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Abstract

The Landau-Pomeranchuk-Migdal effect is the suppression of Bethe-Heitler radi-
ation caused by multiple scattering in the target medium. The quantum treatment
given by S. D. Drell and the author for homogeneous targets of finite thickness will
be reviewed. It will then be extended to structured targets. In brief, it is shown
that radiators composed of separated plates or of a medium with a spatially varying
radiation length can exhibit unexpected structure, even coherence maxima and min-
ima, in their photon spectra. Finally, a functional integral method for performing
the averaging implicit in multiple scattering will be briefly discussed and the leading
corrections to previous results evaluated.
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1 Introduction and Motivation

In a paper[1] by S. D. Drell and the author, a quantum treatment of multiple scatter-

ing and of the bremsstrahlung of photons by a charged particle undergoing random

multiple scattering was given. This treatment included as limiting cases the familiar

Bethe-Heitler (BH) radiation[2] from a charged particle scattering from an isolated

atom relevant for a thin target, and in the opposite limit the Landau-Pomeranchuk[3]-

Migdal[4] (LPM) effect which has been experimentally verified[5] to suppress the

radiation for a thick target. This formulation included the effects of a finite target

thickness in such a way as to smoothly connect these two limits. An eikonal approach

was used and lead to a physical but quantum mechanical treatment of multiple scat-

tering and then to a derivation of the LPM suppression of soft photon radiation from

high energy electrons in matter.

The physics of the LPM effect is that of the formation length of the photon;

this is, the longitudinal path length required via the uncertainty relation for a high

energy electron of initial momentum p, final momentum p’, and mass m, to radiate

a photon of momentum k near the forward direction. The formation length is given

by 1 j = 2pp’/  (m2k)  . At high energies (p, p’ >> m ) and for soft photon emission

k << p, the formation length lj can grow quite large relative to the scattering mean

free path of the electron, eventually becoming macroscopic. When this occurs, there

is a loss of coherence that leads to suppression in spite of the net increase in the

amount of acceleration of the charge.

A general and clear treatment of semiclassical photon radiation can be found in

the review paper by A.I. Akhiezer and N. F. Shul’ga[9] where earlier references can

be found. A more accurate treatment of the coulomb nature of the basic scattering

process has recently been given[10] for an infinite target.
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2 Eikonal Results and Statistics of the Medium

We need not review in detail the eikonal formulation for high energy scattering by

extended targets[1]. Suffice it to say that since we are interested in the effects of

multiple scattering in the medium, the eikonal expansion must be carried out to

order (1/p in order to include the effects of ‘bending’ of the particle paths. The phase

functions will involve longitudinal integrals through the scattering fields of the target.

The main perturbation on the trajectory arises from the transverse electric fields of

the atoms in the medium. For simplicity we model the non-crystalline medium in

the following way. Consider an electron entering the medium. As it wanders through

the medium, it will experience transverse forces due to atoms randomly above or

below its path and at varying distances or strengths. The next electron incident

upon the target will enter at a different point and see a completely different set of

varying fields. While each electron sees a fixed set of fields, the ensemble of incident

particles will see an almost random set. Clearly, the probability of the particular

process under study must be computed for fixed fields, and then these fields must

be statistically averaged. The eikonal approach is convenient, because one can write

down the transition probabilities in closed form, and then perform the averaging

explicitly.

The matrix element for single photon emission using the above approximations

and the probability for emission were fully discussed[1]. The result for a given field

distribution in the target was given in the form, pf = xpi and k = (1 – x) pi,

(1)

where
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and the dimensionless variables are defined by bi = Zi /1 f and b = b2 – bl .

The field dependent quantities A(z2,  Z1, ~) and 77(z2, Z1, 1) are given by

(2)

(4)

(5)

and where z = Z2 — ZI .

The model introduced in Ref. [1] reflects the fact that each incident electron ex-

periences a very different arrangement of the atomic electric fields. The statistical

average involved is therefore the average over the wave packets of the individual elec-

trons. The transverse field varies with depth z from atomic layer to atomic layer.

The quantity FL(z) dz is simply the differential transverse momentum acquired in

traversing the medium from z to z + dz. Its statistical average in this non-crystalline

medium is given by

(6)

where explicit note has been taken that the medium may vary from layer to layer so

that the radiation length may depend upon position. This relation allows one to com-

pute all statistical averages that will be needed. The average transverse momentum

accumulated in one radiation length of target is

The transverse electric field is zero outside the region 0 < z < l where l is the

total thickness of the target. To lowest order, used by LPM for example, the statistical

averages for the needed quantities can be computed directly from the above:

(7)

(8)
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where b = b2 – bl . L(z) is the radiation length that is taken to be infinite outside

the target, i.e., for z < 0 and for z > l. Recognizing ctL as the mean free path, it

is convenient to introduce the thickness of the target in units of the average inverse

mean free path as

(9)

This allows the overall scales to be extracted from A and q. To this end define

(10)

(11)

(12)

(13)

The explicit statistical averages for a homogeneous target plate of thickness l are

readily evaluated. The results for b2 and bl in the regions before, inside, and after

the target, denoted by (– , 0 , + ) respectively, are

These formulas join smoothly at all common boundaries of the regions. In addi-

tion, the symmetry between (+) and (–) , that is (b2 # bl – bl ) , is also evident.

3 Functional Integrals

In order to evaluate the statistical average of the probability of emission to all orders,

in is convenient to introduce a standard functional averaging procedure used in the
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treatment of gaussian random variables. The probability

integrand 1(b2,  bl, bl) , is averaged over the distribution

of emission, or rather the

(14)

where

(15)

The unit matrix weight W reflects that there is zero correlation length in z, or more

precisely that it is small compared to the mean free path and the formation length.

The inverse of W measures the size of the electric field fluctuations,

(16)

Since the function 1 (b2, bl, b~) involves the electric field in a quadratic functional in-

side a trigometric function, the statistical average is easily performed. The leading

correction to the LPM approximation involves a cross correlation between the am-

plitude term ~ and the phase term ~. This new term, denoted by ~, is given in the

previous table. Explicitly it is

(17)

where b> is the greater of b’ or b“ and J is the normalization integral used in Eq. ( 13).

4 Emission Probability

In Ref.[1], the statistical average of the probability of emission was evaluated in

the LPM approximation, which simply replaces the field quantities ~ (b2, bl, b~) and

q(b2,  bl, b~) by their averages. This approximation is not

previous section, and the lowest order cross correlation
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phase can be easily evaluated. Eliminating the integration variable b1 in favor of b

yields

where (19)

To this order, the only difference from the result of Ref. [1] is the COS(C)  term that arose

from the cross correlation. Now the numerical effect of this term will be discussed.

5 Bethe-Heitler Limit and LPM Form Factor

To first order in ~ and ~, each of which is proportional to the square of the net

impulse given to the radiating particle, the integrand is

(20)

Using the above values for ~ and ij and interchanging the integration order yields

This is the familiar BH formula in the soft photon limit. This result, as expected, does

not depend upon the detailed structure or geometric arrangement of the target, only

the total number of radiation lengths through the target as expressed by the integral

T. In Ref. [1] a form factor F, which is unity when BH is valid, was introduced to

track the LPM suppression. Here it is convenient to define

(22)

where the x dependence arises only from the spin factor r(x) and T is essentially the

number of mean free paths through the target. The photon momentum k together
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with the particle energy determine the formation length lf . The form factor is given

6 Small k Limit

The BH limit is valid for small T and small formation lengths (or large k); the

macroscopic internal structure of the target plays no role here. In the small k limit,

in which the formation length becomes larger than the target thickness, the internal

structure of the target again plays no role. However the suppression due to multiple

scattering is still manifest. Also, in the limit of extremely small k, the effects of

the index of refraction of the target medium become important; these effects are not

treated here. Our problem becomes one of radiation from a effectively thin target. In

this limit one finds

where B is the position of the center of the target. Writing bz = B + bw with

db2 = b dw,  allows the b integral to be performed and the form factor becomes

where D(w) = 1 + 6Tw(1 – w) . For T ~ 0, the form factor approaches one, the BH

result. For finite T, the form factor is below the BH value. Again, this result does
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not depend upon the detailed structure or geometric arrangement of the target, only

on the integral variable T.

7 Structured Target

The cases of a thin, finite and thick homogeneous targets were discussed in Ref.[1].

It is straightforward to numerically integrate the explicit formula for the form factor

F for any target configuration. Here we will discuss the radiation from segmented or

laminated targets that are composed of identical plates separated by a vacuum gap

of constant width. The radiation length of the target plate medium will be denoted

by L. Recall that

where l is the thickness of the (collapsed) target.

gap variable is introduced as

(27)

In analogy with the above, a total

(28)

where g is the total width of all the gaps in the target.

Thus T measures the total radiation thickness of the material in the target while

G measures the total thickness of the gaps. For example, a series of plots will be

presented that compares the k spectrum for p and T fixed and G increasing. Of

course in the BH limit of large k, and in the opposite limit of lf >> l, F will not

depend upon G. Sample numerical results will be presented in the next section for

different gaps and number of plates.

8 Numerical Results

It is perhaps surprising that photons with energies in the tens of MeV can exhibit

a macroscopic interference effect. In order to get a feel for this effect consider the
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following. The radiation length for a gold target is L = 3.4mm. At a photon energy

of 27MeV, and an incident electron beam of 25 GeV, the formation length

(29)

is 0.034mm, the thickness of a 1% Au radiator. In lead, which has L = 5.6mm,

the formation length corresponding to a 1% radiator occurs at a lower photon energy,

16MeV. The formation length also scales as the square of the incident electron energy.

In Figure 1 the photon spectra form factor for a 25 GeV electron beam incident

upon a set of Au targets with T = 0.1, 1.0, and 10.0 (0.07, 0.7, and 7% of a radiation

length respectively) are shown. The dashed curves are the form factor in the LPM

approximation of Eq. (24). The solid curves will be discussed shortly. The computed

points are shown and are simply connected by straight lines

In Figure 2 the form factor for a 25 GeV electron beam in

as in all the graphs.

the low k limit in which

lj >> l is shown as a function of target thickness T. The behavior in the LPM

approximation is also shown.

The first example of a structured target to be discussed is a T = 1 (N 0.7%

radiation thickness) target that is composed of two T = 0.5 laminations or plates.

For this parameter set and for a gold target, the formation length is equal to the

original target thickness at k = 42.4MeV. In Figure 3 the spectra are plotted for

values of the gap extending out to G = 5. The subsidiary peak moves down in k

as the gap increases. The peak occurs when the formation length matches the plate

separation.

In Figure 4 the spectra expected from a 4-segment equally spaced Au target are

given for several values of the gap. In this example, each plate has T = 0.25 for a

total T = 1. The final total thickness of the target from the front surface to the rear

surface at G = 9 is ten times the original thickness. The amount of radiator material
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remains constant.

The interference effect persists for thicker targets. The spectra for a two plate

Au target is plotted in Figure 5 for T = 2 and several gap values. For example, at

G = 5 the total dimensionless distance between the centers of the plates is 6. The

formation length is equal to this separation at k N 42.4/6 w 7 MeV which is roughly

the position of the subsidiary peak.

The unexpected interference effect computed here should be straightforward to

measure experimentally using the techniques pioneered in Ref. [5]. In addition, it may

be possible to design structured targets to yield bremsstrahlung spectra with desirable

and interesting characteristics.

9 Acknowledgements

I wish to thank Sid Drell, Peter Bested, Spencer Klein, and Ralph Becker-Szendy for

discussions of the LPM effect and of the data taken by the SLAC E-146 collaboration.

References

[1]

[2]

[3]

[4]

R. Blankenbecler and S. D. Drell, to be published in Phys. Rev. D in (1996). An

extensive list of earlier references to the eikonal method are given here.

H. A. Bethe and W. Heitler, Proc. Roy. Sot. A146, 83 (1934).

L.D. Landau and I.J. Pomeranchuk, Dokl. Akad. Nauk. SSSR 92, 535 (1953); 92,

735 (1953). See also L. Landau, The Collected Papers of L.D. Landau, Sections

75-76, pp 586-593 Pergamon Press, (1965).

A.B. Migdal, Phys. Rev. 103, 1811 (1956).

11



[5] “An Accurate Measurement of the Landau, Pomeranchuk, Migdal Effect”, by P.

Anthony et al., SLAC-PUB-95-6796. Phys. Rev. Lett. 75, 1949 (1995).

[6] “Suppression of Radiation in an Amorphous Medium and in a Crystal”, N.F.

Shul’ga and S.P. Komin, JETP Lett. 27, 117 (1978).

[7] “Theory of Emission by Relativistic Particles in Amorphous and Crystalline

Media”, N.V. Laskin, A.S. Mazmanishvili, N.N. Nasonov, and N.F. Shul’ga,

JETP Lett. 62, 438 (1985).

[8] “Radiation of Relativistic Particles in Single Crystals”, A.I. Akhiezer, N.F.

Shul’ga, Sov. Phys. Usp. 25, 541 (1982).

[9] “Semiclassical Theory of High-Energy Particle Radiation in External Fields,”

A.I. Akiezer and N. F. Shul’ga, Physics Reports 234, 297-365 (1993).

[10] R. Baier, Yu.L. Dokshitser, S. Peigne and D. Schiff, “ The Landau-Pomeranchuk-

Migdal Effect in QED”, BI-TP 95-40, CERN-TH.96/14,CUTP-724, LPTHE-

Orsay 95-84. Earlier references can be found here.

[11] “Notes on the Landau, Pomeranchuk, Migdal Effect: Experiment and Theory”,

by Martin Perl, May 1994. SLAC-PUB-6514. Presented at “Les Rencontres de

Physique de la Vallee d’Aoste”, La Thuile, Italy, 6-12 Mar 1994.

[12] R. Blankenbecler, “Multiple Scattering and Functional Integrals.” SLAC–PUB-

96-7160, (to be published).

12



Figure 1

The form factor F(k,T=1,x) for a solid Au target for three different values of T.
The dashed curves are the LPM approximation; the solid curves are the result

with the cross correlation term.
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A plot of the formfactor F(k,T,x) vs T for small k, that is,
forlf>>landx~l.

14



A summary graph of F(k,T=1,x) for a two segment Au target
for various gap values in the LPM approximation.
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A summary graph of F(k,T=1,x) for a four segment Au target
for selected gap values in the LPM approximation.
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A summary graph of F(k,T=2,x) for a two segment Au target
for various gap values at an energy of 25 GeV

in the LPM approximation.
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