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Abstract Given a symmetric decomposition g = h⊕ p of a semisimple Lie al-
gebra g, we define the notion of a p-contractible quantized universal enveloping
algebra (QUEA): for these QUEAs the contraction g → g0 making p abelian is
nonsingular and yields a QUEA of g0. For a certain class of symmetric decomposi-
tions, we prove, by refining cohomological arguments due to Drinfel’d, that every
QUEA of g0 so obtained is isomorphic to a cochain twist of the undeformed enve-
lope U (g0). To do so we introduce the p-contractible Chevalley-Eilenberg com-
plex and prove, for this class of symmetric decompositions, a version of White-
head’s lemma for this complex. By virtue of the existence of the cochain twist,
there exist triangular quasi-Hopf algebras based on these contracted QUEAs and,
in the approach due to Beggs and Majid, the dual quantized coordinate algebras
admit quasi-associative differential calculi of classical dimensions. As examples,
we consider κ-Poincaré in 3 and 4 spacetime dimensions.

1 Introduction

This paper is concerned with deformation quantizations of the universal envelop-
ing algebras (UEAs) of a certain class of non-semisimple Lie algebras, and more
particularly with proving that these deformations are cochain twists of their un-
deformed counterparts. The Lie algebras we consider have the property that they
can be obtained by contraction of semisimple Lie algebras; among them is the
Poincaré algebra, which is the case of clearest physical interest and will be the
example we treat in detail.

Let us first recall the situation concerning twists of (semi)simple Lie algebras.
For any simple Lie algebra g, the standard Drinfel’d-Jimbo quantization Uh(g)
comes equipped with a quasitriangular structure R, which provides the isomor-
phisms required to turn its category of representations into a quasitensor category
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???. As a quasitriangular Hopf algebra, (Uh(g),R) is not twist-equivalent by any
cocycle twist to (U (g),1⊗1), the undeformed UEA equipped with the usual Hopf
algebra structure and trivial triangular structure. It cannot be, because R is strictly
quasitriangular (i.e. R21 6= R−1) and the property of triangularity is preserved by
twisting. The celebrated result of Drinfel’d ??? is that Uh(g) and U (g) are twist
equivalent in the larger category of quasi-Hopf algebras. Here one drops the re-
quirement that the twist element F obey the cocycle condition. Since this condition
is what guarantees the preservation of coassociativity under twisting, a quasi-Hopf
algebra may fail to be coassociative; but it does so in a controlled fashion, spec-
ified by the coassociator Φ . In the special case Φ = 1⊗ 1⊗ 1 one recovers the
definition of a Hopf algebra. Drinfel’d showed that (Uh(g),R,1⊗ 1⊗ 1) can be
reached by a cochain twist starting from (U (g),RKZ,ΦKZ); that is, starting from
the quasitriangular quasi-Hopf (qtqH) algebra obtained by equipping U (g) with
a certain R-matrix RKZ and coassociator ΦKZ constructed from the monodromies
of a Knizhnik-Zamolodchikov system of equations, which in turn depend on the
quadratic Casimir t of g. One has RKZ = eht, where the Casimir is split over the
tensor product.

An alternative possibility, discussed notably by Beggs and Majid ??, is to
start instead with (U (g),1⊗2,1⊗3) and twist by the same cochain F as in Drin-
fel’d’s construction. What results is, necessarily, the same algebra and coproduct
as Uh(g), but now equipped with non-standard R-matrix F21F−1 and coassociator
ΦF (the coboundary of F , closely related to ΦKZ). ΦF is central in the sense that
the coproduct of Uh(g) is coassociative, but it is nevertheless non-trivial and thus
(Uh(g),F21F−1,ΦF) is a triangular but strictly quasi-Hopf algebra. Dually, the
deformed function algebra Ch(G) becomes a co-quasi-Hopf algebra which hap-
pens to be associative. The non-triviality of ΦF is seen at the level of intertwiners
of representations (the category of representations is symmetric but non-trivially
monoidal). It also appears when one tries to construct a differential calculus on
Ch(G), and in fact this was one of the original motivations for considering the set-
up: Beggs and Majid showed that, at least for semisimple g, the standard quantum
groups Ch(G) do not admit any bi-covariant associative differential calculus of
classical dimensions in deformation theory. But, by the existence of the cochain
twist, one can construct a quasi-associative differential calculus Ω(Ch(G)) of clas-
sical dimensions ??.

The results summarized above pertain to semisimple Lie algebras. To the au-
thors’ knowledge no systematic extension to quantized universal enveloping al-
gebras (QUEAs) of general Lie algebras is known. The proof of the existence of
Drinfel’d’s twist element F relies on the vanishing of a certain cohomology class,
which holds for semisimple Lie algebras but may fail more generally. Drinfel’d
did show ? that any qtqH QUEA is isomorphic to a cochain twist of the unde-
formed UEA of the underlying Lie algebra g. So the existence of a qtqH structure
is sufficient as well as necessary for the existence of the twist. But when g is
not semi-simple, one has no general means of knowing whether the given QUEA
admits a qtqH algebra structure.

In physics one is also concerned with non-semisimple Lie algebras. In partic-
ular, in trying to formulate non-commutative quantum field theory by (paralleling
the usual approach in ?) beginning with particles, regarded as irreducible repre-
sentations of the algebra of spacetime symmetries, one is certainly interested in
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the Poincaré algebra iso(1,n) and its deformations. Possibly the most well-known
deformation of U (iso(1,n)) is the θ -deformation, which is dual to the usual non-
commutative coordinate algebra [xi,x j] = θi j, with θi j constant. It is known to be
twist-equivalent to U (iso(1,n)) by a cocycle twist ??, making it in a sense a rather
mild deformation. The results presented here will apply, rather, to what is referred
to as the κ-deformation of U (iso(1,n)) ????????. κ-Poincaré can be understood
in more than one way. From one perspective, it arises as a certain bicrossproduct
?, and this viewpoint allows for a nice geometrical interpretation discussed in ?.
Another formulation ??? is as a particular contraction limit of the appropriate real
form of the standard Drinfel’d-Jimbo QUEA Uh(so(n +1,C)). It is this property
which will be relevant in the present work.

The main idea, then, is to consider a class of QUEAs obtained by applying to
(e.g. the standard) QUEAs Uh(g) of semisimple Lie algebras g a contraction pro-
cedure modelled on that used to obtain κ-Poincaré. As we recall in detail below,
to every symmetric decomposition g = h⊕p of a Lie algebra g there is associated
an Inönu-Wigner contraction, in which p is rescaled to become an abelian ideal of
the contracted Lie algebra g0. Whenever the contraction procedure is non-singular
at the level of the Uh(g), this yields a quantization Uh′(g0) of U (g0). One must
specify how the formal deformation parameter is rescaled in the contraction limit
to produce the limiting parameter h′; obviously there are many possibilities, and
we will consider the choice that ensures that κ-Poincaré is captured by our results.

We will show (theorem ??) that, given a certain restriction on the allowed
symmetric decomposition (see Definition ??), every such QUEA Uh′(g0) is iso-
morphic to a twist of the undeformed UEA U (g0) by a cochain F0. We do this
by refining the cohomological arguments of Drinfel’d so as to prove that the twist
element F which relates U (g) and Uh(g) can be chosen to be non-singular in the
contraction limit.

Since U (g0) can always be endowed with the trivial qtqH structure R = 1⊗2,
Φ = 1⊗3, the existence of this twist F0 means that one can certainly obtain (see
Corollary ?? below) a triangular quasi-Hopf algebra (Uh′(g0),(F0)21F−1

0 ,ΦF0).
And, from ??, the deformed coordinate algebra Ch′(G0) dual to Uh′(g0) will ad-
mit a quasi-associative bicovariant differential calculus of classical dimensions.
It is a separate question whether Uh′(g0) admits a quasitriangular Hopf algebra
structure. In Sect. ??, we give a necessary condition for such a structure to arise
by contraction (see corollary ??). Examples, in the case of κ-Poincaré, are in
Sect. ??.

The paper is organised as follows. In Sect. ??, we recall the definition of
symmetric semisimple Lie algebras. The important notion of contractibility is in-
troduced in Sect. ?? after a brief reminder of the definitions of the filtered and
graded algebras associated to UEAs. Sect. ?? is dedicated to the cohomology
of associative algebras and Lie algebras. After a brief account of Hochschild
and Chevalley-Eilenberg cohomology, we introduce the notion of contractible
Chevalley-Eilenberg cohomology. We establish, in particular, the vanishing of
the first contractible Chevalley-Eilenberg cohomology module for symmetric
semisimple Lie algebras possessing the restriction property ??. This will be cru-
cial in proving the existence of a contractible twist. In Sect. ??, the usual rigidity
theorems for semisimple Lie algebras are then refined, with special regards to the
contractibility of the structures. We construct, in particular, a contractible twist
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from every contractible QUEA of restrictive type to the undeformed UEA of the
underlying Lie algebra. The actual contraction is performed in Sect. ??. In Sect. ??
we comment on the implications of our mathematical results for the particular ex-
ample of κ-Poincaré. We discuss how they are compatible with previous work and
explain certain previous results.

Throughout Sects. ?? through 6, K denotes a field of characteristic zero.

2 Symmetric Decompositions of Lie Algebras

Let us briefly review some well-known facts concerning symmetric semisimple
Lie algebras. Following ??, we have

A symmetric Lie algebra is a pair (g,θ), where g is a Lie algebra and θ : g→ g
is an involutive (i.e. θ ◦θ = id and θ 6= id) automorphism of Lie algebras.

As θ ◦ θ = id, the eigenvalues of θ are +1 and −1. Let h = ker(θ − id) and
p = ker(θ + id) be the corresponding eigenspaces. Every such θ thus defines a
symmetric decomposition of g, i.e. a triple (g,h,p) such that

• h⊂ g is a Lie subalgebra;
• g = h⊕p as K-modules;
• [h,p]⊆ p and [p,p]⊆ h.

Any Lie subalgebra h of g that is the fixed point set of some involutive auto-
morphism will be referred to as a symmetrizing subalgebra. If, in addition, g is
semisimple then p must be the orthogonal complement of h in g with respect to
the (non-degenerate) Killing form, and thus every given symmetrizing subalgebra
h uniquely determines p and hence θ . In this case, we shall refer to (g,h) as a
symmetric pair.

A symmetric semisimple Lie algebra (g,θ) is said to be diagonal if g = v⊕v
for some semisimple Lie algebra v and θ(x,y) = (y,x) for all (x,y) ∈ g. A sym-
metric Lie algebra splits into symmetric subalgebras (gi,θi)i∈I if g =

⊕
i∈I gi and

the restrictions θ|gi = θi for all i ∈ I.
Every symmetric semisimple Lie algebra (g,θ) splits into a diagonal sym-

metric Lie algebra (gd ,θd) and a collection of symmetric simple Lie subalgebras
(gi,θi)i∈I . A proof can be found in Chap. 8 of ?. Lemma ?? allows for a complete
classification of the symmetric semisimple Lie algebras; see ??. It also follows
that we have the following

Let (g,θ) be a symmetric semisimple Lie algebra and let g = h⊕ p be the
associated symmetric decomposition of g. Then h is linearly generated by [p,p].

Proof By virtue of Lemma ??, it suffices to prove this result on symmetric sim-
ple Lie algebras and on diagonal symmetric Lie algebras. Let us first assume
that g is simple. The linear span of [p,p] defines a non-trivial ideal in h and
span([p,p])⊕ p therefore defines a non-trivial ideal in g. If we assume that g is
simple, it immediately follows that span([p,p]) = h. Suppose now that (g,θ) is a
diagonal symmetric Lie algebra, i.e. that there exists a semisimple Lie algebra v
such that g = v⊕ v and θ(x,y) = (y,x) for all (x,y) ∈ g. In this case, we have a
symmetric decomposition g = h⊕ p, where h is the set of elements of the form
(x,x) for all x ∈ v, whereas p is the set of elements of the form (x,−x) for all
x ∈ v. We naturally have [p,p] ⊆ h. Now, as v is semisimple, it follows that for
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every x ∈ v, there exist y,z ∈ v such that x = [y,z]. Then for all (x,x) ∈ h, we
have (x,x) = ([y,z], [y,z]) = [(y,y),(z,z)] = [(y,−y),(z,−z)]. But both (y,−y) and
(z,−z) are in p. ut

3 Contractible QUEAs

3.1 Filtrations of the Universal Enveloping Algebra

Given a Lie algebra g over K, its universal enveloping algebra U (g) is defined as
the quotient of the graded tensor algebra Tg =

⊕
n≥0 g⊗n by the two-sided ideal

I (g) generated by the elements of the form x⊗ y− y⊗ x− [x,y], for all x,y ∈
g. This quotient constitutes a filtered K-algebra, i.e. there exists an increasing
sequence

{0} ⊂ F0(U (g))⊂ ·· · ⊂ Fn(U (g))⊂ ·· · ⊂U (g), (3.1)

such that1

U (g) =
⋃
n≥0

Fn(U (g)) and Fn(U (g)) ·Fm(U (g))⊂ Fn+m(U (g)).(3.2)

The elements of this sequence are, for all n ∈ N0,

Fn(U (g)) =
n⊕

m=0

g⊗m/I (g). (3.3)

In particular, F0(U (g)) = K and F1(U (g)) = K⊕ g. Let us identify g with its
image under the canonical inclusion g ↪→U (g), and further write x1 · · ·xn for the
equivalence class of x1⊗·· ·⊗ xn. In this notation, Fn(U (g)) is linearly generated
by elements that can be written as words composed of at most n symbols from g.

We define the left action of g on g⊗n by extending the adjoint action x . x′ =
[x,x′] of g on g as a derivation:

x. (x1⊗·· ·⊗ xn) =
n

∑
i=1

x1⊗·· ·⊗ [x,xi]⊗·· ·⊗ xn ∈ g⊗n, (3.4)

for all x,x1, . . . ,xn ∈ g. In this way we endow Tg with the structure of a left g-
module. As the ideal I (g) is stable under this action, the Fn(U (g)) are also left
g-modules. We therefore have a filtration of U (g) not only as a K-algebra, but
also as a left g-module.

We will also need such a filtration on (U (g))⊗2. In fact, for all m ∈ N0, there
is a K-algebra filtration on the universal envelope U (g⊕m) of the Lie algebra g⊕m,
as defined above. If we endow g⊕m with the structure of a left g-module according
to

x. (x1, . . . ,xm) := ([x,x1] , . . . , [x,xm]) , (3.5)

1 Although Fn(U (g)) ·Fm(U (g)) is usually strictly contained in Fn+m(U (g)), it linearly gen-
erates the latter.
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and extend this action to all of U (g⊕m) as a derivation, then we have a filtration
of U (g⊕m) as a left g-module. But there is a natural isomorphism

ρm : U (g⊕m) ∼−→ (U (g))⊗m (3.6)

of K-algebras (see e.g. [?, Sect. 2.2]). This induces a left action of g on (U (g))⊗m

and a filtration of (U (g))⊗m as a left g-module. We write the elements of this
filtration as Fn

(
(U (g))⊗m).

Given now any symmetric decomposition

g = h⊕p, (3.7)

there is an associated bifiltration (Fn,m(U (g)))n,m∈N0
of U (g), i.e. a doubly in-

creasing sequence

Fn,m(U (g))⊂ Fn+1,m(U (g)) and Fn,m(U (g))⊂ Fn,m+1(U (g)),(3.8)

such that

U (g)=
⋃

n,m≥0

Fn,m(U (g)) and Fn,m(U (g)) ·Fk,l(U (g))⊂ Fn+k,m+l(U (g)), (3.9)

for all n,m,k, l ∈ N0. The elements of this sequence are, for all n,m ∈ N0,

Fn,m(U (g)) =
n⊕

p=0

m⊕
q=0

Sym
(
h⊗p⊗p⊗q)/I (g), (3.10)

where, for all n ∈ N0 and all K-submodules X1, . . .Xn ⊂ g,

Sym(X1⊗·· ·⊗Xn) =
⊕

σ∈Σn

Xσ(1)⊗·· ·⊗Xσ(n) (3.11)

is the direct sum over all permutations of submodules in the tensor product. Each
Fn,m(U (g)) is therefore the left h-module linearly generated by elements of U (g)
that can be written as words containing at most n symbols in h and at most m
symbols in p. In particular, F1,0(U (g)) = K⊕h and F0,1(U (g)) = K⊕p. We also
have, for all m,n ∈ N0,

Fn,m(U (g))⊂ Fn+m(U (g)) and Fn(U (g)) =
n⋃

m=0

Fn−m,m(U (g)).(3.12)

In complete analogy with the Fn((U (g))⊗m), we can construct bifiltrations Fn,p
((U (g))⊗m) of all the m-fold tensor products of U (g).
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3.2 Symmetric tensors

Let S(g) be the graded algebra associated to the filtration of U (g) by setting, for
all n ∈ N0,

Sn(g) = Fn(U (g))/Fn−1(U (g)) and S(g) =
⊕
n≥0

Sn(g). (3.13)

Since the Fn(U (g)) are left g-modules, so are the Sn(g). The symmetrization map,
sym : S(g)→U (g), defined by

sym(x1 · · ·xn) =
1
n! ∑

σ∈Sn

xσ(1) · · ·xσ(n) (3.14)

for all n∈N0 and all x1, . . . ,xn ∈ g, constitutes an isomorphism of left g-modules2.
The image of a given Sn(g) through sym is the g-module of symmetric tensors in
g⊗n.

If now g = h⊕p is a symmetric decomposition, let

Sm,n(g) = Fm,n(U (g))/Fm+n−1(U (g)), (3.15)

for all m,n ∈ N0. These obviously constitute left h-modules. As such, they are
isomorphic to the left h-modules of symmetric tensors in the Sym(h⊗m⊗p⊗n),
which are linearly generated by totally symmetric words with exactly m symbols
in h and exactly n symbols in p. Note that these h-modules are mixed under the left
p-action. Indeed, let m,n ∈ N0 be two non-negative integers and let x ∈ Sm,n(g).
We have:

• if m > 0 and n = 0, then p. x ∈ Sm−1,n+1(g);
• if m > 0 and n > 0, then p. x ∈ Sm+1,n−1(g)⊕Sm−1,n+1(g);
• if m = 0 and n > 0, then p. x ∈ Sm+1,n−1(g).

2 Recall that we assume K has characteristic zero.
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This is better represented by the following diagram in Sm+n(g).

· · ·@−−>[rd]p. Sm+1,n−1(g)@−−>[ld]p.@−−>[rd]p.[d]h. Sm,n(g)@−−>[ld]p.@−−>[rd]p.[d]h.Sm−1,n+1(g)@−−>[ld]p.@−−>[rd]p.[d]h.

Sm−2,n+2(g)@−−>[ld]p.[d]h.@−−>[rd]p. · · ·@−−>[ld]p.

· · · Sm+1,n−1(g) Sm,n(g) Sm−1,n+1(g)
Sm−2,n+2(g) · · ·

(3.17)

Using the action (??) of g on g⊕m we have entirely analogous structures for
g⊕m with

Sn,p(g⊕m) = Fn,p(U (g⊕m))/Fn+p−1(U (g⊕m)). (3.18)

In view of (??), it follows that

Sn,p(g⊕m)∼= Fn,p
(
(U (g))⊗m)

)
/Fn+p−1

(
(U (g))⊗m)

)
(3.19)

for all n, p∈N0. We shall therefore identify each Sn,p(g⊕m) with the left h-module
of symmetric tensors on (U (g))⊗m containing exactly n factors in h and p in p.

3.3 Symmetric invariants and the restriction property

For all n, p ∈ N0, let Sn(g⊕ g)g be the set of g-invariant elements of the left g-
module Sn(g⊕g) and let Sn,p(g⊕g)h denote the set of h-invariant elements of the
left h-module Sn,p(g⊕g). We have the following two lemmas.

Let n and p be positive integers. Every x ∈ Sn−p,p(g⊕ g)h such that p . x ∈
Sn−p+1,p−1(g⊕g) is in the linear span of Sn−p,0(g⊕g)g S0,p(g⊕g)h.

Proof Let (hi)i∈I and (p j) j∈J be ordered bases of h⊕ h and p⊕ p respectively.
Every element x ∈ Sn−p,p(g⊕g) can be written as

x = ∑
i1≤···≤in−p

∑
j1≤···≤ jp

xi1...in−p j1... jp hi1 . . .hin−p p j1 . . . p jp ,

where, for all i1, . . . , in−p ∈ I and j1, . . . , jp ∈ J, xi1...in−p j1... jp ∈K. Then, omitting
the ordered sums, we have

p. x = xi1...in−p j1... jp

[
p.
(
hi1 . . .hin−p

)
p j1 . . . p jp +hi1 . . .hin−p p.

(
p j1 . . . p jp

)]
.

Since (p. x)∩Sn−p−1,p+1(g⊕g) = {0}, we have

p.
(
xi1...in−p j1... jp hi1 . . .hin−p

)
= 0,

for all j1 ≤ ·· · ≤ jp ∈ J; it follows that this quantity is also invariant under [p,p]
and hence, by Lemma ??, under h. Thus it is actually g-invariant. Introduce a basis
(yk)k∈K of the K-module Sn−p,0(g⊕g)g, so that we can write

xi1...in−p j1... jp hi1 . . .hin−p = ∑
k∈K

bk j1... jp yk,
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with bk j1... jp ∈K, for all j1 ≤ ·· · ≤ jp ∈ J. Now, as x is h-invariant, we also have

h. x = bk j1... jp yk h.
(

p j1 . . . p jp

)
= 0.

This yields h.
(
bk j1... jp p j1 . . . p jp

)
= 0, for all k ∈ K. Introduce a basis (zl)l∈L for

the K-module S0,p(g⊕g)h, so that we can write, for all k ∈ K,

bk j1... jp p j1 . . . p jp = ∑
l∈L

aklzl ,

with akl ∈K for all k ∈ K and l ∈ L. Now, x can be rewritten as

x = ∑
k∈K

∑
l∈L

akl yk zl ,

with yk ∈ Sn−p,0(g⊕g)g for all k ∈ K and zl ∈ S0,p(g⊕g)h for all l ∈ L. ut

Let us now restrict our attention to the class of symmetric Lie algebras encom-
passed by the following

We say that a symmetric semisimple Lie algebra (g,θ) with associated sym-
metric decomposition g = h⊕p is of restrictive type (or has the restriction prop-
erty) if and only if for all p ∈N0, the projection from g to p maps Sp(g⊕g)g onto
S0,p(g⊕ g)h. This restriction property will be sufficient to allow us to prove a
refined version of Whitehead’s lemma in the next section. Note that it is similar
to the so-called surjection property – namely that the restriction from g to p maps
S(g)g onto S(p)h – which is known to hold for all classical symmetric Lie algebras
? and which has proven useful in a number of contexts ??. In our case we have, at
least,

If a symmetric semisimple Lie algebra splits (as in Lemma ??), in such a
way that its simple factors are drawn only from the following classical families of
simple symmetric Lie algebras:

AIn>2 : (su(n),so(n))n>2 , AIIn : (su(2n),sp(2n))n∈N∗ ,

BDIn>2,1 : (so(n+1),so(n))n>2,

then it is of restrictive type.

Proof See Appendix. ut

3.4 Contractible homomorphisms of K[[h]]-modules

Let K[[h]] denote the K-algebra of formal power series in h with coefficients in the
field K and let U (g)[[h]] be the U (g)-algebra of formal power series in h with
coefficients in U (g). We have a natural K-algebra monomorphism i : U (g) ↪→
U (g)[[h]]. There is also an epimorphism of K-algebras j : U (g)[[h]] � U (g)
such that j ◦ i = id on U (g). We shall therefore identify U (g) with its image
i(U (g)) ⊂ U (g)[[h]]. We shall also consider complete K[[h]]-modules and it is
assumed that the tensor products considered from now on are completed in the h-
adic topology. In this subsection, we further assume that g = h⊕p is a symmetric
decomposition.
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Let p ∈ Z, m ∈ N0 be integers. An element x of (U (g))⊗m[[h]] is (p,p)-
contractible if and only if there exists a collection (xn)n∈N0 of elements of
(U (g))⊗m such that,

x = ∑
n≥0

hn xn (3.20)

and, for all n ∈ N0, there exists l(n) ∈ N0 such that xn ∈ Fl(n),n+p ((U (g))⊗m).
Similarly, a subset X ⊂ (U (g))⊗m[[h]] is (p,p)-contractible if all its elements
are, according to the previous definition. Note that for the sake of simplicity,
we shall refer to (0,p)-contractible elements or sets as p-contractible. Let us
now define the notion of contractibility for K[[h]]-module homomorphisms in
Hom(U (g)⊗m[[h]],(U (g))⊗n[[h]]).

Let r,s ∈ N0 and p ∈ Z be integers. A homomorphism of K[[h]]-modules
φ : (U (g))⊗r[[h]] → (U (g))⊗s[[h]] is p-contractible if and only if, for all n,m ∈
N0, φ(Fn,m(U (g)⊗r)) is (m,p)-contractible as a subset. Let us emphasize
that for every p-contractible K[[h]]-module homomorphism φ : (U (g))⊗r[[h]] →
(U (g))⊗s[[h]], there exists a collection (ϕn)n∈N0 of K[[h]]-module homomor-
phisms ϕn : (U (g))⊗r[[h]]→ (U (g))⊗s[[h]] such that

φ = ∑
n≥0

hn
ϕn (3.21)

and, for all n,m, p ∈ N0, there exists l(n) ∈ N0 such that ϕn (Fm,p((U (g))⊗r)) ⊆
Fl(n),n+p ((U (g))⊗s). The following two lemmas will be useful in the next sec-
tions.

Let φ and ψ be two p-contractible homomorphisms of K[[h]]-modules. Then
the K[[h]]-module homomorphism φ ◦ψ is p-contractible.

Proof We have

φ = ∑
n≥0

hn
ϕn and ψ = ∑

n≥0
hn

ψn,

with, for all n,m, p ∈ N0, ϕn(Fm,p)⊆ F∗,n+p, and ψn(Fm,p)⊆ F∗,n+p. For the sake
of simplicity we shall omit the arguments of the bifiltration and denote by ∗ the
integer l(n) whose existence is guaranteed by the definition of contractibility. We
thus have

φ ◦ψ = ∑
n≥0

∑
m≥0

hn+m
ϕn ◦ψm = ∑

n≥0
hn

n

∑
m=0

ϕm ◦ψn−m,

with, for all l,m,n, p ∈ N0, ϕm ◦ψn−m(Fl,p)⊆ ϕm(F∗,n−m+p)⊆ F∗,n+p. ut

The following holds for the inverse.
Let φ be a p-contractible homomorphism of K[[h]]-modules, congruent

with id mod h. Then the K[[h]]-module homomorphism φ−1 = id mod h is
p-contractible.
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Proof We shall construct

φ
−1 = ∑

n≥0
hn

ϕn,

by recursion on the order in h, by demanding that φ ◦φ−1 = id. At leading order,
we have ϕ0 = id and therefore ϕ0(Fm,p) ⊆ Fm,p, for all m, p ∈ N0. Let us assume
that we have a polynomial φ−1

n of degree n > 0 such that

φ ◦φ
−1
n − id = q mod hn+1.

Assuming that φ−1
n is p-contractible, we have by Lemma ?? that φ ◦ φ−1

n is
p-contractible, as φ is p-contractible by assumption. Therefore, q(Fm,p) ⊆
F∗,n+1+p. Now, to complete the recursion, we have to find ϕn+1 such that

φ ◦
(
φ
−1
n +hn+1

ϕn+1
)
− id = 0 mod hn+2.

This is achieved by taking ϕn+1 =−q. We thus have ϕn+1(Fm,p)⊆ F∗,n+1+p. ut

Finally, when φ is not only a K[[h]]-module homomorphism but also a K[[h]]-
algebra homomorphism, we have the following useful lemma.

Let φ : (U (g))⊗s[[h]] → (U (g))⊗t [[h]] be a homomorphism of K[[h]]-
algebras. It is p-contractible if and only if φ (F1,0((U (g))⊗s)) is (0,p)-contractible
and φ (F0,1((U (g))⊗s)) is (1,p)-contractible.

Proof If φ is p-contractible, it follows from the definition that, in particular,
φ (F1,0) is (0,p)-contractible and φ (F0,1) is (1,p)-contractible. Now, assuming
that φ (F1,0) is (0,p)-contractible and φ (F0,1) is (1,p)-contractible, we want to
prove that, for all m, p ∈ N0, φ (Fm,p) is (p,p)-contractible. We proceed by recur-
sion on m and p. We have assumed the result for m = 1 and p = 0, as well as
for m = 0 and p = 1. Suppose that, for some m, p ∈ N0, we have proven that, for
all m′ < m, p′ < p and n ∈ N0, there exists l ∈ N0 such that ϕn

(
Fm′,p′

)
⊆ Fl,n+p′ .

Then, for all n ∈ N0,

ϕn
(
Fm,p+1((U (g))⊗s)

)
= ϕn

(
m⊕

k=0

p⊕
l=0

span Fk,l ·F0,1 ·Fm−k,p−l

)

=
m⊕

k=0

p⊕
l=0

span ∑
σ∈C3(n)

ϕσ1

(
Fk,l
)
·ϕσ2 (F0,1) ·ϕσ3

(
Fm−k,p−l

)
⊆

m⊕
k=0

p⊕
l=0

spanσ∈C3(n) F∗,σ1+l ·F∗,σ2+1 ·F∗,σ3+p−l

= F∗,n+p+1,

where, for all X ⊆ (U (g))⊗s, span X denotes the K-module linearly generated
by X and C3(n) is the set {σ = (σ1,σ2,σ3) ∈ N3

0 : ∑
3
i=1 σi = n} of weak 3-

compositions of n.
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Similarly, we have

ϕn
(
Fm+1,p((U (g))⊗s)

)
= ϕn

(
m⊕

k=0

p⊕
l=0

span Fk,l ·F1,0 ·Fm−k,p−l

)

=
m⊕

k=0

p⊕
l=0

span ∑
σ∈C3(n)

ϕσ1

(
Fk,l
)
·ϕσ2 (F1,0) ·ϕσ3

(
Fm−k,p−l

)
⊆

m⊕
k=0

p⊕
l=0

spanσ∈C3(n) F∗,σ1+l ·F∗,σ2 ·F∗,σ3+p−l = F∗,n+p,

for all n ∈ N0. ut

3.5 Contractible deformation Hopf algebras

We recall that U (g) possesses a natural cocommutative Hopf algebra structure,
whose coproduct is the algebra homomorphism ∆0 : U (g) → U (g)⊗U (g) de-
fined by ∆0(x) = x⊗ 1 + 1⊗ x for all x ∈ g, and whose counit and antipode are
specified by ε0(1) = 1 and S0(1) = 1. We refer to this as the undeformed Hopf
algebra structure.

Given the notion of contractibility introduced in the preceding subsections, it
is natural to specialize the usual notion of a quantization – i.e. a deformation – of
a universal enveloping algebra, as follows.

Let (g,θ) be a symmetric Lie algebra, with symmetric decomposition g =
h⊕ p. A p-contractible deformation (Uh(g), ·h,∆h,εh,Sh) of the Hopf algebra
(U (g), ·,∆0,ε0,S0) is a topological Hopf algebra such that

• there exists a K[[h]]-module isomorphism η : Uh(g) ∼−→U (g)[[h]];
• µh := η ◦ (·h)◦

(
η−1⊗η−1

)
= · mod h and µh is p-contractible;

• ∆̃h := (η ⊗η)◦∆h ◦η−1 = ∆0 mod h and ∆̃h is p-contractible;
• S̃h := η ◦Sh ◦η−1 = S0 mod h and S̃h is p-contractible;
• ε̃h = εh ◦η−1 = ε0 mod h and ε̃h is p-contractible.

This definition can be naturally restricted to bialgebras and algebras.

4 On the Cohomology of Associative and Lie Algebras

4.1 The Hochschild cohomology

Let A be a K-algebra. For any (A,A)-bimodule (M,.,/) and all n ∈ N0
∗, we de-

fine the (A,A)-bimodule of n-cochains Cn(A,M) = Hom(A⊗n,M). We also set
C0(A,M) = M. To each cochain module Cn(A,M), we associate a coboundary op-
erator, i.e. a derivation operator δn : Cn(A,M) −→Cn+1(A,M), by setting, for all
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f ∈Cn(A,M),

δn f (x1, . . . ,xn+1) = x1 . f (x2, . . . , x̂i, . . . ,xn+1)

+
n

∑
i=1

(−1)i f (x1, . . . ,xixi+1, . . . ,xn+1)

+(−1)n+1 f (x1, . . . ,xn)/ xn+1 (4.1)

for all x1, . . . ,xn+1 ∈ A. One can check that δn ◦δn+1 = 0 for all n. Therefore, the
(Cn,δn) thus defined constitute a cochain complex. It is known as the Hochschild
or standard complex ?? – see also ? or ?. An element of the (A,A)-bimodule
Zn(A,M) = kerδn ⊂ Cn(A,M) is called an n-cocycle, while an element of the
(A,A)-bimodule Bn(A,M) = imδn−1 ⊂ Cn(A,M) is called an n-coboundary. As
usual, the quotient

HHn(A,M) = Zn(A,M)/Bn(A,M) (4.2)

defines the nth cohomology module of A with coefficients in M. In the next section,
we shall be particularly interested in the Hochschild cohomology of the univer-
sal enveloping algebra of a given Lie algebra g, i.e. A = U (g), with coefficients
in M = U (g). The latter trivially constitutes a (U (g),U (g))-bimodule with the
multiplication · of U (g) as left and right U (g)-action. Concerning the Hochschild
cohomology we will need the following result – see for example Theorem 6.1.8
in ?.

Let g be a semisimple Lie algebra over K. Then, HH2(U (g),U (g)) = 0.

4.2 The Chevalley-Eilenberg cohomology

Let g be a Lie algebra over K and (M,.) a left g-module. For all n∈N0
∗, we define

the left g-module of n-cochains Cn(g,M) = Hom(∧ng,M), with left g-action

(x. f )(x1, . . . ,xn)=x. ( f (x1, . . . ,xn))−
n

∑
i=1

f (x1, . . . , [x,xi], . . . ,xn) , (4.3)

for all f ∈ Cn(g,M) and all x,x1, . . . ,xn ∈ g. We also set C0(g,M) = M with its
natural left g-module structure. To each cochain module Cn(g,M), we associate a
coboundary operator, i.e. a derivation operator dn : Cn(g,M) −→ Cn+1(g,M), by
setting, for all f ∈Cn(g,M),

dn f (x1, . . . ,xn+1) =
n+1

∑
i=1

(−1)i+1 xi . f (x1, . . . , x̂i, . . . ,xn+1)

+ ∑
1≤i≤ j≤n+1

(−1)i+ j f ([xi,x j] ,x1, . . . , x̂i, . . . , x̂ j, . . . ,xn+1)

(4.4)

for all x1, . . . ,xn+1 ∈ g. In (??), hatted quantities are omitted and . denotes the left
g-action on M. One can check that dn ◦dn+1 = 0 for all n. Therefore, the (Cn,dn)
thus defined constitute a cochain complex. It is known as the Chevalley-Eilenberg
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complex ?, – see also ? or ?. An element of Zn(g,M) = kerdn ⊂Cn(g,M) is called
an n-cocycle, while an element of Bn(g,M) = imdn−1 ⊂Cn(g,M) is called an n-
coboundary. As usual, the quotient

Hn(g,M) = Zn(g,M)/Bn(g,M) (4.5)

defines the nth cohomology module of g with coefficients in M. One can check
that, for all n ∈ N0, Zn(g,M), Bn(g,M) and Hn(g,M) naturally inherit the left
g-module structure of Cn(g,M), as for all n ∈ N0,

d (x. f ) = x.d f , (4.6)

for all f ∈ Cn(g,M) and all x ∈ g. An important result about the Chevalley-
Eilenberg cohomology of Lie algebras concerns finite dimensional complex
semisimple Lie algebras. It is known as Whitehead’s Lemma.

Let g be a semisimple Lie algebra over K. If M is any finite-dimensional left
g-module, then H1(g,M) = H2(g,M) = 0. A proof of this result can be found, for
instance, in Sect. 7.8 of ?.

4.3 Contractible Chevalley-Eilenberg cohomology

In the next section, we will be mostly interested in the module M = U (g)⊗U (g),
with the left g-action induced by (??) and (??), i.e.

g. x = [∆0(g),x], (4.7)

for all g ∈ g and all x ∈ U (g)⊗U (g). In particular, we shall need a refine-
ment of Whitehead’s Lemma, in the case of symmetric semisimple Lie alge-
bras of restrictive type, taking into account the possible p-contractibility of the
generating cocycles of Z∗(g,U (g)⊗U (g)). For all m,n ∈ N0, we therefore
define Cn

m,p(g,U (g)⊗U (g)) as the set of (m,p)-contractible n-cochains, by
which we mean the set of n-cochains f ∈ Cn(g,U (g)⊗U (g)), such that, for
all 0 ≤ p ≤ n, f ((∧n−ph)∧ (∧pp)) ⊆ Fl,m+p(U (g)⊗U (g)), for some l ∈ N0.
Defining similarly, Zn

m,p(g,U (g)⊗U (g)) = kerdn ∩Cn
m,p(g,U (g)⊗U (g)) and

Bn
m,p(g,U (g) ⊗U (g)) = dn−1Cn−1

m,p (g,U (g) ⊗U (g)) as the modules of the
(m,p)-contractible n-cocycles and of the n-coboundaries of (m,p)-contractible
n− 1-cochains, respectively, we can define the nth (m,p)-contractible cohomol-
ogy module as

Hn
m,p(g,U (g)⊗U (g)) = Zn

m,p(g,U (g)⊗U (g))/Bn
m,p(g,U (g)⊗U (g)).(4.8)

It is worth emphasizing that these cohomology modules generally differ from
the usual ones Hn(g,U (g)⊗U (g)). Consider for instance a case for which
H1(g,U (g)⊗U (g)) = 0. We have that every 1-cocycle in Z1(g,U (g)⊗U (g)),
and therefore every cocycle f ∈ Z1

m,p(g,U (g)⊗U (g)), is the coboundary of
an element x ∈ U (g)⊗U (g). However, although the considered f is (m,p)-
contractible, it may be that it can only be obtained as the coboundary of an el-
ement x ∈ U (g)⊗U (g) that does not belong to any F∗,m(U (g)⊗U (g)), thus
yielding a non-trivial cohomology class in H1

m,p(g,U (g)⊗U (g)). When g is a
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symmetric semisimple Lie algebra of restrictive type, we nonetheless establish
the following lemma concerning the first (m,p)-contractible cohomology module
H1

m,p(g,U (g)⊗U (g)).
Let (g,θ) be a symmetric semisimple Lie algebra of restrictive type over

K and let g = h⊕ p be the associated symmetric decomposition of g. We have
H1

m,p(g,U (g)⊗U (g)) = 0, for all m ∈ N0.

Proof Let m ∈ N0 be a positive integer. We have to prove that every (m,p)-
contractible 1-cocycle f ∈ Z1

m,p(g,U (g)⊗U (g)) is the coboundary of an element
α ∈ Fl,m(U (g)⊗U (g)), for some l ∈ N0. From Lemma ??, there exists an x ∈
U (g)⊗U (g) such that f = d0x. All we have to prove is that we can always find a
left g-invariant y ∈ (U (g)⊗U (g))g, such that x = y modulo Fl,m(U (g)⊗U (g))
for some l ∈N0. Then, we can check that for α = x−y ∈ Fl,m(U (g)⊗U (g)), we
have

d0α = d0 (x− y) = d0x = f .

In view of (??), we can first expand x into its components in the left g-modules
isomorphic to the Sn(g⊕ g), for all n ∈ N0. Up to the isomorphism of left g-
modules, which we shall omit here, we have x = ∑n≥0 xn where, for all n ∈ N0,
xn ∈ Sn(g⊕ g). Similarly, we can further decompose each Sn(g⊕ g) into the left
h-modules Sn−p,p(g⊕g), with 0 ≤ p ≤ n, and, accordingly, each xn. We are now
going to construct the desired y ∈ (U (g)⊗U (g))g by recursion, submodule by
submodule. If xn = 0 for all n > m, we can set y = 0 and we are done. So, suppose
that there exists an n > m such that xn 6= 0 and let x0,n be the component of xn in
S0,n(g⊕g). If x0,n vanishes, we can skip to the component of xn in S1,n−1(g⊕g).
Otherwise, we are going to prove that there exists a g-invariant yn,0 ∈ Sn(g⊕g)g,
such that the component of xn−yn,0 in S0,n(g⊕g) vanishes. From f being (m,p)-
contractible, we know that

f (h) = d0x(h) = h.

(
xn + ∑

n′ 6=n
xn′

)
⊆ Fl,m(U (g)⊗U (g)), (4.9)

for some l ∈ N0. Therefore, since the Sm,p(g⊕ g) are left h-modules, we have
h. x0,n = 0. Since g has the restriction property, Definition ??, it follows that the
h-invariant tensor x0,n ∈ S0,n(g⊕g)h is the restriction to p of a g-invariant tensor
yn,0 ∈ Sn(g⊕g)g. Now consider xn−yn,0. By construction, it has no component in
S0,n(g⊕g). If n−1≤m, we set yn = yn,0 and skip to another g-module Sn′>m(g⊕
g), where x has a non-vanishing component, if any. Otherwise, let 0 ≤ k < n−m
and assume that we have found yn,k ∈ Sn(g⊕g)g, such that xn−yn,k has vanishing
component in all the Sn−p,p(g⊕g) with p≥ n−k > m. We are going to prove that
there exists yn,k+1 ∈ Sn(g⊕g)g such that xn− yn,k+1 has vanishing component in
all the Sn−p,p(g⊕g) with p≥ n−k−1. To do so, let xk+1,n−k−1 be the component
of xn−yn,k in Sk+1,n−k−1(g⊕g). If it is zero, we set yn,k+1 = yn,k. Otherwise, note
that from (??), we have h. xk+1,n−k−1 = 0. But the (m,p)-contractibility of f also
implies that

f (p) = d0x(p) = p.

(
xn− yn,k + ∑

n′ 6=n
xn′

)
⊆ Fl,m+1(U (g)⊗U (g)),
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from which it follows that p . xk+1,n−k−1 ∈ Sk+2,n−k−2(g⊕ g). According to
Lemma ??, we can write xk+1,n−k−1 = ∑i, j ai j wi z j, with ai j ∈K, wi ∈ Sk+1,0(g⊕
g)g and z j ∈ S0,n−k−1(g⊕ g)h. Since g has the restriction property, all the z j
are the restrictions to p of g-invariant elements ζ j ∈ Sn−k−1(g⊕ g)g. Now, set
yn,k+1 = yn,k +∑i, j ai j wi ζ j. It is obvious that yn,k+1 ∈ Sn(g⊕g)g and, by construc-
tion, xn − yn,k+1 has no component in all the Sn−p,p(g⊕ g), with p ≥ n− k− 1.
The recursion goes on until we have yn,n−m ∈ Sn(g⊕ g)g such that xn − yn,n−m
has vanishing components in all the Sn−p,p(g⊕ g), with p > m. We therefore set
yn = yn,n−m. By repeating this a finite number of times3, in all the Sn′>m(g⊕g) in
which x has non-vanishing components, we obtain the desired y = ∑n≥0 yn. ut

3 It is rather obvious that x has non-vanishing components in a finite number of submodules
Sn(g⊕g), as there always exists an l ∈ N such that x ∈ Fl(U (g)⊗U (g)).
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5 Rigidity Theorems

5.1 Contractible algebra isomorphisms

Let g be a semisimple Lie algebra over K and let h be a symmetrizing Lie subal-
gebra with orthogonal complement p in g. Then, for every p-contractible deforma-
tion algebra (Uh(g), ·h) of (U (g), ·), there exists a p-contractible isomorphism of
K[[h]]-algebras (Uh(g), ·h)

∼−→ (U (g)[[h]], ·), that is congruent with id mod h.

Proof By definition, there exists a K[[h]]-module isomorphism η : Uh(g) ∼−→
U (g)[[h]]. The latter defines a K[[h]]-algebra isomorphism between (Uh(g), ·h)
and (U (g)[[h]],µh), where µh := η ◦(·h)◦

(
η−1⊗η−1

)
= · mod h. If we found a

p-contractible K[[h]]-algebra automorphism

φ : (U (g)[[h]],µh)
∼−→ (U (g)[[h]], ·), (5.1)

we would prove the proposition as φ ◦ η would constitute the desired K[[h]]-
algebra isomorphism from (Uh(g), ·h) to (U (g)[[h]], ·). Let φ be a K[[h]]-module
automorphism on U (g)[[h]]. The condition for such an automorphism to be the
K[[h]]-algebra automorphism (??) is

µh = φ
−1 ◦ (·)◦ (φ ⊗φ) . (5.2)

Let us construct

φ = ∑
n≥0

hn
ϕn, (5.3)

order by order in h. At leading order, we have µ0 = · and we can take ϕ0 = id ∈
Hom(U (g)[[h]],U (g)[[h]]). We thus have ϕ0(Fm,p(U (g)))⊆ Fm,p(U (g)), for all
m, p ∈ N0. Suppose now that we have found a polynomial of degree n > 0,

φn =
n

∑
m=0

hm
ϕm, (5.4)

such that

µh−φ
−1
n ◦ (·)◦ (φn⊗φn) = hn+1r mod hn+2, (5.5)

where φ−1
n denotes the exact inverse series of φn defined by φn ◦ φ−1

n = id and
r ∈ Hom(U (g)⊗U (g)[[h]],U (g)[[h]]). We assume that φn is p-contractible.
Therefore, (·) ◦ (φn⊗φn) is p-contractible. By Lemma ??, φ−1

n is p-contractible
and, by Lemma ??, φ−1

n ◦ (·) ◦ (φn⊗φn) is p-contractible. By definition of a p-
contractible deformation algebra, we know that µh is p-contractible. It therefore
follows from (??) at order hn+1 that r(Fm,p(U (g)⊗U (g))) ⊆ F∗,n+1+p(U (g)),
for all m, p ∈ N0. From the associativity of µh, we deduce that r is a 2-cocycle in
the Hochschild complex,

δ2r = 0. (5.6)

As g is semisimple, it follows from Lemma ?? that its second Hochschild co-
homology module HH2(U (g),U (g)) is empty, so that r is a coboundary. We
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thus have r = δ1β , for some β ∈ Hom(U (g)[[h]],U (g)[[h]]). But we know
that, in particular, r(F2,0(U (g)⊗U (g))) ⊆ F∗,n+1(U (g)) and r(F1,1(U (g)⊗
U (g))) ⊆ F∗,n+2(U (g)). It follows that β can be consistently chosen so that
β (F1,0(U (g))) ⊆ F∗,n+1(U (g)) and β (F0,1(U (g))) ⊆ F∗,n+2(U (g)). To com-
plete the recursion, we have to solve

µh =
(
φ
−1
n −hn+1

ϕn+1 mod hn+2)◦ [(φn+hn+1
ϕn+1

)
·
(
φn+hn+1

ϕn+1
)]

mod hn+2,

that is

δ1ϕn+1 = r. (5.7)

This equation can be solved by taking ϕn+1 =−β , which implies that ϕn+1(F1,0(U (g)))
⊆ F∗,n+1(U (g)) and ϕn+1(F0,1(U (g))) ⊆ F∗,n+2(U (g)). The proposition then
follows from Lemma ??. ut

5.2 Contractible twisting for symmetric semisimple Lie algebras

Let (g,θ) be a symmetric semisimple Lie algebra over K having the restriction
property, and let g = h⊕p be the associated symmetric decomposition of g. Every
p-contractible deformation (Uh(g),∆ ,ε,S) of the Hopf algebra (U (g),∆0,ε0,S0)
is isomorphic, as a Hopf algebra over K[[h]], to a twist of (U (g),∆0,ε0,S0) by
a p-contractible invertible element F ∈ U (g)⊗U (g)[[h]], congruent with 1⊗ 1
mod h.

Proof We consider the composite map

∆̃ : U (g)[[h]] ∼−→Uh(g) ∆−→Uh(g)⊗Uh(g) ∼−→U (g)⊗U (g)[[h]], (5.8)

where the existence of a p-contractible isomorphism of K[[h]]-algebras φ follows
from Proposition ??. As φ is an algebra isomorphism, the composite map ∆̃ is an
algebra homomorphism. By repeated use of Lemma ??, one can show that it is p-
contractible. Now, we want to prove that there exists a p-contractible and invertible
element F ∈U (g)⊗U (g)[[h]], such that F = 1⊗1 mod h and

∆̃ = F∆0F−1. (5.9)

We shall proceed by recursion on the order in h. To first order, we have, by con-
struction

∆̃ = ∆0 mod h, (5.10)

and we can take F = 1⊗ 1 mod h. We thus have F|h=0 ∈ F0,0(U (g)⊗U (g)).
Suppose now that we have found a polynomial Fn ∈U (g)⊗U (g)[h] of degree n,

Fn =
n

∑
m=0

hm fm, (5.11)

such that

∆̃ −Fn∆0F−1
n = hn+1

ξ mod hn+2, (5.12)
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where F−1
n ∈ U (g)⊗U (g)[[h]] is the formal inverse of F in the sense that

F−1F = 1 and ξ ∈ Hom(U (g)[[h]],U (g)⊗U (g)[[h]]). We assume that Fn is p-
contractible, i.e. for all n∈N0, fn ∈F∗,n(U (g)⊗U (g)). Since ∆̃ is p-contractible,
we deduce that ξ (F1,0(U (g))) ⊆ F∗,n+1(U (g)⊗U (g)) and ξ (F0,1(U (g)) ⊆
F∗,n+2(U (g)). It follows from (??) that, for all X ,Y ∈ g, we have

(
∆̃ −Fn∆0F−1

n
)
([X ,Y ]) = hn+1

ξ ([X ,Y ]) mod hn+2, (5.13)

on one hand and, on the other hand, since ∆̃ is an algebra homomorphism,

(
∆̃ −Fn∆0F−1

n
)
([X ,Y ]) =

[
∆̃X , ∆̃Y

]
−Fn∆0([X ,Y ])F−1

n

= hn+1 ([∆0X ,ξ (Y )]+[ξ (X),∆0Y ]) mod hn+2.

(5.14)

Equating (??) and (??), we finally get

d1ξ = 0. (5.15)

The map ξ is thus a 1-cocycle of Z1(g,U (g)⊗U (g)) in the sense of the
Chevalley-
Eilenberg complex4. As g is semisimple, it follows from Lemma ?? that the
cohomology module H1(g,U (g)⊗U (g)) is empty. We therefore conclude that
ξ is a coboundary. But we know that ξ (F0,1(U (g)))⊆ F∗,n+2(U (g)⊗U (g)) and
ξ (F1,0(U (g)))⊆ F∗,n+1(U (g)⊗U (g)), so that ξ is an (n+1,p)-contractible 1-
cocycle in the contractible Chevalley-Eilenberg complex defined in Subsect. ??.
As g is of restrictive type, it follows from Lemma ??, that H1

n+1,p(g,U (g)⊗
U (g)) = 0, so that ξ is the coboundary of an (n + 1,p)-contractible element in
U (g)⊗U (g), i.e. there exists an α ∈ F∗,n+1(U (g)⊗U (g)) such that ξ = d0α =
δ0α . In order to complete the recursion, we have to find an fn+1 ∈U (g)⊗U (g)
such that

∆̃−
(
Fn+hn+1 f(n+1)

)
∆0
(
F−1

n −hn+1 f(n+1) mod hn+2)=0 mod hn+2. (5.16)

Expanding the above equation to order hn+1 yields

δ0 fn+1 +ξ = 0. (5.17)

This equation can then be solved by choosing fn+1 =−α ∈F∗,n+1(U (g)⊗U (g)).
ut

4 By rewriting (??–??) for the associative product of two arbitrary elements in U (g), we also
show that ξ is a 1-cocycle in the sense of the Hochschild complex. This indeed provides a unique
continuation of ξ from g to U (g) as a derivation.
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5.3 Contractible quasi-Hopf algebras

Generically, cochain twists map quasi-Hopf algebras to quasi-Hopf algebras???.
Under twisting, the coproduct ∆ and coassociator Φ of a given quasi-Hopf algebra
transform as

∆
F X =F · (∆X) ·F−1, Φ

F =F12 · (∆ ⊗ id)(F) ·Φ · (id⊗∆)(F−1) ·F−1
23 ,

(5.18)

and, if the quasi-Hopf algebra is in addition quasitriangular, then the R-matrix R
transforms as

RF = F21RF−1. (5.19)

In the previous section it happened that both ∆ and ∆0 were coassociative, so that
both Uh(g) and U (g) happened to be Hopf algebras, but the theory applies more
generally.

Suppose now that R ∈ (Uh(g))⊗2 and Φ ∈ (Uh(g))⊗3 are any R-matrix and
coassociator that make a given QUEA (Uh(g),∆ ,ε,S) into a (coassociative) qtqH
algebra, which we denote, by a slight abbreviation, as (Uh(g),∆ ,R,Φ). We say
that this qtqH algebra is p-contractible with respect to a symmetric decomposition
g = h⊕ p if and only if (Uh(g),∆ ,ε,S) is p-contractible in the sense of Defi-
nition ?? and R and Φ are p-contractible as elements of their respective tensor
products. It then follows from the definitions above that

For any QUEA Uh(g) and any symmetric decomposition g = h ⊕ p, if
(Uh(g),∆ ,R,Φ) is a p-contractible qtqH algebra and F ∈ (Uh(g))⊗2 is a p-
contractible twist then ((Uh(g))F ,∆ F ,RF ,ΦF) is a p-contractible qtqH algebra.
Combining this with Propositions ?? and ??, we have that every p-contractible
qtqH algebra (Uh(g),∆ ,R,Φ) can be obtained, via p-contractible change of ba-
sis and twist, from some p-contractible qtqH algebra (U (g),∆0,R

′,Φ ′) based on
the undeformed UEA. In particular, starting from the trivial triangular quasi-Hopf
structure (R = 1⊗1,Φ = 1⊗1⊗1) on U (g), which is obviously p-contractible,
we have

For any p-contractible deformation Hopf algebra (Uh(g),∆ ,ε,S) based on
a symmetric semisimple Lie algebra of restrictive type with symmetric de-
composition g = h⊕ p, there is an R-matrix R and coassociator Φ such that
(Uh(g),∆ ,R,Φ) is a p-contractible triangular quasi-Hopf algebra.

Proof Explicitly, by Propositions ?? and ??, there exists a p-contractible invertible
element F ∈ U (g)⊗U (g)[[h]] and a p-contractible K[[h]]-algebra isomorphism
φ , such that

∆ =
(
φ
−1⊗φ

−1)◦F∆0F−1 ◦φ .

Defining

R := φ
−1⊗φ

−1 (F21F−1) , (5.20)

Φ := φ
−1⊗φ

−1⊗φ
−1 (F12 · (∆0⊗ id)(F) · (id⊗∆0)(F−1) ·F−1

23
)

(5.21)

provides the required structure. ut
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One may also want to know when a given p-contractible Hopf QUEA (Uh(g),∆ ,ε,S)
admits a p-contractible quasitriangular structure. When g is a semisimple Lie alge-
bra, we can at least give necessary conditions, by adapting the argument surround-
ing Proposition 3.16 in ?. Let t∈ sym(g⊗g)g be a g-invariant symmetric element.
For semisimple g, t is a linear combination of invariant symmetric elements of the
simple factors of g. Let (Uh(g),∆ ,R̄) be the corresponding standard quasitrian-
gular Hopf QUEA and (U (g)[[h]],∆0,R,Φ) the qtqH algebra with R = eht/2,
both as defined (simple factor by simple factor) in ?.

Let g = h⊕p be a symmetric decomposition of restrictive type of a semisim-
ple Lie algebra g. If (Uh(g),∆ ,R̄) is p-contractible, then it is isomorphic, via
a p-contractible isomorphism of K[[h]]-algebras, to a p-contractible twist of
(U (g)[[h]],∆0,R = eht/2,Φ). Furthermore, ht is necessarily p-contractible.

Proof (Outline) One follows the Proof of Proposition 3.16 in ? to reach the qtqH
algebra (U (g)[[h]],∆0,R,Φ), where R and Φ are g-invariants but, as above, one
knows from Propositions ?? and ?? that the required isomorphism φ and twist
F can be chosen to be p-contractible. Indeed, a further g-invariant twist may be
required to ensure that R21 = R, but this twist is p-contractible as R is (cf. Prop
3.5 in ?). Then the rest of the proof is unmodified, and one has that R = eht/2 and
that Φ is the corresponding coassociator, as defined in ?. Moreover, since both R
and Φ depend on h and t solely through ht, their p-contractibility implies that of
ht. ut

Knowing, ahead of time, that the standard quasitriangular Hopf QUEAs of
semisimple Lie algebras exist allows one to conclude that, to the datum (g, t),
corresponds, via twisting, a quasitriangular Hopf algebra. It does not allow us
though to conclude anything about p-contractibilty. In order to decide whether the
existence of a p-contractible ht ∈ hsym(g⊗ g)g is also a sufficient condition for
the existence of a p-contractible quasitriangular Hopf algebra (Uh(g),∆ ,R̄) based
on (Uhg,∆ ,ε,S), it might be helpful to refine the approach of Donin and Shnider,
?, where it is shown by direct cohomological arguments that there exists a twist
from (U (g),∆0,R,Φ) to the latter, therefore setting the coassociator to unity. In
Sect. ?? we will see an example for which a p-contractible ht (and a p-contractible
quasitriangular Hopf algebra) does exist, and one for which it does not.

6 Twists and p-Contractions

We can now finally turn to the objects in which we are really interested in this pa-
per: those deformed enveloping algebras of non-semisimple Lie algebras that are
obtained by a certain contraction procedure modelled on that used in ??? to obtain
the
κ-deformation of Poincaré. The notion of p-contractibilty introduced in the pre-
vious sections is formulated with this type of contraction in mind, as we now
discuss.

Recall first that if g = h⊕p is a symmetric decomposition of a Lie algebra g, a
standard procedure known as Inönu-Wigner contraction, ??, consists in contract-
ing the submodule p by means of a one-parameter family of linear automorphisms
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of the form

Λt = πh + t πp, (6.1)

where πh : g � h and πp : g � p denote the linear projections from g to h and p
respectively and t ∈ (0,1].

For all t ∈ (0,1], the image of g by the automorphism Λ
−1
t is the symmet-

ric semisimple Lie algebra gt , isomorphic to g = h⊕ p as a K-module, with Lie
bracket

[X ,Y ]t = Λ
−1
t ([Λt(X),Λt(Y )]) (6.2)

for all X ,Y ∈ g. It has the property that

[h,h]t ⊂ h , [h,p]t ⊂ p , and [p,p]t ⊂ t2h, (6.3)

so in the limit t → 0 one obtains a Lie algebra g0, isomorphic to g = h⊕ p as a
K-module, whose Lie bracket [, ]0 = limt→0[, ]t obeys

[h,h]0 ⊂ h , [h,p]0 ⊂ p , and [p,p]0 = {0}. (6.4)

The submodule p is therefore an abelian ideal in g0. The undeformed Hopf algebra
structure defined in Sect. ?? is preserved as t tends to zero. There is thus a natural
undeformed Hopf algebra structure on the envelope U (g0) of the contracted Lie
algebra, which we may write as (U (g0),∆0,S0,ε0) without ambiguity.

We may extend Λt over U (g)[[h]] as a K[[h]]-algebra homomorphism. Further,
by means of the K[[h]]-module isomorphism η of Definition ??, we can regard Λt
as a map Uh(g)→Uh(g) on any QUEA Uh(g). This specifies how every element
of the latter is to be rescaled in the contraction limit.

The relevance of the definition of p-contractibility from Sect. ?? is then con-
tained in the following

Let (g,θ) be a symmetric semisimple Lie algebra with symmetric decompo-
sition g = h⊕ p and let (Uh(g),∆h,Sh,εh) be a deformation of the Hopf algebra
(U (g),∆0,S0,ε0). For all t ∈ (0,1], set

∆(t) =(Λ−1
t ⊗Λ

−1
t )◦∆th′ ◦Λt , S(t) =Λ

−1
t ◦Sth′ ◦Λt and ε(t) =εth′ ◦Λt ,

(6.5)

where h′ = h/t is the rescaled deformation parameter. Then the limit of (Uth′(gt),∆(t),
S(t),ε(t)) as t → 0 exists if and only if (Uh(g),∆h,Sh,εh) is p-contractible. If so,
one has a deformation of (U (g0),∆0,S0,ε0) which we denote by (Uh′(g0),∆h′ ,Sh′ ,εh′),
and refer to as the p-contraction of (Uh(g),∆h,Sh,εh).

Proof Let r,s ∈ N and let φ : (U (g))⊗r[[h]] → (U (g))⊗s[[h]] be a homomor-
phism of K[[h]]-modules. We want to prove that φt = (Λ−1

t )⊗s ◦ φ ◦ (Λt)⊗r has
a finite limit when t → 0 if and only if φ is p-contractible. First assume that φ is
p-contractible; then from Lemma ??, there exists a collection (ϕn)n∈N0 of K[[h]]-
module homomorphisms ϕn : (U (g))⊗r[[h]]→ (U (g))⊗s[[h]] such that

φ = ∑
n≥0

hn
ϕn (6.6)
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and, for all n,m, p ∈ N0, there exists l ∈ N0 such that ϕn (Fm,p((U (g))⊗r)) ⊆
Fl,n+p ((U (g))⊗s). We thus have, for all n,m, p ∈ N0,

hn (Λ−1
t )⊗s ◦ϕn ◦ (Λt)⊗r (Sm,p(g⊕r)

)
= h′−ntn+p (Λ−1

t )⊗s ◦ϕn
(
Sm,p(g⊕r)

)
⊆ h′−ntn+p (Λ−1

t )⊗s (Fl,n+p((U (g))⊗s)
)

= h′−ntn+p O(t−(n+p))Fl,n+p((U (g))⊗s)

= h′−nO(1)Fl,n+p((U (g))⊗s) .

This obviously has a finite limit when t → 0 and so does φt . Conversely, one sees
that if φ is not p-contractible, φt diverges at least as t−1. ut

It is worth emphasizing that the notion of p-contraction defined here is not the
only possible contraction that can be performed on a QUEA of g with respect to a
given symmetric decomposition g = h⊕p: one could also, for example, consider
contractions where the deformation parameter h is not rescaled in the limit.
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Finally, we can state our main result concerning twists and p-contracted
QUEAs:

If a deformation Hopf algebra (Uh′(g0),∆h′ ,Sh′ ,εh′) is the p-contraction of
a QUEA of a symmetric semisimple Lie algebra (g,θ) having the restriction
property, then it is isomorphic, as a Hopf algebra over K[[h′]], to a twist of
the undeformed Hopf algebra (U (g0),∆0,S0,ε0) by an invertible element F0 ∈
Uh′(g0)⊗Uh′(g0)[[h′]] congruent with 1⊗1 modulo h′.

Proof By Proposition ??, Proposition ?? applies. By arguing as in the proof of ??,
we have that if F is the p-contractible twist element of Proposition ??, then

F0 = lim
t→0

(Λ−1
t ⊗Λ

−1
t )(F) (6.7)

is well-defined. By construction, this is the twist we seek. ut

From Corollary ??, one has similarly that for every such p-contracted QUEA
Uh′(g0) there exists an R-matrix R and coassociator Φ that make (Uh′(g0),R,Φ)
into a triangular quasi-Hopf algebra.

7 Examples: κ-Poincaré in 3 and 4 Dimensions

We now turn to explicit examples. Let K = C, and consider the symmetric decom-
position

so(n+1) = so(n)⊕pn, n > 2, (7.1)

whose Inönu-Wigner contraction of course yields the Lie algebra iso(n) of the
complexified Euclidean group in n dimensions, ISO(n,C). By Lemma ??, this
decomposition is of restrictive type. Thus, the results above will apply to any
pn-contractible deformation algebra Uh(so(n+1)). Finding such deformations is
itself a non-trivial task. In the cases n = 3,4, this was achieved in ??5, yielding the
κ-deformations Uκ(iso(3)) and Uκ(iso(4)). These can be written in terms of the
generators

Mi j =−M ji , Ni , Pi, P0 = E, (7.2)

for all 1 ≤ i, j ≤ n−1 and n = 3,4. The deformation parameter is conventionally
denoted as κ = 1/h′, and the algebra is then given by

[Mi j,Pk] = δk[iPj], (7.3)

[Ni,Pj] = δi j κ sinh
(

E
κ

)
, [Ni,E] = Pi, (7.4)

[Ni,N j] =−Mi j cosh
(

E
κ

)
+

1
4κ2

(
EP·EPMi j +PkP[iM j]k

)
, (7.5)

5 Note that although the κ-Poincaré algebra exists in arbitrary dimension ?, to the authors’
knowledge it has only explicitly been shown to arise as a p-contraction for n ≤ 4.
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for all 1 ≤ i, j,k, l ≤ n−1. The coproduct is given by

∆κ(E) = E⊗1+1⊗E , (7.6)

∆κ(Pi) = Pi⊗ e
E
2κ + e−

E
2κ ⊗Pi, (7.7)

∆κ(Ni) = Ni⊗ e
E
2κ + e−

E
2κ ⊗Ni +

1
2κ

(
Pj ⊗ e

E
2κ Mi j − e−

E
2κ Mi j ⊗Pj

)
, (7.8)

∆κ(Mi j) = Mi j ⊗1+1⊗Mi j, (7.9)

and the antipode by

Sκ(Pµ) =−Pµ , Sκ(Mi j) =−Mi j, Sκ(Ni) =−Ni +
d

2κ
Pi. (7.10)

The counit map is undeformed, ε(Mi j) = ε(Ni) = ε(Pµ) = 0, for all 0≤ µ ≤ n−1.
It follows from the results presented in the previous sections that Uκ(iso(3))

and Uκ(iso(4)) are isomorphic to cochain twists of U (iso(3)) and U (iso(4))
respectively.

Let us comment on the relationship between this statement and various previ-
ous results. First, it should not be confused with other statements that exist in the
literature, ??, concerning twists and κ-deformed Minkowski space-time, which
involve enlarged algebras that include the dilatation generator.

Next, as we saw above, the existence of the cochain twist means there cer-
tainly exist triangular quasi-Hopf algebras (Uκ(iso(n)),R,Φ), at least for n =
3,4. They are obtained, as in the approach of Beggs and Majid ??, by twisting
(Uκ(iso(n)),1⊗2,1⊗3). To the first few orders in h′ = 1/κ , the structures R and
Φ were explicitly computed, for any n ≥ 2, in ?; see also ??.

One can also understand the existence of the quasitriangular Hopf algebra
structure of Uκ(iso(3)) exhibited in ? in the context of the results above. Among
the special orthogonal algebras, so(4,C) alone is not simple: so(4,C) = a1⊕a1.
There is thus a two-dimensional space of quadratic Casimirs. It is straightfor-
ward to verify that a one-dimensional subspace of them are p-contractible, namely
h t := hεi jkMi jPk. For n 6= 3, it is known that there is no classical r-matrix obeying
the classical Yang-Baxter equation ?? and therefore no quasitriangular Hopf alge-
bra structure. This now also follows from Corollary ??, given that for all n 6= 3 the
unique quadratic Casimir of so(n+1) fails to be p-contractible.

As for versions of the κ-deformed Poincaré algebra in higher and lower space-
time dimensions, a consistent definition was first given in ?. The main idea is that
the four dimensional case is generic enough that the 1 + d-dimensional case can
be obtained by simply extending or truncating the range of the spatial indices
from 1, . . . ,3 to 1, . . . ,d. It is reasonable to think that the twist obtained in the four
dimensional case can be similarly extended to arbitrary dimensions, thus extend-
ing to all dimensions the existence of a triangular quasi-Hopf algebra structure
on the κ-deformation of the Poincaré algebra. In particular, we expect that the
κ-deformation of U (sl(2)) admits a triangular quasi-Hopf algebra structure ?,
but a proof of this statement would obviously require a refinement of the argu-
ments used here so as to circumvent the obstructions arising in this case – cf.
the Appendix. Such a refinement could, for instance, rely on a further symmetry
property of the p-contractible Chevalley-Eilenberg cohomology of sl(2).
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Finally, we note that it would be interesting to understand the existence of the
twist from the point of view of the other, conceptually distinct, construction of
κ-Poincaré, namely as a bicrossproduct ????.
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Appendix: Proof of Lemma ??

In this Appendix, we provide a proof of Lemma ??. Let (g,θ) be a symmetric
semisimple Lie algebra obeying the conditions of the lemma. If g = h⊕ p is the
associated symmetric decomposition of g, we want to prove that, for all p ∈ N,
the projection from g to p maps Sp(g⊕g)g onto S0,p(g⊕g)h. The isomorphism of
left g-modules (??) induces a similar isomorphism S(g⊕ g) ∼= S(g)⊗ S(g) at the
level of the symmetric algebras, from which it follows that

Sm(g⊕g)∼=
m⊕

k=0

Sk(g)⊗Sm−k(g), (7.11)

for all m∈N. We thus have a decomposition of S(g⊕g) into the g-submodules iso-
morphic to Sk(g)⊗Sm−k(g). There is an analogous decomposition of S0,m(g⊕g)
into h-submodules isomorphic to S0,k(g)⊗S0,m−k(g) = Sk(p)⊗Sm−k(p). It there-
fore suffices to show that, for all k, ` ∈ N, the restriction map induces a surjection

(Sk(g)⊗S`(g))g � (Sk(p)⊗S`(p))h . (7.12)

Identifying g ∼= g∗, and in particular p ∼= p∗, by means of the Killing form, an
element d ∈ Sk(p)⊗S`(p) can be regarded as a (k + `)-linear map

p×·· ·×p→K; (X , . . . ,Y ) 7→ d(X , . . . ,Y ) (7.13)

that is symmetric in its first k and final ` slots. In view of the polarization formulae,
such maps are in bijection with polynomials of two variables in p, according to

p(d)(X ,Y ) = d(X , . . . ,X︸ ︷︷ ︸
k

,Y, . . . ,Y︸ ︷︷ ︸
`

). (7.14)

These polynomials are (k, `)-homogeneous, by which we mean that they are ho-
mogeneous of degree k with respect to their first argument and of degree ` with
respect to their second argument. We denote by Kk,`[p,p] the left h-module of
(k, `)-homogeneous polynomials on p. Then for all k, ` ∈ N, (Sk(p)⊗S`(p))h is
in bijection with the submodule of h-invariant (k, `)-homogeneous polynomials
of Kk,`[p,p]h. Similarly, (Sk(g)⊗S`(g))g is in bijection with Kk,`[g,g]g. There-
fore, it suffices to show that the restriction map from g to p maps Kk,`[g,g]g onto
Kk,`[p,p]h. By virtue of Lemma ??, it will be sufficient to consider separately the
cases of diagonal symmetric Lie algebras and of the symmetric simple Lie alge-
bras listed in ??.
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We recall that a diagonal symmetric Lie algebra is a pair (g,θ), where g =
v⊕ v, for some semisimple Lie algebra v, and θ is the involutive automorphism
of Lie algebras defined by θ(x,y) = (y,x), for all (x,y) ∈ g. We thus have g =
h⊕ p, where h is the set of elements of g of the form (x,x), whereas p is the set
of elements of g of the form (x,−x), for x ∈ v. We are first going to prove that
Kk,`[p,p]h ∼= Kk,`[v,v]v. Let p ∈ Kk,`[p,p] be a polynomial. For all X ,Y ∈ p, we
have

p(X ,Y ) = p((x,−x),(y,−y)) = p̃(x,y), (7.15)

for some x,y ∈ v. The left h-action on p induces a left h-action on p×p, given, for
all h ∈ h and all X ,Y ∈ p, by

h. (X ,Y )=(z,z). ((x,−x),(y,−y))=((z. x,−z. x),(z. y,−z. y)), (7.16)

for some x,y ∈ v and some z ∈ v; from which it obviously follows that p̃ is v-
invariant if and only if p is h-invariant. Now, we are going to prove that the re-
striction map is a surjection from Kk,`[g,g]g onto Kk,`[v,v]v. Let p ∈ Kk,`[g,g]g
be a g-invariant polynomial on g. The left g-action on g⊕g is given, for all g ∈ g
and all X ,Y ∈ g, by

g. (X ,Y ) = (g1,g2). ((x1,x2),(y1,y2))
= ((g1 . x1,g2 . x2),(g1 . y1,g2 . y2)), (7.17)

for some g1,g2 ∈ v and some x1,x2,y1,y2 ∈ v. As one can always choose g1 and
g2 independently, it follows that in order for p to be g-invariant, there must be a
polynomial f : K×K → K and two v-invariant polynomials p1, p2 ∈ Kk,`[v,v]v
such that

p((x1,x2),(y1,y2)) = f (p1(x1,y1), p2(x2,y2)), (7.18)

for all x1,x2,y1,y2 ∈ v. Now restricting p to p, we get

p((x1,−x1),(y1,−y1)) = f (p1(x1,y1), p2(−(x1,y1)))
= p̃(x1,y1) ∈Kk,`[v,v]v, (7.19)

for all x1,y1 ∈ v. Now, it is obvious that every polynomial in Kk,`[v,v]v can be
obtained as the restriction to p of a polynomial in Kk,`[g,g]g; e.g. take p2 = 0,
f = id and p1 = p̃.

We are now going to consider the different symmetric simple Lie algebras
listed in ??. Let us first consider the symmetric simple Lie algebras of type AIn
for all n > 2. In this case, we have g = su(n) endowed with an involutive auto-
morphism θ given by complex conjugation, i.e. θ(x) = x̄, for all x ∈ su(n). The
fixed points of θ are traceless real antisymmetric matrices which generate an so(n)
subalgebra. We thus have the symmetric decomposition su(n) = so(n)⊕p, where
the orthogonal complement p is the left so(n)-module generated by the traceless
imaginary symmetric matrices of su(n). It follows from the first fundamental the-
orem for so(n)-invariant polynomials on n× n matrices, ?, that Kk,`[p,p]so(n) is
generated by the following polynomials:

(x,y) ∈ p×p→ trP(x,y), (7.20)
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for all (i, j)-homogeneous noncommutative polynomials P∈Ki, j[X ,Y ], with i≤ k
and j≤ `. The polynomials defined in (??) are obviously restrictions to p of su(n)-
invariant polynomials on su(n) as, for all P ∈Ki, j[X ,Y ] and all x,y ∈ su(n),

(x,y)→ trP(x,y) (7.21)

defines an element in Km,n[su(n),su(n)]su(n). This proves Lemma ?? for simple
symmetric Lie algebras of type AIn>2. It is worth noting that in the case of AI2,
there exist obstructions to the above result which are related to the existence of a
further so(2)-invariant with appropriate symmetries, namely the pfaffian (x,y) ∈
p×p→ Pf([x,y]). As the latter is not the restriction to p of any su(2) invariant on
su(2), Lemma ?? does not hold in this case.

We now turn to type AIIn. In this case, we have g = su(2n) endowed with
an involutive automorphism θ given by the symplectic transpose, i.e., for all x ∈
su(2n), θ(x) = JxtJ, where J is a non-singular skew-symmetric 2n× 2n matrix
such that J2 = −1. The fixed point set of θ constitutes an sp(2n) subalgebra and
we have the following symmetric decomposition su(2n) = sp(2n)⊕p, where p⊂
su(2n) is the left sp(2n)-module of matrices x ∈ su(2n) such that θ(x) = −x. It
follows from the first fundamental theorem for sp(2n)-invariant polynomials on
2n×2n matrices, ?, that Kk,`[p,p]sp(2n) is generated by the following polynomials:

(x,y) ∈ p×p→ trP(x,y), (7.22)

for all noncommutative (i, j)-homogeneous polynomials P∈Ki, j[X ,Y ], with i≤ k
and j≤ `. These polynomials are restrictions to p of su(2n)-invariant polynomials
on su(2n) as, for all P ∈Ki, j[X ,Y ] and all x,y ∈ su(2n),

(x,y)→ trP(x,y) (7.23)

defines an element in Ki, j[su(2n),su(2n)]su(2n). This proves Lemma ?? for simple
symmetric Lie algebras of type AIIn.

We finally consider the symmetric simple Lie algebras of type BDIn,1 for
all n > 2. In this case, we have the symmetric pairs (so(n + 1),so(n))n>2.
We introduce the usual basis of gl(n + 1), i.e. the (Ei j)0≤i, j≤n defined as the
(n + 1)× (n + 1) matrices with a 1 at the intersection of the ith row and jth col-
umn and 0 everywhere else. The matrices Mi j = Ei j−E ji, 0≤ i, j≤ n, constitute a
basis of so(n+1), and of these, the Mi j with 1≤ i, j ≤ n generate an so(n) subal-
gebra. We thus have the symmetric decomposition so(n+1) = so(n)⊕p, where p
is the n-dimensional so(n)-module spanned by the Pi = M0,i, for all 1≤ i≤ n. The
Pi transform under the fundamental representation n of so(n), as can be checked
from

Mi j .Pk = [Mi j,Pk] = δ jkPi−δikPj, (7.24)

for all 1 ≤ i, j,k ≤ n. This means that we are looking for SO(n)-invariant (k, `)-
homogeneous polynomials on p×p = n×n. For all n > 2, it follows from the first
fundamental theorem for so(n)-invariant polynomials on vectors, ??, that such
polynomials only depend on the SO(n) scalars built out of the scalar products of
their arguments. Let q be the quadratic form defined on p×p by q(Pi,Pj) = δi j for
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all 1≤ i, j ≤ n. For all p ∈Kk,`[p,p]h, there exists a polynomial f : K3 →K such
that, for all X ,Y ∈ p,

p(X ,Y ) = f (q(X ,X),q(X ,Y ),q(Y,Y )). (7.25)

Now, it is obvious that q is the restriction to p of the map

so(n+1)× so(n+1)→K ; (X ,Y )→−1
2

tr(XY ),

which is so(n+1)-invariant. This proves the result for symmetric simple Lie alge-
bras of type BDIn>2,1. It is worth noting that in the case of BDI2,1, there exist ob-
structions to the above result which are related to the existence of a further SO(2)
invariant, namely (X ,Y ) ∈ p×p→ det(X ,Y ). As the latter is not the restriction to
p of any so(3) invariant, Lemma ?? does not hold in this case.

By virtue of the special isomorphisms between lower rank simple Lie algebras,
the list of summands in Lemma ?? actually includes CII1,1 = BDI4,1 and BDI3,3 =
AI4. The latter respectively correspond to the symmetric decompositions sp(4) =
(sp(2)⊕ sp(2))⊕p and so(6) = (so(3)⊕ so(3))⊕p.
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