SLAC-TN-90-2
February 1990
(TN)

USING REXX TO COORDINATE RELATIONAL COMMANDS*

Frank Rothacker

Stanford Linear Accelerator Center

Stanford University, Stanford, CA 94309

Relational technology has drastically reduced, but not eliminated, the need
for a procedural language. The main advantage of relational commands is
that they can manipulate entire sets of records in complex ways, without the
need to loop through files. What remains is coordinating the execution of
relational commands. This paper discusses how Rexx may help to fill that
void.

The problem

SQL*PLUS was designed to be an interactive interface to the Oracle database.
With SQL*PLUS the user can issue a wide variety of commands and
immediately see the results on the terminal screen.

An important advantage of SQL*PLUS is that it is complete---all Oracle
commands can be issued from SQL*PLUS. Another advantage of SQL*PLUS
is that it is interactive---the result of each command is displayed on the
screen, without the need to compile a program.

* Work supported by Department of Energy contract DE-AC03-76SF00515.

A serious limitation of SQL*PLUS is that the task of issuing Oracle
commands cannot be automated. Commands must be manually entered
through the keyboard. The START command can execute a file of SQL*PLUS
commands, but conditional logic is not possible. The new language PL/SQL
has been proposed by Oracle Corporation as a solution to this problem, but
PL/SQL blocks cannot even issue SQL*PLUS commands, DDL commands, or
DCL commands, and the SELECT command must contain the INTO option.

For the above reasons, all procedural programming must be done in an old-
fashioned 3GL like Cobol, Fortran, etc. This has many limitations. The
programs must be compiled. Instead of displaying output from database
commands on the screen, it is placed into host variables, making it difficult to
watch what is happening. Few 3GL compilers provide for interactive tracing
of program execution, making object programs difficult to debug. Most 3GL
programming languages have poor access to operating system commands,
making it difficult to write programs that use database information to issue
operating system commands, and difficult to store operating system
information in the database. Most 3GL's were designed at a time when
keypunch machines were used for data entry, punched cards were in fixed
format, and programs had little need for parsing input. These languages still
have little facility for string parsing and manipulation.

Given the tools we presently have to work with, how can we write a simple
program to create and execute an Oracle SELECT command and display the
output on the terminal? The answer is, we can't!

Proposed solution

In the VM environment, Rexx is ideally suited for communicating with the
operating system. In addition Rexx requires no compiling, has interactive
tracing, a rich function library, powerful string manipulation features, and is
easy to learn. Rexx control structures are uniquely powerful, having features
not found in most other programming languages. Most VM programmers
already know Rexx and use it at least some of the time. In fact, many VM new

applications use Rexx as the primary programming language, because Rexx is
SO easy.

Why not use Rexx as a procedural language for SQL*PLUS? Using Rexx with
SQL*PLUS requires three things:

1. The user must be able to call Rexx from SQL*PLUS.
2. Rexx must be able to send commands to SQL*PLUS for execution.
3. Rexx must be able to access the output from SQL*PLUS.

Most of these three capabilities almost exist. Let's go over each of them.

Calling Rexx

Rexx can be called by using the SQL*PLUS command HOST EXEC. A better
way would be for Oracle Corporation to enhance SQL*PLUS so that it works a
bit more like VM. In the VM environment, the operating system first
searches disks for EXEC files before executing commands. If an EXEC is found,
it is executed, instead of the native VM command. The Rexx EXEC can then
modify the user's command, and if necessary, issue the native version of the
command.

Sending commands to SQL*PLUS

After being called from the interactive SQL*PLUS environment, Rexx must
be able to send commands back to SQL*PLUS for execution. Using the present
facilities in SQL*PLUS, this can be done either by stacking SQL*PLUS
commands, or by writing them to a file and stacking an SQL*PLUS START
command. In many cases this works fine. As soon as Rexx finishes execution,
SQL*PLUS reads and executes the stacked commands.

The problem with this approach is that SQL*PLUS will not execute the
stacked commands until the Rexx EXEC terminates execution. The only way
for the Rexx program to regain control is to stack a call to itself each time it

finishes execution. Exiting Rexx destroys all local variables and control
information. The Rexx programmer must preserve this information by
writing it to disk or storing it in global variables. Such programs are difficult
to write and tedious to debug.

A much more straightforward approach is to use the existing SUBCOM entry
point within SQL*PLUS. For example, to learn what columns are in a table,
the Rexx EXEC could contain the command:

ADDRESS SQLPLUS DESCRIBE <table name>

With spooling turned on, the Rexx program can then use EXECIO to read the
disk, and learn how the table was structured. The information from the
DESCRIBE command could then be used by Rexx to format a SELECT
command.

This works because the present SQL*PLUS program supplied by Oracle
Corporation always issues a VM operating system command called SUBCOM.
SUBCOM is an IBM 370 assembly language command. Programs like Oracle
use SUBCOM to define internal entry points to the VM operation system.
Once such an entry point has been defined, other programs can call it using
an SVC 202, in exactly the same way they call programs residing on disk. Rexx
programmers use the command "ADDRESS SQLPLUS" to access the internal
entry point defined by SQL*PLUS. In this way, the above DESCRIBE
command is passed to the internal entry point within SQL*PLUS. SQL*PLUS
then executes the DESCRIBE and returns control to Rexx. In this way, control
jumps back and forth between SQL*PLUS and Rexx, without the need to keep
reloading or reinitializing either Rexx or SQL*PLUS.

Even though they might not realize it, VM programmers always use the
SUBCOM operating system feature whenever they write an Xedit macro. By
default, all Rexx programs with file type XEDIT automatically "ADDRESS
XEDIT". Such programs can directly issue XEDIT commands, and regain
control after Xedit executes the command.

Unfortunately, the present SQLPLUS entry point is not fully implemented. It
only works with a few SQL*PLUS commands, and no SQL*PLUS DML, DDL,
or DCL commands. Although we can issue a DESCRIBE command and use
the result to create a SELECT, we cannot execute the SELECT until we exit
Rexx.

Everyone would benefit greatly if Oracle Corporation would finish the
implementation of the SQLPLUS entry point, so it also works with SQL
commands.

Accessing SQL*PLUS output

SQL*PLUS was designed to be used interactively and the output of all
commands usually goes to the screen. Fortunately, SQL*PLUS has SPOOL and
TERMINAL commands, which can redirect the output to a disk file. Rexx can
then read the file and act accordingly.

It works, but not well. Reading and writing a requires extra IO operations. The
size of the spool file keeps growing, because each new output is appended to
the end of the file. And SQL*PLUS complains when Rexx tries to erase the
spool file.

The SQL*PLUS terminal setting is insensitive to errors that occur while it is
in effect. Commands may fail without any indication that something is
wrong. To see the error messages, the user must either turn typing back on, or
examine the contents of the SQL*PLUS spool file (if one exists). The lack of
error messages is especially frustrating when debugging a VM service
machine, because nothing shows up in the console log.

The SPOOL and TERMINAL commands are global to the SQL*PLUS session.
Once set, they remain in effect until changed or until the user exits
SQL*PLUS. In order for a program to change the settings of SPOOL or
TERMINAL, without changing the settings made by another program or by
the user, the following steps are needed:

Determine the settings of SPOOL and TERMINAL.
Change them.

Issue the SQL*PLUS commands to create the spool files.
Restore the settings back to the way they were in Step 1.

W N e

Tl o~ alincen 24 mmteealle. fammeannatlal o n mamm ol ~pal
111c ADOVE 15 allually LIPOSSIDIC. Lie prUl >etil

o

In contr
very straightforward. The results of most commands can be placed in the
program stack. Many VM commands also have a disk option, causing the
results to be written to disk. A choice between "replace” and "append" gives
the option of erasing the file each time, or adding onto the end of the file. The
output of VM commands having syntax errors is not stacked or written to
disk, but displayed on the screen, making it easy tell what went wrong. In
addition to stacking, Rexx has many functions that return operating system
information.

A major difference between VM and SQL*PLUS is that output options are
given as part of each command, rather than through global settings. In an
interactive environment, global settings are desirable because the user does
not have to keep entering the options with each command. But in a program
environment, global settings must always be preserved and restored.
Otherwise modular programming is impossible. One program can't call
another if global settings are not respected and restored.

The Oracle Corporation could greatly enhance the power of SQL*PLUS by
providing output options for commands. The options could be recognized by
a left parenthesis following the command, using the same syntax as VM
options. An alternative, which is less likely to cause syntax conflicts, is to
define a new command to act as prefix option for existing SQL*PLUS
commands. For example, suppose the new command were called OPTIONS,
then a SELECT command would be issued as:

OPTIONS(...) SELECT ...;

The parenthesis would contain the output options for the SELECT command
that followed. A possible set of keywords for the output option might be:

QUIET No output is produced, except for syntax errors.
LIFO Stacking last in, first out, unless syntax error.
FIFO Stacking first in, first out, " " "
DISK fn.ft.fm Output to disk, " " "

REP Replace existing disk file, " " "
APPEND Add to end of existing file, " " "

The stack option should prefix stacked lines with an asterisk so that the
operating system will never try to execute them, even if a defective program
leaves the lines in the stack.

It seems that adding output options to SQL*PLUS is far simpler than directing
SQL*PLUS output to host variables. Unlike 3GL's, Rexx programs do not need
a cursor. The console stack serves that purpose. VM programmers already
know how to use the console stack. Why should they need to learn the
concepts associated with DECLARE, OPEN, and FETCH? Having the choice
between screen output and stacked output is far more useful than having all
output directed to host variables.

Training advantages

Most programmers learn Oracle by starting with SQL*PLUS. A good Rexx
interface would provide a natural transition from interactive use to program
development. After watching what commands do on the screen, it is easy to
think about EXEC's to automate the process. There is no sudden break to
learn a whole new system of imbedded SQL, cursor management, host
variables, etc. Not only would training costs be less, but programmers would
become more productive as they wrote tools to automate their use of
SQL*PLUS.

The competition

RXSQL is an IBM product giving Rexx programmers access to the relational
database SQL/DS. Unlike the Rexx interface to Xedit, RXSQL does not use
SUBCOM, but is implemented as a command. Instead of simply typing SQL
commands in a Rexx exec, the programmer must prefix each one with
'RXSQL'. Rather than stacking the results of queries, RXSQL requires
complicated cursor management, including learning entirely new commands
called CREATE, PREPARE, DECLARE, OPEN, FETCH, and CLOSE. The
picture is further complicated by the distinction between dynamic and
extended dynamic SQL. IBM has provided some EXEC's to simulate
multirow selects; however, headings and subtotals are not supported.

Nomad2 is a DBMS and 4GL from Must Software International. It includes a
procedural language that can issue all database commands, test the results,
and execute conditional logic. When an interactive user issues an undefined
Nomad2 command, Nomad2 automatically searches for a procedural file on
all accessed disks. In that way, native Nomad2 commands can be
supplemented by user written commands. Nomad2 provides both single row
(cursor style), as well as multirow table access commands. Output can
optionally be directed to program variables, the screen, or to a file. When the
programmer directs output to a file, he/she can either allow error messages
from failed commands to appear on the screen for easy debugging, or provide
for programmatic error handling. However, the Nomad2 procedural
language lacks local variables and local subroutines, making modular
programming difficult. It has poor string manipulation abilities. These defects
can sometimes be overcome by calling a Rexx EXEC; however, Nomad?2 lacks
a SUBCOM entry point, making it very difficult for Rexx to pass commands
back to Nomad2.

Conclusion
Rexx is a powerful and increasingly popular programming language.

Although designed for VM it has been ported to MVS, VAX, and PS/2
computers. With a relatively small effort, this extensive procedural language

could be added to SQL*PLUS, providing a unique combination of database
and procedural power. Oracle would have a product unmatched by
competition.

To make this happen, Oracle Corporation needs to make some relatively
minor modifications to SQL*PLUS. In order of priority, the most important
ones are:

1. Allow the existing SUBCOM entry point to execute SQL commands.

2. Provide output stacking options for all commands.

3. Allow native SQL*PLUS commands to be replaced by Rexx programs of a
certain file type, like SQLREXX.

The author gratefully acknowledges contributions made by George Crane,
Geoffrey Girvin, and Sidney Orr.

