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We derive a Markovian master equa-
tion that models the evolution of sys-
tems subject to driving and control fields.
Our approach combines time rescaling
and weak-coupling limits for the system-
environment interaction with a secular ap-
proximation. The derivation makes use
of the adiabatic time-evolution operator in
a manner that allows for the efficient de-
scription of strong driving, while recover-
ing the well-known adiabatic master equa-
tion in the appropriate limit. To illustrate
the effectiveness of our approach, firstly we
apply it to the paradigmatic case of a two-
level (qubit) system subject to a form of
periodic driving that remains unsolvable
using a Floquet representation and lastly
we extend this scenario to the situation
of two interacting qubits, the first driven
while the second one directly in contact
with the environment. We demonstrate
the reliability and broad scope of our ap-
proach by benchmarking the solutions of
the derived reduced time evolution against
numerically exact simulations using ten-
sor networks. Our results provide rigorous
conditions that must be satisfied by phe-
nomenological master equations for driven
systems that do not rely on first-principles
derivations.

1 Introduction
Any realistic treatment of a quantum system can-
not ignore the presence of additional interacting
systems that are outside of our control, commonly
denoted as the system’s environment. When the
additional degrees of freedom of the environment
are taken into account, the unitary evolution of
a closed quantum system must be modified to
Giovanni Di Meglio: giovanni.di-meglio@uni-ulm.de

account for the system-environment interactions,
which may cause e.g. decoherence and dissipa-
tion.

To obtain a description of the dynamics of
the open system, we can derive and solve
master equations by tracing out the envi-
ronmental degrees of freedom from an initial
system-environment Hamiltonian. The Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) equa-
tion [1, 2] is a widely-used and celebrated exam-
ple of master equation. Its standard microscopic
derivation relies on several assumptions, includ-
ing the Born-Markov and secular approximations,
the latter correspondent to the requirement of
large spacing for the system Bohr frequencies [3–
5]. However, this derivation was essentially tai-
lored to time-independent Hamiltonians and it
becomes considerably more challenging for time-
dependent cases. The primary obstacle was the
decomposition of the interaction picture Hamil-
tonian in a manner that transforms the master
equation into the Lindblad form, which guaran-
tees complete positivity of the dynamics at all
times. As a result, less research was initially
conducted in this area and only during the last
decade prominent results started to appear in the
literature.

One of the earliest attempts to address this
problem was the pioneering work by Davies and
Spohn in [6]. In this work, the authors pro-
posed a first extension of the time-independent
framework assuming sufficiently weak driving, in
order to formulate a linear response theory in
the presence of a generic Markovian environment.
Shortly after, Alicki [7] employed a Markovian
master equation with an external Hamiltonian
perturbation as paradigmatic model of a quan-
tum heat engine, assuming that the driving is suf-
ficiently slow to be considered constant on a time-
scale much larger than the bath relaxation time
but shorter than the characteristic system dy-
namics. Under these conditions, the conventional
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time-independent kernel can be replaced with an
analogous expression written in the instantaneous
eigenbasis of the system Hamiltonian. Subse-
quent analyses include results derived in connec-
tion with fault-tolerance in adiabatic quantum
computation and quantum error correction, as in
[8, 9]. In the following years, apart from some
phenomenological approaches, only two micro-
scopic derivations have been studied systemat-
ically. The first one by Albash et al. [10] re-
quires the adiabatic condition on the closed sys-
tem dynamics, therefore named adiabatic mas-
ter equation after that, and has found a wide
range of applications and further developments
so far, especially for studying the impact of noise
on adiabatic dynamics (as in [11]); the second
concerns the periodic driving treated by means
of Floquet theory [12–18], that allows to extend
the ordinary microscopic derivation without any
additional complication, with the drawback of be-
ing in practice applicable only to very few models
whose Floquet representation is known.

Recently, starting from the work by Yamaguchi
et al. in [19], different solutions have been pro-
posed in order to tackle the problem for strongly
driven systems, i.e. beyond the adiabatic regime.
We note in particular Dann et al. [20], who
made use of a Lie algebraic structure generated by
the time-evolution operator in order to obtain a
suitable Markovian master equation for arbitrary
driving, which includes as limiting cases both the
adiabatic master equation and the Floquet theory
based approach, but also Wang et al. [21], where
a different master equation is derived heuristi-
cally by using the Nakajima-Zwanzig approach
in the adiabatic reference frame and applied to
the dissipative Landau-Zener model.

Finally, we also mention an alternative line of
works, aimed at deriving Markovian master equa-
tions circumventing the secular approximation
([22–27]). Most of these approaches are based on
manipulations of the Bloch-Redfield master equa-
tion in order to suitably overcome the violation
of positivity, while keeping the so called secular
contributions.

Despite the extensive literature on the topic,
we contend that additional methods may pro-
vide a wider understanding of sufficient condi-
tions that allow to achieve a Markovian evolution
in the presence of control or driving fields and
eventually fill the gap where the previous master

equations could be extremely hard to handle.
In this work, we derive a Markovian master

equation whose validity holds even if the system is
strongly driven. In particular, such master equa-
tion represents a good approximation, in a sense
that will be precisely clarified, of the exact re-
duced dynamics, under the conditions of weak
system-environment coupling, fast decay of the
environment correlation functions and sufficiently
large spacing for the system Bohr frequencies, as
explained more in details in the following.

Our derivation starts from the Nakajima-
Zwanzig equation and draws inspiration from the
approach outlined by Davies in the seminal works
[28, 29] (see also [4, 30]). The crucial idea is to
apply a time-rescaling with respect to the dimen-
sionless system-environment coupling and then
to study the uniform convergence of the system
density matrix in the weak-coupling limit. For
time-dependent Hamiltonians, we show that this
rescaling can be consistently applied provided
that the system parameters are renormalised to
reabsorb the coupling dependence in the Hamil-
tonian. By implementing our rescaling procedure
and utilising the weak-coupling limit for the envi-
ronmental interaction, we can apply the method
of stationary phase to introduce a secular approx-
imation. This approach leads to a Markovian
master equation in Lindblad form, featuring time-
dependent jump operators and positive dissipa-
tion rates. Moreover, this procedure also delivers
an estimation of the range of validity of the mas-
ter equation in terms of the coupling strength of
the system-environment interaction and the sys-
tem parameters.

We substantiate these claims with the appli-
cation of our master equation to the analysis of
a periodically driven two-level system. It is well
known that, for periodic Hamiltonians, the Flo-
quet theory based approach leads to a Lindblad
master equation with a derivation that matches
that for a time-independent scenario, as long as
the Floquet representation of the system time-
evolution operator is known ([17]). However, in
many cases this representation is hard to obtain,
which limits significantly the practical implemen-
tation of this approach.

In contrast, we demonstrate that our frame-
work is specifically tailored for the effective study
of strong periodic drivings. This approach pro-
vides a valuable alternative method to analyse the
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behaviour of populations and coherences in the
instantaneous eigenbasis of the system Hamilto-
nian. In the strong driving regime, we show that
the driven dissipative dynamics described by our
master equation is responsible for enhanced gen-
eration of coherence as compared with the purely
unitary dynamics, the latter in agreement with
results provided in [20]. Ultimately, we check
that in the adiabatic limit our master equation
correctly reproduces the equation in [10].

As last step, we extend the analysis to the situ-
ation of two interacting qubits, with one of them
subject to a periodic driving and the other in di-
rect contact with the environment. We analyse
the combined effect of driving and dissipation in
the strong driving regime, by looking at local ob-
servables of the two qubits. Furthermore, the lim-
iting case of weakly interacting qubits is treated
in detail. In particular, it is shown in this regime
that the master equation fails to correctly repro-
duce the dynamics of the system, as result of the
breakdown of the full-secular approximation.

Our results are supported by numerically exact
simulations obtained by propagating the joint dy-
namics of system and environment using tensor
networks.

This paper is organised as follows. We begin by
presenting the general derivation of the quantum
master equation (section 2). We then move to
discuss the application to the paradigmatic case
of a periodically driven qubit coupled to a bosonic
environment and following the case of two inter-
acting qubits, proceeding in addition to bench-
mark the results of our derived master equations
against numerically exact simulations (section 3
and 4). We finally present the conclusions and
give further prospects on the present topic (sec-
tion 5).

A quick summary of the main results obtained
are reported in the paragraph at the end of sec-
tion 2, where the reader can find the necessary in-
formation to calculate and make use of the master
equation derived in this paper.

Additional technical details on the considered
methodology can be found in the appendices (A-
C), including a succinct discussion on tensor net-
work simulations (appendix D).

2 Derivation of the reduced system’s
dynamics. General theory
For completeness, let us start by giving some def-
initions concerning dynamical maps that will be
used throughout this paper, mainly in order to fix
the notation. The reader familiar with the topic
can directly jump to the subsection ’Characteri-
sation of the problem’ in the next page. Let H be
a separable Hilbert space and L(H) = {X : H →
H|X linear} the space of linear operators acting
on the Hilbert space, which we can equip with
the trace norm ||X||1 = tr[

√
X†X], endowing the

structure of Banach space B(H) = (L(H), ||.||1)
of trace-class operators.

Definition 2.1. A quantum state (or density
matrix) is a positive semidefinite (ρ ≥ 0) and
self-adjoint operator ρ ∈ B(H) with ||ρ||1 = 1.
The set of quantum states will be indicated by
B+(H) ⊂ B(H).

The evolution of a quantum system is de-
termined by linear transformations belonging to
B∗(H) = {T : B(H) → B(H)|T linear}, which
is a Banach space with respect to the norm
||T ||∞ = sup

X∈B(H),X ̸=0

||T (X)||1
||X||1 , with the property

||T1T2||∞ ≤ ||T1||∞ ||T2||∞. We state here some
definitions of convergence for operators, that will
be useful later.

Definition 2.2. Given a Banach space B and a
sequence of operators {Tn} ∈ B∗, if some T ∈ B∗

exists such that

lim
n→∞

||Tn − T ||∞ = 0, (1)

then we say that the sequence converges uni-
formly to T .

Definition 2.3. Given a Banach space B and a
sequence of operators {Tn} ∈ B∗, if some T ∈ B∗

exists such that ∀X ∈ B we have

lim
n→∞

||TnX − TX||1 = 0, (2)

then we say that the sequence converges strongly
to T .

Note that strong convergence in B∗ requires
convergence in B with respect to the norm ||.||1
for the sequence given by {TnX} ∈ B. Moreover,
uniform convergence in B∗ always implies strong
convergence in B∗.
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Definition 2.4. Let L be a vector space, two
norms ||.||1 and ||.||2 on L are equivalent if there
are constants C1, C2 ≥ 0 such that C1||X||1 ≤
||X||2 ≤ C2||X||1, ∀X ∈ L.

In finite dimensional spaces all norms are
equivalent, therefore proving the convergence
with respect to a given norm automatically guar-
antees the convergence in all other norms.

The transformations that map states into
states need to satisfy some properties.

Definition 2.5. Λ ∈ B∗(H) is a positive map if
Λ(X) ≥ 0 for any X ≥ 0.

Definition 2.6. Λ ∈ B∗(H) is k-positive if
Λ ⊗ idk : B(H) ⊗ Mk(C) → B(H) ⊗ Mk(C) is
a positive map, where idk is the identity in the
space of k × k complex matrices Mk(C).

Definition 2.7. Λ ∈ B∗(H) is completely posi-
tive (CP) if it is k-positive ∀k ∈ N.

Physically, the CP condition can be argued to
be fundamental as the requirement of positivity
alone is not sufficient to guarantee that a quan-
tum state is mapped into a positive semidefinite
operator, when we include the possibility of cor-
relations with additional degrees of freedom.

Definition 2.8. Λ ∈ B∗(H) is a quantum evolu-
tion map (or dynamical map) if it is completely
positive (CP), trace preserving (TP) and Her-
miticity preserving, i.e. Λ(B+(H)) = B+(H).

We are going to consider now families of quan-
tum evolutions which depend on some real pa-
rameter. Moreover, henceforth we assume a finite
dimensional Banach space B(H).

Definition 2.9. An evolution family is a differ-
entiable family of two-parameter maps given by

{
Λt,s = T exp

{ t∫
s

duL(u)
}}

t,s≥0
, (3)

where T is a time-ordering, L(t) ∈ B∗(H), which
satisfy for all t ≥ r ≥ s

Λt,s = Λt,rΛr,s,

Λs,s = I.
(4)

The first property is frequently called divisibility.

The expression for the evolution family has to
be understood as a Dyson series, which is always
convergent for finite dimensional spaces, provided
the generator L(t) to be bounded.

Among the classes of possible evolutions for a
quantum state described by evolution families we
are interested in the following:

Definition 2.10. An evolution family {Λt,s =

T exp
{ t∫

s
duL(u)

}
}t,s≥0 which fulfills definition

2.8 ∀t, s with t ≥ s ≥ 0 is called Markovian or
equivalently CP-divisible.

The familiar case where the dynamical map
Λt,s is assumed to obey a semigroup composi-
tion law for arbitrary intermediate r is a special
instance where the resulting dynamics becomes
time homogeneous.

A full characterisation of the generator for
Markovian quantum processes is provided by the
following important result (see [4] for a derivation
that generalises [1, 2]):

Theorem 2.1. The evolution family {Λt,s =

T exp
{ t∫

s
duL(u)

}
}t,s≥0 is Markovian if and only

if

L(t)ρ = − ı[H(t), ρ] +
∑
k∈I

γk(t)
(
Vk(t)ρV †

k (t)

− 1
2{V †

k (t)Vk(t), ρ}
)
,

(5)
where H(t) ∈ L(H) is self-adjoint, Vk(t) ∈ L(H)
are called jump operators, γk(t) ≥ 0 ∀k, t are the
so-called dissipation rates and I is a set of in-
dices. L(t) in (5) is also called GKLS generator.

Note that for a time homogeneous dynamics,
jump operators and dissipative rates become time
independent and we recover the functional form
of the dissipator familiarly referred to as "Lind-
blad form". This ends our compilation of prelim-
inary notions. Now we are ready to introduce our
problem.

Characterisation of the problem. Non-unitary
dynamics as the one described by Theorem 2.1
arises as the result of the interaction between
our system of interest and additional degrees of
freedom which are not under our control. Let
B(HS) be the finite dimensional Banach space
of a first quantum system, simply called system,
and B(HB) of a second one called environment,
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which needs not to be finite dimensional. We
suppose that the evolution of any quantum state
ρ ∈ B(HS ⊗ HB) is described by the unitary dy-
namics

ρ → ρ(t) = T exp
{ t∫

0

dsZ(s)
}
ρ, (6)

with generator Z(t)ρ = −ı[H(t), ρ] and Hamilto-
nian

H(t) = HS(t) +HB + gHI , (7)
where g is a dimensionless coupling constant that
defines the strength of the system-environment
interaction, HS(t) ∈ L(HS) analytic in t and non-
degenerate, HB ∈ L(HB), HI ∈ L(HS ⊗ HB). A
general form for the interaction Hamiltonian that
we assume is HI =

∑
αAα ⊗ Bα with Aα, Bα

self-adjoint operators and α runs over a finite
set. Clearly, as B(HS) is finite dimensional no
problem on the operators domain arises. More
general cases where also HB or HI are time-
dependent operators will not be treated in this
work. We are interested in the reduced density
matrix ρS(t) = trB[ρ(t)], which can be obtained
by using the projection operator approach intro-
duced by Nakajima and Zwanzig [31, 32] (see also
[4] for more details).

We introduce two orthogonal projectors on
B(HS ⊗ HB), namely Pρ = trB[ρ] ⊗ ρth and
Q = I − P, where ρth = 1/ZBe

−βHB is a thermal
state for the environment; the approach works
for any reference state ρB for the environment,
however one useful assumption that we make is
[ρB, HB] = 0, hence for concreteness we will work
assuming it is a Gibbs state. The equation, writ-
ten in the interaction picture with respect to the
free evolution HS(t) + HB (henceforth indicated
by the tilde), reads

d

dt
P ρ̃(t) = g2

t∫
0

dsPV(t)G(t, s)V(s)P ρ̃(s) (8)

where

V(t)ρ = −ı[H̃I(t), ρ],

G(t, s) = T exp
{
g

t∫
s

dxQV(x)Q
}
,

(9)

and H̃I(t) = U †
0(t, 0)HIU0(t, 0), U0(t, 0) =(

T exp{−ı
t∫

0
HS(s)ds}

)
e−ıHBt. We remind the

two assumptions underlying this equation:

1. PV(t)P = 0, which implies that
trB[H̃I(t)ρB] = 0, a condition that can
be always fulfilled by modifying the Hamil-
tonian HS .

2. ρ(0) = ρS(0) ⊗ ρth, so there exists a (initial)
time such that the system and the environ-
ment are uncorrelated.

For our derivation we make use of the integrated
version

P ρ̃(t) =P ρ̃(0)

+ g2
t∫

0

ds

s∫
0

duPV(s)G(s, u)V(u)P ρ̃(u).

(10)
The aim of the present paper is to derive suf-

ficient conditions such that the reduced density
matrix ρ̃S(t) = trB[ρ̃(t)], described by Eq.(10)
under the assumptions listed above, evolves ac-
cording to a Markovian quantum process charac-
terised by a GKSL propagator.

As a matter of clarification, it is useful to
briefly revise, in the case of time-independent
Hamiltonians, the two main possible paths one
can pursue:

1. A first approach, which is the standard mi-
croscopic derivation pursued in quantum op-
tics (see for example [3]), starts directly from
the Von Neumann equation of system and
environment and relies on a sequence of ap-
proximations/ansaetze, exemplified by the
Born-Markov approximation. Underpinning
this approach is the assumption of weak cou-
pling to a sufficiently broadband reservoir so
that the time evolution admits a separation
of time scales, τS ≫ τB, where τS is a char-
acteristic time scale for ρ̃S(t) and τB is a
decay time of some environment correlation
functions. While many derivations are also
based on a secular approximation (rotating-
wave approximation) in order to get a GKLS
generator, several recent works overcame this
limitation ([22–27]). This derivation is phys-
ically intuitive and finds applications in a
large range of phenomena involving atomic
and molecular systems coupled to the radia-
tion field.

2. The second approach is the derivation out-
lined by Davies in [28, 29]. The idea is
to start from the Nakajima-Zwanzig Eq.(10)
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and prove the uniform convergence of the
density matrix in the weak-coupling limit
g → 0 and under a suitable time-rescaling:

lim
g→0;t=τ/g2

||ρ̃S(t) − eτL||1 = 0, (11)

where L is a time-independent GKLS gener-
ator. In contrast to the previous approach,
Davies’ derivation does not need to explicitly
introduce characteristic time scales. More-
over, this derivation requires some regular-
ity condition on the environment correlation
functions, which is in a sense correspondent,
albeit not equivalent, to the phenomenologi-
cal Markov approximation mentioned above.
Although an additional secular approxima-
tion is typically needed, later works sug-
gested different procedures in order to avoid
it (as for example in [33]).

Here we follow a protocol in the spirit of Davies,
by considering a weak-coupling limit g → 0 in
the Eq.(10), after introducing a rescaled time
τ = g2t, and studying the uniform convergence of
the reduced density matrix. However, differently
from the time-independent scenario, this rescal-
ing affects also HS(t). As a consequence an ad-
ditional hypothesis has to be made.

Definition 2.11. Let X(a1, a2, ..., aN ) be a fam-
ily of elements in a given vector space V, de-
pendent on a finite number of real parameters
{an}n=1,...,N . Let us consider a real parame-
ter g, a set of real indices (x1, x2, ..., xN ) and
the scaling transformation Rg : (a1, ..., aN ) →
(a1g

x1 , ..., aNg
xN ). We say that X(a1, a2, ..., aN )

is re-scalable (or invariant under rescaling) if
X(Rg(a1, a2, ..., aN )) = X(a1, a2, ..., aN ).

From the definition, we trivially notice
that if X(a1, ..., aN ) is re-scalable then
lim
g→0

X(Rg(a1, a2, ..., aN )) = X(a1, a2, ..., aN ).
Moreover, re-scalability holds also for the in-
verse transformation X(R−1

g (a1, a2, ..., aN )) =
X(a1, a2, ..., aN )

In our work we will always assume invari-
ance under rescaling of the system Hamiltonian
HS(t, λ), where here we generally indicate with λ
an arbitrary set of parameters. As clarifying ex-
ample, let us consider HS(t, v, h) = vtσz + hσx

for a two-level system, where σz, σx are Pauli
matrices; this Hamiltonian is re-scalable under
any transformation of the type Rg(t, v, h) =

(tgz, vg−z, h), ∀z. The purpose of the re-
scalability is to reabsorb the g-dependence by
renormalising the remaining set of parameters,
every time we introduce a rescaled time τ = tgz.

The example above indicates that this condi-
tion can always be achieved with a sufficient num-
ber of parameters and more importantly it pre-
serves the form of the operator, as well as its spec-
tral decomposition. For the sake of notation, we
shall indicate henceforth the set of parameters
simply with λ (λR for the rescaled ones), there-
fore HS(t, λ) will denote the system Hamiltonian
as dependent on time and a set of parameters,
such that the set {t, λ} satisfies the requirement
of re-scalability.

Now we list some lemmas that will be useful
for our derivation. They concern the estimation
of oscillatory integrals and the convergence of op-
erators in the weak coupling limit. In particular,
Theorem 2.2 and Lemma 2.1 are already known
results, while Lemma 2.2 is novel.

Theorem 2.2. (Method of stationary
phase). Given the function

I(M) =
b∫

a

dxf(x)eıMϕ(x) (12)

with f, ϕ real, analytic functions on [a, b], the
asymptotic limit M → ∞ exhibits the following
behaviour :

1. If ϕ has no stationary points in the interval
[a, b], namely ∂xϕ ̸= 0, ∀x ∈ [a, b]

I(M) ≈ f(b)
ıM∂xϕ(b)e

ıMϕ(b)

− f(a)
ıM∂xϕ(a)e

ıMϕ(a).

(13)

2. If ∂xϕ = 0 for x0 ∈ (a, b):

I(M) ≈f(x0)
√

2π
M |∂2

xϕ(x0)|

× eıMϕ(x0)±ı∂2
xϕ(x0)π/4.

(14)

3. If ∂xϕ = 0 only for x0 = a (analogous if we
consider the upper limit)

I(M) ≈ f(b)
ıM∂xϕ(b)e

ıMϕ(b) + f(x0)
2

×
√

2π
M |∂2

xϕ(x0)|e
ıMϕ(x0)±ı∂2

xϕ(x0)π/4.

(15)
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For a finite set of stationary points (including the
boundaries) we can always divide the integration
interval into a finite union of subintervals such
as to apply one of these cases.

If f : I ⊆ R → C analytic, then we just need to
separate real and imaginary part in order to apply
the theorem. For a basic introduction and proof
of this result, see for example [34], whereas more
details on error bounds can be found in [35, 36].

Lemma 2.1. Let B be a N dimensional Ba-
nach space with norm ||.||1 and B∗ with norm
||.||∞. Let {Tg(τ, σ)} be a two-parameter fam-
ily of bounded elements in B∗ defined on a real
compact interval τ ∈ [0, τ∗] and 0 ≤ g ≤ 1. Let
us consider the solution of the integral equation
yg(τ) = x+

τ∫
0
dσTg(τ, σ)yg(σ) = x+(Tgyg)(τ) and

assume that Tg converges strongly to T : B → B,
which is bounded. Then ∀x ∈ B,

lim
g→0

||yg(τ) − y(τ)||1 = 0 (16)

uniformly in [0, τ∗], where y(τ) = x+ (T y)(τ).

Proof. Let us take yg(τ) family of solutions of the
integral equation yg(τ) = x + (Tgyg)(τ) for any
x ∈ B, we notice that this equation can be iter-
ated by applying Tg to both members, obtaining

yg(τ) = x+ (Tgx)(τ) + (T 2
g x)(τ) + ... (17)

as well as for

y(τ) = x+ (T x)(τ) + (T 2x)(τ) + ... . (18)

The maps Tg, T are Volterra integral operators
and therefore they are bounded in [0, τ∗] by hy-
pothesis. Hence we have

||yg − y||1 =
∣∣∣∣∣∣ ∞∑

n=1
T n

g x−
∞∑

n=1
T nx

∣∣∣∣∣∣
1
,

≤
∞∑

n=1
||T n

g x− T nx||1 ,
(19)

but, for g → 0, Tgx → T x because of the strong
convergence in [0, τ∗], therefore lim

g→0
||yg − y||1 =

0.

The content of this lemma can be also found in
[28].

Lemma 2.2. Let H be a finite dimen-
sional Hilbert space and B(H) the Banach
space of linear operators on H equipped with
the sup norm ||X||∞. Let H(t, λ) =
N∑

n=1
En(t, λ)|n(t, λ)⟩⟨n(t, λ)| be a Hamiltonian,

which is assumed to be non-degenerate, differen-
tiable in t and re-scalable under the transforma-
tion t = τ/g2, λ = λR/g

ζ for some parameter ζ.

Let U(t, λ) = T exp{−ı
t∫

0
dsH(s, λ)} be the time-

evolution operator, where T indicates the time-
ordering. Then

lim
g→0

||U(τ/g2, λR/g
ζ) − UR(τ, λR, g)||∞ = 0,

(20)
for 0 ≤ tg2 ≤ τ∗, where

UR(τ, λR, g) =
N∑

n=1
exp

{
− ıg−2

τ∫
0

dσEn(σ, λR)

−ı
τ∫

0

dσϕB
n (σ, λR)

}
|n(τ, λR)⟩⟨n(0)|,

(21)
and ϕB

n (τ, λR) = −ı⟨n(τ, λR)| d
dτ |n(τ, λR)⟩.

Proof. Let us consider the scaling transformation
t = τ/g2, λ = λR/g

ζ which leaves invariant in
form the Hamiltonian, i.e. H(τ/g2, λR/g

ζ) =
H(τ, λR). We want to bound

||U(τ/g2, λR/g
ζ)|ψ⟩ − UR(τ, λR, g)|ψ⟩|| , (22)

where |ψ⟩ =
∑
n
cn(0)|n(0)⟩ ∈ H is a generic vec-

tor. We can expand

U
( τ
g2 ,

λR

gζ

)
|ψ⟩ =

N∑
n=1

cn

( τ
g2 ,

λR

gζ

)
|n(τ, λR)⟩,

UR(τ, λR, g)|ψ⟩ =
N∑

n=1
un(τ, λR, g)cn(0)|n(τ, λR)⟩,

(23)
in terms of the instantaneous eigenbasis |n(t, λ)⟩,
with un(τ, λR, g) = exp

{
− ıg−2

τ∫
0
dσEn(σ, λR) −

ı
τ∫
0
dσϕB

n (σ, λR)
}

and in the first equation we

used the re-scalability of the Hamiltonian eigen-
vectors. The coefficients cn(t, λ) in U(t, λ)|ψ⟩ =∑
n
cn(t, λ)|n(t, λ)⟩ are determined via

d

dt
|ψ(t)⟩ = −ıH(t, λ)|ψ(t)⟩,

|ψ(0)⟩ = |ψ⟩,
(24)
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from which we obtain the linear differential equa-
tion

d

dt
cn +

N∑
m

cm⟨n(t, λ)| d
dt

|m(t, λ)⟩ = −ıEn(t, λ)cn,

(25)
whose solution can be expressed in the general

form cn(t, λ) =
N∑
m
Tnm(t, λ)cm(0), with T (t, λ)

the N × N fundamental matrix. Making use

of the Cauchy-Schwartz inequality |
N∑
m
xmym| ≤

√
N∑
m
x2

m

√
N∑
m
y2

m with

xm =
N∑
n

|Tnm

( τ
g2 ,

λR

gζ

)
− δnmun(τ, λR, g)| > 0,

ym = |cm(0)| > 0,
(26)

and that
√

N∑
m

|cm(0)|2 ≡ ||ψ|| = 1, we obtain the

following chain of inequalities

||U
( τ
g2 ,

λR

gζ

)
|ψ⟩ − UR(τ, λR, g)|ψ⟩|| ≤

N∑
n

|cn

( τ
g2 ,

λR

gζ

)
− un(τ, λR, g)cn(0)| |||n(τ, λR)⟩|| ,

≤
N∑

n,m

|Tnm

( τ
g2 ,

λR

gζ

)
− δnmun(τ, λR, g)||cm(0)|,

≤

√√√√ N∑
m

∣∣∣ N∑
n

|Tnm(τ/g2, λ) − δnmun(τ, λR, g)|
∣∣∣2
√√√√ N∑

m

|cm(0)|2,

≤

√√√√ N∑
m

∣∣∣ N∑
n

|Tnm(τ/g2, λ) − δnmun(τ, λR, g)|
∣∣∣2||ψ||.

(27)

Hence, we just need to show that |Tnm

(
τ
g2 ,

λR

gζ

)
−

δnmun(τ, λR, g)| → 0 for g → 0 in order to con-
clude the proof. To this end, we consider the
change of variable

cn

( τ
g2 ,

λR

gζ

)
= an(τ, λR, g)un(τ, λR, g) (28)

and from Eq.(25) we arrive at the integral equa-
tion

ag(τ, λR) = a(0)+
τ∫

0

dσFg(σ, λR)ag(σ, λR), (29)

where

ag(τ, λR) = (a1(τ, λR, g), ..., aN (τ, λR, g))T ,
(30)

(Fg)nm =
{

0 if n = m,

−αnme
ıg−2∆nm+ıηnm if n ̸= m,

(31)

and

αnm(τ, λR) = ⟨n(τ, λR)| d
dτ

|m(τ, λR)⟩,

∆nm(τ, λR) =
τ∫

0

dσ
(
En(σ, λR) − Em(σ, λR)

)
,

ηnm(τ, λR) =
τ∫

0

dσ
(
ϕB

n (σ, λR) − ϕB
m(σ, λR)

)
.

(32)
Fg(τ, λR) is, by hypothesis, analytic in any com-
pact interval 0 ≤ τ ≤ τ∗, thus applying Lemma
2.1 we can see that the map

x(τ) ∈ CN →
τ∫

0

dσFg(σ, λR)x(σ) ∈ CN (33)

converges strongly to zero for g → 0, regardless
of the behaviour of the phases ∂σ∆nm(σ, λR) =
En(σ, λR) − Em(σ, λR) in σ ∈ [0, τ ] . Hence,
by Lemma 2.2 we obtain that ag(τ, λR) → a(0)
uniformly in 0 ≤ τ ≤ τ∗, ∀a(0), and therefore
|Tnm

(
τ
g2 ,

λR

gζ

)
− δnmun(τ, λR, g)| → 0.

Accepted in Quantum 2024-11-15, click title to verify. Published under CC-BY 4.0. 8



Error bound in Lemma 2.2. For small but
finite g, the error committed when replacing
US(τ/g2, λR/g

ζ) → UR(τ, λR, g) can be bounded
utilising Theorem 2.2 in the Eq. (29), with
τ∫
0
Fg(τ, λR)a(σ) → 0 for g → 0 .

We divide the set of phases F =
{∆nm(τ, λR)}n̸=m in Eq.(32) as F = Fnc ∪ Fc,
where

Fnc = {∆nm

∣∣∣∄σ s.t.
d∆nm

dτ
(σ, λR) = 0},

Fc = {∆nm

∣∣∣∃σ s.t.
d∆nm

dτ
(σ, λR) = 0}.

(34)

In order to upper bound ||
τ∫
0
dσFg(σ, λR)a(σ)||,

for g → 0, where the norm here is the Euclidean

norm on CN , we consider ||
τ∫
0
dσFg(σ, λR)a(σ)|| ≤∑

∆nm∈Fnc

ϵnc
nm +

∑
∆nm∈Fc

ϵcnm and we make use of

the expressions in Eq.(13) and Eq.(14), to obtain,
respectively,

ϵnc
nm ≈g2

∣∣∣ αnm(σ, λR)
∂σ∆nm(σ, λR)

∣∣∣|am(σ, λR)|
]σ=τ

σ=0
,

ϵcnm ≈g
√

2π
|∂2

τ ∆nm(τ0, λR)| |αnm(τ0, λR)|

|am(τ0, λR)|,

(35)

with τ0 such that ∂τ ∆nm(τ0, λR) = 0 (assuming
for simplicity that there exists only one point such
that ∂τ ∆nm(τ0, λR) = 0, however the extension
to the general case is straightforward). There-
fore, using the explicit expressions of αnm,∆nm

in Eq.(32), we can delineate a sufficient condition
given by ϵnc

nm, ϵ
c
nm ≪ 1, namely

max
n̸=m;t

|⟨n(t)| d
dt |m(t)⟩|

min
n̸=m;t

|En(t) − Em(t)| ≪ g−2, if ∆nm ∈ Fnc,

max
n̸=m;t0

2π|⟨n(t)| d
dt |m(t)⟩|2

min
n̸=m;t0

|Ėn(t) − Ėm(t)|
≪ g−2, if ∆nm ∈ Fc,

(36)
with t0 such that En(t0) = Em(t0) and we omit-
ted for simplicity the dependence on λ. Notice
that expressing the condition in Eq.(36) in terms

of t or τ is equivalent, given that τ plays the role
of a dummy variable.

This lemma will be crucial in the forthcom-
ing derivation of the time-dependent Markovian
master equation, as it allows to replace the sys-
tem time-evolution operator US(t), which is gen-
erally not known or extremely complicated, with
another one that can be entirely obtained from
the eigendecomposition of HS(t), in the weak-
coupling limit and under time rescaling.

We are now ready to prove the main result of
this section.

Theorem 2.3. Let B(HS) be a finite dimen-
sional Banach space for a system S, suppose
that the dynamics of the quantum state ρ̃S(t) is
given by the Nakajima-Zwanzig Eq.(10), with a
bounded kernel, generated by the time-dependent
re-scalable Hamiltonian H(t) = HS(t, λ) +HB +
gHI in Eq.(7), with HI =

∑
α
Aα ⊗ Bα. Assume

that Rα,β(x) = trB[eıHBxBαe
−ıHBxBβρth] are in-

tegrable functions on R+, i.e.
∞∫

0

dx|Rα,β(x)| ≡ Cα,β < ∞. (37)

Then

lim
g→0

∣∣∣∣∣∣ρ̃S(t) − T exp
{
g2

t∫
0

dsL̃(s)
}
ρS(0)

∣∣∣∣∣∣
1

= 0,

(38)
for any finite time interval 0 ≤ tg2 ≤ τ∗, where
L̃(t) is a time-dependent GKLS generator.

Proof. Let us consider the scaling transforma-
tion t = τ/g2, λ = λR/g

ζ , which leaves invari-
ant the Hamiltonian HS(t, λ), with ζ depending
on the explicit form of HS . Let us introduce
the operator χg(τ, λR) ≡ ρ̃S(τ/g2, λR/g

ζ), where
ρ̃S(t, λ) is the reduced density matrix obtained
from Eq.(10). We perform the change of variable
x = s − u, σ = ug2 in the Nakajima-Zwanzig
Eq.(10), to obtain

χg(τ, λR) = ρS(0)+
τ∫

0

dσKg(τ−σ, σ;λR)χg(σ, τR),

(39)
where
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Kg(τ − σ, σ;λR)ρ(σ) =
(τ−σ)/g2∫

0

dxtrB

[
PV(σ/g2 + x)G(σ/g2 + x, σ/g2)V(σ/g2)P(ρ(σ) ⊗ ρth)

]
, (40)

with V(σ/g2)(∗) ≡ −ı[H̃I(σ/g2, λR/g
ζ), ∗]. We

want to address the behaviour of the kernel for
g → 0. This is easily done by means of subse-
quent steps, as follows.

1. G(σ/g2 + x, σ/g2) → I strongly as g → 0 ,
moreover plugging H̃I(t) =

∑
α
Ãα(t) ⊗ B̃α(t) and

using the property [HB, ρth] = 0 we have

Kg(τ − σ, σ)ρ(σ) →
∑
α,β

(τ−σ)/g2∫
0

dxRα,β(x)

×
[
Ãβ(σ/g2)ρ(σ), Ãα(σ/g2 + x)

]
+ h.c.,

(41)

where Rα,β(x) = trB[B̃α(x)Bβρth] are environ-
ment correlation functions and

Ãα

( τ
g2

)
≡ U †

S

( τ
g2 ,

λR

gζ

)
AαUS

( τ
g2 ,

λR

gζ

)
. (42)

2. Let HS(t) =
∑
n
En(t)|nt⟩⟨nt| be the eigende-

composition of the system Hamiltonian, utilising
Lemma 2.2 and the explicit form of UR(τ, λR, g),
we obtain for g → 0

Ãβ

( σ
g2

)
→
∑

p

e−ıg−2∆p(σ,λR)

× e−ıηp(σ,λR)Aβ,p(σ, λR),

Ãα

( σ
g2 + x

)
→
∑

p

eıg−2∆p(σ,λR)+ıx∂σ∆p(σ,λR)

× eıηp(σ,λR)A†
α,p(σ, λR),

(43)
where we have introduced the double index
(n,m) ≡ p for the sake of simplicity and

Aα,p(τ, λR) ≡|m0⟩⟨mτ (λR)|Aα|nτ (λR)⟩⟨n0|,

∆p(τ, λR) ≡
τ∫

0

dσ(En(σ, λR) − Em(σ, λR)).

(44)
Notice that the decomposition in Eq.(43) can be
easily achieved in such a way that no degeneracies
occur in the set {∆p(τ, λR)}p. In the following,
we will omit the dependence on the rescaled pa-
rameters λR to ease the notation. Using these
results, from Eq.(41) we get

Kg(τ − σ, σ)ρ(σ) →

∑
α,β

∑
p,q

( (τ−σ)/g2∫
0

dxRα,β(x)eıx∂σ∆p(σ)
)

× eıg−2(∆p(σ)−∆q(σ))eı(ηp(σ)−ηq(σ))

×
[
Aβ,q(σ)ρ(σ), A†

α,p(σ)
]

+ h.c..

(45)

3. Applying Theorem 2.2, the map (ϕgρ)(τ) ≡
τ∫
0
dσKg(τ − σ, σ)ρ(σ) converges strongly to

(ϕρ)(τ) =
∑
α,β

∑
p

τ∫
0
dσL̃(σ, λR)ρ(σ), where

L̃(τ, λR)ρ =
∑
α,β

∑
p

Γα,β,p(τ)

×
[
Aβ,p(τ)ρ,A†

α,p(τ)
]

+ h.c.

(46)

and

Γα,β,p(σ) =
∞∫

0

dxRα,β(x)eıx∂σ∆p(σ) (47)

is the one-sided Fourier transform of the correla-
tion functions. Notice that ϕ is bounded, given
the condition |Γα,β,k(σ)| ≤

∞∫
0
dx|Rα,β(x)| < ∞

by hypothesis.
In fact, for the contributions with q ̸= p

in Eq.(45) we can individuate the phases (once
again, we omit here the dependence on the
rescaled parameters λR) φpq(τ) = ∆p(τ) − ∆q(τ)
and M = g−2 defined in Theorem 2.2. For g → 0,
we can also provide an estimate of the error com-
mitted, depending on the behaviour of the phases
φpq. In particular, let

F = {φpq} = Fnc ∪ Fc (48)

be the set of phases for p ̸= q that enter the
master equation, which we further divide into the
union of two sets as

Fnc = {φpq

∣∣∣∄σ s.t.dφpq

dτ
(σ) = 0},

Fc = {φpq

∣∣∣∃σ s.t.dφpq

dτ
(σ) = 0}.

(49)
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From Eq.(45) we can derive the upper bound

||(ϕg − ϕ)ρ||1 ≤ 2
∑
α,β

∑
q ̸=p

∑
j

||Fj ||1

×
∣∣∣ τ∫

0

dσΓα,β,p(σ)eıg−2φpq(σ)

× eı(ηp(σ)−ηq(σ))f j
α,β,k,p(σ)|

∣∣∣,
(50)

where we have expressed the operator
[Aβ,q(σ)ρ(σ), A†

α,p(σ)] =
∑
j
f j

α,β,q,p(σ)Fj in

terms of the canonical basis {Fj}j of B(HS) and
the factor 2 comes from the hermitian conjugate
contribution. Now, we distinguish among the
terms whose phase belongs to either Fnc or Fc,
so that ||(ϕg − ϕ)ρ||1 ≤

∑
φpq∈Fnc

Enc
pq +

∑
φpq∈Fc

Ec
pq.

In particular for the first set we can apply the
asymptotic expression in Eq.(13) to obtain

Enc
pq ≈

∑
α,β

∑
j

g2 ||Fj ||1
[∣∣∣Γα,β,p(σ)
∂σφpq(σ)

∣∣∣
×|f j

α,β,p,q(σ)|
]σ=τ

σ=0
,

(51)

while for the second one the expression we can
safely use is Eq.(14)

Ec
pq ≈

∑
α,β

∑
j

||Fj ||1

√
2πg2

|∂2
τφp,q(τ0)|

×
∣∣∣Γα,β;p(τ0)f j

α,β,p,q(τ0)
∣∣∣,

(52)

where we have assumed without any loss of gen-
erality that only one critical point τ0, such that
∂τφpq(τ0) = 0, is present inside the time interval
of interest.

The error due to this approximation vanishes
in the limit g → 0 provided that

g2
∣∣∣Γα,β,p(τ)
∂τφpq(τ)

∣∣∣ ≪ 1 if φpq ∈ Fnc ,

g
∣∣∣ Γα,β;p(τ0)√

|∂2
τφpq(τ0)|

∣∣∣ ≪ 1 if φpq ∈ Fc ,
(53)

∀α, β, q ̸= p,∀τ0 s.t. ∂τφpq(τ0) = 0. In particu-
lar, using that |Γα,β,p(τ)| ≤ Cα,β and indicating
with Ωp(τ) = ∂τ ∆p(τ) the instantaneous Bohr
frequencies which enter the master equation, we

arrive at the sufficient condition
min
p ̸=q;t

|Ωp(t) − Ωq(t)|

max
α,β

Cα,β
≫ g2, if φpq ∈ Fnc

min
p̸=q;t∗

|Ω̇p(t∗) − Ω̇q(t∗)|

max
α,β

C2
α,β

≫ g2, if φpq ∈ Fc

(54)
where t∗ indicates the set of critical points such
that Ωp(t∗) = Ωq(t∗) and the dot represents the
time derivative. Notice that expressing the con-
dition in Eq.(63) in terms of t or τ is equivalent,
given that τ plays the role of a dummy variable.

As a consequence, putting all together we can
apply Lemma 2.1 in a given interval [0, τ∗], in
order to prove the uniform convergence

lim
g→0

∣∣∣∣∣∣χg(τ, λR) − χ(τ, λR)
∣∣∣∣∣∣

1
= 0, (55)

where χ(τ, λR) is solution of the integral equa-
tion χ(τ, λR) = ρS(0) +

τ∫
0
dσL̃(σ, λR)χ(σ, λR), or

equivalently

χ(τ, λR) = T exp
{ τ∫

0

dσL̃(σ, λR)
}
ρS(0). (56)

One can easily check that by construction
L̃(τ, λR) = L̃(tg2, λgζ) = L̃(t, λ). Therefore, be-
cause of χg(τ, λR) = ρ̃S(τ/g2, λR/g

ζ), substitut-
ing back the transformation t = τ/g2, λ = λR/g

ζ

we obtain the uniform convergence

ρ̃S(t, λ) → T exp
{ tg2∫

0

dσL̃(σ, λgζ)
}
ρS(0)

= T exp
{
g2

t∫
0

dsL̃(sg2, λgζ)
}
ρS(0)

= T exp
{
g2

t∫
0

dsL̃(s, λ)
}
ρS(0).

(57)
The last thing we need to prove is that L̃(t) is
indeed a GKLS generator. To this end, we split
Γα,β,p(t) = 1

2γα,β,p(t) + ıSα,β,p(t), where γα,β,p(t)
and Sα,β,p(t) form Hermitian matrices in the in-
dices α, β, ending up with

L̃(t)ρ = −ı[H̃LS(t), ρ] +
∑

α,β,p

γα,β,p(t)
(
Aβ,p(t)

× ρA†
α,p(t) − 1

2{A†
α,p(t)Aβ,p(t), ρ}

)
,

(58)
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with H̃LS =
∑

α,β;p
Sα,β,p(t)A†

α,p(t)Aβ,p(t) self-

adjoint. Diagonalisation of the matrices γp(t),
with entries γα,β,p(t), brings the generator L̃(t)
in the form of Eq.(5). The positivity of the dis-
sipation rates follows from the fact that γp(t) is
actually positive semidefinite. Given a generic
v ∈ CN and using the explicit form of γα,β,p(t) =
∞∫

−∞
dxeı∂t∆p(t)xRα,β(x), we have

(v, γp(t)v) =
∞∫

−∞

dxeı∂t∆p(t)xR(x), (59)

with R(x) =
∑
α,β

v∗
αRα,β(x)vβ. For any fixed

t, the scalar product (v, γp(t)v) is nothing but
the Fourier transform of R(x), thus by using
Bochner’s theorem (see for example [4]) one can
easily see that the Fourier transform of R(x) is
a positive function. As a consequence, γp(t) is a
positive semidefinite matrix ∀t, p.

Now that the convergence of the reduced den-
sity matrix in the interaction picture is demon-
strated, we can obtain the evolution in the
Schrödinger picture using the relation ρS(t) =
Ut,0ρ̃S(t) = US(t, 0)ρ̃S(t)U †

S(t, 0), with US(t, 0) =

T exp{−ı
t∫

0
dsHS(s)}.

Summary of the main results. We end this
section with a self-contained summary of the
novel results obtained. Let H(t) = HS(t) +
HB + gHI be the Hamiltonian of system and
environment as in Eq.(7), where HS(t) =∑
n
En(t)|nt⟩⟨nt|, HI =

∑
α
Aα ⊗ Bα, while let

US(t) = T exp{
t∫

0
dsHS(s)} be the system time-

evolution operator. The initial state of the en-
vironment will be called ρth and must satisfy
[HB, ρth] = 0, such as a thermal state.

In the weak-coupling limit, precisely deter-
mined by the conditions discussed in the following
points, the exact dynamics of the reduced density
matrix ρS(t) can be described, in the Schrödinger

picture, by the Markovian master equation

d

dt
ρS = − ı[HS(t) + g2HLS(t), ρS ]

+ g2∑
α,β

∑
p

γα,β,p(t)
(
Lβ,p(t)ρSL

†
α,p(t)

− 1
2{L†

α,p(t)Lβ,p(t), ρS}
)
,

(60)
where the jump operators and the so-called Lamb
shift Hamiltonian are

Lα,p(t) p=(n,m)= US(t)|m0⟩⟨mt|Aα|nt⟩⟨n0|U †
S(t),

HLS(t) =
∑
α,β

∑
p

Sα,β,p(t)L†
α,p(t)Lβ,p(t),

(61)
whereas

∞∫
0

dxRα,β(x)eıx(En(t)−Em(t)) p=(n,m)=

= 1
2γα,β,p(t) + ıSα,β,p(t),

(62)

and Rα,β(t) = trB[eıHBtBαe
−ıHBtBβρth] are the

environment correlation functions.
Finally, we highlight some comments and a dis-

cussion on the range of validity of the Eq.(60).

1. The jump operators in the Schrödinger pic-
ture are neither eigenoperators of the time-
evolution operator US(t) nor of HS(t), dif-
ferently from the standard derivation in the
time independent scenario. Consequently,
the Lamb shift Hamiltonian does not gener-
ally commute with HS(t). As a result, there
is a unitary correction to the time evolution
of the closed system that can induce coherent
transitions between the instantaneous energy
levels of HS(t).

2. As already pointed out, Theorem 2.3 pro-
vides sufficient conditions such that the so-
lution of the Nakajima-Zwanzig Eq.(10) can
be approximated with a Markovian evolu-
tion. For finite but small g, this approxi-
mation is clearly affected by some errors. A
first aspect to point out is given by the fact
that our proof, done employing the rescaled
time τ = tg2, guarantees the uniform con-
vergence inside a given interval 0 ≤ τ ≤ τ∗.
For finite g, this implies an upper bound to
the domain of convergence given by τ∗g−2.
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However, this problem can be easily over-
come if we assume that τ∗ can be taken arbi-
trary large (see also [37], regarding validity
of Markovian master equations for all time
scales).

3. Markov approximation. The condition
of regularity on the environment correla-
tion functions stated in Eq.(37), namely
∞∫
0
dt|Rα,β(t)| ≡ Cα,β < ∞, adopts the

role of the so-called Markov approximation
in the limit g → 0. Indeed, it is clear
that only for a sufficiently fast decay in
the long-time limit, such as |Rα,β(t)| =
|trB[eıHBtBαe

−ıHBtBβρth]| ∼ 1/ta with a >
1, the convergence can be guaranteed.

Furthermore, we notice that if HB has a
discrete spectrum then Rα,β(t) is a periodic
function, therefore the only possibility to sat-
isfy this condition is to require that the en-
vironment is characterised by a continuous
spectrum (see [4]).

4. Secular approximation.

This sufficient condition is derived from the
bound given in Eq.(53) and Eq.(54). Let
{Ωp(t)}p be the set of instantaneous Bohr
frequencies of HS(t), with Ωp(t) = Ωq(t),∀t,
if and only if p = q. Moreover, let us indicate
with D = {f : R → R|∃{tn}n s.t f(tn) = 0}
the set of real functions which are zero in
at most a countable number of points. The
condition reads

min
p ̸=q;t

|Ωp(t) − Ωq(t)|

max
α,β

Cα,β
≫ g2,

if Ωp − Ωq /∈ D,

min
p ̸=q;t∗

|Ω̇p(t∗) − Ω̇q(t∗)|

max
α,β

C2
α,β

≫ g2,

if Ωp − Ωq ∈ D,
(63)

where in the second inequality the set of
points t∗ are such that Ωp(t∗) − Ωq(t∗) = 0,
whereas the dot indicates the time deriva-
tive.

From a physical view point, this require-
ment implies that the frequencies related
to the transitions between energy levels are

sufficiently well spaced, during the entire
time interval of interest. In the case of
constant Hamiltonian, only the first condi-
tion in Eq.(63) holds and reproduces the
standard rotating-wave approximation em-
ployed in time-independent Markovian mas-
ter equations ([3, 4]), whereas the second
condition is completely novel compared to
other approaches and becomes particularly
relevant in case at certain times degeneracies
appear in the set of Bohr frequencies. As a
consequence, naive applications of rotating-
wave-like approximations, which are based
on the simple condition of large differences
|Ωp(t) − Ωq(t)|, are not able to provide this
kind of condition, which stems uniquely from
the application of the method of stationary
phase.

5. Condition on the driving.

A final consideration concerns Lemma 2.2
and the condition derived in Eq.(36), which
corresponds to a constraint on the driving
that naturally emerges in our derivation, as
result of the combination of time-rescaling
and the limit g → 0. Let D = {f : R →
R|∃{tn}n s.t f(tn) = 0} be the set defined
previously, the condition reads

max
n̸=m;t

|⟨nt| d
dt |mt⟩|

min
n ̸=m;t

|En(t) − Em(t)| ≪ g−2,

if En − Em /∈ D,
max

n̸=m;t∗
2π|⟨nt| d

dt |mt⟩(t∗)|2

min
n̸=m;t∗

|Ėn(t∗) − Ėm(t∗)|
≪ g−2,

if En − Em ∈ D,
(64)

with t∗ such that En(t∗) − Em(t∗) = 0.

Interestingly, UR defined in Lemma 2.2 has
the same structure of the so called adia-
batic time-evolution operator, which takes
the form

Uad
S (t) =

∑
n

e
−ı

t∫
0

ds(En(s)+ϕB
n (s))

|nt⟩⟨n0|,

(65)
with ϕB

n (t) = ⟨nt| d
dt |nt⟩. In the standard for-

mulation of the adiabatic theorem ([38]), the
operator in Eq.(65) approximates the time-
evolution operator if the so called adiabatic

Accepted in Quantum 2024-11-15, click title to verify. Published under CC-BY 4.0. 13



condition, namely

max
n̸=m;t∈[0,t∗]

|⟨nt| d
dt |mt⟩|

min
n̸=m;t∈[0,t∗]

|En(t) − Em(t)| ≪ 1, (66)

is satisfied, within the interval of interest
[0, t∗]. Given that g ≪ 1, the inequality (64)
clearly extends way beyond the constraint
imposed by adiabaticity, allowing us to ex-
plore regimes of strong driving. Notice that
the condition in Eq.(66) also expresses the
basic assumption underpinning the deriva-
tion of the adiabatic master equation [10].
In light of this consideration, despite the use
of the adiabatic time-evolution operator as
a consequence of Lemma 2.2, we underline
that Eq.(60) is a good candidate to describe
driven systems outside the adiabatic regime.
Naturally, our master equation reproduces
by construction the adiabatic master equa-
tion, an aspect that will be analysed more in
detail in the next section.

3 First example: periodically driven
qubit system
To illustrate the performance of our derived mas-
ter equation, we consider the specific case of
periodic driving on a quantum two-level sys-
tem (qubit) [39, 40]. Originally, this was also
the first example of a rigorous derivation of
time-dependent Markovian master equations that
could be used to analyse strongly driven systems
using Floquet theory [12–18]. Indeed, when it
is possible to analytically find the so called Flo-
quet representation of the time-evolution oper-
ator US(t), a Markovian master equation can
be derived by using the very same procedure
as in the time-independent scenario. However,
for many interesting and non-trivial cases finding
this representation is a very hard task and solu-
tions are known only for a few special cases. We
also point out that recent examples of Markovian
master equations beyond the adiabatic regime
rely on the Floquet theory when describing peri-
odic drivings ([20]). Our approach took a differ-
ent path altogether, offering an alternative and
feasible method for addressing strong periodic
drivings. In order to test our approach, we now
study and benchmark against tensor network sim-
ulations a model whose Floquet representation is

not known analytically, namely a time-dependent
dynamics of the form,

HS(t) =
(

ω0 Ω sin(ωt)
Ω sin(ωt) −ω0

)
,

≡ ω0σz + Ω sin(ωt)σx,

(67)

where σx, σz are the usual Pauli matrices and ω0,
ω, Ω are real, positive parameters denoting the
system’s natural frequency, the frequency of the
driving field and the so-called Rabi frequency, a
measure of the driving strength, respectively.

The driven system is coupled bilinearly to a
bosonic environment consisting of independent
harmonic oscillators and described by the total
Hamiltonian (in natural units ℏ = 1):

H = HS(t)+
∑

j

wjb
†
jbj+

∑
j

σx⊗gj(bj+b†
j), (68)

where the bosonic creation/annihilation opera-
tors satisfy the usual canonical commutation re-
lations [bi, b

†
j ] = δij , [bi, bj ] = 0 and wj > 0

without loss of generality. For our analysis, sys-
tem and environment are initially prepared in
the thermal states ρS(0) = e−HS(0)/TS/ZS and
ρth = e−HB/TB/ZB, with TS , TB denoting, re-
spectively, the system and environmental temper-
ature. The coefficients gj are related to the envi-
ronment spectral density J(w) =

∑
j g

2
j δ(w−wj)

via the identity
∑

j g
2
j =

∫∞
0 dwJ(w). In the

continuum limit, we will consider specifically an
Ohmic spectral density with exponential cutoff as
J(w) = awe−w/wc with a,wc > 0.

The Markovian master equation for the driven
two-level system, derived from Eq.(60), reads

d

dt
ρS = − ı[HS(t) +HLS(t), ρS ]

+
∑

p=0,±
γp(t)D[Lp(t)]ρS ,

(69)

where the dissipator is of Lindblad form, namely
D[Lp]ρ = LpρL

†
p − 1

2{L†
pLp, ρ}, the time-

dependent jump operators expressed in the
Schrödinger picture are given by

L0(t) = sinφ
(1

2(|α|2 − |β|2)σz − 2αβσ+ + h.c.
)
,

L+(t) = cosφ
(
αβ∗σz + α2σ+ − β∗2σ−

)
,

L−(t) = cosφ
(
α∗βσz + α∗2σ− − β2σ+

)
,

(70)
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with tanφ(t) = Ω sin(ωt)/ω0, while the complex
functions α(t), β(t) constitute the entries of the
time-evolution operator

US(t) =
(

α(t) β(t)
−β∗(t) α∗(t)

)
(71)

and are determined by the solution of the system
of coupled differential equations

ı
d

dt
α = ω0α− Ω sin(ωt)β∗,

ı
d

dt
β∗ = −ω0β

∗ − Ω sin(ωt)α,
(72)

with initial conditions α(0) = 1, β(0) = 0. The
corresponding dissipation rates are given by

γ0(t) = 4πaTB,

γ+(t) = 2πJ(2E(t))n̄BE(2E(t);TB),
γ−(t) = 2πJ(2E(t))(1 + n̄BE(2E(t);TB)),

(73)

where E(t) =
√
ω2

0 + Ω2 sin2(ωt), n̄BE(w, TB) =
1/(ew/TB − 1) is the Bose-Einstein distribution
and the Lamb shift Hamiltonian

HLS(t) = − 1
2S(t) cos2 φ

(
(|α|2 − |β|2)σz

− 2αβσ+ − 2α∗β∗σ−
)
,

(74)

with

S(t) =
∞∫

0

dwJ(w)(1 + 2n̄BE(w))

×
[
P
( 1
w + 2E(t)

)
− P

( 1
w − 2E(t)

)]
.

(75)
Note that HLS(t) does not generally commute
with the system Hamiltonian. Specific details
of the derivation can be found in Appendix A.
We notice that, despite the general structure in
Eq.(70), the explicit form of α(t), β(t) is not
known in general and have to be computed nu-
merically. Hence, one should in general rely on a
semi-analytical approach, where the jump opera-
tors can be only parametrised in terms of α, β.

The validity of the master equation is deter-
mined by the following conditions.

1. Weak-coupling limit. The strength of the in-
teraction between the system and the en-
vironment is determined by the set of co-
efficients gj , or in the continuum limit by

the spectral density J(w). Notice that, in
units of ℏ = 1, the ohmic spectral density
J(w) = awe−w/wc has the dimension of an
energy, therefore a is an adimensional pa-
rameter that we can conveniently identify
with g2, according to the identity

∑
j g

2
j =∫∞

0 dwJ(w). In the parameter regime con-
sidered here, a typical requirement of weak
coupling corresponds to g ∼ 10−2.

2. Markov approximation. The envi-
ronment correlation function R(t) =
trB[eıHBtBe−ıHBtBρth] needs to sat-
isfy the condition of integrability, i.e.
∞∫
0
dt|R(t)| ≡ C < ∞ (Eq.(37)). Given that

g ≡
√
a, the operator B in the interaction

Hamiltonian in Eq.(7) can be identified as
B = 1√

a

∑
j
gj(bj + b†

j).

The proof can be found in the Appendix C.

3. Secular approximation. This is determined
by the requirement in Eq.(63), which reads
here

min
p ̸=q;t

|Ωp(t) − Ωq(t)| = 2ω0 ≫ aC, (76)

with {0,±2E(t)} the set of Bohr frequencies.

4. Condition on the driving. A constraint on
the driving is given in Eq.(64) and reads

max
n̸=m;t∈[0,t∗]

|⟨nt| d
dt |mt⟩|

min
n ̸=m;t∈[0,t∗]

|En(t) − Em(t)| = Ωω
4ω2

0
≪ a−1.

(77)
Notice that for a ∼ 10−3 this implies a up-
per bound for the adiabatic parameter cor-
respondent to 103, which means that we can
safely explore ultrastrong driving regimes
without breaking this requirement.

As anticipated, the dynamics predicted by the
master equation will be benchmarked against nu-
merically exact tensor network simulations ([41–
43], while we refer those readers unfamiliar with
this methodology to Appendix D for a brief intro-
duction to the topic) and the so called adiabatic
master equation [10]

d

dt
ρS = − ı[HS(t) +Had

LS(t), ρS ]

+
∑

p=0,±
γp(t)D[Lad

p (t)]ρS ,
(78)
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Figure 1: Population of the excited state Pe(t) (left column) and coherence C(t) (right column) in the strong driving
regime λ = λΩλω = 10 (λΩ = 1, λω = 10). We plot different solutions, corresponding to tensor network simulations
(TN), our time-dependent master equation (TDME) and the purely unitary evolution, i.e. the evolution of the system
if g = 0. The parameters a = 5 × 10−3 and wc = 2, which appear in the bath spectral density J(w) = awe−w/wc ,
are fixed. The system parameters are ω0 = 1,Ω = 1, ω = 10. Both system and environment are initially prepared
in a thermal state at temperatures, respectively, TS = 10−1, TB = 4 for the upper plots, TS = 4, TB = 10−1 for
the lower plots. The oscillating behaviour is due to the large frequency difference ω ≫ ω0, which allows to easily
achieve strong driving regimes even for λΩ ∼ 1. Close to resonance λω ∼ 1, significant departures from adiabaticity
(λ ≫ 1) are accessible only for λΩ ≫ 1. However, this typically implies a large increase of the gap with respect
to the dissipation rates, at the disadvantage of a dominant contribution of the unitary part of the dynamics. The
numerically exact tensor network simulations are given by a second order Time-Evolving Block Decimation (TEBD)
for the system and environment density matrix, with N = 100 harmonic oscillators. As explained more in detail in
the Appendix C, the tensor network simulations can be exploited up to a certain tmax, mostly dependent on the
finite number of oscillators and the temperature TB ; hence, the upper insets display the evolution in a wider time
window. The bond dimension used in these simulations is χ = 40, whereas the maximum dimension of the oscillator
Hilbert space in the environment is dmax ∼ 20 (high temperature case). When the environment temperature is
larger than the system one, TB > TS , we observe wider excitations in the population Pe(t), respect to the purely
unitary dynamics, whereas the coherence generated is lower. On the other hand, in the opposite case as TB < TS ,
the dynamics predicted by the TDME shows a higher amount of coherence generated, in agreement with the tensor
network simulations, while the excitations in the population are reduced, as expected for a system subject to cooling.

where the dissipation rates are exactly the same
in Eq.(73), while the jump operators and the
Lamb shift Hamiltonian read

Lad
0 (t) = sinφ

(
σz cosφ+ σx sinφ

)
,

Lad
+ (t) = cosφ

(
− 1

2σz sinφ

+ σ+ cos2 φ

2 − σ− sin2 φ

2
)
,

Lad
− (t) = cosφ

(
− 1

2σz sinφ

+ σ− cos2 φ

2 − σ+ sin2 φ

2
)
,

Had
LS(t) = − 1

2S(t) cos2(φ)HS(t).

(79)

The adiabatic condition in Eq.(66) would now be

expressed in the form:

max
n̸=m;t∈[0,t∗]

|⟨nt| d
dt |mt⟩|

min
n̸=m;t∈[0,t∗]

|En(t) − Em(t)| = Ωω
4ω2

0
≪ 1. (80)

For our analysis, we introduce the useful adi-
mensional ratios λΩ ≡ Ω/ω0, λω ≡ ω/ω0, such
that λ = λΩλω is the adiabatic parameter.

In the following, we characterise some spe-
cific properties of the evolution under the mas-
ter Eq.(69), that we will refer to TDME for
short, benchmark it against tensor network simu-
lations, the adiabatic master equation in Eq.(78)
(ADME) and the purely unitary dynamics as
given by the Von Neumann equation. The dif-
ferential equations which appear throughout this
work are solved by means of a fourth-order
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Runge-Kutta method.

Strong driving regime: λ ≫ 1. We begin
by exploring the strong driving and dispersive
regime, as given by λΩ, λω ≫ 1. In order to
do so, we compute the population of the ex-
cited state Pe(t) = ⟨et|ρS(t)|et⟩ and the coher-
ence C(t) = |⟨et|ρS(t)|gt⟩|, in the instantaneous
eigenbasis {|nt⟩}n=e,g of HS(t), where the sub-
script e(g) indicates the excited (ground) state.

Some results are shown in Fig.(1). For TB >
TS , the system is characterised by larger excita-
tions in the population Pe, with respect to the
closed case (unitary dynamics). On the other
hand, for TS > TB the TDME exhibits more gen-
eration of coherence than the purely unitary dy-
namics, as already observed in [20]. This feature
is uniquely due to the dissipator and does not
stem from the Lamb shift contribution, which is
actually negligible in our specific case (see discus-
sion below).

Effect of Lamb shift contribution. In the
case of time-independent Markovian master equa-
tions, the Lamb shift contribution commutes with
the system Hamiltonian and typically produces a
small shift in the energy levels; therefore, its con-
tribution is commonly neglected, although some
works provided cases where it gives sizeble effects
(as [5] for the time-independent case, or [44] in
the presence of driving).

In order to analyse the effect of the Lamb shift
contribution it is convenient to revert to the in-
teraction picture. In this case, the master Eq.(69)
assumes the simple form

d

dt
ρ̃S = − ı[H̃LS(t), ρ̃S ]

+
∑

p=0,±
γp(t)D[Ap(t)]ρ̃S ,

(81)

with
A0 = σz sinφ(t),
A+ = σ+ cosφ(t),
A− = σ− cosφ(t),

H̃LS = −1
2σzS(t) cos2 φ(t).

(82)

The density matrix can be parametrised in terms
of the expectation values of σz, σ± as

ρ̃S(t) = 1
2
(
1 +

∑
k=z,±

c̃k(t)σk

)
, (83)

where c̃k(t) = tr[σkρ̃S(t)], k = z,±, are analo-
gous to the components of the Bloch vector of
the system. Using this representation, the equa-
tions of motion for c̃k(t) can be easily integrated,
leading to the general solution

c̃z(t) =cz(0)e−ζ(t) +
t∫

0

ds
(
γ+(s) − γ−(s)

)
× cos2 φ(s)e−(ζ(t)−ζ(s)),

c̃+(t) =c+(0) exp
{

− ı

t∫
0

dsS(s) cos2 φ(s)
}

× exp
{

− 1
2ζ(t) − 2γ0

t∫
0

ds sin2 φ(s)
}
,

(84)

with ζ(t) =
t∫

0
ds(γ+(s) + γ−(s)) cos2 φ(s).

We notice that the contribution given by the
Lamb shift enters only in the off-diagonal terms,
therefore if the initial state has zero coherence in
the eigenbasis of HS(0), i.e. ρ12(0) ≡ 1

2c+(0) = 0,
the Lamb shift does not play any role, regardless
of the choice of the temperature TB and the driv-
ing. This is the case of thermal states studied
so far. As a consequence, with the purpose of
highlighting the impact of the Lamb shift on the
dynamics, we consider an initial preparation for
the two-level system in a coherent superposition
given by |ψ(0)⟩ = 1√

2(|g0⟩+|e0⟩) and compare the
dynamics generated by the master Eq.(69) with
and without Lamb shift, as shown in Fig.(2). For
both cases of strong and adiabatic driving (see be-
low for a detailed discussion), given respectively
by λ = 10, λ = 10−2, we observe that the Lamb
shift produces a shift in the transverse magneti-
zation ⟨σx(t)⟩, which is not uniform throughout
the time evolution and has a different magnitude
depending on the strength of the driving.

Adiabatic regime: λ ≪ 1. When the adi-
abatic condition (66) is satisfied, we can for-
mally replace US(t) → Uad

S (t) in Eq.(60) and the
TDME reproduces the ADME by construction.

In order to state this precisely, let us study the
explicit form of the time-evolution operator when
λ ≪ 1. We consider initially the case λΩ ≪ 1,
which we simply refer to as weak driving, while
λω is arbitrary for the moment. From Eq.(72) we
perform the substitution x = ω0t ≡ t/ts obtain-
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Figure 2: Transverse magnetization ⟨σx(t)⟩. Analysis of the Lamb shift contribution. The system is initially prepared
in a coherent superposition |ψ⟩ = 1√

2 (|g0⟩ + |e0⟩), such that ρ12(0) ̸= 0, as explained in the main text. The spectral
density parameters and temperature are fixed and given by a = 5 × 10−3, wc = 2, TB = 4, whereas in the plot on
the left we have ω0 = 1,Ω = 1, ω = 10 (λ = 10) and on the right is ω0 = 1,Ω = 10−1, ω = 10−1 (λ = 10−2).
The plots show the expectation values obtained via TDME in Eq.(69), with and without Lamb shift term. The main
effect of the Lamb shift is to produce a shift in the curves, as already pointed out in [5]; however, differently from
this previous work, in the presence of driving this effect is not uniform throughout the whole evolution and it can
change over time, as we notice in the right plot.

ing

ı
d

dx
α = α− λΩ sin

(
λωx

)
β∗,

ı
d

dx
β∗ = −β∗ − λΩ sin

(
λωx

)
α.

(85)

We can find approximate solutions expanding in

powers of ϵ both α(x) =
∞∑

n=0
ϵnαn(x) and β(x) =

∞∑
n=0

ϵnβn(x), where ϵ is a small adimensional pa-

rameter, such as λΩ in this case. Up to second
order corrections we find

α(x) =e−ıx +O(λ2
Ω),

β(x) = ı

2λΩe
−ıx
(e−ı(λω−2)x − 1

λω − 2

+ eı(λω+2)x − 1
λω + 2

)
+O(λ2

Ω).

(86)

Furthermore, if we consider the additional re-
quirement λω ≪ 1 in Eq.(86) a first order ex-
pansion gives

α(x) =e−ıx +O(λ2
Ω),

β(x) = ı

4λΩλω(e−ıx − eıx cos(λωx))

− 1
2λΩ sin(λωx)eıx +O(λ2

Ω;λ2
ω).

(87)

The conditions λΩ, λω ≪ 1 allow us to achieve
adiabaticity. Notice that, for instance, one can
also consider to drastically reduce λΩ keeping

λω ∼ 1 and still obtain λ ≪ 1, although this typ-
ically requires considerably small values for the
parameters in the Hamiltonian.

The adiabatic time-evolution operator in
Eq.(65) reads here(

αad βad

−βad∗ αad∗

)
, (88)

where

αad = exp
{

− ı

t∫
0

ds
√
ω2

0 + Ω2 sin2(ωs)
}

cos φ2 ,

βad = − exp
{
ı

t∫
0

ds
√
ω2

0 + Ω2 sin2(ωs)
}

sin φ2 .

(89)
We expand these expressions in powers of

λΩ, λω ≪ 1, arriving at

αad x=ω0t= e−ıx +O(λ2
Ω),

βad x=ω0t= −1
2λΩ sin(λωx)eıx +O(λ2

Ω;λ2
ω).

(90)

From a comparison with Eq.(87), we see that
α(x) − αad(x) = O(λ2

Ω) and β(x) − βad(x) =
O(λΩλω), hence providing the condition O(λΩ) =
O(λω) to be satisfied the closed dynamics ap-
proaches adiabaticity. A specific example is illus-
trated in Fig.(3), where already for λΩ = λω =
10−1 we find a good overlapping between the so-
lutions given by the TDME and ADME.
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Figure 3: Left panel: imaginary part of β(t). The spectral density parameters are a = 5 × 10−3, wc = 2. The system
parameters are ω0 = 1,Ω = 10−1, ω = 10−1. The three curves, correspondent to the exact numerical solution of
Eq.(72), the approximated analytic solution in Eq.(87) (red dashed line) and (90) (orange line), are overlapped for
λΩ = λω = 10−1 and therefore the closed dynamics is well approximated by the adiabatic time-evolution operator.
Right panel: Population of the excited state Pe. The initial state is a Gibbs state at temperature TS = 4 with respect
to HS(0). For λ = 10−2, the TDME reduces to the ADME, as shown for both the regimes TB > TS , TB < TS .

4 Second example: interacting qubits

As a second example, we study the dynamics of
two interacting qubits in the presence of both dis-
sipation and driving. The analysis of an open
many-body system, whose components are locally
coupled to some environment, raises the question
of whether a master equation description in terms
of local jump operators is possible or not. This so-
called ’local vs global’ description has attracted
great interest, as witnessed by the vast literature
on the topic (as for example [5, 7, 45–57]), al-
though the case with driven dissipative systems
has received significantly less attention.

In the model we analyse, we assume that only
one qubit directly interacts with the environment,
whereas the other one is driven, as described by
the total Hamiltonian

H = HS(t) +
∑

j

wjb
†
jbj + σ(2)

x ⊗
∑

j

gj(bj + b†
j),

(91)
with system Hamiltonian

HS(t) = ω1(t)
2 σ(1)

z + ω2
2 σ(2)

z + λ(σ(1)
+ σ

(2)
− + h.c).

(92)
We assume that the driving consists of a periodic
modulation of the first qubit frequency,

ω1(t) = ω2 + δ sin(ηt), (93)

with ω2, δ, η > 0 and we always consider ω2 ≥ δ,
in order to keep ω1(t) ≥ 0,∀t. Moreover, it is

convenient to introduce the parameters ω±(t) =
1
2(ω1(t) ± ω2) and tan(2θ(t)) = λ/ω−(t). Differ-
ently from the previous case, it will be sufficient
for our purposes to consider the environment at
zero temperature TB = 0.

As shown in Appendix B, the master equation
in the Schrödinger picture can be expressed in the
form

d

dt
ρS = − ı[HS(t) +HLS(t), ρS ]

+
∑

p=a,b

γ(Ωp(t))D[Lp(t)]ρS ,
(94)

where

La(t) = sin θ
(
|ψ0(t)⟩⟨ψ2(t)| − |ψ1(t)⟩⟨ψ3(t)|

)
,

Lb(t) = cos θ
(
|ψ0(t)⟩⟨ψ1(t)| + |ψ2(t)⟩⟨ψ3(t)|

)
,

(95)
are the jump operators, with |ψn⟩ solution of the
Schrödinger equation ı d

dt |ψn⟩ = HS(t)|ψn⟩ with
initial condition the eigenvector |En(0)⟩ ofHS(0).
The instantaneous Bohr frequencies are given by

Ωa ≡ ω+(t) +
√
λ2 + ω2

−(t),

Ωb ≡ ω+(t) −
√
λ2 + ω2

−(t),
(96)

HLS(t) =
∑

p=a,b

(
S(Ωp(t))L†

p(t)Lp(t)

+S(−Ωp(t))Lp(t)L†
p(t)

)
,

(97)
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is the Lamb shift contribution, whereas

γ(Ω) =
{

2πJ(Ω) if Ω > 0,
0 otherwise,

S(Ω) = P
∞∫

0

dw
J(w)
Ω − w

,

(98)

assuming as before an ohmic spectral density
J(w) = awe−w/wc . We refer the reader to Ap-
pendix B for the detailed derivation.

Besides the condition on the environment cor-
relation function and weak coupling, already
studied in the previous example, the validity of
the master equation Eq.(94) is assured by a set
of sufficient conditions, namely:

1. Full-secular approximation. The explicit ex-
pression of this condition depends on the val-
ues of the parameters, according to the pre-
scription given in Eq.(63). For the sake of
notation, we define the intervals

I1 =
(
0,
√

(ω2 − δ)ω2
)
,

I2 =
[√

(ω2 − δ)ω2,
√

(ω2 + δ)ω2
]
,

I3 =
(√

(ω2 + δ)ω2,∞
)
,

(99)

for the coupling λ.

(a) If λ ∈ I1, the condition reads

min{2ω2 − δ −
√

4λ2 + δ2, 2λ} ≫ awc.
(100)

(b) If λ ∈ I2, two separate conditions are
needed:

min{2ω2 − δ, 2λ} ≫ awc,

ηδ ≫ 4aw2
c .

(101)

Notice that, differently from the other
ranges of parameter, here the secu-
lar approximation requires explicitly a
lower bound on the ’speed’ of the driv-
ing η.

(c) If λ ∈ I3, the condition reads

min{2
√
λ2 + (δ/2)2 − 2ω2 − δ,

2ω2 − δ} ≫ awc.
(102)

2. Condition on the driving. As for the secular
approximation, we obtain a different condi-
tion depending on the value of the coupling
λ. In general, we can summarise it as

δη

4λ ≤ a−1 min A, (103)

where the set A reads

{
2λ, ω2 − δ

2 −

√
λ2 + δ2

4
}

if λ ∈ I1 ,

{2ω2 − δ, 2λ} if λ ∈ I2 ,{
2ω2 − δ,

√
λ2 + δ2

4 − ω2 − δ

2
}

if λ ∈ I3 .

(104)

In the following analysis, we will focus on lo-
cal observables of the single qubits. This will be
done by comparing the master Eq.(94), that we
refer to TDME again, benchmarking it against
tensor network simulations, with the same tech-
nique already illustrated in the previous section
and Appendix D, and the purely unitary dynam-
ics as given by the Von Neumann equation. In ad-
dition, we employ also a ’local’ version of master
equation (Eq.(107) below) in the limit of weakly
interacting qubits and the adiabatic master equa-
tion [10], which can be expressed for our model
in the form

d

dt
ρS = − ı[HS(t) +Had

LS(t), ρS ]

+
∑

p=a,b

γ(Ωp(t))D[Lad
p (t)]ρS ,

(105)

where

Lad
a (t) = sin θ(t)

(
|E0(t)⟩⟨E2(t)|

− |E1(t)⟩⟨E3(t)|
)
,

Lad
b (t) = cos θ(t)

(
|E0(t)⟩⟨E1(t)|

+ |E2(t)⟩⟨E3(t)|
)
,

Had
LS(t) =

∑
p=a,b

(
S(Ωp(t))Lad†

p (t)Lad
p (t)

+ S(−Ωp(t))Lad
p (t)Lad†

p (t)
)
.

(106)

Strong driving regime. We start by
analysing the dynamics described by our mas-
ter equation Eq.(94) in the strong driving
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Figure 4: Populations Pn,m(t) = ⟨n|1⊗⟨m|2ρS(t)|n⟩1⊗|m⟩2 relative to the eigenstates {|n⟩}n=↑,↓ of σx. We prepare
the system in the coherent superposition |ψ(0)⟩ = |1⟩1 ⊗ 1√

2 (|0⟩2 + |1⟩2), where |0⟩, |1⟩ are the eigenstates of σz. The
different plots show the dynamics given by the Eq.(94) (TDME), the adiabatic master Eq.(105) (ADME) and the
tensor network simulation (TN). The system parameters are, in arbitrary units, ω2 = 2, δ = 2 × 10−1, η = 10, λ = 3,
while for the environment a = 5 × 10−3, wc = 6. Tensor networks simulations are performed considering N = 100
harmonic oscillators, with χ = 60 the bond dimension and dmax = 3 the highest local dimension of the environment.

Figure 5: Longitudinal magnetisation of qubit 1 and 2. The system is initially prepared in the state |ψ⟩ = |1⟩1 ⊗
1√
2

(
|0⟩2 + |1⟩2

)
. The results shown correspond to Eq.(94) (TDME), the purely unitary dynamics and the tensor

network simulation (TN). The system parameters are, in arbitrary units, ω2 = 1, δ = 1, η = 20, λ = 10−1, while for
the environment a = 5 × 10−3, wc = 4. The parameters related to the tensor networks are the same as in Fig.(4).
The condition on the driving in Eq.(103) is violated for this set of parameters and the TDME shows a deviation from
the tensor network simulation.

regime, as shown in Fig.(4). The system
is prepared in the coherent superposition
|ψ(0)⟩ = |1⟩1 ⊗ 1√

2(|0⟩2 + |1⟩2), where |0⟩, |1⟩ are
the eigenstates of σz and we compute the pop-
ulations Pn,m(t) = ⟨n|1 ⊗ ⟨m|2ρS(t)|n⟩1 ⊗ |m⟩2
relative to the eigenstates {|n⟩}n=↑,↓ of σx. In
this regime, we clearly see in Fig.(4) that the
adiabatic master equation does not correctly
reproduce the dynamics, while Eq.(94) shows
a good agreement with the tensor network

simulations.
Furthermore, in order to test the validity of

our results, we consider in Fig.(5) a case of ex-
plicit violation of the condition on the driving
in Eq.(103), which leads to a expected deviation
from the TN simulations.

Weakly interacting qubits. In a many-body
system, correlations and excitations locally cre-
ated by the coupling with an environment can
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Figure 6: Transverse local magnetisation of qubit 1 and 2. The system is initially prepared in the product state
|ψ⟩ = |1⟩1 ⊗ 1√

2

(
|0⟩2 + |1⟩2

)
. The curves shown correspond to Eq.(94) (TDME global), Eq.(107) (TDME local),

the purely unitary dynamics and the tensor network simulation (TN). The system parameters are, in arbitrary units,
ω2 = 2, δ = 1, η = 2, λ = 10−2, while for the environment a = 5 × 10−3, wc = 4. The parameters considered in the
tensor network simulations are the same as in Fig.(4). For weak qubit-qubit interaction, qubit 2 is mainly subject
to dissipation, as correctly predicted by the local master equation, while qubit 1 displays a dynamics very close the
unitary. Notice that, as explained in the main text, small deviations from the unitary dynamics can still be observed
for qubit 1 at later times, due to presence of a non-zero qubit-qubit interaction in the unitary part of the master
equation Eq.(107). Due to the breakdown of the full-secular approximation in Eq.(100), the global master equation
is not able to correctly reproduce the dynamics.

propagate very fast to distant regions, especially
in the presence of strong interactions among
the system components. Therefore, a master
equation description frequently requires non-local
jump operators, namely operators with non-zero
expectation values on many-particle states. How-
ever, a different situation can manifest when the
internal interactions are sufficiently weak, with
respect to the typical system-environment cou-
pling strength.

In this last scenario, one can expect for our spe-
cific example that the open dynamics of the two
qubits is partially decoupled, with the dissipative
part acting only on the qubit directly in contact
with the environment.

However, when λ becomes very small the en-
ergy spectrum manifests quasi-degeneracies and
the full-secular approximation in Eq.(100) may
break down, jeopardising the validity of Eq.(94).

Nevertheless, providing the hypothesis that
λ = O(g), a local master equation can be directly
derived from the Nakajima-Zwanzig equation, as
shown in the Appendix B. The intuitive idea is
that, for sufficiently weak interaction, the effects
of the environment can be effectively described
in terms of eigenstates of the local Hamiltonians
H1/2 = ω1/2

2 σ
(1/2)
z . This master equation has the

form

d

dt
ρS = − ı[HS(t) +HLS , ρS ]

+ γ(ω2)
(
σ

(2)
− ρSσ

(2)
+ − 1

2{σ(2)
+ σ

(2)
− , ρS}

)
,

(107)
where HLS = 1

2(S(ω2) − S(−ω2))σ(2)
z . Whereas

another full-secular approximation is needed also
here, namely 2ω2 ≫ aC, there is no constraint on
the driven frequency ω1(t). As expected, the dis-
sipation acts directly on qubit 2. However, given
that the unitary part still contains the interaction
term λ(σ(1)

+ σ
(2)
− +h.c.), we underline that the dy-

namics is not fully decoupled and for large times
dissipative effects can be observed also on qubit
1.

A numerical analysis which summarises the
content of this subsection is shown in Fig.(6),
where we compare Eq.(94) (TDME global) with
Eq.(107) (TDME local), the tensor network simu-
lations and the unitary evolution, observing good
agreement with the arguments outlined above.

5 Conclusions
We have derived a time-dependent Markovian
master equation for a system subject to driv-
ing fields, starting from the Nakajima-Zwanzig
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equation in an interaction picture. The proce-
dure is based on the proof of convergence of the
Nakajima-Zwanzig equation for the system den-
sity matrix to a Markovian evolution, under a
weak-coupling limit g → 0 between the system
and the environment and makes use of a time
rescaling t = τ/g2.

In order to perform this limit consistently, we
have introduced a renormalisation of the system
parameters {λ} which appear in the Hamiltonian
HS(t, λ), to reabsorb the dependence on g in HS

after the time rescaling, extending the canonical
procedure outlined by Davies ([28, 29]).

We have developed a systematic and accu-
rate derivation, incorporating two key ingredi-
ents. First, we utilise the method of station-
ary phase, a proven effective tool for generat-
ing accurate bounds for the approximations in-
volved. Secondly, we employ a lemma which
demonstrates that, when subject to time rescal-
ing and weak coupling, only adiabatic contribu-
tions to the time-evolution operator US(t) are rel-
evant. This allows us to include non-adiabatic
contributions naturally, as we utilise the entire
time evolution operator to express the equation
in the Schrödinger picture. Together, these in-
gredients enable us to achieve a highly accurate
and rigorous derivation.

The validity of the derived master equation is
characterised by a series of sufficient conditions,
namely weak-coupling, integrability of the envi-
ronment correlation functions, a full-secular ap-
proximation and a condition on the driving which
is sufficiently loose to allow us to explore strong
driving regimes.

We tested the range of validity of our mas-
ter equation by studying the spin-boson model
with a single periodically driven two-level system.
Our findings suggest that our master equation
provides an accurate and feasible description for
strong periodic driving fields, alternative to the
standard Floquet theory based approach [17]. We
compared our master equation against numeri-
cally exact results given by tensor network simu-
lations and considered also the adiabatic master
equation of [10] as comparison. Our master equa-
tion matches very well the tensor network simu-
lations even for very strong drivings, as given by
λ ∼ 10, with λ the adiabatic parameter.

In the case of strong driving, we observed that
the environment plays a more prominent role in

generating coherence at lower temperatures than
purely unitary evolution, which has also been
noted in previous works [20]. We have also stud-
ied in detail the effect of the Lamb shift contri-
bution on the dynamics. In particular, we have
proved that if the initial state is diagonal in the
eigenbasis of HS(0), the Lamb shift does not con-
tribute to the evolution. On the other hand, when
some initial coherence is introduced, the Lamb
shift has sizable impact on the dynamics, as ob-
served in the transverse magnetization ⟨σx(t)⟩. In
the last part, we conducted a rigorous analysis of
the adiabatic limit.

Finally, we moved from a single qubit to two
interacting qubits, where only one of them is di-
rectly in contact with the environment, while the
other one is subject to a periodic modulation of
its bare gap. We presented the analysis of lo-
cal observables of the two qubits. In the strong
driving regime, our master equation is proven to
correctly reproduce the exact dynamics, moreover
we put to the test the bounds given by the condi-
tion on the driving outlined in Eq.(64), checking
that a violation of them does imply that the mas-
ter equation ceases to be valid. The last analy-
sis covers in detail the case of weakly interacting
qubits. It is shown that when the qubit-qubit
interaction is of the same order of magnitude of
the system-environment coupling, the full-secular
approximation breaks down. In this regime, we
provided a local master equation that can cor-
rectly describe the system dynamics. Ultimately,
a global master equation with a partial secular
approximation would be able to overcome the
limitation that our approach suffers in this situa-
tion and would also represent a step forward to-
wards a thorough analysis of the ’local vs global’
debate in the presence of strong drivings. This,
together with a comprehensive investigation of
both transient and steady state properties of the
driven dissipative dynamics described by our de-
rived master equation, will be the topic of future
work.
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A Derivation of the master equation for the driven two-level system
In this Appendix, we derive the master equation Eq.(60) for a driven two-level system described by
the Hamiltonian

H(t) = HS(t) +
∑

j

wjb
†
jbj +

∑
j

σx ⊗ gj(bj + b†
j), (108)

where the system Hamiltonian takes the generic form HS(t) = ω(t)σz + h(t)σx, being concretely
ω(t) = ω0, h(t) = Ω sin(ωt), and we can easily identify A = σx, B = 1√

a

∑
j
gj(bj + b†

j) in the interaction

Hamiltonian, as explained in the main text. Because of the factor g2 = a appearing in Eq.(60) in front
of the terms due to the interaction with the environment, the factor g =

√
a will be absorbed in the

interaction Hamiltonian such that
√
aB → B, in order to ease the notation.

The spectral decomposition of the system Hamiltonian reads HS(t) =
∑

n=e,g
En(t)|nt⟩⟨nt|, with

|et⟩ =
(

cos(φ/2)
sin(φ/2)

)
, |gt⟩ =

(
− sin(φ/2)
cos(φ/2)

)
, (109)

Ee,g(t) = ±E(t) ≡ ±
√
ω2(t) + h2(t) and tanφ(t) = h(t)/ω(t).

Let us start by evaluating the two-time correlation function of the environment,

R(x) = trB[B̃(x)Bρth] =
∑

j

g2
j

1 − e−wj/TB
(e−ıwjx + eıwjx−wj/TB ). (110)

As usual, we assume a continuous spectral density for the environment, taking the limit
∑
j
g2

j →
∞∫
0
dwJ(w), hence

R(x) =
∞∫

0

dw
J(w)

1 − e−w/TB
(e−ıwx + eıwx−w/TB ), (111)

where J(w) = awe−w/wc and a,wc > 0. The one-sided Fourier transform of the environment correlation
function in Eq.(62) reads

Γp(t) =
∞∫

0

dxR(x)eıxΩp(t), (112)

with the set of Bohr frequencies {Ωp(t)}p = {0,±2E(t)}. Using the well-know relation
∞∫
0
dxeıwx =

ıP(1/w) + πδ(w), we directly obtain for each Bohr frequency

γ0(t) = 4πaTB,

γ+(t) = 2πJ(2E(t))n̄BE(2E(t);TB),
γ−(t) = 2πJ(2E(t))(1 + n̄BE(2E(t);TB)),

S0(t) = −P
∞∫

0

dw
J(w)
w

,

S±(t) =
∞∫

0

dwJ(w)
(
(1 + n̄BE(w))P

( 1
−w ∓ 2E(t)

)
+ n̄BE(w)P

( 1
w ∓ 2E(t)

))
,

(113)
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where n̄BE(w;TB) is the mean occupation number given by the Bose-Einstein distribution. The jump
operators in the Schrödinger picture are Lp(t) = US(t)|m0⟩⟨mt|σx|nt⟩⟨n0|U †

S(t), where p = (n,m),
thus we obtain three jumps

L0(t) =
∑

n=e,g

US |n0⟩⟨nt|σx|nt⟩⟨n0|U †
S ,

L+(t) = US |e0⟩⟨et|σx|gt⟩⟨g0|U †
S ,

L−(t) = US |g0⟩⟨gt|σx|et⟩⟨e0|U †
S ,

(114)

where
⟨et|σx|et⟩ = ⟨gt|σx|gt⟩ = sinφ(t),
⟨et|σx|gt⟩ = ⟨gt|σx|et⟩ = cosφ(t).

(115)

For this model no analytical solutions are known for the time-evolution operator, therefore we need to
rely on numerical integration of the equations of motion for computing US(t). We start from

ı
d

dt
US(t, 0) = HS(t)US(t, 0) (116)

and make use of the parametrisation

US =
(

α β
−β∗eıφ α∗eıφ

)
(117)

valid for every 2 × 2 unitary matrix, where det(US) = eıφ and |α|2 + |β|2 = 1 (see for example [38]).
From Eq.(116) we arrive at

ı
d

dt
α = ω0α− Ω sin(ωt)β∗eıφ,

ı
d

dt
β = ω0β + Ω sin(ωt)α∗eıφ,

ı
( d
dt
α∗ + ı

d

dt
φα∗)eıφ = Ω sin(ωt)β − ω0α

∗eıφ,

−ı
( d
dt
β∗ + ı

d

dt
φβ∗)eıφ = Ω sin(ωt)α+ ω0β

∗eıφ.

(118)

Combining these equations we easily get d
dtφ = 0, which implies φ = 0 from the initial condition

α(0) = 1, β(0) = 0. Hence, the solution is determined by the set of coupled differential equations,

ı
d

dt
α = ω0α− Ω sin(ωt)β∗,

ı
d

dt
β = ω0β + Ω sin(ωt)α∗.

(119)

Therefore, using the explicit form of US we arrive at the jump operators expressed in Schrödinger
picture

L0(t) = sinφ(t)
(
(|α|2 − |β|2)σz − 2αβσ+ − 2α∗β∗σ−

)
,

L+(t) = cosφ(t)
(
αβ∗σz + α2σ+ − β∗2σ−

)
,

L−(t) = cosφ(t)
(
α∗βσz + α∗2σ− − β2σ+

)
,

(120)

and consequently the Lamb shift Hamiltonian reads

HLS(t) = −S+ − S−
2 cos2 φ(t)

(
(|α|2 − |β|2)σz − 2αβσ+ − 2α∗β∗σ−

)
. (121)

Putting all together we finally arrive at the time-dependent Markovian master equation in Eq.(69).
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B Derivation of the master equation for the interacting two-level systems
In this Appendix, the master equation Eq.(94) is derived. The starting point is the full Hamiltonian

H(t) = HS(t) +
∑

j

wjb
†
jbj +

∑
j

σ(2)
x ⊗ gj(bj + b†

j), (122)

where now
HS(t) = ω1(t)

2 σ(1)
z + ω2

2 σ(2)
z + λ(σ(1)

+ σ
(2)
− + h.c), (123)

with ω1(t) = ω2 + δ sin(ηt). As explained in the main text, the condition ω2 > δ is assumed. The
environment has the same structure as the one previously analysed in Appendix A, however here we
consider the case TB = 0, while keeping an ohmic spectral density J(w) = awe−w/wc . Let us start
from the environment correlation function, in the continuum limit we have

R(x) = tr[B̃(x)Bρth] =
∞∫

0

dwJ(w)e−ıwx, (124)

therefore, utilising the relation Γ(Ω) =
∞∫
0
dxR(x)eıΩx = 1

2γ(Ω) + ıS(Ω), we come up with

γ(Ω) =
{

2πJ(Ω) if Ω > 0,
0 otherwise,

S(Ω) = P
∞∫

0

dw
J(w)
Ω − w

,

(125)

where Ω will correspond to the instantaneous Bohr frequencies. Notice that, at zero temperature the
environment correlation function can be easily computed and it is given by R(t) = aw2

c
(1−ıtwc)2 .

In order to compute the jump operators, the eigendecomposition of HS(t) is needed. In particular,
the instantaneous eigenvalues are

E0(t) = −ω+(t), E2(t) =
√
λ2 + ω2

−(t),
E1(t) = −

√
λ2 + ω2

−(t), E3(t) = ω+(t),
(126)

where ω±(t) = 1
2(ω1(t) ± ω2), whereas

|E0(t)⟩ = |0, 0⟩,
|E1(t)⟩ = − sin θ(t)|1, 0⟩ + cos θ(t)|0, 1⟩,
|E2(t)⟩ = cos θ(t)|1, 0⟩ + sin θ(t)|0, 1⟩,
|E3(t)⟩ = |1, 1⟩,

(127)

are the eigenvectors, where tan(2θ(t)) = λ/ω−(t) and we made use of the eigenbasis {|1⟩, |0⟩} of σz

in C2. The ordering Ej+1 > Ej is valid if we assume the condition ω1(t)ω2 > λ2,∀t, or equivalently
(ω2 − δ)ω2 > λ2, so that no crossover among energy levels occurs. In general, for positive coupling we
can individuate three different intervals

1. 0 < λ <
√

(ω2 − δ)ω2. In this case, the condition λ2 < ω1(t)ω2 is satisfied for all t, the spectrum
is smooth and there are no crossovers.

2.
√

(ω2 − δ)ω2 ≤ λ ≤
√

(ω2 + δ)ω2. There are multiple times t∗ such that λ2 = ω1(t∗)ω2 and level
crossings take place.
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3. λ >
√

(ω2 + δ)ω2. The spectrum is smooth as the condition λ2 > ω1(t)ω2 is fulfilled.

The jump operators in the Schrödinger pictures are in the form

{Lnm(t) = US(t)|Em(0)⟩⟨Em(t)|σ(2)
x |En(t)⟩⟨En(0)|U †

S(t)} (128)

and correspond to the instantaneous Bohr frequencies {En(t) − Em(t)}. We start by computing the
non-zero matrix elements ⟨Em(t)|σ(2)

x |En(t)⟩, which enter the master equation,

⟨E1(t)|σ(2)
x |E0(t)⟩ = cos θ(t), ⟨E3(t)|σ(2)

x |E1(t)⟩ = − sin θ(t),
⟨E2(t)|σ(2)

x |E0(t)⟩ = sin θ(t), ⟨E3(t)|σ(2)
x |E2(t)⟩ = cos θ(t).

(129)

The remaining vectors |ψn(t)⟩ ≡ US(t)|En(0)⟩ for any n can be directly obtained solving the
Schrödinger equation for |ψ(t)⟩ = (ψ11, ψ10, ψ01, ψ00)T ∈ C4 and imposing the initial condition
|ψ(0)⟩ = |En(0)⟩. From ı d

dt |ψ(t)⟩ = HS(t)|ψ(t)⟩ we obtain the following set of equations

ı
d

dt
ψ11 = ω+(t)ψ11,

ı
d

dt
ψ00 = −ω+(t)ψ00,

ı
d

dt
ψ10 = ω−(t)ψ10 + λψ01,

ı
d

dt
ψ01 = −ω−(t)ψ01 + λψ10

(130)

and indicate with |ψn(t)⟩ the solution of Eq.(130) with initial condition given by |En(0)⟩. Clearly,
the last equation needs to be solved numerically. Therefore, we obtain the jump operators
{La(t), Lb(t), L†

a(t), L†
b(t)}, where

La(t) = L20 + L31 = sin θ(t)
(
|ψ0(t)⟩⟨ψ2(t)| − |ψ1(t)⟩⟨ψ3(t)|

)
,

Lb(t) = L32 + L10 = cos θ(t)
(
|ψ0(t)⟩⟨ψ1(t)| + |ψ2(t)⟩⟨ψ3(t)|

)
,

(131)

correspondent to the Bohr frequencies {Ωa,Ωb,−Ωa,−Ωb}, with

Ωa ≡ Ω31 = Ω20 = ω+(t) +
√
λ2 + ω2

−(t),

Ωb ≡ Ω10 = Ω32 = ω+(t) −
√
λ2 + ω2

−(t).
(132)

The Lamb shift contribution reads

HLS(t) =
∑

p=a,b

(
S(Ωp(t))L†

p(t)Lp(t) + S(−Ωp(t))Lp(t)L†
p(t)

)
. (133)

Finally, we can write down the master equation in the Schrödinger picture

d

dt
ρS = − ı[HS(t) +HLS(t), ρS ] + γ(Ωa(t))

(
La(t)ρSL

†
a(t) − 1

2{L†
a(t)La(t), ρS}

)
+ γ(Ωb(t))

(
Lb(t)ρSL

†
b(t) − 1

2{L†
b(t)Lb(t), ρS}

)
.

(134)

Beside the already discussed conditions on the environment correlation function and weak coupling,
the validity of the master equation is also determined by the following:

1. Full-secular approximation. The explicit expression of this condition depends on the values of
the parameters, in particular the coupling λ. We need to distinguish three different scenarios.
According to the prescription given in Eq.(63), we consider the differences between instantaneous
Bohr frequencies in Eq.(132), i.e. the set

F ≡ {±2
√
λ2 + ω2

−(t),±2ω+(t),±2
(
ω+(t) +

√
λ2 + ω2

−(t)
)
,±2

(
ω+(t) −

√
λ2 + ω2

−(t)
)
}. (135)
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(a) 0 < λ <
√

(ω2 − δ)ω2. In this case, there are no crossovers among energy levels, in particular
the set in Eq.(135) shows no critical points, i.e. d

dtφpq(t) ̸= 0, ∀t. Hence we can use the first
condition, i.e.

min
p,q;t

|Ωp(t) − Ωq(t)| ≫ aC, (136)

where C =
∞∫
0
dt|R(t)| = π

2wc can be computed analytically in this case (notice that here we

have extracted the factor
√
a ≡ g from the interaction term). The resulting condition, after

the minimisation over the set and time t is

min{2λ, 2ω2 − δ − 2
√
λ2 + (δ/2)2} ≫ aC . (137)

(b)
√

(ω2 − δ)ω2 ≤ λ ≤
√

(ω2 + δ)ω2. In this case, multiple crossovers take place at different
times when ω+(t) =

√
λ2 + ω2

−(t). We split the set F between phases with and without
critical points, say F = Fc ∪ Fnc, where

Fnc = {±2
√
λ2 + ω2

−(t),±2ω+(t),±2
(
ω+(t) +

√
λ2 + ω2

−(t)
)
},

Fc = {±2
(
ω+(t) −

√
λ2 + ω2

−(t)
)
}.

(138)

For the first set, the usual condition is valid, i.e. min
p,q;t

|Ωp(t) − Ωq(t)| ≫ aC, which translates

into
min{2ω2 − δ, 2λ} ≫ aC, (139)

whereas for the second set we need to fulfil min
p,q;t0

|dΩp

dt (t0)− dΩq

dt (t0)| ≫ aC2, where t0 indicates

the set of critical points, hence we arrive at

ηδ ≫ 2aC2. (140)

(c)
√

(ω2 + δ)ω2 ≤ λ. Here the spectrum is again smooth and the minimisation over the full set
of Bohr frequencies leads to

min{2ω2 − δ, 2
√
λ2 + (δ/2)2 − 2ω2 − δ} ≫ aC . (141)

2. Condition on the driving. Following the prescription in Eq.(64), as before we need to distinguish
the three ranges for λ.

(a) 0 < λ <
√

(ω2 − δ)ω2. Because of the smoothness of the spectrum, no critical points appear
and the first condition in Eq.(64) can be simply used. One can easily find

max
n̸=m;t

|⟨En(t)| d
dt

|Em(t)⟩| = max
t

∣∣∣ d
dt
θ(t)

∣∣∣ ≤ δη

4λ,

min
n̸=m;t

|En(t) − Em(t)| = min{2λ, ω2 − δ

2 −

√
λ2 + δ2

4 }.
(142)

Hence, sufficient condition can be stated as

δη

4λ ≤ a−1 min{2λ, ω2 − δ

2 −

√
λ2 + δ2

4 }. (143)

(b)
√

(ω2 − δ)ω2 ≤ λ ≤
√

(ω2 + δ)ω2. Both conditions in Eq.(64) have to be addressed. To this
end, we split the set of ∆nm such as F = Fnc + Fc, where

Fnc = {±∆20,±∆21,±∆30,±∆31},
Fc = {±∆32,±∆10}.

(144)
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For the second set, we see that αnm(t) = 0, hence the inequality is trivially satisfied, while
for the first set we obtain

max
n ̸=m;t

|⟨En(t)| d
dt

|Em(t)⟩| = max
t

∣∣∣ d
dt
θ(t)

∣∣∣ ≤ δη

4λ,

min
n̸=m;t

|En(t) − Em(t)| = min{2λ, 2ω2 − δ},
(145)

hence the condition reads
δη

4λ ≤ a−1 min{2ω2 − δ, 2λ}, (146)

(c)
√

(ω2 + δ)ω2 ≤ λ. The spectrum is smooth again and

max
n ̸=m;t

|⟨En(t)| d
dt

|Em(t)⟩| = max
t

∣∣∣ d
dt
θ(t)

∣∣∣ ≤ δη

4λ,

min
n̸=m;t

|En(t) − Em(t)| = min{2ω2 − δ,

√
λ2 + δ2

4 − ω2 − δ

2}.
(147)

Hence, the sufficient condition can be stated as

δη

4λ ≤ a−1 min{2ω2 − δ,

√
λ2 + δ2

4 − ω2 − δ

2}. (148)

Derivation of the local master equation in the case of weak coupling between qubits. We
show here how to derive a local master equation for the interacting qubits. The starting point is the
derivation outlined in Theorem 2.3. In our case, we simply consider a further condition when studying
the limit g → 0 of the Nakajima-Zwanzig kernel in Eq.(40), namely that λ = O(g). This allows us to

perform in the first place the expansion US = U
(1)
S ⊗ U

(2)
S + O(g), where U (1)

S (t) = e
−ı

t∫
0

dsω1(s)/2σ
(1)
z

,

U
(2)
S (t) = e−ı

ω2
2 tσ

(2)
z , obtaining

Ã(t) = (U (1)
S ⊗ U

(2)
S )†σ(2)

x (U (1)
S ⊗ U

(2)
S ) +O(g)

= eı
ω2
2 tσ

(2)
z σ(2)

x e−ı
ω2
2 tσ

(2)
z +O(g)

= e−ıω2tσ− + e+ıω2tσ+ +O(g).

(149)

At this point, the derivation can be easily carried on by considering the time rescaling and the limit
g → 0, as already illustrated. The resulting master equation reads

d

dt
ρS = −ı[HS(t) +HLS , ρS ] + γ(ω2)

(
σ

(2)
− ρSσ

(2)
+ − 1

2{σ(2)
+ σ

(2)
− , ρS}

)
, (150)

where HLS = 1
2(S(ω2) − S(−ω2))σ(2)

z . Underlying this equation, a full-secular approximation is also
needed and reads 2ω2 ≫ aC. On the other hand, there is no constraint on ω1(t).

C Environmental correlation functions
In this Appendix, we study the boundedness condition for the correlation function

R(t) =
∞∫

0

dwJ(w)
[
e−ıwt(1 + n̄BE(w)) + eıwtn̄BE(w)

]
, (151)

with J(w) = awe−w/wc , n̄BE(w) = (eβw − 1)−1 and β ̸= 0.
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Figure 7: Absolute value of the two-time correlation function R(t) = trB [B̃(t)Bρth] from Eq.(110). The spectral
density parameters a = 5 × 10−3, wc = 4 are fixed, N is the number of oscillators, TB their temperature, ∆w =
wmax/N with wmax the highest frequency of the environment modes. The main panel shows the rapid decay of the
correlation function for a sufficiently small discretisation of the spectrum, while in the internal panel we can see the
periodicity due to the finiteness of the environment, which manifests for larger times.

Lemma C.1. The function R : R+ → C in Eq.(151) is integrable in R+.

Proof. First, we notice that R(t) can be written in terms of the trigamma function ψ(1)(z) =
∞∫
0
dxxe−zx/(1 − e−x) for z ∈ C, ℜ(z) > 0 (see [58]) as

R(t) = a

β2

(
ψ(1)

( 1
βwc

+ ı
t

β

)
+ ψ(1)

( 1
βwc

− ı
t

β
+ 1

))
. (152)

Because ψ(1)(z) is analytic in any K = {z = (x, y) ∈ C|x > 0, y ∈ I}, R(t) is locally integrable in any
compact interval I ⊂ R+.

Now we need to study the asymptotic behaviour. In order to do so, it is sufficient to show that
|R(t)| = O(t−2) for t → ∞. To this end, using the recurrence formula ψ(1)(z + 1) = ψ(1)(z) − 1

z2 we
obtain

R(t) = a

β2

(
ψ(1)

( 1
βwc

+ ı
t

β

)
+ ψ(1)

( 1
βwc

− ı
t

β

)
−
( 1
βwc

− ı
t

β

)−2)
. (153)

The last contribution is clearly integrable as
∣∣∣ 1

βwc
− ı t

β

∣∣∣−2
= O(t−2) for t → ∞, whereas for the first

two one can easily see that also

ψ(1)
( 1
βwc

+ ı
t

β

)
+ ψ(1)

( 1
βwc

− ı
t

β

)
= O(t−2), (154)

using the asymptotic expansion ψ(1)(z) ≈ 1
z + 1

2z2 + ... for z → ∞.

D Tensor network simulations
In order to analyse the range of validity of our result, the master Eq.(60) is benchmarked against
numerically exact results given by tensor network simulations ([41–43]). In this section, we introduce
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the method employed for the numerical simulations. We model the total system as a system S coupling
to a set ofN harmonic oscillators in a star configuration, with total Hamiltonian in natural units (ℏ = 1)

H(t) = HS(t) +
N∑
j

wjb
†
jbj +

N∑
j

σx ⊗Bj , (155)

with Bj = gj(bj +h.c.), HS(t) generic and the bosonic creation/annihilation operators satisfy the usual
canonical commutation relations [bi, b

†
j ] = δij , [bi, bj ] = 0 , while wj > 0 without loss of generality.

We are interested in studying the evolution of the density matrix ρ(t), according to the Von Neumann
equation d

dtρ(t) = −ı[H(t), ρ(t)]. First, we consider some features concerning the environment.

1. Finiteness of the environment. In order to achieve a full Markovian dynamics the environment
must have infinite degrees of freedom. In practice, given that we are considering a collection
of N harmonic oscillators, we can avoid the recurrence due to the finiteness of the environment
bounding the time evolution with t < tmax, where tmax has to be chosen in such a way that no
periodicity of the correlation function R(t) = trB[B̃(t)Bρth] is observed in the considered time
scale. Fig.(7) shows an example of this behaviour. For our simulations we consider N = 100 fixed.

2. Choice for the coupling constants. The coefficients gj are determined by their relation with the

spectral density. In the continuum limit,
∑
j
g2

j ≡
∞∫
0
dwJ(w) with J(w) = awe−w/wc ohmic spectral

density used throughout this work. Let us introduce an upper limit wmax for the integral, because
of the finite number of the environment degrees of freedom, and replace it with a discrete sum as

∞∫
0

dwJ(w) ≈
∑

j

awje
−wj/wc∆w, (156)

where wj = j∆w, ∆w is the integration step and j = 1, ..., N with wmax = ∆wN , hence we obtain
g2

j ≈ awje
−wj/wc∆w. This approximation is affected by two sources of error. First, we have the

error due to the truncation at wmax

ϵ1 =
∣∣∣ ∞∫

0

dwJ(w) −
wmax∫
0

dwJ(w)
∣∣∣ = aw2

c

(wmax

wc
+ 1

)
e−wmax/wc . (157)

As long as wmax ≳ wc, this error can be easily taken under control for sufficiently small a. The
second one is determined by the discretisation of the integral, in particular using the general result
for approximating integrals with the Riemann right sum

ϵ2 =
∣∣∣ wmax∫

0

dwJ(w) −
N∑

j=1
∆wJ(wj)

∣∣∣ ≤ w2
max

2N max
w∈[0,wmax]

| d
dw

J(w)| ≡ aw2
max

2N , (158)

for wmax ≳ wc. If ∆w = wmax/N is too large, then from the physical point of view the system
does not ’see’ the environment as being made up of a continuum of modes and the dynamics ceases
to be Markovian since the beginning of the evolution.

The integration step ∆w is determined from wmax, once N and wc have been chosen, while the
weak coupling condition is guaranteed by a ∼ 10−3 for example, as already explained in the
previous sections.

3. Truncation of the environment Hilbert space. The local Hilbert space dimension dj of the environ-
ment is chosen by looking at the thermal mean occupation value ⟨b†

jbj⟩th as reference, therefore
the low frequency oscillators (i.e. the ones with j close to zero) have generally higher dimension,
while the high frequency ones can be efficiently modelled with dj = 2 or 3.
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Figure 8: Scheme of the application of unitary operators UI,j = e−ıHI,j
δt
2 as described in the main text. The MPS is

represented by the chain above, S in the initial site is the system while the remaining are N = 5 harmonic oscillators.
After the application of the first unitary gate UI,1 the physical legs are swapped (green curves). This way, after each
step the system is moved to the right along the chain and the interaction is kept local. When the system arrives at
the end of the chain, we repeat the procedure moving to the left and applying the inverse swaps, until we return to
the initial configuration.

We study the dynamics by means of Time-Evolving Block Decimation on the purified density matrix,
as described by the following procedure:

1. The total time-evolution operator between t and t+ δt is written in the typical form of a second-
order TEBD (see [59, 60]):

U(t+ δt, t) ≈ exp
{

− ı

t+δt∫
t+δt/2

dsHS(s)
}
e−ıHB

δt
2 e−ıHIδte−ıHB

δt
2 exp

{
− ı

t+δt/2∫
t

dsHS(s)
}

(159)

where we can naturally factorise the terms made by internally commuting contributions as

e−ı δt
2 HB =

[
N∏

j=1
e−ı δt

2 HBj

]
. Note that we have also removed the time-ordering from T exp

{
−

ı
t+δt/2∫

t
dsHS(s)

}
: as shown in [60], this produces a further error bounded by a contribution of

order δt2||HS(t)||2. For our simulations we have used δt ≈ 10−2.

2. The interacting contribution is further split into e−ıHIδt = e−ıHI1
δt
2 ...e−ıHIN

δt
2 e−ıHIN

δt
2 ...e−ıHI1

δt
2

without producing additional errors. This decomposition allows us to efficiently treat long-range
interactions by means of swap gates after each contraction with the unitary operator UI,j =
e−ıHIj

δt
2 , as described in Fig.(8) and more in detail in [61].

3. As anticipated, we can consider a local purification |ψ⟩ of the density matrix doubling each local
Hilbert space by Hn → Hn ⊗Haux

n with an auxiliary Hilbert space isomorphic to the physical one.
In this manner, we can safely keep under control the positivity of the density matrix after each
compression. Hence, the MPS representation of our state takes the generic form

|ψ⟩ =
ds∑

σ,σ′

d1∑
n1,n

′
1

...
dN∑

nN ,n
′
N

Sσσ
′
B

n1n
′
1

1 ...B
nN n

′
N

N

[
|σ⟩ ⊗ |σ′⟩

]
⊗ ...⊗

[
|nN ⟩ ⊗ |n′

N ⟩
]
, (160)

where ds = 2 for a single qubit, dj the local j − th bath Hilbert space dimension and naturally
ρ = traux[|ψ⟩⟨ψ|]. Let us show that by simply considering hn → hn ⊗ 1aux

dn
, where hn is a generic
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spin or bath operator acting only on the local Hilbert space Hn, the dynamics generated is exactly
the same. For the free contributions to the Hamiltonian we haveUS → US = exp

{
− ı

t+δt∫
t
dsHS(s)

}
⊗ 1aux

ds
,

UBj → UBj = e−ı δt
2 HBj ⊗ 1aux

dj
,

(161)

then clearly |ψ⟩ → |ψ′⟩ = U|ψ⟩ corresponds to ρ → ρ
′ = UρU †. The same consideration can

be applied to the interacting contributions. First, notice that for HIj = σx ⊗ Bj is UIj =
1ds ⊗ cos(Bjδt) − ıσx ⊗ sin(Bjδt), hence if HIj → σx ⊗ 1aux

ds
⊗ Bj ⊗ 1aux

dj
then US → UIj =

1ds ⊗ 1aux
ds

⊗ cos(Bjδt) ⊗ 1aux
dj

− ıσx ⊗ 1aux
ds

⊗ sin(Bjδt) ⊗ 1aux
dj

, from which we easily prove

ρ
′ = traux

[
UIj |ψ⟩⟨ψ|U†

Ij

]
,

=
∑
n,k

⟨ϕ(S)
n |⟨ϕ(Bj)

k |UIj |ψ⟩⟨ψ|U†
Ij |ϕ(Bj)

k ⟩|ϕ(S)
n ⟩,

= UIj

∑
n,k

⟨ϕ(S)
n |⟨ϕ(Bj)

k |ψ⟩⟨ψ|ϕ(Bj)
k ⟩|ϕ(S)

n ⟩U †
Ij ,

= UIjtraux[|ψ⟩⟨ψ|]U †
Ij ,

(162)

having introduced two orthonormal bases {|ϕ(S)
n ⟩}n, {|ϕ(Bj)

n ⟩}n for, respectively, the auxiliary
Hilbert spaces of HS ,Hj and using the explicit form of UIj .

4. The initial condition is simply given by the vectorisation of the square root of the initial density
matrix. For example, in the case of initial preparation of a single qubit in the ground state,

|ψ(0)⟩ = [|0⟩ ⊗ |0⟩] ⊗
[∑

k

√
p

(1)
k |ϕ(1)

k ⟩ ⊗ |ϕ(1)
k ⟩
]

⊗ ...⊗
[∑

k

√
p

(N)
k |ϕ(N)

k ⟩ ⊗ |ϕ(N)
k ⟩

]
, (163)

with the thermal state for the j-th bath in the form ρ
(j)
th =

∑
k
p

(j)
k |ϕ(j)

k ⟩⟨ϕ(j)
k |.
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