
bases and perform parameter estimation analysis on them. We then plot the fraction of posterior distributions for 
which the injected (true) value of the parameters is found in a given confdence interval as a function of that same 
confdence interval [4, 5]. We expect this fraction to be drawn from a uniform distribution, which allows us to assign 
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a p-value to the test. We also study their speed-up both theoretically and empirically with very positive results. 
Finally, end-to-end parameter estimation analyses were also carried out on real events, including GW170817 with the 
waveform IMRPhenomXPHM, which represents the frst time such a complex waveform has been used for such a long 
signal duration. With these tests and the comparison of the sampled posterior distributions to those obtained via 
standard methods, we validate our bases and their fdelity in producing precise and unbiased Parameter Estimations 
in real gravitational wave detector data. 
The fourth article [6] delves into the intricacies of Bayesian parameter estimation and its specifc application to a 

subsolar-mass gravitational wave candidate reported by Phukon et al. [7] from the second observing run of Advanced 
LIGO. This candidate has a reported signal-to-noise ratio (SNR) of 8.6 and a false alarm rate of 0.41 yr−1 which are 
too low to claim a clear gravitational wave origin. When improving on the search analysis by using more accurate 
waveforms, extending the frequency range from 45 Hz down to 20 Hz, and removing a prominent blip glitch in the 
strain around the time of the trigger, we fnd that the posterior distribution of the network SNR lies mostly below 
the search value, with the 90% confdence interval being 7.94+0.70 We fnd that, under the CBC hypothesis, the−1.05. 

= 0.76+0.50secondary component has m2 M⊙, with m2 < 1M⊙ at 84% confdence level, suggesting an unexpectedly −0.14 
4.71+1.57light neutron star or a black hole of primordial or exotic origin. The primary mass would be m1 = M⊙,−2.18 

likely in the hypothesized lower mass gap and the luminosity distance is measured to be DL =124+82 Mpc. We then−48 
perform a coherence test that compares the evidence between analysing the signal found in the interferometers in a 
coherent vs. incoherent way, obtaining a log Bayes factor of 4.96 ± 0.13, which favours the existence of a coherent 
signal in the Hanford and Livingston interferometers. 
With this paper, we set precedence and push the limits of current parameter estimation techniques towards the 

subsolar region of the parameter space by using real data for an SSM candidate with moderate SNR. The improved 
sensitivity of O4 and subsequent LIGO-Virgo-KAGRA observing runs could make it possible to observe similar signals, 
if present in the Cosmos, with a higher SNR and thus, more precise measurement of the parameters of the binary. 
The fnal work [8] represents a general endeavour of employing direct N-body simulations to explore the evolution 

of black holes-only clusters. These are theorised to exist in our Universe by the primordial Black Holes paradigm, 
among other scenarios, and aim at explaining some of the dark matter and early Universe conundrums. With a focus 
on compact objects of primordial origin, we present the dynamical evolution of several mass and spatial distributions 
under the sole efect of Newtonian gravitational forces. The results highlight the critical role that relativistic black hole 
merger kicks play in the conceivable genealogical trees that can originate inside these clusters, abruptly diminishing 
the probabilities of higher-generation mergers that are widely assumed to be a viable route for producing some of 
the most massive events detected by the LIGO/Virgo interferometers. They also ofer a glimpse into the rich and 
varied evolutionary dynamics of the clusters, their stability, the binary merger rate, and the spin distribution of the 
remnants. 
On a fnal but complementary note in this topic, we also present here the derivation under the quadrupole emission 

approximation of the energy and angular momentum loss as well as the eccentricity and semimajor axes’ evolution 
with respect to time for a two-body system following a hyperbolic trajectory under the infuence of gravity. Although 
these results are partially derived already in [9], the novelty here is the accommodation of the fnal equations into 
their infnitesimal form for direct implementation in the state-of-the-art direct integration gravitational N-body code 
Nbody6++GPU [10] and any code alike. 
Finally, it is worth mentioning two papers produced by the LVK Collaboration in which notable contributions 

were made during the development of this thesis. The frst one is the GWTC-3 Catalog [11], in which numerous 
exploratory parameter estimation analyses were carried out on behalf of the Collaboration for selected candidates. 
The second concerns the ofcial LVK search for subsolar-mass black hole binaries using the data acquired in the 
second part of Advanced LIGO and Advanced Virgo’s third observing run [12]. The main contribution was, again, 
the exploratory parameter estimation runs performed on the most signifcant candidates, which planted the seed of 
other future work [13]. 
On the software side, it is worth mentioning a direct contribution to developing the latest upgrade of the widely 

implemented Bayesian GW framework LAL [14], mainly in the Python part. 

https://4.71+1.57
https://0.76+0.50
https://7.94+0.70
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A. Journal & publication details 
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C. Abstract 

Gravitational wave detection from binary black hole (BBH) inspirals has become routine thanks to the LIGO/Virgo 
interferometers. The nature of these black holes remains uncertain. We study here the spin distributions of 
LIGO/Virgo black holes from the frst catalogue GWTC-1 and the frst four published BBH events from run O3. 
We compute the Bayes evidence for several independent priors: fat, isotropic, spin-aligned and anti-aligned. We fnd 
strong evidence for low spins in all of the cases, and signifcant evidence for small isotropic spins versus any other 
distribution. When considered as a homogeneous population of black holes, these results give support to the idea that 
LIGO/Virgo black holes are primordial. 

D. Introduction 

The regular detection with laser interferometers [15–19] of gravitational wave (GW) events from BBH mergers has 
opened a new window into the universe, and in particular to the exploration of the nature of black holes. 
Before the frst BBH detections by LIGO, stellar black holes with masses in the range 5 − 15 M⊙ had been detected 

as components of X-ray binaries, only a few intermediate mass black holes (IMBH) were known with masses above 
100 M⊙, while supermassive black holes (SMBH) were known to exist at the centers of all galaxies. The origin of 
black holes in such a large range of masses remains a mystery, and one fascinating possibility is that part of these 
black holes are primordial in origin [20, 21]. In fact, soon after the frst detection of black hole mergers by LIGO [22], 
there were claims of their primordial nature [23–25]. Since then, the best scenario consistent with all observational 
constraints so far [26] is that of spatially clustered and broad-mass distributed primordial black holes [21, 27]. 
As the number of binary black hole merger events detected with GW interferometers increases, a new population 

of black holes is emerging with unexpected properties in terms of their masses and spins. These properties signif-
cantly difer from previous black holes detected through X-rays, via stellar dynamics around SMBH at the center of 
galaxies, or via gravitational lensing efects for IMBH. When the range of masses and distances accessible by the GW 
interferometers improved, events like GW190425 and GW190521 appeared with BH masses in the lower and upper 
mass gaps, challenging existing astrophysical BH formation models. Moreover, events with small mass ratios q ≪ 1, 
like GW190814, are also difcult to generate in stellar binary formation models, due to the expected mass transfer 
among the binary components, see however [28]. 
One of the most striking features of this new population of black holes detected in GW events is that they all seem 

to have a small spin. Although the individual spin of each of the black holes in the binary is poorly constrained,4 

1 juan.garciabellido@uam.es 
2 josef.nunno@estudiante.uam.es 
3 ester.ruiz.morales@upm.es 
4 It is worth pointing out, however, that the best determined spin for a single black hole is that of the massive companion of GW190814, 
with S1 < 0.07 at 90% c.l., thanks to its particularly low mass ratio m2/m1 = 0.11. 

mailto:ester.ruiz.morales@upm.es
mailto:josef.nunno@estudiante.uam.es
mailto:juan.garciabellido@uam.es
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a derived quantity called the efective spin, χef , can be well inferred from the GW waveform. The O1+O2 events 
[15] plus the four run O3 published events [16–19] show that, in almost all the BBHs mergers events, the inferred 
χef posteriors cluster around zero and are narrowly peaked. This single observation already constrains some BBH 
formation models, because even if it is possible to generate a single merger event with very small χef in almost all 
physical scenarios of BBH formation, the fact that the whole population of BBH mergers have very small χef cannot 
be explained by models involving high aligned spins of the two BH’s in the binary. 
Even before the frst BBH merger detections, the efective spin had already been considered an optimal variable 

to discriminate among formation channels. By simulating populations of BBH mergers with diferent intrinsic spin 
values and spin alignments, the authors in [29, 30] showed that the efective spin could be relevant to distinguish the 
astrophysical environment in which these binary systems formed, since binaries evolved by dynamical interactions 
were expected to have their spins isotropically oriented, while those coming from the evolution of an isolated binary 
star system were more likely to have their spins highly aligned (see however [31] for updates on these models.). 
The magnitude of the intrinsic spin of each black hole in the binary, though much poorly constrained from the data 

than the efective spin, is important to determine how these black holes were formed, and in particular to distinguish 
a possible stellar versus primordial origin. Stellar black holes are expected to have nonzero spin, due to conservation 
of angular momentum. On the contrary, since the size of their Schwarzschild radius is essentially identical to the size 
of the causal horizon at the moment of their formation, primordial black holes are all expected to have zero or very 
near zero spin at formation [32], although subsequent accretion could enhance it slightly [33]. 
On the other hand, it has been argued that the more massive LIGO/Virgo BH could originate from previous 

mergers [34, 35]. However, it is known that the spin distribution of second generation black holes is peaked very far 
from zero, near S ∼ 0.686 [36], and this is in disagreement with the fact that most of the massive BH in LIGO/Virgo 
seem to have very low spin. In a careful analysis, Ref [37] showed that GWTC-1 BBH catalog is consistent with 
having no hierarchical mergers. 
When the frst detections of the O1 run became available, Farr et al. [38, 39] analysed the discriminating power of 

the χef distribution with the frst four GW LIGO/Virgo events, assuming equal masses (q = m2/m1 = 1) for all events 
and approximating the posterior χef distributions by Gaussians. They compared the odds ratios for several models 
of spin (modulus and orientations) of the underlying BH population, fnding a preference for either a population with 
an isotropic spin distribution or with low intrinsic spin values of the merging black holes. A more realistic analysis of 
the frst six LIGO/Virgo mergers was made in [40], including Bayesian methods and taking into account the q − χef 
correlations, reaching the general conclusion that highly spinning black holes were disfavoured against low spins, see 
also [41]. 
With the publication of the GWTC-1 catalog, the LIGO/Virgo collaboration (LVC) made a population analysis 

of the mass, redshift and spin properties of the ten BBH mergers detected in O1+O2 runs [42].5 Under diferent 
assumptions for the parameters of the population models, they observed a common trend of the inferred distribution 
for the BH spins to decrease with increasing spin magnitude, but were not able to place strong constraints on spin 
orientations, concluding that black hole spin measurements were not informative enough at that moment to discern 
between isotropic and aligned orientation distribution via χef . 

In this work, we improve such discriminating power by incorporating the projection along the total angular mo-
mentum of the spin of the fnal BH formed after the merger af as another variable of the BBH merger population 
analysis. The efective spin and the fnal spin can be measured independently, since χef is inferred from the inspiral 
part of the waveform while af can be determined also from the ringdown part. We follow a multivariate approach 
keeping all correlations among the variables (q, χef , af ) of each event, and show that this signifcantly improves the 
Bayesian evidence for an underlying population of black hole components with small spin magnitude and isotropic 
orientation. 
There are still many uncertainties on the full spin (magnitude and orientation) distribution of the diferent BBH 

formation channels, since the computational models used to predict these properties depend on many assumptions 
about poorly understood environmental conditions related to the formation and evolution of the binaries. There are 
also many unknown aspects related to the mass, spatial distribution and dynamics of BBH of primordial origin. For 
this reason, instead of considering an specifc astrophysical or primordial model for the mass and spin distributions, 
we have chosen general hypothesis on the underlying distributions of black hole spin magnitudes and orientations and 
compare the diferent hypothesis in a full Bayesian analysis. 
In Section 1, we describe the spin variables and parameters that will be considered in our analysis of the BBH 

population. In Section 2, we describe the method employed in calculating the Bayesian evidence from the published 
parameter estimation samples, and defne the population hypotheses together with their priors for the parameters 

5 A hierarchical Bayesian analysis of spin distributions was also performed in [43]. Another Bayesian analysis, studying mass distributions 
and merger rates but not spins, was done in [44]. 



9 

considered in our analysis. In Section 3 we use Bayesian methods to obtain the evidence for each hypothesis and 
the corresponding Bayes ratios. Section 4 is devoted to the hierarchical modelling method that allows us to infer a 
posterior distribution for the spin magnitude of the underlying BH population. In Section 5 we give our conclusions. 

E. Spin observables from BBH events 

In this section we will describe the observables relevant to the analysis of spins in LVC black hole binaries. The main 
observables that we will consider are the weighted-averaged efective projected spin, χef , and the the projection along 
the total angular momentum of the fnal spin af . We could have also chosen the efective precession spin parameter, 
χp, but this quantity is much worse measured in the LVC events published so far and is mainly determined by the 
prior. 

1. The efective spin 

A derived physical quantity that can be measured very well by LIGO from the waveform templates is the mass-
averaged (so called efective) projected spin, 

m1 a1 + m2 a2 a1 + q a2
χef = = , (1) 

m1 + m2 1 + q 

⃗ 2where ai ≡ (S⃗i ·L)/(|L⃗ | mi ) is the individual mass-weighted projection of each black hole spin onto the orbital angular 
momentum L⃗ of the binary. Thus, χef gives some information about the spin orientations of the inspiralling black 
holes w.r.t. the orbital angular momentum. Here q = m2/m1 is the binary mass ratio, in the range q ∈ [0, 1]. 
A derived quantity that will be useful is the so-called “chirp mass”, 

(m1 m2)
3/5 q3/5 

Mc = = m1 , (2)
(m1 + m2)1/5 (1 + q)1/5 

which gives the mass ratio 

√ 
3α (2/3)2/3 + (9α + 81α2 − 12α3)2/3 

q = √ , (3)
3 (2/3)1/3(9α + 81α2 − 12α3)1/3 

where α = (Mc/m1)
5 . 

2. The fnal spin 

The second best-measured spin-related quantity in LIGO/Virgo binaries is the projection along the total angular 
momentum of the spin of the fnal black hole after merging, af . We use the approximate expressions given in [45] for 
af in the particular case of spinning but non-precessing black hole binaries. We frst defne some quantities and then 
we assemble everything together. 

2First we need to defne atot in terms of the projected spins, ai ≡ (⃗ · L⃗ )/(|L⃗ | m ),and aef Si i 

a1 + q2 a2 
atot = , aef = atot + ξ ν (a1 + a2) , (4)

(1 + q)2 

q
with ν(q) = , ξ = 0.474046 . 

(1 + q)2 
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FIG. 1: The multidimensional LVC likelihoods projected on the planes (q, af ) (top row), (q, χef ) (middle row) and 
(χef , af ) (bottom row) for the ten GWTC-1 events of LIGO/Virgo (left and middle column) plus the four runO3 
events (right column). The dotted lines correspond to the fxed points χef = 0 and af = 0.686. The curves on the 

(χef , af ) plane correspond to q = 1 (black), q = 0.75 (purple), q = 0.4 (dark blue) and q = 0.11 (light blue), 
respectively. 
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−5.97723 3.39221 4.48865 −5.77101 −13.0459 
35.1278 −72.9336 −86.0036 93.7371 200.975 
−146.822 387.184 447.009 −467.383 −884.339 
223.911 −648.502 −697.177 753.738 1166.89 

TABLE I: The coefcients kij for i ∈ [0, 3] and j ∈ [0, 4]. 

We then have to defne the energy, angular momentum and size of the Innermost Stable Circular Orbit (ISCO), p
EISCO(a) = 1 − 2/(3 rISCO(a)) , (5) � p �2 
LISCO(a) = √ 1 + 2 3 rISCO(a) − 2 , (6)

3 3 p 
rISCO(a) = 3 + Z2 − sign(a) (3 − Z1)(3 + Z1 + 2Z2) , � � 

2)1/3Z1(a) = 1 + (1 − a (1 + a)1/3 + (1 − a)1/3 , (7) q 
Z2(a) = 3a2 + Z1

2 . (8) 

Then the fnal spin is given by (the coefcients kij can be found in Table I) � � 
af = atot + ν LISCO(aef ) − 2atot(EISCO(aef ) − 1) � �

2 3 4ν2+ k00 + k01 aef + k02 aef + k03 aef + k04 aef � �
2 3 4ν3+ k10 + k11 aef + k12 aef + k13 aef + k14 aef � �
2 3 4ν4+ k20 + k21 aef + k22 aef + k23 aef + k24 aef � �
2 3 4ν5+ k30 + k31 aef + k32 aef + k33 aef + k34 aef . 

F. Bayesian Population Analysis 

The Bayes theorem relates the likelihood L(dj |θ) of the data dj for a given set of parameters θ, with the posterior 
probability of the parameters given the data, P(θ|dj ), via the prior knowledge about the parameters of the population 
model i, Πi(θ), 

L(dj |θ)Πi(θ)Pi(θ|dj ) = ,
E(dj )Z 

Eij (d) = dθ L(dj |θ)Πi(θ) , (9) 

where Eij (d) is the Bayesian evidence for the data dj and the population model i. Here we will consider diferent priors, 
Πi(θ), for the distribution of the parameters in each of the spin population models characterized by the hypothesis 
Hi. We frst compute the multidimensional likelihood for each BBH event from the LIGO/Virgo published samples, 
and then calculate the priors associated with each population hypothesis to derive the evidence (9). 

1. Likelihoods for LIGO/Virgo BBH events 

We calculate the multidimensional likelihoods (i.e. including correlations) from the posteriors and priors provided 
6by the LIGO public documentation page. We use the parameter estimation samples for each event, which are given 

in terms of the fundamental parameters (m1,m2, s1, s2, cos θ1, cos θ2), and using the expressions of χef in (1) and af 

6 https://dcc.ligo.org/cgi-bin/DocDB/DocumentDatabase 

https://dcc.ligo.org/cgi-bin/DocDB/DocumentDatabase
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FIG. 2: The priors in the planes (q, af ) (top), (q, χef ) (middle) and (χef , af ) (bottom) for the three hypothesis 
Hi=2,3,4: isotropic spin (left), aligned spin (middle) and anti-aligned spin (right), for spins centered at µ = 0, 0.5 

and 1 (blue, green and red resp.). 

in (9) for each sample point, we construct the full multidimensional posterior and prior distributions for the derived 
parameters θ = {q, χef , af }, marginalizing over the other parameters. Finally we generate the multidimensional 
likelihoods LLVC(dj |θ) dividing the posteriors PLVC(dj |θ) by their corresponding priors ΠLVC(θ). We have plotted the 
LVC likelihoods for the three parameters θ = {q, χef , af } in Fig. 1. 

When using these likelihoods to infer population properties in our Bayesian analysis, we will not include possible 
selection efects in the (χef , af , q) variables, like the observational bias towards positive χef values described in [46], 
or possible efects from the fact that the waveform bank only considers aligned spins. We expect these efects to be 
small given the spin variables used, but should eventually be considered in a future analysis. 
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2. Priors on the BBH population 

Once we have chosen to use the subset of parameters θ = {q, χef , af } for the Bayesian inference, we need to 
specify the diferent hypotheses on the spin distribution of the merging BBH population. We have chosen 5 diferent 
hypotheses Hi on the spin magnitude and orientation, which in turn depend on “hyperparameters” Λ = {σ, µ} that 
determine the width and the mean of the distribution of the spin magnitude. 
These fve basic Hypotheses are: 

• H0: isotropic spin orientation, cos θLSi ∈ [−1, 1], fat prior on spin magnitude in the range Si ∈ [0, 1], fat prior 
on mass ratio, q ∈ [0, 1]. This is the ”null” hypothesis. 

• H1: isotropic spin orientation, cos θLSi ∈ [−1, 1], Gaussian prior on spin magnitude with µ = 0 and σ ∈ [0, 1], 
fat prior on mass ratio, q ∈ [0, 1]. 

• H2: isotropic spin orientation, cos θLSi ∈ [−1, 1], Gaussian prior on spin magnitude with σ = 0.2 and µ ∈ [0, 1], 
fat prior on mass ratio, q ∈ [0, 1]. 

• H3: aligned spin orientation, cos θLSi sampled from Gaussian centered at +1 and width 0.05, Gaussian prior on 
spin magnitude for σ = 0.2 and µ ∈ [0, 1], fat prior on mass ratio, q ∈ [0, 1]. 

• H4: anti-aligned spin orientation, cos θLSi sampled from Gaussian centered at ±1 and width 0.05, Gaussian 
prior on spin magnitude for σ = 0.2 and µ ∈ [0, 1], fat prior on mass ratio, q ∈ [0, 1]. 

We generate the multidimensional prior probability distributions for each hypothesis Πi(θ) from 105 random real-
izations in (q, cos θi, µ, σ), giving rise to the corresponding prior distributions in the θ = {q, χef , af } parameter space. 
To compute these distributions we have used the semianalytic expression of af given in equation (9) in terms of the 
fundamental parameters (m1,m2, s1, s2, cos θ1, cos θ2). 
Fig. 2 shows the projections on the planes (q, af ), (q, χef ) and (χef , af ) of the prior probability distributions 

Πi(q, χef , af ) for the last three hypotheses Hi=2 (isotropic spins, left column), Hi=3 (aligned spins, central column) 
and Hi=4 (anti-aligned spins, right column). In each of these plots, we have chosen for illustrative purposes three 
diferent choices for the spin magnitude: Gaussian distributions centered at µ = 0, 0.5, 1 (blue, green and red 
respectively) with a common width σ = 0.2. The black curves in the (q, af ) and (q, χef ) planes correspond to the 
limit case of zero spin of the underlying black hole population, while the black curve in the (χef , af ) plane corresponds 
to the limiting case of q = 1. 
These plots show that the diferent hypotheses on the underlying spin confgurations populate very diferent areas 

of the (q, χef , af ) parameter space, and therefore, are taken as priors and integrated over the whole parameter space 
with the likelihood of each event shown in Fig.1, we expect very diferent Bayesian evidence and therefore signifcantly 
informative Bayes ratios for the diferent hypotheses. 
Comparing the distributions on the diferent planes we see that while the χef distributions are fat with respect to q, 

a well-known degeneracy for random spins, the af distributions have a strong dependence on q. Models with high and 
aligned or anti-aligned spins simply cannot produce events with low af and q values, as found for event GW190814. 
Only populations with close to zero spin or high but isotropic spins can populate the lower left corner of the (q, af ) 
plane. If the forthcoming O3a catalog includes more events of low q, we expect a much better determination of the 
spin of the underlying black hole population. 
These fve hypotheses give rise to multidimensional priors in the space of derived parameters θ = {q, χef , af }, 

which can then be used to integrate them, together with the LVC likelihoods, to obtain the Bayesian evidence for 
each prior hypothesis Hi, which depend on Λ = {σ, µ}, Z 

Eij (Λ) = d3θ L(hj |θ)Πi(θ|Λ) . (10) 

Once we have obtained the LVC likelihoods from their parameter estimation samples, and computed the individual 
priors for our hypothesis, we can perform the 3D integration with Mathematica. 

G. Bayes Factors 

In order to evaluate the global signifcance of a prior hypothesis from the full BBH catalog, we compute the global 
Bayes factor for the whole BH population. For this, we will multiply the individual Bayes ratios, assuming that all 
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FIG. 3: The log of the Bayes ratios in the variables (q, χef , af ) for the four hypotheses: H1 = isotropic spin 
centered at zero and width σ ∈ [0, 1] (top left) and H2,3,4 = isotropic spin (top right), aligned spin (bottom left) and 

anti-aligned spin (bottom right), for spin distributions centered at µ ∈ [0, 1], for σ = 0.2. We also study the 
sensitivity of the Bayes ratios to the evidence in the 2D planes (q, χef ), (q, af ) and (χef , af ), with increasing values 

of the Bayes ratios. We fnd strong evidence | ln B12| ≥ 6 at small values of the spin, for all four Hypotheses Hi 
versus the (null) “All Flat” Hypothesis H0, attaining the maximum value of | ln B12| ≥ 8 for H4 at µ ≤ 0.01. The 

events contributing to these Bayes factors are the GWTC-1 (10-event catalog) plus the four published run-O3 events 
from LIGO/Virgo Collaboration. 

events in the catalog are independent, 

NX Eij
ln Bi ln (11)12(Λ) = (Λ) ,

E0j=1 

for each hypothesis Hi(Λ = {σ, µ}). 
In practice what we do is a reweighting of the priors, using our population model hypothesis, Πi(θ), versus the 

published LIGO/Virgo priors, ΠLVC(θ), which depend on the assumptions of the experiment on each event, Z 
Eij (Λ) = d3θ LLVC(dj |θ)Πi(θ|Λ) Z 

Πi(θ|Λ) 
= ELVC d3θ PLVC(θ|dj ) . (12)

ΠLVC(θ) 

Since ELVC is the same for all hypotheses, it factors out in the Bayes ratio (11). We can then perform the integral 
(12) in the full 3D parameter space θ = {q, χef , af } maintaining all the correlations in the multivariate priors and 
posteriors. 
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FIG. 4: The posterior PDFs P (a) for the spin magnitude in the case of isotropic (left), aligned (center) and 
anti-aligned (right) hypothesis. We have computed the PDFs for three diferent spin widths, σ = 0.05 (blue), 

σ = 0.1 (red) and σ = 0.25 (green). The PDFs do not seem to depend much on the width σ of the distribution. In 
all cases, the PDFs peak close to zero spin, specially for σ = 0.25. The vertical gray lines correspond to the 90% c.l. 

limit, which is almost the same for all PDFs. 

We show in Fig. 3 the Bayes ratios of the four diferent hypotheses Hi=1,2,3,4 with respect to the null hypothesis H0 
of fat distributions for mass ratios, spin magnitudes and random spin orientations. According to Jefrey’s scale [47], 
when ln B12 ≥ 5, hypothesis 1 is signifcantly more likely that hypothesis 2, see however [48]. 

It is clear from fgure 3 that low spin magnitudes are signifcantly preferred for the BBH population of LIGO/Virgo 
events, with Bayes ratios above ln B12 = 5 for σ, µ < 0.2, therefore we fnd strong evidence for small values of the 
spin, for all four Hypotheses Hi versus the ”null” (All Flat) Hypothesis H0. In the case of Hypothesis H1, whith zero 
spin and allowing for variable width, we fnd strong evidence (ln B12 = 6.2) for relatively narrow spin distributions 
σ = 0.15. This low and narrow spin hypothesis represents the isotropic spin distribution that one would expect 
from an underlying population of primordial black holes. On the other hand, when we vary the spin magnitude as a 
Gaussian centered at µ for fxed width σ = 0.2, we fnd, in all three orientation Hypothesis H2,3,4, that the maximum 
evidence occurs again for µ = 0. Therefore we conclude that, whatever the orientation, there is very strong evidence 
for low spins in LIGO/Virgo BH. 

Note that the aligned spin hypothesis H3 has Bayes factors ln B12 < −5 for spins µ > 0.25, reaching large Bayes 
ratios ln B12 < −100 for large spins µ > 0.8, therefore our analysis of LVC catalog strongly disfavoures a population 
of BBH with aligned spins and magnitudes greater than 0.25. Note also that hypothesis H1 and H4, for isotropic 
and anti-aligned spins, have a similar behaviour in their Bayes factors at low spins, µ < 0.5, reaching values above 
ln B12 ≃ 6 for µ < 0.06 in the isotropic case, and above ln B12 ≃ 8 for µ < 0.02 in the anti-aligned case, giving slightly 
higher signifcance for anti-aligned versus isotropic spins in the range µ < 0.5. However, for large spins, µ > 0.5, the 
anti-aligned hypothesis is much more strongly disfavoured than the isotropic one. 

We also compute the Bayes factors for the three pairs (q, χef ), (q, af ) and (χef , af ) fnding less evidence for low 
spins compared with the full analysis. The least signifcant is the Bayes ratio in the plane (q, χef ), giving only mild 
preference for low spins. As we include information coming from af , as in (χef , af ), (q, af ) and (q, χef , af ), the 
evidence for low spin rises, in some cases up to ln B12 ∼ 6 or above, which is very strong evidence in favor of that 
hypothesis. 

Historically, the emphasis has been focused on the importance of distinguishing between aligned and anti-aligned 
astrophysical models of BBH formation. Now that the evidence for small spins is so strong, the orientation of the 
spins becomes less relevant. It is much more interesting to characterize the posterior distributions of the whole 
population and to quantify the deviation from zero spins according to the various hypotheses Hi, which take into 
account orientation. This will be useful in order to characterize the possible origin of LVC BBH events from primordial 
black hole populations. 
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H. Bayesian hierarchical modeling 

Given that the random isotropic spin hypothesis, H1, gives a value of ln B12 ∼ 6, strongly favouring low spin 
magnitudes a < 0.2 for the combined LVC BBH events, we would like to explore in detail the black hole population 
distribution of spin magnitudes. 
In order to go forward in the information content with respect to the Bayesian approach of the previous section, 

we will use Bayesian hierarchical modeling, see e.g. [30], as a way to estimate the posterior distribution for spin 
magnitudes of the LVC black hole population. Here the spin magnitude a enters indirectly through the dependence 
of other measured quantities, like the efective spin χef or the fnal spin af , on it. Then the posterior PDF for a is 
computed as 

NY 
Pi(a) = Π(a) Eij (a) , (13) 

j=1 

where Eij (a) are the Bayesian evidences (10) computed from the LVC likelihoods with the spin-dependent priors 
Πi(q, χef , af |Λ), with Λ = {σ = 0.05, 0.1, 0.25, µ = a}, and Π(a) is assumed here to be fat in spin magnitude a, not 
to give any prior preference for any spin magnitude. We have plotted in Fig. 4 the posterior distributions for the three 
spin Hypothesis (isotropic, aligned and anti-aligned). In all cases, the preferred spin magnitude is below a < 0.12, 
within 50% c.l. For example, for isotropic spins, currently favoured by the data, we fnd a < 0.25 at 90% c.l. For 
aligned spins the PDF is even more strongly peaked around zero spin, with a < 0.1 at 90% c.l. All this suggests that 
the inclusion of the four published run O3 events, with increased sensitivity of the detectors, has revealed a property 
of the population of LIGO/Virgo black holes that was not present in previous studies [42]. 

I. Conclusions 

The routine detection of BBH inspirals by LVC has opened the door to a detailed exploration of the nature of 
black holes and their populations. The online availability of the strain time-streams and the parameter estimation 
samples for each event allows for an independent analysis, opening the possibility to compute multivariate likelihoods 
for combinations of derived parameters like the mass ratio, or the efective spin. 
It is then a matter of personal choice which parameters to use in order to infer properties of the populations of 

black holes detected by LVC. In this paper we have concentrated on just three parameters (q, χef , af ) that we believe 
capture the essence of the spin nature of the population of LVC black holes. 
We have put forward four diferent spin-magnitudes and spin-orientation prior hypothesis, Hi=1,...,4 (i.e. isotropic, 

aligned and anti-aligned), to compare with the (null) all-fat prior hypothesis, H0, and conducted a Bayesian analysis 
study to determine the goodness of a given spin-distribution hypothesis for the whole population of LIGO/Virgo black 
holes. 
We fnd that all spin-orientation hypothesis have a larger Bayes factor for low spins. In some cases the log of the 

Bayes factor reaches values well above fve, thus signalling a strong evidence in favour of low spins (below magnitude 
a = 0.2). Moreover, the largest Bayes factors are obtained by spin distributions peaked at zero spin (Bayes factors 
above 5 for widths µ < 0.2), with very small width. 
We also note that aligned spins are strongly disfavoured, specially for large spin magnitudes (with the log of the 

Bayes factors as low as −100), as would be expected from astrophysical black holes from isolated binaries. On the other 
hand, we fnd that LIGO/Virgo black hole population has a preference towards low spins with isotropic orientations, 
consistent with what one would expect from primordial black holes in clusters [24]. 
We have then computed the posterior PDF for the spin magnitude in the case of the three alternative spin hypothesis, 

for diferent spin widths (σ = 0.05, 0.10, 0.25). In all cases the spin distribution is peaked at very low values 
(a ≃ 0.1, 0.05, 0.1 for isotropic, aligned and anti-aligned cases, respectively), which clearly indicates a preference of 
the whole LIGO/Virgo BH population for low spins, irrespective of orientation. 
Therefore, we conclude that only using the BH spin as a discriminator between the astrophysical versus primordial 

nature of LIGO/Virgo black holes, when considered as a homogeneous population of black holes, our analysis seems 
to suggest very strongly that they are consistent with being primordial. 
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C. Abstract 

Gaussian noise is an irreducible component of the background in gravitational wave (GW) detectors. Although 
stationary Gaussian noise is uncorrelated in frequencies, we show that there is an important correlation in time 
when looking at the matched flter signal to noise ratio (SNR) of a template, with a typical autocorrelation time 
that depends on the template and the shape of the noise power spectral density (PSD). Taking this correlation into 
account, we compute from frst principles the false alarm rate (FAR) of a template in Gaussian noise, defned as the 
number of occurrences per unit time that the template’s matched flter SNR goes over a threshold ρ. We fnd that the 
Gaussian FAR can be well approximated by the usual expression for uncorrelated noise, if we replace the sampling 
rate by an efective sampling rate that depends on the parameters of the template, the noise PSD and the threshold 
ρ. This results in a minimum SNR threshold that has to be demanded to a given GW trigger, if we want to keep 
events generated from Gaussian noise below a certain FAR. We extend the formalism to multiple detectors and to 
the analysis of GW events. We apply our method to the GW candidates added in the GWTC-3 catalog, and discuss 
the possibility that GW200308 173609 and GW200322 091133 could be generated by Gaussian noise fuctuations. 

D. Introduction 

A century after their theoretical derivation from General Relativity [49], Gravitational Waves (GWs) are now 
routinely detected by the laser interferometers of the LIGO-Virgo-KAGRA collaboration [50–52]. Their amplitude 
is so small that their detection above instrumental and environmental noise requires sophisticated pipelines [53–58], 
which look for signals in the data with various methods. These pipelines have to be designed to reject noise from very 
common non-Gaussian transient sources of noise (also known as glitches) [59], while being computationally efcient 
to search for events in a wide range of parameters within an afordable amount of time. 
In the case of modeled searches for GWs from Compact Binary Coalescences (CBCs), templates from a predefned 

template bank are compared with the data at all times to fnd where a GW signal can be present. The likelihood 
that the observed data contains a GW signal is quantifed by computing a pipeline-specifc ranking statistic, defned 
in such a way that the larger its value the more it favors the signal hypothesis versus the noise hypothesis. If the 
detector noise were purely Gaussian, it can be proved that the optimal ranking statistic for a signal of known form 
would be the matched flter SNR [60]. However, the search pipelines that actually look for GWs use ranking statistics 
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that, although based on the SNR, introduce corrections to consider the presence of non-Gaussian glitches which can 
give sizeable spurious SNR values. The corrections are usually based on signal consistency tests, a common example 
being the use of χ2 [61] to weigh down the SNR. 
In order to assign a signifcance to the candidate events in terms of their ranking statistic, the pipelines need to 

fnd the background distribution of the ranking statistic for the bank of templates. This is estimated in a data driven 
way, usually by running the search on the time-shifted strain of the diferent interferometers, so that coincidences 
become not physical and the triggers obtained this way represent an estimate of the background noise. The false 
alarm rate (FAR) of an event is then defned by the search pipeline as the rate of background triggers over the whole 
bank of templates with ranking statistic equal to or higher than the one observed for the event. Therefore, the FAR 
can give us an idea of how likely it is for noise to generate an event. Intuitively, for a total observation time Tobs, any 
trigger that has FAR ≥ 1/Tobs is compatible with being generated by noise, while FAR ≪ 1/Tobs disfavors the noise 
hypothesis. 
In searches for GWs, the FAR estimates can difer several orders of magnitude among diferent pipelines [11], given 

that the FAR usually has an exponential dependence on the ranking statistic. Therefore, small variations in how the 
data is processed, what templates are used or what is looked for to rank the events in the diferent pipelines, can 
result in orders of magnitude discrepancies in the estimation of the FAR. 
Moreover, the FAR does not contain any information about the foreground. To take this into account, together 

with the astrophysical prior knowledge, the pastro, was introduced [62]. The rationale behind pastro is to give the 
⃗Bayesian probability that a candidate is from astrophysical origin under a model for the foreground rates f(x, θ) and 

background rates b(x, θ⃗) that depend on the ranking statistic x and the template parameters θ⃗. A threshold value of 
pastro > 0.5 was required for any candidate event to be included in the GWTC-3 catalog [11]. The estimated expected 
contamination from events of terrestrial origin is ∼ 10–15%, or ∼ 4–6 events. In the same fashion as the FAR, the 
pastro for a given event can be very diferent between pipelines and presents large uncertainties, especially around 
pastro ∼ 0.5 [63]. 

As a consequence of the application of this threshold to enter the GWTC-3 Catalog, some events were accepted 
with FAR values greater than 1/Tobs ∼ 2yr−1 . One example is GW200322 091133 [11] with FAR > 400yr−1 , which, 
upon further investigation with Bayesian Parameter Estimation (PE), was found to have low SNR (≤ 8.5) and 
multimodal posterior distributions of its parameters. Since the likelihood used in PE is approximately proportional 
to exp(SNR2/2), in events with small SNR the likelihood will not have a large enough peak so as to dominate the 
posterior, and there will be prior-dominated modes. 
All these difculties may prompt one to think that these candidate events with low SNR values might come from 

noise fuctuations. The noise and GW signal hypotheses are usually compared locally using the Bayes factor [64]. 
However, this number says nothing about how often we expect noise to generate a signal as “loud” as the observed 
one. This has motivated us to question whether we could aim to obtain a theoretical lower bound on the false alarm 
rate of an event, independently of all the complexities involved in the search pipelines. We start from the idea that 
Gaussian noise is always an irreducible component of the background in GW detectors [65, 66], and generates a rate 
of false alarms that could be calculated analytically. In the case in which non-Gaussianities are also present in the 
strain, more false alarms will be induced [67], as matches will occur more easily for a given template, thus making our 
estimate assuming only Gaussian noise a lower bound on their FAR, and thus an upper bound on their signifcance. 
In this paper, we propose a new method to derive a local statistical measure of the signifcance of an event. The 

main idea will be to give a theoretical estimate of how often we would expect Gaussian noise colored with the local 
PSD to produce a fuctuation that matches a specifc template with the same or higher SNR than the one observed. 
In Sec. IV E we develop the framework to compute the FAR for a given template in Gaussian noise from a single 
detector and study its dependence on diferent parameters for CBC templates. In Sec. IV F we extend the formalism 
to compute the FAR of a template when multiple detectors are online. In Section IV G we show how to apply our 
statistical method to events observed in the strain and in Sec. IV G 1 we use it on the O3b events included in GWTC-3. 
Finally in section IV H we present our conclusions. 

E. The false alarm rate of a template in a single detector 

In this section we want to determine, given a template h(t), how much time of stationary Gaussian noise n(t), from 
a given detector, we would have to look at, on average, to obtain a match with a signal to noise ratio (SNR) greater 
than some threshold ρ. 
In general the noise will have zero mean, ⟨ñ⟩ = 0, and assuming that it is stationary, the diferent Fourier modes 

are uncorrelated, 

⟨ñ ∗ (f)ñ(f ′ )⟩ ≡ 
1 
Sn(f)δ(f − f ′ ) , (14)

2 
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which can be seen as the defnition of the noise power spectral density (PSD) Sn(f). If we assume that the noise is 
Gaussian, it is characterized completely by the fact that it has zero mean and a variance given in Eq. (14). Using the 
PSD we can defne the following inner product, Z fmax ã∗(f)b̃(f)⟨a, b⟩ = 4 df , (15)

Sn(f)fmin 

where tildes denote Fourier transform. This inner product can be used to write down the usual defnitions [68] of the 
optimal SNR: p

ρopt = ⟨h, h⟩ , (16) 

and the matched flter SNR: 
⟨h, s⟩ 

ρmf = , (17)
ρopt 

where s(t) is the detector output strain, which in our case we will assume to be given by stationary Gaussian noise 
n(t) with PSD Sn. Under this assumption, it can be proved that ρmf is a complex normal random variable (i.e. a 
Gaussian with unit dispersion, σ = 1) [69]: 

|ρmf |21 − 1 
2p(ρmf )dReρmf dImρmf = e dReρmf dImρmf . (18)

2π 
and the real part of the matched flter SNR is the optimum quantity to rank the signifcance of events for a signal 
of known form under the assumption of Gaussian noise [60]. This quantity is very closely related to the likelihood 
ratio for the signal vs Gaussian noise hypotheses, which is the Bayes factor for a signal of known intrinsic parameters. 
However, it is common to be in the situation in which the global phase of the GW can be changed arbitrarily and does 
not contain any astrophysical information [70]. This is the case in a quasicircular compact binary coalescence, when 
we ignore higher order modes and precession. Even when including them, the global phase can typically be neglected 
since it is highly degenerate with other parameters such as polarization, location in the sky and the azimuthal angle 
separating the spin vectors of the component BHs. In these cases we will want to ignore the global phase of the GW 
in the search by taking as our ranking statistic the absolute value of the matched flter SNR: q 

|ρmf | = Re(ρmf )2 + Im(ρmf )2 , (19) 

which is invariant under global phase transformations h̃(f) → h̃(f)eiϕg . Indeed, the SNR usually used in searches 
is |ρmf | [71] since it is equivalent to automatically fnding the global phase ϕg of the GW that maximizes Re(ρmf ). 
Because of this we will choose |ρmf | as our ranking statistic in this paper. Defning h̃(f) as the Fourier transform of 
the template h(t), we can use the following property: 

−2πif(t ′ −t)F(h(t ′ )) = h̃(f)e , (20) 

and compute the matched flter signal to noise ratio, Eq.(17), at all times as Z fmax ˜ 
ρmf (t) = 

4 h∗(f)ñ(f) 2πift df e . (21)
ρopt Sn(f)fmin 

where we assume that the strain only contains Gaussian noise. At any fxed point in time, ρmf (t) of Eq. (21) will 
behave as a complex normal variable from Eq. (18) and the probability of obtaining a value of |ρmf | greater than ρ 
will be: 

1 
Z 2π Z ∞ 

P (|ρmf | > ρ) = d arg(ρmf ) |ρmf |d|ρmf |e − 1 |ρmf |2 
2 

2π 0 ρ 

− 1 ρ2 
2= e . (22) 

A naive computation to estimate the rate of false alarms with |ρmf | > ρ would be to multiply this probability by the 
number of trials per unit time, which in the case that diferent times were independent, would just be the sampling 
rate of the detector: 

1 −ρ2/2FARnaive = e . (23)
∆tsamp 
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FIG. 5: Simulation of the modulus of the matched flter SNR |ρmf (t)| for Gaussian noise generated using Advanced 
LIGO design sensitivity [50] and IMRPhenomPv2 [72] templates of masses m1 = m2 = 1M⊙, m1 = m2 = 50M⊙ and 

m1 = m2 = 150M⊙. Each template is matched with diferent noise realizations until we obtain a trigger of 
|ρmf (ttrig)| ∼ 6. We plot 0.5s around this trigger. 

However, this would be incorrect because the value of |ρmf (t)| at diferent times is correlated. The problem can be 
explicitly seen in Fig. 5, where we have generated Gaussian noise from Advanced LIGO at design sensitivity [50] and 
computed |ρmf (t)| using Eq. (21) with IMRPhenomPv2 [72] templates of the specifed masses. Each template is matched 
with diferent noise realizations until we obtain a trigger of |ρmf (ttrig)| ∼ 6, which we show in Fig. 5. The correlation 
between diferent times manifests itself in the fact that |ρmf (t)| is a smooth function, where the smoothing time scale 
will be related to the autocorrelation time, and we observe that it depends on the template mass. In particular, the 
larger the mass, the larger the autocorrelation time will be. This correlation of |ρmf (t)| at diferent times has a direct 
efect on the False Alarm Rate (FAR), defned as the average time between peaks with |ρmf | > ρ, since the smoother 
the function |ρmf (t)| is, the less peaks per second it will have, thus reducing the rate of false alarms. Assuming that 
the sampling rate of the detector is sufciently fne to see |ρmf (t)| as a smooth function, we will demonstrate in the 
rest of this section that the efect of the correlations will be to replace the sampling rate of the detector 1/∆tsamp in 
Eq. (23) by an efective sampling rate that depends on the template, the noise PSD and the threshold ρ. 

1. Probabilistic derivation of the FAR 

The autocorrelation of ρmf (t) can be quantifed by computing the covariance between the values of ρmf (t) at diferent 
times, assuming that the strain only contains Gaussian noise: 

1 ⟨ρmf (t)ρmf (tΓ(t, t ′ ) = ′ ) ∗ ⟩ = *Z 2 Z + 
fmax fmax ˜ ′ ′ h

∗(f)h̃(f ′ )ñ ∗(f ′ )ñ(f) 2πi(ft−f t ′ )= 8 df df e 
Sn(f)Sn(f ′ ) (ρopt)2 

fmin fmin Z Zfmax fmax ˜ ′h∗(f)h̃(f ′ )⟨ñ∗(f ′ )ñ(f)⟩ ′ ′ 2πi(ft−f t )= 8 df df e 
Sn(f)Sn(f ′ ) (ρopt)2 

fmin fmin Z fmax |h̃(f)|2 ′ 2πif (t−t )= Γ(t − t ′ ) = 
4 

df e , (24)
(ρopt)2 Sn(f)fmin 

where we have used Eq. (14) and that ⟨ρmf (t)⟩ = 0. We observe in Eq. (24) that for t = t ′ we have Γ(0) = 1, as 
expected from the fact that ρmf (t) is a complex normal variable at any specifc point in time. In general Γ(t − t ′ ) will 
be non-negligible for t ̸= t ′ , so the value of the SNR at two diferent times will be correlated. If we consider the SNR 
at two diferent points separated by a time ∆t, and defne ρmf (t) ≡ ρc and ρmf (t +∆t) ≡ ρc 

2, from Eq. (24) we have 1 
that their joint probability distribution will be given by the following bivariate complex Gaussian: n o 

|ρc |2+|ρc |2−2Re(Γ(∆t)ρc∗ ρc )1 2 1 2exp − 2(1−|Γ(∆t)|2 ) 
p(ρc 

1, ρ2 
c ) = , (25)

(2π)2(1 − |Γ(∆t)|2) 

Using this expression we can compute the two-point false alarm probability (FAP2), that is, the probability that either 
ρ1 or ρ2 are greater than some SNR threshold ρ, 

FAP2 = P (ρ1 > ρ ∪ ρ2 > ρ) . (26) 
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An in depth study of this quantity is made in appendix IV I, where we fnd expressions to compute it numerically 
and to analytically approximate it to arbitrary order. To understand how FAP2 behaves, and to gain intuition on how 
the FAP of more variables will behave, it is interesting to discuss its limiting behaviours. When the separation between 
the two points is large (∆t → ∞), the correlation between them vanishes (|Γ(∆t)| → 0) meaning that FAP2 becomes 

−ρ2 −ρ2 
the FAP of two uncorrelated variables, that is, FAP2(|Γ(∆t)| = 0) = 2e /2 − e . As the points get closer together 
(∆t → 0) the correlation increases (|Γ(∆t)| → 1), and FAP2 will decrease due to correlation efects until the correlation 

−ρ2/2is maximal (|Γ(∆t)| = 1), when the two variables will behave as a single one and FAP2(|Γ(∆t)| = 1) = e . 
In the real setup of a GW experiment, we are interested in determining the false alarm probability for N points 

separated by a sampling time ∆t each. If we defne ρk ≡ |ρmf (t + k∆t)|, this FAP is given by: ! ! 
N N[ \ 

FAP = P ρn > ρ = 1 − P ρn < ρ 
n=1 n=1 

N � k−1 �Y \ 
= 1 − P (ρ1 < ρ) P ρk < ρ ρn < ρ , (27) 

k=2 n=1 

where P (A|B) denotes the conditional probability of A given B and in the last equality we have used the multiplication 
rule of probability. To compute Eq. (27) we will thus need P (ρ2 < ρ|ρ1 < ρ). This can be computed in terms of the 
FAP2 defned in Eq. (26): 

P (ρ1 < ρ ∩ ρ2 < ρ)
P (ρ2 < ρ|ρ1 < ρ) = 

P (ρ1 < ρ) 
1 − FAP2(ρ, ∆t) 

= −ρ2/21 − e 
−ρ2 /2) ,≈ 1 − (FAP2(ρ, ∆t) − e (28) 

where in the last equality we have assumed that e−ρ2/2 ≪ 1 (which is true for ρ ≳ 3). In order to compute Eq. (27) 
we also need to calculate P (ρk < ρ | ρ1 < ρ ∩ ρ2 < ρ ∩ ... ∩ ρk−1 < ρ). We can determine this conditional probability 
in an approximate way by assuming that it depends only on the nearest neighbor, that is: 

P (ρk < ρ | ρ1 < ρ ∩ ρ2 < ρ ∩ ... ∩ ρk−1 < ρ) 
≈ P (ρk < ρ | ρk−1 < ρ) = P (ρ2 < ρ | ρ1 < ρ) , (29) 

where in the last equality we have just used the translation invariance of the problem. The Nearest Neighbor 
approximation of Eq. (29) will only be valid in the case in which the sampling time ∆t is large enough such that 
second neighbor efects can be neglected, which could be taken into account by replacing the approximation of Eq. (29) 
by P (ρ3 < ρ|ρ2 < ρ ∩ ρ1 < ρ). 
Introducing Eqs. (28), (29) into Eq. (27) and assuming that FAP2 − e−ρ2/2 ≪ 1, we have: h � �iN−1 

−ρ2/2) −ρ2/2FAP ≈ 1 − (1 − e 1 − FAP2(ρ, ∆t) − e n h io 
−ρ2/2≈ 1 − exp −N FAP2(ρ, ∆t) − e � h i� Tobs −ρ2/2≈ 1 − exp − FAP2(ρ, ∆t) − e , (30)

∆t 

where Tobs is the observing time on which we are computing the FAP, which we assume to be long enough so that 
N = Tobs/∆t ≫ 1. 

To obtain a quantity that is independent of the observing time, we defne the false alarm rate (FAR), which is the 
average number of false alarms per unit time. As we see in Fig. 5, the autocorrelation of the SNR has the efect of 
clustering its values in peaks. Though each peak of |ρmf (t)| has many sample times over the threshold, which naively 
could count as false alarms, it is important to realize that each peak should be counted as a single false alarm, that 
is, we have to fnd the number of uncorrelated false alarms which are thus Poisson distributed. This is an important 
point, given that if each sample time that is over the SNR threshold ρ were counted as a false alarm, we would obtain 
the naive FAR of Eq. (23), since looking at individual points the probability is given by Eq. (22), and we would greatly 
overestimate the FAR. 
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By the defnition of the FAR, the mean of the Poisson distribution describing the number of uncorrelated false 
alarms will be λ = TobsFAR, assuming an observing time Tobs. Therefore, the probability of having k false alarms is: 

(TobsFAR)k 
−TobsFAR p(k) = e . (31)

k! 
Since the FAP is the probability of having one or more false alarms, it is given by: 

∞X 
FAP = p(k) = 1 − p(0) = 1 − exp{−TobsFAR} . (32) 

k=1 

By comparing Eq. (30) and Eq. (32), we immediately deduce the following relation between the FAR and the FAP: h i1 −ρ2/2FAR2(ρ, ∆t) = FAP2(ρ, ∆t) − e , (33)
∆t 

where we add the subscript 2 to highlight that this FAR has been computed taking into account only nearest neighbors. 

2. Evaluation of the FAR of a template 

In order to further elaborate the expression of the FAR for a given template in Eq. (33), we need to study the 
FAP2(ρ, ∆t) more in depth. In the case in which the detector has a high enough sampling rate, we can assume that 
|ρmf (t)| is a continuous function, as is the case in Fig. 5. This will be a very good approximation in LIGO-Virgo, 
where the data is taken at a sampling rate of 1/∆tsamp = 16384 Hz. In this case, instead of interpreting ∆t as 
the sampling time of the detector, we leave it as a free parameter, as we imagine that the function |ρmf (t)| can be 
resampled arbitrarily. We will want to make ∆t → 0, to obtain the result for when |ρmf (t)| is continuously sampled, 
but if ∆t is too small, the nearest neighbor approximation will stop being valid. The efect of the farther neighbors 
will be to reduce the number of efective trials. This compensates the increase in the number of sampling points in 
such a way that the exact FAR with all correlations taken into account will be smaller than the FAR from the nearest 
neighbor approximation, that is: 

FAR(ρ, ∆tsamp) ≤ FAR2(ρ, ∆tsamp) . (34) 

With this in mind, we approximate the FAR of Eq. (33) for ∆t → 0, which from Eq. (24) is equivalent to |Γ(∆t)| → 1. 
We can do this by introducing in Eq. (33) the expression for FAP2 of Eq. (88) found in Appendix. IV I, keeping only 
next to leading order terms in 1 − |Γ(∆t)| and assuming that ρ2 ≫ 1: " p # 

−ρ2/2e ρ 1 − |Γ(∆t)|
FAR2 ≈ Erf . (35)

∆t 2 

Since we are interested in the limit ∆t → 0, we can substitute Γ(∆t) by its Taylor expansion around ∆t = 0, which 
using the defnition in Eq. (24) will be given by: 

4 
Z fmax |h̃(f)|2 

2πif ∆tΓ(∆t) = df e 
(ρopt)2 Sn(f)fmin X4 

Z fmax |h̃(f)|2 ∞ 
(2πif∆t)k 

= df 
(ρopt)2 Sn(f) k!fmin k=0 
∞X Ck 

= ik (∆t)k , (36)
k! 

k=0 

where Ck are real constants defned as Z 
4 fmax |h̃(f)|2 

Ck = df (2πf)k . (37)
(ρopt)2 Sn(f)fmin 

To leading order in ∆t, we then have that |Γ(∆t)| will be given by: 

1 � � 
|Γ(∆t)| = 1 − C2 − C2 (∆t)2 , (38)12 
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FIG. 6: The FAR2 for IMRPhenomPv2 [72] templates of diferent masses, assuming Advanced LIGO at design 
sensitivity [50] and setting the threshold SNR ρ = 4. The FAR is computed using the exact expression (Eq. (33)), 
the leading-order expression of Eq. (39) and the NLO expression of Eq. (50), where the integrals in frequency are 

always computed between fmin = 20 Hz and fmax = 2048 Hz to mimic normal GW analysis. We normalize the FAR 
to its value at 0 separation and the time to make the LO approximation of cases appear the same. The uncorrelated 

case of Eq. (23) is also plotted. 

where we have used that C0 = 1. Substituting the expansion for |Γ(∆t)| of Eq. (38) into Eq. (35) and keeping terms 

2π 

in ∆t up to leading order, we obtain: 

e−ρ2/2 �√ 
π 

� 
FAR2(ρ, ∆t) ≈ 

∆t 
Erf 

2 
ρC∆t , (39) 

where for simplicity we have defned: r 
C ≡ 

C2 − C2 
1 , (40) 

which is always a real quantity, since C2 − C2 ≥ 0. 11 This is a necessary condition given by the fact that C2 − C2 is1 1 
the leading order coefcient in the Taylor expansion of |Γ(∆t)| (see Eq. (38)) and we know that |Γ(∆t)| ≤ 1. 
From Eq. (39) we have that in the limit ∆t → 0: 

/2FAR2(ρ, 0) = C ρ e−ρ2 
. (43) 

The way to interpret the result of Eq. (43) is that even if we consider the separation between points to tend to 0, 
the FAR will not diverge, as we would have naively deduced from Eq. (23). The correlation between the neighboring 
points will regularize the FAR to the fnite value of Eq. (43). 
This can be seen in Fig. 6, where we show the FAR2 for IMRPhenomPv2 [72] templates of diferent masses, assuming 

Advanced LIGO at design sensitivity [50]. The FAR is computed using the exact expression (Eq. (33)), the leading 
order (LO) expression of Eq. (39) and the next-to-leading order (NLO) expression of Eq. (50), which will be discussed 
in the next subsection. For the cases of large masses (m1,2 = 50M⊙, m1,2 = 150M⊙ and m1 = 120M⊙,m2 = 60M⊙), 

11 We can explicitly prove that C2 − C2 ≥ 0 and gain some intuition on C, if we realize that1   4 |h̃(f )|2 

(ρopt)2 Sn (f ) fmin < f < fmax 
g(f ) = (41)0 else R ∞ can be interpreted as a probability distribution function, since it is always non-negative and it is normalized (i.e. −∞ g(f )df = 1). 

Using this probability distribution function, we then observe that C is simply given by: q q √ 
C = 2π(Eg [f 2] − Eg [f ]2) = 2πEg [(f − Eg [f ])2] = 2π σf . (42) 

where Eg [X] denotes the expectation value of X in g, σf is the standard deviation of the frequency f in g, and from the second equality 
we explicitly see that the argument of the square root is always positive. From Eq. (42) we then observe that C will be directly related 
with the bandwidth, that is, how spread out in frequencies is g(f). Therefore, the more broadband our detector and signals are, the 
larger C will be in general. 
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FIG. 7: Comparison between the simulated and predicted FAR for fve diferent IMRPhenomPv2 templates. The 
simulation is done using 15 million chunks of 512 s of simulated Gaussian noise generated from Advanced LIGO at 
design sensitivity [50]. We directly compute the probability to have a trigger with |ρmf | > ρ by performing matched 
fltering between fmin = 20 Hz and fmax = 2048 Hz with the corresponding GW template and dividing the number 
of chunks where we fnd a match with |ρmf | > ρ by the total number of chunks analyzed. The error on the FAP is 

computed using the Wilson score 90% confdence interval [73]. Introducing this FAP in Eq. (45) (using Tobs =512 s) 
we obtain the FAR plotted with dots, whose error bars represent the 90% confdence interval. For the theory curves, 

the corresponding values of C are computed with Eq. (40)) and Eq. (37). 

we have that the leading order expression gives an accurate representation of the exact result, as can be seen from 
the fact that the lines for the three high mass cases are on top of each other and on top of their corresponding LO 
and NLO approximations. This is no longer true for the low mass cases of m1,2 = 1M⊙ and m1 = 20M⊙,m2 = 4M⊙, 
where the FAR decreases faster than expected at high values of ∆t due to correlation tails at this high ∆t. To describe 
this deviation from the LO result, we will have to take into account higher order corrections in ∆t, which will be 
discussed in the next subsection. 
The fewer trials we do, the smaller the FAR should be. Therefore the FAR is a monotonously decreasing function 

of ∆t, and FAR2(ρ, ∆tsamp) ≤ FAR2(ρ, 0), which can correctly be seen in Fig. 6. Using this together with Eq. (34) 
we obtain 

/2FAR(ρ, ∆tsamp) ≤ FAR2(ρ, 0) = ρCe−ρ2 
. (44) 

We expect that the result of Eq. (44) will be a very tight upper bound, and thus a good approximation of the exact 
FAR in the case that the NLO corrections are small, since these are related with the length of the correlations and 
thus the importance of the next-to-near neighbors. 
To study the validity of this result we will simulate the problem at hand. In particular, we will simulate the FAP 

by generating many chunks of simulated Gaussian noise from Advanced LIGO at design sensitivity [50] of duration 
Tobs = 512 s. We directly compute the probability to have a trigger with |ρmf | > ρ by performing matched fltering 
on the noise using a GW template and dividing the number of chunks where we fnd a match with |ρmf | > ρ by the 
total number of chunks analyzed. From this FAP we can obtain the FAR simply by inverting Eq. (32): � � 

1 1 
FAR = log . (45)

Tobs 1 − FAP 

ρ2 
In Fig. 7 we show the FAR computed in this way from the simulation of the FAP and multiplied by e to 

extract the exponential decay behavior and make visualization easier. The matched flter is done with fve diferent 
IMRPhenomPv2 templates with the same masses as the ones used in Fig. 6. We have observed that indeed, Eq. (44) is 
always satisfed and FAR2(ρ, 0) is an upper bound of FARN (ρ, ∆tsamp) within the error. As was discussed previously, 

/2 
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this is a tight upper bound in the case in which the NLO corrections are small, deviating by less that 1 part in 1000 
for the larger masses (m1,2 = 50M⊙, m1,2 = 150M⊙ and m1 = 120M⊙,m2 = 60M⊙). In the cases where the NLO 
corrections are important (m1,2 = 1M⊙ and m1 = 20M⊙,m2 = 4M⊙) we can observe that even though Eq. (44) is 
still a good upper bound, it is not so tight any more. Nonetheless, the maximum relative error between the upper 
bound and the exact value always stays below 15% and decreases towards larger values of the SNR threshold ρ. We 
thus confrm that a good approximation of the FAR is: 

/2FAR = C ρ e−ρ2 
. (46) 

Comparing this expression with the value of the naive FAR that we derived at the beginning in Eq. (23), we have 
that, as anticipated, the sampling time of the experiment is naturally replaced by an efective sampling time for which 
we can obtain the same result as for uncorrelated points. This efective sampling rate depends on the threshold ρ and 
on the template and noise PSD via the coefcient C: 

1 
∆tef = (47)

ρC 

Consistently computing corrections to this result, we would have to take into account the efect of next-to-leading 
order corrections. We do this in the next subsection. 

3. NLO corrections to the FAR of a template 

We will start by studying the next-to-leading-order (NLO) corrections to the expression for FAR2 found in Eq. (39). 
For this we now substitute in Eq. (33) the expression for FAP2 of Eq. (93) found in Appendix. IV I, keeping NLO 
terms in 1 − |Γ(∆t)| and assuming that ρ2 ≫ 1: � p � ��−ρ2/2e ρ 1 − |Γ(∆t)| 1 − |Γ(∆t)|

FAR2 ≈ Erf 1 + . (48)
∆t 2 4 

And when considering the Taylor expansion of |Γ(∆t)| we now keep up to quartic terms, that is: 

1 � � 
|Γ(∆t)| = 1 − C2 − C2 (∆t)2 

12 

+ 
1
(C4 − 4C1C3 + 6C1

2C2 − 3C1
4)(∆t)4 , (49)
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Introducing this Taylor expansion into Eq. (48) and keeping up to leading order terms, we have: �√ � �� −ρ2/2e π (∆t)2 
FAR2(ρ, ∆t)≈ Erf ρC∆t 1 − , (50)

∆t 2 (∆tNLO)2 

where we have introduced ∆tNLO as the characteristic time for which when ∆t ≪ |∆tNLO| we can neglect higher order 
efects. In terms of Ck, it will be given by: 

24(C2 − C1
2)

(∆tNLO)
2 = . (51)

C4 − 4C1C3 − 3C2 + 12C2C2 − 6C4 
2 1 1 

Looking again at Fig. 6 where the NLO FAR2 of Eq. (50) is compared in with the LO expression (Eq. (39)) and 
with the exact expression (Eq. (33)), we can observe that the NLO corrections are not important for the high mass 
systems (m1,2 = 50M⊙, m1,2 = 150M⊙ and m1 = 120M⊙,m2 = 60M⊙), since |ρC∆tNLO| ≫ 1. However, for the low 
mass cases of m1,2 = 1M⊙ and m1 = 20M⊙,m2 = 4M⊙, which have |ρC∆tNLO| ∼ O(1), we can see that the higher 
order corrections in ∆t are important. In these cases, the tails of the correlation are relatively longer, and so the FAR 
decreases faster than expected as a function of ∆t, which is accurately described by the NLO corrections as long as 
∆t ≲ ∆tNLO. 

We also want to obtain a more accurate formula for the Gaussian FAR than the one in Eq. (46). To consistently 
compute corrections to the result of Eq. (46), we would have to take into account the efect of farther neighbors in 
Eq. (29). Nonetheless, doing this becomes very complicated rather quickly. Instead, a heuristic way to take into 
account the next to leading order corrections can be found by imposing that these preserve the same behavior as the 
leading order term of Eq. (39), which we have seen gives a very good description when higher orders can be neglected. 
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FIG. 8: The FAR prefactor C as a function of the CBC masses parameterized via the total mass of the binary 
M = m1 + m2 and the mass ratio q = m2/m1 and computed using the PSD of Advanced LIGO at design sensitivity 
[50] between fmin = 20 Hz and fmax = 2048 Hz. The waveform has been computed using IMRPhenomPv2 with zero 

spin. 

We can imagine that at ∆tef /2 there will be a sampling point whose correlation we are neglecting when we resample 
|ρmf (t)|. We will then impose that the correlation |Γ(∆t)| at this point has the same value as in the case where we 
only consider the leading order term in the Taylor expansion of Eq. (38): � � 

Γ 
∆tef 

2 
π 

= 1 − . 
4ρ2 (52) 

Using the next to leading order expansion for |Γ(∆t)| on the left hand side, we obtain: 
π π π2 4

1 − (C∆tef ) + ρNLO
2 (C∆tef ) = 1 − . (53)

4 2 4ρ2 

where for convenience we have defned ρNLO in the following way s 
π(C4 − 4C1C3 + 6C2C2 − 3C4)1 1ρNLO = . (54)

48(C2 − C2)2 
1 

Solving Eq. (53) for ∆tef , keeping only leading-order terms in ρNLO/ρ, we obtain: " #� �2
1 ρNLO 

= ρC 1 − . (55)
∆tNLO ρef 

This heuristic result is compared in Fig. 7 with the simulated value. Although we have to keep in mind that it has 
not been derived in a consistent way, we can observe that it closely follows the behavior of the deviations from Eq. (46) 
for the cases of m1,2 = 1M⊙ and m1 = 20M⊙,m2 = 4M⊙ for which the corrections are important. Eq. (55) will 
thus be a useful model to understand how these deviations behave. As expected, the heuristic corrections of Eq. (55) 
make the FAR smaller than the upper bound of Eq. (46). Furthermore, we fnd that in this model the magnitude of 
the corrections is governed by ρNLO, Eq. (54), which is a parameter that characterizes how the correlation |Γ(∆t)|
deviates from a parabola around ∆t = 0. From Eq. (55) we observe that when we increase the SNR threshold ρ, the 
magnitude of the correction decays as (ρNLO/ρ)

2 , and so for ρ ≳ 3ρNLO, the relative error done when ignoring these 
corrections is smaller than ∼ 10%. 

4. Dependence on the CBC template parameters 

At a constant matched flter SNR, and neglecting higher order corrections (ρ ≫ ρNLO), the False Alarm Rate of 
Eq. (46) will only depend on the signal via the multiplicative coefcient C defned in Eq. (40), which when multiplied 
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FIG. 9: The ρNLO as a function of the CBC masses parameterized via the total mass of the binary M = m1 + m2 
and the mass ratio q = m2/m1 and computed using the PSD of Advanced LIGO at design sensitivity [50] between 

fmin = 20 Hz and fmax = 2048 Hz. The waveform has been computed using IMRPhenomPv2 with zero spin. 

by the SNR, gives us the efective sampling rate. Since the higher the efective sampling rate, the more false alarms 
we expect, we can study how much Gaussian noise background there is in diferent regions of the CBC parameter 
space by representing the coefcient C as a function of the CBC parameters. This is done in the Fig. 8, where we 
plot C as a function of the CBC component masses for the IMRPhenomPv2 waveform with the spins set to 0. 
The masses are parameterized via the total mass of the binary, M = m1 + m2, and the mass ratio, q = m2/m1, the 

leading order parameters that control the amplitude evolution of the waveform [74], which is the part that enters in 
the computation of Ck in Eq. (37). These results are robust with respect to the waveform choice since Ck depends 
only on the amplitude evolution which is not as sensitive to modeling uncertainties as quantities that depend on the 
phase evolution of the template [75]. 
In Fig. 8 we obtain the natural result that, as a general trend, the higher the mass, the smaller the FAR will be (at 

a constant ρ). This is because the characteristic frequency of the event will be smaller, and then the characteristic 
autocorrelation time of the matched flter SNR will be longer, meaning that the time between independent trials 
will be longer. On top of this general trend we observe a peak at around M ∼ 10M⊙, which will be due to events 
whose merger lies in the upper part of the most sensitive frequency range of the interferometer. Since during merger 
|h̃(f)|2 ∝ f−4/3 instead of |h̃(f)|2 ∝ f−7/3 as in the inspiral [74], this will make g(f) (Eq. (41)) decay slower at larger 
frequencies where it is usually suppressed by the quantum shot noise (Sn(f) ∝ f2 [76] at high frequency). In this 
case where merger lies in the upper part of the most sensitive frequency range of the interferometer, the value of C 
will be larger because the band of frequencies that contribute will be larger. As a consequence of C being larger, the 
efective sampling rate will be larger, leading to more false alarms. 
In Fig. 9, the parameter ρNLO giving the scale of the next to leading order corrections is shown. This quantity 

has a similar behavior as that of C, saturating at small masses where the merger is outside the sensitivity band, 
and generally decreasing at large masses whose merger happens at low frequency. It also has a peak at intermediate 
masses, corresponding to those systems that merge in the upper range of the frequency band that has the highest 
sensitivity. Note that in the case of ρNLO, this peak is more pronounced and towards smaller masses than in the case 
of C, which is due to the fact that in this range the value of ρNLO is dominated by the value of C4, which weighs more 
heavily higher frequencies than C2, see Eq. (37). The maximum of ρNLO is achieved in this peak around M ∼ 8M⊙, 
with a value of ρNLO,max ∼ 2. This means that if we go to ρ ≳ 6, the relative magnitude of the deviations from 
Eq. (46) will be smaller than ∼ 10% for all CBC parameter range (see Eq. (55)). Therefore, as long as ρ ≳ 6 Eq. (46) 
will not only be an upper bound, but also a very good approximation of the FAR. 
Having established the validity of Eq. (46) to approximate the FAR, we can now use it to fnd what SNR threshold 

ρ would we need to set to discard all events with FAR higher than a given threshold FARth. To do this we have to 
invert Eq. (46), which can not be done exactly in terms of elementary functions, since it is a transcendental equation, 
but it can be done approximately in the limit that ρ ≫ 1: 

ρ = 

vuut !�� 
C C 1 

2 log + log 2 log 1 + , (56)
FARth FARth 2 log C 

FARth 
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FIG. 10: SNR threshold ρ for diferent FAR thresholds as a function of the total mass of the binary M , assuming 0 
spin and equal component masses (q = 1). ρ is plotted using Eq. (56), where the values of C are the same as the 
ones for the q = 1 curve of the left panel of Fig. 8. Direct comparison between the approximation of Eq. (56) and 

the ρ obtained by numerically inverting Eq. (46) shows that the maximum relative error made on ρ is of 2 × 10−5 for 
the values shown in this plot. 

which gives ρ with a relative error of order O(log2(ρ)/ρ6). In Fig. 10 we have plotted this SNR threshold ρ for diferent 
FAR thresholds as a function of the total mass of the binary M , assuming equal component masses (q = 1). Even 
though from Fig. 8 we observe that the value of C depends strongly on M , when we introduce this C in Eq. (56), ρ 
depends to leading order on the square root of its logarithm and so has only a mild dependence on M as can be seen 
in Fig. 10. As a general trend, the higher M is, the smaller the SNR threshold ρ will have to be set to exclude false 
alarms at a given rate FARth, with the peak at M ∼ 10M⊙ that was was observed in Fig. 8 now less prominent due 
to the logarithmic dependence. The dependence on FARth will also be mild, as ρ will also depend on the square root 
of the logarithm of this quantity. Because of this, the variation of an order of magnitude in FARth changes ρ by only 
a small amount. We observe that if we set ρ = 8, as is commonly done in the theoretical literature [77], we would be 

−1rejecting Gaussian noise false alarms with rates higher than FARth ∼ 10−3yr . 

F. The false alarm rate of a template in a network of detectors 

In this section we want to determine how much time of stationary Gaussian noise ni(t) of the detectors in a network 
would we have to look at on average to obtain a match with a signal to noise ratio (SNR) greater than some threshold 
ρ, using a GW template for the two polarization {h+(t), h×(t)}, which when projected in the i-th detector leaves a 
signal hi(t). For the problem to be well-posed we will have frst to defne what we mean by the SNR for multiple 
detectors. In the case we have more than one detector, the total optimal SNR ρopt is defned by summing thetot 
individual optimal SNRs (Eq. (16)) in quadrature, that is: 

sX sX 
ρopt (ρopt= ⟨hi, hi⟩i = )2 , (57)tot i 

i i 

where ⟨×, ×⟩i denotes the inner product (Eq. (15)) with the PSD Si(f) of the i-th detector. If si(t) is the strain data 
in the i-th detector of the network, then the total matched flter SNR ρmf is defned as:tot 

X X1 1 
ρmf ρoptρmf = ⟨hi, si⟩i = , (58)tot 

ρopt ρopt i i 
tot toti i 

which given that each ρmf is a complex normal variable, if there are no correlations between detectors, will also be ai 
complex normal variable. As was the case for the single detector matched flter SNR, the real part of Eq. (58) will 
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be the optimal quantity to rank the triggers when the form of the signal is known. Nonetheless, as was discussed 
in Sec. IV E, in most cases of interest, the global phase of the GW can be changed arbitrarily and does not carry 
any information. Therefore we want to set |ρmf | as the ranking statistic, so that we get rid of the global phase whiletot 
keeping the information contained in the relative phase and time of arrival of the GW in each detector, which will 
be related to the orientation and location of the detectors with respect to the direction and orientation of the GW 
source. The relative phase of the incoming GW in the diferent detectors is sometimes ignored in GW searches to 
reduce computational cost and can easily add single detector triggers [78], although methods to take it into account in 
a statistical way have recently been introduced [79]. The relative phases between detectors are ignored when using the 
incoherent SNR, which is obtained adding the absolute value of the single detector matched flter SNRs in quadrature: 

sX 
ρinc = |ρmf |2 . (59)i 

i 

Nonetheless, in this paper this ranking statistic will not be used as a lot of information is lost with it. If we shift 
−2πif(tin time the signals in all detectors, they will change by the same factor (F(hi(t ′ )) = F(hi(t))e 

′ −t)), and then 
as in Eq. (21) we can compute the matched flter SNR of the signal at diferent times with Gaussian noise using the 
following expression: 

Z fmax X ˜4 h∗(f)ñi(f)
ρmf dfe2πift i(t) = , (60)tot 

ρopt Si(f)tot fmin i 

where Si(f) is the noise PSD in the i-th detector. This quantity will also have correlations between diferent times 
that will afect the false alarm rate in a very similar way as in Sec. IV E. This correlation can be explicitly seen in 
Fig. 11, where in the top panel we have plotted a simulation similar to that of Fig. 5 for a random realization of the 
matched flter SNR for each detector in a Network formed by LIGO Livingston (L1), LIGO Hanford (H1) [50] and 
Virgo (V1) [51] at their design sensitivities. In the bottom panel we plot the sum of these single detector SNRs both 
in a coherent way (Eq. (58)) and incoherent way (Eq. (59)). We observe how these two are smooth functions and are 
thus autocorrelated in time. We also observe that the incoherent SNR is always above the coherent one (sometimes 
quite signifcantly), since it ignores the important information carried by the consistency of the GW phase in the 
diferent detectors. 
In a similar way as in Eq. (24), we can quantify the autocorrelation in time of ρmf (t) by computing the covariance tot 

between diferent times: 

⟨ρmf (t)ρmfΓ(t, t ′ ) =
1 

(t ′ ) ∗ ⟩ = tot tot2 *Z + 
fmax fmax ˜ ∗ 8 

Z XX h∗(f)h̃ 
j (f ′ )ñ (f ′ )ñi(f)′ ′ ′ 2πi(ft−f t ) i j

= df df e 
(ρopt 

tot fmin fmin)2 
i j 

Si(f)Sj (f ′ ) 

∗ 8 
Z fmax 

Z fmax XX h̃∗(f)h̃ 
j (f ′ )⟨ñ (f ′ )ñi(f)⟩′ ′ ′ 2πi(ft−f t ) i j

= df df e 
(ρopt)2 Si(f)Sj (f ′ )

tot fmin fmin ji Z fmax X4 ′ |h̃i(f)|2 
= Γ(t − t ′ ) = dfe2πif(t−t ) , 

(ρopt)2 Si(f)tot fmin i 

(61) 
∗where we have used that when there is no correlation between the noise of diferent detectors, then ⟨ñj (f ′ )ñi(f)⟩ = 

1 Si(f)δij δ(f − f ′ ). What we observe in Eq. (61) is that in the many detector case we obtain the same formula of the2 
covariance as in the single detector case of Eq. (24) if we do the following identifcation 

X1 |h̃(f)|2 1 |h̃ 
i(f)|2 

−→ . (62)
(ρopt)2 (ρopt)2Sn(f) Si(f)tot i 

Therefore the FAR will be given by the same expressions that were found in Sec. IV E for the single detector case 
doing the identifcation of Eq. (62). That is, an accurate upper bound approximation of the FAR is given by Eq. (46), 
with C given by the same formula of Eq. (40), but now using the following expression for Ck: 
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FIG. 11: Top panel: Simulation of the modulus of the single detector matched flter SNR |ρmf (t)| for Gaussian noise 
generated of H1, L1 and V1 at design sensitivity. The match is performed using a spinless IMRPhenomPv2 [72] 
template of masses m1 = m2 = 50M⊙, with extrinsic parameters right ascension 1.7rad, declination 1.7rad, 

polarization 0.2rad and a reference time tGPS = 1000000000s. Bottom Panel: We show the result of adding the 
single detector SNRs of the top panel both coherently (Eq. (58)) and incoherently (Eq. (59)). To obtain the 
particular curves shown in this plot we generated random Gaussian noise in the three interferometers until we 
obtained a realization with a time at which |ρmf | > 6.5 and we plot 0.5s around the maximum of this trigger.tot 

Z fmax X4 |h̃ 
i(f)|2 

Ck = df (2πf)k . (63)
(ρopt)2 Si(f)tot fmin i 

G. Application to GW events 

So far we have discussed the FAR and the FAP for a predefned template given a threshold SNR ρ. However, in 
real settings what we observe is a fuctuation in the strain, that we do not know if it comes from a GW or from noise, 
and which we will generically call an event. This fuctuation can be interpreted under any template, each giving a 
diferent SNR. For a given template, the threshold SNR ρ to use in Eq. (46) for the FAR computation is the observed 
total matched flter SNR (ρ = |ρmf |), since we want to know how likely it is to fnd SNRs equal to or larger thantot 
the one observed for the template. The problem will then be how to choose a template, given the observed strain, to 
determine the SNR and to compute the FAR using Eq. (46). The likelihood is the conditional probability of obtaining 
the observed strain given a GW signal with parameters θ⃗. If we assume Gaussian noise, the likelihood takes the the 
following form [80]: 

( )X1 L(s|θ⃗) = N exp − ⟨si − hi(θ⃗), si − hi(θ⃗)⟩i
2 � �i �� n o 

ρopt ρmf 1 
ρopt∝ exp (θ⃗) Re (θ,⃗ s) − (θ⃗) , (64)tot tot tot2 

where N is a normalization constant. Note that the likelihood will be larger for those templates that have the largest 
matched flter SNR and an optimum SNR such that ρopt = Re{ρmf }, which for GW templates can always be achieved tot tot 
by varying the distance to the source. We then have the expected result that, the more SNR a template has, the 
larger its Likelihood is and, therefore, the more likely it is to reproduce the observed strain. 
However, when we associate a template with an event, we are interpreting the strain fuctuation in terms of a model, 

with underlying assumptions about the possible physics. The consistent way to take this into account is to think of 
the event as having a probability of being described by any template, with some priors on each template 12 . Because 

12 For example, even though the template that maximizes the SNR is the one that exactly reproduces the strain (hi(t) = si(t)), this is 
usually a physically impossible GW template, and in this case, we will not consider it. We have that our prior probability for a template 
that can not be generated by GWs is 0. 
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we are characterizing a fuctuation observed in the data, we need to evolve our priors to fnd the probability of each 
template describing the specifc strain. Therefore, what naturally arises is the need to employ Bayes’ Theorem to 
determine the posterior probability p(θ⃗|s) of each template given the observed strain s: 

R L(s|θ⃗)π(θ⃗) 
dθ⃗ ′L(s|⃗ , (65)p(θ⃗|s) = 

θ ′ )π(θ⃗ ′ ) 

where π(θ⃗) is the prior probability for each set of parameters and it is multiplied by the likelihood to give the posterior. 
The more SNR a template has, the larger its likelihood and the more weight it will be given in the posterior probability 
distribution. In Bayesian inference, the posterior p(θ⃗|s) is interpreted as the probability of the template given the 
strain. Therefore, the template corresponding to the maximum of the posterior probability distribution is the most 
likely template given the strain and our priors, while the maximum likelihood template is the template most likely 
to generate the observed strain. In general, these two templates will be diferent from each other, and they will have 
diferent FAPs when computed with Eqs. (32), (46), that we can call FAPmax p and FAPmax L respectively. The most 
representative template when comparing to the LVK searches would correspond to the maximum likelihood sample, 
since the modeled searches performed by the LVK [11] deal with the unknown intrinsic parameters by setting up a 
template bank to cover a target parameter space, and then selecting the template which has the highest likelihood 
ratio for signal vs noise origin in a given segment of data which, in the Gaussian noise case, means the highest SNR 
sample. In practice, the FAR reported by LVK searches would be the FAR of this max likelihood template multiplied 
by the trial factor given by the number of independent templates within the search parameter space. 
Another possibility to consider all the information contained in the posterior is to compute the FAP of the fuctu-

ation. To do so, we combine the probability of each template describing the fuctuation given by the posterior, and 
the probability of each template to be generated by Gaussian noise with an SNR equal to or larger than the observed 
one, given by the FAP, see Eqs. (32), (46), Z 

= � d⃗ ⃗ ⃗|θp(θ )FAP(s � 
−1 exp 

FAPevent θ, s) Z �� 
2 

ρmf− 1 (θ,⃗ s)2 tot= dθ⃗p(θ⃗|s) θ) ρmf−TobsC(⃗ 
tot(θ,

⃗ s) e , (66) 

which will always be less than or equal to one, since the posterior p(θ⃗|s) is normalized, as can be seen in Eq. (65). 
The FAPevent of Eq. (66) will now not only depend on a single template, but similarly to the Bayes Factor [64] it will 
take into account the distribution of the likelihood over the prior volume. Therefore, it can be seen as an efective Rway of considering the trial factor for the template that best matches the data over a parameter space. 

dθ⃗L(s|θ⃗)π(θ⃗), is extremely difcult to 
compute. However, even though the full posterior is unknown, one can use Monte Carlo methods to obtain independent 
In general, the normalization of the posterior, given by the evidence Z = 

samples from it, as done in Parameter Estimation Analysis [68]. In terms of these independent posterior samples, 
Eq. (66) can be approximated by: 

XNs 

= 
Ns i=1 

1 
FAP(θ⃗i, s) . (67)FAPevent 

where Ns is the number of samples, and the error of approximating the integral by a sum over independent posterior 
samples is given by: 

vuut � �2XNs 

Ns(Ns − 1) 
i=1 

1 
FAP(θ⃗i, s) − FAPevent ∆FAPevent = . (68) 

1. Application to GW candidates in GWTC-3 

As an application of the method previously outlined, we analyze the 35 CBC candidates included in the last 
gravitational wave transient catalog, GWTC-3 [11], detected during the second part of the third observing run (O3b). 
The Bayesian Parameter Estimation (PE) of these events has been performed by the LVK collaboration as described 
in Ref. [11] and the posterior samples obtained are publicly available in Ref. [82]. 
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FIG. 12: In this plot we show the contours enclosing 90% of the IMRPhenomXPHM [81] posterior samples in the 
(C, |ρmf |) plane for all the O3b Catalog events. The value of C is computed using Eqs. (40), (63) with the local tot 
PSD around each event. The values of (C, |ρmf |) for the maximum likelihood and maximum posterior probability tot 
samples are marked with a star and square respectively. We also plot using dashed lines the contours of the two 
events GW200308 173609 (in grey) and GW200322 091133 (in red) after making the cut in the Likelihood as was 
done for GWTC-3. The color of the contours is given by the median total mass of the posterior samples of each 

event. We also plot lines of constant FAR as defned by Eq. (56). 

We compute the value of C for each IMRPhenomXPHM [81] sample of every event in GWTC-3, using Eqs. (40), (63), 
where we use the local PSD around each event that is the same one employed in the PE, also available in Ref. [82]. 
In Fig. 12 we show the 90% credible intervals of |ρmf | and C, which are the contours enclosing 90% of the posterior tot 
samples in the (C, |ρmf |) plane. Since at frst order the Gaussian FAR only depends on C and |ρmf |, we can plot ontot tot 
top of Fig. 12 the contours of constant FAR using Eq. (56). We observe that for most of the events, almost all the 
samples are above a Gaussian FAR of 1 per year, meaning that we do not expect them to come from a Gaussian noise 
fuctuation. However, there are two notable exceptions which have almost no posterior support for templates with 
Gaussian FAR under 1 per year, which correspond to GW200308 173609 (grey) and GW200322 091133 (red), having 
only 4.16% and 0.71% of the posterior samples above this threshold respectively. These are the two events that were 
noticed in GWTC-3 to have multimodal posterior distributions, due to the likelihood not having a sufciently large 
peak to dominate the posterior in all parameter space, which induces prior-dominated modes at large distances and 
high masses. 
In GWTC-3, an ad hoc cut in the likelihood was made to get rid of these prior-dominated modes. For 

GW200308 173609 the samples with log{L/L0} < 10 are removed while for GW200322 091133 the samples withP 
log{L/L0} < 2 are removed, where L0 = exp (− ⟨si, si⟩/2) is the likelihood of the data given no signal, i.e.i 
substituting h = 0 in Eq. (64)[64]. We show with dashed lines the contour that encompasses in the (C,|ρmf |) plane tot 
90% of the samples that remain after the ad hoc Likelihood cut. We observe that the result is to remove the lowest 
SNR samples (since the SNR and the Likelihood are intimately related) and it thus removes the posterior samples 
with the largest FAR. However, a large fraction of the remaining samples still have FARs larger than 1 per year, with 
32.9% and 96.8% of them above this threshold for GW200308 173609 and GW200322 091133 respectively. 
Looking only at the maximum likelihood sample of these two events (marked with a star in Fig. 12), they have large 

SNR values of 8.00 for GW200308 173609 and 8.42 for GW200322 091133, which makes them have a single template 
−1 −1FARmax L of 4.7×10−4yr and 9.9×10−6yr respectively, without taking into account any trial factor due to the 

fact that the likelihood is maximized over a parameter space. 
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The Gaussian FAR that we have presented here is not directly comparable with the FAR computed by the LVK 
search pipelines, since they difer in methodology in various ways. The search pipelines make use of a template 
bank and a diferent ranking statistic from the bare SNR to take into account the presence of non-Gaussianities. 
The ranking statistic assigned to each trigger by the pipelines is the one maximized over all the template bank 
covering the parameter space of the search, with the background estimated by doing time-shifts in detector data. 
Another diference is that pipelines do not coherently sum the signal from all interferometers, as this would not allow 
marginalizing over the location in the sky, polarization and neither to work with single detector triggers, making 
the search computationally cost prohibitive. For this same reason, the template bank of the searches often use 
simplifed waveform models, ignoring efects such as precession or Higher Order modes and do a coarser sampling of 
the parameter space than what is done in a Parameter Estimation. 

In table II we present the most important parameters to quantify the signifcance of the events in GWTC-3, coming 
both from the LVK search and PE results and from our Gaussian FAR analysis. Looking at the rightmost column, 
we notice that there are several events with Gaussian FAPs (computed using Eq. (67) with Tobs = 1yr) that are of 
order 1. The highest FAPs come, as expected, from GW200308 173609 and GW200322 091133, which have FAPs of 
0.97 and 0.99 respectively. After the Likelihood cut, the FAP of GW200308 173609 improves substantially, becoming 
0.44. However, that’s not the case for GW200322 091133, which keeps a very high FAP after the cut, with a value of 
0.97 due to the fact that it has small SNR values in most of its posterior. 

Since both GW200308 173609 and GW200322 091133 have a small subset of samples in their posteriors with larger 
SNRs and correspondingly small FARs, we can explore which samples have this larger signifcance by selecting only 
those that have a FAR below a 1yr−1 threshold. In Fig. 13 we show the distribution of some of the binary parameters 
using only those samples with FAR below a 1yr−1 . We observe that the parameters of the waveforms that satisfy this 
cut are very diferent from all other CBC observations [83], with both events having extremely large efective spin 
parameters χef and with GW200322 091133 having a very extreme mass ratio for which waveform systematics might 
be important [81]. It’s also noticeable that, due to the very low percentage of posterior samples with FAR below the 
1yr−1 threshold in GW200322 091133, (∼ 0.07%), the parameter space might be undersampled. In principle, both, 
the search [84] and the parameter estimation [82] should identify similar maximum likelihood points in the parameter 
space for a given trigger time. We can then compare the two template parameters’ values as a sanity check. In the 
GW200308 173609 case, diferences in the masses are not signifcant, with trigger masses of (m1,m2) = (58.4, 41.3)M⊙ 
while the masses identifed by the PE for the maximum likelihood template are (m1,m2) = (64.2, 38.2)M⊙. We fnd 
larger discrepancies for the GW200322 091133, with trigger masses of (m1,m2) = (56.0, 15.3)M⊙ while the masses 
identifed by the PE are (m1,m2) = (161.3, 7.8)M⊙. The calculation of pastro depends crucially on the values of the 
masses and such an extreme mass ratio would defnitely represent an outlier to the population. For both events, in the 
search and in the maximum likelihood of the PE, very large values of χef are found, in contrast with the rest of the 
population of merging BH [83]. However, since the value of the spin is not taken into account for pastro calculations [63], 
this does not downrank the event. Finally, for the case of GW200322 091133 we also fnd a substantial diference 
between the search SNR and the maximum likelihood SNR of the PE, being 9.0 and 8.4 respectively. Since the FAR 
and pastro have an exponential dependence with the SNR, this diference would also downweight the event. 

Since our method only gives a lower bound estimation on the FAP, it does not allow us to state that a candidate 
is indeed a gravitational wave event, but it can support the hypothesis of a noise origin. We can derive how likely 
Gaussian noise is to generate a signal, but we can not say anything about the possibility of non-Gaussianities mimicking 
it. With this in mind, in Fig. 14 we show how the GWTC-3 events are distributed in the Gaussian FAP and pastro 
plane (the values are taken from Table II). We note that for all the 22 events with pastro > 0.9, the Gaussian FAP 
also gives them low probability of generation from a Gaussian noise fuctuation, having all FAP ≤ 2 × 10−4 and 
there is no inconsistency. However, for the 13 events with 0.5 < pastro < 0.9, results are mixed. The majority of 
these events (8/13) also have Gaussian FAP smaller than 10% and so we fnd that they are not likely to be generated 
from a Gaussian noise fuctuation. From the 13 events with 0.5 < pastro < 0.9 we have another 3 in the region 
of 10% < FAP < 50%, which therefore have some non-negligible probability of being generated by Gaussian noise, 
although it is still more likely they are not. These 3 events correspond to GW191113 071753, GW200208 222617 and 
GW200220 061928, from which GW200208 222617 is the one with the largest Gaussian FAP (∼ 31%) and also has a 
multimodal posterior distribution [11]. Finally, at 0.5 < pastro < 0.9 and FAP> 50% we have 2 points corresponding 
to GW200308 173609 and GW200322 091133 and which have already been discussed in detail as likely to be generated 
by a Gaussian fuctuation. It is also interesting to note that for all events with FAP > 0.1, the pastro value quoted in 
GWTC-3 [11] is larger than 0.5 in only one of the pipelines, the others quoting signifcantly lower values. 
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Event IFOs Pipeline Search Search pastro PE Gaussian Gaussian FAPevent 

SNR log10(FAR · yr) SNR log10(FAR · yr) (Tobs = 1yr) 

GW191103 012549 HL PyCBC-BBH 9.3 -0.34 0.94 8.9+0.3 
−0.5 −6.40+1.92 

−1.08 (1.99 ± 0.24) × 10−4 

GW191105 143521 HLV PyCBC-broad 9.8 -1.92 > 0.99 9.7+0.3 
−0.5 −9.44+2.08 

−1.32 (2.6 ± 1.4) × 10−6 

GW191109 010717 HL MBTA 15.2 -3.74 > 0.99 17.3+0.5 
−0.5 −54.23+3.34 

−4.04 (1.96 ± 0.56) × 10−50 

GW191113 071753 HLV MBTA 9.2 1.41 0.68 7.8+0.6 
−1.1 −2.40+3.35 

−2.14 0.15724 ± 0.00085 

GW191126 115259 HL PyCBC-BBH 8.5 0.51 0.70 8.3+0.2 
−0.5 −4.27+1.68 

−0.76 (4.05 ± 0.12) × 10−3 

GW191127 050227 HLV PyCBC-BBH 8.7 0.61 0.74 9.1+0.5 
−0.6 −7.77+2.29 

−2.23 (2.35 ± 0.54) × 10−5 

GW191129 134029 HL GstLAL 13.3 < −5 > 0.99 13.2+0.2 
−0.3 −26.58+1.60 

−1.21 (1.90 ± 0.36) × 10−25 

GW191204 110529 HL PyCBC-BBH 8.9 0.52 0.74 8.8+0.4 
−0.6 −6.15+2.28 

−1.62 (4.68 ± 0.36) × 10−4 

GW191204 171526 HL PyCBC-broad 17.1 < −5 > 0.99 17.5+0.2 
−0.2 −55.15+1.80 

−1.40 (1.7 ± 1.4) × 10−52 

GW191215 223052 HLV GstLAL 10.9 < −5 > 0.99 11.2+0.3 
−0.4 −16.38+2.00 

−1.59 (9.5 ± 2.7) × 10−15 

GW191216 213338 HV GstLAL 18.6 < −5 > 0.99 18.6+0.2 
−0.2 −63.74+1.81 

−1.47 (8.1 ± 2.3) × 10−62 

GW191219 163120 HLV PyCBC-broad 8.9 0.60 0.82 9.1+0.5 
−0.8 −7.61+3.00 

−2.07 (2.29 ± 0.33) × 10−3 

GW191222 033537 HL GstLAL 12 < −5 > 0.99 12.5+0.2 
−0.3 −23.29+1.53 

−1.12 (2.2 ± 2.0) × 10−21 

GW191230 180458 HLV PyCBC-BBH 9.9 -0.38 0.96 10.5+0.2 
−0.4 −13.48+1.74 

−1.09 (3.6 ± 3.5) × 10−10 

GW200112 155838 LV GstLAL 17.6 < −5 > 0.99 19.8+0.1 
−0.2 −74.28+1.79 

−1.17 (1.82 ± 0.79) × 10−72 

GW200115 042309 HLV GstLAL 11.5 < −5 > 0.99 11.3+0.3 
−0.5 −16.69+2.43 

−1.51 (8.1 ± 5.1) × 10−14 

GW200128 022011 HL PyCBC-BBH 9.9 -2.37 > 0.99 10.7+0.3 
−0.4 −14.16+1.66 

−1.38 (4.92 ± 0.78) × 10−13 

GW200129 065458 HLV GstLAL 26.5 < −5 > 0.99 26.8+0.2 
−0.2 −144.95+2.39 

−2.21 (5.94 ± 0.96) × 10−143 

GW200202 154313 HLV GstLAL 11.3 < −5 > 0.99 10.9+0.2 
−0.4 −14.63+1.76 

−1.05 (3.9 ± 2.2) × 10−11 

GW200208 130117 HLV PyCBC-BBH 10.8 -3.51 > 0.99 10.9+0.2 
−0.4 −15.04+1.96 

−1.13 (3.4 ± 2.0) × 10−11 

GW200208 222617 HLV PyCBC-BBH 7.9 0.68 0.70 7.4+1.1 
−2.0 −1.41+5.28 

−3.95 0.31395 ± 0.00090 

GW200209 085452 HLV MBTA 9.7 1.08 0.97 9.6+0.3 
−0.5 −9.67+1.99 

−1.38 (2.3 ± 1.9) × 10−6 

GW200210 092254 HLV PyCBC-BBH 8.9 0.89 0.54 8.4+0.5 
−0.7 −4.66+2.50 

−1.84 (1.169 ± 0.025) × 10−2 

GW200216 220804 HLV GstLAL 9.4 -0.45 0.77 8.2+0.3 
−0.5 −4.24+1.72 

−1.05 (2.948 ± 0.095) × 10−3 

GW200219 094415 HLV GstLAL 10.7 -3.00 > 0.99 10.7+0.3 
−0.4 −14.45+1.98 

−1.33 (1.4 ± 1.2) × 10−11 

GW200220 061928 HLV PyCBC-BBH 7.5 0.83 0.62 7.3+0.4 
−0.7 −1.66+1.94 

−1.13 0.13003 ± 0.00070 

GW200220 124850 HL MBTA 8.2 -2.74 0.83 8.5+0.3 
−0.5 −5.30+1.74 

−1.02 (5.41 ± 0.47) × 10−4 

GW200224 222234 HLV MBTA 19.0 < −5 > 0.99 20.0+0.2 
−0.2 −75.77+1.84 

−1.41 (7.9 ± 4.3) × 10−74 

GW200225 060421 HL PyCBC-broad 12.3 < −5 > 0.99 12.5+0.3 
−0.4 −23.14+1.88 

−1.57 (1.44 ± 0.35) × 10−21 

GW200302 015811 HV GstLAL 10.6 -0.96 0.91 10.8+0.3 
−0.4 −14.76+1.94 

−1.64 (3.11 ± 0.76) × 10−13 

GW200306 093714 HL MBTA 8.5 2.61 0.81 7.8+0.3 
−0.6 −2.46+1.95 

−1.19 (4.933 ± 0.047) × 10−2 

GW200308 173609 HLV PyCBC-BBH 8.0 0.38 0.86 3.8+3.1 
−2.5 6.55+1.91 

−6.17 0.96500 ± 0.00045 
∗ GW200308 173609 - - - - - 7.09+0.47 

−0.50 −0.90+3.34 
−3.31 0.4366 ± 0.0040 

GW200311 115853 HLV GstLAL 17.7 < −5 > 0.99 17.9+0.1 
−0.2 −58.41+1.69 

−1.12 (6.7 ± 1.8) × 10−57 

GW200316 215756 HLV GstLAL 10.1 < −5 > 0.99 10.3+0.4 
−0.7 −12.24+2.82 

−1.81 (2.5 ± 2.0) × 10−8 

GW200322 091133 HLV MBTA 9.0 2.65 0.62 2.5+3.4 
−1.7 8.00+0.75 

−5.35 0.99327 ± 0.00021 
∗ GW200322 091133 - - - - - 5.3+1.4 

−0.9 9.15+4.14 
−7.37 0.96870 ± 0.00096 

TABLE II: In this table we report every candidate GW signal included in the O3b Catalog, as well as the detectors 
observing at the merger time of the events, the search pipeline in which it had the highest pastro together with the 
Search estimated SNR, the Search FAR and the pastro as calculated by that same pipeline. We also include the SNR 
as obtained by the LVK parameter estimation analysis, our Gaussian FAR and Gaussian FAP of the event assuming 

an observing time of 1yr. While the errors on the PE SNR and the Gaussian FAR represent the 90% credible 
intervals, for the Gaussian FAP they represent the uncertainty on the Monte Carlo integral used to compute it, 
given by Eq. (68). The events that have an asterisk and are in italic, correspond to the ones in which we have 

performed the ad hoc cut in the Likelihood. 
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FIG. 13: Corner plots of selected parameters for the posterior samples with Gaussian FAR≤1 per year. Top Panel: 
GW200308 173609, Bottom Panel: GW200322 091133 

H. Conclusions 

Understanding whether triggers in LIGO-Virgo detectors are from gravitational wave or noise origin is a hard task. 
For most of the events, the GW signal is expected to be extremely weak and in this paper we have explored the 
possibility of it being mimicked by the irreducible Gaussian noise in the gravitational wave detectors. 
We have derived a mathematical framework for estimating the rate of false alarms induced by this Gaussian noise. 

Our main result is given in Eq. (46), which gives the rate at which the matched flter SNR of a specifc template 
with the Gaussian noise of one (or multiple) GW detectors goes over a threshold ρ. The prefactor C multiplying the 
FAR depends on the specifc template used for matched fltering. For CBC templates the most important parameter 
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FIG. 14: The comparison in the Gaussian FAP and pastro plane of the diferent GWTC-3 events from Table II. We 
have set cuts in FAP of 10% and 50%, as well as in pastro = 0.5 and 0.9. 

controlling the value of C is the total mass of the event, with C being signifcantly smaller for larger masses. 

We have then studied how the Gaussian FAR of CBC templates behaves as a function of the threshold SNR, and 
gave an analytical expression for the minimum SNR needed for a given FAR threshold. We have also proposed a 
method to estimate the probability of Gaussian noise with the local PSD mimicking a given GW candidate in terms 
of a false alarm probability (66), using the samples from the Parameter Estimation analysis of such an event. 

Finally, we have applied this formalism to the GW candidates that were added in the GWTC-3 catalog, obtaining 
a Gaussian FAR for each template in their PE posterior and a FAP for the events. 

Summarizing these results, most of the samples of the events are clearly above the 1 yr−1 FAR threshold with event 
FAPs ranging from ∼ 10−143 to a more modest ∼ 10−1 , assuming a reference observation time of one year. However, 
we fnd two clear outliers, GW200308 173609 and GW200322 091133, with event FAPs very close to one, signaling 
very high odds of Gaussian noise fuctuations mimicking them. We also explore the samples in their posterior that 
have single template FAR< 1 yr−1 . These samples have very extreme parameter values with respect to the observed 
BBH population, and in the case of GW200322 091133 difer from those identifed by the search. 

We believe that the methods developed here may be useful in the future to further investigate GW triggers that 
are found in future LVK runs. 

I. Appendix: Study of the FAP for the bivariate complex Gaussian 

In this section we will study the FAP for the bivariate complex Gaussian (FAP2) whose probability density function 
is given in Eq. (25). We will obtain Eq. (87) to numerically compute FAP2 in an efcient and well behaved manner. 
We also obtain a prescription to analytically approximate the FAP2 to arbitrary order in 1 −|α| using Eq. (91). With 
this expansion we obtain the leading order and second order approximations of Eq. (88) and Eq. (93) respectively 
and shown in Fig. 15. As seen in Eq. (26), FAP2 is given by the following expression: 
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FAP2 = P (ρ1 > ρ ∪ ρ2 > ρ) = 1 − P (ρ1 < ρ ∩ ρ2 < ρ)Z Z Z Z � �2π 2π ρ ρ1 ρ21 + ρ22 − 2|α|ρ1ρ2 cos(θα − θ1 + θ2) 
= 1 − dθ1 dθ2 ρ1dρ1 ρ2dρ2 exp − 

(2π)2(1 − |α|2) 2(1 − |α|2)0 0 0 0Z Z � �Z � �ρ ρ 2π1 ρ1
2 + ρ2 |α|ρ1ρ22 = 1 − dρ1 dρ2ρ1ρ2 exp − dθ exp cos θ 

2π(1 − |α|2) 2(1 − |α|2) 1 − |α|2 
0 0 0Z Z � � � �ρ ρ1 ρ1

2 + ρ2 |α|2 = 1 − dρ1 dρ2ρ1ρ2 exp − I0 ρ1ρ2 , (69)
1 − |α|2 2(1 − |α|2) 1 − |α|2 

0 0 

where for notation simplicity we defne α = Γ(∆t) and In(z) is the modifed Bessel function of the frst kind [85]: 

Z ∞ � �2k+nπ X 1 z2In(z) ≡ i−nJn(ix) = 
1 

dθ e z cos θ cos(n θ) = (n ∈ Z). (70)
π k!(k + n)!0 k=0 

The integral of Eq. (69) can be further simplifed by making the change of variables: 

s 
1 − |α|2 

ρi = 
p
2(1 − |α|2)ui −→ dρi = , (71)

2ui 

which yields: 

Z Zx x √ −(u1+u2)FAP2 = 1 − (1 − |α|2) du1 du2I0(2|α| u1u2)e . (72) 
0 0 

where for notation simplicity we have defned: 

ρ2 
x ≡ . (73)

2(1 − |α|2) 

From Eq. (70) we have that the Taylor series of I0(z) around z = 0 is given by: 

∞ ∞X 2k X k kz √ |α|2ku1 u2I0(z) = → I0(2|α| u1u2) = . (74)
22k(k!)2 (k!)2 

k=0 k=0 

And substituting this expansion into Eq. (72) we obtain: 

∞ � Z �2X x1 kFAP2 = 1 − (1 − |α|2) |α|2k u e −udu . (75)
k! 0k=0 

Since k is a natural number, the integral appearing in Eq. (75) is given by: 

Z kx X n 
k −x1 
u e −udu = 1 − e 

x
, (76)

k! n!0 n=0 

Using this in Eq. (75), the FAP2 will be given by: 

" #2∞ kX X xn 
−xFAP2 = 1 − (1 − |α|2) |α|2k 1 − e 

n! 
k=0 n=0" # ∞ ∞ k ∞ k kX XX n XXX n+m 

−x −2x = 1 − (1 − |α|2) |α|2k − 2e |α|2k x 
+ e |α|2k x . (77) 

n! n!m! 
k=0 k=0 n=0 k=0 n=0 m=0 
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In the frst sum of Eq. (77) we recognize a simple geometric series. Taking into account that |α|2 < 1, it will 
converge to the following expression: 

∞X 1 |α|2k = . (78)
1 − |α|2 

k=0 

The second sum of Eq. (77) can also be summed exactly by making some index manipulation: 

∞ k n ∞ n ∞ ∞ ∞X X X X X (|α|2x)n X 
|α|2x x 1x|α|2k = |α|2k = |α|2k = e . (79) 

n! n! n! 1 − |α|2 
k=0 n=0 n=0 k=n n=0 k=0 

Finally, the third sum of Eq. (77) can not be summed exactly, but it can be signifcantly simplifed by making 
similar index manipulations: 

∞ k k ∞ ∞ ∞ ∞ ∞ ∞X XX xn+m XX xn+m X X XX n+m 
|α|2k |α|2k |α|2k |α|2max(n,m) x 

= = 
n!m! n!m! n!m! 

k=0 n=0 m=0 n=0 m=0 k=max(n,m) k=0 n=0 m=0 
∞ ∞ 

1 XX n+m 
|α|2max(n,m) x 

= . (80)
1 − |α|2 n!m! 

n=0 m=0 

Substituting the results of the sums of Eqs. (78), (79), (80) into Eq. (77), we obtain the following result: 

∞ ∞XX n+m 
FAP2 = 2e −(1−|α|2)x − e −2x |α|2max(n,m) x . (81) 

n!m! 
n=0 m=0 

1To further simplify this expression we can change indices in the sum of Eq. (81), using l = n − m and k = (n + m):2 

∞ ∞ ∞ ∞ ∞XX n+m X X x2k X 
|α|2max(n,m) x 

= |α|2k+|l| � � � � = S0 + 2 Sl , (82)
ln!m! k + ! k − l ! 

n=0 m=0 l=−∞ k=|l|/2 2 2 l=1 

where we have used that 2 max(n, m) = n + m + |n − m| = 2k + |l| and we have defned: 

∞ ∞X 2k Xx (|α|x)2k+l 
Sl = |α|2k+l � � � � = |α|l = |α|lIl(2|α|x) , (83)

lk + ! k − l ! (k + l)!k! 
k=l/2 2 2 k=0| {z } 

Il(2|α|x) 

where we have identifed the Taylor series of the modifed Bessel function of the frst kind of order l shown in Eq. (70). 
Using Eq. (83) and Eq. (82) we have that the FAP2 of Eq. (81) will be given by: 

! ∞X 
FAP2 = 2e −(1−|α|2 )x − e −2x I0(2|α|x) + 2 |α|nIn(2|α|x) . (84) 

n=1 

To compute the sum of modifed bessel functions of the frst kind, we can use their integral representation, shown 
in Eq. (70): 

" # " # ∞ Z ∞ Z ∞X π X π X� �n � �n1 1 iθ −iθI0(z) + 2 |α|nIn(z) = dθ ez cos θ 1 + 2 |α|n cos(n θ) = dθ ez cos θ 1 + |α|e + |α|e 
π π0 0n=1 n=1 n=1Z � � Zπ iθ −iθ π1 |α|e |α|e 1 1 − |α|2 

= dθ ez cos θ 1 + + −iθ = dθ ez cos θ . 
π 1 − |α|eiθ 1 − |α|e π 1 − 2|α| cos θ + |α|2 

0 0 
(85) 
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And we have transformed the infnite sum in a defnite integral of a relatively simple function. The integral can be � � 
1−|α|expressed in a more simple and convenient way if we do the variable change θ = 2 arctan u :1+|α| 

∞ Z � �X ∞ 22 1 (1 − |α|)2uzI0(z) + 2 |α|nIn(z) = e du exp −2z . (86)
π 1 + u2 (1 + |α|)2 + (1 − |α|)2u2 

0n=1 

Substituting this expression for the sum into Eq. (84) for the FAP2 and using the fact that z = 2|α|x, where x is 
defned in Eq. (73), we obtain: 

 Z ∞  2  
−ρ2/2 − 

2 −ρ2/(1+|α|) 1 2|α|(1 − |α|)ρ2 u 
FAP2 = 2e e du exp − . (87)

π 0 1 + u2  (1 + |α|)3 
1 + ( 1−|α| )2u2  

1+|α| 

The integral in this expression can not be analytically computed, but it can be numerically integrated as it is a 
well behaved one variable defnite integral that does not sufer from divergences or accuracy problems due to large 
cancellations, as the previous integrals did. We can check that this formula has the correct limiting behavior if we 
realize that both when |α| = 0 and when |α| = 1, the argument of the exponential inside the integral of Eq. (87) 
vanishes and the value of the integral is π/2. Therefore in the case in which |α| = 0, when there is no correlation, 

−ρ2 −ρ2 −ρ2 
FAP2(|α| = 0) = 2e /2 − e = 1 − (1 − e /2)2 as is expected from two uncorrelated variables. In the opposite 
limit, when the correlation is maximal and |α| = 1, FAP2 coincides with the expected result in which the two variables 
behave as a single one, that is, FAP2(|α| = 1) = e−ρ2/2 = 1 − (1 − e−ρ2 /2)1 . 
As seen in Sec. IV E of the main text, we are interested in obtaining an approximation in the limit in which the 

correlation is large and thus |α| → 1. However, we will take into account that the SNR threshold ρ can be large in 
such a way that (1 −|α)ρ2 can be of order O(1). In this case, an upper bound approximation for the FAP2 is obtained 
in the following way: 

Z ∞ � � 
−ρ2/2 − 

2 −ρ2/(1+|α|) 1 2|α|(1 − |α|)ρ2 2FAP2 ≈ 2e e du exp − u 
π 1 + u2 (1 + |α|)3 

0" ( ) ( s )#� �3
1 1 − |α| 2|α|(1 − |α|)−ρ2/2 = e 2 − exp − ρ2 Erfc ρ 
2 1 + |α| (1 + |α|)3 � � ��p1−ρ2/2≈ e 1 + Erf ρ 1 − |α| , (88)

2 

where we have used that [85]: 

Z ∞ 
22 du η2−η2 u e = e Erfc(η) , (89)

π 0 1 + u2 

and where Erf(z) and Erfc(z) are the error function and the complementary error function respectively. Eq. (88) can 
be taken to be as the leading order term in an expansion in 1 − |α| of the FAP2. To analyze higher order terms it will 
be convenient to introduce two new variables: 

s 
2|α|(1 − |α|)

η = ρ , (90a)
(1 + |α|)3 

1 − |α|
ϵ = . (90b)

1 + |α| 

In the regime we are interested, η is of order O(1), while ϵ ≪ 1. Using these variables we have: 
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� Z ∞ � ��
2 

−ρ2/2 − 1−|α| 
ρ2 2 du η2u 

2(1+|α|)FAP2 = e 2 − e exp − 
π 0 1 + u2 1 + ϵ2u2 � Z ∞ � 

4 �� 
− 1−|α| 

ρ2 2 du u 2 ϵ2η2u 
= e −ρ2/2 2 − e 2(1+|α|) e −η2 

exp
π 1 + u2 1 + ϵ2u2 " 0 #Z ∞ ∞ � �n 

1−|α| X ϵ2η2 4 
−ρ2/2 − 

2(1+|α|) ρ
2 2 du −η2 u 2 1 u 

= e 2 − e e . (91)
π 0 1 + u2 n! 1 + ϵ2u2 

n=0 

If we truncate the sum at n-th order, we obtain an upper bound approximation that is accurate to order (ηϵ)2n 

and that has correct limiting behavior when ϵ → 0, when ϵ = 1, when η = 0 and when η → ∞. Since we want only 
the frst order correction, we can keep terms up to n = 1 and integrate, obtaining: � Z � �� 

−ρ2 − 1−|α| 
ρ2 2 ∞ du −η2 ϵ2η2u4 

2 uFAP2 ≈ e /2 2 − e 2(1+|α|) e 1 + 
π 0 1 + u2 1 + ϵ2u2 � �� � ��� 

1−|α| ϵ2η2 η2 
−ρ2/2 − 

2(1+|α|) ρ
2 

η2 η η2/ϵ2 
�η 

= e 2 − e 1 + e Erfc(η) + √ − e Erfc 
1 − ϵ2 π ϵ(1 − ϵ2) ϵ� � � ��� 

1−|α| 
ρ2 � � η 1 ≈ e −ρ2/2 2 − e − 

2(1+|α|) 1 + ϵ2η2 e η
2 
Erfc(η) − ϵ2 √ 1 − . (92)

π 2η2 

We can express this result in terms of the correlation |α| and the SNR threshold ρ substituting the expressions for 
η and ϵ of Eq. (90). To be consistent in the approximation, we keep the two frst orders in 1 − |α|, assuming that 
(1 − |α)ρ2 is of order O(1). Doing this we obtain: � � � �� � �� 

−ρ2/2 1 p 1 − |α| (1 − |α|)2 (1 − |α|)3/2 
− 1 (1−|α|)ρ2 (1 − |α|)ρ2 

4FAP2 ≈ e 1 + Erf ρ 1 − |α| 1 + − − √ e 1 − 
2 4 32 4 πρ 2� � � � � ��� 

−ρ2/2 1 p 1 − |α| 1 3(1 − |α|)2 
≈ e 1 + Erf ρ 1 − |α| 1 + 1 − + . (93)

2 4 ρ2 32 

where for simplicity of the fnal result, in the last step we have introduced all the corrections inside the argument of 
the error function in a way that is consistent with the order of the approximation. We check that ignoring the higher 
order corrections in 1 − |α|, we recover the leading order expression of (88). 
In Fig. 15 we show the relative error, between the exact FAP2 computed using Eq. (87) and the approximations 

of Eq. (88) (left panel) and Eq. (93) (right panel), as a function of the correlation |α| and the SNR threshold ρ. We 
observe that the leading order approximation (left panel), already gives an accurate description of the FAP2, having 
sub-percent accuracy for ρ ≳ 5 and reproducing the exact result as |α| → 1. On the right hand panel we can see 
the efect of introducing the higher order correction, we observe that the description is now much improved, reaching 
an accuracy better than 1 part in 10000 for ρ ≳ 4 and describing much better the limit |α| → 1. If we wanted 
to approximate the FAP2 to higher precision, we could take into account more terms in the sum of Eq. (91) and 
analytically integrate them using Eq. (89). 
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FIG. 15: Base 10 logarithm of the relative error between the exact value of FAP2, computed using Eq. (87) and the 
approximations proposed in Eq. (88) (left panel) and Eq. (93) (right panel), as a function of the correlation |α| and 
the SNR threshold ρ. We also show the with a red line the value of |α| at the decoupling time, to get an idea of the 

region where we are interested in having a good approximation as a function of ρ. 
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binary coalescence (CBC) waveforms including precession and higher order modes. We validate these bases by 
performing likelihood error tests and P-P tests and explore the speed up they induce both theoretically and empirically 
with positive results. Furthermore, we conduct end-to-end parameter estimation analyses on several confrmed GW 
events, showing the validity of our approach in real GW data. 

D. Introduction 

Gravitational wave (GW) astronomy has been made possible in recent years by ground-based observatories like 
LIGO [86], Virgo [87], and KAGRA [88], revolutionizing our understanding of the Universe by enabling the direct 
detection of GW signals emitted during extreme cosmic phenomena such as the mergers of binary black holes, binary 
neutron stars, and neutron star-black hole binaries. With the continuous improvement in sensitivity of current 
detectors [89] and the advent of next-generation detectors, including projects like the Einstein Telescope [90], Cosmic 
Explorer [91], LISA [92–94], we anticipate a dramatic increase in the number of GW candidates detected. For 
maximum science outputs, a parameter estimation (PE) for each candidate will have to be performed. With standard 
PE methods [95], this can be prohibitively computationally expensive, especially as we reduce the frequency from 
which we can detect gravitational waves and the duration of the signals becomes much longer [69]. 

To fully exploit the enhanced sensitivity of these advanced detectors, it is essential to use accurate waveform models 
that incorporate important physical efects such as precession or higher-order modes [96]. However, the computa-
tional challenge of calculating the likelihood of such signals poses a signifcant bottleneck in the analysis pipeline. 
Traditional likelihood calculations can be computationally intensive, particularly for long-duration waveforms. Sev-
eral methods have been explored in the literature to reduce this computational burden, such as multi-banding [97], 
heterodyned likelihood [98, 99], likelihood-free approaches [100, 101], Reduced Order Quadrature methods [102–107] 
and others [108–110]. 

In this work, we will focus on the ROQ method, which is one of the most promising approaches to fast GW 
likelihood evaluations, due to its ability to achieve very large speed-ups while maintaining high accuracy and being 
able to accommodate the efects of precession and higher-order modes [104, 105]. ROQ methods exploit the fact 
that for a given parameter range, the corresponding GW waveforms span only a small subspace of the vector space 
of all possible signals. By constructing reduced bases that capture the essential information of the templates, ROQ 
techniques provide an efcient representation that enables fast likelihood evaluations. The ROQ has a start-up cost 
associated with the ofine basis building stage, which needs to be performed in advance only once per waveform 
model and parameter space. However, since for typical PE analyses we have to compute more waveforms than what 
is needed to construct the ROQ and a basis can be used to perform multiple PEs, this start-up cost quickly pays of. 

This paper presents several algorithms for ROQ construction, which ofer some key advantages over existing meth-
ods. They are specifcally designed to tackle the challenges of speed in the basis construction and accuracy in GW 
likelihood evaluation while maximizing the ROQ speedup. As we will see, these algorithms have the ability to handle 
complex waveform models in parameter ranges that were intractable with existing procedures. 

The paper is organized as follows. In Sec. V E, we introduce the basic theoretical framework, including a discussion 
on GW inference as well as on the basics of ROQ. In Sec. V F, we describe the ROQ algorithms we introduce in 
depth, going through the construction of the reduced order basis, the choice of empirical interpolation model and how 
to construct a ROQ with a set tolerance for a given parameter space. In Sec. V G we present several bases created 
for two phenomenological waveform models, IMRPhenomPv2 [111] and IMRPhenomXPHM [112], and test their speed and 
accuracy. We further test the ROQ by performing parameter estimation analyses on three confrmed GW events. In 
Sec. V H we fnally conclude. We relegate some of the more convoluted numerical methods used by our algorithms to 
the Appendices. 

The methods introduced in this paper have been implemented in a python code named EigROQ, which is publicly 
available at https://github.com/gmorras/EigROQ. 

E. Theoretical framework 

In this section we will briefy describe the basic theoretical framework to contextualize the rest of the paper. In 
Sec. V E 1 we give a very brief overview on the basics of GW parameter estimation while on Sec. V E 2 we summarize 
the basics of the ROQ rule. For more details, we refer the reader to Refs. [95, 104]. 

https://github.com/gmorras/EigROQ
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1. A primer on gravitational wave inference 

GW inference refers to the modern scientifc discipline taking care among other things, of computing the posterior 
probability distribution of the GW model parameters θ⃗ that best ft the data, using Bayes Theorem 

L(d|θ⃗)π(θ⃗) 
p(θ⃗|d) = . (94)

Z 

In this equation, there are several objects that enter the calculation. The frst, π(θ⃗) refers to the prior employed, 
from the nature of the event, which throughout this paper will always be a CBC to the distributions describing the 
parameters of the binary. Next, the likelihood function L(d|θ⃗) of the data given the parameters θ⃗ and the evidence Z 
representing the probability of the data given the model. 
The likelihood is the most computationally expensive part of estimating the posterior. Given a CBC signal without 

eccentricity, there are 15 diferent parameters to ft that enter the likelihood computation. The typical gravitational-
wave astronomy likelihood is based on the hypothesis that only Gaussian noise is present in the detector and deviations 
from it are the result of a GW signal. In such case, the likelihood can up to a normalization constant be expressed 
as [80] 

1 
log L(d|θ⃗) = − (d − h(θ⃗), d − h(θ⃗))

2 

= − 
1
(d, d) + (d, h(θ⃗)) − 

1
(h(θ⃗), h(θ⃗)), (95)

2 2 

where h(θ⃗) represents, in this specifc case, the CBC waveform with parameters θ⃗ used to ft the data d. The overlap 
integral (·, ·) is defned as 

LX d̃∗(fj )h̃(fj ; ⃗θ)
(d, h(θ⃗)) = 4∆fR , (96) 

j=1 
S(fj ) 

, where Sn(f) is the detector’s noise power spectral density (PSD) and ã(f), denotes the Fourier transform of a(t). 
Since the data of GW detectors are discretely sampled, we will have discrete Fourier transforms having a frequency 
spacing ∆f = 1/T , whith T being the observation time. For a frequency window (fhigh − flow) there will be L = 
int[(fhigh − flow)T ] terms in the sum of Eq. (96).16 Repeatedly computing the overlap integrals in Eq. (95) is the 
bottleneck in gravitational waves inference, and the main part we aim to speed up in this paper. 

2. Basics of Reduced Order Quadratures for Gravitational Wave inference 

The parameters θ⃗ of the GW signal h(θ⃗) we are ftting to the data (Eq. (95)) can be split on intrinsic and extrinsic 
parameters. The extrinsic parameters are common to all transient GW sources and they are the sky location, usually 
measured with right ascension α and declination δ, the polarization ψ, luminosity distance dL and a reference time 

17of arrival of the signal tc. The intrinsic parameters are related to the source of the GW and are generically referred 
⃗to as λ. For a quasi-circular CBC they are comprised of the 2 component masses m1 and m2, 3 components per BH 

spin vector s⃗i, the inclination angle ι and the coalescence phase ϕc. For CBCs with at least one neutron star (NS) 
λ⃗ can also contain a tidal deformability parameter Λ per NS in the binary [113], as well as any other matter efect 
information included in the model. If we break the assumption of quasi-circular orbits, the eccentricity e would also 
have to be taken into account in the intrinsic parameters λ⃗ [114]. 
We assume that the signal h(t, θ⃗) is short enough to ignore the dependence of the detector antenna patterns 

F+,× with time and the time-varying Doppler shift due to motion of the detector with respect to the solar system 
barycenter [115]. In practice, the signal will have to last less than a few hours, to be able to ignore the efects of 
Earth’s rotation. Then, in the frequency domain, the GW signal can be written as: 

16 Here int[x] refers to taking the integer part of x. 
17 We use tc because, for the CBC case, the reference time of arrival for the signal is usually given by the coalescence time at the geocenter. 
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� 
−i2πftch̃(f, θ⃗) = e 

1 
F+(α, δ, ψ)h̃ 

+(f, ⃗λ)
dL � 

+ F×(α, δ, ψ)h̃ ×(f, ⃗λ) 
−i2πftc ˜≡ e h(f, ⃗  (97)Λ) 

The main idea of the ROQ is to represent the GW waveform model h̃(fi; θ⃗) and its modulus squared |h̃(fi; θ⃗)|2 in 
terms of an empirical interpolant each, which is described in more detail in Sec. V F. For now, we assume that they 
can be approximated to arbitrary precision as: 

NLX 
h̃(fi; Λ)⃗ ≈ Bj (fi)˜ Λ)h(Fj ; ⃗  (98a) 

j=1 

NQX 
|h̃(fi; ⃗ h(Fk; ⃗Λ)|2 ≈ Ck(fi)|˜ Λ)|2 , (98b) 

k=1 

NQwhere the main focus of this paper is to fnd the optimal values of the interpolation nodes {Fj }NL and {Fk} andj=1 j=1 
of the “bases” Bj (fi) and Ck(fi) such that we minimize the required number of elements (NL + NQ) entering Eq. (98) 
while respecting a given specifed precision. 
If we input Eq. (97) into Eq. (95) and use the approximation for the GW waveform h̃(fi; θ⃗) and its modulus squared 

|h̃(fi; θ⃗)|2 of Eq. (98), we can represent the likelihood as 

1 1 
log L(d|θ⃗) ≈ − (d, d) + (d, h(θ⃗))ROQ − (h(θ⃗), h(θ⃗))ROQ , (99)

2 2 

where the term − 1 (d, d) ≡ log Lnoise is a constant that depends only on the data and cancels with the evidence Z2 
when we compute the posterior probability distribution using Bayes theorem (Eq. (94)). In Eq. (99) we have also 
implicitly defned the quantities: 

NLX 
(d, h(θ⃗))ROQ ≡ R wj (tc)h̃(Fj ; Λ)⃗ (100a) 

j=1 

NQX 
(h(θ⃗), h(θ⃗))ROQ ≡ h(Fk; ⃗ , (100b)ψk|˜ Λ)|2 

k=1 

which approximates the corresponding overlap integrals appearing in the Likelihood calculation of Eq (95). In 
Eq. (100) we have introduced the linear and quadratic ROQ weights, wj (tc) and ψk, defned as: 

LX d̃∗(fi)Bj (fi) −i2πfitcwj (tc) ≡ 4∆f e (101a)
S(fi)i=1 

LX Ck(fi)
ψk ≡ 4∆f . (101b)

S(fi)i=1 

˜Before starting PE analysis on an event, the weights have to be computed for the observed data strain d(f) and 
the corresponding PSD (S(f)). Since the linear weights are smooth functions of time, they are usually evaluated in a 
discrete set of times Nt and are interpolated for the PE analysis [104]. The spacing between time samples is usually 
of the order of the expected resolution in tc, which for CBC signals can be as small as 0.1ms, and for the typical tc 
prior, which is uniform in ±0.1s around trigger time, this equates to Nt ∼ O(103). Therefore, at the beginning of the 
analysis, we have to perform NtNL + NQ full overlaps, as prescribed in Eq. (101), and the startup cost of the ROQ 
is O((NtNL + NQ)L). 
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Once the weights have been initialized, computing the ROQ likelihood will only require NL + NQ terms to estimate 
the overlap integrals (Eq. (100)), compared to the L terms in the full overlap integrals. We can therefore expect a 
speed-up in the likelihood computation of O(L/(NL + NQ)) when using the ROQ rule. In GW astronomy, typical 
CBC PE analyses require O(108 − 109) likelihood evaluations, which dominate the computational cost required to 
sample the posterior of Eq. (94). In most applications the startup cost of the ROQ is negligible compared to the 
sampling time and the ROQ will greatly speed up the whole analysis. The likelihood speedup is further explored in 
Sec. VG3. 
The biggest overhead when using the ROQ rule is in constructing the ROQ basis (Eq. (98)), since to explore typical 

CBC parameter spaces we need O(106 − 107) random waveforms. With the methods outlined in this paper, we also 
aim to reduce the computational time of the basis generation, allowing us to handle complex waveform models in 
parameter ranges that were intractable with existing procedures. In practice, for the CBC case, we train the ROQ on 
the h+ polarization, varying only the values of the intrinsic parameters λ⃗, defned in Eq. (97). The same ROQ basis 
is valid for both polarizations since they can be jointly decomposed in spherical harmonics of spin weight −2, −2Ylm 
as [96] 

∞ lX X 
h+ − ih× = −2Ylm(ι, ϕc)hlm (102) 

l=2 m=−l 

where the inclination ι and coalescence phase ϕc are also being sampled. 

F. Efcient algorithm for ROQ computation 

1. Reduced Order Basis 

We generate N templates from the waveform model we are trying to approximate: 

{hA(x), A = 1, .., N} , (103) 

where, in GW astronomy, x can be either frequency f or time t. We can defne the matrix of inner products between 
templates as 

MAB = ⟨hA, hB ⟩ . (104) 

In this context, the inner product is usually defned as: Z fhigh 

⟨hA, hB ⟩ = h̃ 
A 
∗ (f)h̃ 

B (f)df (105) 
flow 

although we could also use a reference PSD Sn(f) to give diferent weights at diferent frequencies to the integrand, 
as in Eq. (96). Since MAB is a matrix of inner products, it is hermitian and positive semi-defnite, and therefore can 
always be diagonalized as 

NX 
MAB = EAC λC E ∗ (106)BC , 

C=1 

where λC ≥ 0 are the eigenvalues and EAB is a unitary matrix whose columns are the orthonormal eigenvectors 

NX 
E ∗ (107)CAECB = δAB . 

C=1 

In the waveform space we can then defne the eigenvectors with λA ̸= 0 as: 

NX1 
eA(x) = √ hC (x)ECA . (108)

λA C=1 
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It can be proven that these are an orthonormal set of vectors under ⟨·, ·⟩. That is: * + 
N NX X1 1 ⟨eA, eB ⟩ = √ hC (x)ECA, √ hD(x)EDB 

λA λBC=1 D=1 
N NXX1 

= √ E ∗ 
CAEDB ⟨hC , hD⟩ 

λAλB | {z }
C=1 D=1 

MCD 

N NX X1 
= √ E ∗ MCDEDB (109)

λAλB 
CA 

C=1 D=1| {z } 
λB ECB r NXλB 

= E ∗ (110)CAECB = δAB . 
λA 

C=1| {z } 
δAB 

We can also prove that the inner product between one of the waveforms used to compute MAB and a given 
eigenvector will be given by: * + 

NX1 ⟨hA, eB ⟩ = hA, √ hC (x)ECB 
λB C=1 

NX1 
= √ ⟨hA, hC ⟩ ECD 

λB | {z }
C=1 

MAC 

NX p1 
= √ MAC ECD = λB EAB . (111)

λB C=1| {z } 
λB EAB 

We can defne our reduced order basis (ROB) as a subset of n < N elements of {eA}NA=1, which we will learn 
how to optimally select later. To represent the waveform hA in terms of this ROB {ea}an 

=1, we project hA using the 
orthonormality property of the ROB: 

n nX Xp
hROB(x) = ⟨eb, hA⟩eb(x) = λbE ∗ (112)A Abeb(x) . 

b=1 b=1 

We can compute the representation error of projecting hA as: 

= ∥hA − hROB∥2 = ⟨hA − hROB, hA − hROB σROB,A A A A ⟩ * + 
n nX X 

= hA − ⟨eb, hA⟩eb, hA − ⟨ec, hA⟩ec 
b=1 c=1 

n nX X 
= ⟨hA, hA⟩ − |⟨eb, hA⟩|2 = ⟨hA, hA⟩ − λb|EAb|2 . (113) 

b=1 b=1 

Ideally, to construct a ROB we would take a very large number of templates {hA}NA=1, that capture most of the 
variability of the waveform in the parameter space of interest, compute the matrix MAB as in Eq. (104), diagonalize it 
and, to construct our ROB, pick the minimum number of eigenvectors {ea}an 

=1 such that the ROB error of Eq. (113) 
is smaller than a specifed tolerance. Unfortunately, this cannot be done in practice, since the number of random 
templates needed to fully span the typical parameter spaces for GW applications is of order O(107). Using the fact 
that MAB is hermitian, we need N(N − 1)/2 complex numbers to store the of-diagonal elements, and N real numbers 
for the diagonal elements. Assuming that each real number is stored with nB Bytes, the memory required to store 
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MAB is
18: 

� �2 � �N nB
Memory(MAB ) = N2 nB = 80 GB . (114)

105 8B 

Therefore, in current computers, examining more than a few tens of thousands of waveforms at a time is unfeasible, 
and we will not be able to analyze the entire parameter space at once. Motivated by this issue, we have developed a 
multi-step approach summarised in Algorithm 1. We construct a frst ROB for a set tolerance with random waveforms. 
Then, we calculate its orthogonal space and obtain the corresponding ROB which we add to the original ROB. We 
repeat this process iteratively, reducing the tolerance at every step. The equivalent to the matrix MAB of Eq. (104) 
for the orthogonal space to the basis {ea}an 

=1 is: 

MROB hA − hROB, hB − hROB = AB A B* + 
n nX X 

= hA − ⟨ec, hA⟩ec, hB − ⟨ed, hB ⟩ed 
c=1 d=1 

nX 
= ⟨hA, hB ⟩ − ⟨hA, ec⟩⟨ec, hB ⟩ . (115) 

c=1 

Algorithm 1 Construction of reduced order basis 
1: Input: Maximum number of waveforms selected N , tolerances of each step [σ0, . . . , σs], maximum number of waveforms 

computed per step [Nlim,1, . . . , Nlim,s] 

2: Generate N waveforms {hA}N 
A=1 

3: Compute the matrix MAB = ⟨hA, hB ⟩ 
4: Diagonalize MAB to obtain eigenvalues λA and eigenvectors EAB 
5: Input {σ0, {hA}NA=1, λA, EAB } in Algorithm 2 to obtain inital ROQ basis {ei}n0 

i=1 

6: for j = 1 → s do 
7: repeat 

Nlim,j
8: Generate Nlim,j waveforms {hA} and compute their ROB error σROB,AA=1 
9: Select the N waveforms {hA}N with largest σROB A=1 

10: Save the minimum value of σROB for the selected waveforms: σROB,min 
MROB Pnj−1

11: = ⟨hA, hB ⟩ − ⟨hA, ec⟩⟨ec, hB ⟩AB c=1 
12: Diagonalize MROB and obtain eigenvalues λA and eigenvectors EABAB 

}N13: Input {σj , {hA − hROB 
A=1, λA, EAB } in Algorithm 2 to obtain next ROQ basis elements {ei}

nj 
A i=nj−1+1 

14: until σROB,min < σs 
15: end for 

16: Output: ROB {ei}n 
i=1 

We observe that the same formulas and reasoning of Eqs. (104-114) apply to the space orthogonal to the ROB if 
we make the identifcation hA → hA − hROB . To fnd the minimum number of elements that have to be added to theA 
ROB to reduce the error below the set tolerance σ, we use Algorithm 2, where we iteratively subtract the contribution 
of the eigenvalue that produces the largest drop in any σROB,A, according to Eq. (113), until σROB,A < σ for all A. 

1GB = 109Bytes = 8 · 109bits 18 
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Algorithm 2 Selection of Eigenvectors 
1: Input: Tolerance σ, waveforms {hA}NA=1, eigenvalues λA and eigenvectors EAB of the matrix MAB = ⟨hA, hB ⟩ 

2: Initialize σA: {σA = ⟨hA, hA⟩}N 
A=1 

3: Compute the maximum contribution of each eigenvector 
{δσA,max = λAmax|EBA|2}N 

A=1 
B 

4: Find order of δσA,max: {Bn}Nn=1 = argsort(δσB,max) 
5: n = N 
6: repeat 
7: Compute current error {σA ← σA − λBn |EABn |2}N 

A=1 
8: n ← n − 1 
9: until σA < σ ∀ A = 1, . . . , N 

10: Output: Eigenvectors in waveform domain� �N 
√ 1 PN ek(x) = A=1 hA(x)EABkλBk k=n 

The process of diagonalizing the matrix MAB of Eq. (104) and fnding the eigenvalues in the waveform domain 
using Eq. (108) is equivalent to performing Singular Value Decomposition (SVD) on a set of waveforms {hA}N 

A=1, 
which has been previously used in the literature for the Reduced Order Modeling (ROM) of GW waveforms (See 
Refs. [116, 117]). However, we follow the procedure outlined in this paper since it has a few numerical advantages. 
Namely, if we have waveforms with a number of sampling points M , storing them will require 2MNnB bytes, which 
in the usual case that M ≫ N , will be much larger than the memory needed to store MAB (Eq. (114)) and we will 
be even more limited in the number of waveforms we can analyze at once. Moreover, if we are studying the ROB 
of the space orthogonal to {ea}na=1, our algorithm is equivalent to computing the SVD of the orthogonal part of the 
waveforms {hA − hROB}N Finding this orthogonal part is, in general, a computationally expensive process thatA A=1. 
can be avoided if MROB is obtained using Eq. (115). Since we are going to select nnew ≪ N eigenvectors of MROB ,AB AB 
we can just compute the orthogonal projection of their corresponding eigenvectors in the waveform domain at the end 
of the algorithm. 

2. Empirical Interpolation Model 

Writing a given template in the form of Eq. (112) will not save computational cost, since one needs the full waveform 
hA(x) to compute the inner product ⟨hA, eB ⟩. To avoid this, we approximate the inner products ⟨h(λ⃗), ei⟩ by some 
coefcients ci(λ⃗) that will in general be functions of the parameters of the waveform λ⃗ (e.g. for a CBC this would be 
masses, spins, inclination and coalescence phase). The approximate waveform can then be written as: 

nX 
In[h](x, ⃗λ) = ci(λ⃗)ei(x) . (116) 

i=1 

We force the approximation to be exact at some interpolation nodes {Xj }m 
j=1 

nX 
⃗ ⃗In[h](Xj , λ) = h(Xj , λ) = ci(λ⃗)ei(Xj ) . (117) 

i=1 

This is what we defne as an interpolant. If we identify the matrix 

Aij = ej (Xi) , (118) 

and take the number of interpolation nodes m to be equal to the number of basis elements n, then Â is a square matrix 
ˆwhich we construct by choosing the interpolation nodes {Xj }n Assuming that we construct A to be invertible, we j=1. 

can solve Eq. (117) for ci(λ⃗) in the following way: 

nX 
⃗ci(λ⃗) = (Â−1)ij h(Xj , λ) . (119) 

j=1 
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We therefore observe that the value of ci(λ⃗) will just be a linear combination of the values of the waveform at the 
diferent interpolation nodes {Xj }n In practice, the functions h(x) and the ROB elements {ei(x)}ni=1 are discretelyj=1. 
sampled in a set of points {xi}Mi=1, and we can defne the matrix: 

V̂ ≡ [e⃗1, . . . , ⃗en] ∈ CM×n , (120) 

where e⃗A = eA(x⃗) ∈ CM . From Eq. (118), we observe that the matrix Â can be written in terms of V̂ as: 

ˆ P̂ †V̂ ∈ Cn×nA = , (121) 

where the matrix P̂  ∈ CM×n is a projector that selects the rows of V̂ corresponding to the interpolation nodes. That 
is: 

Pαj = δαβj (122) 

with {βj }nj=1 the indices of the interpolation nodes (i.e. xβj = Xj ). In terms of these matrices, the empirical 
interpolation model (EIM) can be written as: 

In [⃗h] = V̂ (P̂ †V̂ )−1P̂ †h⃗ . (123) 

which is an interpolant because P̂ †In [⃗h] = P̂ †h⃗. In terms of the matrix V̂ , the ROB representation of h⃗ is given by 

h⃗ROB V̂ V̂ †⃗= h . (124) 

Note that even though the basis elements e⃗A are orthonormal, and therefore V̂ †V̂ = 1n×n, since the matrices are 
not square, we have that in general V̂ V̂ † ̸= 1M×M . From Eqs. (123, 124) we can explicitly see that the EIM acting 
on a waveform in the ROB space will have no efect. That is: 

hROB] = ˆ P †V̂ )−1P̂ †( ˆ V †⃗ ˆ P †V̂ )−1(P̂ † ˆ V †⃗In [⃗ V ( ˆ V ˆ h) = V ( ˆ V ) ˆ h 

V̂ V̂ †⃗ h⃗ROB = h = (125) 

This can be used to relate the representation error of the EIM with the representation error of the ROB. Computing 
the modulus of the diference between the exact waveform and its EIM representation we obtain: 

2 h i 2 
σEIM(⃗h) = h⃗ − In [⃗h] = 1 − V̂ (P̂ †V̂ )−1P̂ † h⃗ h i 2 

hROB)= 1 − V̂ (P̂ †V̂ )−1P̂ † (⃗h − ⃗  

2 
hROB∥2≤ 1 − V̂ (P̂ †V̂ )−1P̂ † ∥h⃗ − ⃗ , (126) 

2 | {z } 
σROB(h⃗) 

where ∥ · ∥2 denotes the matrix 2-norm, which is given by: q q∥ ˆ 
∥M̂ ∥2 = max 

Mx⃗∥ 
= λmax(M̂ †M̂) = λmax(M̂ M̂ †) , (127) 

x̸⃗ x∥=0 ∥⃗ 

where ∥x⃗∥ is the usual vector norm and λmax(M̂ †M̂ ) denotes the maximum eigenvalue of M̂ †M̂ . Since V̂ (P̂ †V̂ )−1P̂ † is 
idempotent, that is (V̂ (P̂ †V̂ )−1P̂ †)2 = V̂ (P̂ †V̂ )−1P̂ † , and it is diferent from 0 or the identity 1, it follows that [118]: 

1 − V̂ (P̂ †V̂ )−1P̂ † = V̂ (P̂ †V̂ )−1P̂ † . (128) 
2 2 

Furthermore, since V̂ †V̂ = 1n×n and P̂ †P̂ = 1n×n, from the defnition in Eq. (127) of the matrix 2-norm, we have 
that 

V̂ (P̂ †V̂ )−1P̂ † = (P̂ †V̂ )−1 . (129) 
2 2 
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Substituting in Eq. (126) 

σEIM(⃗h) ≤∥(P̂ †V̂ )−1∥22σROB(⃗h) = ∥Â−1∥22σROB(⃗h) . (130) 

Using the defnition of the matrix 2-norm of Eq. (127), we have that 

� � � � 
∥Â−1∥2 (Â−1)†Â−1 (Â†)−1Â−1 

2 = λmax = λmax � � 
= λmax (ÂÂ†)−1 =

1 
, (131) 

AÂ†)λmin( ˆ 

and we can rewrite Eq. (130) as 

σROB(⃗h)
σEIM(⃗h) ≤ . (132) 

AÂ†)λmin( ˆ 

Therefore, given a maximum error of the ROB, the error of the EIM model is bounded from above by Eq. (132). 
To make this bound as stringent as possible, we could maximize the smallest eigenvalue of ÂÂ† . Using the defnition 

ˆof A from Eq. (121) we can write 

nX 
∗ (ÂÂ†)ij = ek(Xi)ek(Xj ) = ⟨v⃗j , ⃗vi⟩ , (133) 

k=1 

where we have defned the vectors {(v⃗i)k i=1 as the rows of ˆ= ek(Xi)|k = 1, . . . , n}M V corresponding to the interpolation 
nodes Xi. We then observe that ÂÂ† is the same as the scalar product between the corresponding selected rows of V̂ . 

If the vectors v⃗i were orthonormal, we would obtain that (ÂÂ†)ij = δij , and therefore λmin(ÂÂ
†) = 1 and the EIM 

ˆwould not introduce additional error over the ROB. Selecting n orthonormal rows of V is in general not possible, 
however, we can try to minimize the EIM error by picking rows which are as close to orthogonal as possible using 
algorithm 3. 

Algorithm 3 Selection of interpolation nodes 
1: Input: Evaluated basis {e⃗i}n 

i=1 

2: Defne row vectors: {v⃗α = {ei(xα)}ni=1}Mα=1 
3: Initialize ortonormal base of columns: OB = {w⃗i}0 

i=1 
4: Initialize the norm of the orthogonal part of v⃗α to OB: {Nα = |v⃗α|2}M 

α=1 

5: for j = 1 → n do 
6: Choose vector with largest Nα: βj = argmax(Nα) 
7: Append v⃗βj to OB using Gram-Schmidt 
8: Update Nα: {Nα ← Nα − |⟨w⃗j , ⃗vα⟩|}Mα=1 
9: end for 

10: Output: EIM interpolation nodes {βi}n 
i=1 

We observe that Algorithm 3 is equivalent to picking the EIM nodes that maximize the determinant of ÂÂ† , since 

nY 
det(ÂÂ†) = det(Â) det(Â†) = | det(Â)|2 = |⟨w⃗j , ⃗vβj ⟩|2 . (134) 

j=1 

Algorithm 3 does not directly maximize the minimum eigenvalue of ÂÂ† . However, based on the expression for the 
ˆdeterminant of AÂ† 

nY 
det(ÂÂ†) = λi , (135) 

j=1 
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to maximize it, the values of the individual eigenvalues have to be large, and thus, the output of the algorithm is near 
to the minimum of ∥Â−1∥22 . When compared to the greedy algorithm typically used in the literature (e.g. Refs. [102– 
105]) to compute the interpolation nodes, we observe a superior performance of algorithm 3, as we will later discuss 
in relation to fgure 16. 
If we wanted to create an EIM with a tolerance smaller than σ, from Eq. (132) we could in principle just construct 

a ROB with a tolerance better than λmin(ÂÂ
†)σ. However, in real settings, we observe that Eq. (132) is a loose upper 

bound on the EIM error, and we can obtain an EIM with a tolerance better than σ using fewer basis elements. 
Instead of bounding σEIM(⃗h) using the inequality of Eq. (126), we can refne this expression by doing: h i 2 

hROB)σEIM(⃗h) = 1 − V̂ (P̂ †V̂ )−1P̂ † (⃗h − ⃗  

2 2 
⃗ hROB ˆ P †V̂ )−1P̂ †(⃗ hROB)= h − ⃗  + V ( ˆ h − ⃗  

2 
P †V̂ )−1P̂ †(⃗ hROB)= σROB(⃗h) + ( ˆ h − ⃗ , (136) 

V̂ † ˆwhere we have used that V = 1 and that the EIM projects the waveform onto the ROB, and therefore 
P †V̂ )−1P̂ †(⃗ hROB), ⃗ hROB⟩⟨V̂ ( ˆ h − ⃗ h − ⃗ = 0. From Eq. (136) we have that the EIM error is always larger than or 

ˆ hROB) toequal to the ROB error. We also observe that for the bound of Eq. (132) to be saturated we need P †(⃗h − ⃗  
Â† ˆbe the eigenvector of A with the maximum eigenvalue, which is extremely unlikely in general. To explore this we 

hROB ≡ δ⃗assume that h⃗ − ⃗ h is a random variable, such that: 

E [δh ∗ 
αδhβ ] = cαδαβ , (137) 

where E [ · ] denotes the expected value (i.e. the average over random waveform realizations). Using Eq. (137), we 
compute the expected value of σEIM as 

MX 
E [σEIM] = E [δh ∗ 

αδhα] 
α=1 

n n nXXX � � 
+ (A−1)lk 

∗ (A−1)lq E δh ∗ δhβqβk 

k=1 q=1 l=1 

M n nX XX 
= cα + cβk |(A−1)lk|2 

α=1 k=1 l=1 
MX 2

Ẫ−1 = cα + , (138) 
F 

α=1 

ˆ̃where A is the matrix 

1 1
Ãkl = √ Akl = √ el(xβk ) . (139) 

cβk cβk 

Such that (Ã−1)lk = √ 
cβk (A

−1)lk and ∥ · ∥F is the Frobenius norm, defned as: 

v u rn n n o t ˆ uXX 
||M̂ ||F = |Mkl|2 = Tr M̂ †M . (140) 

k=1 l=1 

Therefore, to optimize the EIM such that the expected value of σEIM is minimum, we want to minimize the value 
Ẫ−1of the Frobenius norm of . Using the properties of the trace we can rewrite it as: 






 







 







 






 




52 

Ẫ−1 = 

vuut 1 
(141) 

n 

F Ã̂† ˆ̃
k=1 λk( A) 

ˆ̃To minimize the Frobenius norm of A we can start from the EIM given by Algorithm. 3 and allow the interpolation 

X 

Ẫ−1nodes to “walk” in the direction of diminishing , as outlined in Algorithm 4. 
F 

Algorithm 4 Selection of interpolation nodes to minimize target function of the EIM F (·) 

1: Input: Maximum number of rounds Nrounds, initial interpolation nodes β⃗, function to be minimized F (β⃗). 

2: for j = 1 → Nrounds do 
3: for k = 1 → n do 
4: for δβ in [−1, 1] do 
5: Copy interpolation nodes: β⃗′ = β⃗ 
6: repeat 
7: Test new EIM: βk 

′ ← βk 
′ + δβ 

8: if F (β⃗′ ) ≤ F (β⃗) then 
9: Update reference EIM: β⃗ ← β⃗′ 

10: end if 
11: until F (β⃗′ ) > F (β⃗) 
12: end for 
13: end for 
14: if {βi}n didn’t change this iteration theni=1 
15: break for loop 
16: end if 
17: end for 

18: Output: EIM interpolation nodes {βi}n 
i=1 

The time complexity of Algorithm. 4 is O(NroundsnNF), where NF denotes the number of operations required to 
compute F (β⃗). Given that our target function is F (β⃗) = Ẫ−1 , one could naively expect that, based on the 

F 
size n × n of the matrix Â, directly inverting it would take O(n3) operations, and therefore the time complexity of 
Algorithm 4 would be O(Nroundsn

4). This can be computationally very expensive even if n ≪ M . However, updating 
the value of ∥Â−1∥F when only one row of the matrix changes, can be done in O(n2) by following the procedure 
of Appendix V I, and we can implement Algorithm 4 with target function F (β⃗) = Ã̂−1 in a way that takes 

F 
O(Nroundsn

3) operations. 
Even though Algorithm 4 is considerably better than the greedy algorithms used in the literature, as we will later 

discuss in relation to fgure 16, it can still be improved by training the EIM directly on the waveform data. For this 
purpose, we assume that we have an initial ROB {e⃗i}n with a corresponding EIM that can be computed with e.g.i=1 
algorithm 4. We want to update this EIM to better ft a training set of waveforms {hA}N We frst generate aA=1. 
ROB for the part of the training set orthogonal to the initial ROB (⃗h − ⃗hROB), which can be done by diagonalizing 
the matrix of Eq. (115). Analogously to Eq. (112) we can write: 

XN 

A 
B=1 

p
h⃗A − ⃗hROB λB E ∗ 

ABu⃗B , (142)= 

where λb and EAB are the eigenvalues and eigenvectors of the matrix MROB defned in Eq. (115) and u⃗B represent AB 
the eigenvectors in the waveform domain. Substituting Eq. (142) in the expression for σEIM derived in Eq. (136), we 
obtain 
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2 
σEIM,A = h⃗A − In [⃗hA] 

2 2N NXp Xp 
= λB E ∗ uB + λB E ∗ P †V̂ )−1P̂ †u⃗BAB⃗ AB (

ˆ 
B=1 B=1 
N N NX XXp 

= + λB λC E ∗ wC , w⃗B ⟩ , (143) 
B=1 B=1 C=1 

λB |EAB |2 
AB EAC ⟨ ⃗  

where we have defned 

w⃗B = (P̂ †V̂ )−1P̂ †u⃗B (144) 

From Eq. (143), we can compute the sum of all the EIM errors of the waveforms in the training set. That is: 

N NX X 
σtot = σEIM,A = λB (1 + ⟨w⃗B , w⃗B ⟩)EIM 

A=1 B=1 
N � �X 2 

= λB 1 + (P̂ †V̂ )−1P̂ †u⃗B 
B=1 � �nλX 2 

≈ λB 1 + (P̂ †V̂ )−1P̂ †u⃗B (145) 
B=1 

Where we have used that EAB is unitary and that the matrix MROB will usually have a small number of largeAB 
eigenvalues, with the rest of the eigenvalues close to 0. Therefore, we can truncate the sum to be made only over the 
largest nλ eigenvalues and obtain a very good approximation of σtot 

EIM. 

Algorithm 5 Selection of interpolation nodes trained on a set of waveforms {hA}N 
A=1 

1: Input: Evaluated basis {e⃗i}in 
=1, maximum number of rounds Nrounds, nλ eigenvalues λB and eigenvectors in waveform 

= ⟨⃗ hROB ⃗ hROB domain u⃗B of the matrix MROB hA − ⃗  , hB − ⃗  ⟩.AB A B P 
2: Compute weights: cα = nλ λB |uB,α|2 

B=1 
3: Compute weighted basis:�n �n on oM n 

1{wi(xα)}M = √ ei(xα)α=1 cαi=1 α=1 i=1 
4: Get initial EIM β⃗ inputting {w⃗i}n in Algorithm 3 

˜ ˜ 
i=1 

5: Update β⃗ using Algorithm. 4 with maximum rounds Nrounds and target function F (β⃗) = ∥Â−1∥F , where Aij = wj (xβi ) 
β) = σtot6: Update β⃗ again with Algorithm. 4 with maximum rounds Nrounds and target function F (⃗ 

EIM, where � �P P P 2 
σtot nλ n n A−1 = λB 1 + ( ˆ )ij uB,βjEIM B=1 i=1 j=1 

and Aij = ej (xβi ) 

7: Output: EIM interpolation nodes {βi}n 
i=1 

To minimize the value of σtot 
EIM, we follow Algorithm 5, in which we start with an EIM and perform walks around 

the initial solution in the direction of diminishing σtot For the initial solution, we will use the EIM generated by EIM. 
Ẫ−1Algorithm 4 with target function F (β⃗) = . Since we want to ft {hA}NA=1, following Eq. (137), the weights cα 

F 
of Eq. (139) are 



54 

NX1 
cα = E [δh ∗ 

αδhα] = |hA,α − hROB 
A,α |2 

N 
A=1 

N N NXXXp 
∗ =

1 
λB λC E ∗ 

N AB EAC uC,αuB,α 
A=1 B=1 C=1 
N nλX X1 1 

= λB |uB,α|2 ≈ λB |uB,α|2 , (146)
N N 

B=1 B=1 

where we have once again used that EAB is unitary and that the sum can be approximated by taking only the 
largest nλ eigenvalues. In algorithm 4, using σtot as target function, the value of σtot can be efciently updated EIM EIM 
with O(nnλ) operations, as described in appendix V I. Therefore, the algorithm 4 to walk around an initial solution 

2minimizing σtot will require O(Nroundsn nλ) operations. EIM 

In Figure 16 we show for the 256s IMRPhenomPv2 ROB listed in Table III a comparison between algorithms 3 4 5 
proposed in this paper, the usual greedy algorithm used in the literature and the lower bound imposed by the ROB 
error. We show only the analysis for the 256s IMRPhenomPv2 basis of Table III, but we fnd similar results for all 
the other cases in Tables III IV. In the upper panel of Figure 16 we show the fraction of points with an EIM error 
larger than a tolerance σ as a function of σ. Comparing the methods we observe that the Training one (algorithm 5) 
outperforms the others, which is expected since it has been trained on the waveform data to reduce the EIM error. 
The worst performer is the Greedy method since it induces the largest EIM error in all cases tested. We also observe 
that the Frobenius method, which uses algorithm 4 to minimize ∥Â−1∥F induces the smallest EIM error among the 
algorithms that do not train on waveforms, which could make it more robust against overftting. 

In the lower panel of Figure 16 we show the ratio between the EIM and the ROB error for the same methods and 
test samples as in the upper panel. We observe that this ratio is in the range 1 ≤ σEIM/σROB 2, as was ≤ ∥Â−1∥2 

derived in Eqs. (130,136). In general, we observe that the EIM errors obtained with the diferent methods are always 
considerably below the upper limit imposed by Eq. (130) (σEIM/σROB ≪ ∥Â−1∥22). This is expected since to saturate 
this upper bound we need P̂ †(⃗h − h⃗ROB) to be the eigenvector of Â†Â with the maximum eigenvalue, which is hard to 
get in practice. We also observe that the Training method is almost optimal since most samples are close to the lower 
bound of σEIM/σROB ≥ 1. In contrast, most of the samples for the methods that do not involve training on waveform 
data, concentrate at values of σEIM/σROB ⪆ 103 . This is probably because when we train on the waveform data, we 
are selecting an EIM that avoids coincidences between P̂ †(⃗h − h⃗ROB) and eigenvectors of Â†Â with large eigenvalues. 

3. Construction of the ROQ 

In this section, we describe how we use the methods of sections V F 1 and V F 2 to create, in an efcient way, an 
EIM that fts a waveform model over a parameter space with a tolerance better than σ. 

We obtain an initial ROB {e⃗i}n using Algorithm 1 and construct its corresponding EIM with Algorithm 5, wherei=1 
the set of training waveforms is the {hA}NA=1, selected in the last step of Algorithm 1. We add elements to this initial 
ROB following a similar philosophy to that of Algorithm 1, in which we generate Nlim random waveforms, compute 
their EIM error σEIM, and select the N waveforms with largest EIM error for further study. Again, we want N to be 
as large as allowed by the memory (see Eq. (114)). We then compute the matrix MROB for the N selected waveforms, AB 
fnd its Eigenvalues λB and compute the nλ < N most relevant eigenvectors in the waveform domain {u⃗B }B

nλ 
=1, where 

the value of nλ is again limited by the memory of the system. We iteratively select the eigenvector with the largest 
contribution to the EIM error, add it to the ROB and construct a new EIM with Algorithm 5 until all N waveforms 
are ftted with a tolerance better than the required one. The process is summarized in Algorithm. 6. 
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FIG. 16: Comparison of methods to compute the EIM for the 256s IMRPhenomPv2 ROB of Table III. We test the 
diferent EIMs on the same 106 samples randomly drawn from the parameter space over which the ROB is generated 
(see Table III). The Greedy method is the one outlined in [103], the Orthogonal method stands for algorithm 3, the 
Frobenius method corresponds to using algorithm 4 to minimize ∥Â−1∥F and the Training method is the one used 
to construct the EIM of Table III with algorithm 5. Upper panel: Fraction of samples with an EIM error larger than 
a tolerance σ as a function of σ. For comparison purposes, we also show the distribution of the ROB error. Lower 
panel: Histogram of the ratio between the EIM error and the ROB error for the same methods and test samples as 
in the upper panel. The vertical dashed lines represent an upper bound, defned by the value of ∥Â−1∥22 for each 

method. 
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Algorithm 6 Enrich ROB to construct an EIM under tolerance 
1: Input: Initial ROB {e⃗i}n and EIM {βi}in 

=1, maximum number of waveforms selected N , tolerance σ, maximum number i=1 
of waveforms computed Nlim, maximum number of eigenvectors used nλ 

2: repeat 
Nlim,j

3: Generate Nlim,j waveforms {hA} and compute their EIM error σEIM,AA=1 
4: Select the N waveforms {hA}N with largest σEIMA=1 
5: Save the minimum value of σEIM for the selected waveforms: σEIM,min 

MROB Pnj−1
6: = ⟨hA, hB ⟩ − ⟨hA, ec⟩⟨ec, hB ⟩AB c=1 
7: Diagonalize MROB and obtain eigenvalues λA and eigenvectors EABAB 
8: Compute the nλ normalized eigenvectors in waveform domain with largest δσA,max = λAmax|EAB |2: {u⃗A}nA 

λ 
=1

B 
9: repeat 

10: Compute the maximum contribution of each eigenvector to σEIM,A: 
{δσEIM = λA(1 + ∥( ˆ V )−1P̂ †u⃗B ∥2)maxP † ˆ 

A,max |EBA|2}nA 
λ 
=1

B 
(δσEIM11: Find largest δσEIM = argmax )A,max: Asel A,max 

A 
12: Add the corresponding eigenvector to the ROB: {e⃗i}ni=1 ← {e⃗i}ni=1 ∪ {⃗ }uAsel 
13: Remove the selected eigenvector from the eigenvector list: {u⃗A}nλ ← {u⃗A}nλ \ {⃗ }A=1 A=1 uAsel 
14: Input {e⃗i}ni=1, Nrounds, {u⃗A}nλ and their corresponding eigenvalues {λA}nλ into Algorithm. 5 to obtain a newA=1 A=1 

EIM {βi}n 
i=1. 

15: Find new error of selected waveforms {σnew 
EIM,A}NA=1 

σnew16: until max EIM,A ≤ σ 
A 

17: until σEIM,min < σ 

18: Output: ROB {ei}n 
i=1 

G. Code Validation 

In this section, we aim to quantify and assess the validity of the ROQ basis obtained using the algorithm described 
in V F. For that matter, we would like to evaluate the accuracy of the diferent basis in reconstructing the original 
waveform as well as the speed up gained. First, in Sec. V G 1 we describe the bases to be tested and compare them 
with examples found in the literature, in Sec. V G 2 we show the results of two statistical tests for the various bases, 
in Sec. V G 3 we comment on the theoretical and empirical speedups using the ROQ, and fnally in Sec. V G 4 we 
compare the results of doing a parameter estimation analysis with the standard and the ROQ likelihoods. 

1. Basis Generation and comparison with other ROQ methods 

In this section, we describe how we generate the bases that will be used for testing and parameter estimation. We 
construct bases for both IMRPhenomPv2 [111] and IMRPhenomXPHM [112]. Both waveform models take into account the 
efects of spin precession and IMRPhenomXPHM also includes higher order mode GW emission. 
For IMRPhenomPv2 we generate the bases listed in Table III, covering a chirp mass (M) range between 0.95M⊙ 

and 45M⊙. Given that integration is performed from a low-frequency cutof of 20Hz, we fnd bases duration ranging 
from 256s to 4s. For IMRPhenomXPHM we generate the bases listed in Table III, with chirp masses ranging between 
2.18M⊙ and 110M⊙ and corresponding durations between 64s and 4s from 20Hz. We show in Fig 17 an example of 
an IMRPhenomXPHM waveform and its corresponding empirical interpolant. More specifcally, the upper panel shows 
the real part of the plus polarization Re(h̃ 

+) and the lower panel, its square |h̃ 
+|2 in the frequency domain. The 

corresponding interpolation nodes and empirical interpolant are shown to visually confrm the goodness of the ft to 
the original waveform. The parameters of the template are shown in the caption of Figure 17 and are selected so that 
the quadratic EIM error is equal to the median quadratic EIM error over the testing set of waveforms of the basis 
of Table IV covering M ∈ [10, 15]M⊙. We can observe how both the linear and quadratic parts have a complicated 
dependence on frequency, coming from the interference of the higher order modes with the main (2,2) mode. This 
is the principal reason for the larger number of linear and specially quadratic elements when comparing the basis of 
IMRPhenomPv2 and IMRPhenomXPHM. 
The 4s and 8s basis of IMRPhenomPv2 and IMRPhenomXPHM are directly comparable with those published in Ref [105] 

computed using PyROQ, since they cover the exact same parameter space and frequency range. We observe that the 
number of basis elements in PyROQ and EigROQ is generally similar and we expect it to be smaller than that of a 
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FIG. 17: Example of an IMRPhenomXPHM template and its empirical interpolant. In the upper panel, we show the 
real part of the plus polarization of the template Re(h̃ 

+) as a function of the frequency and in the lower panel we 
depict its square |h̃ 

+|2 . We superimpose in each panel the corresponding interpolation nodes and empirical 
interpolants as defned in (117). The template shown has M = 13.6M⊙, q = 2.61, χef = −0.011 [119, 120], 

χp = 0.208 [121] and inclination angle ι = 61.6◦ . Using the ROQ basis of Table IV covering M ∈ [10, 15]M⊙, we 
have linear and quadratic EIM errors of σEIM = 1.26 · 10−9 and σEIM = 6.06 · 10−8 respectively. linear linear 

comparable basis constructed with GreedyCPP. However, the number of test points over the set tolerance is about 
19an order of magnitude smaller in our bases than in PyROQ’s ones. We attribute this improvement to the way we 

approach the minimization in the error of the Empirical Interpolant. In the PyROQ algorithm, it is implicitly assumed 
that once a template is below the tolerance it will remain like this throughout the computation, which would be true 
if the EIM error were monotonically decreasing. This, however, is not true in general as adding new templates to the 
base, can deteriorate the ft, and in particular it can bring some of the waveforms which were under the tolerance, 
back over tolerance. The fact that this is happening can be explicitly seen in Ref [105] because the maximum EIM 
error in the training set is over the tolerance. To alleviate this problem, we simultaneously use the N waveforms with 
initially more EIM error, even if some of them are already below tolerance. 
We have also extended the parameter space of the ROQ bases with respect to those computed by PyROQ in Ref [105], 

with durations up to 256s for IMRPhenomPv2 and 64s for IMRPhenomXPHM. Doing this in PyROQ is computationally chal-
lenging since fnding the template with the largest associated EIM error requires the recomputation of the waveforms 
in the training set many times. With our methods, this is no longer the case as we only need to compute any given 

Note that while in Ref [105] the bases use 106 points for testing, we use 107 points. 19 
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Freq. range (Hz) 
Min Max ∆f(Hz) 

Mc(M⊙) 
Min Max 

Basis size 
Linear Quadratic 

Test set σEI,max 

Linear Quadratic 
Test set σEI > 10−5 

Linear Quadratic 
Likelihood Speedup 

Theoretical Empirical 

20 1024 1/4 12.3 45 242 194 1.00×10−3 1.09×10−4 31 19 3.7+1.09.2 −0.6 

20 1024 1/8 7.93 14.76 369 294 4.91×10−4 1.46×10−4 55 31 7.1+0.712.1 −0.1 

20 2048 1/16 5.14 9.52 493 389 6.85×10−4 5.72×10−4 110 59 36.8 22.3+0.6 
−1.4 

20 2048 1/32 3.35 6.17 631 438 6.88×10−4 5.83×10−4 98 75 60.7 38.1+0.5 
−0.4 

20 2048 1/64 2.18 4.02 848 407 1.51×10−3 5.71×10−4 103 71 103.4 65.7+1.6 
−0.9 

20 4096 1/128 1.42 2.60 1315 306 6.4×10−4 2.46×10−3 83 50 321.9 232.3+8.0 
−7.0 

20 4096 1/256 0.95 1.72 2196 300 1.43×10−4 6.32×10−5 69 28 418.1 350.7+49.8 
−17.8 

TABLE III: Summary of the reduced bases constructed with EigROQ for the IMRPhenomPv2 waveform model. We 
limit the mass ratio 1 ≤ q ≤ 8, the magnitudes of the two spins −0.8 ≤ χi ≤ 0.8 for i ∈ [1, 2], and the full range for 
the spin angles (0, 0) ≤ (θJ , α0) ≤ (π, 2π). For the frst base (∆f = 0.25Hz) we extend the coverage in spins to 

−0.88 ≤ χi ≤ 0.88. For the creation of all the basis, we run EigROQ with the same confguration. In algorithm 1 we 
set the maximum number of waveform selected N = 20000 , tolerances of each step σi = [10−1 , 10−3 , 10−5] and 
maximum number of waveforms computed per step Nlim,i = [106 , 3.16 · 106], and in algorithm 6 we set N = 107 , 

σ = 10−5 , Nlim = 107 and the maximum number of eigenvectors used nλ = 5000, except for the 256s basis where we 
set nλ = 4000 due to memory limitations. The basis are tested on 107 randomly generated waveforms in the same 
parameter space as the training was done on. The “Theoretical” speedup has been computed with Eq. (149) while 
the “Empirical” speedup is the median and 90% credible interval of the corresponding points in the upper panel of 

Figure 20. 

waveform once. This allows more complex case studies to be feasible. 

2. Statistical tests 

In this section, we perform 2 diferent statistical tests to check the faithfulness of the ROQ basis in gravitational 
waves inference, a likelihood test and a P-P test. 
The likelihood test consists of a comparison of the log-likelihood ratios evaluated using the standard waveform with 

those obtained using the ROQ approximation. The log-likelihood ratio is defned as the ratio between the likelihood 
of Eq. (95) and the likelihood of the noise hypothesis (h = 0), that is 

L(d|h(θ⃗)) 1 
log Lratio(d|θ⃗) = log = (d, h(θ⃗)) − (h(θ⃗), h(θ⃗)) . (147)

L(d|0) 2 

This quantity, which is just the likelihood of Eq. (95) removing the constant part that only depends on the data, 
is what we will be referring to as the log-likelihood throughout the rest of the text. The log-likelihood is the crucial 
quantity used in estimating the parameters of a given GW event, which is the ultimate end for which the ROQ 
is created. We perform likelihood tests on the IMRPhenomPv2 and IMRPhenomXPHM bases described in table III and 
table IV respectively, and show the results on Figure 18. To obtain the diference in the log-likelihood, we create a 
random realization of Gaussian noise and inject a waveform calculated using the corresponding approximant. The 
injected waveforms’ parameters are randomly sampled from uniform distributions whose boundaries are the respective 
ROQs’ ranges of validity. We use a fxed distance of 100Mpc and randomly sample the incoming direction of the GW 
from a uniform distribution in the sky. We then compute the standard log-likelihood and the ROQ log-likelihood 
using the same injected waveform and compare them. What we plot is the relative diference between both logarithms 
for a total of 1.5 · 105 realizations. We see the maximum discrepancy lies below 0.1 for every case considered here, 
and the bulk of the samples lie below 10−3 . 

Given that the likelihood is the only signal-dependent quantity that enters the computation of the posterior 
(Eq. (94)), as long as the ROQ and standard likelihoods agree reasonably well, we can expect the PE posteriors 
with and without the ROQ to be virtually the same. According to Wilks theorem [123] in the frequentist and large 
sample size limits, the quantity −2 log{L/Lmax} is distributed as a χ2 with a number of degrees of freedom equal to 
the number of parameters being ftted by the PE. In the case of a CBC, we need 15 parameters to fully characterize 
the binary, although, since the azimuthal spin angles and phase of coalescence are usually so poorly constrained, in 
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Frequency 
range (Hz) 
Min Max ∆f(Hz) 

Mc(M⊙) 
Min Max 

Basis size 
Linear Quadratic 

Test set σEI,max 

Linear Quadratic 
Test set σEI > 10−4 

Linear Quadratic 
Likelihood Speedup 

Th. Emp. MB 

20 1024 1/4 55 110 303 195 3.67×10−2 2.47×10−2 119 86 3.2+1.2 1.4+0.38.1 −0.6 −0.3 

20 1024 1/4 35 66 339 192 6.95×10−2 2.47×10−2 115 64 4.5+1.7 1.7+0.57.6 −1.0 −0.3 

20 1024 1/4 26 42 328 204 9.57×10−3 1.04×10−2 84 21 6.1+1.8 2.2+0.67.6 −1.1 −0.5 

20 1024 1/4 18 33 348 201 1.80×10−2 1.32×10−3 70 19 7.8+0.4 2.6+0.77.3 −1.7 −0.6 

20 1024 1/4 12 20 371 264 1.18×10−2 1.03×10−3 67 16 7.5+0.3 3.1+0.76.3 −1.6 −0.6 

20 1024 1/8 10 15 491 386 4.32×10−3 4.39×10−4 50 6 4.3+1.29.2 11.1+0.3 
−0.4 −1.0 

20 1024 1/8 8.6 11.8 505 435 9.33×10−3 1.96×10−4 48 3 4.8+0.88.5 10.5+0.3 
−0.9 −1.0 

20 2048 1/16 5.1 9.6 868 942 2.95×10−3 2.38×10−3 56 11 4.8+1.217.9 24.6+2.3 
−4.6 −0.8 

20 2048 1/32 3.35 6.17 1539 1826 9.62×10−4 2.53×10−4 46 1 4.6+1.819.3 27.6+1.1 
−0.8 −0.9 

20 2048 1/64 2.18 4.02 2924 3636 6.37×10−4 2.68×10−4 19 7 4.2+1.719.8 28.6+0.7 
−0.5 −0.7 

TABLE IV: Summary of the reduced bases constructed with EigROQ for the IMRPhenomXPHM waveform model. We 
limit the mass ratio 1 ≤ q ≤ 4, the magnitudes of the two spins −0.8 ≤ χi ≤ 0.8 for i ∈ [1, 2], and the full range for 

the spin angles (0, 0) ≤ (θJ , α0) ≤ (π, 2π). For the creation of all the basis, we run EigROQ with the same 
confguration. In algorithm 1 we set the maximum number of waveform selected N = 20000 , tolerances of each step 
σi = [10−2 , 10−3 , 10−4] and maximum number of waveforms computed per step Nlim,i = [106 , 3.16 · 106], and in 

algorithm 6 we set N = 107 , σ = 10−4 , Nlim = 107 and the maximum number of eigenvectors used nλ = 5000. The 
basis are tested on 107 randomly generated waveforms in the same parameter space as the training was done on. 
The “Theoretical” speedup has been computed with Eq. (149) while the “Empirical” speedup is the median and 
90% credible interval of the corresponding points in the lower panel of Figure 20. For the empirical speedups, we 
show the values both without (Emp.) and with (MB) the IMRPhenomXPHM multibanding option enabled [122]. 

} = −5.7+3.1most cases the efective number of parameters is reduced to 12. We then expect log{L/Lmax −4.8, which is in 
accordance with most of the GW observations, specially those with high signal to noise ratio (SNR). Under the samep √ 
model, the standard deviation of log L is σL ∼ Nef /2 ∼ 6 ∼ 2.4, where Nef is the efective number of parameters. 
Therefore, as long as the diference between the logarithm of the standard and the ROQ likelihoods is much smaller 
than σL ∼ 2.4, we expect the posteriors to be similar. 

From Eq. (147), we observe that the likelihood ratio of a GW signal will approximately be given by log L ∼ ρ2/2, 
where ρ is the SNR. Therefore, the condition that ∆ log L ≪ 2.4 can be translated into a condition on the SNR: 

s 
log L 

ρ ≪ 2 , (148)
∆ log L 

which can be used to interpret fgure 18 in terms of up to which SNR we can trust the posteriors obtained when using 
the corresponding ROQ. If we want the ROQ to be valid for the analysis of larger SNRs, we can always decrease the 
tolerance σ with which we generate it, at the expense of having more basis elements. 

The second of the tests is the percent-percent (P-P) plot [4, 5]. P-P plots have been widely used in the literature [124] 
to validate codes that perform Bayesian parameter estimation (PE). Therefore, we use the P-P plots to directly test 
the ROQ’s faithfulness in its intended use. In this specifc case, to make the P-P plots shown in Fig. 19, we use the 
posteriors pdfs resulting from performing PE on 200 injections. The PE analyses are done using the ROQ likelihood 
and the dynesty [125] sampler within the Bilby [126] framework and the injections use the same waveform model for 
which the corresponding ROQ was constructed. The priors of the PE and the distribution from which the injections 
are drawn are the same and coincide with the parameter space in which each ROQ basis has been constructed. For 
the extrinsic parameters we put priors which are uniform in the sky and in comoving volume, going to a maximum 
distance tailored for each chirp mass range to have detectable signals. 
In the P-P plots of Fig. 19 we show the fraction of posterior pdfs for which the injected value of the parameter is 

found in a given confdence interval as a function of that same confdence interval. We expect the fraction of injected 
parameter values that fall into a particular confdence interval of the posterior pdfs to be drawn from a uniform 
distribution. We can thus assign a p-value quantifying such claim [5], individually for each binary parameter and 
jointly for all the parameters. The p-values are shown in the legends of fgure 19. For all the PP-plots shown, the 
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FIG. 18: Likelihood error tests for various M ranges. Specifcally, we plot ∆ ln L/ ln L, that is, the fractional error of 
the ln L when calculated with and without the ROQ. Upper pannel: IMRPhenomPv2. Lower pannel: IMRPhenomXPHM. 

cdfs of the majority of the parameters fall within the 3 − σ regions, leading to p-values that are consistent with a 
uniform distribution. The combined p-values lie between 0.49 and 0.89, indicating that the posterior pdfs produced 
using these ROQs are well-calibrated. 

3. Speedup analysis 

The main purpose of the ROQ is to accelerate the computation of the GW likelihood. To test how good it is in this 
regard we perform a series of speed-up trials shown in fgure 20. There are two quantities which we evaluate for the 
benchmarking test, the waveform and the Gaussian log-likelihood described in Eq (95). The tests consist in timing 
several calculations of both quantities for the standard case and the ROQ case. The sets of parameters used as inputs 
are drawn from uniform distributions with boundaries based on the range of validity of the corresponding ROQ basis. 
The ratio between the time for the standard method and the ROQ is what we call the empirical speedup, where we 
use the term empirical because we perform the actual likelihood and waveform computations using python [127] and 
the Bilby [126] framework. For IMRPhenomXPHM waveform speedups, we disable the default multibanding [122], which 
is used to speed up the full waveform computation by reducing the number of frequencies the model is evaluated 
at, and then interpolates between them. Therefore, we disable this to test if the model is linear with the number of 
frequencies at which it is evaluated. However, for the likelihood test, we compute the speedups both without and 
with multibanding enabled, to explore real-world speedup gains. 
In fgure 20 we diferentiate the speedups using triangles for the waveform, squares for the log-likelihood and in 

the IMRPhenomXPHM case, circles for the log-likelihood with multibanding enabled. We can also compare with the 
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FIG. 19: P-P plots performed with diferent ROQ basis as stated in each subplot’s legend. We show here the result 
of 200 injections being drawn from the corresponding ROQ-compatible prior, as stated in tables [III,IV]. The 

contours in grey delimit the 1σ, 2σ and 3σ regions. We plot a line for every parameter that uniquely characterizes a 
given CBC with consistent colors and styles across subplots. The lines represent the cumulative fraction of events. 

theoretical speed-ups that are plotted as histogram-like bars in the fgure. There are two kinds of bars, the solid ones 
represent the quantity 

L 
Theoretical Speedup = (149)

NL + NQ 

where L is the number of frequencies for the waveform evaluation in the standard computation and NL and NQ 
are the frequency nodes for the linear and quadratic ROQ bases without factoring out repeated frequencies. This 
is the theoretical speedup that is usually attributed to the ROQ in the literature [104]. The dashed bars are the 
same quantity as in Eq. (149) when the frequencies belonging to both the linear and the quadratic interpolation 
list of frequency nodes are just considered once, thus the notation L/NL∪Q. In the ROQ likelihood we need to call 

NL∪Q NQthe waveform model only once at the frequencies defned by {fi} = {Fj }NL ∪ {Fk}k=1, as is done in Bilby.i=1 j=1 
Therefore, L/NL∪Q will be the theoretical speedup of the waveform evaluation if we assume that its computation time 
is proportional to the number of sampling points. For the IMRPhenomXPHM case, the diference between NL + NQ and 
NL∪Q can be signifcant since there are many repeated interpolation nodes at low frequencies. The reason is that in 
the low-frequency region, the amplitude is larger and the waveform oscillates more rapidly than in the high-frequency 
part. Consequently, the interpolation nodes tend to concentrate at low frequencies leading some of them to coincide 
in the linear and quadratic ROQ. This behavior can be seen in fgure 17. 
For M smaller than ∼ 20M⊙, we see that the waveform speedups are constant in the entire M range of a given 

basis and are always close to the theoretical value of L/NL∪Q. This is in agreement with our expectations, since the 
IMRPhenom models describe the inspiral in a way that the computation time is linear with the number of sampling 
points, and their implementation in LALsimulation [128] being tested is written efciently in C [129], with minimal 
overheads. In the case of large M, above ∼ 20M⊙, the waveforms start being dominated by the merger and ringdown, 
the last two phases of a CBC, which are harder to model, and the speed-up of the IMRPhenom models is smaller 
than the theoretical expectation. This can be due to the waveform generation stopping above the ringdown frequency, 
meaning that the model is evaluated at fewer frequency points for high mass signals. Furthermore, when the waveform 
uses sufciently few frequency points, fxed-costs associated with calculating post-Newtonian and phenomenological 
parameters of the model become important. Therefore, as M increases, the trend of the waveform speedup is to 
decrease until a value of O(1) is reached and we have no speed up at all. 

For the IMRPhenomXPHM likelihood speedups, we show both the results with and without disabling the default 
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FIG. 20: Speed up factor for the IMRPhenomXPHM (upper panel) and IMRPhenomPv2 (lower panel) waveforms in the 
diferent regions in chirp mass where the ROQ has been computed. We can diferentiate theoretical and empirical 
speedups. The empirical speedups are calculated as the ratio between the time spent in computing the waveform 

without the ROQ and with it and are plotted as triangles. Squares are obtained in the same way but employing the 
Likelihood. In the IMRPhenomXPHM case, we include the likelihood speedups with the multibanding option enabled 

(circles) and disabled(squares). The theoretical speedups are drawn as bars. The dashed bars represent the speedup 
when array frequency duplications are accounted for while solid bars don’t. 

multibanding [122], which is used in the standard likelihood to speed up the full waveform computation. We observe 
that without multibanding IMRPhenomXPHM has a likelihood speedup very close to the theoretical value. This is due 
to the fact that the computation time of the likelihood is dominated by the waveform evaluation, and the Bilby 
implementation of the ROQ likelihood only generates the waveform once at the frequencies {fi}

NL∪Q = {Fj }NL ∪i=1 j=1 
NQ{Fk} However, when one includes the multibanding option, the IMRPhenomXPHM is already internally being k=1. 

evaluated in fewer frequency points, and therefore the speedup can be signifcantly lower than the expected one, 
although it still reaches median values that can be as large as 5, and which will be noticeable in PE applications. 
Looking at the targeted bases that are introduced in Table V, we observe that in this case, the speedup over the 
standard multibanded case can be even larger, reaching a value of 29.2+1.4 for the base targeted at GW170817 [130].−4.6 
In the IMRPhenomPv2 case, we observe that the likelihood speedup is signifcantly below the waveform speedup and 

therefore, also below the theoretical speedup. To understand this discrepancy, we note that for the standard likelihood 
case, the computation time is dominated by evaluating the waveform in all the required frequencies and computing 
the overlap integrals of Eq. (95), both of which will be proportional to L. However, for the ROQ likelihood, the time 
to compute the waveform and overlap integrals is signifcantly reduced since they are proportional to NL + NQ ≪ L. 
Given the fact that IMRPhenomPv2 is much faster to generate than IMRPhenomXPHM, the computation time starts to 
be dominated by fxed-cost operations, which for example include computing the parameters of the waveform models, 
fnding the detector responses as well as possible overheads. 
To further explore this hypothesis, we model the computation time of the likelihood as a coefcient multiplying 

the number of frequencies being evaluated plus a constant term which represents the fxed-cost operations. Since for 
IMRPhenomPv2, NL∪Q ∼ NL + NQ, we have, 

T = A · L + B (150) 
TROQ = a · (NL + NQ) + b . (151) 

To compute the speedup, we divide Eq. (150) by Eq. (151), obtaining 

L + B 
f(L, NL, NQ; B, a, b) = , (152) 

a(NL + NQ) + b 

where we have divided all the coefcients by A, which is not expected to be 0. In fgure 21 we show the ratio between 
the empirical and theoretical likelihood speedups, together with the best ft of our model in Eq. (152). We observe 
very good agreement between the model and the data. From the ftted values of B, a and b, also displayed in the 
plot, we can substantiate our hypothesis that the fxed-cost operations in the ROQ likelihood is making the empirical 
speedup of the IMRPhenomPv2 smaller than the theoretical value. We fnd a value of a = 1.00 ± 0.16, and therefore, 
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FIG. 21: Ratio between empirical speedup and the theoretical speedup of Eq. (149), plotted as a function of the 
total elements of the ROQ basis (NL + NQ) for IMRPhenomPv2. The colour of the error bars encodes the logarithm 
of the number of frequencies where the waveform is evaluated in the standard computation log L. In the bottom 
right box, we show the functional form we ft, which comes from Eq. (152), as well as the 1σ uncertainty for the 

three ftted parameters. We also plot as black crosses the results obtained evaluating the best ft in the data points. 
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FIG. 22: Diference between the logarithm of the standard Likelihood and the logarithm of the ROQ Likelihood for 
the three events analysed. 

from Eq. (152), we observe that if the coefcients B and b describing the fxed-costs were 0, we would recover the 
theoretical speedup result. However, since we fnd a value of b = (6.7±2.0) ·102 , the IMRPhenomPv2 speedup is reduced 
with respect to the theoretical unless we have a very large number of basis elements such that a · (NL + NQ) ≫ b. 

4. Aplication to GW events 

We now perform four PE analyses [95] on three confrmed GW events using the ROQ approximation. More 
specifcally, we use the IMRPhenomXPHM 16s basis described in table IV for the GW191129 134029 [11] event and the 
IMRPhenomPv2 256s basis of table III for the GW170817 [130] event. For the other two PE analyses of GW190814 [18] 
and GW170817 with IMRPhenomXPHM, in a similar spirit to Refs [106, 107], we construct targeted ROQ bases with 
narrow M ranges, listed in Table V. These bases are centered on the search M value and have a narrow width tuned 
to be larger than the expected chirp mass resolution. Note that the bases have been generated using a factor of 10 
times fewer waveforms than that of Tables III IV, since the parameter space they cover is smaller. 
The analyses use the ROQ likelihood and the dynesty [125] sampler within version 2.1.0 of Bilby [126] and the 

version 5.1.0. of LALSimulation. The PSDs employed were estimated using BayesWave [131, 132] and are those 
used by the LVK collaboration for the public analysis of the events. We also include the efects of calibration 
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Freq. range (Hz) 
Min Max ∆f (Hz) 

Mc(M⊙) 
Min Max 

Basis size 
Linear Quadratic 

Likelihood Speedup 
Th. Emp. MB 

20 2048 1/16 6.2 6.6 1090 816 4.8+1.117.0 21.6+3.8 
−3.6 −0.6 

20 2048 1/256 1.195 1.200 1392 2007 152.7 151.8+4.5 29.2+1.4 
−4.1 −4.6 

TABLE V: Focused IMRPhenomXPHM bases for GW190814 (∆f = 1/16Hz) and GW170817 (∆f = 1/256Hz). We 
limit the magnitudes of the two spins −0.8 ≤ χi ≤ 0.8 for i ∈ [1, 2], and the full range for the spin angles 

(0, 0) ≤ (θJ , α0) ≤ (π, 2π). For the GW190814 we limit the mass ratio q ≤ 16 while for GW170817 we limit it q ≤ 4. 
For the creation of the two basis, we run EigROQ with the same confguration. In algorithm 1 we set the maximum 
number of waveform selected N = 20000 , tolerances of each step σi = [10−2 , 10−3 , 10−4] and maximum number of 
waveforms computed per step Nlim,i = [105 , 3.16 · 105], and in algorithm 6 we set N = 106 , σ = 10−4 , Nlim = 107 and 

the maximum number of eigenvectors used nλ = 5000. The “Theoretical” speedup has been computed with 
Eq. (149) while the “Empirical” speedup is the median and 90% credible interval of the corresponding points in the 
lower panel of Figure 20. For the empirical speedups, we show the values both without (Emp.) and with (MB) the 

IMRPhenomXPHM multibanding option enabled [122]. 
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FIG. 23: Posterior distributions for the mass ratio and M in the detector frame for the ROQ and non-ROQ analysis 
of GW191129 134029. The 90% credible regions are indicated by the solid contour in the joint distribution, and by 

the dashed vertical and horizontal lines in the marginalized distributions. 

uncertainties [133–135] in the phase and the amplitude. 

This is an event with Mdetector 8.48+0.06The frst event we discuss is GW191129 134029 [11, 136]. = M⊙ so we −0.05 
can use the 16 seconds IMRPhenomXPHM ROQ basis. It has a relatively big median network SNR of 13.1, allowing us 
to put tight constraints on the parameters and better see if any diferences arise between the ROQ and the standard 
posterior. We perform two Bilby runs with the exact same confguration, one using the standard GW likelihood and 
the other using the ROQ likelihood. 

In fgure 22 we show the diference between the logarithm of the standard and the ROQ likelihoods, for the posterior 
samples of the PE with the ROQ likelihood. This diference corresponds to the ROQ error in the log-likelihood. We 
fnd a 90% c.l. error of ∆ log L = 0.075+0.051 Since ∆ log L ≪ 1, we expect the posteriors with and without the ROQ −0.057. 
to be almost the same. Using that the log likelihood of this event is log L = 84.2+2 

−4 
.
. 
9
1, the fractional error in the ROQ 

https://8.48+0.06
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20log-likelihood computation is δL = (9.1+6.3) · 10−4 . The distribution of errors is centered at a positive value, as one−6.8 
would expect if the waveform model were a good representation of reality since any error in the ROQ modelization 
of the waveform would push it away from the true GW and thus, to a lower likelihood value. 
In fgure 23 we corroborate that indeed the posteriors with and without the ROQ are similar by showing the 

corresponding distributions for the detector frame chirp mass M and the mass-ratio q. We fnd a Jensen-Shannon 
Divergence (JSD) [137] of 1.3·10−4 and 1.9·10−4 respectively, robustly assessing the similarity between the distributions 
with and without the ROQ approximation. 
The second event we analyze is GW190814 [18, 136]. This event was measured to have a chirp mass of M = 

6.42−0.02M⊙ and a very unequal mass ratio of 0.11−0.01 , which is below the mass ratios of q > 0.25 explored in0.02 0.01 
the bases of Table IV. Therefore we create a targeted ROQ base with 16 seconds of duration, and chirp mass range 
from 6.2M⊙ to 6.6M⊙ for the IMRPhenomXPHM waveform. In fgure 22 we show the ROQ log-likelihood errors of the 
posterior samples of the PE performed using this targeted basis. We have that ∆ log L = 0.034+0.048 which is similar−0.043 
in magnitude to that of GW191129 134029. Again, since ∆ log L ≪ 1, we expect the posteriors with and without the 
ROQ to be almost the same. However, for this event, the log-likelihood is larger, at log L = 310.3+3 

−5 
.
. 
1
0, and therefore 

the relative error in the ROQ log-likelihood computation is smaller, at δL = (1.1+1.5) · 10−4 .−1.4 
The last GW event we analyze is GW170817 [130], the event with the largest Network SNR (∼ 33) ever detected. 

It was identifed as a binary neutron star with M = [138] and we use it to probe the longest of our1.1976+0.0004 
−0.0002 

IMRPhenomPv2 bases with 256s in duration as well as a targeted ROQ using IMRPhenomXPHM for such long signals. For 
our analysis, we make use of the public strain data after noise subtraction [139]. In fgure 22 we show the ROQ log-
likelihood errors of the posterior samples of both PEs. For both cases, we do not expect the ROQ error to signifcantly 
impact the posterior, since ∆ log L ≪ 2.4. The IMRPhenomPv2 PE has an order of magnitude smaller ROQ error than 
the IMRPhenomXPHM case. This is most likely the result of the IMRPhenomPv2 basis being constructed with a tolerance 
σ = 10−5 , which is an order of magnitude smaller than the tolerance σ = 10−4 used in the IMRPhenomXPHM case. In 

= (−0.1+2.8the IMRPhenomPv2 case, the log-likelihood is 536.1+3.2 and the corresponding fractional error is δL ) ·10−5 .−4.3 −2.6 
In the IMRPhenomXPHM case, we fnd a larger likelihood of 538.1+4 

−5 
.
. 
3
1, which is expected since the higher order modes 

give more freedom to the waveform to ft the data. The corresponding fractional error is δL = (0.5+4.1) · 10−4 .−4.0 
Comparing the Bayes Factors of both PE runs, adjusted to have the same priors, we fnd log B = 1.1 ± 0.3 in favour of 
IMRPhenomXPHM, which can be taken as evidence for Higher Order Modes in the signal. This highlights the importance 
of considering all physical efects of the waveform. To further make this point, we show in fgure 24 how the addition 
of the Higher Order Modes improves the determination of the mass ratio and the inclination angle θJN , even for this 
low mass CBC for which the Higher Order Modes are harder to measure in LIGO-Virgo [96]. 

H. Conclusions 

In this paper, we have explored in-depth Reduced Order Quadrature (ROQ) methods applied to GW data analysis 
and have presented novel algorithms to improve diferent aspects of the ROQ bases construction. ROQ methods ofer 
a signifcant advantage by reducing the computational burden associated with likelihood evaluations, especially for 
long-duration waveforms, and therefore can greatly speed up parameter estimation analyses. Existing procedures for 
constructing ROQ bases encounter challenges in approximating waveforms that include complicated features such as 
precession or Higher Order Modes. We present algorithms to address these limitations by making use of SVD methods 
to characterize the waveform space and choose a reduced order basis close to optimal. We also propose improved 
methods to select the empirical interpolation nodes, greatly reducing the error induced by the empirical interpolation 
model. 
We have demonstrated the efectiveness of our algorithm by constructing multiple ROQ bases for the IMRPhenomPv2 

and IMRPhenomXPHM waveforms, ranging in duration from 4s to 256s. These bases have been subjected to various 
tests, including likelihood error tests and P-P tests, to validate their accuracy and trustworthiness for data analysis 
applications. The speedup of these bases has also been empirically explored, confrming that ROQ methods provide 
close to the expected reduction in computational time compared to traditional likelihood calculations. 
Furthermore, we have performed end-to-end parameter estimation analyses on several confrmed GW events. The 

results provide compelling evidence of the algorithm’s ability to generate ROQ bases that accurately represent complex 
waveform models over both broad and targeted parameter spaces. By directly comparing the posterior distributions 
using the ROQ and standard methods and understanding the log-likelihood error distributions, we validate that 
our bases can straightforwardly be incorporated into current pipelines to produce precise and unbiased Parameter 
Estimations in real gravitational wave detector data. 

20 We defne the fractional error in the ROQ log-likelihood computation as δL = ∆ log L/ log L 

https://0.11�0.01
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FIG. 24: Posterior distributions for the mass ratio q and the inclination angle θJN for the ROQ analysis of 
GW170817. In blue we plot the IMRPhenomXPHM run and in green IMRPhenomPv2. Three contours per run delimit the 
1σ (68.3% C.L.), 2σ (95.4% C.L.) and 3σ (99.7% C.L.) credible regions in the joint q − θJN distribution. Note that 
the non-continuous behaviour of the contours near the border is an artefact of the Gaussian kernel employed in the 

drawing. This is expected whenever the parameter is bounded and presents many samples close to the border. 

In conclusion, the algorithms introduced in this paper represent a step forward in the quest to efciently exploit 
the capabilities of advanced gravitational wave detectors. We improve upon previous ROQ construction algorithms 
allowing for more efcient bases in regions of parameter space that were previously inaccessible. As gravitational 
wave astronomy continues to evolve, and the number of events detected per year continues to grow, having fast and 
accurate techniques to perform Parameter Estimation will undoubtedly play a vital role in maximizing the scientifc 
potential of future observatories and advancing our knowledge of the Universe. 

A−1∥F and σtotI. Appendix: Fast way to update ∥ ˆ 
EIM 

¯ ¯In this section we assume that we have the inverse of the matrix Aij = ej (Xi) and its Frobenius norm ∥Â−1∥F , 
defned in Eq. (140), and we want to compute the inverse and Frobenius norm of the inverse of the matrix Aij , defned 
as: 

( 
ej (xβi ) i ̸= k 

Aij = (153) 
ej (xβ ′ ) i = k 

k 

¯which is just the result of changing the row k of Aij . We then use the fact that, from the properties of the inverse 
Āij , we have: 

( 
δij i ≠ k 

(ÂÂ̄−1)ij = (154)
n ¯P 
l=1 el(xβk 

′ )(Â−1)lj ≡ cj i = k 

Since the matrix of Eq. (154) has such a simple structure, it can be analytically inverted as: 
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  i ≠ kδij 

((ÂÂ̄−1)−1)ij = − cj i = k, j ≠ k (155)
ck 1 i = j = k ck 

Â−1 Â̄−1(ÂÂ̄−1)−1And we can use that = to show that: 

( 
(Â̄−1)ij − cj (Ā̂−1)ik j ̸= k ck(Â−1)ij = (156)
1 ¯(Â−1)ik j = k ck 

We observe that this way of computing the inverse will require O(n2) for computing cj with Eq. (154) and also O(n2) 
operations to update each element of Â−1 using Eq. (156). So the total number of operations will be O(n2), much 
smaller than the O(n3) required to directly invert the matrix. 
Using this expression for the updated inverse we can fnd a way to update also the Frobenius norm of the inverse, 

which is given by: 

nX 
∥Â−1∥2 = |(Â−1)ij |2 

F 
i,j=1 

n 2 n 2X Xcj 1 
( ˆ̄ ( ˆ̄ ( ˆ̄ = A−1)ij − A−1)ik + A−1)ik 

ck cki,j=1 i=1 " # 
n nX X1 

= ∥Â̄−1∥F 
2 + 1 + |cj |2 |(Â̄−1)ik|2 

|ck|2 
j=1 i=1  " # 

n nX X1 − 2Re  (Ā̂−1)ik(Ā̂
−1) ∗ 

ij cj  , (157) 
ck j=1 i=1 

¯where we can precompute whith O(n2) operations the factors in square brackets that only depend on Â for each row 
k which we will change, and afterwards, updating the Frobenius norm will only need O(n) operations on top of the 
O(n2) operations needed to compute cj for each new row q we want to test. Since with Eq. (157) we do not need to 
update the inverse each time that we want to update its Frobenius norm, we can avoid the O(n2) memory allocations 
that are needed in Eq. (156). 
We will now also look for a method to rapidly compute σtot We assume that we have the value computed for anEIM. 

EIM whose variables we denote with a bar over them: 

� �nλX 2 
σtot Â̄−1⃗¯ = ¯ , (158)EIM λB + vB 

B=1 

where we have defned 

p 
v̄ B,i = λB uB,βi . (159) 

When we change the k’th interpolation node of the EIM from βk to βk 
′ , this becomes: 

(√ 
λB uB,βi i ̸= k 

vB,i = √ (160) 
λB uB,β ′ i = k 

k 

ˆAnd the value of multiplying A by v⃗B will change to: 
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nX 
(Â−1v⃗B )i = (Â−1)ij vB,j 

j=1 
n � �X cj 1 

Â̄−1 Â̄−1 Â̄−1 = ij − ik vB,j + ik vB,k 
ck ckj=1 " !# 

n nX X 
Â̄−1 1 

Â̄−1 = ij v̄ B,j + vB,k − cj v̄ B,j , (161)ikck |{z}
j=1 i=1| {z } | {z } Γ̄ 

i 

¯ ΘBΩB,i 

Â−1where we have used the updated value of computed in Eq. (156) and we put bar over the variables that do not 
σtotdepend on the value of the new interpolation node. Using Eq. (161), ¯ becomes: EIM 

! 
nλ nX X 2 

σtot ¯ ¯ = λB + ΩB,i +ΘB ΓiEIM 
B=1 i=1 !" # 

nλ nX X 
σtot = ¯ |ΘB |2 |Γ̄ 

i|2 
EIM + 

B=1 i=1( " #!)
nλ nX X 

Ω̄∗ ¯ + 2Re ΘB Γi . (162)B,i 
B=1 i=1 

In general we will assume that nλ ≫ n. For each row k that we change, we can precompute with O(nnλ)operations 
all the factors in square brackets that will stay constant. Afterwards, the computational complexity of updating the 
value of σtot will require O(nnλ) operations for computing ΘB and only O(nλ) additional operations to evaluate EIM 
Eq. (162). 
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José Francisco Nuño Siles 
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C. Abstract 

We perform an exhaustive follow-up analysis of a subsolar-mass (SSM) gravitational wave (GW) candidate reported 
by Phukon et al. from the second observing run of Advanced LIGO. This candidate has a reported signal-to-noise 
ratio (SNR) of 8.6 and false alarm rate of 0.41 yr which are too low to claim a clear gravitational-wave origin. When 
improving on the search by using more accurate waveforms, extending the frequency range from 45 Hz down to 20 Hz, 
and removing a prominent blip glitch, we fnd that the posterior distribution of the network SNR lies mostly below 
the search value, with the 90% confdence interval being 7.94+0.70 Assuming that the origin of the signal is a compact−1.05. 

= 0.76+0.50binary coalescence (CBC), the secondary component is m2 M⊙, with m2 < 1M⊙ at 84% confdence level, −0.14 
suggesting an unexpectedly light neutron star or a black hole of primordial or exotic origin. The primary mass would 

4.71+1.57be m1 = M⊙, likely in the hypothesized lower mass gap and the luminosity distance is measured to be −2.18 
DL =124+82Mpc. We then probe the CBC origin hypothesis by performing the signal coherence tests, obtaining a log−48 
Bayes factor of 4.96 ± 0.13 for the coherent vs. incoherent hypothesis. We demonstrate the capability of performing a 
parameter estimation follow-up on real data for an SSM candidate with moderate SNR. The improved sensitivity of 
O4 and subsequent LIGO-Virgo-KAGRA observing runs could make it possible to observe similar signals, if present, 
with a higher SNR and more precise measurement of the parameters of the binary. 

https://4.71+1.57
https://0.76+0.50
https://7.94+0.70
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D. Introduction 

The development of gravitational wave astronomy, with about 90 compact binary coalescence (CBC) events detected 
so far [11, 15, 22, 140–142] by the LIGO-Virgo-KAGRA (LVK) collaboration [143], is driving a true revolution in 
astrophysics and cosmology. As the number of detected events grows with successive observing catalogs, the range of 
the inferred component masses has extended to previously unexplored regions, with black holes (BH) found [19, 144] in 
the pair-instability mass gap [145] and in the hypothesized lower mass gap [18]. The frequency range of the LIGO [86] 
and Virgo [87] detectors also makes them sensitive to CBC signals in which one of the compact objects has a mass 
below 1M⊙. The detection of a subsolar mass (SSM) compact object would be of utmost interest since it would 
require either modifcation of the standard astrophysical evolution and collapse of ordinary matter or a new formation 
mechanism operating in the Universe, such as primordial black holes (PBHs) [146–150] or SSM objects originated by 
dark matter with exotic properties [151–163]. 
Before the advent of GW astronomy, the only way to detect SSM black holes was via X-ray binaries [164] or 

microlensing [165]. At present, some hints of the existence of such light black holes come from microlensing events 
toward the bulge [166], from Andromeda [167] and lensed quasars [168, 169], although the mass and the abundance 
of the lenses remain uncertain. Complementary to these astrophysical searches, GW signals of CBC with at least one 
subsolar component have been searched for in the frst (O1), second (O2) and third (O3) observing runs of LVK [170– 
174], without fnding compelling evidence for a clear detection. However, a further search in the O2 data for SSM 
black holes with low mass ratios [7] and the latest O3b SSM search results from LVK [174] have reported several 
potential candidates with a false alarm rate smaller than 2 yr−1 . 
In this work, we follow up on the O2 search reported in [7], using the standard parameter estimation (PE) methods 

to further investigate the candidates reported in Table I. Given that PE on these long GW signals is extremely time 
consuming, we have focused on the third candidate of the table, which is the lowest FAR trigger found in coincidence 
by both LIGO Hanford and LIGO Livingston interferometers, which allows more confdent rejection against terrestrial 
noise. This candidate was observed on April 1st 2017 and we will refer to it here as SSM170401. 
In this analysis we have extended the frequency range of the search from 45 Hz down to 20 Hz. We have also 

improved upon the TaylorF2 [175] waveform used in the template bank of search, by using for PE the more accurate 
waveforms IMRPhenomPv2 [111] and IMRPhenomXPHM [112] that include the merger and ringdown phases, as well as 
spin precession and, in the case of IMRPhenomXPHM, higher order modes. We have also inspected the quality of the 
data and discussed the impact of a prominent glitch removal using standard tools such as BayesWave [131, 132, 176]. 
Finally, assuming that the origin of the candidate is a BBH merger, the PE allows us to infer the component masses, 
spins, distance and sky location, as well as the posterior probability of having an SSM component of the hypothetical 
source for SSM170401. 
In the following sections, we describe in detail diferent aspects of this analysis that reveal the peculiarities and 

difculties of doing PE on this type of candidate, as well as the necessary analysis tools in preparation for a possible 
future signifcant candidate, given the increase of sensitivity expected in the O4 run. 

E. Signifcance of SSM170401 

The candidate was found in data taken on April 1st, 2017, 01:43:34 UTC during the O2 LIGO-Virgo observing 
run. It was not reported by any of the LVK searches, both generic [15] and SSM specifc [177], but it was found 
in a dedicated search for SSM mergers in asymmetric binaries using the GstLAL pipeline [7]. The search reported 
detector frame masses of 4.897 M⊙ and 0.7795 M⊙, with a false-alarm-rate (FAR) of 0.4134 yr−1 and a combined 
network signal-to-noise ratio (SNR) of ∼ 8.67. Given that the time of O2 coincident data suitable for observation is 
Tobs = 118 days [15], the false alarm probability (FAP) of this candidate, according to the search is: 

FAP = 1 − exp {−FAR · Tobs} = 0.12 . (163) 

The interpretation of this FAP is that the search would produce a higher-ranked candidate in 12% of trials over 
data containing only noise. 
We can also estimate an upper bound for the probability of this signal coming from a CBC merger with an SSM 

component, given the upper limits on event rates obtained from the O3 SSM searches. [173, 174]. In Ref. [174] the 
90% C.L. constraints on the merger rate R90 of SSM binaries are reported in the (m1,m2) plane, assuming null results 
of these searches. For the median values of the component masses of the source of SSM170411 (see Table VI), we fnd 

−1R90 ∼ 2 × 102 Gpc−3 yr . Moreover, in the search where the signal was identifed [7], the volume-time surveyed for 
these same masses is reported to be ⟨V T ⟩ ∼ 3 × 10−3 Gpc3 yr. Since the arrival of GWs from binary mergers to the 



71 

-14.19 -14.16 -14.13 -14.1 -14.07 -14.04 -14.01 -13.98 -13.95 -13.92
Time [seconds] from 2017-04-01 01:43:34.677 UTC (1175046232.677)

5

0

5

10

15

W
hi

te
ne

d 
St

ra
in

Hanford
original data
clean data
glitch model

p
hwhitened(f) = ˜FIG. 25: Figure showing the Hanford original whitened strain ˜ h(f)/ Sn(f), the whitened glitch 

model and the whitened clean data after subtracting the glitch. Times are shown relative to the trigger time. 

detectors is Poisson distributed, with an expected number of events µ = R⟨V T ⟩, the probability of fnding n events 
would be: 

nµ −µP (n) = e . (164) 
n! 

Using the values previously mentioned for R90 and ⟨V T ⟩, the upper bound on the expected number of events is 
µ90 ∼ 0.6 at 90% C.L. and the corresponding upper bound on the probability for the search in Ref. [7] to have found 
one or more events would be smaller than 1 −P90(0) ∼ 0.45. Therefore, the results of O3 do not particularly constrain 
the possibility that SSM170401 could come from a real SSM merger. 
The strain in Hanford presents a glitch 14 s before coalescence, as shown in Fig. 25. The search presented in Ref. [7] 

uses templates starting at 45 Hz. The loudest template, in this case, is only 10 s long and so should be unafected 
by the glitch. However, PE was performed with templates starting at 20 Hz, which are roughly 100 s long for the 
component masses discussed. In this situation the glitch must be removed. Using BayesWave [131, 132], we model 
excess power in the detectors as a sum of sine-Gaussian wavelets. We ft for the glitch and the PSD of the Gaussian 
noise component simultaneously. We ignore the modelling of the signal due to the extremely low coherent energy per 
frequency bin deposited in the detectors in the 0.3 s duration of the glitch by such low mass sources, even more when 
the subtraction is done ∼ 14 s before coalescence. The same procedure is used routinely by the LVK collaboration in 
the main GW catalog [11]. 

F. Properties of the source of SSM170401 

To obtain the properties of the potential source of SSM170401 we interpret the signal as coming from the coalescence 
of two compact objects. We infer the CBC parameters of the signal using a Bayesian analysis of the data from LIGO 
Livingston and LIGO Hanford, following the methodology outlined in Appendix B of Ref. [15]. In analysing the data, 
we ft two diferent waveform models: IMRPhenomPv2 [111] and IMRPhenomXPHM [112], the latter including higher order 
modes. Comparing the PE analyses using the two waveforms models, we fnd that their posterior distributions are 
consistent with each other, noting that both of them take into account precessing spins. 
We use a low-frequency cutof of 20 Hz in both detectors for the likelihood evaluation and choose uninformative and 

wide priors. The primary tool used for sampling the posterior distribution is the LALInference Markov Chain Monte 
Carlo implementation as described in [180]. The power spectral density used in the calculations of the likelihood is 
estimated using BayesWave [131, 132]. The study uses the O2 open access data [181] with a sampling frequency of 
4096 Hz; however the likelihood is integrated up to 1600 Hz. 
The best ft CBC template has ∼3000 cycles in the detector, allowing us to constrain with relatively high accuracy 

the source properties of SSM170401 in spite of the low SNR [182]. The estimated parameters are reported in Table VI. 
The marginalized posterior for the absolute value of the matched flter SNR is 7.98+0.62 for IMRPhenomPv2 and−1.03 
7.94+0.70 for IMRPhenomXPHM. The median value of the SNR is lower than that found by the search, which was 8.67.−1.05 
However, these two quantities are not directly comparable. The SNR from the search is obtained by maximizing the 

https://7.94+0.70
https://7.98+0.62
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Parameter IMRPhenomPv2 IMRPhenomXPHM 

Signal to Noise Ratio 7.98+0.62 
−1.03 7.94+0.70 

−1.05 

Primary mass (M⊙) 4.65+1.21 
−2.15 4.71+1.57 

−2.18 

Secondary mass (M⊙) 0.77+0.50 
−0.12 0.76+0.50 

−0.14 

Primary spin magnitude 0.32+0.47 
−0.26 0.36+0.46 

−0.30 

Secondary spin magnitude 0.48+0.46 
−0.43 0.47+0.46 

−0.42 

Total mass (M⊙) 5.42+1.10 
−1.65 5.47+1.43 

−1.68 

Mass ratio (m2/m1 ≤ 1) 0.17+0.34 
−0.05 0.16+0.34 

−0.06 

χef [119, 120] −0.06+0.17 
−0.32 −0.05+0.22 

−0.35 

χp [121] 0.28+0.34 
−0.21 0.33+0.33 

−0.26 

Luminosity Distance (Mpc) 119+82 
−48 124+82 

−48 

Redshift 0.028+0.018 
−0.010 0.028+0.017 

−0.011 

Ra (◦) −2+34 
−35 −1+34 

−37 

Dec (◦) 47+14 
−26 46+14 

−29 

Final mass (M⊙) 5.34+1.11 
−1.70 5.40+1.45 

−1.73 

Final spin 0.39+0.24 
−0.07 0.42+0.22 

−0.10 

P (m2 < 1 M⊙) 85% 84% 

TABLE VI: Parameters of the source of SSM170401. All masses are in the source frame. We assume Planck15 
Cosmology [178]. The statistical uncertainty of all the parameters is quantifed by the equal-tailed 90% credible 
intervals about the median of the marginalized one-dimensional posteriors. Right ascension (Ra) and declination 

(Dec) are measured in the International Celestial Reference System (ICRS) [179]. 

ranking statistic over a discrete template bank [7, 183–185], while the quoted SNR from the PE is the median value 
over the samples. Since the ranking statistic and the SNR are closely related, the SNR that is more comparable 
to that of the search would be the maximum SNR as found by the PE. The values of this maximum PE SNR are 
9.09 for IMRPhenomPv2 and 9.18 for IMRPhenomXPHM. These values are slightly larger than that of the search, which 
is consistent with what would happen if the signal was astrophysical. However, this is also expected in the noise case 
due to the larger parameter space that allows more fexibility for the PE analysis to ft the data. We also notice the 
maximum value of the SNR to be larger for IMRPhenomXPHM than for IMRPhenomPv2. In a similar way, this is expected 
for an astrophysical signal but also for noise, since the waveform includes Higher Order Modes and thus has more 
fexibility to ft the data. 
The source is then compatible with a compact binary system having an unequal mass ratio q =0.17+0.34 (all−0.05 

= 4.65+1.21uncertainties are quoted at 90% C.L.), a source frame primary mass m1 M⊙ and a source frame secondary −2.15 
= 0.77+0.50 mass m2 M⊙ as shown in Fig. 26. The marginalised posterior distribution for the secondary mass favors a−0.12 

mass lower than 1M⊙ (85% C.L.). Using the IMRPhenomXPHM waveform, we fnd almost identical results, with a mass 
lower than 1M⊙ at 84% C.L. 

The left panel of Fig. 27 shows the posterior distributions for the magnitude and tilt angle of the individual spins, 
measured at a reference frequency of 20 Hz. All pixels in this plot have an equal prior probability. The spin of 
the secondary BH is largely unconstrained, as expected for very unequal masses, while the primary spin shows a 
preference for small spin magnitudes (a1 ), where the posterior samples with large primary spin tend to=0.32+0.47 

−0.26 
have it misaligned with the orbital angular momentum. As can be seen in the right panel of Fig. 27, this leads to a 

=−0.05+0.22 =0.33+0.33χef compatible with zero (χef ) and an uninformative posterior in χp (χp ).−0.35 −0.26 
The luminosity distance and inclination angle θJN posterior distributions are shown together in the left panel of 

Fig. 28, since these two quantities are correlated. We fnd a luminosity distance of dL =119+82Mpc. We identify −48 
a bimodal distribution for θJN due to the fact that we can not distinguish whether the system is being observed 
face-on (θJN ∼ 0) or face-away (θJN ∼ π), but it being edge-on (θJN ∼ π/2) is disfavoured. In the face-on(away) 
confguration, the efects of precession and higher order modes in the signal are suppressed [96, 186, 187], as is the 

https://0.33+0.33
https://�0.05+0.22
https://0.32+0.47
https://0.77+0.50
https://4.65+1.21
https://0.17+0.34
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FIG. 26: Posterior distributions for the primary and secondary mass in the source frame. The 90% credible regions 
are indicated by the solid contour in the joint distribution, and by the dashed vertical and horizontal lines in the 

marginalized distributions. We also paint a vertical line for the upper bound in the mass of any given Neutron Star 
and a horizontal one for the subsolar mass threshold. 

case here. 
In the right panel of Fig. 28, we show the posterior distribution of the location in the sky of the event. This 

sky map looks abnormal when compared with the typical ones of the events detected exclusively by Hanford and 
Livingston [11, 15, 141, 142]. When the trigger is seen in two detectors only, most of the information for the sky 
localisation comes from the time delay between the observation of the signal in both interferometers. This time delay 
will be given by: 

d⃗H−L · n̂ dH−L
∆tL−H = = cos θ , (165) 

c c 

where d⃗  
H−L is the position vector of Livingston with respect to Hanford and n̂ is the direction in the sky of the 

source. We observe in Eq. (165) that the time delay only constraints the inclination angle with respect to d⃗  
H−L, but 

leaves the azimuthal angle completely unconstrained. This has as a result a ring-like shape in the sky maps usually 
observed. However, when the source direction corresponds to θ = 0, π, that is, the line joining both detectors, the 
ring will collapse to have a blob like shape in the sky. As can be seen in the top panel of Figure 29, this is what is 
happening for the source of SSM170401, since the time delay between Livingston and Hanford is close to the maximum 
light travel time. In the bottom panel of Figure 29 we also show the posterior distribution of the network antenna 
pattern F [188], defned as: s 

F 2 + F 2 + F 2 + F 2 
+,H1 ×,H1 +,L1 ×,L1F = (166)

2 

where F+(×),D are the + (×) antenna patterns of detector D. In this plot we observe that the event is coming from a 
region in the sky where the network antenna pattern is signifcantly smaller than 1, peaking at F ∼ 0.5. This means 
that the sensitivity in this direction will be half of that of the most sensitive direction (F ∼ 1) located on top of the 
continental US and its antipodes [189]. Since the direction joining both LIGO detectors has smaller sensitivity, the 
distance up to which LIGO can detect astrophysical signals is also smaller. This leads to a lower expected event rate 
coming from that direction, which is the reason sky maps like the one of Fig. 28 are uncommon. 
Even though the posterior PDFs for the parameters of the source of SSM170401 seem to have converged to a well-

defned distribution that difers from the prior, it is known that GW signals can be mimicked by gaussian noise [2] or 
non-gaussian transients, specially given the relatively low SNR and high FAR. 
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FIG. 27: Left: posterior distribution for the individual spins of the source of SSM170401, according to the 
IMRPhenomXPHM waveform models. The radial coordinate in the plot denotes the dimensionless spin magnitude, 

while the angle denotes the spin tilt, defned as the angle between the spin and the orbital angular momentum of the 
binary at a reference frequency of 20 Hz. A tilt of 0◦ indicates that the spin is aligned with the orbital angular 

momentum. A nonzero magnitude and a tilt away from 0◦ and 180◦ imply a precessing orbital plane. All bins have 
an equal prior probability. Right: posterior distributions for the efective spin and efective in-plane spin parameters. 
The black lines in the right panel show the prior distributions for the efective spin parameters. The 90% credible 

regions are indicated by the solid contour in the joint distribution, and by dashed vertical and horizontal lines in the 
marginalized distributions. The large density for tilts close to 90◦ leads to non-zero values for χp and low values for 

χef. 

1. Coherence Test 

To test the compatibility of the SSM170401 with a GW coming from a CBC, we perform the coherence test proposed 
in Ref. [190]. The idea of this test is to perform Bayesian PE using the data from all the detectors together to calculate 
the evidence Zcoh for a coherent CBC signal and compare this with the evidence Zinc for incoherent CBC signals. 
The incoherent evidence is defned as the product of the CBC signal evidences obtained performing PE individually 
in each detector. These incoherent CBC signals are used to represent noise in the detectors that can be picked up by 
CBC templates. The coherent versus incoherent hypothesis Bayes factor is then defned as 

Zcoh Zcoh BcohBcoh,inc = = QN = QN , (167)
Zinc Z(i) B(i) 

i=1 i=1 

where we have used that for each interferometer, the Bayes factor of the signal versus noise hypothesis is defned 
B(i) (i) QN (i)

as = Z(i)/Z while in the coherent analysis it is defned as = Z We use the samenoise, Bcoh Zcoh/ i=1 noise. 
priors for coherent and single-detector analyses. To get a more reliable estimate of the evidence, in the PE we use 
nested sampling, particularly the Dynesty sampler [125] as implemented in Bilby [126]. The computational cost of 
performing the coherence test will be very large since it requires us to perform three separate PEs with the costly 
nested sampling. To make this analysis feasible we employ Reduced Order Quadrature (ROQ) methods [104], which 
greatly speed up the computation time of the likelihood, specially for long signals like SSM170401. The analysis is 
done using only the IMRPhenomPv2 waveform, since we have seen that it gives consistent results with IMRPhenomXPHM 
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FIG. 28: Left: posterior distributions for the luminosity distance and the inclination angle of the source of 
SSM170401, according to the IMRPhenomXPHM and IMRPhenomPv2 waveform models. The inclination angle indicates 
the angle between the line of sight and the total angular momentum of the binary. For nonprecessing binaries, this 
is equal to the angle between the orbital angular momentum and the line of sight. The solid lines and the central 
contour denote 90% credible regions. Right: sky position of the event as evaluated from the Greenwich meridian 

according to the IMRPhenomXPHM waveform model. 

log BH1L1 log BH1 log BL1 log Bcoh,inc 

7.00 ± 0.10 1.56 ± 0.07 0.48 ± 0.06 4.96 ± 0.13 

TABLE VII: Natural logarithm of the Bayes factors of the signal versus noise hypotheses obtained from the PE in 
the data of Hanford-Livingstion log BH1L1, only Hanford (log BH1), only Livingston (log BL1) and the natural 

logarithm of the Bayes factor of the coherent versus incoherent hypothesis 
log Bcoh,inc = log BH1L1 − log BH1 − log BL1. 

while leading to much greater ROQ speedups [105]. We obtain the Bayes factors listed in Table. VII. We fnd a value 
for log Bcoh,inc =4.96 ± 0.13, strongly favoring the coherent hypothesis over the incoherent hypothesis [191]. 

This result, however, cannot be used to update the statistical signifcance of the candidate since we have not run 
the coherence test over the background triggers of the search. While it is unlikely that a randomly selected noise 
candidate would give such a large value of log Bcoh,inc [192], we note that the search ranking promotes candidates with 
parameters consistent between diferent detectors [193], thus it may be less surprising that a highly ranked candidate 
has large log Bcoh,inc. In Fig. 30 we also show the posterior distributions of (M, q) obtained performing PE in each 
detector individually and coherently in both of them. We observe that the 2D contours are compatible with each 
other, having larger areas in the single-detector analyses. This behavior is what is expected if the signal in both 
detectors were generated by the GWs coming from a single CBC [190]. 

G. Discussion 

To discuss the possible source of SSM170401, assuming it is a CBC, we have divided the (m1,m2) in four regions, 
according to the SSM threshold (m2 = 1 M⊙) and the maximum allowed mass of a NS (m1 = 2.2 M⊙) [194–196]. 
We observe that the full 90% credible region of the posterior lies in the region of m1 > 2.2 M⊙, excluding the NS 
origin of the primary component. We fnd that 16% of the posterior distribution lies in the region of m2 > 1 M⊙, 
which would point to a likely NS origin, although a light black hole cannot be excluded. However, the most probable 
region, representing 84% of the posterior, would imply a mass of the secondary component below 1 M⊙. It is thus 
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FIG. 29: Upper panel: posterior distribution of the time delay between the arrival of the signal in LIGO Livingston 
and LIGO Hanford. Lower panel: posterior distribution of the network antenna pattern F , computed using 

Eq. (166). 

interesting to explore what could be the origin and nature of a possible SSM object. 
The frst possibility to consider for an SSM component would be a neutron star. Neutron stars have relatively well-

determined masses from observations of binary systems, including pulsars or X-ray binaries involving an accreting 
neutron star from a companion. Their measured masses are above 1.2 M⊙ [197], further confrmed by the observation 
of GW170817 [198]. However, there is a recent claim [199] for a neutron star of mass 0.77+0.20M⊙, although it has−0.17 
been argued [200] that such a small mass for a neutron star probably requires a strange QCD equation of state. 
Therefore, the neutron star interpretation of a possible SSM component cannot be excluded, although it is disfavored 
by the bulk of observational data. 
Another possibility is PBHs formed by the gravitational collapse of large inhomogeneities in the early Universe which 

are already considered as a possible explanation of LVK GW detections, see e.g. [1, 23–27, 41, 44, 201–205]. Depending 
on the model, they may explain anything from a tiny fraction of Dark Matter to its entirety. PBHs have been the 
main motivation to conduct searches of SSM black holes in the LVK data [7, 172, 173, 177, 206–208], in particular, the 
extended subsolar search with low-mass ratios in O2 which reported SSM170401 as a possible candidate [7]. If some of 
the observed binary coalescences are indeed due to PBHs, they must have a relatively extended mass distribution that 
would have been imprinted by the thermal history of the Universe [26, 209]. This would lead to a peak in the mass 
distribution around a solar mass which is naturally produced at the QCD transition [26, 209–214], and the source of 
SSM170401 could be an example of a subsolar PBH around the QCD-induced peak. The spin posterior is quite broad 
and the spin is compatible with zero, although a slight preference for a primary spin around 0.3 is observed. In this 
case, the non-zero but relatively low spin of the primary component may have been acquired by matter accretion, 
previous mergers or hyperbolic encounters [1, 33, 215]. 
Alternatively, in scenarios with complex and dissipative particle Dark Matter, SSM black holes could form through 

the cooling and gravitational collapse of Dark Matter halos [157]. This model was constrained by the LVK data 
in [12, 173, 216]. Furthermore, it could be that the secondary component of the source of SSM170401 is a boson star, 
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performed with the waveform IMRPhenomPv2 when considering both detectors together (H1L1) and individually. 

a hypothetical horizonless compact object formed by an ultralight bosonic feld. If the mass of the bosonic particle 
is larger than 10−10eV/c2 , the boson star can have subsolar mass [217]. Whether a merger with an SSM boson star 
component could produce a signal similar to the SSM170401 trigger, though, remains to be investigated. 
Finally, we note that the primary component mass of the hypothetical source of SSM170401 would preferably 

lie in the hypothesized low mass gap between 2.5 and 5M⊙ (64%C.L.). However, this is not unique, since other 
candidates with components possibly in this lower mass gap have been observed, namely GW190814 [18] and 
GW200210−092254 [11]. 

H. Conclusions 

We have performed an in-depth investigation of the most signifcant double-detector candidate reported in [7] in an 
SSM search over O2 data. We have removed a prominent blip glitch 14 s before coalescence in the data and estimated 
the parameters of the possible CBC source using a low frequency cutof of 20 Hz. Parameter Estimation runs were 
performed using LALInference with two diferent waveforms IMRPhenomPv2 and IMRPhenomXPHM, where the latter 
includes efects from higher order modes. The source parameters obtained by both PE runs show good agreement 
with each other and with the parameters of the template that triggered the search. We fnd a median network SNR of 
7.94+0.70(90% credible interval), which is lower than the SNR of 8.6 obtained in the search. However, the search SNR−1.05 
is more closely related to the maximum SNR, which we fnd to be higher in the PE, where it reaches values of 9.09 for 

= 0.76+0.50IMRPhenomPv2 and 9.18 for IMRPhenomXPHM. The secondary mass is m2 M⊙ (90% credible interval), with−0.14 
84% confdence of being below one solar mass. For the location in the sky posterior, we fnd an atypical distribution 
when compared with the usual Hanford-Livingston events detected thus far, which can be explained if it were a GW 
coming from the direction joining the two LIGO interferometers. 
The compatibility of SSM170401 with a CBC origin has been further tested by performing the signal coherence 

tests of Ref [190], obtaining a log Bayes factor of 4.96 ± 0.13 for the coherent vs incoherent hypothesis. Furthermore, 
we observe that the (M, q) posteriors of each independent IFO converge to mutually compatible contours. These tests 
provide signifcant support in favor of a coherent signal, which generally is not expected if it were generated by noise 
fuctuations [192]. We also checked that the O3 limits on the SSM merger rate [12] do not put a signifcant constraint 
on the probability of this candidate being astrophysical (P90 ≲ 0.45). Therefore, we do not fnd compelling arguments 
against a possible CBC origin of SSM170401. 
Finally, even if most of the m2 posterior support is in the SSM region, there is still a 16% probability of m2 being 

over 1 M⊙, which does not allow us to convincingly exclude a NS origin. Candidates with a higher SNR would have 
better measurements on their parameters, allowing for more confdent discrimination between sub- and super- solar 
masses [218]. Therefore, the data from future planned LIGO-Virgo-Kagra runs with improved sensitivity [143], O4 
and O5, ofer a great opportunity for discovering CBC mergers with SSM components, if they are out there in the 
Cosmos. 

https://0.76+0.50
https://7.94+0.70
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C. Abstract 

We present direct N-body simulations of black-hole-only clusters with up to 2 · 104 compact objects, zero natal spin 
and no primordial binaries as predicted by various primordial black hole (PBH) Dark Matter models. The clusters’ 
evolution is computed using NBODY6++GPU, including the efects of the tidal feld of the galaxy, the kicks of black hole 
mergers and orbit-averaged energy loss by gravitational radiation of binaries. We investigate clusters with four initial 
mass distributions, three of which attempt to model a generic PBH scenario using a lognormal mass distribution 
and a fourth one that can be directly linked to a monochromatic PBH scenario when accretion is considered. More 
specifcally, we dive into the clusters’ internal dynamics, describing their expansion and evaporation, along with the 
resultant binary black hole mergers. We also compare several simulations with and without black hole merger kicks 
and fnd modelling implications for the probability of hierarchical mergers. 

D. Introduction 

Black holes (BHs) have long captured the attention of astrophysicists due to their elusive and mysterious nature. 
Recent progress in observational astronomy has revolutionized our ability to study them across various scales, from 
detailed images of supermassive BHs at the centres of galaxies [219] to the detection of microlensing events caused 
by BHs passing in front of background sources [220]. More relevant to this work, the detection of gravitational waves 
emitted by merging binary black holes (BBHs) in Earth-based interferometers [11] has improved our understanding 
of their formation mechanisms and population statistics while, at the same time, giving rise to new fundamental 
questions [16, 18, 19, 203], like the nature of Dark Matter [21, 23, 24], and the thermal evolution of the early 
Universe [26]. 
In this context, the investigation of black hole-only clusters takes on particular signifcance as a possible alter-

native origin capable of shedding light onto some observations. Theoretical considerations, supported by numerical 
simulations, have demonstrated the plausibility of forming such clusters. For instance, BHs created during the 
radiation-dominated era are naturally clustered [221, 222] if they derive from large non-Gaussian tails [223–225]. 
Other phenomena such as the appearance of closed domain walls [226] and their collapse [227] can lead to their clus-
tering too. We should also mention the possibility of the existence of black-hole-only clusters originating via stellar 
evolution [228] for which our analysis and conclusions remain valid with the appropriate time delay. 
Despite the progress in the feld, our comprehension of the dynamics of black hole-only clusters remains limited [229]. 

The gravitational interactions between thousands of individual BHs together with the infuence of the surrounding 
environment, present hard challenges for any attempt at theoretical modelling given the vast range of scales needed 
to be considered. However, these complexities also ofer a unique opportunity for N-body simulations to excel. 
N-body simulations have proven instrumental in understanding a diverse range of complex astrophysical phenomena. 

Using numerical methods to integrate the gravitational equations of motion for all of the individual particles, we obtain 

21 jose.nunno@uam.es 
22 juan.garciabellido@uam.es 
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a detailed description of the dynamics governing the evolution of such complex systems [230]. A complete introduction 
to the theoretical foundations of the feld of N-body simulations can be found in Ref. [231] and a shorter, but less 
recent one, in [232]. 
In this paper, we present direct N-body simulations of black hole-only dense clusters, focusing on systems with 

up to 2 · 104 compact objects. Our simulations incorporate physical efects such as the tidal feld of a given host 
galaxy, black hole relativistic merger kicks, and orbit-averaged energy loss due to gravitational radiation from binary 
systems. By utilizing the NBODY6++GPU code [10], we accurately model the evolution of all the BHs for a Hubble time. 
The text is structured as follows, in the frst section VII E we describe the initial conditions in detail, in the second 
section we analyze the cluster dynamics, trying to understand why the clusters dissolve and expand. The following 
section is focused on binary black hole mergers and the parameters characterizing these events. In the last section, 
we summarize our fndings and conclude the work. 
The main body of this work consists of the description of the physical variables of interest regarding such hypothetical 

celestial bodies and their behaviour in a Hubble time. We fnd promising hints of results that could be linked with 
current observations but would need more in-depth research before satisfying conclusions could be drawn. While there 
are possibly many more fndings in the data, we don’t embark on such extensive endeavour and treat this work as a 
comprehensive proof of concept for future works to be carried out. 

E. Methodology and initial mass function 

To evolve our BHs-only clusters, we made use of the direct numerical integrator NBODY6++GPU. The models we evolve 
consist of N black holes, where N ranges from O(103) to O(2 · 104), drawn randomly from 4 diferent initial mass 
functions plotted in Fig 31. The exact numbers can be found in Table VIII. The frst one, a log-normal distribution 
with µ = 10, s = 1.5 and σ = 0.954 is depicted in the right panel and models, for instance, a monochromatic mass 
function when accretion is considered and thus the masses of the BHs can increase. The other three represent an 
approximation to the PBH Thermal model [26, 233] composed of a wide mass function with three widths for the 
log-normal σ = {0.5, 1, 1.5}. See [234] for a recent review of the model. We will refer to them as {M&A,σ0.5,σ1,σ1.5}
respectively. We set the initial fraction of binaries as well as the individual spins of the BHs to zero according 
to theoretical expectations. The BHs are then spatially distributed in such a way that they follow a Plummer 
distribution [235] with a Plummer Radius rp = 10 pc. Based on the assumption that they could reside in the halo of 
a galaxy similar to our own, these clusters are themselves immersed in a central gravitational potential with orbital 
radius Rc = 34 kpc and central mass M = 4.37 × 1010 M⊙ throughout the entire evolution. This is just a point 
mass approximation which leads to a circular movement of period T = 2.81Gyr. In Table VIII we explicitly write key 
statistics for the individual clusters. 
For these models to be of any real physical interest Primordial Black Holes (PBHs) should have been created in 



80 

ID Mtotal[M⊙] Mmax[M⊙] Mmax[M⊙] RHM[pc] RHM[pc] ID Mtotal[M⊙] Mmax[M⊙] Mmax[M⊙] RHM[pc] RHM[pc] 
M&A t = 0 t = 0 t = TU t = 0 t = TU σ0.5 t = 0 t = 0 t = TU t = 0 t = TU 

1295 
2570 
4046 
5199 
8077 
8922 
10372 
10535 
16159 
20738 

16140 
32166 
50088 
64280 
100116 
110196 
128337 
130198 
200392 
256346 

46.54 
66.10 
63.64 
69.98 
78.27 
76.15 
104.26 
68.50 
57.75 
134.10 

46.54 
97.80 
91.98 
74.80 
78.27 
81.52 
104.26 
74.35 
113.59 
145.70 

2.20 
2.38 
4.27 
2.20 
12.53 
13.31 
6.20 
9.72 
4.44 
1.37 

27.04 
27.17 
26.74 
28.39 
29.50 
32.01 
27.54 
28.20 
27.24 
26.65 

1520 
3345 
5480 
7678 
9937 
12201 
14366 
16428 
18776 
20866 

1389 
3007 
5009 
7008 
9001 
11001 
13005 
14912 
17007 
18918 

5.03 
4.50 
6.67 
5.69 
5.48 
5.00 
5.42 
7.72 
5.40 
5.31 

5.03 
5.08 
6.67 
7.52 
5.48 
7.77 
8.22 
7.72 
6.51 
7.36 

9.72 
3.23 
0.77 
1.92 
1.25 
2.90 
2.65 
0.48 
2.29 
3.91 

12.25 
15.55 
16.21 
15.15 
15.85 
15.29 
16.04 
16.04 
15.00 
15.35 

ID Mtotal[M⊙] Mmax[M⊙] Mmax[M⊙] RHM[pc] RHM[pc] ID Mtotal[M⊙] Mmax[M⊙] Mmax[M⊙] RHM[pc] RHM[pc] 
σ1 t = 0 t = 0 t = TU t = 0 t = TU σ1.5 t = 0 t = 0 t = TU t = 0 t = TU 

1505 2003 32.07 32.07 1.93 27.07 1220 3020 63.67 63.67 3.37 58.92 
3090 4004 18.56 18.56 7.52 22.21 3423 8010 105.74 105.74 7.15 41.00 
5288 7007 34.14 34.14 7.60 21.97 5258 13014 541.18 541.18 1.95 40.15 
7507 10001 25.82 34.29 3.95 24.77 8025 20021 157.23 157.23 0.41 41.62 
10663 14000 46.77 46.77 6.64 26.96 10011 24187 179.83 280.36 1.45 60.33 
12834 17004 32.81 58.06 4.41 23.91 12409 30007 114.51 114.51 0.07 55.98 
15136 20000 58.31 58.31 0.47 25.47 14691 38027 731.69 1004.13 1.40 37.81 
17554 23008 45.68 64.90 0.82 25.62 17182 43013 554.27 554.27 5.59 46.36 
20590 27008 51.60 76.41 4.70 26.64 20261 49021 657.47 784.02 3.52 41.41 

TABLE VIII: In this table we show the initial conditions for the clusters studied in the paper. The ID also 
corresponds to the initial number of BHs. We also provide the total mass of the cluster, the maximum mass of any 
single BH in the cluster at t=0 as well as after we have evolved it for the age of the Universe and the radius that 
encircles half of the total mass of the cluster at both times. The reasons for the maximum mass difering at the 
beginning and end of the evolution are due to mergers retained in the clusters or the escape of the most massive 

body. 

large numbers at the beginning of the Universe and close enough to each other so that they would have formed clusters 
so dense as to overcome the Hubble expansion. Several mechanisms could lead to such scenarios [227, 236]. The idea 
of them making up a signifcant fraction of the Dark Matter would add relevance to the study but is not essential. 
To understand the implications of such a scenario, we can estimate the number of clusters needed to get the observed 
DM mass. Given the clusters’ total masses range is O(103 − 105)M⊙, we would need around O(106 − 109) clusters to 
conform the entirety of the dark matter in our galaxy, where we have used a total DM mass of 1.2 × 1012M⊙ [237]. 
Given the nature of the clusters’ components, direct detection is intrinsically difcult; therefore, our approach will 
focus on identifying potential footprints they may leave behind. 

F. Dynamics 

The dynamics governing self-gravitating systems are extremely non-linear, thus, trying to infer general qualitative 
principles is the most we aim to do in this paper. In this section, we will try to shed some light on the understanding 
of the passage of time for these systems. We will do so by following various global physical variables that would serve 
as a proxy for the whole cluster. 
From the point of view of the spatial extension of the clusters with time, we can study global quantities such as the 

Lagrangian radii and the core radii as defned in [231]. We plot in the left panel of Fig 33 the Lagrangian radii for 
50% of the mass of the diferent clusters. This quantity is also called the half-mass radius. The tendency is for the 
half-mass radius to grow with time, with a steeper slope at the beginning of the simulation and fattening towards 
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FIG. 32: In the left panel of this fgure we plot the number of BHs for the various clusters as a function of time 
normalized to the initial number of BHs. The dark blue lines represent the lightest cluster for a given IMF 

increasing upwards with no overlapping between the lines in the last ∼ 7 Gyrs of evolution. In the right panel, we 
plot the average mass of BHs for the various clusters inside the half-mass radius as a function of time. 

the end, albeit always increasing. In the case of the core radius, which is displayed for all the clusters in the right 
panel of Fig 33, we observe that it remains constant, with a slight upward trend throughout the evolution. This 
translates into a faster expansion of the outer layers, converging towards an almost non-expanding core. Additionally, 
it is interesting to note that most clusters exhibit a similar core radius regardless of the initial number of BHs. 
Now we analyse the stability of these clusters. When carrying out the numerical evolution, it is evident from the 

beginning that BHs are constantly escaping the combined gravitational infuence of the cluster and the host galaxy 
so that the total number being evolved by the code gets reduced with time. In NBODY6++GPU, BHs are removed from 
the cluster evolution once they have reached twice the tidal radius [238] as calculated using the mass of the cluster at 
the specifc time. This will be our defnition of an escaper (single or binary). 
These BHs acquire the needed escape velocity after one or several close encounters with other BHs. This process 

happens so often that we can consider all clusters to be metastable, that is, most of them don’t release enough BHs 
to dissolve in the age of the Universe, but they will eventually do so. In the left panel of Fig 32, we show the number 
of BHs left in the clusters as a function of time, normalized to the initial number of BHs of each cluster so that the 
various runs are comparable. We see that some of the lightest clusters of the σi type dissolve completely in the age 
of the Universe and, in general, the larger the σ for the IMF of the cluster, the shorter the expected lifespan. The 
most stable set of initial conditions seems to be that of M&A. To explain this, we have to understand the main 
mechanism behind the clusters’ dissolution and the diference in their behaviour as a function of the IMF. We can 
imagine a simplistic scenario in which we just consider 2-body interactions as the main driver of the evaporation of 
the clusters. This is probably a good approximation as 3+ body encounters are suppressed based on their scattering 
cross-section. Now, when considering the diferent IMFs, we see that the main diference across the various σ is the 
mass ratio distribution for random pairs. The larger the σ is, the more extreme mass ratios exist, and the expected 
mass ratio goes further away from 1. In the M&A case, most of the pairs concentrate close to equal mass ratios. 
This led us to the conclusion that the more extreme the mass ratios are, the more slingshots of the lighter BHs occur 
which is translated into more BH escapers. This is also in agreement with the fact that the lighter BHs escape earlier, 
leaving the heavier ones in the cluster. This can directly be appreciated in the right panel of Fig 32 where we plot the 
average mass of the BHs inside the half-mass radius. This quantity is strictly increasing in the σi cases with a slope 
that steepens in the last stages of the cluster life due to the wider range of masses present in those clusters. Given 
the almost monochromatic nature of the M&A IMFs, the average mass tends to stay constant with a variance that 
decreases inversely with the initial BH number. 
If a sufcient number of these clusters existed in our Universe, single black hole escapers could potentially be 

detected from Earth through microlensing or via stellar disruption events. Those that escape as binaries could also 
be detected in the fnal stages of the inspiral, as well as the merger and the ringdown in Earth-based gravitational 
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FIG. 33: In this fgure we plot the Lagrangian radii for 50% of the mass and the core radii for the various clusters as 
defned in [231]. Most lines overlap cluster-wise, so we don’t add a legend to distinguish them only pointing out that 
the lighter clusters are also those showing the largest variance. For the core radii, we include a zooming window to 
what looks like possible oscillations for the heaviest of the M&A clusters, although it could also be just shot noise in 

the calculation. 

waves interferometers. We will call these binary escapers, of-cluster mergers if the initial conditions regarding their 
orbits’ parameters once they have escaped from the gravitational pull of the cluster are such that they coalesce in the 
age of the Universe. To calculate the coalescence time, we assume orbit shrinking via gravitational wave emission and 
use the formula as derived in [239] in post-processing. 
Starting with the single BH escapers, we frst acknowledge the fact that the distributions of masses are very similar 

to the IMF of the clusters with a slight skew towards the lighter BHs due to usual gravitational mass segregation. 
This means that enough observations of these rogue compact objects would paint a good picture of the progenitor 
clusters’ distributions. 
Regarding binary escapers, of which of-cluster mergers represent a subset, we fnd a correlation in the distribution 

of semi-major axes with the initial BH number. The larger the initial number of BHs in the cluster, the tighter the 
binaries that escape (smaller semi-major axis) and vice-versa. This fact can be visually spotted in fgure 34. This is 
expected as the binaries that may survive in a less dense cluster based on the rate of interactions, may not do so in 
denser environments. In other words, the binding energy needed for a binary to prevail and escape the cluster grows 
with the density. Regarding their eccentricities (e0), we see an excess close to maximum eccentricity. This is just the 
result of the many interactions the binaries need to endure before escaping the cluster. 
Results also show that the absolute number of binary escapers increases with the initial BH number within the 

same type of IMF. Going even further, it also seems to correlate with the stability of the clusters surveyed. The more 
stable the cluster type, the more binaries escape the gravitational infuence with the order from more to less stable 
being {M&A,σ0.5,σ1,σ1.5}. 

G. BBH mergers 

During the numerical evolution of the clusters, the centres of two (or more) BHs might get close enough due to the 
gravitational interactions that their event horizons would merge and the code would start evolving them as a single 
entity, thus declaring a coalescence. These events occur inside the clusters [240, 241], mainly induced by interactions 
where 3 or more compact objects are involved [242], that is, binary-single interactions or binary-binary interactions. 
We refer to them as in-cluster mergers. The second type of merger, as described in Section VII F, occurs when two 
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FIG. 34: In this fgure we plot the initial semimajor axis and eccentricity (a0,e0) of all the BHs that escape the 
gravitational pull of the clusters within the age of the Universe. These are the binaries logged by the Nbody code as 

escapers. In order from left to right and top to bottom, we are showing the clusters {M&A,σ0.5,σ1,σ1.5}. The 
dashed lines represent the values of (a0,e0) for which τmerger(m1,m2, a0, e0) = THubble with (m1,m2)[M⊙] being the 
pairs of number in the base of the plot beside each line. These calculations, however, does not take into account the 
time delay from the beginning of the simulation until the binary escapes the cluster which can be quite substantial. 

The width of the dots represents the total mass of the binary defned as MTotal = m1 + m2. 

BHs leave the cluster as a binary bound by their mutual gravitational interaction. Due to gravitational radiation and 
under the assumption that nothing else ever interacts with these pairs, they will inevitably end up merging. If the 
time of merger is less than a Hubble time, we refer to them as of-cluster mergers. 

H. Merger count 

Understanding the diference between the various initial conditions can be very useful in assessing the underlying 
mechanisms of the mergers. In the right panel of Fig 35 we show four histograms with the number of mergers per 
cluster. Discussing frst the in-cluster mergers, we fnd that among the σi clusters there is a trend in the number of 
mergers inverse to the width (σ) of the distribution. In the σ0.5 and σ1 cases, a maximum in the merger count seems 
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FIG. 35: In the left panel we show a histogram of the number of in-cluster mergers for the M&A cluster type. The 
bars with the blue border represent the simulations used throughout the paper, where BH merger kicks are taken 
into account. The bars with the black border are those same simulations when the kicks are not considered. In the 
right panel, we plot a histogram of the number of mergers per cluster type. We diferentiate, in blue the in-cluster 

and in red the of-cluster mergers. 

to arise for N ∼ O(1.7 · 104), although it could be just a statistical anomaly. The total number count for comparable 
initial NBH lies below that of the M&A cluster type. This can be explained based on the lower stability of the clusters 
themselves due to the larger mass range present. The large number of mergers for the M&A cluster type has as a 
result also the existence of second-generation BHs, which we discuss in sec VII I. For this last case, there is a clear 
upward-sloping tendency in the number count both for in and of-cluster mergers. 
We observe a lower number count in the of-cluster merger statistics. This is expected as the delay between the 

start of the simulations and the ejection of the binary from the clusters can be signifcant, thus making the expected 
merger time for the binary escapers way longer than Hubble time. This comes together with the fact that gravitational 
wave emission is a slow mechanism for shrinking the orbit of the binary in comparison with the interactions governing 
the in-cluster mergers. Comparing cluster types, we fnd again fewer counts for the σi with no of-cluster mergers 
happening in any σ1,1.5 clusters. This means that no binary escaper ever merged in the age of the Universe. One 
of the reasons for this is that the distribution in the semi-major axis of these two cluster types lies at higher values 
always, which is generally equivalent to larger merger times. Another reason is that the average delay time before 
escaping is larger for σ1,1.5 than for the other two clusters. It can also be explained by the fact that there are fewer 
binary escapers for those two clusters, as can be seen in fgure 34. 

I. Hierarchical mergers 

The product of any merger is another BH with the mass equal to the sum of the masses and spins calculated 
using [243]. These remnants may or may not stay in the cluster as the velocity imprinted on them [244–246] can 
be very high. Those which not leave the cluster are subject to the possibility of being involved in another merger. 
To understand how common this phenomenon is, we show a histogram in the left panel of Fig 35 with the total 
number of BH mergers identifed in the lifetime of the clusters for the M&A cluster type. There are two diferent bars 
per Cluster ID. The ones whose border is black represent simulations in which BHs’ natal kicks are not taken into 
account while bars with a blue border are the normal simulations that do include such a physical phenomenon and 
thus represent a more complete description of reality. The initial conditions are the same for both cases. We fnd that 
when kicks are not present, the probability that a remnant stays in the cluster is high as the velocity after the merger 
is obtained based on linear momentum conservation. However, when kicks are included, relativistic efects imprint a 
velocity in the remnant that is usually much larger than the escape velocity of the cluster. This has as a consequence 
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a sharp drop in the probability of hierarchical mergers. We can see this refected in the fact that hierarchical mergers 
of up to 6th generation can happen in most of the clusters if kicks are ignored but it’s only for N larger than 10535 
BHs that we fnd hierarchical mergers when kicks are considered. What is more, anything beyond 2nd generation 
is not on the cards, as the kick velocity is even larger in the case where progenitor spin is non-zero [247]. This has 
broader consequences in the distribution of other binary parameters, such as the fnal spin. As can be seen in Fig. 38 
a limited number of BH remnants have af > 0.7 and they are all produced via second-generation mergers. A variation 
in the statistics of such products would lead to critical diferences in the detected population of BHs via for example 
gravitational wave interferometers. 
This result is of great importance as it highlights the signifcant impact that an occasionally overlooked physical 

efect can have on observational probes. Any simulation lacking the modelling of BH merger kicks is doomed to 
overestimate the hierarchical merger rate and the skew to larger remnant spins. 

J. Merger Rate 

Cluster ID Redshift Rate z=0 Cluster ID Redshift Rate z=0 
M&A last merger (events/yr/Gpc3) σ0.5 last merger (events/yr/Gpc3) 

2570 5.89 0.00 3345 1.71 0.00 
4046 2.79 0.00 5480 0.03 263.69 
5199 0.18 1.36 7678 2.67 0.00 
8077 0.44 2.72 9937 0.83 80.93 
8922 1.77 0.00 12201 1.65 0.00 
10372 0.43 1.36 14366 0.33 77.48 
10535 0.04 5.45 16428 0.60 29.55 
16159 0.18 6.81 18776 0.34 45.33 
20738 0.05 14.98 20866 0.44 18.34 

TABLE IX: We present the local merger rate and redshift of the last identifed in-cluster BH merger for every 
cluster with at least one merger within the age of the Universe. We focus on the {M&A,σ0.5} cluster types due to 
their larger merger counts. The rate is calculated using all the in-cluster mergers with z < 1 to approximate the 

local merger rate, assuming that all of the Dark Matter is contained within such dense clusters. 

Following the merger history of the various clusters throughout their evolution could give us clues about possible 
probes of these models, as currently, our best chance to infer the existence of these objects is via gravitational waves. 
For that purpose, we plot in Fig 36 the in-cluster and of-cluster merger rates as a function of time for the cluster 
types {M&A, σ0.5} based on their larger merger statistics compared to the other two. The frst thing we observe is 
there is a pronounced peak for the in-cluster merger rate at a time T ∼ {0.5, 3} Gyrs or z ∼ {9, 2} respectively for 
the two cluster types and a distribution for the of-cluster merger rate very broad with time. In Table IX we include 
the estimated local merger rate of the diferent clusters assuming they individually comprise all of the dark matter in 
our Universe. This way of presenting the rates for individual clusters rather than cumulatively for all clusters within 
the same type facilitates comparison with the rate we could estimate if we observed any one of these clusters in our 
Universe. Given the limited statistics available in some cases, these estimates are susceptible to shot noise for the 
single clusters. 
From the in-cluster mergers perspective, current Earth-based interferometers are on the verge of being able to 

1.18+0.73detect events coming from as far as z = 2, with examples in O3b going as high as z = in the case of−0.53 
GW190403 051519 [11]. Current star formation models [248] predict a peak in the merger rate corresponding to the 
peak in the star formation rate (z ∼ 1.8 = Madau-Dickinson 3.5 Gyr after BB) plus a time delay of about a Gyr due 
to the time of BH collapse, binary formation and subsequent merger (z ∼ 1.1 − 0.9). Finding an excess beyond this 
redshift would possibly hint towards one of the models of dense clusters of PBH analysed here. 
In the case of of-cluster mergers, the rate is smaller, and instead of increasing, their redshift dependence decreases 

towards larger redshifts. This characteristic could be utilized to distinguish between their primordial and astrophysical 
origins. 

https://1.18+0.73
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FIG. 36: We show the in-cluster and binary escapers merger rate for the cases of M&A and σ0.5, which have the 
highest number of mergers, allowing for more accurate kernel density plots of the underlying merger rate. The 

binary escapers’ merger rates are represented as solid lines with similar colours as the flled density plots depicting 
the in-cluster merger rates. We observe a general trend where the in-cluster mergers peak around 0.54 Gyr after the 

Big Bang for M&A clusters and 3.3 Gyr for σ0.5 clusters, well before a Hubble time, while the binary escapers’ 
merger rate extends signifcantly beyond it. 

K. Mass distribution 

Another approach to analyzing BBHs is through their mass distribution, which is highly dependent on the original 
distribution of masses due to the strong suppression of hierarchical mergers in realistic simulations. In Fig 37 we 
present a scatter plot of the mergers in the (M1,M2)[M⊙] plane. We can diferentiate the two cases: in-cluster 
mergers directly identifed by the code and depicted as circles in the fgure and of-cluster mergers that we evolve in 
post-processing. A noticeable clustering around equal mass ratios is observed, deviating from the expected binary 
distribution one would obtain by randomly drawing pairs from the initial mass function. This suggests a genuine 
preference for q = 1 embedded in the mechanisms responsible for these mergers. This preference implies that the 
binary formation cross-section has a maximum for equal mass ratios, while unequal ratios result in more hyperbolic 
encounters. The BBH merger with the minimum mass ratio identifed sits around ∼ 0.2 in the σ1.5, not shown in the 
plot, which is above the minimum mass ratio detected in a confdent BBH which is ∼ 0.1 for GW190814. 
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FIG. 37: In this fgure, we present the distribution of the masses of the BHs that merge within the age of the 
Universe. They are categorized into two groups: those merging inside the clusters, identifed as collisions by the 
code (in-cluster), and those accounted for as binary escapers and evolved outside of the simulation (of-cluster). 

Some clusters don’t produce any merger and thus, not every color in the legend is represented in the plots. The left 
plot corresponds to the M &A type and the right plot represents the σ0.5 models. 

L. Spin distribution 

Initially, the spins of all the BHs are set to 0 inspired by the isotropic collapse of the primordial overdensities 
predicted by most PBH formation theories. This assumption, nonetheless, may also apply to stellar BHs as the 
efciency of the angular momentum transport from the spin of the progenitor star is still under debate (e.g. [249– 
251]). The various BHs can acquire spin via merging with other BHs. The fnal spin of the remnant is calculated 
using [243], which depends also on the progenitors’ spins and masses. It is also possible that due to the multiple close 
encounters in dense clusters, the spin of the BH population is induced stochastically, with a fnal spin distribution 
peaked at zero with a dispersion of about σs = 0.2 [215]. We did not consider in this work the induced spin due to 
close hyperbolic encounters in the distribution of spins of the BH population. 
In Fig 38 we present the distribution for the absolute magnitude of the spin of the remnant BHs. The left panel 

illustrates the distribution for in-cluster mergers, while the right panel depicts the same for of-cluster mergers. We 
observe that the bulk of the distribution is similar for both cases, as the initial spins for all BHs are 0, and thus, the 
fnal spin depends entirely on the initial masses. The most frequent value for the fnal spin is around af = 0.68 as you 
need to reach very unequal mass ratios q < 0.4 to go below af = 0.6. There are however, some extreme spins, sitting 
around af = 0.9 due to 2nd generation mergers where one of the progenitors already had a non-negligible spin. They 
represent a 4% of all the BBHs that coalesce while representing a larger fraction of the total number of of-cluster 
mergers. The smallest fnal spin sits around af = 0.4, corresponding to an extreme mass ratio of q = 0.2 in the σ1.5 
type of clusters and the largest one lays very close to af = 0.9, coming from a second generation merger and high 
total mass. This distribution aligns with general observational results and our expectations that most, if not all, BHs 
in our universe are Kerr BHs, as there are many mechanisms to gain spin but very few to lose it. 

M. Residual eccentricity distribution 

Another parameter crucial for understanding the nature of BBHs is the residual eccentricity of the binaries. Looking 
at fg 36, we can diferentiate the in-cluster and the of-cluster mergers as two very diferent cases. The in-cluster 
mergers are the result of complex dynamical processes where more than two bodies are usually involved. The main 
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FIG. 38: In this plot we show the value for the fnal spins of the remnant BHs as a function of the binary mass 
ratios of the progenitors. The simulations assume zero spins as the initial condition. We distinguish between 
mergers happening inside the cluster and outside and also between 1st and 2nd generation mergers. Spins are 

calculated using [243] either by the code itself or in post-processing. 

process by which the BHs end up merging is not gravitational wave emission, and thus, we expect to fnd highly 
eccentric signals as eccentricity cannot be radiated away. This could be a distinct feature if we were to detect an 
eccentric merger at a sufciently high redshift as we would not expect in-cluster mergers to happen before the peak 
star formation rate era. This kind of highly eccentric merger, however, presents challenges on its own to be measured 
(see [252]). Given the lack of a signifcant inspiral phase in these events, in-cluster mergers would likely manifest 
in Earth-based gravitational wave interferometers as short bursts, of which one example might be GW190521 [19]. 
This comes with various challenges as the very low number of detectable cycles leaves the foor open to numerous 
alternative hypotheses [253–255]. 
The other case, the of-cluster mergers, follow a completely diferent route and the only mechanism by which they 

end up merging is via orbit shrinking through GW emission. As a result, eccentricity is radiated away [239] before the 
binary reaches the detectability threshold in current Earth-based interferometers. To investigate the validity of such 
a hypothesis, we plot in fg 39 the residual eccentricity for the of-cluster mergers, that is, the eccentricity that, based 
on quadrupolar GW emission, the binaries would have at the moment of the merger. Most of the cases that would 
concern us (z < 2) present a maximum residual eccentricity of e ∼ 10−4 , which is hardly detectable given current 
sensitivity and the fact that it might be confused with spin efects [256]. The detectability threshold lies at around 
e ∼ 10−3 for a high enough SNR event, justifying the use of the quasi-circular approximation. 

N. Conclusions 

In this paper, we have reported the results of our study of the phenomenology of BHs-only clusters with diferent 
initial mass functions based on both astrophysical and cosmological assumptions for their origin. 
From a dynamics point of view, we have encountered diferences in the evaporation as well as the expansion rate of 

the clusters. The main distinction between cluster types can be understood via their stability, which seems to depend 
highly on the mass ratios of the typical encounters occurring inside of them and driving the energy exchange between 
the BHs. In this regard, we fnd that single BH escapers’ distributions resemble very closely the original IMF except 
for a larger skew towards smaller masses and the total number of binary escapers seems to be correlated again with 
the stability criteria so that, the more stable the cluster is, the more binaries can fy from its gravitational potential 
well. 
Regarding BBH coalescences, we distinguished between in-cluster and of-cluster mergers due to their signifcant 

diferences in orbital parameters and potential detectability from Earth. On the one hand, in-cluster mergers are 
produced via 3+ body encounters inside the densest regions of the clusters, with a peak in the merger rate at a 
relatively high redshift, generally above the detectability horizon of current interferometers, although this is highly 
model-dependent. These mergers are also characterized by very high residual eccentricity and few detectable cycles 
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FIG. 39: In this fgure, we display the residual eccentricity of the of-cluster mergers. We defne residual eccentricity 
as the eccentricity the binary would possess at the time of merger, after it has been radiated away throughout the 

inspiral phase. This residual eccentricity could potentially be detected from ground-based interferometers. 

from Earth. On the other hand, of-cluster mergers occur outside of the cluster due to gravitational wave emission. 
This mechanism leads to a very low residual eccentricity (e < 10−4), leading to quasi-circular BBH coalescence as 
observed from Earth. The masses of the BBH mergers depend very much on the IMF although we fnd a trend 
favouring mass ratios close to 1 independent of the IMF. Given our zero-natal spin assumption, most of the fnal spins 
depend on the progenitor masses with a very low probability of non-zero progenitor spin (< 4%). 
We also conducted a comparison between the M&A clusters with and without considering BH merger kicks, fnding 

a strong dependence on the existence and number of hierarchical mergers. This fnding provides valuable insight into 
the accuracy of numerical simulations. Predictions regarding the occurrence of these types of mergers cannot be relied 
upon if merger kicks are not incorporated. 
In summary, this work aims to elucidate the phenomenology of complex non-linear systems represented by 

gravitationally-bound BH-only clusters. We hint at some results as promising candidates for unexplained obser-
vations and expand the world of possibilities in numerical research. 
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VIII Gravitational Energy and Angular Momentum Loss 
in CHE 

A. Introduction 

Close encounters and their accurate description represent one of the main challenges in modern gravitational direct 
N-body simulation codes. The correct and efcient integration of such phenomena is critical for the comprehension 
of the phenomenology of dense stellar environments. What is more, given the distances and velocities involved in the 
most intense of these interactions, radiative corrections start playing a non-negligible role. Until now, most of the 
eforts had been dedicated to the two-body closed-orbit case as already implemented in the reference N-body code 
NBODY6++GPU [10]. In the following section, we will derive analytic formulas describing the gravitational wave emission 
of an open orbit encounter between two given bodies and the quadrupolar approximation. The format and similarity 
with the closed-orbit case made them easily and straightforwardly implementable in the reference N-body code as an 
extension when the eccentricity parameter is above 1. 

B. Considerations & derivation 

The equation of motion for a body in a hyperbolic trajectory around another is 

a(e2 − 1) 
r(ϕ) = (168)

1 + e cos(ϕ − ϕ0) 

First, we are going to use the quadrupole approximation [69]; that is, the fact that the gravitational wave emission 
is dominated by the quadrupole moment of the mass distribution of the system. For that matter, the energy and 
angular momentum loss can be written as 

dE G ... ... 
= − ⟨Qij Qij ⟩ 

dt 45c5 
(169)

dLi 2G ... 
ϵijk⟨ ¨ = − QjaQka⟩ 

dt 45c5 

We assume the orbit lays in the z plane and thus we only need to keep the i = 3 component. Using the quadrupole 
moment given by [9] 

Qij 
2 = r µ 

  −1 + 3 cos2 ϕ 3 cos ϕ sin ϕ 0 
3 cos ϕ sin ϕ −1 + 3 sin2 ϕ 0 

  , (170) 
0 0 −1 

with µ = M1M2 and M = M1 + M2 we calculate such derivatives M1 +M2 

dE 4G4M3µ2(1 + e cos(ψ))4 
= − f(ψ)5dt 15|a|5c5 (−1 + e2) (171) 

f(ψ) = (24 + 13e 2 + 11e 2 cos(2ψ) + 48e cos(ψ)) 
.

where we have defned ψ = ϕ − ϕ0 and 

dLz 4G(|a|GM)5/2µ2(1 + e cos(ψ))3 
= − g(ψ)

dt 5a6c5 (−1 + e2)7/2 (172) 
g(ψ) = (8 + e 2 + 3e(e cos(2ψ) + 4 cos(ψ))) 

Now using that for hyperbolic encounters 

L2 
2 e = 1 + 

|a|GMµ2 
(173)

GMµ 
E = 

2|a| 
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where a < 0 so that we are consistent with the elliptical case. We can write the variation with time of the eccentricity 
and the semimajor axes, as needed for the evolution of the orbit 

da 8G3M2µ(1 + e cos(ψ))4 
= − f(ψ)5dt 15|a|3c5 (−1 + e2) 

de 2G3M2µ 2 = − 4 (1 + e cos(ψ))3(e(116 + 6e + (174)
dt 15a4c5e (−1 + e2) 

+ 11e cos(3ψ) + 2(26 + 9e 2) cos(2ψ))+ 
+ (72 + 109e 2) cos(ψ)) 

With f(ψ) as defned in eq (171). Given the needs of our program, we need to write all variables as functions of 
{a, e, r, µ, M}, thus, we can use eq (168) � � �� 

1 a(e2 − 1)
ψ = arccos − 1 (175) 

e r 

We could implement already these equations. However, it would not go in the same spirit as the Peters and Mathews 
approximation [257]. Thus, as suggested also by Rainer, we should calculate the orbit averaged energy and angular 
momentum emission. To do so, we need to integrate from ψ = −ϕ0 to ψ = ϕ0 with � � 

1−1ϕ0 = cos − (176) 
e 

and divide the emission by the typical crossing time T = 2π
p
|a|3/GM . The result for the energy emission is the 

following Z ϕ0 dE dt 
δE = dψ 

−ϕ0 dt dψ 
2δE G4Mm2 

1m2 ¯= − f(e)
T 45π|a|5c5(e2 − 1)7/2 � �p � �

f̄(e) = 673e 2 + 602 e2 − 1 + 3 37e 4 + 292e 2 + 96 sec −1(−e) 

(177) 

Having used 

dt 
dψ 

= 
[|a|(e2 − 1)]3/2 

(GM)1/2 
1 

(1 + e cos ψ)2 (178) 

Now we do the same with the angular momentum Z ϕ0 dLz dt 
δLz = dψ 

dt dψ−ϕ0 

2 2δLz 4m1m2M
1/2G7/2 (179)

= − ḡ(e)2T 5π|a|7/2c5 (e2 − 1)� �p � � 
ḡ(e) = 2e 2 + 13 e2 − 1 + 7e 2 + 8 sec −1(−e) 

For the semimajor axis and eccentricity, we have 

δa 2G3m1m2M ¯ = − f(e)
7/2T 45π|a|3c5 (e2 − 1) 

δe G3Mm1m2 � �p
4 = − ( 134 + 1069e 2 + 72e (e2 − 1) (180)

T 45πa4c5e (e2 − 1)5/2 � �
2 2+ 3e 304 + 121e sec −1(−e)) 



92 

We see that in the limit e → 1 the expressions are equivalent to those of [257] and thus, these formulas represent their 
analytic continuation. Now, for the implementation in Nbody6++GPU, we will make them symmetric for efciency 
purposes 
Defning the following mass coefcients 

m1m2M 
fc = M = m1 + m2, (181) 

c5 

{F0, F2} 

73 372 4F0 = 1 + e + e (182)
24 96 

7 2F2 = 1 + e (183)
8 

and {G0, G1, G2} similar to the e < 1 case 

G0 = 
1 
sec −1(−e)F0+ 

π � � (184)
1 301 673 2+ (e 2 − 1)0.5 + e 

24π 6 12 

� �p1 67 1069 2 4G1 = + e + e (e2 − 1)
8π 36 72� � (185)
1 19 1212 2+ e + e sec −1(−e)
π 12 192 

G2 =
1 � 

2e 2 + 13 
�p 

e2 − 1 + 
1
sec −1(−e)F2 (186)

8π π 

we write the fnal formulas entering the actual Fortran code 

dE 32 m1m2 
= fc (e 2 − 1)−3.5G0 (187)

dt 5 a5 

dJ 32 m1m2 
= fc (e 2 − 1)−2G2 (188)

M1/2a7/2dt 5 

da 64 1 
= fc (e 2 − 1)−3.5G0 (189)

dt 5 a3 

de 64 1 1 
= fc (e 2 − 1)−2.5G1 (190)

dt 5 e a4 



93 

IX Thesis Conclusion 

As this thesis ends, it is evident that gravitational wave astronomy has opened up new avenues for understanding 
our Cosmos. Through the various research works presented here, we’ve gained insights into many aspects of the 
production and detection of gravitational waves, with deep dives into the mechanics of the detectors, the analysis 
techniques employed in the characterisation of the signals and new proposals regarding the potential origins of their 
main sources, binary black holes. The primordial black hole paradigm has been a main repeating point throughout 
the thesis. It has guided our work and many of the discussions surrounding it. Apart from these works, we have also 
contributed to the LIGO-Virgo-KAGRA Collaboration, adding our bit to one of the largest scientifc collaborations 
in the history of humankind. 
We have witnessed the birth of a new era, one where gravitational waves act as messengers from the depths of space, 

carrying information about celestial phenomena that were once thought to be beyond our reach. This thesis represents 
nothing more than a frst crude and wide glimpse at this vast and yet-to-be-explored new window to the Universe, 
with plenty of more gravitational wave observations to come with the improvements of current interferometers and 
the outright construction of new and more advanced apparatus [91, 258]. As we stand here, it is worth refecting on 
the journey that led to this discovery starting with the frst derivation of the linearized equations of motion of General 
Relativity in 1916 by Albert Einstein himself. At that time, the reality of these quadrupolar ripples in the fabric of 
spacetime was doubtful and later on, its detectability was thought to be impossible. Yet, humanity’s relentless pursuit 
of knowledge defed expectations and right now we detect events every week with ever-increasing accuracy. This is 
one of the many examples of the importance of humility in the face of discovery. 
As we continue the scientifc endeavour to expand human understanding, we need to accept that human knowledge 

will continue to advance faster than our expectations and imagination. And this, at least for me, is sufcient reason 
to embrace curiosity and pursue learning as a guiding principle. 
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[203] S. Clesse and J. Garćıa-Bellido, Physics of the Dark Universe 38, 101111 (2022). 
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