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The flavor structure of the Standard Model (SM), as dictated by the Cabbibo-

Kobayashi-Maskawa (CKM) matrix, is far from generic. Probing the elements of

the CKM matrix is thus important, not only as tests of the SM but also as probes

of new physics beyond it. In part of my work, I look at various phenomena in

the realm of flavor physics towards this goal. I focus on the study of the decay

of neutral kaons to a dimuon pair. Due to long-distance effects, the decay of the

short-lived neutral kaon, KS , to two muons was initially thought to be theoreti-

cally unclean. I show that time-dependence measurements of the decay rate are

theoretically very clean and can still provide meaningful checks of the Standard

Model and look for new physics.

The rest of my work is dedicated to the study of neutrinos. Neutrinos are

the lightest particles in the Standard Model and they interact very weakly with

ordinary matter, making their detection difficult. In my work, I study how an

exchange of two neutrinos between two objects can mediate a long ranged force

between them, thereby potentially allowing us to probe their properties indirectly.

This two-neutrino exchange force, which is a quantum effect, can be treated in the

non-relativistic limit as a classical addition to the Coulomb potential. Although

this force is weak and below experimental sensitivity levels today, I study how in

certain situations it can be enhanced and potentially observed.
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CHAPTER 1

INTRODUCTION

The Standard Model (SM) of particle physics is hailed as one of the crowning

jewels of human endeavor. And yet, it is no mystery that the Standard Model is

inadequate. Many phenomena, such as neutrino masses and their nature (Dirac or

Majorana?), the issue of dark matter, several anomalies in flavor physics in which

lepton universality may be broken (to name a few), are without satisfactory expla-

nation. And on top of it all, attempts to complete the SM bring forth new issues

to be resolved. This is truly an exciting time for the particle physicist, because

the particle theory community today faces the challenge of not only proposing

solutions to these problems, but also taking care that the theories are in line with

constraints from experiment, and are in themselves, well behaved.

Although it is a common notion that most experiments in particle physics hap-

pen inside the collider, it does not necessarily have to be so. The cost and scale

of collider projects make experimentation a very expensive affair. However, new

physics can affect many low energy observables, and this opens the avenues of

studying signatures of new physics in more modest systems, ie., in atomic and

condensed matter systems. Cosmological processes can also act as effective col-

liders in space which can teach us more about physics beyond the SM. My work

in graduate school aims primarily at studying these signatures of physics, both

SM and beyond, through non-collider probes.
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Non-collider probes of new physics are exciting, and very interdisciplinary.

Whether it be the use of superconductors to detect dark matter, the use of atomic

and molecular transitions to detect neutrinos or light new bosons or using measur-

ing energy loss from classical systems by the emission of new particles, there are

exciting prospects of finding new physics amidst old phenomena. New physics

corrections to well studied physical systems can sometimes lead to surprising ef-

fects when some symmetry is broken, such as in atomic parity violation, or in kaon

physics, as I discuss in this thesis. Thus the work phenomenologist is indeed very

exciting – to look for tiny ways new physics can affect the mundane world around

us, in hopes that experiments will soon become sensitive enough to probe these

effects as well.

My work is largely divided into three sections, as below:

1.1 Neutrino physics

It is well known that exchange of a boson between two species gives rise to a force

between them. In the non-relativistic limit, scattering of two particles by boson

exchange can be described using a static potential, such as the Coulomb potential

when the boson exchanged is a photon. However, the exchange of two fermions

can also lead to a static potential description, as if two fermions behave like an

effective boson. These forces are called “quantum forces”, and the range of these

forces is inversely proportional to the mass of the fermions being exchanged. As a
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way to probe these forces, consider the issue of parity violation. In the SM, parity

is violated by the weak interaction, and parity violation mediated by the weak in-

teraction has been observed in nuclear beta decay. The weak bosons are thought

to be too massive to have any significant effect in parity violation in low energy

systems, since the forces between two atomic constituents is very short ranged.

However the force mediated by exchange of two neutrinos is in principle, long

ranged, since neutrinos are very light. At leading order, it has been well stud-

ied and in the limit of massless neutrinos, the force goes as G2
F/r

5, where GF is

Fermi’s constant and r is the distance between the two particles interacting via an

exchange potential. However, if we go beyond leading order and explore the spin-

dependent structure of these forces, we find that the 2-neutrino exchange force is

parity violating, and in fact, the longest ranged parity violating interaction in the

SM. In an attempt to learn more about neutrino masses, we computed the effects

of the parity violating 2-neutrino force between the electron and the proton in

the hydrogen atom, incorporating neutrino-flavor mixing and masslessness. Due

to parity violation, the electromagnetic transitions between hydrogen atom states

that are forbidden by the well-known selection rules are now possible, and their

rates depend on neutrino mass. Atomic transitions are therefore low energy ob-

servables that can in principle be used to learn more about fundamental particles.

And what is more, although the tree level forces mediated by the weak bosons

are stronger than the neutrino force, they are shorter ranged and so for hydrogen

states with higher angular momentum, the tree level forces are insignificant. We

find the rate of these transitions being largely below experimental sensitivity, for

3



the hydrogen atom, but all hope is not lost yet.

For one, the hydrogen atom is not the perfect playground for such parity-

violating effects to shine - larger atoms with more nuclear content enhance the

effects of the weak force, and hence also the neutrino force. The atomic transition

rates in such systems are also more challenging to compute, but such computa-

tions have been performed by the atomic/molecular physics community using

Hartree-Fock methods. It will require enthusiastic collaboration from both par-

ticle physics and atomic physics communities to bring such projects to fruition,

which makes it an avenue for excitement. Secondly, the parity violating effects

may be strongly enhanced by forces mediated by new physics mediators such as

dark matter. So far a parity violating dark sector has rarely been discussed, but as

of yet, nothing rules these classes of models out entirely. Thirdly, the forces me-

diated by a fermion pair can be enhanced greatly in the presence of backgrounds.

In a recent work, we show that in the presence of a background of neutrinos, the

neutrino potential at distances r ≫ E−1
ν goes as Vbkg(r) ∼ 1/r in the massless limit,

as opposed to 1/r5. This is a huge enhancement over the case of neutrino forces

in vacuum, roughly due to the fact that the external background puts one of the

fermions being exchanged on shell. In fact, this potential is only about 1014 times

weaker than the gravitational potential between the two bodies. Since the radial

dependence of this force is the same as the behavior of the gravitational potential,

i.e 1/r, this force causes a violation of the equivalence principle. Thus experi-

ments (such as the former Eot-Wash experiment) that look for violations of the

equivalence principle may be good probes of the neutrino force in a background.
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The Eot-Wash experiment, for instance, could detect violations in the equivalence

principle with a precision of about 1 in 1013, Since we find that the neutrino force

is only about 1014 times smaller than gravity, it is possible that the experiment

may achieve sensitivity to the neutrino force in the future. The inability to detect

a significant effect might say something about the neutrino masses as well. Forces

in other new physics backgrounds such as those from dark matter, also deserve

to be studied, and I leave those to be studied in future work. A lot of potential

exists in the study of quantum forces, and more can be done in this area, particu-

larly since most of the existing study of the 2-fermion exchange forces are done in

the ambit of four-Fermi theory by integrating out heavy bosons. This gives non-

renormalizable potentials that are challenging to apply to atomic systems since

matrix elements involving such potentials tend to blow up for atomic states with

low angular momentum.

In [1], we compute the power loss formula (analogous to the Larmor formula

in electromagnetism) for fermion-antifermion radiation from a classical system.

We apply our formula to power loss due to neutrino emission from a binary star

system containing muons, for two models - one where the neutrinos are radiated

via a gauge boson of a new U(1)′ symmetry Lµ − Lτ, and another where the neutri-

nos are emitted via a scalar mediator.
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1.2 Kaon physics

Moving on from quantum forces, I focus now on another area of my research,

namely flavor physics. The majority of my work in flavor, however, has been in

the subject of kaons. The flavor structure of the SM is encoded in the Cabbibo-

Kobayashi-Maskawa (CKM) matrix, which governs the weak interactions of the

up-type quark (u, c, t) mass eigenstates and the down-type (d, s, b) mass eigen-

states, and is the source of Charge-Parity (CP) violation in the SM. Historically,

determination of the CKM matrix has been largely done through decays of B

mesons. Kaon decays are not placed in spotlight largely due to the presence of

non-perturbative “long-distance” effects of QCD that make most of them “theo-

retically unclean” and uninformative of SM parameters. The study of the SM with

a different flavor system such as kaons is therefore, crucial as an independent test

of the SM, and may also lead the way to signatures of BSM physics. The few

theoretically clean kaon decays such as KL → π0νν̄ and K+ → π+νν̄ are thus con-

sidered “golden modes” in kaon physics since these decays have little hadronic

uncertainty. In my research, I propose a third golden mode: K → µ+µ−.

In [2], we showed that under the well-motivated assumption that the decay of

KS to the s-wave dimuon pair is purely CP violating, KS → (µ+µ−)ℓ=0 is rendered

theoretically clean. This allows us extract SM information from KS → (µ+µ−)ℓ=0

using time-evolution measurements of the oscillating K0 − K̄0 two state system.

This provides a unique way to test the SM, in particular, to extract the CKM matrix

element combination |VtsVtd sin(β + βs)|.
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The SM prediction for KS → (µ+µ−) is about 3 orders of magnitude below the

current bounds on the KS → µ+µ− decay rate, implying ample opportunity for NP

searches in this mode. In [3], we show that NP models involving leptoquarks, or

Z′ particles can actually saturate the bounds on the rate of KS → µ+µ−. This is

strong motivation to design an experiment that can measure the time evolution of

the neutral kaon wavefunction.

In [4], we find that the phase appearing in the unitarity relation between

B(KL → µ+µ−) andB(KL → γγ) is equal to the phase shift in the interference term of

time-dependent K → µ+µ− decays. A probe of this relation at future kaon facilities

constitutes a Standard Model test with a theory precision of ∼ 1%.

1.3 B physics

S U(3)-flavor is an approximate symmetry of the SM between the constituents

of the light quark triplet (uds). In the quark model of hadrons, this symmetry

allows us to derive linear relationships between various hadronic decay ampli-

tudes, which are known as “sum rules”. In [5] we studied the various S U(3)F

sum-rules of b → cc̄s(d) decays of the beauty baryons (Λb,Ξ
0
b,Ξ

−
b ) to one of

Σ0,−, Ξ0,−, Λ, n baryons and a singlet. Under several reasonable assumptions

we found |A(Ξ0
b → ΛS )/A(Ξ0

b → Ξ0S )| ≈ 1/
√

6|Vcs∗Vcd/(V∗cbVcs)| and |A(Λb →

Σ0S )/A(Λb → ΛS )| ∼ 0.02. These two relations have been recently probed by

LHCb for the case of S = J/ψ. The former agrees with the measurement, while for
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the latter our prediction lies close to the upper bound set by LHCb.
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CHAPTER 2

PROBING THE TWO-NEUTRINO EXCHANGE FORCE USING ATOMIC

PARITY VIOLATION

2.1 Introduction

The fact that a pair of massless neutrinos mediate a long-range force via one-loop

diagrams, as shown in Fig. 2.1, has been known for a long time [6, 7, 8, 9]. At

leading order, this diagram gives rise to a force of the form

V(r) =
G2

F

4π3r5 , (2.1)

where GF is the Fermi constant. The force is very weak. At distances larger than

about a nanometer its magnitude is smaller that the gravitational force between

two protons. At this scale, the electromagnetic Van der Waals force overpowers

both. Thus, it has not been observed yet and furthermore, there is no realistic

proposal to build an experiment that could see it. It is, therefore, an interesting

question to ask if there is any way to probe this force that has not been explored

yet.

In many cases in the past, to observe a very small effect, one looked for sym-

metries that are broken by it. For example, the weak interaction was observed,

even though it is much weaker than the strong and electromagnetic interactions,

because it violates the flavor symmetries of these stronger forces. Thus, one way
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The four-Fermi effective diagram for two-neutrino exchange forces between two

fermions, labeled ψ1 and ψ2.

to try to achieve sensitivity to the two-neutrino force is to look for symmetries that

it violates.

In this chapter, we point out that the two-neutrino force is the largest long-

range parity-violating interaction in the Standard Model (SM). This is in contrast

to the parity violation mediated by the W and the Z bosons, which is a short-

distance effect. The reason is that in the case of the two-neutrino force the me-

diator is massless (or close to massless), while in the case of the W and the Z the

mediators are massive.
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In recent years atomic and molecular systems have attracted considerable in-

terest as probes of physics within and beyond the SM. For instance, the work of

Fichet [10] explores molecular spectroscopy as a probe of dark matter. Another

example is Ref. [11], where Stadnik shows how the long-range neutrino force can

be probed using atomic and nuclear spectroscopy. Given that parity violation in

atoms has also been suggested as a probe of new physics, for example, in [12],

a natural question to ask is whether it is possible to see effects of the neutrino

force in parity-violation experiments done on atomic systems. In this chapter, we

explore this idea in some depth.

We find that the effect of the parity non-conserving force on atomic systems is

tiny, much smaller than what one can hope to achieve in the near future. Yet, our

approach in this chapter can be used in other setups and, while we do not have a

concrete idea where it can be practical, the hope is that a system where long-range

parity violation can be large enough to probe experimentally will be found.

The arrangement of the chapter is as follows: In Sec. 2.2, we briefly review the

literature regarding the two-neutrino force. Sec. 2.3 aims to provide some back-

ground on atomic parity violation. We discuss parity violating forces in atomic

systems in Sec. 2.4. Thereafter, we shift our focus to the hydrogen atom and com-

pute the parity-violating two-neutrino force between the proton and the electron

in the hydrogen atom in Sec. 2.5. The effects of this force on hydrogen eigenstates

are discussed in Sec. 2.6, while a sample calculation to illustrate the idea has been

performed in Sec. 2.7. Finally, we present our concluding remarks in Sec. 7.6. More
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details about the calculations in Sec. 2.5 and Sec. 2.7 are given in the Appendix.

2.2 A review of the two-neutrino force

A classical force is mediated by a boson. The two-neutrino exchange gives rise to

a long-range force since two fermions, to some extent, can be treated as a boson.

This force is also called “a quantum force” as it arises at the loop level. In this sec-

tion, we provide a brief review of the literature on the long-range force generated

by the exchange of a pair of neutrinos.

Although the idea of a two-neutrino mediated force was conceived by Feyn-

man [13], the first calculation of the force dates back to Ref. [6], where Fein-

berg and Sucher computed the leading form of the two-neutrino force to obtain

Eq. (2.1). They worked in the four-Fermi approximation, that is, neglecting terms

of order E/mW , E being the energy of the interaction, and mW the mass of the W

boson. The same authors repeated the calculation in Ref. [7] to incorporate the

previously ignored neutral current interaction. In both calculations, the velocity-

dependent terms of the potential were ignored under the assumption that the ve-

locity of the fermions was much smaller than the speed of light. Later, Sikivie and

Hsu performed a similar calculation in Ref. [8], employing a different technique

and keeping terms to first order in v in the non-relativistic limit. All these calcu-

lations assumed that the neutrino is massless and that there is only one flavor of

neutrinos.
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Despite being a very small effect, in Ref. [9], Fischbach claimed that if neutrinos

were massless, the two-neutrino force between neutrons in a neutron star could

raise the self energy of the system to a value that is much higher than the mass

of the star itself. Without any other mechanism to stop this, Fischbach proposed

that the neutrino is, in fact, massive. A massive mediator would shorten the range

of the two-neutrino force and solve the problem. However, Smirnov and Vissani

[14] posited that low-energy neutrinos created and subsequently captured in the

star (the phenomenon is described in [15]) fill a degenerate Fermi sea that blocks

the free propagation of the neutrinos that are responsible for the neutrino force.

In response, Fischbach in Ref. [16] stated that more work needs to be done to un-

derstand the capturing process and that, for low energies, the two-neutrino force

can be repulsive leading to the neutron star actually repelling neutrinos instead

of filling up the Fermi sea. Then, Kiers and Tytgat in Ref. [17] argued that the

neutrino self-energy does not destabilize the neutron star. Yet in a recent paper

by Fischbach [18], he does not agree with that conclusion. In our work, we do

not investigate this issue, and do not put any bound on the neutrino mass from

neutron star considerations. Our focus is on aspects of the neutrino force that are

relevant to atomic physics.

Following Fischbach’s calculation of the potential due to massive Dirac neu-

trinos, Grifols et al. [19] calculated the same potential for massive Majorana neu-

trinos, which differ from Dirac neutrinos in the non-relativistic limit because of

the different spinor structure of Majorana fermions. Their approach is the same

as that in [6]. For future reference, the parity-conserving form of the two-neutrino
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potential to leading order in v for the case of a single flavor of neutrinos with mass

mν is given by

VDirac
νν (r) =

G2
Fm3

ν

4π3

K3(2mνr)
r2 , VMajorana

νν (r) =
G2

Fm2
ν

2π3

K2(2mνr)
r3 , (2.2)

where Kn(x) is the nth order modified Bessel functions of the second kind.

An additional effect in neutrino physics, due to the non-zero masses, is flavor

mixing (for a review, see, for example, Ref. [20]). This phenomenon was incor-

porated into the computation of the two-neutrino force in Ref. [21], although a

closed form for the neutrino force was not attained. One can also look in [22] for

a treatment of the spin-independent part of the neutrino force with flavor mixing.

Lastly, thermal corrections to the neutrino force, in both the Dirac and Majorana

cases, were computed in [23].

All the calculations mentioned above compute terms in the potential that are

parity conserving, i.e. parity-violating terms have been ignored. In this work, we

go beyond the leading-order results in v and compute terms in the potential that

are spin and momentum dependent and also parity violating. Our key results are

described in section 2.4, and their implications are described in Sec. 2.6. We keep

terms to first order in v in our non-relativistic calculation.
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2.3 Observing Atomic Parity Violation – a review

In this section, we review the concepts of Atomic Parity Violation (APV) that are

relevant to the present work. We look at atomic parity violation from the per-

spective of transitions in atoms, more specifically, stimulated emission processes,

wherein an emission is caused by shining light on a sample of atoms. For a more

detailed review of APV from both theoretical and experimental perspectives, see

Refs. [24, 25, 26, 27].

The key idea behind looking for APV is to exploit the fact that in the presence

of a parity violating term in the atomic Hamiltonian, the energy eigenstates have

no definite parity. As per the well-known selection rules, electric dipole (E1) tran-

sitions happen between states of opposite parity while magnetic dipole (M1) tran-

sitions take place only between states of same parity. If the energy eigenstates,

however, have no definite parity, then both E1 and M1 transitions are allowed

between them. Since the parity violating interactions are usually very weak com-

pared to the parity conserving ones, we treat them as perturbations to a parity

conserving Hamiltonian. Eigenstates of the full Hamiltonian, therefore, are su-

perpositions of a predominant state of definite parity with small opposite parity

corrections.

A direct consequence of the presence of parity-violating interactions is that

left-polarized light has a different refractive index from right-polarized light in a

sample of atomic vapors, which leads to optical rotation of light in the sample.
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This is the property that has been exploited to probe APV so far. An intuitive

physical interpretation of this effect is due to Khriplovich [26]: Mixing opposite

parity states in the hydrogen atom, for instance, results in the creation of a state

wherein the electron effectively has a position-dependent spin orientation that

assumes a helical shape. Recall that helical shapes of molecules lead to rotation

of the plane of polarization of incident light on a sample. Classically speaking,

this is because the electric field of light moving perpendicular to the helical axis

causes electrons to produce an electric field along the helical axis, which induces

a changing magnetic field perpendicular to the electric field. The combined effect

of this is to rotate the plane of polarization of the incident electromagnetic wave.

A stimulated emission transition is basically an electron-photon scattering pro-

cess, represented by the diagram in Fig. 2.3. If both photons have the same po-

larization, and the photon is incident on a sample with electron density Ne, the

scattering process can be translated into an index of refraction [28]. The refrac-

tive index nP depends on the polarization of the photon, labeled by the subscript

P = L,R, and it is given by

n2
P(k) = 1 +

4πNe

k2 fP(0). (2.3)

Here, fP(0) is the forward scattering amplitude for a photon with polarization P,

and k is the magnitude of the momentum of the photon.

When the electron is bound in the electromagnetic field of a proton, as in hy-

drogen, the stimulated emission process, in the presence of Coulombic binding, is

represented by the diagram in Fig. 2.3. We treat the proton as an elementary par-
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Stimulated emission as electron photon scattering

ticle, since we work at energy scales small enough that the internal substructure

of the proton can be ignored. In Fig. 2.3, the proton can be seen as a correction to

the electron propagator. Therefore, instead of calculating the transition amplitude

using the matrix element from Feynman rules, we can alternatively first compute

the static potential that mimics the scattering of the electron off the proton (in

this case, the binding). This gives us, at lowest order, the Coulomb force. There-

after, the external photons effectively become electromagnetic perturbations to the

Coulomb field. We can now use time-dependent perturbation theory to calculate

the transition amplitude. This is a simple quantum mechanical picture [29] as op-

posed to a field theoretic perspective. In this picture, we usually talk about electric

and magnetic dipole transitions whereas from the perspective of field theory, both

transitions are just electron-photon scattering processes.

For incoming and outgoing photons with equal polarization, we can compute

the refractive index in hydrogen gas using Eq. (2.3). Note that parity is a good

symmetry of QED, and hence fR(0) = fL(0) for the process in Fig. 2.3. This implies

that the refractive index is the same for left-handed and right-handed polarized
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Stimulated emission in hydrogen atom. The electron is shown to be bound to the

proton by the mediation of a photon. This is the lowest order diagram at tree level.

photons. When parity is violated, the amplitudes for an incoming right circularly

polarized photon and a left circularly polarized photon are different, that is fR(0) ,

fL(0), hence nR(k) , nL(k), causing optical rotation. In the SM the leading-order

effect that violates parity is due to Z exchange, and it arises from a diagram similar

to the one in Fig. 2.3 with the photon propagator replaced by a Z propagator. We

discuss this process in the next section.

The refractive index, which we denote here by n(ω), of any material in gen-

eral, and a gas of atoms in particular, has both real and imaginary components,

corresponding to the dispersive and absorptive powers of the gas, respectively.

The imaginary component is negligible for most values of the frequency, but it

is large near bound-state resonances (i.e, when the energy of the incident photon

equals the energy difference between two energy eigenstates), which is when the

material becomes strongly absorbent. The real part is the well-known index of
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refraction. The Kramers-Kronig equations (see Ref. [30]) relate the two quantities

as shown below:

Re[n(ω)] = 1 +
2
π

∫ ∞

0
dω′

ω′ Im[n(ω′)]
ω′2 − ω2 . (2.4)

Eq. (2.4) implies that the real part of the refractive index has a maximum near the

resonance frequency and thus the local maxima of the real and imaginary parts

are close in frequency, see Fig. 2.3.

In a sample, the rotation of the plane of polarization of incident light is pro-

portional to the real part of the refractive index [31]:

Φ =
πL
λ
Re(nR(λ) − nL(λ)) (2.5)

where Φ is the angle of rotation of the plane of polarization of incident light, L

is the length of the path of light through the sample and λ is the wavelength of

incident light. Therefore, near a resonance, there is an enhancement of optical ro-

tation in a material or a gas.

In time-dependent perturbation theory, one can compute the left-right asym-

metry between the dipole-transition amplitudes (both electric and magnetic) for

right-polarized and left-polarized light [26, 29]. This asymmetry is related to the

difference in the real part of the refractive indices for the two respective polariza-

tions. Subsequent analysis yields Φ, for states with the same predominant parity

[29] in terms of electric/magnetic dipole transition amplitudes. In the case that
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Re(n-1)

Im(n-1)

Frequency (ω)

The real and imaginary parts of the refractive index n near a resonance. Absorp-

tion follows the imaginary part, while dispersion, and hence, optical rotation fol-

lows the real part.

the wavelength is close to the difference in energy between two states of predom-

inantly the same parity, the rotation is given by

Φ =
4πL
λ
Re(n(λ) − 1)R, R = Im

(
E1PV

M1

)
, (2.6)

where n(λ) = 1
2 (nR(λ) + nL(λ)) is the average refractive index of the sample, E1PV

is the forbidden electric-dipole transition element, and M1 is the magnetic-dipole

transition element between two states of the system with the same predominant

parity.

A few points are in order regarding Eq. (2.6):

1. Note that if parity is conserved, the E1PV amplitude is zero and hence the

angle of rotation is zero.
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2. One could also consider a situation where the two states are of opposite par-

ity. In this case M1 = 0 and the effect is proportional to M1PV and we get a

formula similar to that of Eq. (2.6). Magnetic-dipole amplitudes, however,

are much smaller than electric dipole amplitudes, so probing parity violat-

ing effects by observing parity-forbidden magnetic transitions is generally

harder.

3. To obtain the largest angle of rotation, the wavelength λ must be close to the

energy spacing between the states that we are interested in, but far away

enough to avoid resonance, as it is clear from Fig. 2.3. In other words, if ωr

is the frequency at which a resonance occurs, and ω is the frequency of the

incident light, then for a large enough effect, we need to have |ω − ωr| ∼ Γ,

where Γ is the width of the resonance.

In summary, an important consequence of APV is that, near a resonance, the

emitted light has a rotated plane of polarization relative to the incident light. Ex-

perimentally, therefore, a measurement of this rotation is a measure of APV. From

our theoretical perspective, the important quantity that encodes the effects of APV

is R, defined in Eq. (2.6).
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2.4 Parity violating forces in atomic systems

2.4.1 Generic effects

The general expression for a non-relativistic potential between two fermions con-

tains only a handful of terms – the only difference between the potentials medi-

ated by different mechanisms is in the numerical coefficients coming with each

term and the form of the radial function [32].

Consider a generic atom with a nucleon of mass mN . We are looking for the

parity violating potential due to some Feynman diagram. To that end, we make

two simplifying assumptions:

1. We consider a static nucleus, that is, we neglect effects that scale like me/mN .

2. We treat the electron velocity, ve, as a small parameter and keep only terms

linear in ve.

Under these assumptions, the most general form of the parity-violating potential

from [32] reduces to the following:

VPNC(r) = H1F(r)σ⃗e · v⃗e + H2F(r)σ⃗N · v⃗e +C(σ⃗e × σ⃗N) · ∇⃗ [F(r)] , (2.7)

where σ⃗e/2 is the spin of the electron, σ⃗N/2 is the net nuclear spin, H1, H2 (for “he-

licity”, since the corresponding terms look like helicity) and C (for cross-product)
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are real constants, and F(r) is a radial real function.

The values of the H1, H2, C, and F(r) depend on the specific diagram. In case

there are several diagrams, each diagram contributes linearly to the total potential,

so we can write

VPNC(r) =
∑

i

V i
PNC(r) (2.8)

and we add a sub-index i to H1, H2, C, and F(r).

In the following sections, we shall consider the special case of the hydrogen

atom. While experiments are not done with it, it simplifies the theoretical investi-

gation. When we consider hydrogen, we replace the sub-index N with p.

2.4.2 The tree-level process

We begin by briefly revisiting the effective parity-violating potential due to the

interaction between an electron and a nucleus at tree level via Z exchange in the

SM as depicted in Fig. 2.4.2. In the SM, the coupling of the Z boson to a pair of

identical fermions is given by

LZψ̄ψ =
1
2

g
cos θW

ψ̄
[
(gψV − gψAγ

5)/Zψ
]
, (2.9)

where θW is the Weak angle. gψV and gψA are the vectorial and axial couplings of the

fermion ψ to the Z boson. As an example, the coupling constants for the electron

and the proton (which can be treated as an elementary particle at energy scales
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Tree-level interaction between the electron and a nucleus.

relevant to atomic physics) are given by:

ge
V =

(
−

1
2
+ 2 sin2 θW

)
, ge

A = −
1
2
, gp

V =

(
1
2
− 2 sin2 θW

)
, gp

A =
GA

2
, (2.10)

where GA ≈ 1.25 [33] is the axial form factor of the proton.

The resulting parity-violating potential is given by Eq. (2.7) with the constants

and the radial function given by:

H1 = Htree
1 =

g2

2 cos2 θW
ge

Agp
V , (2.11)

H2 = Htree
2 =

g2

2 cos2 θW
ge

Vgp
A, (2.12)

C = Ctree =
g2

2 cos2 θW

ge
Vgp

A

2me
, (2.13)

F(r) = Ftree(r) =
e−mZr

4πr
. (2.14)

In the APV literature, most notably in [34], the terms that depend on nuclear
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spin (that is, terms that come with H2 and C) are ignored. This is because, in most

heavy atoms used in APV experiments, the nuclei have paired nucleons with op-

posite spins, and a net nuclear spin of zero. Thus, terms in the potential containing

the nuclear spin vanish. This is not true for the case of hydrogen, where the nu-

cleus consists of just one spin-half proton.

2.4.3 Loop level processes: The effective four-Fermi operator

with neutrinos

Now that we have discussed the tree level diagram that violates parity, we move

on to loop level effects. The diagrams that contribute to atomic parity violation at

one loop are given in Fig. 2.4.3. At atomic energy scales, the use of the four-Fermi

approximation is well justified and so in this section, we will derive expressions

for the four-Fermi vertices with two fermions of the same type ψ and two neutri-

nos.

In the SM, the four-Fermi interactions between two neutrinos and two

fermions are obtained by integrating out the Z and W bosons in the diagrams

shown in Fig. 2.4.3. However, since we consider massive neutrinos, we need to

incorporate flavor mixing. The Z-boson case is simple because the interactions of

neutrinos with the Z boson is universal and thus diagonal in any basis:

LZ = −
g

2cW
δi jν̄i/Zν j, (2.15)
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(a) (b)

The loop level diagrams that contribute to the binding of the electron to the

nucleus in an atomic system.

with cW ≡ cos θW . The corresponding four-Fermi operator for a vertex involving

two fermions ψ, and two neutrino mass eigenstates, νi and ν j, due to Z exchange

is therefore

(OZ)i j = −
g2

8m2
Zc2

W

[ψ̄γµ(gψV − gψAγ
5)ψ]δi j[ν̄ jγµ(1 − γ5)νi], (2.16)

where gψA and gψV are defined above Eq. (2.10).

The case of the W exchange is more complicated as we need to take into ac-

count the non-diagonal nature of the flavor mixing. The W interaction Lagrangian

in the mass basis for the neutrinos is given by:

LW = −
g
√

2
Uαiℓ̄Lα /Wνi, (2.17)

where the fields ℓ represent leptons and i (α) represents mass (flavor) indices, and

Uαi are the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
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(a) (b)

The two diagrams that contribute to the effective four-Fermi vertex for two

neutrinos and two fermions ψ. The Z-diagram on the left corresponds to the

effective operator OZ. The W diagram on the right corresponds to the effective

operator OW .

The operator for the case of two external ψ leptons of flavor α and two neutrino

mass eigenstates i and j is then given by

(OW)i j = −
g2

8m2
W

Uα jU∗αi[ν̄ jγ
µ(1 − γ5)ψ][ψ̄γµ(1 − γ5)νi],

= −
g2

8m2
W

Uα jU∗αi[ψ̄γ
µ(1 − γ5)ψ][ν̄ jγµ(1 − γ5)νi], (2.18)

where we used the Fierz transformations to obtain the second line.

The sum of the operators in Eqs. (2.16) and (2.18) yields the four-fermion vertex
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between two neutrino mass eigenstates and two ψ leptons. Using GF = g2/4
√

2m2
W ,

we obtain

Oi j = (OZ)i j + (OW)i j (2.19)

= −
GF
√

2

[
ψ̄γµ{δi j(g

ψ
V − gψAγ

5) + Uα jU∗αi(1 − γ
5)}ψ

] [
ν̄ jγµ(1 − γ5)νi

]
,

= −
GF
√

2

[
ψ̄γµ(aψi j − bψi jγ

5)ψ
] [
ν̄ jγµ(1 − γ5)νi

]
.

We emphasize that there is no sum over i, j or α here. In Eq. (2.20), we introduced

the effective vectorial and axial couplings, ai j and bi j respectively, in terms of the

couplings to the Z. If ψ is a lepton and therefore has a flavor index α, we have:

aψi j = δi jg
ψ
V + Uα jU∗αi, bψi j = δi jg

ψ
A + Uα jU∗αi. (2.20)

If ψ were not a lepton, it would not couple to neutrinos through the W, and there-

fore the PMNS matrix would not be involved. Then we would have:

aψi j = δi jg
ψ
V , bψi j = δi jg

ψ
A, (2.21)

In order to compute the neutrino force between two fermionic species ψ1 and

ψ2, we need to insert the operator Oi j twice in order to obtain the diagram in

Fig. 2.1. If both ψ1 and ψ2 are leptons, we have nine diagrams from assigning

three neutrino mass eigenstates into the two propagators. Each diagram is la-

beled by two indices i and j, and we sum over them. If ψ1 or ψ2 is a non-lepton,

then the only possible four-Fermi vertices are the ones with both neutrinos in the

same mass eigenstate. Thus, there are three diagrams over which to sum over. We

only need one label i = 1, 2, 3 to denote a diagram since the effective couplings a
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(a) (b)

The photon penguin is shown on the left, and again on the right after integrating

out the Z boson.

and b are diagonal. We shall make use of precisely this fact to explore APV in the

simplest atomic system, i.e, the hydrogen atom, in Sec. 2.5.

2.4.4 The photon penguin

In this subsection, we digress to talk about another possible parity violating dia-

gram in our atomic system, the photon penguin, shown in Fig. 2.4.4. This diagram

is also parity violating since it has two weak interaction vertices. However, it does

not give rise to a long ranged parity violating potential, as we discuss below.

Assuming that the momentum transfer is much smaller than the Z boson mass,

we can integrate out the Z resulting in an effective photon penguin diagram as

shown in Fig. 2.4.4. Using the same approach as in Ref. [7], the parity-violating

potential is found to be in accordance with Eq. (2.7), with the quantities H1, H2, C,
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and F(r) given by:

H1 = Hpenguin
1 = (ge

V)(ge
A)GF α me, (2.22)

H2 = Hpenguin
2 = 0, (2.23)

C = Cpenguin = 0, (2.24)

F(r) = Fpenguin(r) (2.25)

where the explicit calculation gives

Fpenguin(r) = 2e−2mer
∫ ∞

0
dx e−rx

√
x2 + 4xme

(x + 2me)2

(
x2 + 4xme + 6m2

e

)
. (2.26)

We were unable to find a closed form of Fpenguin(r). However, for our purpose,

all we care about is the r ≫ me limit. In that limit, we obtain the asymptotic form

of Fpenguin(r) to be:

Fpenguin(r) ∼ 12Γ
(
3
2

)
√

me
e−2mer

r5/2 . (2.27)

The main conclusion from Eq. (2.27) is that the potential due to the photon pen-

guin far away from the nucleus is suppressed by an exponential term that has a

range given by (2me)−1. The factor of 2 is because the penguin diagram consists

effectively of two exchanged electrons, just like in the neutrino case where we

exchanged two neutrinos. The potential is sensitive to the mass of the electron

because there is a branch cut in the scattering amplitude for the diagram in the

complex−t plane starting at t = 4m2
e .

Some important differences between this potential and the potential with two

internal neutrinos are as follows:
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1. The potential due to the photon penguin has only one factor of GF , as op-

posed to the neutrino case which is suppressed by two factors of GF . Yet,

given the short range nature of the photon penguin for atomic physics,

which is what our concern in this work, this force is not relevant.

2. The other possible photon penguin has a Z boson joining the proton legs.

But as it is clear from this calculation, the diagram analogous to Fig. 2.4.4

for this process has a proton in the loop, and thus the radial function will

have its range governed by the proton mass. This makes the parity violating

force shorter ranged than the force obtained from the photon penguin with

the electron loop, and thus negligible.

To conclude, the key takeaway is that the photon penguin does not contribute to

long rage parity violation at atomic scales. We can safely ignore its effects for the

systems that we care about in this work.

2.5 The neutrino force in the hydrogen atom

We now apply the results obtained above to the hydrogen atom. In the hydrogen

atom, the proton does not couple to the neutrinos through the W boson, and so

the only diagrams that contribute are the three diagrams with the same neutrino

mass eigenstate on both propagators in the loop. Using Eqs. (2.20) and (2.21), we

find that in this case, the corresponding couplings are diagonal and are given by
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(superscripts refer to the electron and the proton respectively)

ae
ii =

(
−

1
2
+ 2s2

W + |Uei|
2
)
, ap

ii =

(
1
2
− 2s2

W

)
be

ii =

(
−

1
2
+ |Uei|

2
)
, bp

ii =
GA

2
≈ 0.625, (2.28)

where GA is the axial form factor, as defined below Eq. (2.10), and sW = sin θW .

Since both propagators have the same mass eigenstate, the non-diagonal entries

in ai j and bi j are zero. For the same reason, we only keep one index i from now on.

Using the couplings from Eq. (2.28), we calculate the parity-violating potential

from the neutrino loop, which results in a form given by Eq. (2.8) (see appendix

A.1 for details of the calculation). with the constants and the radial function given

by (no sum over i in any of the expressions):

H1i = Hloop
1i = −2

ap
i be

i

me
, (2.29)

H2i = Hloop
2i = 2

ae
i b

p
i

me
, (2.30)

Ci = Cloop
i =

(
ae

i b
p
i

me
+

ap
i be

i

mp

)
, (2.31)

Fi = F loop
i (r) = Vνiνi(r), (2.32)

where Vνiνi(r) can be found in Eq. (2.2).

Using the fact that s2
W ≈ 0.23, so that ap

i is very small and that me ≪ mp, we note

that H1i is negligible. The parity-violating potential then simplifies to:

V loop
PNC ≈

∑
i

GA

me

(
−

1
4
+ s2

W +
1
2
|Uei|

2
) [

(2σ⃗p · p⃗e)Vνiνi(r) + (σ⃗e × σ⃗p) · ∇⃗Vνiνi(r)
]
. (2.33)
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Eqs. (2.29)-(2.33) are the key results in our work. The parity-violating terms ob-

tained here have the same spin structure as in the case of the tree-level potential,

but the radial behavior is different. Investigation of these terms in the neutrino

potential has not been carried out before.

2.6 Effects of the neutrino force on hydrogen eigenstates and

transitions

In this section, we treat the neutrino potential in Eq. (2.33) as a perturbation to the

hydrogen atom Hamiltonian. We work in the limit mp → ∞, so that the proton

is essentially static. We assume that the neutrino is of Dirac nature subsequently

in this work, but one could also treat them as Majorana fermions and perform an

analogous computation.

The neutrino force is much smaller than the fine or hyperfine interactions and

therefore, we need to include the fine-structure and the hyperfine splittings as

well in our calculations. As always, we should look for an operator that commutes

with the neutrino potential, and use the eigenbasis of this operator as the basis of

choice in first-order degenerate perturbation theory. Since the neutrino potential

is a scalar, we know that an operator that commutes with it is F̂2, where

F⃗ ≡ L⃗e + S⃗ e + S⃗ p

is the total angular momentum of the entire system. We also define J⃗ ≡ L⃗e + S⃗ e as
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the total angular momenta of the electron alone.

The unperturbed eigenstates |n, f ,m f , j, ℓ, sp, se⟩with which we work are simul-

taneous eigenstates of Ĥ0, F̂2, F̂z, Ĵ2, L̂2
e , Ŝ

2
p and Ŝ 2

e , where Ĥ0 = p⃗2/2me − e2/r is the

unperturbed hydrogen atom with only the Coulombic interaction. The eigenval-

ues of F̂2, F̂z, Ĵ2, L̂2
e , Ŝ

2
p and Ŝ 2

e are f ( f+1),m f , j( j+1), ℓ(ℓ+1), sp(sp+1) and se(se+1) re-

spectively. Every state is thus described by 7 quantum numbers. But se = sp = 1/2

are fixed numbers, and so we really need just 5 numbers to label a state. This is in-

deed what we expect since the hydrogen atom has a total of 8 degrees of freedom

(dof): there are 3 position dof and 1 spin dof each for the electron and the proton.

However, we do not care about the three dof of the center of mass, leaving us with

5 dof to describe the internal dynamics of our system.

The angular momentum states can be constructed using the standard proce-

dure of angular momentum addition using Clebsch-Gordon coefficients, as done

in Ref. [35], for instance. The orbital angular momentum of the electron ℓ takes

values 0, 1, 2, . . . Depending on ℓ, the result of the angular-momentum addition of

one orbital angular momentum and two spin-1/2 systems (the electron and the

proton are both spin-1/2) can be summarized in the following notation:

ℓ ⊗
1
2
⊗

1
2
= (ℓ + 1) ⊕ ℓ︸      ︷︷      ︸

j=(2ℓ+1)/2

⊕ ℓ ⊕ (ℓ − 1)︸      ︷︷      ︸
j=(2ℓ−1)/2

. (2.34)

These vector spaces contain eigenstates of the hydrogen atom written in the basis

of F̂2 for a given principal quantum number n. The first two vector spaces in the

direct sum consist of states with a well-defined value of j = (2ℓ + 1)/2, while the

latter two vector spaces have well-defined j = (2ℓ − 1)/2.
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In the unperturbed hydrogen atom, all these states would be degenerate. But

with the perturbations, such as the fine structure corrections and the hyperfine

splitting interactions included, the degeneracy is lifted, and only the degeneracy

in m f is left. The energy of an eigenstate with quantum numbers f , j, ℓ, se = sp =
1
2 ,

for the case where ℓ > 0, is given by (see Ref. [36])

En f jℓ = (E0)n + (Efine)n j + (Ehyperfine)n f jℓ (2.35)

where:

(E0)n = −
α2me

2n2 , (2.36)

(Efine)n j = −
α4me

2n4

 n
j + 1

2

−
3
4

 , (2.37)

(Ehyperfine)n f jℓ =
α4gp

mp
a3

0

ℓ(ℓ + 1)m2
e

(
f ( f + 1) − j( j + 1) − 3

4

)
4 j( j + 1)

〈
1
r3

〉
nℓ

(2.38)

are the energies contributed by the Coulombic potential, fine structure and hyper-

fine interactions respectively, r is the radial coordinate of the electron, a0 = (meα)−1

is the Bohr radius, and gp ≈ 5.56 is the g-factor of the proton [37].

As a reminder, in first-order perturbation theory, in the presence of a perturba-

tion V , the corrected states are given by

|ψ1
q⟩ = |ψ

0
q⟩ +

∑
p,q

⟨ψ0
p|V |ψ

0
q⟩

E0
q − E0

p
|ψ0

p⟩ (2.39)

Here, |ψ0
p⟩ are the states in our chosen eigenbasis. Note that in this basis our pertur-

bation is diagonal in each degenerate subspace. Under the perturbation, we say

that the states in this basis “mix” among themselves to give the true eigenstates of

the system.
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The energy difference between states of different n is much larger than that for

those states with the same principal quantum number. Since the corrections to the

eigenstates in perturbation theory go as (∆E)−1, we keep corrections contributed

by states with the same n as our unperturbed states when calculating opposite-

parity corrections to eigenstates in first-order perturbation theory.

Note that states mix among themselves under a scalar perturbation only when

they have the same value of f . But, for any eigenstate of F̂2, the correcting states

have a different value of ℓ if the perturbation violates parity. Therefore, under the

effect of a parity-violating perturbation, a state attains an opposite parity admix-

ture as expected. As discussed in Sec. 2.3, both E1 and M1 transitions are therefore

allowed between the actual eigenstates and we can expect to see an interference

of E1 and M1 amplitudes that leads to optical rotation in a sample of atomic hy-

drogen. In Sec. 2.7, we shall compute this effect for certain states in hydrogen.

Parity violation in hydrogen is also manifest from the tree-level Z-potential.

Intuitively, for states with ℓ = 0 , this tree-level process should completely over-

power the neutrino loop diagram because these states have strong presence at the

origin, which is also where the Z-potential has strong support. Thus, isolating an

observable effect from the loop is unfeasible for such states. Higher-ℓ states do not

have strong support at the origin and it would appear that the Z-potential does

not have much effect on them. However, special care is needed, as we discuss in

the next paragraph.

The neutrino-loop potential is highly singular. Therefore, at very short dis-
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tances, the four-Fermi theory breaks down and we cannot trust our calculations

all the way to r = 0. (In order to still use our theory at short distances, we need

to follow the methodology described in [38]. See also [39] for a discussion of

singular potentials in the Schrödinger equation. Alternatively, we could simply

compute the diagrams in Fig. 2.4.3 explicitly without integrating out the heavy

bosons, as in the paper by Asaka et.al. [40]) However, if the momentum trans-

fer is much smaller than the mass of the Z boson or, in other words, the length

scales are larger than m−1
Z , then our calculations can still be trusted. Thus, we are

interested in those high-enough values of ℓ for which the effects of the loop po-

tential dominate over the Z-potential, while being far enough from the origin such

that the four-Fermi theory is valid. In the next two subsections, we select those

eigenstates of hydrogen that are suitable for the task and show that, for states with

orbital angular momentum ℓ ≥ 2, our conditions are met. A full computation of

the loop diagrams as done in [40] would give us finite results for ℓ = 0, 1, but is

not necessary here since for ℓ < 2, the effects of the tree level Z-diagram dominates

over the neutrino mediated diagrams that we are interested in. We ultimately deal

with eigenstates of F̂2, which do not have definite ℓ, so we need to make sure that

the eigenstate of F̂2 is a superposition of eigenstates of L̂2 with ℓ ≥ 2.

2.6.1 Matrix elements of the tree-level potential

In order to extract some features of the tree-level parity violating potential, we

write out the potential here as given in Eqs. (2.11)-(2.14), but we suppress most of
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the dimensionless constants for the sake of clarity:

V tree
PNC ∼

g2

me

[
e−mZr

r
σ⃗e · p⃗ +

e−mZr

r
σ⃗p · p⃗ + (σ⃗e × σ⃗p) · ∇⃗

(
e−mZr

r

)]
. (2.40)

We are interested in computing the matrix elements of this potential in the space of

hydrogen eigenfunctions. In this section, we simply consider the radial integrals

in the matrix elements since the angular integrals simply give some O(1) number

upon evaluation. We define η ≡ r/a0, where r is the radial coordinate. The radial

part of the wavefunction, close to the origin, behaves as u(η) ∼ ηℓ. Given this, we

can write the matrix element as an integral:

⟨nℓm|V tree
PNC |n

′ℓ′m′⟩ ∼
∫ ∞

0
dη η2 ηℓ

′

V tree
PNC(η)ηℓ, (2.41)

Note that, although the above dependence of the wavefunction is only correct

near the origin, we integrate all the way to η → ∞ because the potential drops

very rapidly in magnitude and so the contribution far away from zero from the

wavefunction is negligible anyway.

Terms in the potential of Eq. (2.40) that have angular dependence make the

integral vanish unless ℓ′ = ℓ ± 1 (from the properties of the spherical harmonics).

Without loss of generality, we take the smaller of the two to be ℓ, and the larger

to be ℓ + 1. Then the matrix element goes as (notice that the momentum operator

introduces a factor of 1/η, as does a gradient)

⟨nℓm|V tree
PNC |n

′, ℓ ± 1, m′⟩ ∼
α

mea2
0

∫ ∞

0
dη ηℓ+1 exp (−mZa0η) ηℓ,

∼
α2ℓ+5m2ℓ+3

e

m2ℓ+2
Z

= meα
2ℓ+5

(
me

mZ

)2ℓ+2

. (2.42)
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2.6.2 Matrix elements of the neutrino loop potential

There are two terms in the loop potential (2.33): the “helicity” term and the spin-

cross term. Once again, we consider only the radial integrals since the angular

integrals give some O(1) number. The radial dependence of the integrands in

the matrix elements is roughly the same, since the momentum operator and the

gradient operator have the same radial structure.

The leading-order dependence of the parity non-conserving loop terms goes

like G2
F/mer6. Matrix elements for this operator go as

⟨nℓm|V loop
PNC |n

′ℓ′m′⟩ ∼
G2

F

mea6
0

∫
dη η2ηℓ

′
(

1
η6

)
ηℓ exp

[
−η

(
1
n +

1
n′

)]
∼ α2

mem4
Za6

0

∫
dη η2ηℓ

′
(

1
η6

)
ηℓ exp

[
−η

(
1
n +

1
n′

)]
. (2.43)

In the expression above,
(

1
n +

1
n′

)
∼ O(1) number, which yields some exponential

suppression. Let us denote this number by nsup. The angular integrals vanish

unless ℓ′ = ℓ ± 1 and, like before, we can estimate a naive dependence of the wave

function on α, me, etc. We write

⟨n′(ℓ + 1)m′|V loop
PNC |nℓm⟩ ∼

α2

mem4
Za6

0

∫
dη η2ηℓ+1

(
1
r6

)
ηℓ exp(−nsupη)

∼ α2

mem4
Za6

0

∫
dη η2ℓ−3 exp(−nsupη). (2.44)

Now, we have the following sub-cases:

1. For ℓ = 0 and ℓ = 1: The radial integral does not converge, indicating the

failure of four-Fermi theory as we discussed previously.
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ℓ From V tree
PNC V loop

PNC

ℓ = 0 ∼ α5
(

me
mZ

)2
does not converge

ℓ = 1 ∼ α7
(

me
mZ

)4
does not converge

ℓ ≥ 2 ∼ α2l+5
(

me
mZ

)2ℓ+2
∼ α8

(
me
mZ

)4

Tree-level and loop-level matrix elements for different values of ℓ

2. ℓ ≥ 2: In this case, the integral in Eq. (2.44) does converge and four-Fermi

theory is suitable for such states. The result is

α2

mem4
Za6

0

∫ ∞

0
dη η2ℓ−3 exp(−nsupη) ∼ meα

8
(

me

mZ

)4

, (2.45)

where we have ignored some O(1) constants that depend on ℓ.

In Table 2.6.2,we compare the tree-level and loop-level matrix elements for dif-

ferent values of ℓ. For ℓ = 2, the tree-level matrix element behaves as α9 (me/mZ)6,

while the loop matrix element goes as α8 (me/mZ)4. Thus, naively, for ℓ = 2,

Mtree

Mloop
∼ α

(
me

mZ

)2

≈ 10−13. (2.46)

In other words, the effect of the tree-level potential is much smaller than the effect

of the loop-level potential for ℓ ≥ 2. If we only care about powers of α and me/mZ,

then our calculations suggest that the effect of the loop remains the same as ℓ ≥ 2,

i.e, ∼ α8 (me/mZ)4, but the powers in α and me/mZ in the tree-level effect increase

with ℓ, rendering it much smaller. Thus, to isolate the effects of the loop, we need

to consider states for which ℓ ≥ 2.
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2.7 A sample calculation

Note that while calculating matrix elements of the potential between two states

of definite orbital angular momenta, we took the lesser of the two to be ℓ and

the higher to be ℓ′. In order for the matrix element to converge in the four-Fermi

approximation, we need ℓ ≥ 2. In other words, the lowest angular momentum

state that we can work with in a matrix element calculation is ℓ = 2. Based on this,

we explore parity-violating corrections to some of the ℓ = 3 states of the hydrogen

atom. Because of a parity non-conserving potential, ℓ = 3 states can only mix with

ℓ = 2 and ℓ = 4 states, which both satisfy the convergence criterion. At the same

time, the wave function of these states falls to zero at the origin faster than the s or

the p states, and so one could hope that, in states with ℓ = 3, some parity-violation

effect can be brought about predominantly by the neutrino loop instead of by the

Z-interaction. We emphasize here that we could not have chosen ℓ = 2 states for

this task, because these states mix with ℓ = 1 states when there is parity violation,

which do not satisfy the convergence criterion that ℓ ≥ 2.

As discussed in Sec. 2.1, parity violation in atoms is measured in optical ro-

tation experiments, wherein the degree of rotation of the plane of polarization of

light is proportional to R defined in Eq. (2.6). In this section, we study a particu-

lar interference process between two eigenstates of hydrogen and its effect on the

plane of polarization of linearly-polarized incident light on a hydrogen sample.

Note that M1 transitions between states of different principal quantum number
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n do not occur in hydrogen because of the orthogonality of states with different n.

To observe this effect, we therefore need to look for two states with the same parity

and the same principal quantum number. To this end, we consider the following

states of definite n, f ,m f , j, ℓ in the notation |n, f ,m f , j, ℓ⟩:

|A⟩ = |4, 3, 3, 5/2, 3⟩ ≡ 4F5/2,F=3, (2.47)

|B⟩ = |4, 3, 3, 7/2, 3⟩ ≡ 4F7/2,F=3, (2.48)

|∆⟩ = |4, 3, 3, 5/2, 2⟩ ≡ 4D5/2,F=3 (2.49)

|A⟩ and |B⟩ are eigenstates of F̂2 which, in the presence of the neutrino potential,

mix with all other states with f = 3 and m f = 3 to form a true energy eigenstate of

hydrogen. Before adding the neutrino potential, these states have the same ℓ and

hence there can be an M1 transition between them, but no E1 transition. However,

once these states are corrected by the neutrino potential, the resulting eigenstates

can have both E1 and M1 transitions between them because of the small parity

violating correction, from which we can calculate R, as in Eq. (2.6).

Consider now the state |∆⟩. This state has different parity than the two base

states |A⟩ and |B⟩ while having the same f and m f quantum numbers and, hence,

can mix with them. Before we proceed, we note that other states with the same

values of f and m f , such as |5, 3, 3, 7/2, 4⟩ for instance, mix very weakly with our

base states because the quantum number n puts these states much farther away

in energy than |∆⟩. We therefore ignore the contribution of these states in the

perturbation expansion. Lastly, we must keep in mind that the matrix element of

a parity-violating operator between states with the same parity is zero. Therefore,
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the base states do not get any corrections from each other since they have the same

ℓ = 3.

Our aim is to compute

⟨A′|Electric Dipole|B′⟩
⟨A′|Magnetic Dipole|B′⟩

≈
⟨A′|Electric Dipole|B′⟩
⟨A|Magnetic Dipole|B⟩

(2.50)

where |A′⟩ and |B′⟩ are the true eigenstates of hydrogen, obtained from |A⟩ and

|B⟩ using the perturbation expansion as in Eq. (2.39). For details of the calcula-

tion, see appendix C. The approximation in Eq. (2.50) holds because the selection

rules permit magnetic transitions to occur between states of the same parity, so

perturbative corrections, which are much smaller than the unperturbed transition

amplitude, can be ignored.

Using the electric and magnetic dipole moment operators (details in the ap-

pendix), we compute the inner products by performing the integrals involving

the hydrogen atom wavefunctions. We define a small parameter νi by:

νi ≡
1
α

mνi

me
(2.51)

The final result, up to leading order in νi is

R =
−7αm3

empGAG2
F

(
−1

4 + s2
W +

1
2 |Uei|

2
)

302778777600π3gp(29gpme − 21609000mp)
(2.52)

×
[
(24335gpme − 17503290000mp) + ν2

i (3858gpme + 84015792000mp)
]
+ O(ν4

i ),

where there is an implicit sum over the neutrino flavor i. Using the standard

values of the quantities above, we find

R = Im
(

E1PV

M1

)
≈

(
−

1
4
+ s2

W +
1
2
|Uei|

2
) (
−7.7 × 10−33 + 3.7 × 10−32ν2

i

)
. (2.53)
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The result above shows that the leading-order contribution to R is a number of

order O(10−32). The next-to-leading-order term depends on the neutrino mass

through the parameter νi. Using current experimental bounds on the neutrino

mass (mν < 0.12 eV), we see that the next-to-leading-order term has a magnitude

of O(10−41) radians.

Upon completing the calculation of the specific rotation here, let us provide

some perspective on the result. We first compare the value of R obtained from a

neutrino loop diagram to the typical values obtained from a Z diagram. To this

end, we choose the states |2, 1, 1, 1
2 , 1⟩ and |2, 1, 1, 3

2 , 1⟩. Both of these states have

f = 1, and ℓ = 1 and both are corrected by the state |2, 1, 1, 1
2 , 0⟩. Note that we have

picked low ℓ states since we show in Sec. 2.6 that the Z diagram dominates for such

states. The precise choice of states is not completely without motivation: We have

picked p-wave states with n = 2 because these states experience relatively large

corrections from the s-wave states with the same principal quantum number. Had

we picked s-wave states with n = 1, the corrections would be rather small. This is

because they would come from ℓ = 1 states which are much farther separated in

energy, since the n = 1 shell does not possess any ℓ = 1 states.

We repeat the process outlined in this section with only the first term in

Eq. (2.40) for these two states, and obtained

R = Im
(

E1PV

M1

)
=

27g2mp[gpme(4323ηZ + 1730) − 162mp(2ηZ + 1)]
6904π cos2 θWα3gpme(ηZ + 1)3(865gpme − 81mp)

, (2.54)

where ηZ = mZ(meα)−1 ≫ 1. After plugging in the standard numerical values, we
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have

R = Im
(

E1PV

M1

)
∼ 10−10. (2.55)

It turns out, therefore, that the Z-diagram gives an optical rotation for ℓ = 1 states

that is about 1022 times larger than the optical rotation obtained from the neutrino

loops for the higher ℓ = 3 states.

2.8 Final remarks

From the results in Sec. 2.7, it is clear that the measurement of optical rotation

due to the neutrino loop is extremely challenging given the resolutions we can

achieve today. In that regard, there is another obstacle in the path to measuring

this effect – that of statistical suppression. Since we are looking at high-ℓ states,

they necessarily occur at high n, which means that these are high-energy states

and are thermally suppressed. We saw earlier that, for the lower energy states, the

parity-violating interaction via the Z exchange dominates over the neutrino pro-

cess. Hence, at low temperatures, the chances of isolating the neutrino-mediated

transition are pretty low.

Nonetheless, this calculation, performed for other systems, could lead to some-

what larger quantities and the next step would most likely be an application of this

idea to many-electron atoms, beyond the simple hydrogen case. Multi-electron

atoms are important to explore particularly because the matrix elements in these
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atoms are amplified by an additional Z3 factor [34], Z being the atomic number of

the heavy atom in question. The Z3 amplification is only present when one con-

siders low-ℓ states of heavy atoms - one factor of Z comes in through the weak

nuclear charge and the other two factors appear out of the relativistic behavior

of low-ℓ electrons near the nucleus. It might be worthwhile to try to explore the

long-range parity violation in heavier atoms, but it is still very unlikely that we

may be able to isolate the effect of the neutrino loop since the Z3 amplification

factor acts on both the tree level and loop level effects.

To conclude, we highlight the merits and demerits of the calculation: Although

the effects of the neutrino force on the hydrogen atom are extremely small to mea-

sure in an experiment, the neutrino force is the largest long-range parity-violating

force there is.
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CHAPTER 3

NEUTRINO FORCES IN NEUTRINO BACKGROUNDS

3.1 Introduction

It is well known that classical forces, like the Coulomb potential, can be derived

from a t-channel mediator-exchange diagram in quantum field theory. The same

treatment can be applied to the exchange of massive gauge bosons and scalars,

resulting in a Yukawa potential. To obtain a classical force, the mediator of the

force must be a boson. However, a pair of fermions behaves as an effective scalar

and can mediate long-range forces. Such forces are sometimes called “quantum

forces.” Quantum forces have been studied extensively in the literature, for ex-

ample, see [8, 41, 10, 42], in an attempt to both test the Standard Model (SM) and

to probe new physics beyond.

In the SM, the force between fermions due to neutrino pair exchange is also

well studied. Since neutrinos are very light, the force mediated by them is long

range, without any significant exponential suppression with distance. Neutrino

forces are generated by the exchange of a neutrino-antineutrino pair between two

particles, as shown in the left panel of Fig. 3.1. The original idea of the neutrino-

mediated force can be traced back to Feynman, who tried to explain the 1/r gravity

as an emergent phenomenon due to the exchange of two neutrinos when taking

into account multi-body effects [43]. Previous calculations of such forces in vac-
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uum were first carried out in Refs. [6, 7, 8] using the dispersion technique for

massless neutrinos. Later, the effects of neutrino masses [19] and flavor mix-

ing [21, 44, 45] were included, which in principle can be used to determine the

nature of neutrinos [46, 45], namely, whether neutrinos are Dirac or Majorana

particles. The study of neutrino forces in the framework of effective field theories

was carried out in Ref. [47].

Neutrino forces have important cosmological and astrophysical effects, such as

the stability of neutron stars [9, 14, 48, 49, 17, 50, 51] and the impact on dark matter

in the early universe [52, 53]. Recently, the calculation of neutrino forces went

beyond the four-fermion contact interaction and a general formula describing the

short-range behavior of neutrino forces was derived [54].

While theoretically we know that the force should be there, it has never been

confirmed experimentally. The reason is that the force is very weak. The fact that

it is second order in the weak interaction makes it proportional to G2
F . In the limit

of massless neutrinos, it is explicitly

V(r) ∼
G2

F

r5 , (3.1)

where GF = 1.166 × 10−5GeV−2 is the Fermi constant and r is the distance between

the two particles. Thus, already at distances longer than about a nanometer, the

neutrino force is smaller than the gravitational force between elementary particles.

Confirming the neutrino force experimentally would be interesting for several

reasons. First, it would establish an exciting prediction of quantum field theory
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GF

GF

χ1

χ2

ν

ν

GF

GF

χ1

χ2

ν
bkg. ν

in vacuum in ν background

A diagrammatic explanation of neutrino forces in the vacuum (left) and in a

neutrino background (right). The background effect can be taken into account by

replacing one of the neutrino propagators with a background-modified

propagator (bkg. ν), which can be computed in finite temperature field theory.

The effect can be physically interpreted as absorbing a neutrino from the

background and then returning it back to the background.

that remains untested. Second, it would enable us to probe the neutrino sector of

the SM since the neutrino force is sensitive to the absolute masses of the neutrinos.

Also, it provides a test of the electroweak interaction and may serve as a probe of

new physics beyond the SM. Lastly, it would enable us to look for other quantum

forces that may be present due to yet undiscovered light particles [55, 56, 10, 41,

42, 57].

Given that the neutrino force is so feeble, we need to look for novel ways to

probe it. One such idea was put forward in [58], which pointed out that the neu-

trino force provides the leading long-range parity-violation effect in the SM. Thus,

it is natural to look for such effects. Yet even this seems too small to be probed ex-

perimentally.
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In this chapter, we explore a different path: the neutrino force in the presence

of an intense neutrino background, as shown in the right panel of Fig. 3.1. The

presence of the background can significantly increase the strength of the interac-

tion. In fact, the effect of a neutrino background was studied before, for the cosmic

neutrino background (CνB), in Refs. [59, 23, 60]. However, the effect in this case is

small because the number density of the cosmic neutrinos is very small today.

In this work, we focus on scenarios where the background is much more dense;

in particular, for solar and reactor neutrinos. On the theoretical level, this differs

from the case of CνB in that the background is not spherically symmetric. This

results in a preferred direction, providing a fundamentally different signal than

that of the vacuum and CνB cases.

Numerically, we find that the effect of reactor and solar neutrinos is remark-

ably significant and can enhance the signal by more than 20 orders of magnitude.

In particular, the encouraging result is that the effect is close to the available sen-

sitivity of fifth-force experimental searches. Thus, we hope that using the effect of

background neutrinos will enable us to probe the neutrino force.

The chapter is organized as follows. In Sec. 3.2, we set up the general for-

malism to calculate the neutrino force in an arbitrary neutrino background. After

applying this formalism to the case of CνB in Sec. 3.3, we calculate the neutrino

force in a directional neutrino flux background in Sec. 3.4. In Sec. 3.5, we dis-

cuss the detection of neutrino forces in neutrino backgrounds and compare our

theoretical results with the experimental sensitivities. Our main conclusions are
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summarized in Sec. 3.6. The technical details are expanded in the appendices.

3.2 Formalism

In this section, we introduce the general formalism to compute neutrino forces be-

tween two fermions in a general neutrino background. Consider a four-fermion

interaction with two Dirac neutrinos (for the case of Majorana neutrinos, see

Sec. 3.3.3) and two fermions:

Lint = −
GF
√

2

[
ν̄γµ (1 − γ5) ν

] [
χ̄γµ

(
gχV + gχAγ5

)
χ
]
, (3.2)

where GF is the Fermi constant, ν denotes a Dirac neutrino with mass mν, χ is a

generic fermion in or beyond the SM with mass mχ, gχV and gχA are effective vector

and axial couplings of χ to the neutrinos, obtained from integrating out heavy

weak bosons.

Before we start, we note the following:

1. We work in the non-relativistic (NR) limit, i.e, the velocity of the interacting

fermions v ≪ 1 . The description of particle scattering via a potential V(r) is

accurate only in this limit.

2. Throughout our work, we only consider the spin-independent part of the

potential. The reason is that the spin-dependent parts are usually aver-

aged out when neutrino forces are added at macroscopic scales. The spin-

independent part of the potential only depends on the vector coupling gχV .
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neutrino flavor χ = e χ = u χ = d χ =proton χ =neutron
νe

1
2 + 2s2

W
1
2 −

4
3 s2

W −1
2 +

2
3 s2

W
1
2 − 2s2

W −1
2

νµ, ντ −1
2 + 2s2

W
1
2 −

4
3 s2

W −1
2 +

2
3 s2

W
1
2 − 2s2

W −1
2

Values of the vector coupling gV in Eq. (3.2) in the SM. Here sW ≡ sin θW is the sine

of the Weinberg angle.

In Table 3.2, we collect the values of gχV in the SM [61]. When χ is the pro-

ton or the neutron, gχV can be obtained by simply summing over the vector

couplings to the quarks.

In vacuum, the diagram in the left panel of Fig. 3.1 leads to a long-range force

that we can describe by an effective potential proportional to r−5 in the massless-

neutrino limit, r being the distance of the two external particles. More explicitly,

the spin-independent part of the neutrino potential between two fermions χ1 and

χ2 in that limit reads

V0(r) =
G2

Fg1
Vg2

V

4π3

1
r5 (m−1

χ1,2
≪ r ≪ m−1

ν ) . (3.3)

Here, we use g1
V ≡ gχ1

V and g2
V ≡ gχ2

V to simplify the notation. Note that, for r ≫ 1/mν,

the potential is exponentially suppressed by e−2mνr [19], while the NR approxima-

tion of χ becomes invalid as r approaches m−1
χ1,2

. The short-range behavior of neu-

trino forces was first investigated in Ref. [54].

In a neutrino background with finite neutrino number density or tempera-

ture, the neutrino propagator should be modified, as shown on the right panel of

Fig. 3.1. The modified propagator is often derived in the real-time formalism in

finite temperature field theory (for a detailed review, see Refs. [62, 63, 64, 65, 66].
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Also, see Appendix B.1 for a simple and pedagogical re-derivation of the modified

propagator.) We then have:

S ν(k) = (/k + mν)
{

i
k2 − m2

ν + iϵ
− 2πδ

(
k2 − m2

ν

) [
Θ

(
k0

)
n+ (k) + Θ

(
−k0

)
n− (k)

]}
, (3.4)

where ϵ → 0+, Θ is the Heaviside theta function, and n± (k) denote the momentum

distributions of the neutrinos and anti-neutrinos respectively, such that the inte-

grals
∫

n± (k) d3k/(2π)3 correspond to their respective number densities. The first

part is the usual fermion propagator in vacuum while the second part accounts for

the background effect. The second part might seem counter-intuitive in the sense

that the Dirac delta function requires the neutrino to be on-shell while, in Fig. 3.1,

this on-shell neutrino is used to connect two spatially separated particles. To un-

derstand this effect, one should keep in mind that when k in Eq. (3.4) is fixed, the

uncertainty principle dictates that the neutrino cannot be localized and is spread

out over space. So theoretically, the propagator’s second (background) term, just

like the vacuum part, can mediate momentum over a large distance.

According to the Born approximation, the effective potential is the Fourier

transform of the low-energy elastic scattering amplitude of χ1 with χ2,

V(r) = −
∫

d3q
(2π)3 eiq·rA(q) . (3.5)

Here,A(q) is the scattering amplitude in the NR limit, which should be computed

by integrating the neutrino loop in Fig. 3.1 using the modified neutrino propaga-

tor in Eq. (3.4):

iA(q) =
G2

Fg1
Vg2

V

2

∫
d4k

(2π)4 Tr
[
γ0 (1 − γ5) S ν(k)γ0 (1 − γ5) S ν (k + q)

]
. (3.6)
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Using the NR approximation we have q ≈ (0,q), thus the amplitude A only de-

pends on the three-momentum q. Substituting Eq. (3.4) into Eq. (3.6), one can see

that when both neutrino propagators in Eq. (3.6) take the first term in the curly

bracket of Eq. (3.4), it leads to the vacuum potential V0(r). When both propaga-

tors take the second term, the result vanishes, as we show in Appendix B.2. The

background effect comes from cross terms, being proportional to n±. We denote

the background contribution to A(q) by Abkg(q) and, correspondingly, the contri-

bution to V(r) by Vbkg(r):

A(q) = A0(q) +Abkg(q) , V(r) = V0(r) + Vbkg(r) . (3.7)

Notice that there is no interference between the vacuum and the background am-

plitudes in our calculation because, unlike computing cross sections, here we do

not need to square the total amplitude. The background contributionAbkg(q), after

some calculations in Appendix B.2, reduces to

Abkg(q) = 4G2
Fg1

Vg2
V

∫
d3k

(2π)3

n+ (k) + n− (k)
2Ek

[
2 |k|2 + m2

ν + k · q
2k · q + |q|2

+ (k→ −k)
]
. (3.8)

For isotropic distributions (e.g. cosmic neutrino background, diffuse super-

nova neutrino background), n± are independent of the direction of the momen-

tum, i.e., n±(k) = n±(κ) with κ ≡ |k|, leading to an isotropic Abkg and hence an

isotropic Vbkg. In this case, the angular part of the above integral can be integrated

out analytically, resulting in the following expression for Vbkg:

Vbkg(r) = −
G2

Fg1
Vg2

V

4π3r4

∫ ∞

0
dκ κ

n+ (κ) + n− (κ)√
κ2 + m2

ν

[(
1 + m2

νr
2
)

sin (2κr) − 2κr cos (2κr)
]
. (3.9)
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Up to now, we have not used any specific neutrino distributions. In what

follows, we apply the above formulae to specific forms of n± and compute the

corresponding potentials.

3.3 Neutrino forces with isotropic neutrino background

We now discuss the case where the neutrino background is isotropic and focus

on a thermal-like distribution. In particular, this applies to the cosmic neutrino

background (CνB), which motivates this section.

The existence of isotropic CνB today, with a temperature around 1.9 K and

number density about 56/cm3 per flavor, is one of the most solid predictions from

big bang cosmology [67]. The temperature correction to neutrino forces in the

CνB was first calculated in Ref. [59] with the neutrino momentum distribution to

be

n± (k,T ) = exp
[
(±µ − κ) /T

]
with κ ≡ |k| , (3.10)

where µ and T are the chemical potential and temperature of the CνB.

Ref. [59] studied the case of Dirac neutrinos in the massless (mν = 0) and NR

(mν ≫ T ) limit. Later, the background effects of the CνB on neutrino forces were

further studied in Ref. [23, 60]. In Ref. [23] the neutrino distribution was taken to

be a standard Boltzmann distribution,

n± (k,T ) = exp
[
(±µ − Ek) /T

]
with Ek =

√
|k|2 + m2

ν , (3.11)
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and the complete expressions of the background potential Vbkg(r) were given for

both Dirac and Majorana neutrinos. The massless limit of the result in Ref. [23]

matches that in Ref. [59]. However, the results of the massive case are very differ-

ent. In particular, the expression of Vbkg(r) in Ref. [23] is exponentially suppressed

at large distances, Vbkg(r) ∼ e−2mνr (for r ≫ 1/mν), while that in Ref. [59] is not,

Vbkg(r) ∼ mν/(Tr5) (for r ≫ 1/T ≫ 1/mν). This discrepancy on the long-range be-

havior of Vbkg(r) is due to the difference between the distributions in Eqs. (3.10)

and (3.11): The former corresponds to the number density of relic neutrinos pro-

portional to T 3, while the latter distribution corresponds to the number density

that would be exponentially suppressed by e−mν/T for NR neutrinos. In addition,

in Ref. [60], Vbkg(r) was calculated for the standard Fermi-Dirac distribution

n± (k,T ) =
1

e(Ek∓µ)/T + 1
, (3.12)

for arbitrary chemical potential, but the mass of neutrinos was neglected therein.

However, in the framework of standard cosmology, neutrinos decoupled at

T ∼ MeV, after which they were no longer in thermal equilibrium with the cos-

mic plasma. Instead, they propagated freely until today, maintaining their own

distribution:

n± (k,T ) =
1

e(κ∓µ)/T + 1
. (3.13)

The reason why cosmic neutrinos obey the distribution function in Eq. (3.13),

instead of Eq. (3.12), is that κ, rather than Ek, scales as inversely proportional to

the scale factor a, i.e., κ ∝ 1/a [67]. In the relativistic limit, there is no difference
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between Eqs. (3.12) and (3.13). However, we know that the temperature of CνB

today is around 10−4 eV and neutrino oscillation experiments [68] tell us that at

least two of the three active neutrinos are NR in the CνB today. Therefore, the re-

sults in Refs. [23, 60] using Eqs. (3.11) and (3.12) only hold for relativistic neutrino

background and are invalid for the CνB today, while the computation in Ref. [59]

using Eq. (3.10) is an approximate result.

We emphasize that a strict computation of the background effects on neutrino

forces from the CνB today using Eq. (3.13) is still lacking, and this is what we do

in this section.

3.3.1 Maxwell-Boltzmann distribution

As a warm-up, we first take the distribution function in Eq. (3.10), whose massless

and NR limits have already been given in Ref. [59]. Substituting

n+ (k,T ) + n− (k,T ) = 2 cosh
(
µ

T

)
exp

(
−
κ

T

)
, (3.14)

into Eq. (3.9), we obtain

Vbkg(r) = −
G2

Fg1
Vg2

V

2π3 cosh
(
µ

T

) T
r4

[(
1 + b2x2

)
IMB (x, b) − b

∂

∂b
IMB (x, b)

]
, (3.15)

where we have defined the dimensionless quantities

x ≡
mν

T
, b ≡ rT, y ≡

κ

T
, (3.16)
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and the dimensionless integral

IMB(x, b) =
∫ ∞

0
dy

y√
y2 + x2

e−y sin (2by) . (3.17)

Eq. (3.17) cannot be integrated analytically but can be computed numerically for

arbitrary values of mν, T and r. We are mainly interested in two special scenarios:

x = 0 (the lightest active neutrino can still be massless) and x ≫ 1 (according to

the neutrino oscillation experiments, the heaviest active neutrino is at least 0.05

eV, which corresponds to x ≳ 500 if we consider the temperature of CνB).

For x = 0, we have

IMB (0, b) =
2b

1 + 4b2 =
2rT

1 + 4r2T 2 , (3.18)

and

Vbkg(r) = −
8G2

Fg1
Vg2

V

π3 cosh
(
µ

T

) T 4

r
(
1 + 4r2T 2)2 (mν = 0) , (3.19)

which is consistent with the result in Refs. [59, 23]. In particular, for high temper-

atures, r ≫ 1/T , we notice that VT (r) ∼ 1/r5, which is almost independent of the

temperature. For low temperature, r ≪ 1/T , we find that VT (r) ∼ T 4/r.

For x ≫ 1, since the integral in Eq. (3.17) with y > 1 is exponentially sup-

pressed, the dominant contribution to the integral comes from the region 0 < y ≪

x, thus we have

IMB (x, b) ≃
1
x

∫ ∞

0
dyye−y sin (2by) =

1
x

4b(
1 + 4b2)2 =

4rT 2

m
(
1 + 4r2T 2)2 , (3.20)

and

Vbkg(r) = −
2G2

Fg1
Vg2

V

π3 cosh
(
µ

T

) mνT 3

r
(
1 + 4r2T 2)2 (mν ≫ T ) , (3.21)
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which is consistent with the result in Ref. [59]. Note that, in contrast to the result

in Ref. [23], there is no exponential suppression in Eq. (3.21). In particular, for

r ≪ 1/T , we obtain

Vbkg(r) = −
2G2

Fg1
Vg2

V

π3 cosh
(
µ

T

) mνT 3

r
(mν ≫ T, r ≪ T−1) , (3.22)

while, for r ≫ 1/T ,

Vbkg(r) = −
G2

Fg1
Vg2

V

8π3 cosh
(
µ

T

) mν

T
1
r5

(
mν ≫ T, r ≫ T−1

)
, (3.23)

which is enhanced by a factor of mν/T compared with the vacuum result in

Eq. (3.3) for NR background neutrinos.

3.3.2 Fermi-Dirac distribution

We now turn to the realistic distribution of background neutrinos in Eq. (3.13).

The first thing to notice is that the neutrino degeneracy parameter ζ ≡ µ/T , which

characterizes the neutrino–antineutrino asymmetry, is actually very small from

constraints of big bang nucleosynthesis: ζ ≲ O
(
10−2

)
[69, 70]. Therefore, we can

expand the neutrino distribution function into a series of ζ,

n+ (κ,T ) + n− (κ,T ) =
2

eκ/T + 1
+ O

(
ζ2

)
, (3.24)

and only take the leading-order term, which is independent of ζ. Then the back-

ground potential turns out to be

Vbkg(r) = −
G2

Fg1
Vg2

V

2π3

T
r4

[(
1 + b2x2

)
IFD (x, b) − b

∂

∂b
IFD (x, b)

]
, (3.25)
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where x, b, and y are defined in Eq. (3.16) and

IFD (x, b) =
∫ ∞

0
dy

y√
y2 + x2

1
ey + 1

sin (2b y) . (3.26)

The integral in Eq. (3.26) can be numerically calculated for arbitrary values of mν,

T , and r. In the massless limit (x = 0) and NR limit (x ≫ 1), IFD (x, b) can be carried

out analytically.

For x = 0, we have

IFD (x, b) =
1
4

[
1
b
− 2π csch (2πb)

]
, (3.27)

and the background potential

Vbkg(r) = −
G2

Fg1
Vg2

V

4π3

1
r5 {1 − πrTcsch (2πrT ) [1 + 2πrTcoth (2πrT )]} (mν = 0) , (3.28)

which is consistent with the result obtained in Ref. [60], where the neutrino distri-

bution Eq. (3.12) was taken but the neutrino mass was neglected. An interesting

observation is that, in the long-range limit,

Vbkg(r) = −
G2

Fg1
Vg2

V

4π3

1
r5 (mν = 0, r ≫ T−1) , (3.29)

which happens to be the opposite of Eq. (3.3). This means that, for massless neu-

trinos in the limit ζ → 0, the vacuum potential is completely screened off by the

CνB.

Let us now take a look at the NR limit of Eq. (3.26). As with the case of Boltz-

mann distribution, for x ≫ 1, one obtains

IFD (x, b) ≃
1
x

∫ ∞

0
dy

y
ey + 1

sin (2by)

=
i

8x

[
ψ(1)

(
1
2
+ ib

)
− ψ(1)

(
1
2
− ib

)
+ ψ(1) (1 − ib) − ψ(1) (1 + ib)

]
,(3.30)
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νBDF mν = 0, r ≪ T−1 mν = 0, r ≫ T−1 mν ≫ T , r ≪ T−1 mν ≫ T , r ≫ T−1

MB − 8
π3 G2

Fg1
Vg2

V
T 4

r − 1
2π3 G2

Fg1
Vg2

V
1
r5 − 2

π3 G2
Fg1

Vg2
V

mνT 3

r − 1
8π3 G2

Fg1
Vg2

V
mν

T
1
r5

FD −7π
90G2

Fg1
Vg2

V
T 4

r − 1
4π3 G2

Fg1
Vg2

V
1
r5 −14.4

8π3 G2
Fg1

Vg2
V

mνT 3

r − 1
32π3 G2

Fg1
Vg2

V
mν

T
1
r5

Comparison of the short- and long-range behaviors of the background potential

Vbkg(r) in the massless and non-relativistic limits with the neutrino Background

Distribution Function (νBDF) taking the Maxwell-Boltzmann (MB) distribution

in Eq. (3.10) and Fermi-Dirac (FD) distribution in Eq. (3.13). We have neglected

the chemical potential in both distribution functions.

where the n-th ordered polygamma function is defined as

ψ(n)(z) =
d
dz
ψ(n−1)(z) =

dn+1

dzn+1 logΓ(z) , (3.31)

with Γ(z) being the gamma function. Therefore, the background potential of NR

cosmic neutrinos turns out to be

Vbkg(r) = −i
G2

Fg1
Vg2

V

16π3

T 2

mr4

{[
ψ(1)

(
1
2
+ ib

)
− ψ(1)

(
1
2
− ib

)
+ ψ(1) (1 − ib) − ψ(1) (1 + ib)

]
×

(
1 + b2x2

)
− ib

[
ψ(2)

(
1
2
+ ib

)
+ ψ(2)

(
1
2
− ib

)
− ψ(2) (1 − ib) − ψ(2) (1 + ib)

]}
,

(mν ≫ T )(3.32)

In particular, for r ≪ 1/T , i.e., b ≪ 1, we have

Vbkg(r) = −
[
ψ(2)(1) − ψ(2)

(
1
2

)]
G2

Fg1
Vg2

V

8π3

mνT 3

r

= −14.4 ×
G2

Fg1
Vg2

V

8π3

mνT 3

r

(
mν ≫ T, r ≪ T−1

)
, (3.33)

while, for the long-range limit b ≫ 1, one obtains

Vbkg(r) = −
G2

Fg1
Vg2

V

32π3

mν

T
1
r5

(
mν ≫ T, r ≫ T−1

)
, (3.34)
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which is, as in the case of the Boltzmann distribution, enhanced by a factor of mν/T

compared with the vacuum potential in Eq. (3.3).

To sum up, we have provided in Eq. (3.25) the general background potential

valid for any temperatures and distances and discussed the special scenarios in

the massless and NR neutrinos limits, which have simple analytical expressions.

Compared to the results of Maxwell-Boltzmann distribution in last subsection,

we conclude that both distributions lead to similar short-range and long-range

behaviors of the background potential in the massless limit (mν = 0) and NR limit

(mν ≫ T ), up to some numerical factors (cf. Table 3.3.2).

3.3.3 The case of Majorana neutrinos

The above calculations for Dirac neutrinos can be generalized to the scenario of

Majorana neutrinos. If ν is a Majorana neutrino with mass mν, then its general

four-fermion interaction is given by

Lint =
GF
√

2

[
ν̄γµγ5ν

] [
χ̄γµ

(
gχV + gχAγ5

)
χ
]
, (3.35)

where we have used the identity ν̄γµν = 0 for Majorana fermions comparing with

Eq. (3.2). Taking into account the modified neutrino propagator due to the back-

ground, Eq. (3.4), the scattering amplitude reads

iA(q) =
G2

Fg1
Vg2

V

2

∫
d4k

(2π)4 Tr
[
γ0γ5S ν(k)γ0γ5S ν (k + q)

]
× 2 , (3.36)
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where the factor of 2 is due to the exchange of two neutrino propagators in the

loop. As with the Dirac case, the background effect comes from the crossed terms.

After some algebra, one obtains

Abkg(q) = 4G2
Fg1

Vg2
V

∫
d3k

(2π)3

n+ (k) + n− (k)
2Ek

[
2 |k|2 + k · q
2k · q + |q|2

+ (k→ −k)
]
. (3.37)

For isotropic distributions n±(k) = n±(κ), Eq. (3.37) can be reduced to

Vbkg(r) = −
G2

Fg1
Vg2

V

4π3r4

∫ ∞

0
dκ κ

n+ (κ) + n− (κ)√
κ2 + m2

ν

[sin (2κr) − 2κr cos (2κr)] , (3.38)

which, as expected, matches the result for Dirac neutrinos in Eq. (3.9) in the mass-

less limit.

We then take the Fermi-Dirac distribution in Eq. (3.13) to calculate Vbkg(r) in the

CνB. Note that for Majorana neutrinos, the chemical potential vanishes, so that

n+(κ) = n−(κ) =
1

eκ/T + 1
. (3.39)

Therefore, the background potential turns out to be

Vbkg(r) = −
G2

Fg1
Vg2

V

2π3

T
r4

[
IFD (x, b) − b

∂

∂b
IFD (x, b)

]
, (3.40)

where x, b, and the integral IFD(x, b) is defined in Eqs. (3.16) and (3.26).

In the massless limit (x = 0), it is obvious that Vbkg(r) is the same as we have for

the Dirac neutrino case in Eq. (3.28).

In the NR limit (x ≫ 1), IFD(x, b) can be integrated analytically and is given by
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nature of neutrino general expression r ≪ T−1 r ≫ T−1

Dirac Eq. (3.32) −14.4
8π3 G2

Fg1
Vg2

V
mνT 3

r − 1
32π3 G2

Fg1
Vg2

V
mν

T
1
r5

Majorana Eq. (3.41) −248.9
8π3 G2

Fg1
Vg2

V
T 5

mνr
− 1

8π3 G2
Fg1

Vg2
V

1
mνT

1
r7

Comparison of the short- and long-range behavior of the background potential

Vbkg(r) in non-relativistic CνB (mν ≫ T ) with n± taking the Fermi-Dirac

distribution in Eq. (3.13) for Dirac and Majorana background neutrinos.

Eq. (3.30). Therefore the background potential turns out to be

Vbkg(r) = −i
G2

Fg1
Vg2

V

16π3

T 2

mr4

{[
ψ(1)

(
1
2
+ ib

)
− ψ(1)

(
1
2
− ib

)
+ ψ(1) (1 − ib) − ψ(1) (1 + ib)

]
−ib

[
ψ(2)

(
1
2
+ ib

)
+ ψ(2)

(
1
2
− ib

)
− ψ(2) (1 − ib) − ψ(2) (1 + ib)

]}
. (3.41)

In particular, for the short-range limit (b ≪ 1) one obtains

Vbkg(r) = −
[
ψ(4)(1) − ψ(4)

(
1
2

)]
G2

Fg1
Vg2

V

24π3

T 5

mνr

= −248.9 ×
G2

Fg1
Vg2

V

8π3

T 5

mνr

(
mν ≫ T, r ≪ T−1

)
, (3.42)

while for the long-range limit (b ≫ 1), we have

Vbkg(r) = −
G2

Fg1
Vg2

V

8π3

1
mνTr7

(
mν ≫ T, r ≫ T−1

)
. (3.43)

In Table 3.3.3, we have compared the short- and long-range behaviors of the

background potential Vbkg(r) due to Dirac and Majorana neutrinos in the NR

regime. Notice that, at short distances (r ≪ T−1 and m−1
ν ≪ T−1), the background

potential of Majorana neutrinos differs from that of Dirac neutrinos by a factor

of m2
ν/T

2 ≫ 1. Whereas, at long distances (r ≫ T−1 ≫ m−1
ν ), the relative factor
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is m2
νr

2 ≫ 1. This difference can be understood by the fact that the mass term

in the neutrino propagator dominates in the NR limit, and there should be two

mass insertions in the Dirac-neutrino propagator compared to just one mass in-

sertion in the Majorana-neutrino propagator. Therefore, we conclude that for NR

background neutrinos, the background potential of Dirac neutrinos is much larger

than that of Majorana neutrinos at both long and short distances.

3.3.4 Discussion

We close this section by briefly summarizing the main results of the thermal cor-

rections to neutrino forces from cosmic background neutrinos.

Neutrinos in the CνB are NR today (although the lightest neutrino can still

be massless) and obey the Fermi-Dirac distribution in Eq. (3.13) with negligible

chemical potential. The general expressions of the finite-temperature corrections,

valid for arbitrary neutrino masses and distances, are given by Eqs. (3.25) and

(3.40) for Dirac and Majorana neutrinos, respectively. In the massless limit, the

background potential Vbkg(r) is the same for Dirac and Majorana neutrinos. How-

ever, for NR background neutrinos, Vbkg(r) is much larger for Dirac neutrinos. This

distinction can, at least in principle, be used to determine the nature of neutrinos.

The most remarkable feature of the background potential from CνB is that, at

large distances (r ≫ 1/mν), it is not exponentially suppressed, whereas the vacuum

potential is suppressed by e−2mνr [19]. This is because the number density of back-
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ground neutrinos in the CνB is always proportional to T 3, no matter whether they

are relativistic or not. Since the total potential is given by adding the vacuum part

and the background part, neutrino forces between two objects will be dominated

by the corrections of CνB in the long-range limit for massive mediated neutrinos.

However, neutrino forces including thermal corrections of CνB are still too small

to reach the experimental sensitivities today (cf. Sec. 3.5). Below we will discuss

neutrino forces in other higher-energy neutrino backgrounds, which might offer

prospects of experimental detection in the near future.

Finally, we comment on the controversial topic of many-body neutrino forces

in neutron stars. In Ref. [9], a catastrophically large many-body neutrino force

was obtained using the vacuum neutrino propagator. Matter effects due to the

neutrons have been computed in Ref. [63]. It was claimed in [14, 48, 49, 17, 50, 51]

that this changes the result of Ref. [9]. Our result is irrelevant to this issue as we

only consider the neutrino background, and we do not elaborate any further.

3.4 Neutrino forces with directional neutrino backgrounds

In this section, we move to discuss anisotropic backgrounds. In particular, we

consider one with a specific direction. Reactor, solar, and supernova neutrinos are

example for such cases.

66



3.4.1 Calculations

Reactor, solar, and supernova neutrinos are anisotropic and much more energetic

than cosmic relic neutrinos. Solar neutrinos arrive at the Earth with an almost cer-

tain direction. Reactor neutrinos can also be assumed to travel in a fixed direction

if the sizes of the reactor core and the detector are much smaller than the distance

between them. In addition, we also consider a galactic (10 kpc) supernova neu-

trino burst. Although such an event is rare (2 ∼ 3 times per century), its neutrino

flux is orders of magnitude higher than solar neutrinos with an extremely small

angular spread, providing a unique opportunity for future experiments to search

for such forces.

In order to compute the effect of these backgrounds on the neutrino force, we

make two well-motivated assumptions:

1. We assume that the neutrino flux has a directional distribution with all neu-

trinos moving in the same direction. For solar and supernova neutrinos,

this is a good approximation, whereas for reactor neutrinos it requires that

the size of the reactor core and detector are much smaller than the distance

between them.

2. We assume that the neutrino flux is monochromatic, i.e., all neutrinos in

flux have the same energy. Although this is not exactly true, it is worth

mentioning that among the four well-measured solar neutrino spectra (8B,

7Be, pep, pp), two of them (7Be, pep) are indeed monochromatic.

67



An illustration of neutrino forces between two objects in a directional neutrino

flux background.

With these assumptions of directionality and monochromaticity, we consider the

following distribution:

n± (k) = (2π)3 δ3 (k − k0)Φ0 , (3.44)

where Φ0 =
∫

n± (k) d3k/ (2π)3 is the flux of neutrinos. Although actual reactor and

solar neutrino spectra are not monochromatic, our result derived below based

on Eq. (3.44) can be applied to a generic spectrum by further integrating over

k0, weighted by the corresponding Φ0, since any spectrum can be expressed as a

superposition of delta functions. For the treatment of a directional spectrum with

a finite energy spread, see Appendix B.3.

The anisotropic background leads to an anisotropic scattering amplitude, and

hence an anisotropic potential that depends not only on r but also on the angle

between k0 and r, denoted by α (cf. Fig. 3.4.1). Without loss of generality, we

assume k0 is aligned with the z-axis and r lies in the x-z plane:

k0 = Eν (0, 0, 1) , r = r (sα, 0, cα) , (3.45)

where (cα, sα) ≡ (cosα, sinα).
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Substituting the distribution (3.44) into Eq. (3.8), we obtain

Abkg (q) = 2G2
Fg1

Vg2
V
Φ0

Eν

[
2E2

ν + k0 · q
ρ2 + 2k0 · q

+
2E2

ν − k0 · q
ρ2 − 2k0 · q

]
= 8G2

Fg1
Vg2

VΦ0Eν

1 − ξ2

ρ2 − 4E2
νξ

2 , (3.46)

where ρ ≡ |q| and

ξ ≡
k0 · q
|k0||q|

. (3.47)

Note that the typical energy of reactor and solar neutrinos is O(MeV), so we can

safely neglect the neutrino mass in Eq. (3.8). Thus, the background-induced po-

tential is given by

Vbkg(r) = −
∫

d3q
(2π)3 eiq·rAbkg(q) = −

g1
Vg2

V

π3 G2
FΦ0E2

ν × I , (3.48)

where I is a dimensionless integral. We further define

ℓ ≡ rEν (3.49)

and note that I is depends only on ℓ and α:

I(ℓ, α) ≡
1
Eν

∫
d3qeiq·r 1 − ξ2

ρ2 − 4E2
νξ

2 . (3.50)

In Appendix B.2, we show that, for generic α and ℓ, the integral can be reduced

to

I (ℓ, α) =
π2

2ℓ
(3 + cos 2α) − 2π

∫ 1

−1
dξ ξ

(
1 − ξ2

) ∫ π

0
dφ sin

(
2ℓξ

∣∣∣∣cαξ + sα
√

1 − ξ2 cosφ
∣∣∣∣) .

(3.51)
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Evolution of the directional background potential with the distance for α = 0, 30◦,

60◦ and 90◦. Notice that the distance r is in the unit of E−1
ν while the background

potential Vbkg(r, α) is in the unit of Eν. In addition, an overall dimensionless factor,

G2
Fg1

Vg2
VΦ0Eν, has been omitted for the background potential.

For the special cases of α = 0 and α = π/2, we find

I (ℓ, α = 0) =
π2

ℓ

[
1 +

sin 2ℓ
2ℓ

]
, (3.52)

I

(
ℓ, α =

π

2

)
=
π2

ℓ

[
1 − 4ℓ

∫ 1

0
dξξ

(
1 − ξ2

)
H0

(
2ℓξ

√
1 − ξ2

)]
, (3.53)

where H0 is the zeroth-order Struve H function.1 For generic values of α, though

1We note that Mathematica contains some unidentified bug leading to incorrect results
of integrals involving the Struve H function, e.g.

∫ 1
0 H0(

√
1 − z2z) dz should be nonzero while
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we cannot carry out the integration analytically, Eq. (3.51) can be readily used to

compute I (ℓ, α) numerically. We have numerically verified that
∫
I (ℓ, α) dcα can

reproduce the r−4 dependence in Eq. (3.9), which is expected when Eq. (3.9) is

applied to an isotropic and monochromatic flux. For illustration, in Fig. 3.4.1 we

show the evolution of the directional background potential Vbkg with the distance

r for α = 0, π/6, π/3 and π/2.

At long distances (ℓ ≫ 1), the numerical evaluation of the double integral in

Eq. (3.51) is computationally expensive. We find thatI(ℓ, α) has a simple analytical

expression for ℓ ≫ 1:

I (ℓ ≫ 1, α) =
π2

ℓ
cos2

(
α

2

)
cos [(1 − cosα) ℓ] +

π2

ℓ
sin2

(
α

2

)
cos [(1 + cosα) ℓ] . (3.54)

The analytical formula in Eq. (3.54) is very efficient to compute the background

potential at a long distance. In Fig. 3.4.1 we compare the numerical results com-

puted from Eq. (3.51) with the analytical results from Eq. (3.54). It can been seen

that they match extremely well for ℓ ≫ 1. Recalling ℓ = rEν the background po-

tential at a long distance is given by

Vbkg

(
r ≫ E−1

ν , α
)
= −

g1
Vg2

V

π
G2

FΦ0Eν

1
r

{
cos2

(
α

2

)
cos [(1 − cosα) Eνr]

+ sin2
(
α

2

)
cos [(1 + cosα) Eνr]

}
. (3.55)

We further consider the small α limit (α ≪ 1 while Eνrα2 can be arbitrarily large)

and find

Vbkg

(
r ≫ E−1

ν , α ≪ 1
)
= −

g1
Vg2

V

π
G2

F × Φ0Eν ×
1
r
× cos

(
α2Eνr

2

)
. (3.56)

Integrate in Mathematica only produces a vanishing result. The bug has been confirmed
by the developers of Mathematica.
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Comparison between the numerical results of ℓ × I(ℓ, α) computed from

Eq. (3.51) (blue dotted points) and the analytical results computed from Eq. (3.54)

(red solid line) for α = 30◦, α = 45◦, α = 60◦ and α = 90◦. They match excellently at

large distances (i.e., r ≫ E−1
ν ).

A few remarks are in order:

• The first term depends on the couplings of the fermions to the neutrinos.

• The second term is the energy density of the background neutrinos.

• The third term is the leading r dependence. We learn that we have a 1/r
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potential.

• The last term encodes the angular dependency. We discuss it in more detail

below.

• To leading order, this effect has no mass dependence. This is because the

mass of the neutrino is negligible compared to the energies of the back-

ground neutrinos.

We next move to discuss the forces between macroscopic objects. In that case,

we need to integrate over the energy of the background neutrinos as well as over

the distribution of the masses. This integration can result in a smearing of the

force, leading to the oscillatory behavior averaging out as we span the size of the

macroscopic objects.

In order to get an effective 1/r potential, the smearing should not be very

strong. The α-suppressed oscillation mode starts to rapidly oscillate when

α2 ∆(Eν r) ∼ π, where ∆(Eνr) is the spread of the energy Eν and the location of

the test masses. So the 1/r dependence approximately holds if

α2 ≲
π

∆(Eν r)
. (3.57)

3.4.2 Discussion

The neutrino-force effect is most significant when the background has a direction.

There are several significant differences when comparing it to the vacuum case:
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1. r dependence. While in vacuum the force scales as 1/r5, the leading term for

a directional background scales as 1/r. This implies that, at large distances,

the background effects always overcome the vacuum contribution. More-

over, it implies that this force scales like gravity and the Coulomb force.

2. Oscillation. The force exhibits oscillatory behavior. The oscillation length

depends on the energy of the background neutrinos and the angle spanned

by the background’s direction and the direction of the induced force. Only

at α = 0 there is no oscillation.

We provide some intuition for these two effects below. (Some of the discus-

sions below are based on ref. [71]). The point is that, in the presence of back-

ground neutrinos, one of the virtual neutrinos in the loop is effectively replaced

by a real neutrino, as imposed by the delta function δ(k2 − m2) in the background

propagator. Then, roughly speaking, the potential is related to the forward scat-

tering amplitude of the real neutrinos between the two objects that are subject to

the force. Usually, in the absence of a background, the mass suppression is a re-

sult of the “off-shellness” from the momentum transfer q2. But in the presence of

the high energy directional background, the departure from “off-shellness” is not

so straightforward. The situation in vacuum is Lorentz invariant so the depar-

ture from q2 is simply m2. In the presence of the directional background, Lorentz-

noninvariant quantities can be present in the propagator, which is what happens

in this case.

Thus, in the vacuum case for a one-particle exchange potential, the potential
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is the Fourier transform of (q2 + m2)−1, yielding e−mr/r. In the background the

propagator Π(|q|2) is given by (as in Eq. (3.46)):

Π(|q|2) ∼
1

q2 − 4E2
ν cos2 θk0,q

=
1

q2 + (2iEν cos θk0,q)2 , (3.58)

where θk0,q is the angle between vectors k0 and q (ξ ≡ cos θk0,q in Eq. (3.47)). The

propagator has no leading order dependence on mν since Eν ≫ mν. Note that the

“off-shellness”, which is real (i.e, m2) in the vacuum case, is now imaginary in the

presence of the background.

We naively therefore obtain a Fourier transform,

V(r) ∼
e−2iEνr f (α)

r
∼

1
r

cos(2Eνr f (α)), (3.59)

where f (α) is some function of the angle α, which we cannot predict without per-

forming the integral explicitly. This rough form allows us to intuit the features of

the potential:

1. The 1/r dependence is the geometrical factor for an exchange of a massless

intermediate particle. The background neutrinos practically make the po-

tential from a two body exchange into a one body exchange, as evident from

Eq. (3.46). One of the neutrinos is not virtual.

2. The oscillation behavior arises from the fact that the background neutrinos

modify the propagator to carry an imaginary “mass term”. This makes the

exchanged neutrino “real” as opposed to virtual, giving an oscillatory be-

havior. Another way this can be understood is as an interference effect be-

tween two amplitudes. One amplitude is the incoming background wave
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and the other one that scatters off one of the two interacting objects. At large

r, for α = 0, the interference is pure constructive and the potential behaves

as 1/r, corresponding to f (0) = 0 in Eq. (3.59) above. While at α = π/2, there

is destructive interference and oscillatory behavior persists.

3.5 Experimental sensitivities and detection of neutrino forces

3.5.1 Current status of the experiments

There have been decades of experimental efforts to search for new long-range

forces (also referred to as the fifth force) – see Refs. [72, 73, 74] for reviews.

Searches that typically employ torsion balance devices are closely related to preci-

sion tests of gravity, more specifically, to tests of the gravitational inverse-square

law (ISL) [75, 76, 77] and tests of the weak equivalence principle (WEP) [78, 79].

We summarize the experimental sensitivities in Table 3.5.1 and compare them

with our theoretical expectations of neutrino forces including background cor-

rections in Fig. 3.5.2. The details are explained in what follows.

Experiments testing the WEP look for possible differences between the accel-

erations of different test bodies in the same gravitational field. For example, the

gravitational acceleration on the Earth, a⊕ ≈ 9.8 m/s2, should be universal for all

test bodies at the same location, independent of the material of the test body. In

the presence of a new long-range force whose couplings to electrons and nucleons
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Experiment δV/Vgravity ⟨r⟩ Refs

Washington2007 3.2 × 10−16 ∼ 6400 km [78]

Washington1999 3.0 × 10−9 ∼ 0.3 m [79]

Irvine1985 0.7 × 10−4 2 − 5 cm [75]

Irvine1985 2.7 × 10−4 5 − 105 cm [75]

Wuhan2012 10−3 ∼ 2 mm [80]

Wuhan2020 3 × 10−2 ∼ 0.1 mm [77]

Washington2020 ∼ 1 52 µm [76]

Future levitated optomechanics ∼ 104 1 µm [81]

Sensitivities of long-range force search experiments.

are disproportional to their masses, the actual observed acceleration may violate

the universality.

Using Be and Ti as test masses and measuring the difference between their

gravitational accelerations, the Washington experiment group reported the fol-

lowing result in 2007 [78]:

aBe − aTi = (0.6 ± 3.1) × 10−15 m/s2 (Earth attractor) . (3.60)

Here, the Earth serves as the gravitational attractor. The average distance between

particles in the test body and in the attractor in this case is roughly the radius of

the Earth, ⟨r⟩ ∼ 6400 km. Dividing the experimental uncertainty in Eq. (3.60) by

a⊕ ≈ 9.8 m/s2, we obtain δV/Vgravity = 3.2 × 10−16 where Vgravity is the gravitational
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potential and δV denotes potential variations due to new forces. This experimental

setup is referred to as Washington2007 in Table 3.5.1.

Instead of making use of the Earth’s gravity, one can also employ laboratory

attractors. An earlier experiment conducted by the same group using a 3-ton 238U

attractor and test bodies of Cu and Pb reported [79]:

aCu − aPb = (1.0 ± 2.8) × 10−15 m/s2 (3-ton 238U attractor) . (3.61)

Note that the uncertainty is close to the one in Eq. (3.60) but the result should be

compared with the gravitational acceleration caused by the 238U attractor, which is

9.2× 10−7 m/s2. The 238U attractor has an annular shape with inner and outer radii

of 10.2 cm and 44.6 cm while the torsion balance is located in its center. Hence the

average distance between particles in the test body and in the attractor in this case

is roughly ⟨r⟩ ∼ 0.3 m. This experimental setup is referred to as Washington1999

in Table 3.5.1.

Experiments testing ISL measures the variation of the gravitational attraction

between two test bodies when their distance varies. The Irvine experiment con-

ducted in the 1980s was already able to probe ISL over a distance range from 2 cm

to 105 cm at the precision of 10−4[75], ruling out a previously claimed deviation

of ISL by (0.37 ± 0.07)% in the 4.5 to 30 cm range [82]. In recent years, the preci-

sion of ISL testing experiments in the centimeter to meter range has not been im-

proved significantly. The main progress that has been made so far is the success-

ful measurement of gravitational forces at much smaller distance scales [76, 77].

So far, the smallest distance scale at which gravity has been probed in labora-
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tory is 52 µm [76]. Above this scale, gravitational forces have been measured to

certain precision (see results of Wuhan2012 [80], Wuhan2020 [77], and Washing-

ton2020 [76] in Table 3.5.1) and the measurements are fully consistent with ISL.

3.5.2 Detection of neutrino forces

When applying the above experimental sensitivities to neutrino forces, one should

note that δV caused by reactor and solar neutrinos are both direction-dependent.

For solar neutrinos, the angle α varies with a period of 24 hours due to Earth’s

rotation. For reactor neutrinos, the angle α varies in experiments with moving

attractors, as is the case of the Washington1999 experiment [79]. Since the reactor

neutrino flux is only intense within a short distance from a reactor, the Washing-

ton2007 experiment does not provide strong probing power to the reactor neu-

trino force.

In order to compare the deviation of ISL gravitational potential from the back-

ground potentials to the experimental sensitivities, we need to compute Vbkg be-

tween two objects numerically and compare it to the gravity. As a bench mark

point, we fix α = 0.

This assumption is not valid in all of the examples that we study below. All

of the current experiments are done between extended objects and the averaging

over their shape is important, making the use of the α = 0 result unjustified. Yet,

we do use the α = 0 as the most optimistic scenario just to get an idea how far the
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effects are from current sensitivities.

Since in the cases we are considering, the vacuum potential is negligible the

neutrino force between two particles in the directional neutrino background is

simply given by

Vν−force(r) = −
g1

Vg2
V

π
G2

FΦEν

1
r

(
r ≫ E−1

ν , α = 0
)
, (3.62)

which is proportional to 1/r, same as the gravitational potential. Notice that the

typical energy of reactor and solar neutrino flux is Eν ∼ MeV ∼
(
10−11cm

)−1
, while

the average distance between two particles in the test body and in the attractor is

larger than µm (cf. Table 3.5.1). Hence, we only need to consider the long-range

behavior of the background potential, namely, r ≫ E−1
ν . We use Eq. (3.62) below

to compute the background potentials.

In Fig. 3.5.2, we plot the reactor neutrino force curves calculated from Eq. (3.62)

using the standard reactor neutrino flux at 1 meter and 10 meters from the

reactor core. For a reactor with 2.9 GW thermal power, the neutrino flux is

Φ = 5 × 1013 cm−2s−1 at 10 meters away [83]. We take Eν in Eq. (3.62) to be 2 MeV

when computing the background potential from reactor neutrinos. The curves

stop at r = 0.5 m and r = 5 m because experiments with much larger r (such as

Washington2007) are impossible to have test bodies and attractors all fitted in the

limited space within 1 or 10 meters from the reactor.

For solar neutrinos, this is not a concern. So far, all experiments have r much

smaller than the distance to the Sun. However, one should note that the angle
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Neutrino forces in comparison with experimental sensitivities. Here all neutrino

sources are assumed to be ideally point-like and the angular spread is assumed

to be sufficiently small to meet Eq. (3.57). In reality, a sizable angular spread

needs to be taken into account thus the above should be considered as an upper

bound of the effect.

α varies with a period of 24 hours while a large number of noises are also 24-

hour periodic. Hence the α dependence could be easily submerged in such noises.

Nevertheless, we plot the solar neutrino line in Fig. 3.5.2 assuming that it could

be resolved among various noises in future experiments.

The solar neutrino line in Fig. 3.5.2 is calculated from Eq. (3.62) by consid-

ering pp neutrinos with the flux Φ = 5.99 × 1010cm−2s−1 and the highest energy

Emax = 0.42 MeV [84]. In the computation we take Eν = 0.3 MeV since the pp neu-
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trino spectrum is not monochromatic. We have also calculated the background

potential of the 7Be solar neutrinos whose flux is Φ = 4.84 × 109 cm−2s−1 with two

monochromatic energies being Eν = 0.862 MeV and Eν = 0.384 MeV [84]. But the

result is the same order of magnitude as that of pp neutrinos.

It might be more feasible to make use of the material dependence feature of

neutrino forces. Since the effective neutrino-proton vector coupling is suppressed

by a factor of 1−4 sin2 θW ≈ 0.05 with respect to the effective neutrino-neutron vec-

tor coupling, we can assume that neutrino forces mainly depend on the neutron

number N = A − Z (A: atomic mass number, Z: proton number) of the material

used in test bodies. The contribution of electrons is more complicated since the

charged-current interaction may or may not contribute (if not, the 1 − 4 sin2 θW

suppression also applies to electrons), depending on the neutrino flavor. For sim-

plicity, here we neglect the electron contribution (see Appendix B.4 for a more

strict treatment). Therefore, for neutrino forces on different materials, the differ-

ence is roughly

δVν−force

Vν−force
∼ δZ/A, δZ/A =



1.6% for Be vs Ti

4.9% for Cu vs Pb

8.2% for Al vs Pt

. (3.63)

Here Z/A is approximately 1/2 for most nuclei, and δZ/A denotes its variation for

different materials. Taking Be vs Ti for example, since Ti (Be) has 22 (4) protons

and 26 (5) neutrons, the difference is 22/48 − 4/9 = 1.4%. More accurate calcula-

tions using A = 47.87 (9.012) gives 1.6%. In principle, δZ/A could be enhanced to as
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large as 50% if Hydrogen (Z = A = 1) is used in combination with other Z/A ≈ 1/2

material, though technically it is difficult to make test bodies of Hydrogen. In

Fig. 3.5.2, below the solar neutrino line, we plot two lines by multiplying it with

δZ/A = 10% and 1%. If the direction-dependent signal of Vν−force are submerged

in various 24-hour noises, the material dependence of Vν−force, which is a factor of

δZ/A weaker but more robust against noises, could be exploited to probe neutrino

forces.

In addition to the aforementioned dependence on directions and materials, the

difference between reactor-on and -off measurements could also be used to probe

neutrino forces.

For supernova neutrinos, we plot a dashed line in Fig. 3.5.2 to present the mag-

nitude. We assume that the supernova neutrino flux is 1012 cm−2s−1, corresponding

to a 10 kpc core-collapse supernova neutrino burst [85]. The neutrino mean en-

ergy is about 10 MeV. Here we use a dashed line to remind the readers that such

a neutrino burst lasts only for a short period of a few seconds, which might be

too short for torsion balance experiments to reach the desired sensitivity (e.g. the

torsional oscillation period of Washington 2007 is 798 s [78]). A dedicated analysis

on such experiments taking the short duration into consideration might lead to a

much weaker sensitivity, but this is beyond the scope of our work.

At last, we give some brief remarks on the background effects from atmo-

spheric and accelerator neutrinos. The flux of atmospheric neutrinos is much

smaller than those of the reactor and solar neutrinos [86]. As a result, the cor-
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responding background potential is weaker than that of reactor neutrinos by 12

orders of magnitude. In addition, the flux from long-baseline accelerator neutrino

experiments like DUNE [87] is also weaker than that of reactor neutrinos. The

accelerator neutrino background potential at the near-detector location of DUNE

is about 7 orders of magnitude smaller than that of reactor neutrinos. Therefore,

the background potentials from both atmospheric and accelerator neutrinos are

out of the reach with current experimental sensitivities.

3.6 Conclusions

In this chapter, we computed the background corrections to neutrino forces in a

thermal or non-thermal neutrino background. We found that the presence of the

background can significantly increase the strength of neutrino forces.

For the isotropic CνB in Eq. (3.13), we have derived general formulae of the

background potential for both Dirac [Eq. (3.25)] and Majorana [Eq. (3.40)] neutri-

nos that are valid for arbitrary neutrino masses and distances. The main feature

of the potential in the presence of the CνB is that, at large distances (r ≫ m−1
ν ), it is

not exponentially suppressed, as opposed to the potential in vacuum. Therefore,

when the distance between two particles exceeds the inverse mass of neutrinos,

the neutrino force between them is dominated by the background contribution.

However, since the number density of the cosmic neutrinos is very small today,

the thermal effects of the CνB on the neutrino force are still far from the available
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experimental sensitivities.

We then computed the neutrino force in a directional background. We

parametrized the non-thermal and anisotropic background as monochromatic

distribution function with a specific direction, α. The general direction-dependent

background potential is given by Eqs. (3.48) and (3.51). At r ≫ E−1
ν with Eν being

the typical energy of the neutrino flux, the background potential in the small α

limit is proportional to 1/r, which falls much slower than the 1/r5 potential in vac-

uum and in isotropic backgrounds. In particular, there is a potential significant

enhancement of the vacuum force in the presence of directional energetic dense

neutrino backgrounds.

We then turned to discuss the possibility of probing the neutrino force using

torsion balance experiments that aim to precisely test the gravitational inverse-

square law and the weak equivalence principle. Assuming the small α limit,

the comparison of the neutrino force in reactor and solar neutrino backgrounds

with experimental sensitivities is summarized in Fig. 3.5.2. The figure shows that,

if Eq. (3.57) could be satisfied, the current experiments would be 2 or 3 orders

of magnitude far from detecting neutrino forces in the reactor or solar neutrino

background. With current technology, however, the condition in Eq. (3.57) is not

satisfied and the energy and angular spread smear out the leading 1/r potential.

While it is not clear to us how complicated and practical it is to design an experi-

ment that can exploit the enhancement we discuss, the point to emphasize is that

strong enhancement is present.
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We conclude that the neutrino force in the solar or reactor neutrino background

is much more experimentally accessible than the one in vacuum. Dedicated exper-

imental efforts are called for to check if these enhancement factors can be exploit

in order to detect the elusive neutrino force.

Note added. After we updated our work on arXiv to Version 2, Ref. [88] ap-

peared on arXiv. The authors of that preprint commented that the finite size of

the wave packets would destroy the leading 1/r potential in directional neutrino

backgrounds that we found. However, the content of [88] was referring to Version

1 of our paper, while in Version 2 we have already addressed the smearing ef-

fect. To address the effect of the smearing, Ref. [88] took a different approach than

ours. They included the energy spread in the wave packets first and then took a

monochromatic directional flux and fixed α = 0, while we consider the smearing

effect by varying Eν and α of the flux. While the details of our analyses are not

identical, the results of the current version of our work are in agreement with the

results of Ref. [88]. Yet, our conclusions have a different tone. While we empha-

size the fact that there is indeed a strong enhancement when Eq. (3.57) is satisfied,

Ref. [88] is worried about the feasibility of designing experiments that can use it.
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CHAPTER 4

FERMION PAIR RADIATION BY ACCELERATING CLASSICAL SYSTEMS

4.1 Introduction

Radiation by a classical system is a well-known phenomenon. Probably the most

familiar example is the radiation of electromagnetic waves by an accelerating

point-like particle. The power loss, in this case, is calculated using the famous

Larmor formula [89, 28], which, in natural units, is given by

Ploss =
1

6π
q2a2, (4.1)

where q is the electric charge of the particle and a is its acceleration. The Lar-

mor formula in Eq. (4.1) has been also generalized to other types of radiation

by accelerating classical sources, such as radiation of massive vector and scalar

bosons [90, 91, 92, 93, 94, 95, 96, 91].

Generalizations of the Larmor formula to exotic types of radiation are moti-

vated, among other things, by their applications to new physics searches. The

basic idea is that if a new physics radiation accompanies an accelerating astro-

physical object, the power loss effect can be enhanced thanks to the large num-

ber density of an object, even if the coupling between the new physics and the

Standard Model (SM) is very small. This expected enhancement can be used to

obtain constraints on various new physics scenarios using astrophysical observa-

tions. One example is the radiation of an ultra-light gauged Lµ − Lτ vector bo-
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son [97, 98, 99, 100] by pulsar binaries. The measurement of the orbital period

decay, when compared to the prediction due to the gravitational wave (GW) radi-

ation, was used to constrain the mass of the Lµ − Lτ gauge boson and its couplings

to the SM [93, 92, 101, 102, 103, 104, 105].

In this chapter, we extend the previous work and derive the generalization of

the Larmor formula to the case of fermion-antifermion pair radiation by classical

systems. The interest in this scenario is twofold. First, it is interesting theoretically

since it is one more example of a case where a fermion pair behaves like a boson

(other cases are Cooper pairs in superconductors and the mediation of forces be-

tween objects via 2-fermion forces [6, 8, 58, 106]). Thus we can study the coherent

radiation of fermions. The key point is that single-fermion emission changes the

source and thus can not be treated classically. Fermion-pair emission, however,

can take place without changing any quantum degrees of freedom of the emit-

ting system (such as spin). Thus, fermion-pair emission (or emission of any even

number of fermions) can be treated classically.

The second aspect is phenomenological. In particular, we consider radiation

by astrophysical systems. In the SM, as we show below, the effect of the fermion

pair radiation is negligible. In beyond the SM (BSM) theories, however, such pro-

cesses can be enhanced, enabling us to probe various new physics scenarios using

astrophysical observations. In particular, fermion-pair radiation can become sig-

nificant in models with a new light mediator (a vector or scalar boson) that couples

to some light fermionic degrees of freedom. These fermionic degrees of freedom
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can be the well-known neutrinos or some new BSM fermions. The effects of this

radiation can become relevant when the mediator is too heavy to be produced on-

shell, but the fermions are much lighter and can be radiated out. Since fermion

pairs can be produced via off-shell mediators, the fermion pair radiation can be

used to probe broader regions of the parameter space of such models.

As a particular application of our result for the fermion-pair radiation, we con-

sider two models: (i) a model with a gauged Lµ − Lτ symmetry and (ii) a model

with a muonophilic scalar that couples to the muon and the muon neutrino. We

study the implications of these scenarios for the power loss by pulsar binaries and

compare our results to the cases of on-shell vector boson radiation [93, 92, 90] and

on-shell scalar radiation [90]. A stark difference is that the emission of neutrino

pairs in a particular harmonic mode of the periodic system is not kinematically

forbidden when the mediator mass becomes larger than the frequency of that par-

ticular mode. In the case of on-shell bosonic radiation, radiation from a harmonic

mode is cut off once the boson mass exceeds the frequency of that particular mode

due to energy conservation. We use the available period decay data for pulsar bi-

naries to demonstrate how neutrino pair radiation, mediated by BSM bosons, can

be used to probe a broader parameter space than the on-shell boson emission. We,

however, do not perform a comprehensive study of other bounds on the models

we consider.

This chapter is organized as follows: In Sec. 4.2, we discuss the general ma-

chinery required for calculating fermion-pair radiation from a classical system. In
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Sec. 4.3, we discuss the main features of the power-loss formula. In Sec. 4.4, we

perform the computation for the particular case where the classical system is a

binary system. We then use available data to place constraints on the parameters

of a few models. We conclude in Sec. 4.5. The detailed calculations are shown in

the appendix.

4.2 Fermion pair radiation by a point-like object

In this section, we outline the calculation of the power of fermion-pair radiation

that accompanies a non-relativistic point-like object. We formulate a general ap-

proach to the derivation of the power loss formula with a focus on the case of ellip-

tical orbits. The fermion pair radiation is realized in our analysis via the coupling

of the classical object to a massive boson: a vector, or a scalar, which is unstable

and decays into a fermion pair. We consider the emission of Dirac fermions and

generalize our result to the case of Weyl fermions when we discuss the application

of our result to the SM in Section 4.3.3. While a point-like object is a purely theo-

retical entity, it is worthwhile to perform this calculation since the approximation

of a radiating extended object as a point is valid in the limit of long-wavelength

radiation.
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4.2.1 General formalism

We describe a point-like object as a classical source using classical current, Jµcl(x)

and classical density, ρcl(x), which are given by

Jµcl(x) = Qδ3(x − x(t))uµ, (4.2)

ρcl(x) = Nδ3(x − x(t)). (4.3)

Here, Q is the total charge of the object under the symmetry of interest, N is the

number of the relevant microscopic constituents, x(t) is its position as a function

of time, t, and uµ is its four-velocity.

Assuming motion in the x − y plane, in the non-relativistic limit, the four-

velocity of the object is given by

uµ = (1, ẋ, ẏ, 0) . (4.4)

We focus on the case of the elliptical motion in the x − y plane, which can be

parametrically described by

x = a(cos ξ − e), y = a
√

1 − e2 sin ξ, Ω t = ξ − e sin ξ, (4.5)

where e is the eccentricity, a is the semi-major axis of the ellipse, and Ω is the

fundamental frequency of revolution. One full revolution around the ellipse cor-

responds to changing the parameter ξ from 0 to 2π.

The power loss due to the fermion-pair radiation is calculated using

Ploss =

∫
(ω1 + ω2) dΓ, (4.6)
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where ω1 and ω2 are the energies of the emitted fermion and anti-fermion, re-

spectively, and dΓ is the differential rate of the fermion-pair emission. The rate

depends on the type of mediator, i.e., a scalar or a vector, and the specific form of

the classical current or density.

In general, the acceleration is not constant. In the case of periodic orbits, the

motion can be decomposed into harmonic modes with frequenciesΩn = nΩ, where

Ω is the fundamental frequency of revolution. The total emission rate can then be

written as a sum of emission rates at different harmonics n,

dΓ =
∑

n

dΓn . (4.7)

The sum goes over all kinematically allowed harmonics n > 2mψ/Ω, where mψ is

the mass of the emitted fermions. The emission rate at harmonic n is found using

dΓn =
∑
s1,s2

|Mn(s1, s2)|2(2π)δ(Ωn − ω1 − ω2)
d3k1

(2π)3ω1

d3k2

(2π)3ω2
. (4.8)

Here, k1 = (ω1,k1) and k2 = (ω2,k2) are the four-momenta of the fermion and anti-

fermion respectively, and s1(s2) is the spin of the fermion (anti-fermion). The mi-

croscopic physics enters viaMn (s1, s2), which is the matrix element of the fermion-

pair emission at harmonic n. At leading order, this matrix element is obtained

from the diagram in Fig. 4.2.1. In the diagram, ⊗ denotes the classical source,

which is given by the classical current, Jµcl(x), in the case of vector mediator and

by the density, ρcl(x), in the case of the scalar mediated radiation.

The total power loss via fermion-pair radiation is simply a sum of power losses
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ψ, k1

ψ, k2

mediator

Feynman diagram for a fermion pair emission by a classical current.

over all harmonics

Ploss =
∑

n

Pn, Pn =

∫
(ω1 + ω2) dΓn. (4.9)

Here, Pn is the power loss of the nth harmonic.

In what follows, we consider two types of mediators: a massive gauge bo-

son and a massive scalar. We only consider s-channel exchange and remark on

t-channel exchange at the end of this subsection.

First, we consider a vector mediator, Aµ, that corresponds to a broken U(1)′

and has mass mA. This gauge boson couples to a classical current Jµcl(x), which has

charge Q under U(1)′. The gauge boson Aµ is unstable and decays into a fermion

pair. The terms in the effective Lagrangian, relevant for the fermion-pair radiation

via Aµ, are

Leff ⊃ gAµJµcl + gqψψ̄γµAµψ , (4.10)

where qψ is the U(1)′ charge of the fermion ψ, g is a dimensionless coupling con-

stant, and Jµcl(x) is the classical current defined in Eq. (4.2). Both the vector boson

and the fermions are assumed to be massive with masses mA and mψ, respectively.
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The leading order matrix element for the emission, at the n−th harmonic, is given

by

Mn(s1, s2) = g2qψ ū(k1, s1)γµv(k2, s2)
i(−ηµν + (k1 + k2)µ(k1 + k2)ν/m2

A)
(k1 + k2)2 − m2

A + imAΓA
Jνcl(Ωn) , (4.11)

where Jνcl(Ωn) is the Fourier transform of Jνcl(x), given by

Jνcl(Ωn) =
Ω

2π

∫ 2π/Ω

0
dt

∫
d3x ei(nΩt−p·x)Jνcl(x) (4.12)

with p = k1 +k2, ΓA is the decay width of the gauge boson, and 2π/Ω is the period.

We assume that the decay into a ψ̄ψ pair is the only decay channel for the gauge

boson Aµ, and that the fermion mass mψ is negligible compared to the gauge boson

mass mA. Under these assumptions, the decay width of Aµ is given by

ΓA =
g2q2

ψmA

12π
. (4.13)

The other case we consider is that of a scalar mediator, ϕ, for which the relevant

terms in the Lagrangian are

L ⊃ gϕρcl + g′ϕψ̄ψ, (4.14)

where g is the dimensionless coupling between the scalar ϕ and the classical

source, g′ is the Yukawa coupling of the fermion ψ to the scalar ϕ, and ρcl(x) is

the number density of relevant particles in the classical source. Both the scalar

and the fermions are assumed to be massive with masses mϕ and mψ, respectively.

The matrix element in this case is given by

Mn(s1, s2) = gg′ū(k1, s1)v(k2, s2)
iρcl(Ωn)

(k1 + k2)2 − m2
ϕ + imϕΓϕ

, (4.15)
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where ρcl(Ωn) is the Fourier transform of ρcl(x),

ρcl(Ωn) =
Ω

2π

∫ 2π/Ω

0
dt

∫
d3x ei(nΩt−p·x)ρcl(x), (4.16)

and the decay width of the scalar is Γϕ. As in the case of the vector mediator, we

assume that the fermionic decay mode is the only available mode, and the fermion

mass mψ can be neglected compared to the mass of a scalar mϕ. Thus we have

Γϕ =
g′2mϕ

8π
. (4.17)

So far, we have only considered the s-channel contribution to the fermion pair

radiation. Fermion pair radiation via t−channel process mediated by a vector or

scalar is also a possibility. Such contributions, however, are highly suppressed for

mS ≫ Ω,mM, where mS is the mass of the particles in the source that couple to the

fermion pairs ψ̄ψ at the microscopic level, and mM is the mediator mass. Since the

emitted fermions have energy of the order of Ω, the fundamental frequency of the

system, the t-channel contribution to the momentum entering the propagator is of

the order of mS −Ω. Thus the t-channel propagator is schematically given by

Π ∼
1

(mS −Ω)2 − m2
M

. (4.18)

In the case where mS is much larger than both Ω and mM, the propagator is dom-

inated by the mass of the source particles, and the process is heavily suppressed.

In this chapter, we assume that the mass hierarchy mS ≫ Ω,mM and neglect the

t−channel contributions to the fermion pair radiation everywhere.
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4.2.2 Power loss formulae

Using Eqs. (4.8)–(4.15), we can calculate the power loss via fermion-pair radiation

from a point-like object moving in an elliptical orbit. The detailed derivations are

shown in Appendix C, and here we only quote the final result. The power loss

due to fermion-pair emission in harmonic n > 2mψ/Ω, for the cases of the vector

and scalar mediator, can be written as

PA
n =

g4q2
ψQ2

12π3 a2Ω4 BA
n (nA, nψ, nΓ), (4.19)

Pϕ
n =

g2g′2N2

12π3 a2Ω4 Bϕ
n(nϕ, nψ, nΓ). (4.20)

The functions BM
n (nA, nψ, nΓ), where M = A, ϕ, are given by

BM
n (nM, nψ, nΓ) ≡

(
J′n(ne)2 +

1 − e2

e2 Jn(ne)2
) ∫ n−nψ

nψ
dx FM(x, n, nM, nψ, nΓ). (4.21)

Here

nM ≡ mM/Ω, nψ ≡ mψ/Ω, nΓ ≡ ΓM/Ω, (4.22)

and Jn(ne) is a Bessel function of order n with argument ne. The integration vari-

able in Eq. (4.21) is defined by x ≡ ω1/Ω, where ω1 is the energy of one of the

final-state fermion. In what follows, for brevity, we use the notation

FM(x) ≡ FM(x, n, nM, nψ, nΓ), BM
n ≡ BM

n (nM, nψ, nΓ). (4.23)

The functions FM(x) have the general form

FM(x) = FM
0 (x) +

FM
1 (x)
nM

[
tan−1

(
a(x) + b(x)

nM

)
− tan−1

(
a(x) − b(x)

nM

)]
+ FM

2 (x) tanh−1
(

2a(x)b(x)
a(x)2 + b(x)2 + n2

M
2

)
, (4.24)
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with a(x) and b(x) being universal for both gauge boson and scalar mediators,

a(x) = 2n2
ψ − n2

M + 2nx − 2x2 ,

b(x) = 2
√

x2 − n2
ψ

√
(n − x)2 − n2

ψ . (4.25)

The functions FM
0 (x), FM

1 (x), and FM
2 (x) are different for the two cases. For a gauge

boson mediator, we obtain

FA
0 (x) = b(x)/2n ,

FA
1 (x) =

1
4n

(
4 + 4n2n2

ψ −
2 2 + 22n2 − 4nx2 + 4x22

)
,

FA
2 (x) =

1
2n

(
2 + n2 − 2nx + 2x2

)
, (4.26)

while for a scalar mediator,

Fϕ
0 (x) = −b(x)/2n ,

Fϕ
1 (x) =

1
4n

(
22 + (n2−2)(2−4n2

ψ)
)
,

Fϕ
2 (x) =

1
4n

(
n2 + 4n2

ψ − 22
)
. (4.27)

Eqs. (4.19)–(4.27) are the main results of our work. Analytical integration of

FA(x) and Fϕ(x) is challenging, but it still can be performed in certain limits. In

Sec. 4.3.2, we consider two limiting cases: the case of nM ≪ 1, which reproduces

the Larmor formula, and nM ≫ 1, which is relevant for the fermion pair radia-

tion in the SM. In general, however, calculating the power loss requires numerical

analysis. We perform such an analysis in Sec. 4.4 when we discuss a particular

phenomenological application of our result.
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4.3 Discussion of the power-loss formula

The power loss due to fermion-pair emission by a classical source on an elliptical

orbit is given by Eqs. (4.19)-(4.27). Below we discuss the main features and the

asymptotic behavior of this result.

4.3.1 General features of the power-loss formula

We start with the general features that hold for both the vector and scalar cases.

The radiation rate is proportional to the charge-squared; that is, the functions

PA
n and Pϕ

n depend on Q2 and N2, respectively. This is a manifestation of the fact

that the fermion-pair radiation that we are considering is coherent.

The form of FM(x), with M = A, ϕ, in Eq. (4.24) is somewhat general. We show

in Appendix C that the overall form of FM(x), at the tree level, is the same for any

renormalizable theory that couples fermions to a classical source moving in an

elliptical orbit. Note that the functions a(x) and b(x) defined in Eq. (4.25) are purely

kinematic and thus have the same form for any theory of fermion pair emission,

while the form of FM
0 (x), FM

1 (x), and FM
2 (x) vary with the theory considered. For

instance, considering non-renormalizable interactions would lead to a different

momentum dependence of the matrix element that could, in principle, change the

form of FM(x).
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The power loss for both vector and scalar mediators behaves qualitatively the

same way despite the different functional forms of FA
i (x) vs. Fϕ

i (x), with i = 0, 1, 2.

This is not surprising since there is nothing fundamentally different between the

matrix elements for the vector and scalar cases.

Energy conservation implies that the functions FM(x) are invariant under x →

(n−x) exchange. The reason is that the total energy radiated in fermion pairs in the

n-th harmonic is nΩ. The transformation x→ (n − x) exchanges the energies of the

emitted fermion and anti-fermion, and the emission rate is the same regardless of

the order in which the integrals are carried out. This invariance results from the

fact that the fermion-antifermion emission from a classical system is essentially a

2-body decay. Note that this has nothing to do with the details of the considered

model.

For < n, the power loss has a very weak dependence on . This is true for the

particular models that we chose here but is not expected to be true in general. For

an example when this is not the case, see the discussion of Proca fields in Ref. [93],

where dependence on appears due to the absence of gauge symmetry.

There is an interplay of three energy scales: The mass of the mediator, mM, the

mass of the fermion, mψ, and the frequency of the harmonics, nΩ. The fermions

cannot be produced when 2mψ > nΩ. In the opposite limit, when 2mψ < nΩ, the

production rate depends strongly on the mediator mass. For mM < 2mψ < nΩ,

fermion production is strongly suppressed since the on-shell boson is kinemat-

ically forbidden from decaying into fermions. (Note that strictly speaking, our
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result cannot be straightforwardly applied in this case as everywhere we assume

ΓM > 0.) For 2mψ < mM < nΩ, the fermions are produced via decay of the on-shell

mediator. Thus the power loss in the fermion-pair radiation is equal to that of the

on-shell boson radiation. The region of the parameter space where mM > nΩ > 2mψ

is of the most interest to us, as in this region the fermions are kinematically al-

lowed, the mediator is off-shell, and therefore the fermion pair emission is most

significant.

As an example that illustrates the qualitative features of the power loss, con-

sider Fig. 4.3.1. It shows BA
n , defined in Eq. (4.21), as a function of nA for massless

fermions for the first four harmonics. The most striking feature of the plots is a

sharp drop at nA ∼ n. This behavior follows from the fact that at nA ∼ n, the radia-

tion regime switches from the radiation dominated by on-shell boson production

(nA < n), which is proportional to g2 to the off-shell production (nA > n) propor-

tional to g4. The power loss in the regime dominated by fermion-pair radiation

is thus suppressed by g2 compared to the power loss in the regime dominated by

the on-shell boson radiation. The power loss in the case of the scalar mediator

exhibits the same behavior.

Comparing our results to the cases of vector [93, 92, 90] and scalar radia-

tion [90], we note that from kinematic considerations alone, boson radiation drops

to zero as soon as nM = n. This is not what we observe for the fermion-pair emis-

sion. In the case of fermion-pair radiation, off-shell boson production is possible,

even though there is an extra suppression by g2 for a vector and g′2 for a scalar
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BA
n vs nA for fixed eccentricity, e = 10−3, coupling constant g = 10−15, and massless

final state fermions, mψ = 0. See Eqs. (4.21)-(4.26) for the definition of BA
n .

compared to on-shell boson radiation. As a result, the regime nM > n opens up

new regions of the parameter space for each harmonic n and is of particular phe-

nomenological interest to us.

Next, we remark on the dependence of the power loss on the eccentricity in the

case of orbits close to circular. For that, we note that the eccentricity only enters

the power loss through the Bessel function prefactor of BM
n in Eq. (4.21), which we

denote as K(n, e),

K(n, e) = J′n(ne)2 +
1 − e2

e2 Jn(ne)2 . (4.28)

We recall that Jn(z) and J′n(z) behave asymptotically, in the limit z ≪ 1, as

Jn(z) ≈
1
n!

( z
2

)n
, J′n(z) ≈

n
n!

1
2

( z
2

)n−1
≈

n
z

Jn(z), z ≪ 1. (4.29)

Using Eq. (4.29), we find for the eccentricity dependent prefactor K(n, e), in the
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limit ne ≪ 1, that

K(n, e) = J′n(ne)2 +
n2 − (ne)2

(ne)2 Jn(z)2 ≈ J′n(ne)2 +
n2

(ne)2 Jn(z)2

= 2
n2

z2 Jn(ne)2 =
(ne)2n−2

22n−1

n2

(n!)2 =
(ne)2n−2

22n−1 ((n − 1)!)2 . (4.30)

Thus we learn that in the limit ne ≪ 1, prefactor K(n, e) scales with the eccentricity

as

K(n, e) ∝ (ne)2n−2 . (4.31)

This shows that for small eccentricities (and thus orbits close to circular ones),

the contributions from higher harmonics die away very fast as n increases. For

n = 1 and e ≪ 1, we have K(1, e) ≈ 1/2. For each subsequent harmonic power

drops by a factor of order e2, until the factorial in the denominator of K(n, e) (see

Eq. (4.30)) starts to dominate. Then the contributions from the higher harmonics

start to decay away even faster. Fig. 4.3.1 illustrates the behavior of the power loss

for the first four harmonics in the case of small eccentricity e = 10−3.

The case of highly eccentric orbits e ∼ 1 is significantly more involved. First,

the contributions from different modes do not follow the simple hierarchy of the

low eccentricity case. The contributions from higher modes can be of the same

order or even larger than the first mode depending on the values of other pa-

rameters. See the left panel of Fig. 4.3.1 to compare the n-dependence of BA
n for

different eccentricity values. Second, as Fig. 4.3.1 demonstrates, the hierarchy of

modes in the on-shell dominated part of the parameter space does not carry into

the off-shell dominated region. Consider the green line corresponding to a highly

eccentric orbit with e = 0.6. For nA = 10−1 (left panel), the maximum contribution
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Left: BA
n as a function of n in the regime where the radiation is dominated

by on-shell boson production. Different colors correspond to different values of

eccentricity. The values of nψ, nA and g are fixed. Right: BA
n as a function of n for a

highly eccentric orbit with e = 0.6 in the regime where the radiation is dominated

by off-shell boson production.

to the power loss comes from the mode with n = 2 and the first 5 modes con-

tribute at about the same order. The situation is drastically different for nA = 50

(right panel). The maximum contribution to the power loss comes from the n = 8

mode. We learn that for e ∼ 1, generally speaking, the power loss per mode first

increases as we increase n and then starts decreasing after reaching a certain value

of n. Where this maximum occurs depends on other parameters.
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4.3.2 Asymptotic behavior for the case of circular orbits

We now move to the discussion of the asymptotic behaviour of the power loss in

two limiting cases mM ≪ Ω and mM ≫ Ω, where mM is the mass of the mediator,

M = A, ϕ. In this subsection, for simplicity we consider the straightforward case

of circular orbits (e = 0) and massless fermions (mψ = 0). For the eccentricity

dependent part of the power loss, K(n, e), we have

lim
e→ 0

K(n, e) = lim
e→ 0

(
J′n(ne)2 +

1 − e2

e2 Jn(ne)2
)
=

1
2
δn,1. (4.32)

Thus the only mode that contributes to the power loss in the circular orbit limit is

the mode with n = 1.

First, let us consider the regime of light mediators, mM ≪ Ω, or equivalently

nM ≪ 1. In this limit, FM(x) defined in Eq. (4.24) is dominated by the second

term. We thus neglect the first and the third terms of FM(x) and take the second

term’s limit nM → 0. After that, the integral in (4.21) can be performed analytically,

yielding the following asymptotic expressions for the power radiated via vector

and scalar, respectively:

PA(mA ≪ Ω) ≈
g2

6π
Q2a2Ω4, (4.33)

Pϕ(mϕ ≪ Ω) ≈
g2

12π
N2a2Ω4. (4.34)

The asymptotic behavior that we find for PA and Pϕ reproduces the known results

for the on-shell vector [93, 92, 90] and scalar [90] radiation. This is expected as,

in the regime mM ≪ Ω, the fermion pair radiation is dominated by on-shell boson
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production. Additionally, Eq. (4.33) also reproduces the Larmor formula for the

power of the electromagnetic wave radiation given in Eq. (4.1). To see this, recall

that the acceleration on a circular orbit is equal to aΩ2, where a is the radius of the

orbit and Ω is the frequency of revolution.

Next, we study the regime when on-shell boson production is kinematically

forbidden, and the fermion pair radiation takes place through the off-shell medi-

ator. This is the limit of heavy mediators, mM ≫ Ω, or equivalently nM ≫ 1. In

this case, we take the nM → ∞ limit of FM(x) and find that the resulting expression

can be integrated analytically. Upon performing the integration, we find that the

vector and scalar-mediated radiation behave as

PA(mA ≫ Ω) ≈
g4q2

ψQ2

210π3

a2Ω8

m4
A

=
1

35π2

g2q2
ψΩ

4

m4
A

× PA(mA ≪ Ω), (4.35)

Pϕ(mϕ ≫ Ω) ≈
g2g′2N2

840π3

a2Ω8

m4
ϕ

=
1

70π2

g′2Ω4

m4
ϕ

× Pϕ(mϕ ≪ Ω). (4.36)

We learn that in the limit of heavy mediators, the fermion pair radiation is sup-

pressed compared to on-shell boson radiation by the following factors:

1. A factor of g2q2
ψ or g′2, which, at the amplitude level, comes from the coupling

of the mediator to the fermion pair.

2. A factor of Ω4/m4
ϕ, which comes from the propagator of the mediator.

3. A phase space factor of 1/35π2 or 1/70π2, which arises from the fact that there

are more particles in the final state in the case of the off-shell pair production

than in the case of the on-shell boson production.
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Note that Eqs. (4.35) and (4.36) can be interpreted as integrating out the heavy

mediator, resulting in an effective 4-Fermi interaction with a coefficient propor-

tional to g2/m2
A or gg′/m2

ϕ. Thus, it is also valid for t-channel and u-channel interac-

tions.

Last, we compare the results of the vector to that of the scalar mediators. Con-

sider mA = mϕ, Q2 = N2 and g′ = gqψ. In this case, the power radiated via the

vector mediator is greater than the power radiated via the scalar mediator in both

radiation regimes. In particular, we have

PA(mA ≪ Ω)
Pϕ(mϕ ≪ Ω)

≈ 2,
PA(mA ≫ Ω)
Pϕ(mϕ ≫ Ω)

≈ 4. (4.37)

These factors are related to the different number of degrees of freedom between

the vector and scalar cases. There are two polarization states for an on-shell mass-

less vector, while the scalar has only one. For the deeply off-shell mediator, the

correspondence is not so clear, but it seems to us that it is related to the fact that

off shell gauge boson, Aµ, has four degrees of freedom

4.3.3 Fermion-pair radiation in the SM

The expression in Eq. (4.35) can be used to estimate the power loss due to fermion

pair radiation by classical sources within the SM. In this subsection, we consider

neutrino pair radiation mediated by Z-boson. The contribution due to W-boson

mediated pair emission is qualitatively the same as the Z-boson contribution and
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is expected to be of the same order. The main difference between the two contribu-

tions is due to the fact that W-boson mediated radiation is only relevant for leptons

in the source while Z-boson contribution is present for all types of fermions.

Consider a source made of NΨ fermions of type Ψ with the total weak charge

Q = NΨqΨ. To apply Eq. (4.35) to the neutrino pair radiation in the SM, we need

to recall that Eq. (4.35) was derived under the assumption of vectorial couplings,

while the SM is a chiral theory. The relevant parts of the SM Lagrangian are dif-

ferent from the Lagrangian in Eq. (4.10); in particular, in the SM we have

LSM ⊃ −i
g

2 cos θW

(
Ψ̄γµ(cΨV − cψA)Ψ + ν̄γµ(cνV − cνA)ν

)
Zµ. (4.38)

Thus Eq. (4.35) yields the following expression for the Z-boson mediated power

loss due to the neutrino pair radiation in the SM

PZ(mZ ≫ Ω) ≈
1

210π3

g4q2
νq

2
Ψ

N2
Ψ

16 cos4 θW

a2Ω8

m4
Z

, (4.39)

where we perform the replacement g→ g/(2 cos θW) in Eq. (4.35) and define

q2
ψ = q2

ν = (cνV)2 + (cνA)2, qΨ = cΨV , mA = mZ . (4.40)

Note that, for the source, only vectorial coupling cΨV enters the power loss. This is

because we consider coherent radiation.

The expression in Eq. (4.39) can be rewritten as

PZ(mZ ≫ Ω) ≈ G2
effq

2
Ψq2

νN
2
Ψ

a2Ω8

210π3 , (4.41)

where Geff =
√

2GF and GF is the Fermi constant. When the power loss is written

in the form of Eq. (4.41), it becomes clear that it is the same as what one would ob-
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tain by performing the calculation for the effective Fermi theory with the effective

Lagrangian given by

LZ
eff ⊃ Geff[Ψ̄γµ(cΨV − cΨAγ

5)Ψ][ν̄γµ(cνV − cνAγ
5)ν]. (4.42)

This, of course, is not surprising as we consider radiation at the energy Ω, which

is much less than the electroweak scale, Ω ≪ mZ. In fact, the result in Eq. (4.41)

applies to any effective 4-Fermi interaction. While we derive our results for s-

channel exchange, in the limit where the mediator is much heavier than the orbit

frequency, we do not need to distinguish between s-channel and t-channel. Thus,

Eqs. (4.39) and (4.41) can also be used for t-channel W-exchange in the SM.

Finally, we discuss the situation when there are several different types of

fermions in the source. In this case, we need to first add all the amplitudes that

correspond to the radiation by different fermions Ψ (for leptons, we add both

Z-boson and W-boson contributions). Then, we square the sum of the relevant

amplitudes to obtain the total emission rate.

We end this subsection with the following remark. The power loss due to

neutrino pair radiation in the SM was estimated in Ref. [91] to be PZ
S M ∼ G2

FΩ
6.

Using the explicit calculation, however, we find that PZ
S M ∼ G2

Fa2Ω8. That is, there

is an extra factor of a2Ω2 compared to the estimation of Ref. [91]. In fact, our result

includes the semi-major axis a as an additional energy scale of the system.
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4.4 Fermion pair radiation by pulsar binaries

We now move to discuss the phenomenological applications of our results to as-

trophysical systems. We focus on the neutrino-pair emission from pulsar binaries

[107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117]. A pulsar binary is a binary

system of a pulsar and companion. This choice is motivated by the availability of

extensive period decay data for such systems. In particular, we apply our results

to two binaries: Hulse-Taylor binary PSR B1913+16 [118, 119, 120] (a system of a

pulsar and a neutron star) and PSR J1738+0333 [113, 121] (a system of a pulsar and

a white dwarf). The parameters characterizing the two systems are summarized

in Table 4.4.

In what follows, we first discuss the applicability of our results of Section 4.2.2

to pulsar binaries in general. Then we estimate the contribution to the power loss

due to neutrino pair emission in the SM and show that it is negligible compared to

the gravitational wave radiation. We then consider neutrino pair radiation in two

BSM scenarios via ultralight vector and scalar mediators and apply our results to

the pulsar binaries with the parameters in Table 4.4.
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4.4.1 Pulsar binaries as a classical source

The results for the fermion pair radiation, summarized in Eqs. (4.19)-(4.27), were

derived for the case of classical current describing non-relativistic point-like object

following an elliptical orbit. To justify the application of our results to pulsar

binaries, we note the following:

1. A pulsar binary can be treated as a classical source. The typical size of a pul-

sar binary can be estimated as the size of the semi-major axis which varies

between 106 and 108 km, that is, a ∼ 1024 − 1026 GeV−1. The wavelength of

the radiation is determined by the fundamental frequency of the orbit, and

for a typical pulsar binary with periods in the range of 10−1 − 103 days, the

wavelength is λ ∼ 1028 − 1032 GeV−1. Thus, λ ≫ a and we conclude that

pulsar binaries can be treated as classical radiation sources.

2. Stars of the pulsar binary can be treated as point-like objects. Typical sizes

of stars in a binary vary from r ∼ 10 km ∼ 1019 GeV−1, for neutron stars, and

r ∼ 103 km ∼ 1021 GeV−1, for white dwarfs. Thus r ≪ a, λ and both pulsar

and its companion can be treated as point-like objects. Moreover, r ≪ λ

implies the coherence of the radiation.

3. The motion of the pulsar and its companion in the binary system is non-

relativistic. We can roughly estimate the orbital velocity of the stars in a

binary as v ∼ aΩ, which for characteristic values quoted above implies v ≲

10−2.
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4. For a wide range of pulsar binary systems, the observed power loss is such

that it has no significant effect on the eccentricity of the orbit. Thus we can

treat the orbit as elliptical over the time of observation. For example, the

Hulse-Taylor binary has e ∼ 1, with Tb(de/dt) ≲ 10−11, where Tb is the binary

period and de/dt is the time derivative of the eccentricity [120].

Now that we have established that the results of Section 4.2.2 can be applied to

pulsar binaries, we proceed in two steps. First, we modify our expressions for the

classical current and number density in Eqs. (4.2) and (4.3) to the case of two point-

like objects on an elliptical orbit. Second, we perform the standard reduction of

the two-body problem to a one-body problem.

We write the classical current and number density as

Jµcl(x) =
∑
b=1,2

Qb δ
3(x − xb(t))uµb, (4.43)

and

ρcl(x) =
∑
b=1,2

Nb δ
3(x − xb(t) , (4.44)

respectively. Here, b = 1, 2 is the index that labels the stars of the binary system,

xb(t) is the position of the b-th star at time t, and uµb is its four-velocity.

Next, we move to the binary system’s Center-of-Mass (CoM) frame. For that,

we define R, the coordinate of center of mass, and r, the distance between the two

stars,

R =
m1

m1 + m2
x1 +

m2

m1 + m2
x2, r = x1 − x2 , (4.45)
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where m1 and m2 are the masses of the two stars.

As we are not concerned with the translational motion of the system as a

whole, which is described by R, we can solely focus on r. This is the standard two-

body to one-body problem reduction for central force motion. The non-relativistic

classical trajectory of the stars in the CoM frame can thus be described by the

vector r = (x, y, 0) and is given by elliptical orbits as in Eq. (4.4):

x = a(cos ξ − e), y = a
√

1 − e2 sin ξ, Ωt = ξ − e sin ξ, (4.46)

where e is the eccentricity, a is the semi-major axis of the elliptical orbit, and the

fundamental frequency of revolution is given by

Ω =

√
GN(m1 + m2)

a3 . (4.47)

The results of Eqs. (4.19)-(4.27) generalize to the case of binary systems via the

following replacements that follow from the 2-body to 1-body reduction proce-

dure:

Q2 → M2
(

Q1

m1
−

Q2

m2

)2

, N2 → M2
(

N1

m1
−

N2

m2

)2

, (4.48)

where

M =
m1m2

m1 + m2
(4.49)

is the reduced mass of the binary system. As a result we obtain the following

expressions for the power loss in n-th harmonic for a vector and scalar mediators
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respectively:

PA
n =

g4q2
ψ

12π3 M2
(

Q1

m1
−

Q2

m2

)2

a2Ω4 BA
n (nA, nψ, nΓ), (4.50)

Pϕ
n =

g2g′2

12π3 M2
(

N1

m1
−

N2

m2

)2

a2Ω4 Bϕ
n(nϕ, nψ, nΓ), (4.51)

where the functions BA
n and Bϕ

n are defined in Eqs. (4.21)-(4.27).

4.4.2 Neutrino pair radiation by pulsar binaries in the SM

In the SM, for the pulsar binary, the power loss via electroweak mediators is dis-

cussed in Sec. 4.3.3. Here, we simply generalize it to the case of 2-body motion

using Eq. (4.48). We obtain the following expression for the power loss in neu-

trino pair radiation via Z-exchange in the SM

PSM ≈
G2

F

(
cνV

2 + cνA
2
)

105π3 cos2 θW
M2a2Ω8

 1
m1

∑
i=n,p,e,...

ci
V N1iQ1i −

1
m2

∑
i=n,p,e,...

ci
V N2iQ2i


2

(4.52)

where the sum goes over all microscopic constituents of binary stars, such as neu-

trons (n), protons (p), electrons (e), etc. To perform a numerical estimate, we con-

sider a pulsar binary with a neutron star companion and assume that all of the

neutron star mass is in the form of neutrons. We consider a typical pulsar-neutron

star binary with

m1,2 ∼ M⊙ ∼ 1057GeV, a ∼ 1025 GeV−1, Ω ∼ 10−28 GeV, (4.53)

and non-zero dipole moment

M2
(

Q1

m1
−

Q2

m2

)2

∼ Q2
1,2 ∼ 10114, (4.54)
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where Qb = Nb(n) − Nb(n̄) ≈ Nb(n) ≈ M⊙/mn ≈ 1057, with b = 1, 2, are the neutron

charges of the neutron stars, Nb(n) and Nb(n̄) are the numbers of neutrons and anti-

neutrons respectively, mn is the neutron mass. Using cνV = cνA = 1/2, cn
V = −1/2, and

the measured values of mn, GF , and θW , we find the following numerical estimate

for the radiated power

PSM ∼ 10−56eV2. (4.55)

To see if the above result is significant, we compare it to the power loss in the

form of gravitational wave (GW) radiation. Using the quadrupole formula for the

GW radiation [122] for the case of circular orbit (e = 0) we have

PGW =
32
5

GN M2a4Ω6 ∼ 108 GeV2 (4.56)

where GN is Newton’s gravitational constant. The rough estimates in Eqs. (4.55)

and (4.56) show that, in the SM, the fermion-pair radiation by astrophysical objects

is completely negligible compared to the gravitational wave radiation.

We close the subsection with one remark. Within the SM, neutron stars also

emit synchrotron radiation of fermion-antifermion pairs in their self-produced

magnetic fields, as shown in Ref. [123]. This phenomenon is different from the

one we consider here. Synchrotron radiation is an incoherent effect. Thus, the

power loss, in this case, scales as N, the number of neutrons in the star. In the case

we are considering, the radiation is coherent and comes from the star’s accelera-

tion as a whole. Then, the net power that is radiated is proportional to N2.
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4.4.3 New physics constraints from the neutrino pair radiation

by pulsar binaries

Since extra radiation in the SM is negligible, any observed deviation from the

gravitational wave radiation would be strong evidence for the physics beyond

the SM. In particular, fermion-pair radiation can be enhanced in BSM models

with light vector or scalar mediators, with mA,ϕ ≪ mZ. To explain why such light

bosonic states have evaded detection so far, we must require that they have small

couplings, thus evading all the available constraints. The smallness of couplings,

however, still can be compensated in cases where the object has a large charge

under the new symmetries. This can be the case for astrophysical objects. Thus,

such objects are our prime focus in the rest of this work.

In particular, in this subsection, we demonstrate how our results can be used

to derive new physics bounds from the neutrino pair radiation by pulsar binaries.

As we mentioned above, we use two distinct pulsar binary systems, the Hulse-

Taylor binary PSR B1913+16 and PSR J1738+0333. The relevant properties of the

two systems are summarized in Table. 4.4. The Hulse-Taylor binary is a pulsar

binary with a neutron star companion, it is highly eccentric, and the mass ratio

of the two stars is close to 1. The PSR J1738+0333, on the other hand, is a pulsar-

white dwarf binary with an almost circular orbit and a high pulsar-to-companion

mass ratio. For both systems, the data on the orbital period decay is shown in

Table 4.4. Both binaries lie within 1σ of the general relativity prediction.
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In our analysis, we exploit the fact that typical neutron stars contain a very

large number of muons, N(µ) ∼ 1055 [124, 125, 126, 127]. Thus, the effects of

muonophilic new physics can be significantly enhanced. The presence of the large

muon number in neutron stars is attributed to the fact that when the electron

chemical potential, µe, is larger than the muon mass µe > mµ, it becomes energet-

ically favorable for relativistic electrons at the Fermi surface to decay into muons

via e− → µ− + ν̄µ + νe. Moreover, the muonic beta-decay n→ p+µ− + ν̄µ and inverse

beta-decay p + µ− → n + νµ reactions become energetically favorable, while the

muon decay µ− → e− + ν̄e + νµ is forbidden by Fermi statistics.

Being motivated by the neutron star muonic content, we consider neutrino

pair emission by pulsar binaries via the following two types of BSM mediators:

• U(1)Lµ−Lτ massive gauge boson with

L ⊃ gAα

(
µ̄γαµ − τ̄γατ + ν̄µγ

ανµ − ν̄τγ
αντ

)
, (4.57)

• Massive muonophilic scalar with

L ⊃ gϕµ̄µ + g′ϕν̄µνµ . (4.58)

It is known that at least two of the SM neutrinos are massive, while the third

neutrino can be very light or massless. This means that only one neutrino mass

eigenstate can be radiated in the two scenarios we consider here. A realistic treat-

ment of neutrino emission would include insertions of the corresponding PMNS

matrix elements [128], resulting in an additional factor of order one. Since we
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already neglecting an O(1) factor coming from the estimate of the muon number

density in the neutron stars, we also ignore any PMNS factors in the rest of this

section.

Note also that in a theory with general couplings to the left and right-handed

neutrinos, i.e., gAαν̄γ
α(cV − cAγ

5)ν, the results for the power loss are qualitatively

similar. Moreover, in the case of massless neutrinos, the power loss for the case of

the general coupling is the same as the power loss for the case of purely vectorial

coupling up to g2 → g2(c2
A + c2

V) replacement. This is why in what follows, for

simplicity, we consider the case of the vectorial coupling only.

These two BSM models imply the possibility for the neutrino pair radiation

at rates enhanced compared to the SM. Our results from Eqs. (4.50) and (4.51)

thus can be used to set bounds on the coupling constants and masses of the new

bosons.

The presence of the muonophilic new physics, however, not only alters the

radiation patterns of pulsar binaries, but it also has important implications for the

neutron star’s equation of state. In particular, the presence of a repulsive (vector)

or attractive (scalar) interaction between muons could affect the muon number,

which depends on the coupling g to the new physics. In the following, we write

the muon number as N(µ, g) to keep the dependence on g explicit.

The number of muons becomes g-dependent as the interactions change the

muon chemical potential. The muon interaction due to the Lµ − Lτ vector boson is
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repulsive, and thus the chemical potential is increased compared to its SM value

by ε ∼ g2N(µ, g)/R, where R is the radius of the neutron star the boson mass is

neglected. When the coupling g is small, such that ε ≪ mµ, the effect of the new

interaction is insignificant, and the number of muons is approximately given by

its value in the limit of no interaction N(µ, g = 0). When the interaction is strong,

such that ε ≫ mµ, it becomes energetically less favorable to have muons inside the

neutron star and thus N(µ, g) < N(µ, g = 0).

Similar reasoning applies to the case of the scalar mediator. The only difference

is the sign of the interaction. In the scalar case, the interaction between muons is

attractive. Thus the muon chemical potential is decreased by ε. This leads to the

increase of the muon number for larger couplings N(µ, g) > N(µ, g = 0). In both

cases, the change from the regime when N(µ, g) ≈ N(µ, g = 0) to the situation when

the interaction starts to affect the muon number happens for couplings such that

ε ∼ mµ, or numerically g ∼ 10−18 for a typical neutron star [92].

However, in what follows, we ignore the effect of the new physics on the muon

number. Everywhere in our analysis, we use the muon number in the limit of no

new physics interaction, that is we set N(µ) = N(µ, g = 0) ∼ 1055 [124, 125, 126, 127].

In principle, g-independence of muon number can be achieved in models with

both vector and scalar mediators with fine-tuned coupling constants such that the

repulsive and attractive interactions cancel each other.

To apply Eqs. (4.50) and (4.51), we define Nb(µ) and Nb(µ̄) as the number of

muons and antimuons respectively in neutron star labeled by b = 1, 2. Then, as
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there are almost no tau leptons in neutron stars, Qb = Nb(µ) − Nb(µ̄) is the total

charge of the neutron star under the Lµ − Lτ gauge symmetry, and Nb = Nb(µ) +

Nb(µ̄) is the total number of muons and anti-muons in the star. Additionally, since

Nb(µ̄) ≈ 0, we have Qb ≈ Nb.

The energy lost through radiation in a binary star system can be directly

probed by measuring the decay of the orbital period. Assuming that the attractive

gravitational force between the two stars is such that their orbits stay Keplerian,

the decay rate of the period of revolution Tb is related directly to the energy lost

via radiation [93]:

Ṫb = −6πa5/2G−3/2
N (m1m2)−1(m1 + m2)−1/2 × Ploss, (4.59)

where Ṫb is the time derivative of the binary period, GN is the gravitational con-

stant, m1 and m2 are the masses of the stars in the binary system, a is the semi-major

axis of the elliptical orbit, and Ploss is the total power radiated. The decay of the

period per unit of time is dimensionless and is measured experimentally.

GW emission is the dominant source of power loss in a binary star system.

Assuming that the GW emission and neutrino pair emission are the only sources

of energy loss, we have

Ploss = PGW + Pν̄ν, (4.60)

where Pν̄ν is the power loss due to the neutrino pair radiation and PGW is the

power loss due to GW emission, which, to the leading order, is given by the GW
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quadrupole radiation formula [122],

PGW
loss =

32
5

GΩ6M2a4(1 − e2)−7/2
(
1 +

73
24

e2 +
37
96

e4
)
, (4.61)

where M is the reduced mass of the system, as defined in Eq. (4.49). The binary

period decay Ṫb thus can be written as a sum of two contributions,

Ṫb = ṪGW + Ṫν̄ν . (4.62)

We next introduce the period decay ratio R as the ratio of the measured period

decay to the theoretical prediction of the period decay due to GW radiation,

R =
Ṫb

ṪGW
= 1 +

Ṫν̄ν

ṪGW
. (4.63)

We use the measured value of R to set 2σ limits on the masses and couplings of

the BSM mediators of neutrino pair radiation as

Ṫν̄ν

ṪGW
≤ (R − 1) + 2σ . (4.64)

The resulting constraints on the parameter space (g,mA) and (g,mϕ) that we

derive from the period decay data for the Hulse-Taylor binary and PSR J1738+033

are shown in Fig. 4.4.3. When deriving the constraints, we use Qb = Nb = 1055

with b = 1, 2 and qν = 1. For the gauge boson mediator (left panel), we calculate

the period decay due to neutrino pair emission, Ṫν̄ν, using Eqs. (4.50) and (4.59).

As we take all three neutrinos to be massless, and as Lµ − Lτ boson couples to two

neutrino types, there is an extra factor of 2 in Eq. (4.50). Similarly, for the case

of the scalar mediator (right panel), we use Eqs. (4.51) and (4.59). As there is no
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Left: Constraints on g vs mA from the highly eccentric PSR B1913+16

(Hulse-Taylor) Bounds from the neutrino pair radiation (solid) and vector boson

radiation (dashed) are shown such that the region above the curves is excluded

by the measurements of the period decay. The system parameters are taken from

Table 4.4. Right: Constraints on g vs mϕ from PSR J1738+033. The dashed gray line

corresponds to the bound set by the emission of the scalar boson only, while the

solid lines show the bounds from including a coupling g′ to the neutrinos.

symmetry that requires equality of g and g′ in the case of the scalar mediator, we

present our results for the scalar case in the (g,mϕ) plane for four different values

of g′ that vary from 10−7 to 10−1.

First, let us discuss the left panel of Fig. 4.4.3, which shows constraints on

the mass and coupling of the gauge boson. For the PSR J1738+0333 (red line),

whose orbit is very close to circular, the effect of neutrino pair radiation becomes
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significant for the mediator masses greater than the second harmonic frequency,

mA > 2Ω. For the highly eccentric Hulse-Taylor binary, off-shell radiation domi-

nates for mA > 85Ω. In the region mA > 2Ω (mA > 85Ω) for PSR J1738+0333 (Hulse-

Taylor binary), the boundary of the excluded region is approximately quadratic

in the mediator mass. This is in stark contrast with the case of the on-shell boson

emission discussed in Ref. [93, 92, 90], where the boundary of the excluded region

jumps in steps at mA = nΩ, with n being an integer. For comparison, the dashed

lines in Fig. 4.4.3 show the bounds due to the on-shell boson radiation.

Finally, we comment on the right panel of Fig. 4.4.3, which shows the con-

straints on the mass mϕ and coupling g for different values of g′ in the case

of the scalar mediated radiation. We only demonstrate the constraints for PSR

J1738+0333; the results for the Hulse-Taylor binary are qualitatively the same. De-

pending on the value of g′ the off-shell scalar radiation starts to dominate for

mϕ > Ω (g′ ≳ 10−4) or mϕ > 2Ω (g′ ≲ 10−8). As one can see from the plot, g′ = 10−1

provides the strongest bound.

We conclude this section by noting that we do not perform a detailed analy-

sis of the bounds on muonophilic light states. We only remark that very strong

bounds on light states are derived from fifth force searches. Most of these bounds

do not apply in our case as these experiments are done using materials made out

of protons, neutrons, and electrons.
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4.5 Conclusion

It is well known that fermion pairs can behave as bosons in several circumstances.

In this work, we show that fermion pairs can also constitute classical radiation just

like bosonic states do. We use this understanding to derive the generalization of

the Larmor formula for the case of the fermion pair emission.

Being motivated by the potential of applying fermion pair radiation to astro-

physical objects, we consider the case of classical sources following elliptical or-

bits. The most interesting regime of fermion pair radiation is when the mediator is

off-shell, which takes place when the mass of the mediator is much smaller than

the frequency of the periodic motion of the source. In this regime, the fermion

pair emission takes over from on-shell boson production. This opens up a win-

dow into a broader region of parameter space for various models that allow for

the fermion pair radiation by classical sources.

Subsequently, we apply our results to neutrino-antineutrino emission by two

pulsar binary systems PSR B1913+16 and PSR J1738+0333. Neutrino pair emission

by binary systems is highly suppressed in the SM compared to GW radiation, but

can be significantly enhanced in various BSM scenarios. In particular, we con-

sider two possibilities: light muonophilic vector and scalar mediators that couple

to the SM neutrinos. Using period decay data for the two binary systems, we de-

rive bounds on the parameters of the two models. While we did not perform a

comprehensive study of the relevance of these bounds, the key point is that they
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provide a demonstration of the fact that fermion pair radiation can be used to

enhance BSM probes using astrophysical data.

There are several future directions to go from here. Here are a few that we find

particularly interesting:

• A thorough and detailed study of the bounds that we find on specific mod-

els is called for. This, however, is complicated by the large uncertainties that

come from the estimates on the neutron star constituents. In particular, new

physics interactions alter the equation of state of a neutron star and, cur-

rently, there is no precise quantitative understanding of how this affects its

content.

• It also would be interesting to see if we can find more systems to which our

results can be applied. In particular, exotic astrophysical systems and exotic

types of new physics models.

• In this work, we only consider fermion pair radiation; however, the results

can be modified to also include bosonic pair radiation. All that needs to be

done is to calculate the relevant matrix elements. It is expected to result in a

different kinematic dependence.

We conclude with the main message of this chapter: If nature includes new

light states, fermion pair radiation can be one more tool in our toolbox to probe

them.
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CHAPTER 5

K → µ+µ− AS A CLEAN PROBE OF SHORT-DISTANCE PHYSICS

5.1 Introduction

Rare flavor changing neutral current (FCNC) kaon decays [129, 130, 131, 132, 133,

134, 135] provide a unique way to probe the flavor sector of the Standard Model

(SM) and, in particular, CP-violating effects. The program to measure the decay

rates of K+ → π+νν̄ [136] and KL → π0νν̄ [137] is aimed at determining the CKM pa-

rameters with very high theoretical precision. In particular, the KL → π0νν̄ decay

rate can be used to extract [138, 139, 140]

|VtsVtd sin(β + βs)| ≈ |A2λ5η̄| , (5.1)

where A, λ, and η̄ are the Wolfenstein parameters and β + βs is one of the angles in

the ds unitarity triangle such that [141]

β = arg
(
−

VcdV∗cb

VtdV∗tb

)
, βs = arg

(
−

VtsV∗tb
VcsV∗cb

)
, β + βs − π = arg

(
−

VtsV∗td
VcsV∗cd

)
. (5.2)

Experimentally, working with decays that involve charged leptons is much

simpler than the above-mentioned neutrino modes. Nonetheless, the focus of the

current kaon program is on the neutrino final states, primarily because decays

to charged leptons are believed not to be theoretically clean. There are so-called

long-distance effects that introduce hadronic uncertainties, making extractions of

clean theory parameters challenging.
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In this work, we show that we can get very clean theoretical information from

decays of kaons into charged leptons. This can be done only for the neutral kaons,

by exploiting the interference effects between KS and KL. We focus on K → µ+µ−,

for which the relevant CKM observable is that of Eq. (5.1). The theoretical preci-

sion in this case is superb, with hadronic uncertainties below the 1% level.

The importance of the interference terms in K → µ+µ− was emphasized in

Ref. [142]. In this work, we generalize their results and demonstrate that one

can get a very clean determination of the parameter combination in Eq. (5.1) by

studying the interference terms.

Before we get into the details, below we explain the main idea. We first recall

the situation with KL → π0νν̄. The reason that this decay mode is theoretically

clean is that it is to a very good approximation pure CP-violating. As such, it

is all calculable using perturbation theory and we do not have to worry about

non-calculable long-distance effects, as they are to a very good approximation CP

conserving.

The issue with K → µ+µ− is that the final state is a mixture of ℓ = 0 and

ℓ = 1 partial wave configurations. Thus, both KS and KL decays are not pure

CP-violating, and both decays have non-calculable long distance effects. Yet, if

we could experimentally distinguish between the ℓ = 0 and ℓ = 1 final states, the

situation would be similar to KL → π0νν̄, as we could separate the CP-violating

part that we can calculate. In particular, the ℓ = 0 amplitude has significant CP

violation effects in the SM, and the decay mode KS → (µ+µ−)ℓ=0 is very clean theo-
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retically. What we show in this work is that under some mild assumptions we can

extract the rate, that is, B(KS → (µ+µ−)ℓ=0) without separating the ℓ = 0 and ℓ = 1

final states. This can be done by isolating the interference terms.

Leptonic kaon decays have been studied for a long time [143, 144, 145, 146,

147, 148, 149, 150, 151, 152, 153, 150, 154, 155, 156, 157, 158, 159]. Rare kaon decays

have a lot of potential for the discovery of physics beyond the SM [160, 161, 162,

163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178]. Also

on the experimental side a lot of advances took place in the quest for rare kaon

decays [179, 180, 181, 182, 183, 137, 184, 136, 185].

The SM predictions for K → µ+µ− [186, 187, 142, 188] and the corresponding

long-distance contributions [186, 189, 190, 191] have been studied in great detail.

The same goes for KS → γγ and KS → γl+l− [189] as well as kaon decays into four

leptons [192]. See also the reviews Refs. [193, 194].

5.2 Notation and formalism

We use the following standard notation [195], where the two neutral kaon mass

eigenstates, |KS ⟩ and |KL⟩, are linear combinations of the flavor eigenstates:

|KS ⟩ = p|K0⟩ + q|K0⟩, |KL⟩ = p|K0⟩ − q|K0⟩. (5.3)
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The mass and width averages and differences are denoted by

m =
mL + mS

2
, Γ =

ΓL + ΓS

2
, (5.4)

∆m = mL − mS , ∆Γ = ΓL − ΓS .

We define the decay amplitudes of |K0⟩ and |K0⟩ to a final state f ,

A f = ⟨ f |H|K0⟩, A f = ⟨ f |H|K0⟩, (5.5)

and the parameter λ f ,

λ f ≡
q
p

A f

A f
. (5.6)

We use an arbitrary normalization, such that A f and A f have the same normaliza-

tion.

An amplitude is called relatively real if Imλ f = 0 and relatively imaginary if

Reλ f = 0. Any amplitude can be written as a sum of a relatively real and a rela-

tively imaginary part.

In any neutral meson system, the quantities A f , A f , and q/p depend on the

phase convention. However, |A f |, |A f |, |q/p|, and λ f are phase convention indepen-

dent and are hence physical.

Consider a beam of neutral kaons. The time dependent decay rate as a function

of proper time is given by [195] (
dΓ
dt

)
= N f f (t), (5.7)
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whereN f is a time-independent normalization factor and the function f (t) is given

as a sum of four functions

f (t) = CLe−ΓLt +CS e−ΓS t + 2 [Csin sin(∆mt) +Ccos cos(∆mt)] e−Γt. (5.8)

The form of Eq. (7.13) is valid for any neutral kaon beam (that is, not only for

a pure state) and also for a sum over several final states. We refer to the set of

coefficients, {CL,CS ,Csin,Ccos}, as the experimental parameters. Note that CL is the

coefficient of the KL decay term, CS of the KS decay term, while Csin and Ccos come

with the interference terms between KL and KS . For convenience we also define

C2
Int. = C2

cos +C2
sin . (5.9)

The C coefficients implicitly depend on the composition of the beam and on the

relevant final states. The dependence on the final states enters via the parameters

{|A f | , |A f | , |q/p| , arg(λ f )}. (5.10)

We denote these as the theory parameters.

For an initial |K0⟩ and |K0⟩ beam, respectively, and a single final state, f , the

coefficients are explicitly given by [195]

CK0

L =
1
2
|A f |

2
(
1 + |λ f |

2 − 2Reλ f

)
, CK0

L =
1
2
|A f |

2
(
1 + |λ f |

−2 − 2Reλ−1
f

)
,

CK0

S =
1
2
|A f |

2
(
1 + |λ f |

2 + 2Reλ f

)
, CK0

S =
1
2
|A f |

2
(
1 + |λ f |

−2 + 2Reλ−1
f

)
,

CK0

sin = −|A f |
2Imλ f , CK0

sin = −|A f |
2Imλ−1

f ,

CK0

cos =
1
2
|A f |

2
(
1 − |λ f |

2
)
, CK0

cos =
1
2
|A f |

2
(
1 − |λ f |

−2
)
. (5.11)
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In the following we focus on decays into CP-eigenstate final states. For a given

final state, f , we define η f = 1 if it is CP-even and η f = −1 if it is CP-odd. We

define the CP-even and CP-odd amplitudes

ACP-even
f ≡

1
√

2
A f (1 + η fλ f ) , ACP-odd

f ≡
1
√

2
A f (1 − η fλ f ) . (5.12)

We make several assumptions and approximations as we go on. Our first ap-

proximation is

(i) CP violation (CPV) in mixing is negligible.

Although our main interest is CP violating physics, CPV in mixing is sub-

dominant in the effects we consider. We therefore neglect it throughout the

chapter and work in the limit

∣∣∣∣qp ∣∣∣∣ = 1. (5.13)

This approximation is known to work to order ϵK ∼ 10−3 which we neglect from

this point on.

Under the above assumption, the full set of decay-mode-specific independent

physical parameters can be taken to be

{|A f |, |A f |, arg
(
λ f

)
}. (5.14)

Furthermore, in the limit of no CPV in mixing, the CP amplitudes of Eq. (5.12)

correspond to the amplitudes for the decays of KS and KL. For example, for f =
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π+π−, η f = 1 and to a very good approximation λ f = 1 and thus ACP-odd
π+π− = 0. In the

case of K → πνν̄, η f = 1 and λ f is to a very good approximation a pure phase, so

that the amplitude for KL → πνν̄ gives sensitivity to the phase arg(λ f ) [160].

In the following it will be useful to replace the set of independent physical

parameters of Eq. (5.14) with the equivalent set of physical parameters:

{|ACP-even
f |, |ACP-odd

f |, arg
(
ACP-even

f
∗
ACP-odd

f

)
}. (5.15)

In particular, the time dependence for a beam of initial |K0⟩ into a CP-even final

state is given by the coefficients

CK0

L = |A
CP-odd
f |2, CK0

S = |A
CP-even
f |2,

CK0

cos = Re(ACP-odd*
f ACP-even

f ), CK0

sin = −Im(ACP-odd*
f ACP-even

f ), (5.16)

For a CP-odd final state it is given by

CK0

L = |A
CP-even
f |2, CK0

S = |A
CP-odd
f |2,

CK0

cos = Re(ACP-odd*
f ACP-even

f ), CK0

sin = Im(ACP-odd*
f ACP-even

f ). (5.17)

For an initial |K0⟩ state the result is obtained by multiplying Ccos and Csin by −1 in

Eqs. (5.16) and (5.17).

We also define

φ f = arg(ACP-odd*
f ACP-even

f ), (5.18)

such that we can write for a CP-even final state

CK0

cos = |A
CP-odd*
f ACP-even

f | cosφ f , CK0

sin = −|A
CP-odd*
f ACP-even

f | sinφ f . (5.19)
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For a CP-odd final state we have analogously

CK0

cos = |A
CP-odd*
f ACP-even

f | cosφ f , CK0

sin = |A
CP-odd*
f ACP-even

f | sinφ f . (5.20)

5.3 The K → µ+µ− decay

In the decay of a neutral kaon into a pair of muons, there are two orthogonal final

states that are allowed by conservation of angular momentum — muons with a

symmetric wave function (ℓ = 0) and muons with an anti-symmetric wave func-

tion (ℓ = 1). Note that since the leptons are fermions, the state with ℓ = 0 has

negative parity and so it is CP odd, and the state with ℓ = 1 is CP even. The four

relevant amplitudes can be written in terms of the CP amplitudes of Eq. (5.12) as

ACP-even
ℓ =

1
√

2
Aℓ

(
1 − (−1)ℓλℓ

)
, ACP-odd

ℓ =
1
√

2
Aℓ

(
1 + (−1)ℓλℓ

)
, (5.21)

with ℓ = 0, 1. Note that we keep the normalization arbitrary, but if we want to

maintain the same normalization for both A0 and A1 then we require a relative

phase space factor between them, β2
µ, with

βµ ≡

1 − 4m2
µ

m2
K

 1
2

, (5.22)

see for details Appendix D.2.

Note that under the approximation |q/p| = 1, Eq. (5.21) allows us to write the

CP-even and -odd amplitudes as amplitudes for the decays of the mass eigenstates
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|KS ⟩ and |KL⟩:

ACP-odd
0 = A(KS → µ+µ−)ℓ=0 ,

ACP-even
0 = A(KL → µ+µ−)ℓ=0 ,

ACP-odd
1 = A(KL → µ+µ−)ℓ=1 ,

ACP-even
1 = A(KS → µ+µ−)ℓ=1. (5.23)

When measuring the total time dependent decay rate for K → µ+µ−, the two

di-muon configurations, ℓ = 0, 1 add incoherently. The form of the function f (t)

defined in Eq. (7.13), is unchanged. Theoretically, each of the C’s is given by an

implicit sum over the relevant amplitude expressions for different ℓ’s. Thus we

have two sets of decay-mode-specific physical theory parameters,

{|ACP-even
ℓ |, |ACP-odd

ℓ |, φℓ ≡ arg
(
ACP-odd*
ℓ ACP-even

ℓ

)
}, (5.24)

with ℓ = 0, 1, bringing us to a total of six unknown physical parameters.

It is well known that the decay K → µ+µ− receives long-distance and short-

distance contributions [196, 197, 198, 187]. The long-distance contribution is dom-

inated by diagrams with two intermediate on-shell photons, while the short-

distance contribution is defined as originating from the weak effective Hamilto-

nian. The distinction between long-distance and short-distance physics is some-

what ambiguous. It is clear that the short-distance physics is to a good approx-

imation dispersive (real), since it is dominated by heavy particles in the loops.

However, long-distance diagrams contribute both to the absorptive (imaginary)

amplitude and, when taken off-shell, also to the dispersive amplitude.
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In the following we make one extra simplifying assumption, which results in

reducing the number of unknown parameters for K → µ+µ−. We consider only

models where

(ii) The only source of CP violation is in the ℓ = 0 amplitude.

What we mean by this assumption is that only the ℓ = 0 amplitude has

Im(λℓ) , 0.

As we discuss in Section 5.5 and in Appendix D.3, this assumption is fulfilled to

a very good approximation within the SM and in any model in which the leading

leptonic operator is vectorial.

We can then draw an important conclusion from the above assumption:

ACP-odd
1 = 0. (5.25)

This implies that the number of unknown parameters is reduced by two, leaving

a single parameter, |ACP-even
1 |, for the ℓ = 1 final state. Thus, we are left with the

following list of four unknown physical parameters,

|ACP-odd
0 |, |ACP-even

0 |, |ACP-even
1 |, arg(ACP-odd*

0 ACP-even
0 ). (5.26)

In the rest of the work we demonstrate how it is possible to extract these parame-

ters, and specifically |ACP-odd
0 | = A(KS → µ+µ−)ℓ=0, which, as we explain below, is a

clean probe of the SM.
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5.4 Extracting B(KS → µ+µ−)ℓ=0

As portrayed in Eq. (7.13), the time-dependent decay rate for an arbitrary neutral

kaon initial state is given in general by the sum of four independent functions of

time that depend on the experimentally extracted parameters

{CL, CS , Ccos, Csin}. (5.27)

Within our assumptions, these coefficients depend on the following four theory

parameters

{|ACP-odd
0 |, |ACP-even

0 |, |ACP-even
1 |, φ0 ≡ arg(ACP-odd*

0 ACP-even
0 )}. (5.28)

We consider a case of a beam that at t = 0 was a pure K0 beam (that is, no K0).

Using Eq. (5.11) we obtain that the result for this case is given by

CL = |ACP-even
0 |2, (5.29)

CS = |ACP-odd
0 |2 + β2

µ|A
CP-even
1 |2,

Ccos = Re(ACP-odd*
0 ACP-even

0 ) = |ACP-odd*
0 ACP-even

0 | cosφ0,

Csin = Im(ACP-odd*
0 ACP-even

0 ) = |ACP-odd*
0 ACP-even

0 | sinφ0.

We see that the four experimental parameters can be used to extract the four the-

ory parameters. In particular, we find

|ACP-odd
0 |2 =

C2
cos +C2

sin

CL
=

C2
Int.

CL
, (5.30)
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where C2
Int. = C2

cos + C2
sin was defined in Eq. (5.9). Having the magnitude of the

amplitude we can deduce the branching ratio in terms of other observables,

B(KS → µ+µ−)ℓ=0 = B(KL → µ+µ−) ×
τS

τL
×

(
Cint

CL

)2

. (5.31)

Eq. (5.31) is our main result. It demonstrates that we can extract B(KS → µ+µ−)ℓ=0

from the experimental time dependent decay rate.

A few comments are in order regarding Eq. (5.31):

1. Our ability to extract B(KS → µ+µ−)ℓ=0 comes from the interference terms. It

cannot be extracted from pure KL or KS terms.

2. A measurement of the interference terms additionally amounts to a mea-

surement of the phase φ0, which is not calculable from short-distance

physics.

3. In order to extract B(KS → µ+µ−)ℓ=0 we need only three of the four experi-

mental parameters. The fourth parameter, CS , can then be used to extract

|ACP-even
1 |, or equivalently B(KS → µ+µ−)ℓ=1. Yet, this is not our main interest,

as |ACP-even
1 | is not calculable from short-distance physics.

4. For a pure K0 beam, CS and CL in Eq. (7.14) are unchanged while Ccos and

Csin pick up a minus sign, and Eq. (5.31) is unchanged.

While we have only discussed a pure K0 beam in this section, as long as we

have sensitivity to the interference terms, it is possible to determine |ACP-odd
0 |. In
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particular, as long as the kaon decays in vacuum, one can write the branching

ratio B(KS → µ+µ−)ℓ=0 in terms of B(KL → µ+µ−) in the following way:

B(KS → µ+µ−)ℓ=0 = DF × B(KL → µ+µ−) ×
τS

τL
×

(
Cint

CL

)2

. (5.32)

where DF is a dilution factor that takes into account the particular composition

of the kaon beam. We discuss two cases, that of a mixed beam, and of a KL beam

with regeneration, in Appendix D.1.

5.5 Calculating B(KS → µ+µ−)ℓ=0

We move to discuss the theoretical calculation of B(KS → µ+µ−)ℓ=0.

5.5.1 General calculation

We define

Aℓ = AS D
ℓ + ALD

ℓ . (5.33)

The short-distance (SD) amplitude, AS D
ℓ , is the one that can be calculated pertur-

batively from the effective Hamiltonian of any model. Note that at leading order

in the perturbative calculation it carries no strong phase. By definition, the long-

distance (LD) amplitude, ALD
ℓ , is the part that is not captured by that calculation.
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In general, it carries a strong phase. We further define

λS D
ℓ =

q
p

A
S D
ℓ

AS D
ℓ

, λLD
ℓ =

q
p

A
LD
ℓ

ALD
ℓ

. (5.34)

Note that since we assume that the SD amplitude carries no strong phase, we have

|λS D
ℓ | = 1.

We now adopt one more working assumption, that is, we consider only models

where:

(iii) The long-distance physics is CP conserving.

That is, we only consider cases where ALD
ℓ is relatively real, that is, Im

(
λLD
ℓ

)
=

0.

In particular, this assumption implies that we can trust the perturbative calcula-

tion for the CP-violating amplitude, using specific operators described by quarks.

We are now ready to discuss the CP-odd amplitudes. Because of assumption

(ii) we have ACP-odd
1 = 0. Thus we only need to consider the ℓ = 0 CP-odd ampli-

tude. Using Eqs. (5.12) and (5.21) we write it as

ACP-odd
0 =

1
√

2
AS D

0 (1 + λS D
0 ) . (5.35)

Then, using the fact that |λS D
0 | = 1, we get

|ACP-odd
0 |2 = |AS D

0 |
2
[
1 + Re(λS D

0 )
]
= |AS D

0 |
2
[
1 − cos

(
2ϕS D

0

)]
= 2|AS D

0 |
2 sin2 ϕS D

0 . (5.36)

where we define

ϕS D
0 =

1
2

arg
(
−λS D

0

)
. (5.37)
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VudV
∗
us

VcdV
∗
cs

VtdV
∗
ts

θuc θut

θct

The “ds”

unitarity triangle, see Refs. [199, 141]. The plot is not to scale.

Note that the result is independent of the way we choose to split the amplitude

into long- and short-distance physics as long as the part we call “long-distance” is

relatively real. Moreover, we can subtract from AS D
0 any part that is relatively real

without affecting the result. We use this freedom below when we discuss the SM

prediction.

We conclude that in any model that satisfies our assumptions, we need to cal-

culate |AS D
0 |

2 and sin2 ϕS D
0 in order to make a prediction for B(KS → µ+µ−)ℓ=0.

5.5.2 SM calculation

Next we discuss the situation in the SM and remark on more generic models. The

SM short-distance prediction has been discussed in Ref. [187]. Here we do not

present any new arguments, but instead we review the results in the literature,

explicitly stating the assumptions made, and present the results in a basis inde-

pendent way.

In order to discuss the situation in the SM we look at the “ds” unitarity triangle,
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that we plot in Fig. 5.5.2. The angles are given as [141]:

θct ≡ arg
(
−

VtdV∗ts
VcdV∗cs

)
= π − β − βs ∼ λ

0 , (5.38)

θut = arg
(
−

VudV∗us

VtdV∗ts

)
= β + βs − θuc ∼ λ

0 , (5.39)

θuc = arg
(
−

VcdV∗cs

VudV∗us

)
∼ λ4 . (5.40)

In what follows, when we discuss the SM prediction, we make one more approx-

imation:

(iv) We neglect effects of O(λ4). In particular, we set θuc = 0.

With this approximation we then write

q
p
= −

(
VcdV∗cs

V∗cdVcs

) [
1 + O(λ4)

]
≈ −

(
VcdV∗cs

V∗cdVcs

)
. (5.41)

where in the last step we used θuc = 0.

We are now ready to show that in the SM the long-distance amplitude is CP

conserving, complying with assumption (iii) above. The claim is that the CKM

factors in the long-distance amplitudes are to a good approximation VusV∗ud. The

reason is that rescattering effects, which are what results in the long-distance con-

tributions, are dominated by tree level decays followed by QCD rescattering. The

most important one is K → γγ, which is dominated by the π0 poles [190, 187]. We

thus have

λLD
0 =

q
p

A
LD
0

ALD
0

= −

(
VcdV∗cs

V∗cdVcs

) (
VudV∗us

V∗udVus

)
⇒ Im(λLD

0 ) = 0. (5.42)
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where in the last step we use θuc = 0. The fact that Im(λLD
0 ) = 0 implies that the

long-distance amplitude is CP conserving.

We next discuss working assumption (ii) above, that is, that CP violation enters

only for ℓ = 0. Within the SM the short-distance effects are due to the following

Hamiltonian

Heff = −
GF
√

2

α

2π sin2 θW

[
V∗csVcdYNL + V∗tsVtdY(xt)

] [
(s̄d)V−A(µ̄µ)V−A

]
+ h.c., (5.43)

with xt = m2
t /m

2
W , and the loop function Y(xt) ≈ 0.950±0.049 and YNL = O(10−4) [200,

188]. Thus the leading SM short-distance physics operator is

(s̄d)V−A(µ̄µ)V−A + h.c. . (5.44)

This operator contributes only to the ℓ = 0 final state [187]. For completeness, we

provide a short derivation of this known result in Appendix D.3.

A few comments are in order:

1. Scalar operators could also lead to CP violation in the ℓ = 1 amplitude

through short-distance effects. However, in the SM, the contribution of these

operators to the rate are suppressed with respect to the operator in Eq. (6.59)

by a factor of (mK/mW)2 ∼ 10−5 [201], and can be safely neglected for the

extraction of SM parameters.

2. Only the axial-times-axial part of the hadronic times leptonic currents of

Eq. (5.44) is relevant for K → µ+µ− (see Appendix D.3).
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We conclude that the approximations and assumptions we work under are

valid in the SM up to very small deviations, of order λ4 ∼ ϵK ∼ 10−3. Thus, within

the SM, the only source of a CP violating phase is the weak effective Hamiltonian

given in Eq. (6.59). Moreover, any extension of the SM in which the leptonic opera-

tor remains vectorial rather than a scalar would satisfy our set of assumptions. For

example also models with right-handed currents fall under this category. Thus,

within the SM and any such extension it is straightforward to extract a prediction

for B(KS → µ+µ−)ℓ=0 purely from short-distance physics.

We are now ready to discuss the SM prediction for B(KS → µ+µ−)ℓ=0. We re-

cover the result, given in Ref. [187], using phase convention independent expres-

sions (see Appendix D.2). We first redefine AS D
0 by subtracting the charm contri-

bution, which is relatively real under the approximation θuc = 0. Then we can

write

λS D
0 =

q
p

A
S D
0

AS D
0

= −

(
VcdV∗cs

V∗cdVcs

) (
V∗tdVts

VtdV∗ts

)
= −e−2iθct ⇒ sin2 ϕS D

0 = sin2 θct. (5.45)

The calculation of |AS D
0 |

2 and the phase space integral is reviewed in Ap-

pendix D.2. The result is given in Eq. (D.18):

B(KS → µ+µ−)ℓ=0 =
βµ τS

16πmK

∣∣∣∣∣∣GF
√

2

2αem

π sin2 θW
mKmµ × Y(xt) × fK × VtsVtd sin θct

∣∣∣∣∣∣2(5.46)

≈ 1.64 · 10−13 ×

∣∣∣∣∣ VtsVtd sin θct

(A2λ5η̄)best fit

∣∣∣∣∣2 ,
where we use

(A2λ5η̄)best fit = 1.33 · 10−4. (5.47)
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Eq. (5.46) is very precise. There are a few sources of uncertainties that enter

here. They are all under control:

1. The only hadronic parameter is the kaon decay constant, which is well

known from charged kaon decays. Isospin breaking effects can also be in-

corporated in lattice QCD if needed [202], reducing the ultimate hadronic

uncertainties below the 1% level.

2. We have neglected subleading terms, that is, we neglected the term propor-

tional to YNL ∼ 10−4 from Eq. (6.59), as well as CPV effects of order ϵK .

3. Parametric errors, including the dependence of the loop function Y(xt) on

mt/mW , are small, as the errors on the top and W masses are below the 1%

level.

4. Only leading order results in the loop expansion are used. Higher order

terms are expected to be suppressed by a loop factor, which is of order 1%.

If needed, higher orders in the loop function can be incorporated in order to

reduce this uncertainty.

5. We only consider the leading SM operator, which is vectorial. At higher

order scalar operators are also present, but these effects are suppressed by

O(m2
K/m

2
W) [201].

We conclude that a measurement of B(KS → µ+µ−)ℓ=0 would be a very clean inde-

pendent measurement of the following combination of CKM elements

|VtsVtd sin θct| = |VtsVtd sin(β + βs)| ≈ A2λ5η̄ , (5.48)
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which coincides with Eq. (5.1).

A similar analysis can be done in any model that satisfies the assumptions

we have made. In particular, these results hold in any model that generates the

same operator as in the SM. In such a model the prediction would be amended by

replacing the SM values for the CKM parameters and the loop function with the

respective values in the model under consideration.

We end this section with two remarks

1. There are models where we can have a significant contribution to the CP-

odd amplitude from scalar operators [165], in which case our assumption

(ii) is not satisfied.

2. In addition to our quantity of interest, B(KS → µ+µ−)ℓ=0, under the same set

of assumptions it is also possible to calculate the short-distance contribution

to ACP-even
0 , that is, A(KL → µ+µ−)S D

ℓ=0. Then, assuming given values for the

CKM parameters, the measurement of the interference terms is also a mea-

surement of the long-distance amplitude A(KL → µ+µ−)LD
ℓ=0, and in particular

of its unknown sign [142].

5.6 Experimental considerations

We now turn to discuss the feasibility of the extraction of B(KS → µ+µ−)ℓ=0. As

is apparent from Eq. (5.31) we need to experimentally extract CInt. and CL. Of
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these, CL has already been measured, and we can expect that in the future it will

be measured with even higher precision. The question is how well can CInt. be

extracted.

Below we estimate the number of kaons that is needed to perform the mea-

surement assuming the SM. For that we need the values in the SM of the relevant

amplitudes. While the method we discuss does not require any estimation of the

amplitudes, we use these estimates to illustrate the expected magnitude of the

interference terms, and to estimate the needed statistics to perform the measure-

ments. Of the three amplitudes, |ACP-odd
0 | can be calculated perturbatively, |ACP-even

0 |

can be extracted directly from the measured value of B(KL → µ+µ−), and |ACP-even
1 |

can only be estimated a priori by relying on non-perturbative calculations from

the literature, that suffer from large hadronic uncertainties. We provide the de-

tails of these estimations in Appendix D.2. They result in the following values for

the experimental parameters:

(CK0

L )SM = |ACP-even
0 |2 ≡ 1, (5.49)

(CK0

S )SM = |ACP-odd
0 |2 + β2

µ|A
CP-even
1 |2 ≈ 0.43,

(CK0

Int.)SM = |ACP-even
0 ||ACP-odd

0 | ≈ 0.12,

where we have used a normalization such that the coefficient (CK0

L )SM is set to be

unity. Using these estimates, we plot the time dependence of the rate in Fig. 5.6, for

two values of the unknown phase, φ0 = arg(ACP-odd
0

∗ACP-even
0 ). For illustration, we

also plot the time dependence excluding the interference terms (see caption). We

use the range t ≲ 6τS as for larger times the beam is almost a pure KL beam. The
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The expected approximate time dependence within the SM, using the coefficients

of Eq. (5.49), for two values of φ0 = arg(ACP-odd
0

∗ACP-even
0 ). The difference between

the dashed magenta curve and the solid black one is a measure of interference

effects.

relative magnitude of the interference terms is apparent in the difference between

the two plotted curves. We find the relative integrated effect to be of order 3% to

6%, depending on the value of φ0.

Based on the above, we can roughly estimate the number of required kaons.

We have B(KL → µ+µ−) = (6.84 ± 0.11) · 10−9 [195], and only about 1% of the

KL particles decay inside our region of interest, t ≲ 6τS . Since the coefficients

in Eq. (5.49) are not very small, we can use this to estimate that the number of

useful events is roughly a fraction of 10−10 out of the kaons. Thus, for example, in

order to get O(1000) events in the interesting region we need O(1013) K0 particles

to start with. We do not expect this preliminary estimate to be strongly affected

147



by backgrounds or reconstruction efficiencies.

Experimentally, it is not easy to produce a pure neutral kaon beam. Experi-

ments currently running enjoy a very high luminosity of kaons of order 1014 kaons

a year (see Ref. [203] for NA62, Ref. [137] for KOTO, and Ref. [204] for LHCb).

However, these kaons are either charged (NA62), or to a good approximation a

pure KL (KOTO), or come with an almost equal mix of K0 and K0 (LHCb).

Thus, for the purpose of the analysis we are considering, we need to turn to a

mixed beam or a regenerated beam. As discussed in Appendix D.1, in the case of

a mixed beam with non-zero production asymmetry, the sensitivity to the inter-

ference terms is diluted by a factor of D. The use of matter effects, for example in

the case of a KL beam going through a regenerator, introduces suppression that is

proportional to the regeneration parameter, r. Thus, the number of kaons that are

needed in these cases compared to the pure kaon beam, are larger by roughly 1/D

or 1/r as we need to overcome these suppression effects.

Several approaches that could be useful in acquiring the needed sensitivity to

the interference terms appear in the literature:

1. There are cases with QCD production where both K0 and K0 are produced,

but there is an asymmetry, that is D , 0. One example is the “high intensity

KS -run” at the NA48 experiment, which reported 1010 KS decays with D ∼

0.3 [205].

2. Regeneration in KL beams [206, 207, 208, 209]. Numerically, typical values
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for r range from O(10−2) to a few times 10−1, depending on the material and

on the relevant kaon momentum.

3. The use of a charge exchange target in order to generate pure K0 beams from

K+ beams [210, 211].

4. Post-selection using tagging in high energy production, for example, by

looking at the charge of the pion in K∗ decays, or by tagging Λ0 and K−

in pp→ K0K−X and pp→ K0Λ0X decays [142].

We do not discuss these options in any detail. The high yields of currently

running experiments is encouraging in terms of the ability of future endeavors

to reach the desired sensitivity, should some of these methods be implemented.

Clearly, a detailed study of the experimental requirements is needed in order to

arrive at a reliable estimate for the expected sensitivity.

We close this section with a remark about the time dependence. A measure-

ment of the full time dependence would result in the best sensitivity. However,

in principle, a measurement of the integral over four different time intervals suf-

fices to get the needed information. In practice, CL is already known, CS can be

extracted from a beam with D = 0, and then we would need two time intervals

using a beam with D , 0 or r , 0.
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5.7 Conclusion and Outlook

We have demonstrated how, under well-motivated approximations and assump-

tions, it is possible to cleanly test the SM using a measurement of the time-

dependent decay rate of K → µ+µ−. A necessary ingredient is sensitivity to the

interference between the KL and KS amplitudes, as can be seen from Eq. (5.31),

which is our main result. The relevant SM parameter of interest is

|VtsVtd sin(β + βs)| , (5.50)

which is exactly the CKM parameter combination that appears in KL → π0νν̄ .

Thus, our proposal is to use K → µ+µ− as an additional independent measurement

of the same SM quantity.

As we discuss in detail, the point to emphasize is that the extraction is theoret-

ically very clean. There are several assumptions that were made in setting up the

method, as well as in the calculation within the SM. All of these are valid within

the SM to a few per-mill, giving a total uncertainty below the 1% level. This is

comparable to the best probing methods for the angle β and related quantities,

that is, the CP asymmetries in B → ψKS and the decay rate of KL → π0νν̄. The

assumptions we rely on are additionally respected by any extension of the SM in

which the relevant leptonic current is vectorial.

The approach we discuss can in principle be extended to other decay modes.

Most promising are the decays K → πe+e− and K → πµ+µ−. The generalization is

not trivial as these decays involve more partial waves beyond ℓ = 0, 1. We plan to
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discuss these modes in a future publication.

Our very preliminary estimates indicate that these measurements can be car-

ried out in next generation kaon experiments. This is encouraging, and more

detailed feasibility studies are called for.
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CHAPTER 6

A PRECISION RELATION BETWEEN Γ(K → µ+µ−)(t) AND

B(KL → µ
+µ−)/B(KL → γγ)

6.1 Introduction

A recent proposal has shown that short-distance parameters of the decay K →

µ+µ− can be cleanly extracted from a measurement of the KL–KS time-dependent

rate [142, 2, 212]. The time-dependent rate for a beam of initial K0 particles can be

written as

1
N

dΓ(K0 → µ+µ−)
dt

= f (t) ≡ CL e−ΓLt +CS e−ΓS t + 2 CInt. cos(∆MKt − φ0)e−
ΓL+ΓS

2 t , (6.1)

where N is a normalization factor, ΓL (ΓS ) is the KL (KS ) decay width, and ∆MK is

the KL–KS mass difference. Then, the four experimental parameters characterizing

the time dependence,

{CL, CS , CInt, φ0} , (6.2)

are directly related to the four theory parameters describing the system [2],

{
|A(KS )ℓ=0|, |A(KL)ℓ=0|, |A(KS )ℓ=1|, arg

[
A(KS )∗ℓ=0 A(KL)ℓ=0

]}
, (6.3)

where the subscripts ℓ = 0 (s-wave symmetric wave function) and ℓ = 1 (p-wave

anti-symmetric wave function) correspond to the CP-odd and -even (µ+µ−) final

states, respectively. The relations between the experimental and theory parame-
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ters are given by

CL = |A(KL)ℓ=0|
2 ,

CS = |A(KS )ℓ=0|
2 + β2

µ|A(KS )ℓ=1|
2 ,

CInt. = |A(KS )∗ℓ=0 A(KL)ℓ=0| = |A(KS )ℓ=0||A(KL)ℓ=0| ,

φ0 = arg
[
A(KS )∗ℓ=0 A(KL)ℓ=0

]
,

(6.4)

with

βµ =

√
1 −

4m2
µ

m2
K0

. (6.5)

The experimental parameter φ0, which is the phase shift of the oscillating rate

in Eq. (6.1), is a combination of the relative weak and strong phases between the

KS and KL amplitudes to the CP-odd final state. In this work, we demonstrate

that this phase shift is closely related to the proportionality coefficient in the ratio

between the rates of KL → µ+µ− and KL → γγ.

The ratio between the rates of KL → µ+µ− and KL → γγ is of historical sig-

nificance. Using CPT invariance, unitarity, and the well-motivated assumption

that the absorptive part of the KL → µ+µ− amplitude is dominated by the two-

photon intermediate state, the ratio between the rates of KL → µ+µ− and KL → γγ

is bounded by the lower limit [146, 159, 213, 214]

RKL ≡
Γ(KL → µ+µ−)
Γ(KL → γγ)

≥ 1.195 × 10−5 . (6.6)

However, back in the 1970’s, this conflicted with the contemporary experimental

upper bound of 0.4 × 10−5 [215, 216], leading to the so-called “KL → µ+µ− puz-

zle” [159, 217] that gained much attention. But today, this ratio is measured in the
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experiment as [218]

Rexp
KL
= (1.250 ± 0.022) × 10−5 . (6.7)

This means that the observed branching ratio B(KL → µ+µ−) = (6.84 ± 0.11) ×

10−9 [218], along with B(KL → γγ) = (5.47 ± 0.04) × 10−4 [218] known today obey

the lower limit prescribed by CPT invariance and unitarity.

In this chapter, we show that the phase φ0 is cleanly predicted in the Stan-

dard Model (SM), up to a four-fold discrete ambiguity, making its measurement

a potent test of the SM. The discrete ambiguity can be partially resolved by using

further theory input from the literature in the large-NC limit of chiral perturbation

theory (ChPT). This result is additionally significant for sensitivity estimations of

a future measurement of the short-distance parameters.

Leptonic kaon decays have been a field that received a lot of attention in the

literature recently. Effects from CPV in kaon mixing on K → µ+µ− have been

taken into account in Refs. [142, 212], and implications for physics beyond the

SM have been studied in Refs. [165, 163, 3]. Another future high precision test of

the SM employing the ratio B(KS → µ+µ−)ℓ=0/B(KL → π0νν̄) has been identified in

Ref. [219]. Advances in calculating KL → µ+µ− and KL → γγ on the lattice can be

found in Refs. [220, 221, 222]. On the experimental side, the LHCb collaboration

recently found an improved bound on KS → µ+µ− [223] and KS ,L → 2(µ+µ−) [224].

In Sec. 7.3 we introduce our notation and summarize key results from the lit-

erature. In Sec. 6.3 we determine cos2 φ0, which predicts φ0 up to a four-fold am-
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γ

KL

µ

µ

π0, η, η′

Leading order Feynman diagram of the long-distance two-photon contribution

to KL → µ+µ−.

biguity, in a model-independent way, only assuming that the long-distance con-

tributions are SM-like. In Sec. 6.4 we reduce this ambiguity to a two-fold one by

using the large-NC limit and assuming that the short-distance physics is known.

We demonstrate that the remaining ambiguity cannot be resolved using current

knowledge in Sec. 6.5. We conclude in Sec. 7.6.

6.2 Setup and notation

We work within a framework defined by the following approximations, as de-

tailed in Ref. [2]:

(i) We neglect CPV in mixing, which is a sub-dominant effect for our purposes.

Note that when considering higher order corrections, this effect can be taken

into account consistently [212].

(ii) We neglect CPV in the long-distance contribution.
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(iii) We assume that the leptonic current is (axial-)vectorial, i.e., given by µ̄γµ(a +

bγ5)µ.

In the SM, all three approximations are fulfilled within the precision relevant for

our findings. In addition, in the following we assume that

(iv) The long-distance contribution to the KL → µ+µ− amplitude is SM-like. That

is, the only non-negligible intermediate state is the di-photon state.

Regarding the short-distance contribution, we explicitly state whenever our re-

sults are relevant regardless of any assumption on the nature of the short-distance

physics, and when SM input is used.

Adopting this setup, it has been shown that the decay of KS to the CP-odd

final state, (µ+µ−)ℓ=0 involves only short-distance physics. Additionally, the KL →

µ+µ− decay proceeds only to the CP-odd final state, (µ+µ−)ℓ=0. However, the latter

involves two contributions of different underlying physics:

1. A short-distance (SD) contribution, arising to leading order from box and

electroweak penguin diagrams, for which the ingredients for a precise SM

prediction are straight-forward to derive.

2. A long-distance (LD) contribution, strongly dominated by the on-shell two

photon intermediate state, see Fig. 6.2.

156



The on-shell two photon contribution is known to be significantly larger in mag-

nitude than both the SD contribution and the off-shell part of the LD contribution.

The K0 → (µ+µ−)ℓ=0 and K
0
→ (µ+µ−)ℓ=0 amplitudes can be written as a sum of

two general contributions, with corresponding weak and strong phases,

Aℓ=0 = |AS D|eiθS DeiδS D + |ALD|eiθLDeiδLD , (6.8)

Aℓ=0 = −
(
|AS D|e−iθS DeiδS D + |ALD|e−iθLDeiδLD

)
,

where the overall minus sign for Aℓ=0 is due to the CP nature of the final state.

Using the convention

|KS ⟩ = p|K0⟩ + q|K
0
⟩ , |KL⟩ = p|K0⟩ − q|K

0
⟩ , (6.9)

the mass eigenstate amplitudes are related to Aℓ=0 and Aℓ=0 by [2]

A(KS )ℓ=0 =
1
√

2
[AS D(1 + λS D) + ALD(1 + λLD)] , (6.10)

A(KL)ℓ=0 =
1
√

2
[AS D(1 − λS D) + ALD(1 − λLD)] ,

where

AS D ≡ |AS D|eiθS DeiδS D , ALD ≡ |ALD|eiθLDeiδLD , (6.11)

AS D ≡ −|AS D|e−iθS DeiδS D , ALD ≡ −|ALD|e−iθLDeiδLD , (6.12)

and

λS D ≡
q
p

AS D

AS D
, λLD ≡

q
p

ALD

ALD
. (6.13)
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As we focus here mainly on amplitudes with ℓ = 0 final states, compared to

the notation of Ref. [2] we use for brevity the notation

λS D ≡ λ
S D
0 , λLD ≡ λ

LD
0 , (6.14)

A(KS ) ≡ A(KS )ℓ=0 , A(KL) ≡ A(KL)ℓ=0 . (6.15)

The amplitudes are normalized such that

B(KS ,L → µ+µ−)ℓ=0 =
τKβµ

16πmK
|A(KS ,L)|2 . (6.16)

We also use

B(KL → γγ) =
τK

32πmK
|A(KL → γγ)|2 . (6.17)

Up to this point, the labels LD and SD are just naming. However, in the fol-

lowing we will treat them as corresponding to what we think of as long-distance

and short-distance amplitudes. It is important to note that the separation into LD

and SD contributions is not well-defined. We think of short-distance physics as

having no sources for a strong phase, while long-distance physics can go on-shell.

However, any on-shell intermediate state can also be considered to contribute off-

shell. Therefore there is no way to unambiguously define the separation. In the

following we keep the strong phases general, while we insert knowledge of the

SM weak phase of the long-distance contribution.

We then have [2]

λLD = −

(
VcdV∗cs

V∗cdVcs

) (
V∗udVus

VudV∗us

)
= −e−2iθuc . (6.18)
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Equation (6.18) corrects a typo in Eq. (42) of Ref. [2]. Here,

θuc ≡ arg
(
−

VcdV∗cs

VudV∗us

)
= O(λ4) , (6.19)

such that, to O(λ4),

arg λLD = −2θLD + π = π , (6.20)

that is

θLD = 0 , λLD = −1 . (6.21)

No assumptions are made for the short-distance phase,

arg λS D = −2θS D + π . (6.22)

We have therefore

A(KS ) =
1
√

2
AS D(1 + λS D) = i

√
2|AS D| sin θS DeiδS D , (6.23)

A(KL) =
1
√

2
[AS D(1 − λS D) + 2ALD] =

√
2
(
|ALD|eiδLD + |AS D| cos θS DeiδS D

)
. (6.24)

Note that A(KS ) is pure short-distance and is manifestly CP-odd. The oscillation

term in the rate is then controlled by the interference term:

A(KS )∗A(KL) = −2i|AS D| sin θS D

(
|ALD|ei∆δ + |AS D| cos θS D

)
, (6.25)

where ∆δ ≡ δLD − δS D.
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6.3 Determination of cos2 φ0: model-independent

From Eqs. (6.4) and (6.25), we have

cos2 φ0 =
Re

[
A(KS )∗A(KL)

]2

|A(KS )A(KL)|2
=

(
√

2|ALD| sin∆δ)2

|A(KL)|2
=

[
A(KL)absorptive

]2

|A(KL)|2
, (6.26)

where

A(KL)absorptive ≡ Im
[
A(KL)

]
, (6.27)

and we define the imaginary part relative to the strong phase of the SD amplitude

(or in the basis in which the SD amplitude carries no strong phase, hence δLD = ∆δ).

This convention corresponds to choosing Chad., introduced in Sec. 6.4 below, to be

real without loss of generality.

The numerator is simply the on-shell long-distance contribution to the KL am-

plitude. Under the assumption that the only non-negligible intermediate state is

the di-photon state [143], this absorptive part is equal to the discontinuity of the

three-point diagram (see Fig. 6.2), which can be computed in a straightforward

way using Cutkosky rules,∣∣∣∣√2|ALD| sin∆δ
∣∣∣∣ = ∣∣∣A(KL)absorptive

∣∣∣ = ∣∣∣∣∣ 1
2i

Disc(KL → γγ → µ+µ−)
∣∣∣∣∣ . (6.28)

Furthermore, the discontinuity is directly related to the measured rate of KL → γγ,

meaning that its magnitude can be extracted completely model independently

(using only QED for the γγ → µ+µ− half of the diagram). We can write

cos2 φ0 =

[
A(KL)absorptive

]2

|A(KL)|2
= C2

QED
Γ(KL → γγ)
Γ(KL → µ+µ−)

, (6.29)
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i.e.,

cos2 φ0B(KL → µ+µ−) = C2
QEDB(KL → γγ) , (6.30)

where CQED describes the γγ → µ+µ− transition and is given as [143]

CQED =
αemmµ√
2βµmK

log
(
1 − βµ
1 + βµ

)
+ O(α2

em) . (6.31)

Equation (6.30) demonstrates that cos2 φ0 is simply the proportionality factor pa-

rameterizing to what extent is the KL → µ+µ− rate saturated by the absorptive

contribution from the intermediate γγ state. Using the measured ratio of rates

RKL , see Eq. (6.6), we have a clean SM prediction for the phase φ0, up to a four-fold

discrete ambiguity,

cos2 φ0 =
C2

QED

Rexp
KL

. (6.32)

This SM prediction is dependent only on

1. The measurement of RKL , currently with an uncertainty of O(2%);

2. A QED calculation, here taken up to relative corrections of O(αem);

3. The assumption that other intermediate on-shell contributions (3π, ππγ) are

negligible [143].

Inserting

C2
QED = 1.195 × 10−5[1 + O(αem)

]
, (6.33)

161



and

Rexp
KL
= (1.250 ± 0.022) × 10−5 , (6.34)

which we obtain, not taking into account any correlations, from [218]

B(KL → µ+µ−) = (6.84 ± 0.11) × 10−9 , (6.35)

B(KL → γγ) = (5.47 ± 0.04) × 10−4 , (6.36)

using Gaussian error propagation, we arrive at cos2 φ0 = 0.96 ± 0.02 , where the

quoted error reflects only the experimental error on Rexp
KL

.

There are two sources of theoretical errors. One of the them is the higher order

QED calculation, resulting in an error of order αem ∼ 1%. This error is reducible,

that is, if needed the calculation of the higher-order corrections can be done. The

other source of uncertainty are the intermediate states that we neglected, such as

3π and ππγ [143]. These contributions are estimated to be at most 1% of the two-

photon state that we considered. Each of the two effects results in about 1% error,

and thus we conservatively add them linearly resulting in a total theory error of

0.02 to arrive at our final estimate,

cos2 φ0 = 0.96 ± 0.02exp ± 0.02th . (6.37)

Combining the experimental and theoretical errors in quadrature we then have

cos2 φ0 = 0.96 ± 0.03. (6.38)

Note that the error quoted in Eq. (6.38) is therefore to be interpreted as an estimate

of the total uncertainty, rather than as a statistical error only.
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(a) Illustration of the four-fold ambiguity arising from cos2 φ0 = 0.96. (b) The time

dependence of the K0(t)→ µ+µ− rate, f (t), as defined in Eq. (6.1), for the four

values of φ0. We have used a normalization in which CL of Eq. (6.1) is set to unity.

(c) The same for an initial pure K
0

beam.

Given the value of cos2 φ0 there are four possible values for the phase shift,

φ0. Two of them correspond to overall constructive interference in the time-

dependent rate and two correspond to destructive interference, depending on the

sign of cosφ0. We plot the time-dependent rate for the four possibilities in Fig. 6.3

for both a K0 or a K
0

beam. Note that, for a K0 beam, a positive (negative) cosφ0

results in constructive (destructive) interference. As pointed out in Ref. [142], the

situation is reversed for a K
0

beam where a negative (positive) cosφ0 results in

constructive (destructive) interference.
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6.4 Determination of cos φ0: model dependent

The four-fold ambiguity cannot be resolved in a model-independent way. Thus, in

this section we use input from theory in order to try to reduce it. We first consider

the sign of cosφ0. We discuss below how chiral perturbation theory (ChPT) and

lattice QCD and can help in this regard.

6.4.1 Chiral perturbation theory

Within chiral perturbation theory and using the large-NC limit, it has been shown

that the sign of the absorptive amplitude relative to the short-distance contribu-

tion, which determines the sign of cosφ0, can be determined [190, 187].

In the following, we relate our notation for the long-distance contribution to

that appearing in the literature in order to apply existing results, primarily of

Refs. [187, 190, 191, 198]. We rewrite the long-distance amplitude for KL → µ+µ−

as

√
2|ALD|ei∆δ =

[
ALD

]
dispersive + i

[
ALD

]
absorptive

≡ Chad.

[(
Alocal

LD + ReAγγ
LD

)
+ i ImAγγ

LD

]
, (6.39)

where Chad. encodes the hadronic behavior of the effective KLγγ vertex. Without

loss of generality, we take Chad. to be real, consistent with Eq. (6.27). The dispersive
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part is split in two parts to be consistent with the literature,

[
ALD

]
dispersive = Chad.

(
Alocal

LD + ReAγγ
LD

)
, (6.40)[

ALD
]
absorptive = Chad. ImAγγ

LD , (6.41)

where Alocal
LD denotes the local counterterm, which is real [187]. Using the fact that

the decay KL → γγ has the same hadronic behavior, we define

A(KL → γγ) ≡ Chad. Aγγ . (6.42)

Note that Aγγ , Aγγ
LD. The former is part of the KL → γγ amplitude, while the latter

is the two-photon contribution to KL → µ+µ−. Then we have

Γ(KL → µ+µ−)
Γ(KL → γγ)

= 2βµ

∣∣∣∣∣∣
√

2|ALD|ei∆δ +
√

2|AS D| cos θS D

A(KL → γγ)

∣∣∣∣∣∣
2

(6.43)

= 2βµ

(
Alocal

LD + ReAγγ
LD +

√
2|AS D| cos θS D/Chad.

)2
+ (ImAγγ

LD)2

|Aγγ|
2 .

Note that Chad. now appears as a factor accompanying the short-distance contribu-

tion. We can now easily relate to the notations of Ref. [187], with (the superscript

“IU” denotes the initials of the authors of Ref. [187])

Alocal
LD

|Aγγ|
=
αemmµ

πmK

[
χγγ(µ)

]IU
, (6.44)

ReAγγ
LD

|Aγγ|
=
αemmµ

πmK

ReCγγ −
5
2
+

3
2

log
m2

µ

µ2

IU

, (6.45)
√

2|AS D| cos θS D

Chad.|Aγγ|
=
αemmµ

πmK

[
χshort

]IU
, (6.46)

ImAγγ
LD

|Aγγ|
=
αemmµ

πmK

[
ImCγγ

]IU
=

1√
2βµ

CQED . (6.47)
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The assumptions and findings of the literature, as conveyed in Refs. [187, 190],

can now be summarized as the following:

1. Using results in the large-NC limit, Refs. [187, 190] find destructive interfer-

ence between the short-distance and the local long-distance contributions,

cos θS D

Chad.Alocal
LD

< 0 . (6.48)

2. Ref. [187] uses phenomenological analyses of the form factor in KL → γe+e−,

KL → γµ+µ− and KL → e+e−µ+µ− from data, together with theory considera-

tions, to estimate the local counter term. Using up-to-date inputs, we update

their estimation (see App. E) and find

[
χγγ(mρ)

]IU
=

πmK

αemmµ

Alocal
LD

|Aγγ|
= (6.10 ± 1.01) > 0 , (6.49)

where we have set µ2 = m2
ρ here and in the following whenever we make use

of specific numerical estimates. Hence, using Eq. (6.48),

sgn
[
Chad.

]
= −sgn

[
cos θS D

]
. (6.50)

3. This, in turn, determines the sign of the absorptive long-distance amplitude

relative to the short-distance contribution,

sgn
([

ALD
]
absorptive

)
= sgn

[
cos θS D

]
, (6.51)

where we used the fact that sgn
[
ImAγγ

LD

]
= sgn

[
CQED

]
= −1.
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We conclude that within a model for the short-distance contribution, and adopt-

ing the assumptions in the literature regarding the long-distance physics, i.e., the

large-NC limit, the sign of cosφ0 is determined,

sgn
[

cosφ0

]
= sgn

[
Re

[
A(KS )∗A(KL)]
|A(KS )A(KL)|

]
(6.52)

= sgn
[A(KL)

]
absorptive sgn[sin θS D]

|A(KL)|


= sgn

[
tan θS D

]
.

6.4.2 Detailed assumptions within ChPT

The considerations leading to the assumption of destructive interference be-

tween the short-distance and the local long-distance contributions, as conveyed in

Eq. (6.48), involve some details of the structure of the KL → γγ amplitude within

the ChPT. According to Ref. [193], the on-shell tensor amplitude for KL → γγ

starts from at O(p6) in the ChPT as

−iA(KL → γγ) = εµνρσϵ1µ(q1)ϵ2ν(q2)q1ρq2σ c(6)(0, 0) , (6.53)

where

c(6)(0, 0) = −
2
π
αemF0 (G8 −G27)

1
1 − r2

π

c(6)
red , (6.54)
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and a dimensionless reduced amplitude c(6)
red is

c(6)
red = 1 +

1 − r2
π

3
(
1 − r2

η

) [
(1 + ξ) cθ + 2

√
2 ρ̂ sθ

] ( Fπ

Fη8

cθ − 2
√

2
Fπ

Fη1

sθ

)

−
1 − r2

π

3
(
1 − r2

η′

) [
2
√

2 ρ̂ cθ − (1 + ξ) sθ
] ( Fπ

Fη8

sθ + 2
√

2
Fπ

Fη1

cθ

)
,

(6.55)

with
√

2F0 =
√

2Fπ = fπ = (130.2 ± 0.8) MeV [225], Fη8 = (1.27 ± 0.02) Fπ, Fη1 =

(1.14 ± 0.05) Fπ [226, 227], and rP ≡ mP/mK . Combining the above formulae gives

−iA(KL → γγ) = −

√
2αem fπ (G8 −G27)

π
(
1 − r2

π

) c(6)
redε

µνρσϵ1µ(q1)ϵ2ν(q2)q1ρq2σ . (6.56)

Here, the point is that O(p4) contributions vanish within the ChPT, which are pro-

portional to c(4)
red and

c(4)
red = 1 +

1 − r2
π

3
(
1 − r2

η8

) = 4 − 3r2
η8
− r2

π

3
(
1 − r2

η8

) = 0 , (6.57)

where the Gell-Mann–Okubo mass formula, 4m2
K = 3m2

η8
+ m2

π, is used. There-

fore, c(6)
red amplitudes correspond to the violation of the Gell-Mann–Okubo formula

implying that the sign of c(6)
red is sensitive to the η–η′ mixing angle θ in the octet–

singlet basis, the S U(3)F breaking ξ [228, 229], the nonet symmetry breaking ρ̂

[230, 231, 232], and their higher-order corrections. (1 + ξ) is proportional to the

KL → η8 form factor, while ρ̂ is proportional to the KL → η1 one. However, by

considering the typical parameter regions; θ ≈ −20◦, ξ ∼ 0.0–0.2, and ρ̂ ≈ 0.8 [193],

one can predict sgn[c(6)
red] > 0, which leads to

sgn
[
A(KL → γγ)

]
= sgn

[
A(KL → π0 → γγ)

]
. (6.58)

Combining this relation with sgn[G8−G27] which can be extracted from the ∆S = 1

effective Lagrangian in the large-NC limit [233, 187, 234], sgn[Chad.] > 0 can be

predicted, see Eq. (6.50), where, in the SM we have cos θSM
S D < 0.
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6.4.3 Lattice QCD

In the last decade, lattice QCD made paramount progress in the treatment of K →

ππ [235, 236, 237, 238]. Moreover, recently, lattice QCD made advances in the

calculation of KL → µ+µ− and KL → γγ [220, 221, 222]. ChPT parameters like G8

can now also be extracted from fits to lattice results, as shown in Ref. [239].

While it seems to us that the data is available to extract the sign, we were

unable to find it from the available publications. It would be interesting to use

the available lattice data to obtain it. Such an extraction would be interesting to

confront the ChPT results.

6.4.4 SM prediction for the short-distance physics

Within the SM, the short distance contribution arises from the following effective

Hamiltonian [200]

Heff = −
GF
√

2

αem

2π sin2 θW

[
V∗tsVtdY(xt) + V∗csVcdYNL

] [
(s̄d)V−A(µ̄µ)V−A

]
+ h.c. . (6.59)

We can then write (in the basis where δS D = 0)

A(KL)SM
S D =

(√
2|AS D| cos θS D

)SM (6.60)

=

√
2GFαem

π sin2 θW

∣∣∣V∗tsVtdY(xt) + V∗csVcdYNL

∣∣∣ fKmµmK cos θSM
S D ,

where we identify

θSM
S D = arg

(
−

V∗tsVtd + V∗csVcdYNL/Y(xt)
V∗csVcd

)
. (6.61)
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We therefore find,

tan θSM
S D = −

η

(1 − ρ) + 1
A2λ4

YNL
Y(xt)

+ O(λ6) < 0 . (6.62)

Hence, from Eq. (6.52), within the SM and under the aforementioned model-

dependent assumptions, we have

[
cosφ0

]SM
large NC

< 0 . (6.63)

Together with the result of section 6.3, cos2 φ0 = 0.96 ± 0.03, we have

[
cosφ0

]SM
large NC

= −0.98 ± 0.02 . (6.64)

Note that the error combines both a statistical error from experiment as well as a

theory component, i.e. is to be interpreted as an estimate of the total uncertainty.

6.5 Going beyond the two-fold ambiguity

In order to determine the sign of sinφ0 and get rid of the remaining ambiguity,

we would need to determine the signs and magnitudes of the competing short-

distance and long-distance dispersive contributions,

sinφ0 =
Im

[
A(KS )∗A(KL)

]
|A(KS )A(KL)|

= −

([
ALD

]
dispersive +

√
2|AS D| cos θS D]

)
sgn[sin(θS D)]

|A(KL)|
. (6.65)
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We recall that
[
ALD

]
dispersive can be written as

[
ALD

]
dispersive =

√
2|ALD| cos∆δ = Chad.

(
Alocal

LD + ReAγγ
LD

)
, (6.66)

see Eq. (6.39). Existing semi-phenomenological theory estimations of
[
ALD

]
dispersive

come with large theory uncertainties. Using the estimate of Ref. [187] as in

Eq. (6.49), updated with existing data (see App. E), we have for the long-distance

contribution,[
ALD

]
dispersive

|A(KL → µ+µ−)|
=

Chad.

|A(KL → µ+µ−)|

(
Alocal

LD + ReAγγ
LD

)
(6.67)

=
Chad.|Aγγ|

|A(KL → µ+µ−)|
αemmµ

πmK

[χγγ(mρ)
]IU
+

ReCγγ −
5
2
+

3
2

log
m2

µ

m2
ρ

IU
= sgn [Chad.]

√
2βµ
RKL

αemmµ

πmK
[(6.10 ± 1.01) − 5.14] ∈

[
− 0.009, 0.37

]
,

where sgn[Chad.] > 0 derived in the previous section is used.

For the short-distance SM contribution, we have (see Eq. (6.60))

A(KL)SM
S D

|A(KL → µ+µ−)|
=

√
2GFαem(mZ)
π sin2 θW

∣∣∣V∗tsVtdY(xt) + V∗csVcdYNL

∣∣∣ fKmµmK cos θSM
S D

|A(KL → µ+µ−)|
(6.68)

= −0.331 ± 0.008 ,
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where we use the following inputs,

Y(xt) = 0.931 ± 0.005 [212] , YNL = (2.95 ± 0.46) × 10−4 [188] ,(6.69)

A = 0.790+0.017
−0.012 , λ = 0.22650 ± 0.00048 ,

ρ̄ = 0.141+0.016
−0.017 , η̄ = 0.357 ± 0.011 ,

mK = 497.61 MeV , mµ = 105.658 MeV ,

GF = 1.166378 × 10−5 GeV−2 , fK = 155.7 MeV ,

αem = 1/137 , αem(mZ) = 1/129 ,

sin2 θW = 0.23 , mρ = 775.26 MeV .

In particular, the CKM input results in cos θSM
S D = −0.94.

Hence, the large theory uncertainty on the dispersive long-distance contribu-

tion, as reflected in the range given in Eq. (6.67), does not allow to determine if it is

larger or smaller than the short-distance SM contribution, Eq. (6.68). We conclude

that with current knowledge on the dispersive long-distance contribution the sign

of sinφ0 cannot be determined.

Therefore, we have, using Gaussian error propagation,

[
cosφ0

]SM
large NC

= −0.98 ± 0.02 ,
[
sinφ0

]SM
large NC , theory = ±

(
0.21 ± 0.07

)
. (6.70)

We note that due to the nature of the theoretical error, the error should not be

interpreted as a statistical error but rather as an estimate of the uncertainty.
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6.6 Discussion and Conclusions

In this work we have related the phase shift, φ0, appearing in the time-dependent

decay rate of a neutral kaon to a dimuon pair to the ratio of integrated rates of

KL → µ+µ− and KL → γγ. This relation holds to an excellent approximation under

the well-motivated assumption that the two-photon intermediate state dominates

the absorptive contribution, and within any model in which the short-distance

leptonic current is axial or vectorial, as in the SM. The only input required other

than the ratio of integrated rates is a coefficient calculated within QED. We find

that cos2 φ0 is precisely predicted model independently, and given by

cos2 φ0 = 0.96 ± 0.02exp ± 0.02th . (6.71)

The experimental error comes from the error of RKL and the theory error is our

estimate of the size of higher order QED corrections and the contribution from

other intermediate states beside the di-photon state. The result leaves a four-fold

ambiguity in φ0.

The phase shift, φ0, is also of experimental significance since it controls the in-

tegrated number of interference events. For a K0 beam a positive value of cosφ0 is

preferred as it enhances the interference and improves the feasibility of extracting

clean short-distance information from the interference term. For a K
0

beam the

situation is reversed, and a negative value of cosφ0 is preferred. Thus, for exper-

iments employing a proton beam on target, where the number of K0 particles is

expected to exceed that of K
0

particles, a positive cosφ0 would be preferred.
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We were unable to determine the sign of cosφ0 completely model indepen-

dently. Thus, with the use of several assumptions, that is, within the framework

of ChPT and using a typical parameter region (motivated by the large-NC limit,

as detailed in Sec. 6.4.2), the sign of cosφ0, relative to the short-distance contribu-

tion, can be predicted. We find that within this framework, and assuming that

the short-distance contribution is SM-like, there is a theory preference towards

cosφ0 < 0. New Physics can potentially yield a different sign for cosφ0. A mea-

surement of the angle φ0 is therefore a test of the validity of several assumptions,

pertaining to both the short-distance physics and the ChPT description of the dis-

persive long-distance physics.

Given the assumptions that were made to arrive to the conclusion about the

sign of cosφ0, and the fact that the prediction can be modified for models beyond

the SM, we conclude that neither solution is unequivocally theoretically favored.

That is, we cannot conclude that we know the sign of cosφ0 to high confidence.

Thus, when planing to perform the experiment we encourage the experimental

collaborations to consider both possible signs for cosφ0 for purposes of sensitivity

estimations.

We therefore conclude by emphasizing that the time dependence of the kaon

decay rate to two muons provides two very clean SM predictions:

1. The coefficient of the interference term allows the extraction of the theoreti-

cally clean decay rate B(KS → µ+µ−)ℓ=0. In the SM, this observable is propor-

tional to the CKM combination |VtsVtd sin(β + βs)|.
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2. Although it includes long-distance as well as short-distance physics, the

phase shift in the interference term, φ0, is predicted cleanly up to a four-fold

ambiguity.

Thus, an experiment that performs the time-dependence studies of the K → µ+µ−

decay rate provides two independent tests of the SM from the same measurement.

While the phase φ0 is not determined model independently, it directly impacts the

measurement of the K → µ+µ− time dependent rate as it affects the interference

between the KS and KL amplitudes in the total rate. The phase shift φ0 is therefore

a quantity of critical importance in kaon physics, as a way to test the SM, and in

extension, as a probe of new physics beyond the SM because of its sensitivity to

short distance effects.
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CHAPTER 7

K → µ+µ− BEYOND THE STANDARD MODEL

7.1 Introduction

A recent proposal has demonstrated that short-distance (SD) parameters of the

decay K → µ+µ− can be cleanly extracted from a measurement of the KS −KL inter-

ference term in the time dependent rate [142, 2]. This statement is true to a very

good approximation within the SM and any New Physics (NP) model in which the

leptonic (µ+µ−) current is of similar CP structure. As shown in Ref. [2], once such

a measurement is carried out, its results can be interpreted as a measurement of

standard model (SM) CKM parameters. Recently, Ref. [219] has pointed out that

within the SM, the ratio, B(KS → µ+µ−)ℓ=0/B(KL → π0ν̄ν) is independent of any SM

parameter except for the well-measured |Vus| and mt (and in particular gets rid of

any parametric dependence on |Vcb|). In this work we show that a measurement

of B(KS → µ+µ−)ℓ=0 can also serve as a probe of possible NP scenarios.

K → µ+µ− is a flavor-changing-neutral-current (FCNC) process, making it a

very potent probe of physics beyond the SM, sensitive to high NP scales. The

prospects of having a theoretically clean measurement of its parameters are there-

fore very exciting. In the following, we investigate the NP reach of this proposed

measurement. In other words, we ask the question of to what extent and within

which models can the CP-violating mode, B(KS → µ+µ−)ℓ=0, be significantly en-
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hanced compared to the SM.

We first discuss a model-independent generic bound in Sec. 7.2, we review the

basic setup in Sec. 7.3, then we derive relations to other modes using an EFT ap-

proach in Sec. 7.4, and analyze specific examples of relevant NP models in Sec. 7.5.

We conclude in Sec. 7.6.

7.2 Generic bound

The 2020 LHCb bound on KS → µ+µ− reads [223]

B(KS → µ+µ−) < 2.1 · 10−10 ≡ B(KS → µ+µ−)lim. . (7.1)

Within the SM, the prediction for KS → µ+µ− involves a large CP-conserving con-

tribution, dominated by long-distance physics, and a much smaller CP-violating

contribution, dominated by short-distance physics. Since these two contributions

result in final states of opposite CP, they do not interfere and we have

B(KS → µ+µ−) = B(KS → µ+µ−)(LD)
CPC + B(KS → µ+µ−)(SD)

CPV . (7.2)

The bound of Eq. (7.1) can then be read as a conservative bound on the CP-

violating (CPV) short-distance contribution alone,

B(KS → µ+µ−)CPV < B(KS → µ+µ−)lim. . (7.3)

The short-distance CPV contribution to KS → µ+µ− can be identified with the de-

cay of KS into the CP-odd final state (µ+µ−)ℓ=0, where ℓ denotes the orbital angular
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momentum of the dimuon pair. The SM prediction is given by B(KS → µ+µ−)SM
ℓ=0 =

1.64 × 10−13 [2], leaving much room for possible NP contributions,

R(KS → µ+µ−)ℓ=0 ≡
B(KS → µ+µ−)ℓ=0

B(KS → µ+µ−)SM
ℓ=0

≤
B(KS → µ+µ−)lim.

B(KS → µ+µ−)SM
ℓ=0

≈ 1280 . (7.4)

As laid out in detail in Ref. [2], within the SM, the decay KL → µ+µ− is CP-

conserving, and involves only the (µ+µ−)ℓ=0 final state. In this case we have

|A(KL)ℓ=1| = 0 , (7.5)

which implies that the KS − KL interference term involves only ℓ = 0,

Γint. ∝ |A(KS )ℓ=0||A(KL)ℓ=0| . (7.6)

The observable
Γ2

int.

B(KL → µ+µ−)
∝ |A(KS )ℓ=0|

2, (7.7)

then provides a clean measurement of the short-distance, CP-violating parameter

|A(KS )ℓ=0|.

Any NP that honors the assumption which the analysis of Ref. [2] hinges on,

that is, keeps |A(KL)ℓ=1| = 0, retains the form of Eqs. (7.6) and (7.7).

We can deduce the experimentally allowed range for NP in Γint. from Eqs. (7.4)

and (7.7), using the fact that B(KL → µ+µ−) is well-measured. We find that

Γint.

ΓSM
int.

=
√

R(KS → µ+µ−)ℓ=036 , (7.8)

suggesting that a direct measurement of the KS − KL interference term from the

time-dependent rate would be sensitive to viable NP scenarios.
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7.3 Notation and setup

We use the following standard notation [?], where the two neutral kaon mass

eigenstates, |KS ⟩ and |KL⟩, are linear combinations of the flavor eigenstates:

|KS ⟩ = p|K0⟩ + q|K0⟩, |KL⟩ = p|K0⟩ − q|K0⟩. (7.9)

For the purposes of our analysis, CPV in mixing, which is an O(εK) ∼ 10−3 effect,

can be safely neglected and we work in the limit∣∣∣∣∣qp
∣∣∣∣∣ = 1 . (7.10)

In this limit, the kaon mass eigenstates are also CP eigenstates, and therefore for

final states that have definite CP, the decay amplitude is either purely CP-violating

or purely CP-conserving. The dimuon final state is a CP eigenstate, which can be

in one of two possible configurations of different orbital angular momentum: CP-

odd (ℓ = 0) and CP-even (ℓ = 1).

Within the SM, and any extension of it in which the leptonic current induc-

ing the dimuon final state is CP-odd (vectorial, axial-vectorial and pseudoscalar

currents all fall under this category), CP-violating short-distance effects only con-

tribute to (µ+µ−)ℓ=0. In addition, all long-distance contributions are CP-conserving

to O(10−3), see Ref. [2] for details. It follows that in this context:

1. Only the ℓ = 0 final state appears in the KL decay,

|A(KL)ℓ=1| = 0 . (7.11)
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2. A measurement of KS − KL interference involves only the ℓ = 0 amplitudes,

and is proportional to A(KS )ℓ=0 × A(KL)∗ℓ=0.

Thus, as long as NP does not introduce CP-even leptonic operators, the measure-

ment proposed in Ref. [2] is a clean measurement of the short-distance amplitude

|A(KS )ℓ=0|, which is equivalent to a measurement of B(KS → µ+µ−)ℓ=0.

The time dependent decay rate as a function of proper time for a neutral kaon

beam is given by [?] (
dΓ
dt

)
= N f f (t), (7.12)

whereN f is a time-independent normalization factor and the function f (t) is given

as a sum of four functions

f (t) = CLe−ΓLt +CS e−ΓS t + 2 [Csin sin(∆mt) +Ccos cos(∆mt)] e−Γt. (7.13)

For a pure K0 beam, the coefficients are given by [2]

CL = |A(KL)ℓ=0|
2, (7.14)

CS = |A(KS )ℓ=0|
2 + β2

µ|A(KS )ℓ=1|
2,

Ccos = Re(A(KS )∗ℓ=0A(KL)ℓ=0) = |A(KS )∗ℓ=0A(KL)ℓ=0| cosφ0,

Csin = Im(A(KS )∗ℓ=0A(KL)ℓ=0) = |A(KS )∗ℓ=0A(KL)ℓ=0| sinφ0.

where φ0 ≡ arg(A(KS )∗ℓ=0A(KL)ℓ=0). The interference effects are embodied by Ccos

and Csin,

Γint. ∝

√
C2

cos +C2
sin . (7.15)
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7.4 Model-independent analysis using effective operators

We consider the effective |∆S | = 1 Hamiltonian,

H
|∆S |=1
e f f . =

∑
i

CiOi, (7.16)

where the flavor indices are implicit. The following six operators are relevant for

K → µ+µ−:

• Vectorial operators

OVLL = (QLγ
µQL)(LLγµLL); OVLR = (QLγ

µQL)(eRγµeR), (7.17)

OVRL = (dRγ
µdR)(LLγµLL); OVRR = (dRγ

µdR)(eRγµeR),

• Scalar operators

OS LR = (QLdR)(eRLL), (7.18)

OS RL = (dRQL)(LLeR) .

Since the quark indices we are interested in are non-diagonal, OS LR and OS RL are

two distinct operators, not related by hermitian conjugation. For concreteness, we

consider the quark flavor indices to always be (2, 1) unless otherwise indicated.

Note that we do not include tensor operators here, since tensor operators do not

contribute to the 2-body decay of a pseudoscalar, as is the case at hand.

We obtain the following general expression for the KS → (µ+µ−)ℓ=0 rate, in units
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of the SM expectation,

R(KS → µ+µ−)ℓ=0 =

(
1 +

1
|CSM

VLL| sin θct

[
AS

(
|CNP

S LR| sinΘS LR + |CNP
S RL| sinΘS RL

)
(7.19)

+ |CNP
VLL| sinΘVLL − |CNP

VLR| sinΘVLR − |CNP
VRL| sinΘVRL + |CNP

VRR| sinΘVRR

])2

,

where AS ≡
m2

K/mµ

2(ms+md) is the so-called scalar enhancement factor (see, for example, the

discussion around Eq. (28) of Ref. [?]), Θi is the basis independent phase between

the mixing and the Wilson coefficient,

Θi ≡
1
2

arg
(

q
p

)
− arg(CNP

i ) , (7.20)

and [2]

|CSM
VLL| sin θct =

∣∣∣∣∣∣GF
√

2

2αY(xt)
π sin2

W

Im
(
−

V∗tsVtd

V∗csVcd

)∣∣∣∣∣∣ . (7.21)

It is important to note, that the scalar operators, OS LR and OS RL, induce both the

ℓ = 0 and the ℓ = 1 final states, since they include both pseudo-scalar (P) and scalar

(S ) leptonic currents. Only the combination (OS RL + OS LR) can in general protect

the assumption of |A(KL)ℓ=1| = 0.

By taking any Wilson coefficient to be O(1/Λ2), where Λ is the scale of NP, we

learn that a measurement ofB(KS → µ+µ−)ℓ=0 that saturates the current experimen-

tal upper bound would be sensitive to NP scales of up to Λ ∼ 40 TeV for vectorial

operators, and up to Λ ∼ 130 TeV for scalar operators.
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7.4.1 The relation between KS → (µ+µ−)ℓ=0 and KL → π0ν̄ν

Of the six operators, OVLL and OVRL contribute additionally to KL → π0νν̄. The

general expression for KL → π0ν̄ν, assuming diagonal couplings in flavor space, is

given by:

R(KL → π0ν̄ν) =
1
3

∑
i=e,µ,τ

(
1 +
|(CNP

VLL)i| sinΘVLL,i + |(CNP
VRL)i| sinΘVRL,i

|CSM
VLL| sin θct

)2

, (7.22)

where R(X) denotes the rate of X in units of the SM prediction.

• Models with lepton-flavor universality.

KS → (µ+µ−)ℓ=0 and KL → π0ν̄ν are both CPV processes and both arise in

the SM from a single operator, OVLL. This leads to simple relations between

their rates, in the case of models that are lepton flavor universal (LFU), and

involve only the lepton-doublet vectorial operators, {OVLL,OVRL}. We have,

R(KS → µ+µ−){OVLL,OVRL}

ℓ=0 =

(
1 +

|CNP
VLL| sinΘNP

VLL − |C
NP
VRL| sinΘNP

VRL

|CSM
VLL| sin θct

)2

,(7.23)

R(KL → π0ν̄ν)LFU =

(
1 +
|CNP

VLL| sinΘNP
VLL + |C

NP
VRL| sinΘNP

VRL

|CSM
VLL| sin θct

)2

.‘

The sign differences in the two expressions result entirely from the fact that

the first process is sensitive only to the axial hadronic current, while the

second is only sensitive to the vector hadronic current. We conclude the

following:

1. In models where only CNP
VLL is turned on, we have

R(KS → µ+µ−)CVLL
ℓ=0 = R(KL → π0ν̄ν)CVLL

LFU . (7.24)
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Then, by using the Grossman–Nir (GN) bound [160] to place an exper-

imental constraint on R(KL → π0ν̄ν),

R(KL → π0ν̄ν)CVLL
LFU GN

4.3 · B(K+ → π+ν̄ν)
B(KL → π0ν̄ν)SM

26 , (7.25)

the following bound can be set on the deviation from the SM in B(KS →

µ+µ−)ℓ=0,

R(KS → µ+µ−)CVLL
ℓ=0 GN

26 . (7.26)

2. In models where only CNP
VRL is turned on,

R(KS → µ+µ−)CVRL
ℓ=0

R(KL → π0ν̄ν)CVRL
LFU

=

(
1 − |C

NP
VRL |

|CSM
VLL |

sinΘNP
VRL

sin θct

)2

(
1 + |C

NP
VRL |

|CSM
VLL |

sinΘNP
VRL

sin θct

)2 . (7.27)

Then, the GN bound on R(KL → π0ν̄ν) results in

R(KS → µ+µ−)CVRL
ℓ=0 GN

50 . (7.28)

3. Hence, if NP is discovered in a future measurement of R(KS → µ+µ−)ℓ=0,

with a larger value than the above bounds, we will be able to exclude

models that turn on only one of {OVLL,OVRL}.

4. If, on the other hand, a future bound is set on R(KS → µ+µ−)ℓ=0 that is

more stringent than the above, it has the potential to become the leading

constraint on R(KL → π0ν̄ν) in the framework of a single LFU operator.

5. If more than one operator is turned on, or if any of the operators involv-

ing right-handed leptons or scalar currents ({OVLR, OVRR, OS LR, OS RL})

are at play, then the two modes are in general completely independent.
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t (τS)

f(
t)

φ0  0.6

Sum of all terms

Exponents only

(no interference)

SM

Current NP reach

Future LHCb reach

Models with KL→π0νν relation

The time dependence in the decay of a K0 beam into µ+µ−, as given by Eq. (7.12),

for magnitudes of the KS → (µ+µ−)ℓ=0 amplitude given by: the SM prediction

(gray), the current experimental upper bound (dark green), the upper bound for

models where the rate is correlated with KL → π0ν̄ν (yellow), and the expected

future reach at LHCb (light green). The integral between the solid and dashed

curves corresponds to the magnitude of interference effects.

We note that similar relations are expected to apply between KS → (µ+µ−)ℓ=0

and the direct CPV contributions in KL → π0µ+µ− and KS → π0π0µ+µ−. These

would apply for any single operator that affects KS → (µ+µ−)ℓ=0. We leave a

detailed discussion of these modes to a future work.

• Models that break lepton-flavor universality.

In general, there could be operators that contribute to KL → π0νν̄ but not

to K → µ+µ−. These are analogous to OVLL, OVRL with lepton flavor indices
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different from (2, 2).

We note further that the experimental signature for KL → π0νν̄ involves miss-

ing energy, hence it also captures scenarios with exotic undetected particles,

to which KS → (µ+µ−)ℓ=0 is insensitive.

The time dependent rate of Eq. (7.12) for a pure K0 beam, for a choice of the un-

known phase φ0 ≡ arg(A(KS )∗ℓ=0A(KL)ℓ=1) is plotted in Fig. 2. It is apparent that

both the total rate and the effect of interference (depicted by the area between the

dashed and solid curves) can be greatly enhanced compared to the SM. The esti-

mate for the future reach of LHCb B(KS → µ+µ−) searches is taken from Ref. [?].

7.5 Explicit NP models

In this section we present a few examples of simple models in which B(KS →

µ+µ−)ℓ=0 is enhanced compared to the SM expectation, and discuss the relevant

constraints in each. We present three models: two scalar leptoquark representa-

tions, each inducing a different vectorial effective operator, and a model with an

extra scalar doublet, which introduces the scalar effective operators. Many other

possible models beyond the SM exist that can affect K → µ+µ−, and some may

have unavoidable implications on additional constraints untouched by our choice

of toy models. For example, models with flavor changing Z couplings can en-

hance B(KS → µ+µ−)ℓ=0, but introduce additional strong constraints from ε′/ε that
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generally restrict the contribution to B(KS → µ+µ−)ℓ=0 to be small. We therefore do

not discuss this further here.

7.5.1 Scalar Leptoquark : S̃ 1(3̄, 1, 4/3)

As a first example of a simple model that can contribute to KS → (µ+µ−)ℓ=0, we

consider a scalar leptoquark. A detailed review of leptoquarks and their phe-

nomenology can be found, for example, in Ref. [?]. Here we discuss two examples

of scalar leptoquark representations which demonstrate some of the characteristic

features of the K → µ+µ− phenomenology.

We first consider a scalar leptoquark in the following SM gauge group repre-

sentation,

S̃ 1 ∼ (3̄, 1)4/3 . (7.29)

The relevant Lagrangian terms are given by

LS̃ 1
⊃ g12 S̃ 1d

C
RµR + g22 S̃ 1sC

RµR + h.c. , (7.30)

with ψC = Cψ
T
, C = iγ2γ0. After integrating out the leptoquark field, we are left

with the following dimension six operator,

g12g∗22

2M2
S̃ 1

(d
C
RµR)(µRsC

R) =
g12g∗22

4M2
S̃ 1

(sRγ
µdR)(µRγµµR), (7.31)

where in the last step we used a Fierz transformation. In the language of the

effective operators of section 7.4, this model induces the operator OVRR, with

CNP
VRR =

g12g∗22
4M2

S̃ 1

.
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We then have,

R(KS → µ+µ−)S̃ 1
ℓ=0 =

1 + |g12g22| sinΘS̃ 1

4M2
S̃ 1
|CSM

VLL| sin θct


2

, (7.32)

where, as in Eq. (7.20), the angle ΘS̃ 1
is defined as the phase between the Wilson

coefficient and the mixing,

ΘS̃ 1
≡

1
2

arg
(

q
p

)
− arg(g12g∗22), (7.33)

and |CSM
VLL| is defined in Eq. (7.21). In order to saturate the experimental bound,

R(KS → µ+µ−)ℓ=0 ≈ 1280, we require

∣∣∣g12g22 sinΘS̃ 1

∣∣∣ ≈ 3.4 · 10−3
(

MS̃ 1

TeV

)2

. (7.34)

There are several constraints on the model parameters. Direct searches at AT-

LAS and CMS for leptoquark states with O(1) branching ratios into a muon and a

light quark result in lower bounds on the leptoquark mass of [?, ?]

MS̃ 1
≳ 1.7 TeV . (7.35)

Therefore Eq. (7.34) can be rewritten as

∣∣∣g12g22 sinΘS̃ 1

∣∣∣ ≈ 3.4 · 10−3
(

MS̃ 1

TeV

)2

≳ 9.3 · 10−3 . (7.36)

The same operator of Eq. (7.31) induces K0−K0 mixing via loop diagrams [162],

inducing a contribution to M12,

M12 = MSM
12 +

f 2
K B̂KmK

384π2M2
S̃ 1

(g∗12g22)2. (7.37)
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We use

∆mK =
4Re(M12Γ

∗
12)

∆Γ
, |εK | ≈ −

Im(M12Γ
∗
12)

√
2|M12Γ12|

, (7.38)

together with the fact that in the kaon system we have Γ12 ≈ Ā0A∗0, where A0 is

the decay amplitude of K0 into (ππ)I=0. This allows us to identify the relevant

physical phase in the NP contribution, and relate it to the physical phase relevant

for K → µµ,

arg
(
MNP

12 Γ
∗
12

)
≈ arg

(
MNP

12 Ā∗0A0

)
≈ arg

([
g∗12g22

]2 q
p

)
= −2ΘS̃ 1

. (7.39)

where in the next to last step we used the fact that CPV in K → ππ is negligible,

which is equivalent to neglecting CPV in mixing, as in Eq. (7.10).

The allowed regions due to mixing are plotted in Fig. 7.5.1. The measure-

ment of |εK | bounds |g12g22|
2 sinΘS̃ 1

cosΘS̃ 1
, inducing an inverse relation between

the magnitudes of the sinΘS̃ 1
and cosΘS̃ 1

, and the constraint from ∆mK bounds

|g12g22|
2
∣∣∣cos2ΘS̃ 1

− sin2ΘS̃ 1

∣∣∣. The constraint from |εK | ensures that for larger values

of sinΘS̃ 1
, such that the bound on B(KS → µ+µ−)ℓ=0 is saturated, cosΘS̃ 1

has to be

small, such that the contribution to B(KL → µ+µ−)ℓ=0 is well below the theoretical

error. The allowed ranges, such that all constraints are satisfied and the bound on

B(KS → µ+µ−)ℓ=0 is saturated, can be summarized as

|g12g22| ≳ 9.3 · 10−3 AND | cosΘS̃ 1
|0.08 . (7.40)

We deduce that the S̃ 1 model can saturate the experimental bound of R(KS →

µ+µ−)ℓ=0 ≤ 1.3 × 103, without violating the constraints from mixing and direct
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ΔmK constraint

|ϵK | constraint

Allowed regions from K0 − K0 mixing. The hatched regions are where the bound

on B(KS → µ+µ−)ℓ=0 can be saturated (see Eq. (7.36)).

searches. The interference term could be enhanced by O(30) compared to the SM

within this model.

7.5.2 S 3(3̄, 3, 1/3)

Next we consider an SU(2) triplet leptoquark,

S 3 ∼ (3̄, 3)1/3 . (7.41)
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The relevant Lagrangian term is

LS 3 ⊃ gQL (Q
C
L )aϵab(τiS i

3)bc(LL)c + h.c. , (7.42)

where τi are pauli matrices in SU(2)L space.

After EWSB, we have

LS 3 ⊃ gQL
12

[
d

C
L

(
S (4/3)

3 µL + S (1/3)
3 νµL

)
+ (uc

L)iVid

(
S (1/3)

3 µL − S (−2/3)
3 νµL

)]
(7.43)

+ gQL
22

[
sC

L

(
S (4/3)

3 µL + S (1/3)
3 νµL

)
+ (uc

L)iVsi

(
S (1/3)

3 µL − S (−2/3)
3 νµL

)]
+ h.c. ,

where (uL)i = (ūL, c̄L, t̄L), and V is the CKM matrix. Integrating out the leptoquark

states, we are left with a list of effective 4-fermion operators. Mediating d → s

transitions, we have:

gQL
12 gQL∗

22

2M2
S (4/3)

3

(d
C
LµL)(µLsC

L ) +
gQL

12 gQL∗
22

2M2
S (1/3)

3

(d
C
LνµL)(νµLsC

L ) (7.44)

=
gQL

12 gQL
22∗

4M2
S (4/3)

3

(sLγ
µdL)(µLγµµL) +

gQL
12 gQL∗

22

4M2
S (1/3)

3

(sLγ
µdL)(νµLγµνµL).

There are also ui → u j, ui → s, and ui → d transitions induced in this model, but

they do not introduce relevant bounds.

In the S U(2)L limit, M(4/3)
S 3

= M(1/3)
S 3

, the effective operator generated by this

model is OVLL, with CNP
VLL =

gQL
12 gQL∗

22
4M2

S 3

. Therefore, as expected, the limit on R(KL →

π0ν̄ν) (Eq. (7.25)) translates into a limit on R(KS → µ+µ−)ℓ=0,

R(KS → µ+µ−)ℓ=0 = R(KL → π0ν̄ν) =

1 + |gQL
12 gQL

22 | sinΘS 3

4M2
S 3
|CSM

VLL| sin θct

2

26 . (7.45)
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The bounds from mixing and from direct searches are the same as in the case of

the model of Section 7.5.1, implying that R(KS → µ+µ−)ℓ=0 ≈ 26 can be saturated.

The interference term in this case could thus be enhanced compared to the SM by

a factor of O(5).

7.5.3 Scalar doublet (2HDM)

Another example of a simple model that can contribute to KS → (µ+µ−)ℓ=0 is a two-

Higgs-doublet model (2HDM), in which a second scalar doublet is added to the

SM,

Φ ∼ (1, 2) 1
2
=

ϕ
+

ϕ0

 . (7.46)

If ϕ0 couples to either (s̄LdR) or (d̄LsR), and to (µ̄LµR), it would contribute to KS →

(µ+µ−)ℓ=0. Without loss of generality, we choose to align the neutral state with the

down-type mass eigenstates, The relevant Lagrangian terms are then,

LΦ ⊃ λ
d
i j

[
ϕ0(d̄L)i(dR) j + ϕ

+(ūL)kVki(dR) j + h.c.
]
+ λe

22

[
ϕ0µ̄LµR + ϕ

+ν̄µLµR + h.c.
]
, (7.47)

with (i, j) = (1, 2), (2, 1). After integrating out the Φ fields, the effective dimension

six operators OS LR,OS RL are generated, with coefficients

CΦS LR =
λd

21λ
e
22
∗

M2
ϕ

, CΦS RL =
λd

12λ
e
22
∗

M2
ϕ

. (7.48)

The contribution to R(KS → µ+µ−)ℓ=0 is given by Eq. (7.19),

R(KS → µ+µ−)Φℓ=0 =

(
1 +

m2
K/mµ

(ms + md)
(|λd

21λ
e
22| sinΘϕ21 + |λ

d
12λ

e
22| sinΘϕ12)

M2
ϕ|C

SM
VLL| sin θct

)2

, (7.49)
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where

Θϕ21(12) ≡
1
2

arg
(

q
p

)
− arg(λd

21(12)λ
e
22
∗) . (7.50)

In order to saturate the current upper bound, R(KS → µ+µ−)ℓ=0 ≈ 1280, we require

|λe
22|(|λ

d
21| sinΘϕ21 + |λ

d
12| sinΘϕ12) ≈ 3 · 10−5

(
Mϕ

TeV

)2

. (7.51)

This model induces K0 −K0 mixing at tree level. We find the following constraints

on the magnitude of couplings [?],

|λd
12|

2, |λd
21|

2 10−8
(

Mϕ

TeV

)2

, (7.52)

|λd
12λ

d
21| 10−9

(
Mϕ

TeV

)2

.

From Eq. (7.51), and assuming a perturbative coupling, |λe
22|1, we deduce that in

order to saturate the bound we need at least one of the couplings λd
12, λ

d
21 to obey

|λd
i j| ≥ |λ

e
22λ

d
i j| sinΘϕi j ≈ 3 · 10−5

(
Mϕ

TeV

)2

, (7.53)

which can be accommodated together with the constraints of Eq. (7.52), indepen-

dently of Mϕ. Loop diagrams involving a muon loop in principle constrain the

phases Θϕ12 , Θϕ21 , however, these are strongly suppressed and do not result in rel-

evant bounds.

Models that induce scalar dimension six operators are prone to break the as-

sumption of |A(KL)ℓ=1| = 0, since they introduce, in general, both pseudo-scalar

(CP-odd) and scalar (CP-even) leptonic currents. We therefore comment on two

scenarios:
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• Models with λd
12 = λ

d
21 :

In this scenario we have CS LR = CS RL, which implies that only the CP-

odd leptonic current (µ̄γ5µ) is generated, and no contribution exists for the

(µ+µ−)ℓ=1 final state, so that the assumption of |A(KL)ℓ=1| = 0 is fulfilled. This

ensures that the clean short-distance parameter |A(KS )ℓ=0| can be extracted

from the time dependent K → µ+µ− rate.

• Models with λd
12 , λ

d
21 :

If no symmetry protects λd
12 = λ

d
21, this model generally induces |A(KL)ℓ=1| , 0

(unless Re(λd
12λ

e
22 (p/q)1/2), Re(λd

21λ
e
22 (p/q)1/2) = 0, that is, cosΘϕ12 , cosΘϕ21 =

0). This breaks the assumption needed in order to extract short-distance

parameters from the measurement of the interference terms. The observable

of Eq. (7.7) is no longer a pure measurement of a short-distance parameter,

but is polluted by irreducible long-distance effects.

We conclude that models with a second scalar doublet can significantly en-

hance the B(KS → µ+µ−)ℓ=0 rate, saturating the current experimental bound. If

no symmetry protects the relation λd
12 = λd

21, these models will generally lead to

non-zero |A(KL)ℓ=1|, which extinguishes the ability to extract B(KS → µ+µ−)ℓ=0 from

a measurement of Γint.. The total rate, B(KS → µ+µ−), could still exhibit significant

enhancement compared to the SM, signaling NP is at play.
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7.6 Discussion and Conclusion

Following the recent understanding that short-distance parameters of the SM

can be cleanly extracted from a measurement of interference effects in K →

µ+µ− [2, 142], we have addressed the question of what can be learned from such a

measurement beyond the SM. Any NP contribution in which the leptonic current

is CP-odd, as is the case to a good approximation within the SM, keeps effects

of CPV limited to a single partial wave configuration, (µ+µ−)ℓ=0, which enables

the extraction of the purely short-distance observable, B(KS → µ+µ−)ℓ=0. NP that

induces also CP-even leptonic currents, as is the case in general when scalar oper-

ators are induced, can also result in large enhancements to B(KS → µ+µ−)ℓ=0, but

would not allow its clean extraction from interference effects.

The current model-independent bound on B(KS → µ+µ−)ℓ=0 is determined by

the LHCb bound on the total branching ratio and given by

R(KS → µ+µ−)ℓ=01280 , (7.54)

leaving room for enhancement of up to O(30) compared to the SM, at the am-

plitude level. In the future, LHCb is expected to improve its reach by an order

of magnitude, allowing to probe amplitude enhancements of O(10) times the SM

contribution.

We note, however, that a measurement of the total branching ratio is a mea-

surement of the sum, B(KS → µ+µ−)ℓ=0 + B(KS → µ+µ−)ℓ=1. Therefore, while it

can probe the existence of large NP contributions, it cannot allow the extraction
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of short-distance parameters. A dedicated measurement of KS − KL interference

effects in K → µ+µ− is required in order to obtain a clean evaluation of the pure

short-distance quantity, B(KS → µ+µ−)ℓ=0.

We have formulated relations between KS → (µ+µ−)ℓ=0 and KL → π0ν̄ν within

several EFT scenarios. We find that within models with lepton-flavor universality

in which a single vectorial dimension six operator is present, involving the lepton

doublet, the two modes are correlated. However, if scalar operators are at play,

or if more than one vectorial operator is present, the two modes are independent.

CPV in additional modes, such as KL → π0µ+µ− and KS → π0π0µ+µ−, is expected to

have analogous relations. We leave the study of these relations to a future work.

Within specific NP models, constraints from additional observables are rele-

vant, arising from K0 −K0 mixing and from direct searches for NP resonances. We

have presented examples of simple explicit models in which large enhancements

to B(KS → µ+µ−)ℓ=0 are possible. We find that models in which a scalar leptoquark

is added to the SM, as well as a 2HDM, can allow large enhancements without

violating existing constraints. Of the three models, two can saturate the current

experimental bound on B(KS → µ+µ−)ℓ=0, while the third is an example where a

relation to B(KL → π0ν̄ν) implies a constraint coming from the GN bound.

The models we consider, while non-generic, affect the kaon sector alone, and

cannot be probed by measurements in other sectors. This provides additional

motivation for dedicated kaon programs in next-generation experiments. Initial

estimates of the feasibility of reaching SM sensitivity in a measurement of interfer-
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ence effects in K → µ+µ− in next-generation experiments are very encouraging [2].

Our results indicate that such a measurement would be a unique and potent probe

of physics beyond the SM.
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CHAPTER 8

S U(3)F ANALYSIS OF BEAUTY BARYON DECAYS

8.1 Introduction

A tremendous amount of b-baryons is produced at the LHC [185]. This allows

for angular analyses of Λb decays at LHCb [240] and ATLAS [241] and has led

to evidence of CP violation in Λb decays [242]. It is now feasible to scrutinize

rare or suppressed b-baryon decays: Recent results include the first observation

of Λb → Λγ [243] and the analysis of the isospin suppressed Λb → Σ
0J/ψ decay

and the Cabibbo-suppressed decay Ξ0
b → ΛJ/ψ [244].

These increasingly precise measurements of baryon decays motivate us to per-

form an SU(3)F analysis of b → cc̄q (with q = s, d) decays of the heavy b-baryon 3

to the light baryon 8 and an SU(3)F singlet, 3b → 8b ⊗ 1. From the perspective of

SU(3)F it makes no difference if the singlet, which we denote as S , is a J/ψ or any

final state particle that does not carry any SU(3)F flavor, for example, a photon or

a lepton pair.

We start our analysis using two separate assumptions: (1) We work in the

SU(3)F limit and (2) we treat the Λ and Σ0 as isospin eigenstates. We empha-

size that these assumptions are not connected to each other. We later relax these

assumptions and take into account corrections to the SU(3)F limit as well as devi-

ations of the mass eigenstates of Λ and Σ0 from their isospin eigenstates.
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At leading order the decays 3b → 8b ⊗ 1 are mediated by tree-level b → cc̄q

transitions. These correspond to a 3 operator. In full generality however, we have

to take into account additional contributions from loops that generate effective

b→ tt̄q and b→ uūq transitions. The contribution from b→ tt̄q can be neglected as

it is a penguin and therefore suppressed and it gives only another 3 under SU(3)F .

In contrast, the up quarks in b→ uūq can induce intermediate on-shell states lead-

ing to nontrivial effects from rescattering. Specifically, the b → uūq transition has

a more complicated isospin and SU(3)F structure and induces the higher SU(3)F

representations 6 and 15. Therefore, as higher SU(3)F representations stem from

rescattering, in the literature it is often assumed that these are suppressed.

Our strategy is to start with a very general model-independent viewpoint and

then introduce additional assumptions step by step. While we mainly concentrate

in this chapter on the case where S = J/ψ, the general nature of our results make

it possible to apply them also to radiative and semileptonic decays.

CKM-leading SU(3)F limit Clebsch-Gordan coefficients for 3b → 8b ⊗ 1 in b→ s

transitions have been presented in Refs. [245, 246, 247]. In Refs. [246, 248, 249, 250]

hadronic models based on QCD factorization have been utilized, and in Refs. [251,

247] a covariant confined quark model has been applied. An SU(3)F analysis of b-

baryon antitriplet decays to the light baryon octet and the η1 singlet can be found

in Ref. [252].

Further applications of SU(3)F to b baryon decays can be found in Refs. [253,

254, 255, 256, 257, 258]. Works on b baryon decays beyond their SU(3)F treatment
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are given in Refs. [259, 260, 261, 262, 263]. Applications of SU(3)F methods on non-

b baryon decays can be found in Refs. [264, 265, 266, 267, 268, 269, 270, 271, 272,

273, 274, 275]. Further literature on baryon decays is given in Refs. [276, 277, 278].

Discussions of baryonic form factors can be found in Refs. [279, 280, 281, 282, 283,

284, 285, 286, 287, 288].

We present our SU(3)F analysis including isospin and SU(3)F breaking in

Sec. 8.2. After that we estimate in Sec. 8.3 the effect of Σ0–Λ mixing in Λb decays,

which is in general scale- and process-dependent, i.e. non-universal. We compare

with recent experimental results in Sec. 8.4 and conclude in Sec. 8.5.

8.2 SU(3)F Analysis

8.2.1 General SU(3)F Decomposition

The b→ cc̄q (with q = s, d) decays of Λb, Ξ−b and Ξ0
b, which form the heavy baryon

3̄, into a singlet S (e.g. S = J/ψ, γ, l+l−, . . . ) and a member of the light baryon 8,

share a common set of reduced SU(3)F matrix elements after the application of the

Wigner-Eckart theorem. These decays are specifically:

• b→ scc̄ transitions:

Λb → ΛS , Λb → Σ
0S , Ξ0

b → Ξ
0S , Ξ−b → Ξ

−S . (8.1)
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• b→ dcc̄ transitions:

Ξ0
b → ΛS , Ξ0

b → Σ
0S , Λb → nS , Ξ−b → Σ

−S . (8.2)

Note that there are two additional allowed decays Λb → Ξ
0J/ψ and Ξ0

b → nJ/ψ

which are however highly suppressed by two insertions of weak effective opera-

tors, so we do not consider them in our study here. The SU(3)F quantum numbers

and masses are given in Table 8.5. In this section we discuss the SU(3)F limit,

SU(3)F-breaking effects are treated in Sec. 8.2.5.

We can write the SU(3)F structure of the relevant b → s and b → d Hamiltoni-

ans as [289]

Hb→s = λcs(c̄b)(s̄c) + λus(ūb)(s̄u) + λts(t̄b)(s̄t)

= λcs (3)c
0,0,− 2

3
+ λus

(
(3)u

0,0,− 2
3
+

(
6̄
)u

1,0,− 2
3
+
√

6 (15)u
1,0,− 2

3
+
√

3 (15)u
0,0,− 2

3

)
, (8.3)

Hb→d = λcd(c̄b)(d̄c) + λud(ūb)(d̄u) + λtd(t̄b)(d̄t)

= λcd (3)c
1
2 ,−

1
2 ,

1
3
+ λud

(
(3)u

1
2 ,−

1
2 ,

1
3
−

(
6
)u

1
2 ,−

1
2 ,

1
3
+
√

8 (15)u
3
2 ,−

1
2 ,

1
3
+ (15)u

1
2 ,−

1
2 ,

1
3

)
. (8.4)

See also Refs. [290] and [291] for the application of these Hamiltonians to B →

J/ψK and B → DD, respectively. The notation for the subindices are such that

(N)I,I3,Y refers to the irreducible representation N of SU(3)F using the quantum

numbers of strong isospin I, I3 and strong hypercharge Y . In the standard ba-

sis of the Gell-Mann matrices I3 and Y correspond to the eigenvalues of λ3 and λ8,
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respectively. We further use the notation

λcs ≡ V∗cbVcs ∼ λ
2 , λus ≡ V∗ubVus ∼ λ

4 , λts ≡ V∗tbVts ∼ λ
2 , (8.5)

λcd ≡ V∗cbVcd ∼ λ
3 , λud ≡ V∗ubVud ∼ λ

3 , λtd ≡ V∗tbVtd ∼ λ
3 , (8.6)

for the CKM matrix element combinations, where we indicate the hierarchies us-

ing the Wolfenstein parameter λ.

Note that in Eqs. (8.3) and (8.4) it is understood that SU(3)F operators in front

of different CKM matrix elements have to be differentiated as they stem from

different underlying operators. For instance, even if the two triplets generate

linearly dependent Clebsch-Gordan coefficients, the respective matrix elements

themselves are independent. They can, for example, have a relative strong phase.

We write the reduced SU(3)F limit matrix elements as Ak
q , where k is the respec-

tive SU(3)F representation in the Hamiltonian and q denotes the operator it stems

from. The initial state is always a |3⟩ and the final state is always a |8⟩, so that we

are left with four reduced matrix elements in the SU(3)F limit:

A3
c , A3

u , A6
u , A15

u . (8.7)

The SU(3)F limit decomposition is given in Table 8.5. The CKM-leading part of

the b → s transitions agrees with Refs. [245, 246, 247]. The Clebsch-Gordan coef-

ficients are obtained using Refs. [292, 293, 294]. The normalization of the ampli-

tudes is such that

B(B1 → B2S ) = |A(B1 → B2S )|2 × P(B1, B2, S ) , (8.8)
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with the two-body decay phase space factors

P(B1, B2, S ) ≡
τB1

16πm3
B1

√
(m2

B1
− (mB2 − mS )2)(m2

B1
− (mB2 + mS )2) . (8.9)

Note that in cases where the SU(3)F singlet S is a multibody state, e.g. S = l+l−, we

imply the appropriate phase space integration in Eq. (8.8). Note further, that we

still work in the SU(3)F limit of the decay amplitudes. Eq. (8.9) only accounts for

the trivial SU(3)F breaking from phase space effects. Additional SU(3)F breaking

contributions are discussed in Sec. 8.2.5. Therein, we estimate SU(3)F breaking

effects to be of order 20%. Note that the amplitudes in Eq. (8.8) have a mass

dimension, but we always care about ratios, so we can think about them as di-

mensionless quantities. Note that phase space effects are of order 3% and thus

they are well within the errors and could or could not be taken into account. For

a model-dependent way to estimate these effects one can, for example, employ

form factor results in Refs. [295, 247].

The reduced SU(3)F matrix elements can in principle be matched on a color

suppressed tree diagram C, an exchange diagram E and penguin diagrams Pq

with quark q running in the loop. As examples we show the topological diagrams

for Λb → ΛJ/ψ and Λb → Σ
0J/ψ in Fig. 8.5. In the following, however, we only

perform the group theory treatment.

The combined matrix of Clebsch-Gordan coefficients of b → s and b → d de-
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cays in Table 8.5 has matrix rank four, i.e., there are four sum rules, which read

−

√
3
2
A(Λb → ΛS ) +

1
√

2
A(Λb → Σ

0S ) +A(Ξ0
b → Ξ

0S ) = 0 , (SU(3)F sum rule)

(8.10)√
3
2
A(Ξ0

b → ΛS ) −
1
√

2
A(Ξ0

b → Σ
0S ) +A(Λb → nS ) = 0 , (SU(3)F sum rule)

(8.11)

−
√

2A(Λb → Σ
0S )

λud

λus
+
√

6A(Ξ0
b → ΛS ) +A(Λb → nS ) = 0 , (SU(3)F sum rule)

(8.12)√
3
2
A(Λb → ΛS )

λud

λus
−

3
√

2
A(Λb → Σ

0S )
λud

λus

−A(Ξ−b → Ξ
−S )

λud

λus
+
√

6A(Ξ0
b → ΛS ) +A(Ξ−b → Σ

−S ) = 0 , (SU(3)F sum rule)

(8.13)

all of which are SU(3)F sum rules, and there is no isospin sum rule. Note that

there are two sum rules which mix b→ s and b→ d decays and two which do not.

These sum rules are valid in the SU(3)F limit irrespective of the power counting

of the CKM matrix elements, assumptions on the reduced matrix elements, or the

particular SU(3)F singlet S , i.e. they are completely generic.

8.2.2 Assumptions on CKM Hierarchy and Rescattering

We now make some assumptions, which are not completely generic, i.e. their

validity can for example depend on the particular considered SU(3)F singlet S ,

e.g. if S = J/ψ or S = γ.
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We first neglect the CKM-suppressed amplitude in b→ s decays, that is we set

λus/λcs → 0. In the isospin and SU(3)F limit for b → s decays we have then only

one contributing reduced matrix element:

A(Λb → Σ
0S ) = 0 , (isospin sum rule) (8.14)

A(Ξ0
b → Ξ

0S ) = A(Ξ−b → Ξ
−S ) , (isospin sum rule) (8.15)

A(Ξ0
b → Ξ

0S ) =

√
3
2
A(Λb → ΛS ) . (SU(3)F sum rule) (8.16)

We now move to make another assumption and that is to also neglect the λud

terms for the b → d transitions. Despite the formal power counting Eq. (8.6), that

is |λud| ≃ |λcd|, numerically we actually have [296]∣∣∣∣∣λud

λcd

∣∣∣∣∣ ≈ 0.38 . (8.17)

Moreover, it is plausible that A6
u and A15

u are suppressed because they result from

light quarks stemming from b→ uūs(d) which induce intermediate on-shell states

that rescatter into cc̄, see also Refs. [297, 298, 299, 300, 301]. Under the assumption

that these terms are more or equally suppressed as SU(3)F-breaking effects we

have many more relations. All seven non-zero decays we considered in Table 8.5

are then simply related by the Clebsch-Gordan coefficients in the first column. In
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addition to the sum rules Eqs. (8.14)–(8.16), we have then

√
2A(Ξ0

b → Σ
0S ) = A(Ξ−b → Σ

−S ) , (isospin sum rule) (8.18)

A(Ξ0
b → Ξ

0S ) = −
√

6A(Ξ0
b → ΛS )

λcs

λcd
, (SU(3)F sum rule) (8.19)

−
√

6A(Ξ0
b → ΛS ) =

√
2A(Ξ0

b → Σ
0S ) , (SU(3)F sum rule) (8.20)

√
2A(Ξ0

b → Σ
0S ) = A(Λb → nS ) , (SU(3)F sum rule) (8.21)

A(Λb → nS ) = A(Ξ−b → Σ
−S ) . (SU(3)F sum rule) (8.22)

8.2.3 Isospin and U-Spin Decompositions

For comprehensiveness, we give also the isospin and U-spin decompositions of

the Hamiltonians, which read

Hb→s = λcs(0, 0)c
I + λus

(
(0, 0)u

I + (1, 0)u
I
)

(8.23)

= λcs

(
1
2
,−

1
2

)c

U
+ λus

(
1
2
,−

1
2

)u

U
, (8.24)

and

Hb→d = λcd

(
1
2
,−

1
2

)c

I
+ λud

((
3
2
,−

1
2

)u

I
+

(
1
2
,−

1
2

)u

I

)
(8.25)

= λcd

(
1
2
,

1
2

)c

U
+ λud

(
1
2
,

1
2

)u

U
, (8.26)

where we use the notation

(i, j)q
I ≡ O

∆I=i
∆I3= j , (i, j)q

U ≡ O
∆U=i
∆U3= j , (8.27)
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where q denotes the quark content of the operator the representation stems from

and we absorbed Clebsch-Gordan coefficients into operators.

Using the isospin and U-spin states in Table 8.5, we obtain the isospin decom-

positions in Tables 8.5 and 8.5 and the U-spin decomposition in Table 8.5. We note

that the SU(3)F decomposition includes more information than the isospin and

U-spin tables each on their own. An example is the ratio∣∣∣∣∣∣A(Ξ0
b → ΛS )

A(Ξ0
b → Ξ

0S )

∣∣∣∣∣∣ = 1
√

2

∣∣∣∣∣∣⟨0|12 |12⟩⟨1
2 |0|

1
2⟩

∣∣∣∣∣∣
∣∣∣∣∣λcd

λcs

∣∣∣∣∣ . (8.28)

where the appearing reduced matrix elements are not related, e.g. the final states

belong to different isospin representations. That means we really need SU(3)F to

find the relation Eq. (8.19).

We can make this completely transparent by writing out the implications

of Eq. (8.14) for the corresponding U-spin decomposition. From Table 8.5 and

Eq. (8.14) it follows for the U-spin matrix elements

−

√
3

2
√

2

〈
0
∣∣∣∣∣12

∣∣∣∣∣ 1
2

〉c

+
1

2
√

2

〈
1
∣∣∣∣∣12

∣∣∣∣∣ 1
2

〉c

= 0 . (8.29)

Inserting this relation into the U-spin decomposition of the decay Ξ0
b → ΛS in

Table 8.5, we obtain

A(Ξ0
b → ΛS ) =

1
√

6
λcd

〈
1
∣∣∣∣∣12

∣∣∣∣∣ 1
2

〉c

. (8.30)

Comparing this expression with the U-spin decomposition of the decay Ξ0
b → Ξ

0S

in Table 8.5, we arrive again at the sum rule Eq. (8.19).
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In order that Eq. (8.19) holds we need not only the suppression of other SU(3)F

limit contributions as discussed above, but also the suppression of both isospin

and U-spin violating contributions. A non-vanishing dynamic isospin breaking

contribution to Λb → Σ
0S would also be reflected in isospin and SU(3)F-breaking

violations of Eq. (8.19). We make this correlation explicit in Sec. 8.2.5.

8.2.4 CP Asymmetry Sum Rules

Due to a general sum rule theorem given in Ref. [302] that relates direct CP asym-

metries of decays connected by a complete interchange of d and s quarks [302, 303,

304, 305], we can directly write down two U-spin limit sum rules:

adir
CP(Ξ0

b → Ξ
0S )

adir
CP(Λb → nS )

= −
τ(Ξ0

b)
τ(Λb)

B(Λb → nS )
B(Ξ0

b → Ξ
0S )

, (8.31)

adir
CP(Ξ−b → Ξ

−S )

adir
CP(Ξ−b → Σ

−S )
= −
B(Ξ−b → Σ

−S )
B(Ξ−b → Ξ

−S )
, (8.32)

where the branching ratios imply CP averaging. Note that the general U-spin rule

leading to Eqs. (8.31) and (8.32) also applies to multi-body final states, as pointed

out in Refs. [302, 306, 264]. It follows that Eqs. (8.31) and (8.32) apply also when S

is a multi-body state like S = l+l−.

Note that although the quark content of the Λ and Σ is uds, this does not mean

that a complete interchange of d and s quarks gives the identity. The reason is

given by the underlying quark wave functions [307]

|Λ⟩ ∼
1
√

2
(ud − du) s , |Σ0⟩ ∼

1
√

2
(ud + du) s , (8.33)
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where we do not write the spin wave function. Eq. (8.33) shows explicitly that a

complete interchange of d and s quarks inΛ or Σ0 does not result again in aΛ or Σ0

wave function, respectively. This is similar to the situation for η and η′, where no

respective particles correspond to a complete interchange of d and s quarks [308],

see e.g. the quark wave functions given in Ref. [309].

We can put this into a different language, namely that in the U-spin basis the

large mixing of |1, 0⟩U and |0, 0⟩U to the U-spin states of Λ and Σ0, see Table 8.5,

destroys two sum rules which exist for the U-spin eigenstates. To be explicit, we

define U-spin eigenstates which are not close to mass eigenstates

|X⟩ = |0, 0⟩U , |Y⟩ = |1, 0⟩U . (8.34)

For these, we obtain the U-spin decomposition given in Table 8.5. From that it

is straightforward to obtain another two CP asymmetry sum rules. These are

however impractical, because there is no method available to prepare Λ and Σ0 as

U-spin eigenstates, instead of approximate isospin eigenstates. Consequently, we

are left only with the two CP asymmetry sum rules Eqs. (8.31) and (8.32).

Note that CKM-leading SU(3)F breaking by itself cannot contribute to CP vio-

lation, because it comes only with relative strong phases but not with the neces-

sary relative weak phase. Therefore, the individual CP asymmetries can be writ-

ten as

adir
CP = Im

λuq

λcq
Im

Au

Ac
, (8.35)

where Au,c have only a strong phase and to leading order in Wolfenstein-λ we
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have [296]

Im
(
λus

λcs

)
≈ λ2η̄ ≈ 0.02 , Im

(
λud

λcd

)
≈ η̄ ≈ 0.36 . (8.36)

Additional suppression from rescattering implies that on top of Eq. (8.36) we have

|Au| ≪ |Ac|, i.e. the respective imaginary part is also expected to be small. This im-

plies that we do not expect to see a nonvanishing CP asymmetry in these decays

any time soon. The other way around, this prediction is also a test of our assump-

tion that the λuq-amplitude is suppressed.

8.2.5 SU(3)F Breaking

We consider now isospin and SU(3)F breaking effects in the CKM-leading part of

the b → s and b → d Hamiltonians. This will become useful once we have mea-

surements of several b-baryon decays that are precise enough to see deviations

from the SU(3)F limit sum rules. SU(3)F breaking effects for charm and beauty

decays have been discussed in the literature for a long time [310, 311, 264, 312,

313, 314, 315, 316, 317, 290, 318, 319, 320, 321, 322, 323, 314, 324, 320, 310]. They are

generated through the spurion Φ, given by

Φ =


mu
Λ
− 2

3α 0 0

0 md
Λ
+ 1

3α 0

0 0 ms
Λ
+ 1

3α

 (8.37)

=
1
3

mu + md + ms

Λ
1 −

1
2

(md − mu

Λ
+ α

)
λ3 +

1

2
√

3

(
mu + md − 2ms

Λ
− α

)
λ8 , (8.38)
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with the unity 1 and the Gell-Mann matrices λ3 and λ8. The part of Eq. (8.38) that

is proportional to 1 can be absorbed into the SU(3)F limit part. It follows that the

isospin and SU(3)F-breaking tensor operator is given as

δ (8)1,0,0 + ε (8)0,0,0 , (8.39)

with

δ =
1
2

(md − mu

Λ
+ α

)
, ε =

1

2
√

3

(
mu + md − 2ms

Λ
− α

)
, (8.40)

where α is the electromagnetic coupling and we generically expect the size of

isospin and SU(3)F breaking to be δ ∼ 1% and ε ∼ 20%, respectively. Note that

the scale-dependence of the quark masses, as well as the fact that we do not know

how to define the scale Λ make it impossible to quote decisive values for δ and

ε. Eventually, they will have to be determined experimentally for each process of

interest separately as they are not universal.

For the tensor products of the perturbation with the CKM-leading SU(3)F limit

operator it follows:

(8)1,0,0 ⊗ (3)c
0,0,− 2

3
=

√
1
2

(
6
)

1,0,− 2
3
+

√
1
2

(15)1,0,− 2
3
, (8.41)

(8)0,0,0 ⊗ (3)c
0,0,− 2

3
=

1
2

(3)0,0,− 2
3
+

√
3

2
(15)0,0,− 2

3
, (8.42)

(8)1,0,0 ⊗ (3)c
1
2 ,−

1
2 ,

1
3
=

√
3

4
(3) 1

2 ,−
1
2 ,

1
3
−

√
1
8

(
6
)

1
2 ,−

1
2 ,

1
3

−

√
1

48
(15) 1

2 ,−
1
2 ,

1
3
+

√
2
3

(15) 3
2 ,−

1
2 ,

1
3
, (8.43)

(8)0,0,0 ⊗ (3)c
1
2 ,−

1
2 ,

1
3
= −

1
4

(3) 1
2 ,−

1
2 ,

1
3
−

√
3
8

(
6
)

1
2 ,−

1
2 ,

1
3
+

3
4

(15) 1
2 ,−

1
2 ,

1
3
, (8.44)
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so that we arrive at the SU(3)F breaking Hamiltonians

Hb→s
X ≡ λcs δ


√

1
2

(
6
)

1,0,− 2
3
+

√
1
2

(15)1,0,− 2
3

+
λcs ε

1
2

(3)0,0,− 2
3
+

√
3

2
(15)0,0,− 2

3

 , (8.45)

Hb→d
X ≡ λcd δ

 √3
4

(3) 1
2 ,−

1
2 ,

1
3
−

√
1
8

(
6
)

1
2 ,−

1
2 ,

1
3
−

√
1

48
(15) 1

2 ,−
1
2 ,

1
3
+

√
2
3

(15) 3
2 ,−

1
2 ,

1
3


+ λcd ε

−1
4

(3) 1
2 ,−

1
2 ,

1
3
−

√
3
8

(
6
)

1
2 ,−

1
2 ,

1
3
+

3
4

(15) 1
2 ,−

1
2 ,

1
3

 . (8.46)

This gives rise to three additional matrix elements

B3 , B6 , B15 . (8.47)

The CKM-leading decomposition for b → s and b → d decays including isospin

and SU(3)F breaking is given in Table 8.5. The complete 4 × 4 matrix of the b → s

matrix has rank four, i.e. there is no b → s sum rule to this order. As discussed

in Sec. 8.2 after Eq. (8.30) we see from Table 8.5 explicitly that isospin breaking

contributions to A(Λb → Σ
0S ) lead at the same time to a deviation of the ratio

|A(Ξ0
b → ΛS )|/|A(Ξ0

b → Ξ
0S )| from the result Eq. (8.19).

Comparing to results present in the literature, in Ref. [252] two separate co-

efficient matrices of b → s and b → d decays are given in terms of the isoscalar

coefficients, i.e. where the isospin quantum number is still kept in the correspond-

ing reduced matrix element. We improve on that by giving instead the SU(3)F

Clebsch-Gordan coefficient table that makes transparent the corresponding sum

rules in a direct way and furthermore reveals directly the correlations between
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b → s and b → d decays. We also find the complete set of sum rules, and dis-

cuss how further assumptions lead to additional sum rules. We note that the first

two sum rules in Eq. (43) in Ref. [252] are sum rules for coefficient matrix vectors

but do not apply to the corresponding amplitudes because of the different CKM

factors involved.

8.3 Σ0–ΛMixing in Λb decays

8.3.1 General Considerations

In this section we study the ratio

R ≡
A(Λb → Σ

0
physJ/ψ)

A(Λb → ΛphysJ/ψ)
=
⟨J/ψΣ0

phys|H|Λb⟩

⟨J/ψΛphys|H|Λb⟩
. (8.48)

In order to do this we need the matrix elements appearing in Eq. (8.48). In the limit

where isospin is a good symmetry and Σ0
phys is an isospin eigenstate, R vanishes,

and therefore we are interested in the deviations from that limit. We study leading

order effects in isospin breaking.

We first note that we can neglect the deviation of Λb from its isospin limit.

The reason is that regarding the mixing of heavy baryons, for example Σb–Λb, Ξ0
c–

Ξ
′0
c or Ξ+c –Ξ′+c , in the quark model one obtains a suppression of the mixing angle

with the heavy quark mass [325, 326, 327, 328, 329, 330]. It follows that for our

purposes we can safely neglect the mixing between Λb and Σb as it is not only
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isospin suppressed but on top suppressed by the b quark mass.

We now move to discuss the mixing of the light baryons. It has already been

pointed out in Ref. [329], that a description with a single mixing angle captures

only part of the effect. The reason is because isospin breaking contributions will

affect not only the mixing between the states but also the decay amplitude. The

non-universality is also reflected in the fact that the Λb → Σ
0 transition amplitude

vanishes in the heavy quark limit at large recoil, i.e. in the phase space when Σ0

carries away a large fraction of the energy [285], see also Ref. [263] for the heavy

quark limit of similar classes of decays.

To leading order in isospin breaking we consider two effects, the mixing be-

tween Λ and Σ0 as well as the correction to the Hamiltonian. We discuss these two

effects below.

Starting with the wave function mixing angle θm , this is defined as the mixing

angle between the isospin limit states |Σ0⟩ = |1, 0⟩I and |Λ⟩ = |0, 0⟩I , see Eq. (8.33),

into the physical states (see Refs. [331, 332, 333, 334, 335, 336])

|Λphys⟩ = cos θm|Λ⟩ − sin θm|Σ
0⟩ , (8.49)

|Σ0
phys⟩ = sin θm|Λ⟩ + cos θm|Σ

0⟩ . (8.50)

The effect stems from the non-vanishing mass difference md −mu as well as differ-

ent electromagnetic charges [307] which lead to a hyperfine mixing between the

isospin limit states. A similar mixing effect takes place for the light mesons in

form of singlet octet mixing of π0 and η(′) [337, 338, 339, 340, 341, 342].
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As for the Hamiltonian, we write H = H0 +H1 where H0 is the isospin limit

one and H1 is the leading order breaking. In general for decays into final states

Λ f and Σ0 f we can write

⟨ f Σ0
phys|H|Λb⟩ = sin θm⟨ f Λ|H|Λb⟩ + cos θm⟨ f Σ0|H|Λb⟩ ≈ (8.51)

θm⟨ f Λ|H0|Λb⟩ + ⟨ f Σ0|H1|Λb⟩ ,

⟨ f Λphys|H|Λb⟩ = cos θm⟨ f Λ|H|Λb⟩ − sin θm⟨ f Σ0|H|Λb⟩ ≈ ⟨ f Λ|H0|Λb⟩ ,

where we use the isospin eigenstates |Λ⟩ and |Σ0⟩. It follows that we can write

R ≈ θ f ≡ θm + θ
dyn
f , θ

dyn
f ≡

⟨ f Σ0|H1|Λb⟩

⟨ f Λ|H0|Λb⟩
. (8.52)

We learn that the angle θ f has contributions from two sources: A universal

part θm from wave function overlap, which we call “static” mixing, and a non-

universal contribution θ
dyn
f that we call “dynamic” mixing. We can think of θ f as

a decay dependent “effective” mixing angle relevant for the decay Λb → Σ
0 f . It

follows

B(Λb → Σ
0J/ψ)

B(Λb → ΛJ/ψ)
=
P(Λb,Σ

0, J/ψ)
P(Λb,Λ, J/ψ)

×
∣∣∣θ f

∣∣∣2 . (8.53)

Our aim in the next section is to find θ f .

8.3.2 Anatomy of Σ0–ΛMixing

We start with θm. Because of isospin and SU(3)F breaking effects, the physical

states |Λphys⟩ and |Σ0
phys⟩ deviate from their decomposition into their SU(3)F eigen-
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states both in the U-spin and in the isospin basis. As isospin is the better symme-

try, we expect generically the scaling

θm ∼
δ

ε
. (8.54)

This scaling can be seen explicitly in some of the estimates of the effect. In the

quark model, the QCD part of the isospin breaking corrections comes from the

strong hyperfine interaction generated by the chromomagnetic spin-spin interac-

tion as [327]

θm =

√
3

4
md − mu

ms − (mu + md)/2
, (8.55)

see also Refs. [343, 307, 344, 345, 346, 347], and where constituent quark masses

are used. Eq. (8.55) agrees with our generic estimate from group-theory consid-

erations, Eq. (8.54). The same analytic result, Eq. (8.55), is also obtained in chiral

perturbation theory [344, 348].

Within the quark model, the mixing angle can also be related to baryon masses

via [327, 332, 334]

tan θm =
(mΣ0 − mΣ+) −

(
mn − mp

)
√

3(mΣ − mΛ)
, (8.56)

or equally [327, 349, 334]

tan θm =
(mΞ− − mΞ0) − (mΞ∗− − mΞ∗0)

2
√

3(mΣ − mΛ)
. (8.57)

In Ref. [327] Eqs. (8.55)-(8.57) have been derived within the generic “independent

quark model” [?, ?]. Furthermore, Ref. [327] provides SU(3)-breaking corrections

to Eq. (8.56) within this model.
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Note that Eqs. (8.56) and (8.57) automatically include also QED corrections

through the measured baryon masses. Recently, lattice calculations of θm have

become available that include QCD and QED effects [336], and which we consider

as the most reliable and robust of the quoted results.

The various results for the mixing angle from the literature are summarized

in Table 8.5. It turns out that the quark-model predictions agree quite well with

modern lattice QCD calculations. Note however, that the lattice result of Ref. [336]

(see Table 8.5) demonstrates that the QED correction is large, contrary to the quark

model expectation in Ref. [307], and amounts to about 50% of the total result [336].

In the literature the mixing angle has often been assumed to be universal and

employed straight forward for the prediction of decays, see Refs. [332, 347, 350,

351]. It was already pointed out in Refs. [347, 352] that the Σ0–Λmixing angle can

also be extracted from semileptonic Σ− → Λl−ν decays. The angle has also been

directly related to the π–η mixing angle [351, 353]. The ratio on the right hand side

of Eq. (8.55) can be extracted from η → 3π decays [353] or from the comparison

of K+ → π0e+νe and K0
L → π−e+νe [353]. For pseudoscalar mesons it has been

shown [354, 355] that the reduction of isospin violation from (md − mu)/(md + mu)

to the ratio in Eq. (8.55) is related to the Adler-Bell-Jackiw anomaly [356, 357] of

QCD.

Note that in principle also θm is scale dependent [347], as was observed for the

similar case of π0–η mixing in Ref. [358]. Furthermore, θm has an electromagnetic

component. Depending on the relevant scale of the process in principle the QED
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correction can be large. We see from the lattice results in Table 8.5 that this is the

case for θm. Very generally, at high energy scales electromagnetic interactions will

dominate over QCD ones [359].

8.3.3 The Dynamic Contribution

The dynamical contributions to isospin breaking can be parametrized as part of

the isospin- and SU(3)F-breaking expansion, see Sec. 8.2.5. Explicitly we found

θ
dyn
J/ψ ≡

⟨J/ψΣ0|H1|Λb⟩

⟨J/ψΛ|H0|Λb⟩
= δ ×

√1
5

B15

A3
c
−

√
1
2

B6̄

A3
c

 . (8.58)

We expect that B15 ∼ B6̄ ∼ A3
c . The important result is that these effects are order δ.

Taking everything into account, very schematically we expect therefore the power

counting

θ f ∼

(
δ

ε

)
m
+ δ f ∼ θm

[
1 + O(ε f )

]
. (8.59)

where δ f and ε f refer to isospin and S U(3) breaking parameters that depend on f .

8.3.4 Prediction for B(Λb → Σ
0J/ψ)

We see from the power counting in Eq. (8.59) that the static component θm dom-

inates, as it is relatively enhanced by the inverse of the size of SU(3)F breaking.

Employing this assumption we obtain for

θ f ∼ θm ∼ 1◦ (8.60)
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the prediction ∣∣∣∣∣∣A(Λb → Σ
0J/ψ)

A(Λb → ΛJ/ψ)

∣∣∣∣∣∣ = ∣∣∣θ f

∣∣∣ ∼ 0.02 . (8.61)

A confirmation of our prediction would imply the approximate universality of the

Σ0–Λmixing angle in b-baryon decays. In that case we would expect that likewise∣∣∣∣∣∣A(Λb → Σ
0J/ψ)

A(Λb → ΛJ/ψ)

∣∣∣∣∣∣ =
∣∣∣∣∣∣A(Λb → Σ

0γ)
A(Λb → Λγ)

∣∣∣∣∣∣ =
∣∣∣∣∣∣A(Λb → Σ

0l+l−)
A(Λb → Λl+l−)

∣∣∣∣∣∣ =
∣∣∣∣∣∣A(Σ0

b → ΛJ/ψ)

A(Σ0
b → Σ

0J/ψ)

∣∣∣∣∣∣ ∼ 0.02 ,

(8.62)

up to SU(3)F breaking. Note that Λb and Σb are not in the same SU(3)F multiplet,

so that there is no relation between their reduced matrix elements.

The above predictions are based on the assumption that the dynamic contri-

bution is smaller by a factor of the order of the SU(3) breaking. In practice, these

effects may be large enough to be probed experimentally. Thus, we can hope that

precise measurements of these ratios will be able to test these assumptions.

8.4 Comparison with recent data

We move to compare the general results of Sections 8.2 and 8.3 to the recent LHCb

data for the case S = J/ψ [244]. Particularly relevant to the experimental findings

is the sum rule Eq. (8.19) which we rephrase as∣∣∣∣∣∣A(Ξ0
b → ΛJ/ψ)

A(Ξ0
b → Ξ

0J/ψ)

∣∣∣∣∣∣ = 1
√

6
(1 + O(ε))

∣∣∣∣∣λcd

λcs

∣∣∣∣∣ ≈ 0.41
∣∣∣∣∣λcd

λcs

∣∣∣∣∣ , (8.63)

219



where in the last step we only wrote the central value. The error is expected to

be roughly of order ε ∼ 20%. The estimate in Eq. (8.63) agrees very well with the

recent measurement [244]∣∣∣∣∣∣A(Ξ0
b → ΛJ/ψ)

A(Ξ0
b → Ξ

0J/ψ)

∣∣∣∣∣∣ = (0.44 ± 0.06 ± 0.02)
∣∣∣∣∣λcd

λcs

∣∣∣∣∣ . (8.64)

This suggests that the assumptions made in Sec. 8.2 are justified. However, from

the SU(3)F-breaking contributions which we calculated in Sec. 8.2.5, we expect

generically an order 20% correction to Eq. (8.63). The measurement Eq. (8.64)

is not yet precise enough to probe and learn about the size of these corrections.

However, SU(3)F breaking seems also not to be enhanced beyond the generic 20%.

The only other theory result for the ratio Eq. (8.64) that we are aware of in the

literature can be obtained from the branching ratios provided in Ref. [247], where

a covariant confined quark model has been employed. From the branching ratios

given therein we extract the central value∣∣∣∣∣∣A(Ξ0
b → ΛJ/ψ)

A(Ξ0
b → Ξ

0J/ψ)

∣∣∣∣∣∣ ∼ 0.34
λcd

λcs
, (8.65)

where an error of ∼ 20% is quoted in Ref. [247] for the branching ratios. This

estimate is also in agreement with the data, Eq. (8.64) (see for details in Ref. [247]).

Finally, our prediction Eq. (8.61)∣∣∣∣∣∣A(Λb → Σ
0J/ψ)

A(Λb → ΛJ/ψ)

∣∣∣∣∣∣ = ∣∣∣θ f

∣∣∣ ∼ 0.02 , (8.66)

is only about a factor two below the bound provided in Ref. [244],∣∣∣∣∣∣A(Λb → Σ
0J/ψ)

A(Λb → ΛJ/ψ)

∣∣∣∣∣∣ < 1/20.9 = 0.048 at 95% CL. (8.67)
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A deviation from Eq. (8.61) would indicate the observation of a non-universal

contribution to the effective mixing angle, i.e. an enhancement of isospin violation

in the dynamical contribution θ
dyn
J/Ψ. It seems that a first observation of isospin

violation in Λb decays is feasible for LHCb in the near future.

8.5 Conclusions

We perform a comprehensive SU(3)F analysis of two-body b → cc̄s(d) decays of

the b-baryon antitriplet to baryons of the light octet and an SU(3)F singlet, in-

cluding a discussion of isospin and SU(3)F breaking effects as well as Σ0–Λ mix-

ing. Our formalism allows us to interpret recent results for the case S = J/ψ

by LHCb, which do not yet show signs of isospin violation or SU(3)F break-

ing. We point out several sum rules which can be tested in the future and

give a prediction for the ratios |A(Λb → Σ0J/ψ)|/|A(Λb → ΛJ/ψ)| ∼ 0.02 and∣∣∣A(Ξ0
b → ΛJ/ψ)/A(Ξ0

b → Ξ
0J/ψ)

∣∣∣ ≈ 1/
√

6
∣∣∣V∗cbVcd/(V∗cbVcs)

∣∣∣. More measurements are

needed in order to probe isospin and SU(3)F breaking corrections to these and

many more relations that we laid out in this work.
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Decay ampl. A A3
c A3

u A6
u A15

u
b→ s

A(Λb → ΛS )
√

2
3λcs

√
2
3λus 0

√
6
5λus

A(Λb → Σ
0S ) 0 0 −

√
2
3λus 2

√
2
5λus

A(Ξ0
b → Ξ

0S ) λcs λus

√
1
3λus

√
1
5λus

A(Ξ−b → Ξ
−S ) λcs λus −

√
1
3λus − 3

√
5
λus

b→ d

A(Ξ0
b → ΛS ) −

√
1
6λcd −

√
1
6λud − 1

√
2
λud

√
3
10λud

A(Ξ0
b → Σ

0S ) 1
√

2
λcd

1
√

2
λud − 1

√
6
λud

√
5
2λud

A(Λb → nS ) λcd λud
1
√

3
λud

1
√

5
λud

A(Ξ−b → Σ
−S ) λcd λud − 1

√
3
λud − 3

√
5
λud

SU(3)F-limit decomposition.

b→ s
Decay Ampl. A ⟨0|0|0⟩c ⟨1

2 |0|
1
2⟩

c ⟨0|0|0⟩u ⟨1|1|0⟩u ⟨1
2 |1|

1
2⟩

u ⟨1
2 |0|

1
2⟩

u

A(Λb → ΛS ) λcs 0 λus 0 0 0
A(Λb → Σ

0S ) 0 0 0 λus 0 0

A(Ξ0
b → Ξ

0S ) 0 λcs 0 0 −

√
1
3λus λus

A(Ξ−b → Ξ
−S ) 0 λcs 0 0

√
1
3λus λus

Isospin decomposition for b→ s transitions.

b→ d
Decay ampl. A ⟨0| 12 |

1
2⟩

c ⟨0|12 |
1
2⟩

u ⟨1| 12 |
1
2⟩

c ⟨1|12 |
1
2⟩

u ⟨1
2 |

1
2 |0⟩

c ⟨ 1
2 |

1
2 |0⟩

u ⟨1|32 |
1
2⟩

u

A(Ξ0
b → ΛS ) − 1

√
2
λcd − 1

√
2
λud 0 0 0 0 0

A(Ξ0
b → Σ

0S ) 0 0 1
√

2
λcd

1
√

2
λud 0 0 − 1

√
2
λud

A(Λb → nS ) 0 0 0 0 λcd λud 0
A(Ξ−b → Σ

−S ) 0 0 λcd λud 0 0 1
2λud

Isospin decomposition for b→ d transitions.
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Decay ampl. A ⟨0|12 |
1
2⟩

c ⟨0|12 |
1
2⟩

u ⟨1|12 |
1
2⟩

c ⟨1| 12 |
1
2⟩
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2 |

1
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u

b→ s
A(Λb → ΛS ) 1
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3
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√

2
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0S ) −

√
3
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√

2
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√
3
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√

2
λus

1
2
√

2
λcs

1
2
√

2
λus 0 0

A(Ξ0
b → Ξ

0S ) 0 0 λcs λus 0 0
A(Ξ−b → Ξ

−S ) 0 0 0 0 λcs λus

b→ d
A(Ξ0

b → ΛS ) − 1
2
√

2
λcd − 1

2
√

2
λud

√
3

2
√

2
λcd

√
3

2
√

2
λud 0 0

A(Ξ0
b → Σ

0S )
√

3
2
√

2
λcd

√
3

2
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2
λud

1
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2
λcd

1
2
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2
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U-spin decomposition.

Decay ampl. A ⟨0| 12 |
1
2⟩

c ⟨0| 12 |
1
2⟩

u ⟨1| 12 |
1
2⟩

c ⟨1| 12 |
1
2⟩

u ⟨1
2 |

1
2 |0⟩

c ⟨1
2 |

1
2 |0⟩

u

b→ s
A(Λb → XS ) − 1

√
2
λcs − 1

√
2
λus 0 0 0 0

A(Λb → YS ) 0 0 1
√

2
λcs

1
√

2
λus 0 0

b→ d
A(Ξ0

b → XS ) 1
√

2
λcd

1
√

2
λud 0 0 0 0

A(Ξ0
b → YS ) 0 0 1

√
2
λcd

1
√

2
λud 0 0

(Unpractical) U-spin decomposition for the U-spin eigenstates |X⟩ and |Y⟩, see

Eq. (8.34) and discussion in the text.
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J/ψ

b

u

d

s

u

d

c c̄

Λb Λ

(a) C

J/ψ

b

u

d

s

u

d

c

c̄

Λb Λ,Σ

(b) E

J/ψ

b

u

d

s

u

d

c

c̄

Λb Λ

u, c, t

(c) Pq

Topological diagrams for the decays Λb → ΛJ/ψ and Λb → ΣJ/ψ. Note that in the

exchange diagram one gluon alone can not create the J/ψ because it is a color

singlet.

Method Mixing Angle θm [◦] Ref.
Quark model: Relation to Baryon masses 0.86 ± 0.06 [332, 334]

Quark model: Hyperfine splitting + EM interactions ≃ 0.57 [307]
Lattice QCD+QED A 1.00 ± 0.32 [336]
Lattice QCD+QED B 0.96 ± 0.31 [336]

Lattice QCD without QED 0.55 ± 0.03 [336]
Results for the Σ0–Λmixing angle. Note that we adjusted the sign conventions
for the results to match always the one of Ref. [332], see also the corresponding
comment in Ref. [336]. For older lattice results for the “QCD only” scenario see
Refs. [333, 335]. Note that with alternate quark mass input taken from Ref. [202]

the result for the “Lattice QCD without QED” scenario is changed to
θm = 0.65 ± 0.03 [336].
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Decay ampl. A A3
c B3 B15 B6

b→ s

A(Λb → ΛS )/λcs

√
2
3

1
2

√
1
3 ε

√
3

10 ε 0

A(Λb → Σ
0S )/λcs 0 0

√
2
15 δ −

√
1
3 δ

A(Ξ0
b → Ξ

0S )/λcs 1 1
2 ε

√
1
15 δ −

1
2
√

5
ε

√
1
6 δ

A(Ξ−b → Ξ
−S )/λcs 1 1

2 ε −

√
1
15 δ −

1
2
√

5
ε −

√
1
6 δ

b→ d

A(Ξ0
b → ΛS )/λcd − 1

√
6
− 1

4
√

2
δ + 1

4
√

6
ε − 1

4
√

10
δ + 3

4

√
3

10ε −1
4δ −

√
3

4 ε

A(Ξ0
b → Σ

0S )/λcd
1
√

2
1
4

√
3
2δ −

1
4
√

2
ε 11

4
√

30
δ − 1

4
√

10
ε − 1

4
√

3
δ − 1

4ε

A(Λb → nS )/λcd 1
√

3
4 δ −

1
4ε − 1

4
√

15
δ + 3

4
√

5
ε 1

2
√

6
δ + 1

2
√

2
ε

A(Ξ−b → Σ
−S )/λcd 1

√
3

4 δ −
1
4ε −1

4

√
5
3δ −

1
4
√

5
ε − 1

2
√

6
δ − 1

2
√

2
ε

CKM-leading SU(3)F decomposition including isospin- and SU(3)F-breaking.
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APPENDIX A

ATOMIC PARITY VIOLATION AND THE NEUTRINO FORCE

A.1 Calculation of the parity violating force between the electron

and the proton

Our approach here closely follows the methodology of [7]. For the sake of sim-

plicity, we start by assuming just one flavor for the neutrino. In that case we find

the following four-Fermi operator for two fermions of type ψ and two neutrinos

by summing over the Z and W diagrams:

O4 = −
GF
√

2
[ψ̄γµ(aψ − bψγ5)ψ][ν̄γµ(1 − γ5)ν], (A.1)

where aψ and bψ are the effective couplings to the Z as defined in Eqs. (2.20) and

(2.21). They depend on the particular fermion in question, depending on whether

the W exchange contributes, the Z exchange contributes, or both.

The two-neutrino potential can be calculated by a double insertion of this op-

erator, and the evaluation of the resulting amplitude, and by taking the Fourier

transform of the amplitude. The Feynman diagram that is relevant is given in

Fig. 2.1. The corresponding matrix element is given by

iM = −
(−iGF)2

2
ēN̄

[
Γe
µΓ

N
ν

] ∫ d4kd4k′

(2π)4 δ4(q − k − k′)Tr
[
iΓµ

i(− /k′ + m)
k′2 − m2 iΓν

i(/k + m)
k2 − m2

]
eN.

(A.2)
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Here, Γ f
µ = γµ(a f − b fγ

5), with a f and b f depending on the type of fermion in

question. N stands for nucleus, which in our case is just the proton. We can write

the matrix element as iM = ēN̄iFeN, where:

F = −i
G2

F

2

[
Γe
µΓ

N
ν

] ∫ d4kd4k′

(2π)4 δ4(q − k − k′)Tr
[
Γµ

(− /k′ + m)
k′2 − m2 Γ

ν (/k + m)
k2 − m2

]
. (A.3)

We then evaluate the trace, and consider only the symmetric part, since the anti-

symmetric part is odd in k, and hence evaluates to 0 in the loop integral,

F = i
G2

F

2

[
Γe
µΓ

N
ν

]
2Tr

[
γµγργνγσ

] ∫ d4kd4k′

(2π)4 δ4(q − k − k′)
kσk′ρ

(k2 − m2)(k′2 − m2)
,(A.4)

= i
G2

F

2

[
Γe
µΓ

N
ν

]
Cµν;ρσIσρ,

where,

Cµν;ρσ ≡ 2Tr
[
γµγργνγσ

]
, (A.5)

Iσρ ≡
∫

d4kd4k′

(2π)4 δ4(q − k − k′)
kσk′ρ

(k2 − m2)(k′2 − m2)
= A′gρσ + B′qσqρ. (A.6)

We can therefore write, after contracting Iσρ with gρσ and qσqρ respectively,

4A′ + B′t =
∫

d4kd4k′

(2π)4 δ4(q − k − k′)
k.k′

(k2 − m2)(k′2 − m2)
≡ J0, (A.7)

A′t + B′t2 =

∫
d4kd4k′

(2π)4 δ4(q − k − k′)
(q.k)(q.k′)

(k2 − m2)(k′2 − m2)
≡ J1, (A.8)

where t is the Mandelstam variable.

To calculate the force, we find the discontinuity in the matrix element across

the branch cut in the complex t plane, using the Cutkosky cutting rules, which
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yields

J̃0 = −
1

(2π)2

∫
d4kd4k′δ4(q − k − k′)θ(k0)θ(k′0)δ(k2 − m2)δ(k′2 − m2)(k · k′), (A.9)

J̃1 = −
1

(2π)2

∫
d4kd4k′δ4(q − k − k′)θ(k0)θ(k′0)δ(k2 − m2)δ(k′2 − m2)(k · q)(k′ · q).(A.10)

Here, the tilde denotes the discontinuity of a quantity across the branch cut. Writ-

ing

Cµν;ρσ
(
A′gρσ + B′qσqρ

)
= Agµν + B′qµqν,

we obtain

A = −8 (2A′ + B′t), B = 16 B′. (A.11)

We have then,

F = i
G2

F

2

(
Γe · ΓN A + qµqνΓe

µΓ
N
ν B

)
, (A.12)

F̃ = i
G2

F

2

(
Γe · ΓN Ã + qµqνΓe

µΓ
N
ν B̃

)
. (A.13)

What we need is to calculate the discontinuity in the matrix element since the

spectral function ρ is given by:

ρ =
M̃

2i
. (A.14)

We evaluate the integrals above in the CM frame of momentum transfer, i.e, the

frame where q = (
√

t, 0, 0, 0), and hence k = (ω, k⃗), k′ = (ω′,−k⃗).

Performing the integrals, in the case of equal masses of the neutrino in both

propagators of the loop, we have

J̃0 = −
1

16π

√
1 −

4m2

t
(t − 2m2), J̃1 = −

t2

32π

√
1 −

4m2

t
. (A.15)
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Which yields

Ã′ = −

√
1 −

4m2

t

(
t − 4m2

96π

)
, B̃′ = −

√
1 −

4m2

t

(
t2 + 2m2t

32πt2

)
, (A.16)

and translates to

Ã =

√
1 −

4m2

t

(
t − m2

3π

)
, B̃ = −

√
1 −

4m2

t

1 + 2m2

t

3π

 . (A.17)

We now need to deal with Eq. (A.13), and evaluate the spinor products in the

non-relativistic limit. For the purpose of calculating the velocity-dependent terms

in the potential, it is necessary to evaluate the spinors upto first order in momen-

tum p⃗. This calculation seems most convenient in the Pauli-Dirac basis where the

non-relativistic limit is much easier to work with. In the Pauli-Dirac basis, a Dirac

spinor is given by

us( p⃗) =
√

p0 + m

 ξs

σ⃗·p⃗
p0+mξs

 . (A.18)

The gamma matrices, in this basis, are given by

γ0 =

1 0

0 −1

 , γi =

 0 σi

−σi 0

 , γ5 =

0 1

1 0

 . (A.19)

In the non-relativistic limit, p0 + m→ 2m, and therefore, for the electron,

us( p⃗) ≈
√

2m

 ξs

σ⃗·p⃗
2m ξs

 = √2m

 ξs

σ⃗·⃗v
2 ξs

 , (A.20)

where ξs is a 2-component vector that encodes the spin state. For the nucleus,

which has mass M ≫ m, we can write

ur( p⃗) ≈
√

2M

ξr

0

 . (A.21)
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We use the above approximation for evaluating M. Our plan is to evaluate the

integral that gives us the long-range potential from the spectral function.

The qµqν term does not give a parity violating term when evaluated explicitly

using spinors. Thus, we only need to evaluate the Γe · ΓN term. We suppress

writing the spin states ξ, and assume that the incoming and outgoing electrons

have 3-momenta p⃗ and p⃗ ′ respectively, while the incoming and outgoing nuclei

have 3-momenta k⃗ and k⃗′ (note, as usual that q = p−p′ = k′−k, let us not confuse the

k’s here with the integration variables used before — those k’s have no relevance

in the upcoming discussion). To compute the leading radial dependence of the

potential, we need the spin and momentum independent parity conserving term

in F. This is found to be 2imeMaeaNG2
F A. The discontinuity in the matrix element

for the spin-independent part is

M̃ = 2meMiaeaNG2
F Ã = 2meMiaeaNG2

F

√
1 −

4m2

t

(
t − m2

3π

)
. (A.22)

The spectral function is therefore (ignoring the spin states)

ρ(t) =
M̃

2i
= meMaeaNG2

F

√
1 −

4m2

t

(
t − m2

3π

)
. (A.23)

Thus, the spin-independent parity conserving potential is given by the formula

V(r) =
1

16π2meMr

∫ ∞

t0
dt ρ(t)e−

√
tr, (A.24)

=
meMaeaNG2

F

16π2meMr

∫ ∞

4m2
dt e−

√
tr

√
1 −

4m2

t

(
t − m2

3π

)
,

=
aeaNG2

F

4π3

m3K3(2mr)
r2 ,

= aeaNVνν(r),
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where Vνν(r) is given in Eq. (2.2) (the Dirac case).

We also calculate the parity violating parts, as below:

ēN̄Γe.ΓNeN
4meM

⊃ aNbe

(
1

2me
+

1
2M

)
σ⃗e · q⃗ − aebN

(
1

2me
+

1
2M

)
σ⃗N · q⃗ +

aebN

me
σ⃗N · p⃗

−
aNbe

me
σ⃗e · p⃗ + i

(
aebN

2me
+

aNbe

2M

)
σ⃗e · (σ⃗N × q⃗). (A.25)

The parity violating parts of F are therefore given by:

F
2iG2

FmeM
⊃

[
aNbe

(
1

2me
+

1
2M

)
σ⃗e · q⃗

]
A −

[
aebN

(
1

2me
+

1
2M

)
σ⃗N · q⃗

]
A

+

[
aebN

me
σ⃗N · p⃗

]
A −

[
aNbe

me
σ⃗e · p⃗

]
A

+ i
[(

aebN

2me
+

aNbe

2M

)
σ⃗e · (σ⃗N × q⃗)

]
A. (A.26)

Vνν(r) is basically the Fourier transform of the spin-independent part of the

matrix element M, i.e, it can be thought of as the Fourier transform of A, upto

the non-relativistic normalization of the Dirac spinors. But observe that the spin-

dependent part of the matrix element is obtained by multiplying the spin inde-

pendent term A to the terms in Eq. (A.25). Thus, to obtain the spin dependent

parts of the potential, we need to take the Fourier transforms of quantities such as

(σ⃗ · q⃗)A and so on. In essence, we replace q⃗ ’s by gradients.

Let us look at the particular case of the hydrogen atom. We incorporate flavor

mixing as in sec. 2.4, and get the couplings ae
ii, be

ii, ap
ii and bp

ii as in Eq. (2.28).

For sake of cleanliness, below we drop one index i from the above couplings,

since no sum is assumed anyway. The analog of Eq. (A.25) in the hydrogen atom
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is therefore (the Hermitian conjugate is implicitly added)

ēP̄Γe.ΓPeP
4memp

= ap
i be

i

(
1

2me
+

1
2mp

)
σ⃗e · q⃗ − ae

i b
p
i

(
1

2me
+

1
2mp

)
σ⃗p · q⃗ +

ae
i b

p
i

me
σ⃗p · p⃗

−
ap

i be
i

me
σ⃗e · p⃗ + i

(
ae

i b
p
i

2me
+

ap
i be

i

2mp

)
σ⃗e · (σ⃗p × q⃗),

≈
ae

i b
p
i

2me

[
2σ⃗p · p⃗ − σ⃗p · q⃗ + iσ⃗e · (σ⃗p × q⃗)

]
,

=
GA

2me

(
−

1
4
+ sin2 θW +

1
2
|Uei|

2
) [

2σ⃗p · p⃗ − σ⃗p · q⃗ + iσ⃗e · (σ⃗p × q⃗)
]
.

Here, we used the fact that sin2 θW ≈ 0.23 so that ap
i ∼ 0 and that me ≪ mp. The

parity-violating potential that comes out of this with a Fourier transform is given

by (we remember to add in the Hermitian conjugate and implicitly sum over i)

V loop
PNC =

GA

me

(
−

1
4
+ sin2 θW +

1
2
|Uei|

2
) [

(2σ⃗p · p⃗)Vνiνi(r) + σ⃗e · (σ⃗p × ∇⃗)Vνiνi(r)
]
,

=
GA

me

(
−

1
4
+ sin2 θW +

1
2
|Uei|

2
) [

(2σ⃗p · p⃗)Vνiνi(r) + (σ⃗e × σ⃗p) · ∇⃗Vνiνi(r)
]
(A.27)

A.2 Details of the calculation in Sec. 2.7

In Sec. 2.7, we computed R, for the E1 and M1 transitions between the “base”

states |A⟩ and |B⟩. Both of these states were corrected by the “correction state” |∆⟩.

Other corrections were ignored because they are much smaller than the correction

due to |∆⟩.
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Using the machinery of angular-momentum addition, we can write

|A⟩ = |4, 3, 3, 5/2, 3⟩ ≡ −
1
√

7
ψ432|↑↑⟩ +

√
6
7
ψ433|↓↑⟩, (A.28)

|B⟩ = |4, 3, 3, 7/2, 3⟩ ≡ −
1
2

√
3
7
ψ432|↑↑⟩ +

1
2

√
7
2
ψ433|↑↓⟩ −

1

2
√

14
ψ433|↓↑⟩,

|∆⟩ = |4, 3, 3, 5/2, 2⟩ ≡ ψ422|↑↑⟩,

where ψnlm are the unperturbed energy eigenstates of hydrogen, given by

ψnlm = ⟨r, θ, ϕ|nlm⟩ =

√(
2

na0

)3 (n − l − 1)!
2n[(n + l)!]3 e−r/na0

[
L2l+1

n−l−1(2r/na0)
]

Ym
l (θ, ϕ). (A.29)

Using these three states, we can write the corrected states in the spirit of

Eq. (2.39) as:

|A′⟩ = |A⟩ +
⟨∆|VPNC |A⟩

EA − E∆
|∆⟩ + · · · = |A⟩ +CA∆|∆⟩ + · · · , (A.30)

where CA∆ is the correction coefficient. Similarly,

|B′⟩ = |B⟩ +
⟨∆|VPNC |B⟩

EB − E∆
|∆⟩ + · · · = |B⟩ +CB∆|∆⟩ + . . . (A.31)

In the end, we add the contributions from both terms in the potential. Our states

therefore become

|A′⟩ = |B⟩ + (C sc
A∆ +Ch

A∆)|∆⟩ + · · · , (A.32)

|B′⟩ = |B⟩ + (C sc
B∆ +Ch

B∆)|∆⟩ + · · · . (A.33)

Here C sc is the correction coefficient for the spin-cross term alone, while Ch is the

coefficient for the “helicity” term alone.
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Using the two terms in V loop
PNC(r), we compute the corrections up to second order

in the small parameter νi. To calculate the energy differences between the states,

we use Eq. (2.35). We obtain (sW ≡ sin θW)

Csc
A∆ = i

GAG2
Fmpm3

eα
2

π3gp

(
−

1
4
+ s2

W +
1
2
|Uei|

2
) 21

√
7ν2

i

10816
−

35
√

7
64896

 , (A.34)

Csc
B∆ = i

GAG2
Fmpm4

eα
2

π3(29gpme − 21609000mp)

(
−

1
4
+ s2

W +
1
2
|Uei|

2
)
×

−
7
√

7
3ν

2
i

64
+

35
√

7
3

1152

 ,(A.35)

Ch
A∆ =

(
−

1
4
+ s2

W +
1
2
|Uei|

2
) 7i
√

7α2m3
e

(
36ν2

i − 5
)

mpGAG2
F

129792π3gp
, (A.36)

Ch
B∆ =

(
−

1
4
+ s2

W +
1
2
|Uei|

2
) 7i

√
7
3α

2m4
e

(
1122ν2

i − 115
)

MGAG2
F

27648π3(29gpme − 21609000mp)
. (A.37)

We are interested in the ratio between the electric and magnetic dipole moment

matrix elements for the states |A′⟩ and |B′⟩. These two transition matrix elements

have the same dependence on the magnetic quantum numbers in hydrogen, and

so the ratio is independent of the orientation of the atom. As such, in our cal-

culations, we only look at the magnetic and electric dipole moments along the z

direction,

P̂ = −ez = −(4πα)1/2r cos θ,

M̂ =
e

2me
(L̂z + 2Ŝ z) =

(4πα)1/2

2me
(L̂z + 2Ŝ z).

Using this form of electric and magnetic dipole moment operators in Eq. (2.50)

leads to the final result in Eq. (2.53).
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APPENDIX B

NEUTRINO FORCES IN BACKGROUNDS - SOME MORE DETAILS

B.1 The background effect on fermion propagators

The neutrino propagator in a background with finite neutrino number density in

Eq. (3.4) can be found in various references including books and reviews on finite

temperature field theory [62, 63, 64, 65, 66]. In this appendix, we provide a simple

and pedagogical re-derivation of the formula without using finite temperature field

theory, aiming at providing a physical interpretation of the background effect.

Let us start with the propagator of a generic fermion in vacuum, which is de-

fined as

S F(x − y) ≡ ⟨0|Tψ(x)ψ(y)|0⟩ , (B.1)

where T indicates that it is a time-ordered product. Using

ψ =

∫
d3p

(2π)3

1√
2Ep

∑
s

[
as

pus(p)e−ip·x + bs†
p vs(p)eip·x

]
, (B.2)

where we follow the standard notation of Ref. [365], and assuming x0 > y0 so that

T can be removed, we obtain

S F ∝

∫
d3p

(2π)3

∫
d3k

(2π)3

1√
2Ep

1
√

2Ek
e−ip·x+ik·y⟨0|apa†k|0⟩ + · · · , (B.3)

where for brevity we have neglected us, vs, and the script s (they only affect the

structure of Dirac spinors). The “· · · ” denote terms proportional to ⟨0|apbk|0⟩,
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⟨0|b†pa†k|0⟩, or ⟨0|b†pbk|0⟩, all being zero. Since ⟨0|apa†k|0⟩ = (2π)3δ3(p − k), Eq. (B.3)

gives

S F ∝

∫
d3p

(2π)3

1
2Ep

e−ip·(x−y) =

∫
d4 p

(2π)4

i
p2 − m2 + iϵ

e−ip·(x−y) . (B.4)

The last step is simply the reverse process of computing the contour integral of

p0, with the underlying assumption that x0 > y0. For x0 < y0, the time ordering

guarantees the same result.

Now we shall replace |0⟩with a background state. Let us first consider a single-

particle state which contains a particle with an almost certain position and an

almost certain momentum. The two cannot be simultaneously fixed at exact val-

ues due to the uncertainty principle, but one can nevertheless introduce a wave

package function w(p) so that both w(p) and its Fourier transform
∫

w(p)eip·xd3x

are limited in a small region of their respective space—for further elucidation, see

e.g. Appendix A of Ref. [366]. The single particle state is then defined as

|w⟩ =
∫

d3p
(2π)3 w(p)a†p|0⟩ , ⟨w|w⟩ =

∫
d3p

(2π)3 |w(p)|2 ≡ 1 , (B.5)

where the last step is defined as the normalization condition of w(p).

Replacing |0⟩ → |w⟩ in Eq. (B.3), we obtain

S F ∝

∫
pk
⟨w|apa†k|w⟩ =

∫
pk

〈
w

∣∣∣∣((2π)3δ3(p − k) − a†kap
)∣∣∣∣ w〉

, (B.6)

where
∫

pk standards for
∫

d3p
(2π)3

∫
d3k

(2π)3
1√
2Ep

1
√

2Ek
e−ip·x+ik·y. Since ⟨w|w⟩ = 1, the first term

leads to the same result as the vacuum case and the second term represents the
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background effect. We denote the contribution of the latter by S bkg
F :

S bkg
F ∝ −

∫
pk
⟨w|a†kap|w⟩ = −

∫
pk

w∗(k)w(p) , (B.7)

where we have used ap|w⟩ = w(p)|0⟩. Note that w(p) has been defined in such a

way that the particle’s position and momentum are nearly fixed at certain val-

ues (say x0 and p0). One can perform spatial translation of the wave package

w(p) → w∆x(p) ≡ eip·∆xw(p) so that its position is changed to x0 + ∆x while the

momentum is unchanged. Now, if we randomly choose ∆x with a uniform prob-

ability distribution in a large volume V (much larger than the distribution of each

wave package), the position of the particle would be evenly smeared in V . For

w∗(k)w(p) in Eq. (B.7), the smearing leads to

w∗(k)w(p)
smearing
−−−−−−→

1
V

∫
w∗∆x(k)w∆x(p)d3∆x

=
1
V

∫
w∗(k)w(p)ei(p−k)·∆xd3∆x

=
(2π)3δ3(p − k)

V
|w(p)|2

= (2π)3δ3(p − k)n+(p) , (B.8)

where in the last step we have identified |w(p)|2/V as n+(p) because
∫

d3p
(2π)3 |w(p)|2 = 1

and the number density after smearing is
∫

d3p
(2π)3 n+(p) = 1/V .

Substituting Eq. (B.8) into Eq. (B.7), we obtain

−

∫
pk

w∗(k)w(p)
smearing
−−−−−−→ −

∫
d3p

(2π)3

e−ip·(x−y)

2Ep
n+(p)

= −

∫
d4 p

(2π)4 e−ip·(x−y)(2π)δ
(
p2 − m2

)
Θ

(
p0

)
n+(p) . (B.9)
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Combining Eq. (B.9) with the vacuum part in Eq. (B.4), we obtain

S F ∝

∫
d4 p

(2π)4 e−ip·(x−y)
{

i
p2 − m2 + iϵ

− (2π)δ
(
p2 − m2

)
Θ

(
p0

)
n+(p)

}
. (B.10)

For an anti-particle background, the above calculation is similar except that some

minus signs are flipped. In the presence of both particles and anti-particles in the

background, we obtain

S F(p) =
(
/p + m

) { i
p2 − m2 + iϵ

− (2π)δ
(
p2 − m2

)
Θ

(
p0

) [
n+(p) − n−(p)

]}
=

(
/p + m

) { i
p2 − m2 + iϵ

− (2π)δ
(
p2 − m2

) [
Θ

(
p0

)
n+(p) + Θ

(
−p0

)
n−(p)

]}
,

where S F(p) is the propagator in the momentum space [i.e. the Fourier transform

of S F(x − y)], the prefactor
(
/p + m

)
can be inferred from the vacuum propagator.

The result is the same as the fermion propagator derived in finite temperature

field theory.

From the above calculation, one can see that the background effect comes from

the second term in Eq. (B.6), proportional to ⟨w|a†kap|w⟩. Recall that the annihilation

operator ap acting on |w⟩ can be interpreted as reducing one particle in the back-

ground. Hence ⟨w|a†kap|w⟩ corresponds to first absorbing a particle of momentum

p from the background (ap|w⟩ = w(p)|0⟩), and returning a particle of momentum

k back to the background. Smearing the single particle state in Eq. (B.8) leads to

δ3(p − k), which guarantees that the particle being returned has the same momen-

tum as the one being absorbed.

Intuitively, the modified propagator in Eq. (3.4) can be understood as the vac-

uum expectation value of two fermion fields with the vacuum state |0⟩ replaced by
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the modified background state |w⟩, which is the vacuum equipped with some on-

shell background fermions. Then the Wick contraction can be carried out not only

between the two internal fermion fields (leading to the vacuum propagator), but

also among the internal fields and the background fermions (leading to the mod-

ified term). Therefore, the modified term is naturally proportional to the number

density of background fermions, with the factor 2πδ(p2 − m2)Θ(p0) coming from

cutting the propagator to put it on-shell (optical theorem). Notice that the above

arguments should be valid in any background and do not require the distribution

to be thermal.

B.2 Integrals

In this appendix, we present the details about some integrals in calculating neu-

trino forces in the neutrino backgrounds.

B.2.1 Derivation of the general background potential Vbkg(r) in

Eq. (3.9)

We first show how to obtain the general expression of the background potential

with an arbitrary distribution function.

As has been stated above, when both neutrino propagators in Eq. (3.6) take the

240



first part, it corresponds to the vacuum potential V0(r), which is independent of the

background distribution functions. When both propagators take the second part,

the result always vanishes because of the existence of two delta functions. There-

fore, the background contribution comes from the cross terms, i.e., S ν(k) takes the

first (second) part and S ν(k + q) takes the second (first) part:

Abkg(q) = −πG2
Fg1

Vg2
V

∫
d4k

(2π)4 δ
(
k2 − m2

ν

) [
Θ

(
k0

)
n+ (k) + Θ

(
−k0

)
n− (k)

]
×

Tr
[
γ0 (1 − γ5) (/k + mν) γ0 (1 − γ5)

(
/k + /q + mν

)]
(k + q)2

− m2
ν

+
Tr

[
γ0 (1 − γ5)

(
/k − /q + mν

)
γ0 (1 − γ5) (/k + mν)

]
(k − q)2

− m2
ν

 ,

= −8πG2
Fg1

Vg2
V

∫
d4k

(2π)4 δ
(
k2 − m2

ν

) [
Θ

(
k0

)
n+ (k) + Θ

(
−k0

)
n− (k)

]
×

2k0
(
k0 + q0

)
−

(
k · q + k2

)
(k + q)2

− m2
ν

+
2k0

(
k0 − q0

)
+

(
k · q − k2

)
(k − q)2

− m2
ν

 . (B.11)

Taking advantage of the identity

δ
(
k2 − m2

ν

)
= δ

((
k0

)2
− E2

k

)
=

1
2Ek

[
δ
(
k0 − Ek

)
+ δ

(
k0 + Ek

)]
,

one can first integrate k0 in Eq. (B.11). In addition, the NR approximation requires

q ≃ (0,q). Thus the integral in Eq. (B.11) can be reduced to Eq. (3.8)

Abkg(q) = 4G2
Fg1

Vg2
V

∫
d3k

(2π)3

n+ (k) + n− (k)
2Ek

[
2 |k|2 + m2

ν + k · q
2k · q + |q|2

+ (k→ −k)
]
. (B.12)

Furthermore, for an isotropic distribution, n± (k) = n± (κ) with κ ≡ |k|, one can

first integrate out the angular part in Eq. (B.12) and obtains

Abkg(ρ) =
G2

Fg1
Vg2

V

π2

∫ ∞

0
dκ

κ2√
κ2 + m2

ν

[n+ (κ) + n− (κ)]
∫ 1

−1
dξ

m2
ν + 2κ2

(
1 − ξ2

)
ρ2 − 4κ2ξ2 , (B.13)
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where we have defined ρ ≡
∣∣∣q⃗∣∣∣ and ξ ≡ cos θ with θ being the angel between k and

q. Then the background potential is given by

Vbkg(r) = −
∫

d3q
(2π)3 eiq·rAbkg(ρ) = −

1
2π2r

∫ ∞

0
dρρ sin (ρr)Abkg(ρ)

= −
G2

Fg1
Vg2

V

2π4r

∫ ∞

0
dκ

κ2√
κ2 + m2

ν

[n+ (κ) + n− (κ)]
∫ 1

−1
dξ

[
m2
ν + 2κ2

(
1 − ξ2

)] ∫ ∞

0
dρ

ρ sin (ρr)
ρ2 − 4κ2ξ2

= −
G2

Fg1
Vg2

V

4π3r

∫ ∞

0
dκ

κ2√
κ2 + m2

ν

[n+ (κ) + n− (κ)]
∫ 1

−1
dξ

[
m2
ν + 2κ2

(
1 − ξ2

)]
cos (2κrξ)

= −
G2

Fg1
Vg2

V

4π3r4

∫ ∞

0

dκκ√
κ2 + m2

ν

[n+ (κ) + n− (κ)]
[(

1 + m2
νr

2
)

sin (2κr) − 2κr cos (2κr)
]
, (B.14)

which is just Eq. (3.9).

B.2.2 Calculation of the integral I(ℓ, α) in Eq. (3.50)

Here, we calculate the integral I(ℓ, α) appearing in the reactor neutrino back-

ground. Without loss of generality, we can assume

k0 = Eν (0, 0, 1) , r = r (sα, 0, cα) , q = ρ
(
sθcφ, sθsφ, cθ

)
, (B.15)

where (cx, sx) ≡ (cos x, sin x) have been defined. With the above coordinates, we

have

q · r = ρr
(
sαsθcφ + cαcθ

)
, ξ ≡

k0 · q
|k0| |q|

= cθ ,
∫

d3q =
∫ ∞

0
ρ2dρ

∫ 1

−1
dξ

∫ 2π

0
dφ .(B.16)
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The integral in Eq. (3.50) turns out to be

I ≡
1
Eν

∫
d3qeiq·r 1 − ξ2

ρ2 − 4E2
νξ

2 =
1
Eν

∫ 2π

0
dφ

∫ 1

−1
dξ

∫ ∞

0
dρeiρr(sαsθcφ+cαcθ)

ρ2
(
1 − ξ2

)
ρ2 − 4E2

νξ
2

=
1
Eν

(∫ 2π

0
dφ

∫ 1

0
dξ

∫ ∞

0
dρ +

∫ 2π

0
dφ

∫ 0

−1
dξ

∫ ∞

0
dρ

)
eiρr(sαsθcφ+cαcθ)

ρ2
(
1 − ξ2

)
ρ2 − 4E2

νξ
2 .

(B.17)

In the second term in the bracket of Eq. (B.17), changing the variables as ρ → −ρ

and ξ → −ξ one obtains

I =
1
Eν

∫ 2π

0
dφ

∫ 1

0
dξ

[∫ ∞

0
dρeiρr(sαsθcφ+cαcθ) +

∫ 0

−∞

dρeiρr(−sαsθcφ+cαcθ)
] ρ2

(
1 − ξ2

)
ρ2 − 4E2

νξ
2

=
1
Eν

∫ π

0
dφ

∫ 1

0
dξ

[∫ ∞

0
dρeiρr(sαsθcφ+cαcθ) +

∫ 0

−∞

dρeiρr(−sαsθcφ+cαcθ)
] ρ2

(
1 − ξ2

)
ρ2 − 4E2

νξ
2

+
1
Eν

∫ 2π

π

dφ
∫ 1

0
dξ

[∫ ∞

0
dρeiρr(sαsθcφ+cαcθ) +

∫ 0

−∞

dρeiρr(−sαsθcφ+cαcθ)
] ρ2

(
1 − ξ2

)
ρ2 − 4E2

νξ
2 .

(B.18)

In the last line of Eq. (B.18) changing the variable φ→ φ − π one obtains

I =
1
Eν

∫ π

0
dφ

∫ 1

0
dξ

[∫ ∞

0
dρeiρr(sαsθcφ+cαcθ) +

∫ 0

−∞

dρeiρr(−sαsθcφ+cαcθ)
] ρ2

(
1 − ξ2

)
ρ2 − 4E2

νξ
2

+
1
Eν

∫ π

0
dφ

∫ 1

0
dξ

[∫ ∞

0
dρeiρr(−sαsθcφ+cαcθ) +

∫ 0

−∞

dρeiρr(sαsθcφ+cαcθ)
] ρ2

(
1 − ξ2

)
ρ2 − 4E2

νξ
2

=
1
Eν

∫ π

0
dφ

∫ 1

0
dξ

(
1 − ξ2

) ∫ ∞

−∞

dρ
[
eiρr(sαsθcφ+cαcθ) + eiρr(−sαsθcφ+cαcθ)

] ρ2

ρ2 − 4E2
νξ

2 .

(B.19)

What we have done is to change the integral to the standard form of one-

dimensional Fourier transform. Then one can use the following Fourier trans-
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form: ∫ ∞

−∞

dρeiρx ρ2

ρ2 − 4E2
νξ

2 = 2π
[
δ(x) − sgn(x)Eνξ sin (2Eνξx)

]
, (B.20)

from which one obtains

I =
2π
Eν

∫ π

0
dφ

∫ 1

0
dξ

(
1 − ξ2

) [
δ (x+) − sgn (x+) Eνξ sin (2Eνξx+)

+δ (x−) − sgn (x−) Eνξ sin (2Eνξx−)
]

=
2π
Eν

∫ 1

−1
dξ

(
1 − ξ2

) ∫ π

0
dφ

[
δ (x+) − sgn (x+) Eνξ sin (2Eνξx+)

]
(B.21)

where x± ≡ r(±sαsθcφ + cαcθ). The first term in Eq. (B.21) involving δ function can

be analytically integrated out

2π
Eν

∫ 1

−1
dξ

(
1 − ξ2

) ∫ π

0
dφδ

[
r
(
sαsθcφ + cαcθ

)]
=

2π
rEν

∫ 1

−1
dξ

(
1 − ξ2

) ∫ π

0
dφδ

(
sα

√
1 − ξ2cφ + cαξ

)
t=cφ
=

2π
ℓsα

∫ 1

−1
dξ

(
1 − ξ2

) 1√
1 − ξ2

∫ 1

−1

dt
√

1 − t2
δ

t + ξ√
1 − ξ2

cotα


=

2π
ℓsα

∫ 1√
1+cot2 α

− 1√
1+cot2 α

dξ
1 − ξ2√

1 −
(
1 + cot2 α

)
ξ2

=
π2

2ℓ
(3 + cos 2α) , (B.22)

where we have defined the dimensionless quantity ℓ ≡ rEν. The second term in

Eq. (B.21) cannot be analytically integrated. So finally one obtains the directional

integral

I (ℓ, α) =
π2

2ℓ
(3 + cos 2α)

−2π
∫ 1

−1
dξ ξ

(
1 − ξ2

) ∫ π

0
dφ sgn

(
sα

√
1 − ξ2cφ + cαξ

)
sin

[
2ℓξ

(
sα

√
1 − ξ2cφ + cαξ

)]
=

π2

2ℓ
(3 + cos 2α) − 2π

∫ 1

−1
dξ ξ

(
1 − ξ2

) ∫ π

0
dφ sin

(
2ℓξ

∣∣∣∣sα √
1 − ξ2cφ + cαξ

∣∣∣∣) , (B.23)
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which is the result of Eq. (3.51). Then the directional background potential is given

by

Vbkg(r, α) = −
g1

Vg2
V

π3 G2
FΦ0E2

ν × I (rEν, α) . (B.24)

B.3 Energy distribution function with a finite spread

In this appendix, we consider a directional neutrino flux with a finite energy

spread instead of the monochromatic case we considered in the main text in

Eq. (3.44).

Neglecting the neutrino mass, which is much smaller than the typical energy

of neutrino flux, the general directional neutrino flux can be written as

n± (k) = (2π)3 f (E)δ
(
k̂ − k̂0

)
, (B.25)

where k̂ denotes the unit vector of the three momentum k, while k̂0 represents a

certain direction. Without loss of generality, we take k̂0 = (0, 0, 1) and such that the

delta function enforces k = (0, 0, E). The energy distribution function f (E) should

satisfy the normalization condition:∫
d3k

(2π)3 n± (k) = Φ0 , (B.26)

with Φ0 being the total flux of neutrinos.

For example, a Gaussian-like distribution reads

fg(E) =
Φ0

2πB
exp

−
(
E − E2

0

)
2σ2

E

 , (B.27)
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where E0 is the mean energy and σE denotes the spread of energy. The normal-

ization factor B is given by

B =

∫ ∞

0
dEE2exp

[
−

(E − E0)2

2σ2
E

]
= E0σ

2
E exp

(
−

E2
0

2σ2
E

)
+

√
π

2
σE

(
E2

0 + σ
2
E

) [
1 + Erf

(
E0
√

2σE

)]
=
√

2πE2
0σE + O

(
σ3

E

)
. (B.28)

It can be verified explicitly that the distribution in Eq. (B.27) satisfies the normal-

ization in Eq. (B.26). In particular, in the limit of σE → 0 one obtains

fg(E)δ
(
k̂ − k̂0

)
→
Φ0

2πE2
0

δ (E − E0) δ
(
k̂ − k̂0

)
= δ3 (k − k0)Φ0 , (B.29)

which reduces to the monochromatic case in Eq. (3.44).

Below we compute the background potential without the specific form of f (E)

for the purpose of generality. Substituting Eq. (B.25) in Eq. (3.8), one obtains

Abkg(q) = 2G2
Fg1

Vg2
V

∫
d3k

f (E)
E

δ
(
k̂ − k̂0

) [2 |k|2 + k · q
2k · q + |q|2

+ (k→ −k)
]
. (B.30)

Then using the decomposition∫
d3kδ

(
k̂ − k̂0

)
f (E) = 2π

∫ 1

−1
dzδ (z − 1)

∫ ∞

0
dEE2 f (E) , (B.31)

where z ≡ k̂ · k̂0, we have

Abkg(q) = 4πG2
Fg1

Vg2
V

∫ 1

−1
dzδ (z − 1)

∫ ∞

0
dEE f (E)

[
2E2 + Eρξ
2Eρξ + ρ2 +

2E2 − Eρξ
−2Eρξ + ρ2

]
= 16πG2

Fg1
Vg2

V

∫ ∞

0
dEE3 f (E)

1 − ξ2

ρ2 − 4E2ξ2 . (B.32)
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Notice that ρ ≡ |q| and ξ ≡ k·q
|k||q| have been defined. The background potential turns

out to be

Vbkg(r) = −
∫

d3q
(2π)3 eiq·rAbkg(q) = −

2
π2 G2

Fg1
Vg2

V

∫ ∞

0
dEE3 f (E)

∫
d3qeiq·r 1 − ξ2

ρ2 − 4E2ξ2

= −
2
π2 G2

Fg1
Vg2

V

∫ ∞

0
dEE4 f (E)I (Er, α) , (B.33)

where the dimensionless integral is defined as

I (Er, α) ≡
1
E

∫
d3qeiq·r 1 − ξ2

ρ2 − 4E2ξ2 , (B.34)

whose result has been given by Eq. (3.51) with the substitution ℓ = Er. In particu-

lar, in the monochromatic limit, the background potential reduces to Eq. (3.48):

f (E)→
Φ0

2πE2
0

δ (E − E0) , Vbkg(r)→ −
1
π3 G2

Fg1
Vg2

VΦ0E2
0 I (E0r, α) . (B.35)

To sum up, the background potential in a directional neutrino flux with an

arbitrary finite energy spread is given by Eq. (B.33), with the integral I being

computed in Eq. (3.51).

B.4 Flavor- and material-dependence of the background poten-

tial

In Sec. 3.5 we have neglected the effects of neutrino flavors and materials of test

bodies when computing the directional neutrino background potential. Here we

compute a complete expression for the neutrino force between two objects with
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masses m1 and m2, as a function of the background neutrino flavor distribution

and their respective atomic and mass numbers. We present the expression under

the following assumptions:

1. Let the masses be pure elements of atomic numbers Z1 and Z2 respectively.

Let their mass numbers be A1 and A2 respectively.

2. We further assume that the mass of the objects are constituted entirely by the

masses of the neutrons and protons in the object, i.e, we ignore electron mass

me ≪ mp ≈ mn, where the subscripts p and n stand for proton and neutron

respectively.

3. We assume the massless limit for the neutrinos, where the mass eigenstates

are identical to the flavor eigenstates.

4. We see in the text how finite spread of the masses weakens the 1/r behavior

of the neutrino background potential. In this appendix, we assume that the

angular spread α2 ≪ 1/∆(Eνr), where r is the distance between the masses

and Eν is defined in the text [see Eq. (3.57)].

Given masses mi (for i = 1, 2), the number of protons, neutrons and electrons

in each mass is given by

N i
p ≡

miZi

Aimp
= N i

e , N i
n ≡

mi(Ai − Zi)
Aimp

. (B.36)
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The effective gV ’s for each mass can then be computed simply by adding up

the gV ’s of each of the constituent species and multiplying by the corresponding

number of that species in the mass. The effective gV depends on which neutrino

is being exchanged between the masses. For instance, when the neutrinos ex-

changed are electron neutrinos, we get:

gi
Ve = N i

p(1/2 − 2s2
W) + N i

e(1/2 + 2s2
W) − N i

n/2 = N i
p − N i

n/2 , (B.37)

where sW is the sine of the Weinberg angle θW . For other neutrinos being ex-

changed the effective coupling is:

gi
Vµ/τ = N i

p(1/2 − 2s2
W) + N i

e(−1/2 + 2s2
W) − N i

n/2 = −N i
n/2 . (B.38)

Note that, in the presence of electron neutrino background, the electrons in the

material need to be considered when calculating the force.

In the end, the neutrino background potential between the two masses is given

by (we have taken α = 0 like what we did in Eq. (3.62)] in accordance with assump-

tion 4 above):

Vbkg(r) = −
G2

FΦEν

πr

[
neg1

Veg
2
Ve + (1 − ne) g1

Vµ/τg
2
Vµ/τ

]
, (B.39)

where ne is the fraction of electron neutrinos in the flux Φ. After some algebra this

can be written as:

Vbkg(r) = −
G2

FΦEν

πr
m1m2

m2
p
× f (A1, A2,Z1,Z2, ne) , (B.40)
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where

f (A1, A2,Z1,Z2, ne) =
1
4

[
ne

(
3Z1

A1
− 1

) (
3Z2

A2
− 1

)
+ (1 − ne)

(
1 −

Z1

A1

) (
1 −

Z2

A2

)]
. (B.41)

The net potential between these two masses is therefore given by:

Vnet = Vgrav + Vbkg = −
m1m2

r

[
GN +

G2
FΦEν

πm2
p

f (A1, A2,Z1,Z2, ne)
]
, (B.42)

where GN is the gravitational constant. We have ignored the 1/r5 term from the

vacuum neutrino force since at the distances we are talking about that force is

negligible. Note that the Weinberg angle does not feature in our final expression

for the neutrino force.

The ratio of the neutrino force to the gravitational force between these two

masses at some distance r ≫ E−1
ν is independent of r,

Vbkg(r)
Vgrav(r)

=
G2

FΦEν f (A1, A2,Z1,Z2, ne)
πGNm2

p
. (B.43)

Below we mention some special cases:

1. Consider the special case Z1 = Z2 = Z, A1 = A2 = A and ne = 1, i.e, the

background is purely electron neutrino. In this case, the ratio reads:

Vbkg(r)
Vgrav(r)

=
G2

FΦEν

4πGNm2
p

(
3Z
A
− 1

)2

. (B.44)
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Note that this ratio is maximized when Z = A, i.e, for Hydrogen.

Putting in the numbers we get (using Φ ∼ 1014cm−2s−1 and Eν ∼ 1 MeV):

Vbkg(r)
Vgrav(r)

∼ 10−13 . (B.45)

The gravitational force is thus 13 orders of magnitude greater than the neu-

trino background force in this limit. This corresponds to the purple line

(reactor 10m) in Fig. 3.5.2.

2. Consider the special case Z1 = Z2 = Z, A1 = A2 = A and ne = 0, i.e, the

background is purely muon/tau neutrino. In this case we note that force is

entirely due to the number of neutrons in the masses, and the ratio:

Vbkg(r)
Vgrav(r)

=
G2

FΦEν

4πGNm2
p

(
1 −

Z
A

)2

. (B.46)

In the special case of Hydrogen we see that we shall not find any additional

force due to background neutrinos. However in other elements we can see

this effect.

To finish this section, we show how the force varies for different materials. For a

givenΦ and Eν, and assuming that A ≈ 2Z as is usually the case for most elements,

we have,

δVbkg

Vbkg
≈ 4 (4ne − 1) δZ/A , (B.47)

where δZ/A refers to the variation of Z/A for different materials, as in Eq. (3.63).
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APPENDIX C

FERMION PAIR RADIATION FROM CLASSICAL SYSTEMS -

DERIVATION OF THE POWER LOSS FORMULA

We present below an explicit derivation of the power loss formula for the

fermion pair radiation by a point-like classical object on an elliptical orbit. We

perform the calculation separately for the case of vector and scalar mediators. In

our calculation, we follow closely the analysis in Ref. [93].

C.1 The case of a vector boson mediator

The power loss is a sum over different harmonics, as given by Eqs. (4.8) and (4.9).

The matrix element, at leading order, for a vector boson mediator, is given by

Eq. (4.11). It includes the Fourier Transform of the classical current Jµcl(x) defined

in Eq. (4.2). We rewrite it here for convenience:

Mn(s1, s2) = g2Qψ ū(k1, s1)γµv(k2, s2)
i(−ηµν + (k1 + k2)µ(k1 + k2)ν/m2

A)
(k1 + k2)2 − m2

A + imAΓA
Jνcl(Ωn) , (C.1)

where ηµν is the Minkowski metric tensor. Note that the contribution from the

(k1 + k2)µ(k1 + k2)ν term vanishes by means of the Dirac equation since the fermions

are on-shell, that is,

ū(/k1 + /k2)v = ū(mψ − mψ)v = 0. (C.2)
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Squaring the amplitudes corresponding to different harmonics and summing

over spins, we find

|Mn|
2 =

∑
s1,s2

|Mn|
2 =

g4Q2
ψ(

(k1 + k2)2 − m2
A

)2
+ m2

AΓ
2
A

Jµcl(Ωn)J∗νcl (Ωn) Tr
[
(/k1 + mν)γµ(/k2 − mν)γν

]
=

4g4Q2
ψ(

(k1 + k2)2 − m2
A

)2
+ m2

AΓ
2
A

Jµcl(Ωn)J∗νcl (Ωn)
(
k1µk2ν + k1νk2µ −

1
2

(k1 + k2)2ηµν

)
. (C.3)

Finally, we are ready to write the expression for the rate of energy loss due to

ψψ̄ emission at harmonic n by the classical source as

Pn =

(
dE
dt

)
n
=

∫
Ωn dΓn

= Ωn

∫
d3k1

(2π)3(2ω1)
d3k2

(2π)3(2ω2)
(2π)δ(Ωn − ω1 − ω2)|Mn|

2

= Ωn

∫
dΦ1dΦ2

|k1|dω1

2(2π)3

|k2|dω2

2(2π)3 (2π)δ(Ωn − ω1 − ω2)|Mn|
2 , (C.4)

where |k1,2| =
√
ω2

1,2 − m2
ψ, we usedΩn = ω1+ω2 for the total energy carried away by

the fermion pair, dΦ1,2 are the differential elements of solid angles in the fermion’s

direction of flight, and
∣∣∣∣Mn

∣∣∣∣2 is given in Eq. (C.3). The total power radiated is

found by summing over all kinematically allowed harmonics:

P =
∑

n

Pn. (C.5)

To calculate the power radiated in fermion pairs by a point-like source in an

elliptical orbit, we need to evaluate the integrals in Eq. (C.4), after substituting

in the explicit form of Jµcl(Ωn) in Eq. (C.3). Using Eqs. (4.2) and (4.5), we find the

Fourier Transform Jµcl(Ωn) as:

Ji
cl(Ωn) = aΩQ ji

n, J0
cl(Ωn) = aΩQ

(
jn · p

nΩ

)
, (C.6)
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where the 3-vector jn is defined as

jn =

−iJ′n(ne),

√
1 − e2

e
Jn(ne), 0

 , (C.7)

with Jn(z) denoting a Bessel function, and p = k1 + k2.

The terms in the numerator of |M|2 in Eq. (C.3), are then given by

(
Jµcl(Ωn)k1µ

) (
Jν∗cl (Ωn)k2ν

)
= a2Ω2Q2 ji

n j j∗
n

[
ω1ω2

(nΩ)2 pi p j −
ω1

nΩ
pik j

2 −
ω2

nΩ
ki

1 p j + ki
1k j

2

]
, (C.8)

and

|Jµcl(Ωn)|2 = |J0
cl(Ωn)|2 − |Jcl(Ωn)|2 = a2Ω2Q2 ji

n j j∗
n

[
pi p j

(Ωn)2 − δ
i j

]
, (C.9)

where we used Ωn = nΩ. Note that all quantities above are 3-vectors with

Latin indices i = 1, 2, 3, and a sum over i and j is implicit. The expression for(
Jµcl(Ωn)k2µ

) (
Jν∗cl (Ωn)k1ν

)
is obtained from Eq. (C.8) via complex conjugation.

Next we note that the denominator of |Mn|
2, see Eq. (C.3), depends only on

mA, ΓA, ω1,2, the magnitudes |k1,2| and the relative angle between the two momenta

k1, and k2 that we denote as γ. Because of this, it is convenient to perform the

change of coordinates in the integral in Eq. (C.4) from the integration over the

solid angles dΦ1dΦ2 to the integration over dΦ1dΦr
2 where the solid angle of the

second neutrino is measured relative to the direction of k1, hence the super index

r. (Equivalently, one can also choose to integrate over dΦr
1dΦ2.) The Jacobian of

this coordinate change is unity since the transformation is simply a coordinate

rotation, and thus

dΦ1dΦ2 = dΦ1dΦr
2. (C.10)
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Defining

dΦb = sin θbdθbdϕb, dΦr
2 = sin γdγdδ, b = 1, 2 , (C.11)

we find the following relations between the two sets of integration variables

cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos (ϕ2 − ϕ1) ,

sin δ =
sin θ2 sin (ϕ2 − ϕ1)

sin γ
. (C.12)

Since, out of all the angular variables, the denominator only depends on the rela-

tive angle γ, the integrals over θ1, ϕ1 and δ can be taken easily using the following

relations ∫
dΦ1dΦ2ki

ak j
a =

∫
dΦ1dΦr

2ki
ak j

a = δ
i j 8π

2

3
k2

a

∫
sin γdγ,∫

dΦ1dΦ2ki
1k j

2 =

∫
dΦ1dΦr

1ki
1k j

2 = δ
i j 8π

2

3
(k1 · k2)

∫
sin γdγ,∫

dΦ1dΦ2 =

∫
dΦ1dΦr

2 = 8π2
∫

sin γdγ . (C.13)

Using this and the results of Eqs. (C.8) and (C.9), we perform the integration over

θ1, ϕ1 and δ in Eq. (C.4), and find the following expression for the power radiated

in harmonic n,

Pn =
g4 (nΩ)

12π3 a2Ω2Q2
ψQ2 |jn|

2
∫

δ(nΩ − ω1 − ω2)(
(k1 + k2)2 − m2

A

)2
+ m2

AΓ
2
A

×

[
−

1
2

(k1 + k2)2
[
(k1 + k2)2 /

(
(nΩ)2

− 3
)]
+ 2

ω1ω2

(nΩ)2 (k1 + k2)2

−2
ω1

nΩ

(
k2

2 + k1 · k2

)
− 2

ω2

nΩ

(
k2

1 + k1 · k2

)
+ 2k1 · k2

]
×

ω1ω2

1 − m2
ψ

ω2
1

1/2 1 − m2
ψ

ω2
2

1/2

sin γ dγdω1dω2 , (C.14)
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where the only integrals left are the integrals over γ, ω1 and ω2.

Next, we introduce the following dimensionless variables and parameters

x1 =
ω1

Ω
, x2 =

ω2

Ω
, nψ =

mψ

Ω
, nA =

mA

Ω
, nΓ =

ΓA

Ω
. (C.15)

Performing the change of variables in Eq. (C.14) from (ω1, ω2) to (x1, x2), we rewrite

the expression for the power radiated in harmonic n as follows:

Pn =
g4

12π3 a2Ω4Q2
ψ|jn|

2
∫

sin γ dγ dx1 dx2 δ(n − x1 − x2)F (cos γ, x1, x2) . (C.16)

Upon taking the integral over x2 and performing the replacement x1 → x, we

obtain

Pn =
g4

12π3 a2Ω4Q2
ψQ2|jn|

2
∫ n−nψ

nψ
dx

∫ 1

−1
d(cos γ)F (cos γ, x) , (C.17)

where function F (cos γ, x) is given by

F (cos γ, x) =
b(x)
2n

1
2b2(x) cos2 γ + b(x)c(x) cos γ + d(x)

(a(x) − b(x) cos γ)2 + g2
, (C.18)

with

a(x) = 2n2
ψ + 2x(n − x) − n2

A ,

b(x) = 2
√

x2 − n2
ψ

√
(n − x)2 − n2

ψ ,

c(x) = −
(
n2 + 2n2

ψ

)
,

d(x) = 2(x(n3 − 2n2x + 2nx2 − x3) + 2n2n2
ψ + n4

ψ),

g2 = n2
An2
Γ . (C.19)

The variable x here is the ratio of the energy of one of the fermions to the funda-

mental oscillation frequency. It can be at least nψ or at most n−, hence the limits
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on the integral. Also note that F also depends on the parameters of the prob-

lem namely nA, nψ, nΓ defined in Eq. (C.15), but we do not write them explicitly

for brevity. Lastly, note that the γ-dependence of the numerator of function F is

through a term quadratic in cos γ and a term linear in cos γ. This behavior is at-

tributed to the theory that we pick – renormalizable theories such as in the case

considered here would only contribute at most two powers of momentum in the

matrix element, leading to a cos γ dependence that is at most quadratic. However

non-renormalizable theories have more momenta in the matrix element, and will

give us a different cos γ dependence in the F .

Now, we define

FA(x) ≡ FA(n, x, , , ) =
∫ 1

−1
d (cos γ)F (cos γ, x, n) , (C.20)

where the superscript A denotes the vector boson mediator.

The integral over cos γ can be taken analytically. Then, we find that the func-

tion FA(x), has the form:

FA(x) = FA
0 (x) +

FA
1 (x)
nM

[
tan−1

(
a(x) + b(x)

nM

)
− tan−1

(
a(x) − b(x)

nM

)]
+ FA

2 (x) tanh−1
(

2a(x)b(x)
a(x)2 + b(x)2 + n2

M
2

)
, (C.21)

with:

FA
0 (x) = b(x)/2n ,

FA
1 (x) =

1
4n

(
4 + 4n22 −2 2 + 22n2 − 4nx2 + 4x22

)
,

FA
2 (x) =

1
2n

(
2 + n2 − 2nx + 2x2

)
. (C.22)
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Consequently, the power loss formula of each mode with n > 2nψ becomes

Pn =
2g4Q2

ψQ2

3(2π)3 a2Ω4
(
J′n(ne)2 +

1 − e2

e2 Jn(ne)2
) ∫ n−nψ

nψ
dxFA(x), (C.23)

which gives us Eq. (4.19) for the case M = A, where we define for mediator M

BM
n (nM, nν, nΓ) ≡

(
J′n(ne)2 +

1 − e2

e2 Jn(ne)2
) ∫ n−

dx FM(x, n, nM, nν, nΓ), (C.24)

where Jn(z) is a Bessel function of order n in the variable z.

C.2 The case of the scalar mediator

The derivation for the power loss in the scalar mediator is similar to the vector

case, but the matrix element is different, as shown in Eq. (4.15). This matrix ele-

ment contains the number density ρcl(x) of source particles, instead of a current.

As such, the difference in the calculation in this case comes from the calculation

of the squared matrix element, which in this case, is given by:

∑
s1,s2

|Mn(s1, s2)|2 =
g2g′2

((k1 + k2)2 − m2
ϕ)2 + m2

ϕΓ
2
ϕ

Tr(( /k1 + mψ)( /k2 − mψ))|ρcl(Ωn)|2

=
4g2g′2

((k1 + k2)2 − m2
ϕ)2 + m2

ϕΓ
2
ϕ

(k1 · k2 − m2
ψ)|ρcl(Ωn)|2 ]. (C.25)

The power loss is again given by Eq. (C.4).

Using Eqs. (4.3) and (4.5), we find the Fourier Transform ρ
µ

cl(Ωn) as:

ρ0
cl(Ωn) = aΩN

(
jn · p

nΩ

)
, (C.26)
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where, like in the vector case, we define the 3-vector ji
n as follows:

jn =

−iJ′n(ne),

√
1 − e2

e
Jn(ne), 0

 , (C.27)

with Jn(z) denoting a Bessel function, amd p = k1 + k2.

After performing all the steps analogous to Eqns. (C.4)–(C.20) in the previous

section, i.e, after performing the angular integration, we get:

Pn =
g2g′2

12π3 a2Ω4N2|jn|
2
∫ n−nψ

nψ
dx

∫ 1

−1
d cos γF (cos γ, x) , (C.28)

where function F (cos γ, x) is given by

F (cos γ, x) = −
b(x)
2n

1
2b2(x) cos2 γ + b(x)c(x) cos γ + d(x)

(a(x) − b(x) cos γ)2 + g2
, (C.29)

with

a(x) = 2n2
ψ + 2x(n − x) − n2

ϕ ,

b(x) = 2
√

x2 − n2
ψ

√
(n − x)2 − n2

ψ ,

c(x) =
(n − 2x)2

2
,

d(x) = (2−nx + x2)(n2 − 22 − 2nx + 2x2),

g2 = n2
ϕn

2
Γ . (C.30)

Like before, we define

Fϕ(x) ≡ Fϕ(n, x, , , ) =
∫ 1

−1
d (cos γ)F (cos γ, x, n) , (C.31)

where the superscript ϕ denotes the scalar mediator.
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The integral over cos γ can be taken analytically to find a form for Fϕ:

Fϕ(x) = Fϕ
0 (x) +

Fϕ
1 (x)
nM

[
tan−1

(
a(x) + b(x)

nM

)
− tan−1

(
a(x) − b(x)

nM

)]
+ Fϕ

2 (x) tanh−1
(

2a(x)b(x)
a(x)2 + b(x)2 + n2

M
2

)
, (C.32)

with:

Fϕ
0 (x) = −b(x)/2n ,

Fϕ
1 (x) =

1
4n

(
22 + (n2−2)(2−42)

)
,

Fϕ
2 (x) =

1
4n

(
n2 + 42 − 22

)
. (C.33)

Consequently, the power loss formula of each mode with n > 2nψ becomes

Pn =
2g2g′2

3(2π)3 a2Ω4N2
(
J′n(ne)2 +

1 − e2

e2 Jn(ne)2
) ∫ n−nψ

nψ
dxFϕ(x), (C.34)

which gives us Eq. (4.20) for the case M = ϕ

Pϕ
n =

g2g′2

12π3 a2Ω4
(

N1

m1
−

N2

m2

)2

Bϕ
n(nA, nν, nΓ). (C.35)

We find that the form of the function FM is general for the two types of me-

diators, the difference lying in the explicit forms of the functions FM
0 , F

M
1 and FM

2 .

This is due to the fact that the cos γ dependence of the function F is the same in

both cases, as in both cases, the theory considered is a renormalizable one. As we

explained in the previous sub-section, this general form of FM is not what we will

have when we consider non-renormalizable theories that give us higher powers

of momenta in the numerator of F .
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APPENDIX D

K → µµ - SOME DETAILS

D.1 Extracting B(KS → µ+µ−)ℓ=0 without a pure kaon beam

In the main text, we demonstrated how we can determine B(KS → µ+µ−)ℓ=0 for the

case of a pure K0 beam in empty space. Here we present a discussion on two other

cases which are more related to realistic experimental situations. The first case is

when we have a beam with unequal initial number of K0 and K0. The second case

is when we have a pure KL beam going via a regenerator before the kaons decay.

In both cases, it is possible to extract the branching ratio B(KS → µ+µ−)ℓ=0 cleanly

as in Eq. (5.31), with the addition of a dilution factor as in Eq. (5.32).

D.1.1 A mixed beam of K0 and K0

Consider a beam which initially consists of an incoherent mixture of kaons and

anti-kaons. We define the production asymmetry,

D =
NK0 − NK0

NK0 + NK0

. (D.1)

such that the fractions of K0 and K0 particles are given respectively by

NK0

NK0 + NK0

=
1 + D

2
,

NK0

NK0 + NK0

=
1 − D

2
. (D.2)
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Note that D = 1 corresponds to a pure K0 beam, while D = −1 corresponds to a

pure K0 beam.

The decay rate to a final state f is given by the incoherent sum

dΓ
dt
=

1 + D
2

(
dΓK0

dt

)
+

1 − D
2

(
dΓK0

dt

)
, (D.3)

such that its form is given by Eq. (7.13) with the following coefficients:

CL = |ACP-even
0 |2, (D.4)

CS = |ACP-odd
0 |2 + β2

µ|A
CP-even
1 |2,

Ccos = D |ACP-odd*
0 ACP-even

0 | cosφ0,

Csin = D |ACP-odd*
0 ACP-even

0 | sinφ0.

It is then straightforward to extract our parameter of interest. For D , 0 we obtain

|ACP-odd
0 |2 = DF

Ccos
2 +Csin

2

CL
, DF =

1
D2 . (D.5)

In terms of the branching ratios we have

B(KS → µ+µ−)ℓ=0 = DF × B(KL → µ+µ−) ×
τS

τL
×

(
Cint

CL

)2

, (D.6)

We learn that the beam asymmetry serves as a dilution factor compared to the case

of a pure K0 or K0 beam. Note that if D = 0 (which means that the beam is an equal

admixture of K0 and K0), one cannot use the beam to measure B(KS → µ+µ−)ℓ=0.

We close with a remark regarding the LHCb search for the KS rate [179]. To a

very good approximation at LHCb we have D = 0. In that case the interference
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terms cancel and we are left with just CL and CS . Thus, without any further anal-

ysis to tag the flavor of the kaon, LHCb is working on extracting the CS term that

includes the decay to both the ℓ = 0 and ℓ = 1 states.

D.1.2 KL propagating through a slab of matter

When kaons travel through matter, the time dependence of the kaon wave func-

tion is modified via the inclusion of the momentum dependent regeneration pa-

rameter [206, 207, 208, 367, 209, 368].

We define

reiα = −
πN
m

(
∆ f
∆λ

)
, (D.7)

where r and α are real, and

∆ f ≡ f − f̄ , ∆λ ≡ ∆m −
i
2
∆Γ. (D.8)

Here, f ( f̄ ) is the difference of forward scattering amplitudes for kaons (anti-

kaons), and N is the density of scattering centers in the regenerator. Note that

r and α are physical and can be determined from experiment.

Let us consider a pure KL beam, which is produced by letting the KS (and in-

terferences) terms decay away. Then we put a regenerator of length L in the path

of the beam. Let tL be the time taken by the kaon to travel through the regener-

ator. We define t = 0 to be the time the kaon emerges from the regenerator. We
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then study the time dependence of the kaon wave function at later times. For

simplicity, in the following we present the result to leading order in r.

The normalized decay rate is given by Eq. (7.13), with the coefficients:

CL = |ACP-even
0 |2,

CS = 0,

Csin = −r |ACP-even
0 ACP-odd

0 |
(
sin(α − φ0) − etL∆Γ/2 sin(α − φ0 + ∆mtL)

)
,

Ccos = r |ACP-even
0 ACP-odd

0 |
(
cos(α − φ0) − etL∆Γ/2 cos(α − φ0 + ∆mtL)

)
. (D.9)

We can check that for tL = 0 (which means that the regenerator thickness is neg-

ligible) or r = 0 (the regenerator material is just vacuum), the interference terms

vanish as it should.

Using the above, we find the dilution factorDF , for tL , 0 and r , 0 to be

DF =
1

2r2

(
cosh(∆ΓtL/2) − sinh(∆ΓtL/2)

cosh(∆ΓtL/2) − cos(∆mtL)

)
. (D.10)

We learn that the dilution parameter depends on both r and tL. The extraction of

the rate is given by Eq. (D.6).

We close with two remarks

1. As we already emphasized, the interference terms are the key to the extrac-

tion of B(KS → µ+µ−)ℓ=0. Having D , 0 or r , 0 are some of the ways of

obtaining interference terms in the time dependence of the kaon beam.

2. More generally one may also have combinations with both non-zero D and

r, as well as a general initial state. The calculation is straightforward, though
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tedious and does not provide much further insight, and so we do not show

it here.

D.2 SM Calculations

In the following we first derive the SM prediction for B(KS → µ+µ−)ℓ=0, and then

derive approximate numerical estimates for the experimental parameters within

the SM.

D.2.1 SM calculation

Using the standard formula for two body decays [195], as well as the results of

Eqs. (5.45) and (5.36), we write

B(KS → (µ+µ−)ℓ=0) =
βµτS

16πmK
× 2

∑
|MS D(KS → (µ+µ−)ℓ=0)|2 × sin2 θct, (D.11)

where the sum is over the outgoing spin, as usual. Note that M is proportional

to A, defined in Eq. (5.5) but it uses the standard normalization that is used when

making calculations.

We write the matrix element for the short-distance contribution as

MS D = gSM⟨µµ̄|Oℓ|0⟩ × ⟨0|OH |K⟩, (D.12)
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where

Oℓ = (µ̄Lγ
ρµL), ⟨0|OH |K⟩ ≡ −i pρK fK . (D.13)

For the kaon decay constant we employ here the convention

⟨0|s̄γµγ5d|K0(p)⟩ = ipµ fK0 . (D.14)

The coupling, gSM, can be read from Eq. (6.59) (note that (µ̄µ)V−A = 2(µ̄Lγ
ρµL))

gSM = −
GF
√

2

αem

π sin2 θW

[
V∗csVcdYNL + V∗tsVtdY(xt)

]
. (D.15)

Since under our assumption of θuc = 0 the part proportional to V∗csVcd is relatively

real, we can further define

g̃SM = −
GF
√

2

αem

π sin2 θW
V∗tsVtdY(xt). (D.16)

As long as what we are after is the CP violating decay rate, we can use g̃SM.

Squaring the amplitude and summing over spins, we find∑
|MS D

K→µµ|
2 =

[
− pρK pσK f 2

K

]
|gSM|

2 Tr
[
ū(k1)γρPLv(k2)v̄(k2)PLγσu(k1)

]
(D.17)

= −|gSM|
2 f 2

K pρK pσKTr
[
γρPL(/k2 − mµ)PLγσ(/k1 + mµ)

]
= |gSM|

2 f 2
Km2

µpρK pσKTr
[
γρ

1
2

(1 − γ5)γσ
]

= 2|gSM|
2 f 2

Km2
µm

2
K .

Using Eq. (D.11) we find

B(KS → (µ+µ−)ℓ=0) =
βµτS

16πmK
4|g̃SM|

2 f 2
Km2

µm
2
K sin2 θct (D.18)

=
βµ τS

16πmK

∣∣∣∣∣∣GF
√

2

2αem

π sin2 θW
mKmµ × Y(xt) × fK × VtsVtd sin θct

∣∣∣∣∣∣2 ,
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in agreement with Eqs. (37) and (39) of Ref. [187].

We next get numerical estimates. We use the lattice QCD result [202] for the

hadronic parameter, assuming isospin symmetry:

fK = 155.7 ± 0.3 MeV . (D.19)

We use the following values for the measured parameters [195],

mK = 497.61 MeV, mµ = 105.658 MeV, (D.20)

GF = 1.166378 × 10−5 GeV−2, αem = 1/129,

sin2 θW = 0.23, Y(xt) = 0.95,

τL = 5.116 × 10−8 s, τS = 8.95 × 10−11 s,

and for the CKM values we use

|VtsVtd sin θct| = A2λ5η̄, with A = 0.79, λ = 0.2265, η̄ = 0.357, (D.21)

to arrive at the prediction

B(KS → (µ+µ−)ℓ=0) ≈ 1.64 · 10−13 ×

∣∣∣∣∣ VtsVtd sin θct

(A2λ5η̄)best fit

∣∣∣∣∣2 , (D.22)

with

(A2λ5η̄)best fit = 1.33 · 10−4. (D.23)

D.2.2 SM approximate values for the experimental parameters

In order to estimate the magnitude of the effect we are after and to illustrate the

expected time dependence, we require approximate values for the remaining two
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branching ratios within the SM. First, we use the measured branching ratio,

B(KL → µ+µ−)exp. = B(KL → (µ+µ−)ℓ=0)exp. = (6.84 ± 0.11) · 10−9, (D.24)

which sets the value of the parameter CL.

The remaining branching ratio, B(KS → µ+µ−)ℓ=1, can only be estimated a pri-

ori by relying on non-perturbative calculations from the literature that suffer from

large hadronic uncertainties. Nonetheless, we use these results to get an estimate

for its magnitude. Below we use the prediction for the long-distance contribu-

tion, [142]

B(KS → µ+µ−)LD
SM = B(KS → µ+µ−)ℓ=1 ≈ 4.99 · 10−12. (D.25)

Note that while we quote results to three significant digits, the theoretical uncer-

tainties are much larger. Altogether we have

B(KS → µ+µ−)ℓ=0 ≈ 1.64 · 10−13, (D.26)

B(KL → µ+µ−)ℓ=0 ≈ 6.84 · 10−9,

B(KS → µ+µ−)ℓ=1 ≈ 4.99 · 10−12.

The first is the result of the calculation from the SM effective Hamiltonian, the sec-

ond is the experimental measured value, and the third uses the non-perturbative

estimation together with the calculated SM short-distance contribution.

For illustration of the time dependence, we choose to normalize the C coeffi-

cients such that CL = 1. The numerical values for the coefficients, as defined in
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Eqs. (7.13) and (5.9), for the case of a pure K0 or K0 beam, are then given by:

(CL)SM ≡ 1, (D.27)

(CS )SM =
τL

τS

B(KS → µ+µ−)ℓ=0 + B(KS → µ+µ−)ℓ=1

B(KL → µ+µ−)ℓ=0
≈ 0.43,

(CInt.)SM =

√
τLB(KS → µ+µ−)ℓ=0

τS B(KL → µ+µ−)ℓ=0
≈ 0.12 .

There is one more experimental parameter, the phase φ0. It is related to the

strong phase and we do not provide any estimate for it.

D.3 The short-distance operator

For completeness, we explain below the well-known results that the short-

distance SM amplitude cannot generate an ℓ = 1 state, and that only the axial

parts of both the hadronic and leptonic currents contribute in two-body pseudo-

scalar decays.

Our starting point is the factorization of the matrix element

M = ⟨µ+µ−|Oµ
LOHµ|K⟩ = ⟨µ+µ−|O

µ
L|0⟩ × ⟨0|OHµ|K⟩, (D.28)

where

Oµ
H = (s̄d)V−A, Oµ

L = (µ̄µ)V−A. (D.29)

The leading breaking of this factorization is from the photon loop, and thus it is

suppressed by roughly O(αEM/4π) ∼ 10−3.
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Considering the leptonic part is sufficient to explain why short-distance

physics does not contribute to the K → (µ+µ−)ℓ=1 amplitude. For two spinors ψ

and χ, we recall the transformation of the V − A operator under CPT [369]:

Θψ̄γµ(1 − γ5)χΘ† = −χ̄γµ(1 − γ5)ψ , (D.30)

where Θ = CPT is the CPT operator. This implies

ΘOµ
LΘ
† = −Oµ

L. (D.31)

Using

Θ|µ+µ−⟩ℓ = (−1)ℓ+1|µ+µ−⟩ℓ, Θ|0⟩ = |0⟩, (D.32)

we conclude

⟨(µ+µ−)ℓ|O
µ
L|0⟩ = ⟨(µ

+µ−)ℓ|ΘΘ†O
µ
LΘΘ

†|0⟩ = (−1)ℓ⟨(µ+µ−)ℓ|O
µ
L|0⟩. (D.33)

From the above we see thatM, defined in Eq. (D.28), vanishes when ℓ is odd.

As for the axial part of the hadronic current, the argument is the same as the

well-known one for charged pion decay, that we recall below. Consider

⟨0|Vµ − Aµ|K(pK)⟩. (D.34)

The kaon is a pseudo-scalar and the vacuum is parity-even. Thus, the matrix

element of Vµ must transform as a pseudovector, and the matrix element of Aµ

must transform as a vector. The only available physical observable is the kaon

momentum, pK , which is a vector. It is impossible to construct a product of any

number of pµK that transforms like as a pseudovector. We conclude that

⟨0|Vµ|K⟩ = 0. (D.35)
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In order to see that also for the leptonic current only the axial part is relevant,

we write the matrix element in the following form, leaving the vector and axial-

vector components of the leptonic operator general:

M ∼ pαK ū(k2)γα(B + Aγ5)v(k1) (D.36)

Then,

∑
|M|2 ∝ Tr

[
(/k2 + mµ)/pK(B + Aγ5)(/k1 − mµ)(B∗ + A∗γ5)/pK

]
(D.37)

= 4
(
|B|2 − |A|2

)[
2(k1 · pK)(k2 · pK) − m2

K(k1 · k2)
]
− 4

(
|B|2 + |A|2

)
m2
µm

2
K

Using two-body kinematics, we have

(k1 · pK) = (k2 · pK) =
1
2

m2
K , (D.38)

(k1 · k2) =
1
2

m2
K − m2

µ.

Plugging this in to Eq. (D.37), the |B|2 terms drop out and we are left only with the

terms proportional to |A|2,

∑
|M|2 ∝ |A|2m2

µm
2
K , (D.39)

i.e., only the axial-vector part of the operator is relevant.
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APPENDIX E

UPDATE OF THE THEORY ESTIMATE FOR χγγ(µ)

In this section we update the theory estimate of Ref. [187]. The experimental input

that goes into this estimate comes from analyses of the form factor in KL → γe+e−,

KL → γµ+µ− and KL → e+e−µ+µ−, and can be summarized by the parameter αexp.,

defined by

αexp. = −m2
ρ

d
dq2 f (q2, 0)

∣∣∣∣∣
q2=0

, (E.1)

where f (q2
1, q

2
2) is the KL → γγ form factor. The experimental value derived from

KL → γe+e− has been updated by the KTeV collaboration after Ref. [187] was pub-

lished. We take [370]

αexp.|ee = −1.73 ± 0.05 , (E.2)

combined with [371, 372]

αexp.|µµ = −1.54 ± 0.10 , (E.3)

αexp.|eeµµ = −1.59 ± 0.37 ,

and arrive at the weighted average

αexp. = −1.691 ± 0.044 . (E.4)

Comparing with Ref. [187] (who quote αexp. = −1.611±0.044), the central value has

gone up by ∼ 5% while the relative error remains the same.

Inserting this into Eq. (22) of Ref. [187], we have

χγγ(mρ) = (6.10 ± 0.16exp.) − ∆Λ , (E.5)
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(updated from (5.83 ± 0.15exp.) − ∆Λ). Following Ref. [187] we take

|∆Λ| ≤ 1.0 , (E.6)

and reach the result

[
χγγ(mρ)

]
IU
= 6.10 ± 0.16exp. ± 1.0th. . (E.7)
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