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The spatial search problem consists of minimising the number of steps required to find a

given site in a network under the restriction that only oracle queries or translations to

neighbouring sites are allowed. We propose a quantum algorithm for the spatial search

problem on a honeycomb lattice with N sites and torus-like boundary conditions. The search

algorithm is based on a modified quantum walk on an hexagonal lattice and the general

framework proposed by Ambainis, Kempe and Rivosh (Ambainis et al. 2005) is employed to

show that the time complexity of this quantum search algorithm is O(
√
N logN).

1. Introduction

Quantum Walks (QW) are useful tools for generating new quantum algorithms

(Ambainis 2004; Shenvi et al. 2003; Ambainis et al. 2005). For example, the optimal

algorithm for solving the element distinctness problem, which aims to determine whether

a set has repeated elements or not, is based on QWs (Ambainis 2004). An optimal search

algorithm equivalent to Grover’s celebrated algorithm (Grover 1996) uses a modified QW

on an n-dimensional hypercube to find an element among N sites after O(
√
N) steps

(Shenvi et al. 2003). Although the QW is a unitary (that is, invertible) process, it is

often introduced as the quantum analogue of a random walk or, more generally, of a

Markov process. There are two versions of QWs: discrete-time (Aharonov et al. 1993)

and continuous-time (Fahri and Gutmann 1998) walks. The first uses an auxiliary Hilbert

space, which plays the role of a quantum ‘coin’ whose states determine the directions of

motion. Even though both types of QW’s have similar dynamics, they are not equivalent.

For instance, the optimal algorithm for spatial search in two-dimensional grids using the

continuous-time version has no advantage over the classical algorithm in terms of time

complexity (Childs and Goldstone 2004), while the algorithm based on the discrete-time

version has an almost quadratic improvement (Tulsi 2008).

Grover’s algorithm applies to non-ordered databases, where there is no notion of

distance between two elements. However, when storing information in physical memory,

a given item is stored at a specific location. This poses an interesting alternative version

of searching, called spatial search, as the problem of finding a marked location in a
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rigid structure using only local operations: in one time step one can either query an

oracle for the given site or move to a neighbouring site. Benioff addressed this problem

on a two-dimensional square lattice with N points (Benioff 2002). He was the first

to point out that a straightforward application of Grover’s algorithm with the spatial

search constraint requires Ω(N) steps with no improvement over classical algorithms in

terms of time complexity. Aaronson and Ambainis have developed a quantum algorithm

for this problem with time complexity O(
√
N log2 N) (Aaronson et al. 2003). Ambainis,

Kempe and Rivosh (AKR) have proposed a QW-based algorithm that improves the

time complexity to O(
√
N logN) (Ambainis et al. 2005). Recently, Tulsi has proposed an

improved version of the AKR spatial search algorithm for two-dimensional square lattices

with a time complexity of O(
√
N logN) (Tulsi 2008). It is an open problem whether

the lower bound Ω(
√
N) can be achieved for the spatial search on two-dimensional

lattices (Bennet et al. 1997). AKR have proposed a generalised framework for QW-based

algorithms on lattices of arbitrary structure in which the time complexity of the algorithm

may be obtained from the eigenvalue spectrum of the QW evolution operator. Following

AKR, we shall refer to this formalism as the abstract search framework.

In this paper, we provide a new QW-based algorithm that solves the spatial search

problem in a hexagonal (honeycomb) network in O(
√
N logN) steps. The time complexity

is analysed using the abstract search framework just discussed. The hexagonal network

has received attention from condensed matter physicists for many years due to its role in

the band theory of graphite (Wallace 1947). More recently, the development of graphenes

(two-dimensional hexagonal arrays of Carbon atoms) and their possible uses in quantum

computation (Van den Nest et al. 2006) have renewed the interest in these networks (Geim

et al. 2007).

The paper is organised as follows. In Section 2 we discuss the implementation of a

quantum walk on a periodic hexagonal network and obtain the evolution operator in the

Fourier-transformed space. In Section 3 we summarise the abstract search framework and

use it to evaluate the time complexity of the search algorithm on a hexagonal lattice. In

Section 4 we present our conclusions.

2. QW on the hexagonal network

The Hilbert space of a QW, H = HC ⊗ HP is composed of a coin, HC , and a position

subspace, HP . The evolution operator is of the form U = S · (C ⊗ I) where C is a

unitary operation in HC , I is the identity in HP and S , a shift operation in H, performs

a conditional one-step displacement as determined by the current coin state. The main

challenge in obtaining the time complexity of a QW-based algorithm on a honeycomb

lattice is the calculation of the spectral decomposition of the evolution operator U of

the underlying QW. The abstract search framework is based on a modified evolution

operator U ′ = S · C ′, obtained from the standard quantum walk operator U by replacing

the coin operation C with a new unitary operation C ′ that is not restricted to HC

and acts differently on the searched vertex. Ambainis and coworkers have shown that

the time complexity of the spatial search algorithm can be obtained from the spectral
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Fig. 1. Elementary vectors for the honeycomb network. The white sites form a lattice and black

sites form the associated basis.

decomposition of the evolution operator U of the unmodified QW (Ambainis et al. 2005),

which is usually simpler than that of U ′.

In regular networks, the use of the Fourier transform on the spatial coordinates

considerably simplifies the expressions for the eigenvalues and eigenvectors. It is known

that a Bravais lattice has an associated reciprocal lattice (Kittel 1995) and that this

provides a systematic way of obtaining the Fourier transform. The honeycomb network is

not a Bravais lattice, but this can be circumvented by splitting the vertices into two sets

with N/2 sites each (the lattice and basis sets) and encoding the which-set information

on an auxiliary one-qubit state. In Figure 1, we distinguish between the N/2 lattice sites

(gray) and the N/2 basis sites (black) using a colour code.

Let us consider the distance between two adjacent sites of the hexagonal network as

the unit distance. Then, the vectors a1 and a2 connecting two neighbouring lattice sites

(see Figure 1) have norm
√

3 and span an angle of 60o. The unit vector b that locates the

basis site adjacent to a given lattice site is given by b = 1
3
(a1 + a2). An arbitrary lattice

point may be addressed by a vector with integer components

r = n1a1 + n2a2 (1)

and each lattice point has an associated basis point at r + b. We assume periodicity

in both directions (von Karmann boundary conditions), so that n1, n2 ∈ [0, m − 1]. For

simplicity, we consider a number of sites N such that N = 2m2, for some integer m. Thus,

for an N-element network, we have N/2 kets |n1, n2〉 spanning the position subspace

associated with the lattice. The N/2 basis sites are accounted for by introducing an

auxiliary qubit, {|0〉, |1〉}, which is zero for a lattice site and 1 for a basis site. Thus, we

write |0; n1, n2〉 ≡ |0〉 ⊗ |n1, n2〉 for a state associated with a lattice site and |1; n1, n2〉 for

the state associated with the corresponding basis site. The N-dimensional lattice subspace

HP is spanned by kets {|s; n1, n1〉} with s = 0, 1.

At a given site there are three possible directions of motion, and we label each of

them with an integer index j = 0, 1, 2 so that the direction of motion is encoded in a

three-dimensional ‘coin’ subspace HC spanned by {|0〉, |1〉, |2〉}. The full 3N-dimensional
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Hilbert space is H = HC ⊗ HP and the basis states |j; s; n1, n2〉 form an orthonormal

set. In this basis, a generic state |Ψ〉 ∈ H is expressed as

|Ψ〉 =
∑
j; n1 ,n2

aj,n1 ,n2
|j; 0; n1, n2〉 + bj,n1 ,n2

|j; 1; n1, n2〉 (2)

where the complex coefficients aj,n1 ,n2

(
bj,n1 ,n2

)
are the lattice (basis) components and the

normalisation condition 〈Ψ|Ψ〉 = 1 is assumed. A step in any direction from a lattice

(basis) point leads to a basis (lattice) point according to the propagation rule

|j; s; n1, n2〉 → |j; s ⊕ 1; n1 − (−1)sαj , n2 − (−1)sβj〉 (3)

where ⊕ is the binary sum and v̂j = (αj , βj) are the directional vectors

v̂0 = (0, 0)

v̂1 = (1, 0) (4)

v̂2 = (0, 1).

This conditional displacement is implemented using a shift operator

S =
∑
j, s, n̂

|j, s ⊕ 1, n̂ − (−1)s v̂j〉〈j, s, n̂| (5)

where we have introduced the shorthand notation n̂ for (n1, n2) and the sum modulo m

is understood for these components. The evolution operator of a quantum walk on the

hexagonal network is then

U = S · (G3 ⊗ IP ) (6)

where IP is the identity in HP . The three-dimensional Grover operation G3 acts in HC

and, in the representation stated above, is given by

G3 =
1

3

⎛
⎝ −1 2 2

2 −1 2

2 2 −1

⎞
⎠ . (7)

After t iterations, an initial state |Ψ0〉 evolves to |Ψt〉 = Ut|Ψ0〉. Note that U is a real

operator, as required by the abstract search formalism (Ambainis et al. 2005).

For single-step displacements, the spatial part of the evolution operator is diagonal

in the Fourier representation, so let us now consider the Fourier transform in HP . The

lattice reciprocal (Kittel 1995) to the one defined by the vectors {a1, a2} is formed by

vectors {g1, g2}, which satisfy

g1 · a1 = g2 · a2 = 2π/m,

g1 · a2 = g2 · a1 = 0. (8)

A point of the reciprocal lattice is located through a vector k = k1g1 + k2g2 for integers

k1, k2 ∈ [0, m − 1]. We shall use the shorthand notation k̂ for the two-component vector

(k1, k2).

The coin components of |Ψ〉 play no essential role in the following, so we will omit the

coin dependence for the moment. So a state |Ψ〉 can be expressed in either the position
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representation or in the wavenumber representation as

|Ψ〉 =
∑

n̂

(
an̂|0; n̂〉 + bn̂|1; n̂〉

)
=
∑

k̂

(
fk̂|0; k̂〉 + gk̂|1; k̂〉

)
. (9)

The N states |s; k̂〉 are related to the position representation by the Fourier transform

|s; k̂〉 =

√
2

N

∑
n̂

e−ik·r|s, n̂〉 (10)

|s; n̂〉 =

√
2

N

∑
k̂

eik·r|s, k̂〉. (11)

These states satisfy 〈s, k̂|s′, n̂〉 =
√

2
N
eik·r δs,s′ , so Fourier transformed kets of lattice (basis)

states are orthogonal to basis (lattice) kets.

Taking into account the coin dependence and using the above relations, the action of

the shift operator, Equation (5), on k-space is

S |j; s; k̂〉 = ω−(−1)sk̂·v̂j |j; s ⊕ 1; k̂〉, (12)

where ω ≡ exp(2πi/m) and the directional vectors v̂j were defined in Equation (4). Notice

that S is diagonal in k-space and connects lattice points with basis points as expected.

This fact effectively reduces the problem to a six-dimensional subspace Lk spanned by

the kets {|j; s〉}. Since k̂ takes N/2 values, the Hilbert space is now decomposed in this

subspace and the one spanned by the |k̂〉 states, with a dimensional count 6 × N/2 = 3N.

In this six-dimensional subspace, in the representation stated above, the reduced evolution

operator Uk has the explicit form

Uk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
3

0 2
3

0 2
3

− 1
3

0 2
3

0 2
3

0

0 2
3
ωk1 0 − 1

3
ωk1 0 2

3
ωk1

2
3
ω−k1 0 − 1

3
ω−k1 0 2

3
ω−k1 0

0 2
3
ωk2 0 2

3
ωk2 0 − 1

3
ωk2

2
3
ω−k2 0 2

3
ω−k2 0 − 1

3
ω−k2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

Its characteristic polynomial factors as

P (λ) = (λ − 1)(λ + 1)(λ4 − 2 cos(2θk) λ
2 + 1), (14)

where the angle θk ∈ [0, π
2
] is defined by

cos(2θk) ≡ 4

9

(
cos k̃1 + cos k̃2 + cos

(
k̃1 − k̃2

))
− 1

3
, (15)

and k̃i ≡ 2πki/m for i = 1, 2. The six eigenvalues of Uk are ±1 and ±e±iθk .
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3. Time complexity of the search algorithm

The abstract search formalism described in Ambainis et al. (2005) provides a way to

implement a spatial search algorithm on a network where a QW has been properly defined.

A convenient summary of the abstract search formalism can be found in Tulsi (2008).

Assume that the search is for a single site r = r0 in a periodic hexagonal (honey-

comb) network with N sites. The effective target state in H is |t〉 ≡ |u〉 ⊗ |r0〉 where

|u〉 = (1/
√

6)
∑

j,s |j, s〉 is the uniform superposition in Lk.

The generalised search algorithm iterates the unitary operator

U ′ = U · Rt, (16)

where U is the unperturbed quantum walk operator defined in Equation (6) and Rt ≡
I3N − 2|t〉〈t|. In the introduction we mentioned that a generalised search is implemented

with a modified quantum walk operator of the form U ′ = S · C ′, where C ′ is a unitary

coin operation that acts differently on the searched site, that is,

C ′ = C ⊗ (IP − |r0〉〈r0|) + C1 ⊗ |r0〉〈r0|.

Both forms for U ′ are equivalent, provided the Grover coin C = G3 is used and the usual

choice of C1 = −IC is made for the coin operation on a searched site.

The initial state for the algorithm is the uniform superposition in H,

|Φ0〉 = |u〉 ⊗ |uP 〉 =
1√
3N

∑
j,s,n̂

|j; s; n̂〉, (17)

where

|uP 〉 ≡
√

2

N

∑
n̂

|n̂〉

is the uniform superposition in position space. Apart from a phase shift, the operator Rt

implements a reflection about the effective target |t〉 and a single application of Rt on

the uniform superposition ‘marks’ the searched state by changing its relative phase in a

similar way to Grover’s search algorithm (Grover 1996).

As mentioned previously, Ambainis et al. proved the remarkable result that the time

complexity of the abstract search algorithm depends on the eigenproblem of U alone

(Ambainis et al. 2005). They showed that, after T = O(1/α) iterations of UA, the initial

state evolves to a final state |Φf〉 = UT
A |Φ0〉, which has an increased overlap |〈Φf |t〉| with

the effective searched state |t〉. Detailed expressions for the dependence of α and 〈Φf |t〉
on the eigenvalues and eigenvectors of U are given below. The unperturbed operator U

must satisfy two conditions:

(i) U must be a real operator.

(ii) The uniform superposition state |Φ0〉 must be a non-degenerate eigenstate of U with

eigenvalue 1.

Both conditions are met by the quantum walk operator U defined in Equation (6) since

G3 is real and (G3 ⊗ I2)|u〉 = |u〉.
We follow the notation of Tulsi (2008) to describe the eigenproblem for U. The

eigenvectors associated with the −1 eigenvalue, which may be M-degenerate, are labelled
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as |Φi〉 for i = 1 . . .M. We write |Φ±
	 〉 for the eigenvectors associated with all other

eigenvalues distinct from ±1. The eigenvectors may be chosen so that the amplitudes on

|t〉 on the proper basis of U are real. The effective target state may then be expanded

with real coefficients as

|t〉 = a0|Φ0〉 +
∑
	

a	(|Φ+
	 + Φ−

	 〉) +

M∑
i=1

ai|Φi〉, (18)

where the index 	 runs over all pairs of conjugate eigenvectors with eigenvalues distinct

from ±1. These amplitudes (a0, a	, ai), together with the angles θk defined by Equation (15),

determine the time complexity of the abstract search algorithm (Ambainis et al. 2005;

Tulsi 2008). The rotation angle towards the searched element, which results from a single

application of U ′, is

α = O

⎛
⎝a0

[∑
	

a2
	

1 − cos θ	
+

1

4

M∑
i=1

a2
i

]− 1
2

⎞
⎠ . (19)

After T = π/2α iterations, the overlap with the searched state is

|〈t|α+〉| = O

⎛
⎝min

⎡
⎣(∑

	

a2
	 cot2

θ	

4

)− 1
2

, 1

⎤
⎦
⎞
⎠ . (20)

In both expressions, the sums
∑

	 run over the eigenvalues distinct from ±1.

The (unnormalised) eigenvectors |ν±
k 〉 associated with the eigenvalues ±1 are

|ν±
k 〉 ∝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

±(ωk1 − ωk2 )

ωk2 − ωk1

±ωk1
(
ωk2 − 1

)
1 − ωk2

±ωk2
(
1 − ωk1

)
ωk1 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

except for k1 = k2 = 0. Note that the projection of the effective target state |t〉 on Lk

is the uniform state |u〉 and 〈u|ν±
k 〉 = 0, unless k1 = k2 = 0. In this degenerate case, the

eigenvalues are ±1 and |u〉 itself is an eigenvector of Uk with eigenvalue +1. All the other

eigenvectors are orthogonal to |u〉 so, for all k,

〈u|ν+
k 〉 = δk,0 and 〈u|ν−

k 〉 = 0 (22)

so that a0 =
√

2/N and the terms corresponding to the eigenvalue −1 do not contribute

in Equation (18). We write the eigenvectors associated with the other eigenvalues ±e±iθk
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as | ± ν
(±θk)
k 〉. Equation (18) for the effective target state then reduces to

|t〉 =

√
2

N
|u, uP 〉 +

√
2

N

∑
k 
=0

[
a+

k

(
| + ν

(θk)
k 〉 + | + ν

(−θk)
k 〉

)
+

a−
k

(
| − ν

(θk)
k 〉 + | − ν

(−θk)
k 〉

)]
⊗ |k〉, (23)

with the real amplitudes

a±
k =

1

2

√
1 ± 1 + cos k̃1 + cos k̃2

3 cos θk
. (24)

Even though we do not have analytical expressions for all the eigenvectors of U, a

knowledge of the coefficients a±
k allows us to evaluate the time complexity of the search

algorithm.

For the quantum walk on a honeycomb, Equation (19) leads to

1

α
= O

⎛
⎝
√√√√∑

k 
=0

(a+
k )2

1 − cos θk
+

(a−
k )2

1 + cos θk

⎞
⎠ ≡ O

(√
A(N)

)
. (25)

We now concentrate on the N-dependence, for N � 1, of the argument A(N) of the above

square root. Using Equation (24), and after some manipulation, we obtain

A =
1

6

∑
k 
=0

4 + cos k̃1 + cos k̃2

sin2 θk
≈ N

48

1

(π − ε)2

∫∫ 2π−ε

ε

dk̃2dk̃1
4 + cos k̃1 + cos k̃2

sin2 θk
(26)

where we have used

sin2 θk =
2

3
− 2

9

(
cos k̃1 + cos k̃2 + cos(k̃1 − k̃2)

)
and approximated the sum by an integral in the usual form,

∑
k 
=0

→ N

8

1

(π − ε)2

∫∫ 2π−ε

ε

dk̃1dk̃2

with

ε = 2π
√

2/N.

For N � 1 (or ε � 1), the N-dependence of A is

A(N) � 3N

32

1

π2

∫ 2π−ε

ε

dk̃2

∫ 2π−ε

ε

dk̃1

k̃2
1 + k̃2

2 − k̃1k̃2

∼ N log

(
2π

ε

)
∼ N logN.

So 1/α = O(
√
N logN) iterations of U ′ are required to reach the final state |Φf〉.

Using Equation (20), we find that the inverse of the overlap between the final state and

the target |t〉 is

|〈t|Φf〉|−2 = O

⎛
⎝ 2

N

∑
k 
=0

[(
a+
k

)2
+
(
a−
k

)2]
cot2

(
θk/4

)⎞⎠ ≡ O (B(N)) . (27)
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|us

Xδ X†
δ −Z

Rt U

|1

|uc

Fig. 2. Tulsi’s circuit diagram for the one-step evolution operator of the quantum walk search

algorithm.

Using Equation (24) and for N � 1, the N-dependence of B(N) is

B(N) � 1

N

∑
k 
=0

cot2
(
θk/4

)
� 1

8(π − ε)2

∫∫ 2π−ε

ε

dk̃2dk̃1 cot2
(
θk

4

)
∼ logN, (28)

where the divergence comes, as before, from the sin−2 θk term. Hence

1

|〈t|Φf〉|2
= O (logN) . (29)

The analysis of the time complexity of the algorithm is as follows. After 1/α =

O(
√
N logN) iterations of U ′, the algorithm reaches the final state |Φf〉 with probability

p = |〈t|Φf〉|2. The method known as amplitude amplification (Brassard et al. 2002) states

that if there is a unitary operator U ′ such that the probability of measuring a marked

state upon measuring U ′t|Φ0〉 is p > 0, then there is a quantum procedure that finds the

marked state with certainty using O(1/
√
p) applications of U ′t. That procedure uses the

inversion about the mean, which can be implemented in O(
√
N) steps. This leads to an

overall complexity of O(
√
N logN) for finding the marked state in the honeycomb lattice.

This is the same complexity as the AKR spatial-search algorithm on the cartesian grid

of a torus (Ambainis et al. 2005), where each site has four neighbouring sites and the N

sites form a lattice.

In a remarkable paper, Tulsi described a method for improving even further the

probability of finding the marked vertex (Tulsi 2008). Consider a quantum circuit that

implements operator Rt followed by U as defined in Equation (16). Tulsi introduced an

extra qubit and defined a new one-step evolution operator as described in the circuit of

Figure 2, where −Z is the negative of the Pauli Z operator and

Xδ =

(
cos δ sin δ

− sin δ cos δ

)
, (30)

where δ must assume the value 1/
√

logN. It is straightforward to show that Tulsi’s proced-

ure increases the overlap between the final state and the target such that |〈t|Φf〉| = O(1).

Consequently, using Tulsi’s modification, the overall time complexity of the search

algorithm in the honeycomb lattice may be improved to O(
√
N logN), as in the AKR

case. It is not necessary to use the amplitude amplification method in this case. We

have performed an independent numerical simulation that agrees with this analytical

calculation.
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4. Conclusions

Hexagonal networks (honeycombs) are the underlying representation of a carbon structure

called graphene, which has been attracting special attention in recent years, especially

for its potential applications in nanotechnology. In this paper, we have discussed a new

quantum algorithm for spatial search in a honeycomb with periodic boundary conditions.

The protocol is based on a quantum walk in the honeycomb. We obtained the expression

for the evolution operator in the Fourier representation and solved its eigenvalue problem.

We then used the abstract search formalism developed in Ambainis et al. (2005) to obtain

the complexity of the algorithm from the partially known spectral decomposition of the

evolution operator. Our results have been verified by numerical simulations.

The search algorithm on the honeycomb has an overall time complexity of O(
√
N logN)

using the amplitude amplification procedure. Further improvement, to O(
√
N logN), can

be obtained using Tulsi’s technique. Surprisingly, this is the same complexity found for

the quantum search on the square grid after Tulsi’s improvement. Both the hexagonal

grid and the square grid are regular graphs that cover the plane, although the former has

degree 3 and the latter has degree 4. The fact that the complexity of the search algorithm

is the same in both cases suggests that the number of connections of each node is not

affecting the complexity of the abstract spatial search algorithm.

Several open questions remain. One of them is whether the abstract search algorithm

has the same complexity when applied to graphs of general degrees. The triangular

network, for instance, has degree 6 and also covers the plane. It would be interesting

to investigate the behaviour of the algorithm on this topology. One may also inquire

how robust the search algorithm is when there are some missing nodes. Finally, we point

out that an optimal spatial search algorithm O(
√
N) for the case of a two-dimensional

network covering the plane has not yet been found.
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