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Abstract. We disclose the universal nature of computational ♯P-hardness and quantum
supremacy of quantum many-body systems. We do so by means of the new powerful technique
(the hafnian master theorem) that allows one to address the ♯P-hard problems systematically.
We consider a generic example of many-body interacting systems – a trapped BEC-gas of
interacting Bose atoms, apply the hafnian master theorem and refer to the Toda’s theorem on
a ♯P-complete oracle.

1. Introduction
Revealing the nature of the computational ♯P-hardness and quantum supremacy of quantum
many-body systems is one of the central problems in modern quantum physics [1, 2, 3]. There
is an open fundamental question: What is the nature of the ♯P-hard complexity of quantum
many-body systems, or where does the quantum supremacy over classical computers come from?
We answer it by means of the new powerful technique (the hafnian master theorem) that allows
us to address the ♯P-hard problems on a regular basis. We sketch this technique by considering
an example of atomic boson sampling from an interacting Bose-Einstein-condensed gas.

Atomic boson sampling of noncondensed atom numbers in an interacting BEC-gas is a new
platform for studying quantum supremacy [4, 5, 6]. It is very different from photonic boson
sampling in a linear interferometer widely studied in the last decade [7, 8, 9, 10]. Our analysis is
based on the general approach towards unification of nature’s complexities via the hafnian and
permanent ♯P-complete matrix functions [11], the newly found hafnian master theorem [12] and
implementation of the Toda’s theorem on a ♯P-complete oracle [13]. We outline an easy-to-follow
analytical theory of atomic boson sampling for a BEC-gas in a box trap presented in our recent
paper [6]. In this case the sampling probability distribution and its characteristic function can
be calculated explicitly. We find that two necessary ingredients of the ♯P-hardness, squeezing
and interference, are naturally present in the BEC gas even in equilibrium.

The existence of squeezing in the interacting BEC gas has been known since [14]. Contrary
to Gaussian boson sampling of noninteracting photons in a linear interferometer, atomic boson
sampling does not require sophisticated external sources of bosons in quantum squeezed states.

We suggest performing proof-of-principle experiments designed to demonstrate manifestations
of the ♯P-hard complexity of atomic boson sampling [4, 5, 6]. Extracting the joint probability
distribution for the occupations of just two excited atom states [6] (say, two counter-propagating
plane waves or their unitary mixed counterparts as in Fig. 1) would be already a remarkable
experimental achievement. Such experiments are even easier for implementation than the ones
on the statistics of the total noncondensate occupation [15] successfully realized in [16, 17].
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Figure 1. Joint occupation probabilities for two interfering squeezed excited-atom states:
Nontrivial quantum statistics, which manifests ♯P-hard complexity of the many-body system, is
hiding under thermal fluctuations as the thermal occupation, Nth, of the relevant quasiparticle
state increases from zero to ten quasiparticles.

2. Recent experiments on fluctuations of the atom numbers in the noncondensate
of a trapped BEC gas

There are many BEC laboratories worldwide potentially capable of sampling and measuring
atom number fluctuations from the noncondensed fraction of a BEC gas. Below we name a few
of them. Their recent results are closely related to the proposed atomic boson sampling and
leave no doubts for its experimental realization in the near future.

2.1. Fluctuations in the total number of noncondensed atoms (Arlt’s group at the Aarhus
University, Denmark)

There had been a remarkable experiment on measuring fluctuations in the total number of
condensed atoms in a harmonic trap [16, 17]. It successfully resolved the main difficulty
in the experiments on the total noncondensate fluctuations – a proper differentiation of the
noncondensate from much more populated condensate in the trap with a large number of atoms,
e.g., N ∼ 5× 105 as in [16, 17].
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2.2. Bogoliubov’s pair correlations in fluctuations of the atom numbers (Clement’s group at the
CNRS, France)

The most pertinent to the proposed atomic boson sampling is the experiment done in the
Clement’s group at the CNRS (France) [18, 19]. They were capable to obtain a full counting
statistics of atoms in the momentum space after their release from a trap and subsequent free-
fall expansion. They observed strongly correlated pairs of atoms with opposite momenta in
the interacting Bose gas. Amazingly, their detectors have a single-atom resolution and a large
quantum efficiency.

2.3. Analog of optical boson sampling: A shallow optical-lattice potential as interferometer for
an atom beam (Kaufman’s group at the JILA, NIST, US)

The ongoing work [20] in the Kaufman’s group at JILA and NIST aims at the cold-atom-based
experiment implementing a straightforward analogy with the linear-interferometer approach to
boson sampling of noninteracting photons. They use a shallow optical-lattice trapping potential
as an interferometer for a beam of cold Bose atoms and reproduce an analog of the optical boson
sampling experiments, but employing atoms instead of photons. The interference effects, for
example, the Hong-Ou-Mandel effect, with cold atoms had been observed before, in particular,
in [21]. Yet, such analogs of the linear-interferometer boson sampling with atoms, which are
based on the nonequilibrium open system with atomic beams, are very different from the atomic
boson sampling in the equilibrium BEC trap originally proposed in [4] and discussed here.

2.4. Analog of optical boson sampling: A boson sampling machine with ultracold atoms in a
polarization-synthesized optical lattice (Alberti’s group at the University of Bonn, Germany)

Basic building blocks of an analog of optical-boson-sampling interferometer were experimentally
demonstrate in [22] by revealing the Hong-Ou-Mandel interference of two bosonic atoms in a
4-mode interferometer. They estimated the sampling rate for a large number of atoms N via
a model based on a master equation and showed that quantum supremacy over today’s best
supercomputers can be reached with N > 40.

3. New avenues in the field of the BEC quantum simulation
The proposed atomic boson sampling infers new avenues in the field of the BEC quantum
simulation. In particular, it suggests to study possible designs and realizations of the multi-
qubit BEC trap [5] most suitable for the experiments on the atomic boson sampling. Another
important direction of this research is related to inventing various multi-detector imaging
techniques for measuring atom numbers in different groups of excited states and pioneering
relevant quantum-statistical experiments.

This field of research promises discovery of a variety of new phenomena related to the
effects of interaction, entanglement, and interference in the BEC-gas quantum statistics for
the atomic boson sampling, many-body correlations, common or fragmented phase transitions,
critical fluctuations, and appearance of the computational ♯P-hard complexity.

Essentially, we suggest the atomic boson sampling in an interacting BEC-condensed gas as an
alternative to the photonic boson sampling in a linear interferometer. We show that the process
of many-body fluctuations in an interacting equilibrium BEC gas and its output statistics is
♯P-hard for computing and potentially possesses quantum supremacy over classical simulators.

Analysis of the atomic boson sampling clarifies answers to the important general questions.
Why do quantum many-body systems possess quantum supremacy over classical computers?
What is a specific mechanism behind such supremacy? What is a proper theoretical tool to
disclose the mystery of quantum supremacy?
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We answer these questions by considering a generic quantum many-body interacting system
- Bose-Einstein-condensed atoms confined in a trap. Its physics substantially differs from the
physics of boson sampling of massless photons in the interaction-free, nonequilibrium, linear
interferometer that has been widely studied and advertised in the last decade in view of its
potential quantum supremacy. In the case of the trapped atoms there are the condensate,
massive particles, interaction, thermal equilibrium, and no external sources of bosons. Despite
these peculiarities, it is possible to solve this problem analytically and address computational
♯P-hardness of atomic boson sampling. In fact, the aforementioned peculiarities turn an atomic,
multi-qubit BEC trap into a fruitful platform for testing quantum many-body processes with
regard to their quantum supremacy over classical simulators.

4. Quantum statistical physics of the atomic boson sampling
We derive quantum statistics of the atomic boson sampling starting from the Bogoliubov-
Popov Hamiltonian for the dilute weakly interacting Bose gas in the equilibrium phase at the
temperature much lower than the critical temperature of Bose-Einstein condensation. The new
idea is to go beyond and deeper than just calculating quasiparticles and their energy spectrum
via the Bogoliubov transformation. This is done by employing the Bloch-Messiah reduction [23]
of the Bogoliubov transformation. The analysis involves solving the Gross-Pitaevskii equation
for the macroscopic condensate wave function and the Bogoliubov – de Gennes equations for
quasiparticle excitations as well as calculating the covariance matrix of the inter-mode normal
and anomalous correlations and full joint probability distribution via its characteristic function.

The main novelty of our analysis is finding explicitly the eigen-squeeze modes and their
eigenvalues corresponding to the singular value decomposition of the symplectic matrix of the
Bogoliubov transformation. As a result, the unique, irreducible Bloch-Messiah representation
of the Bogoliubov transformation unambiguously discloses the existence and explicit form of
two different fundamental eigen entities of the many-body interacting system – the quasiparticle
eigen states and the eigen-squeeze modes. They specify, accordingly, two preferred bases for
the creation/annihilation field operators: (a) the basis of the quasiparticles diagonalizing the
Hamiltonian and (b) the basis of the eigen-squeeze single-particle excited states diagonalizing
the Hermitian factor of the multimode squeeze matrix. The Bloch-Messiah reduction explicitly
relates both aforementioned bases to the observational basis of atom excited states which
can be selected at will by reconfigurating the atom number detectors. Those detectors make
measurements by projecting atom wave functions onto the preselected observational basis wave
functions.

The source of the ♯P-hard computational complexity is a combination of squeezing and
interference, that is, the interference between the eigen-squeeze modes and both the quasiparticle
wave functions, on one hand, and the observational excited atom states, on the other hand. A
physical origin of squeezing is a spontaneous creation of two excited atoms from the condensate.
Such a process is also the reason for the formation of the noncondensate via quantum depletion
of the condensate, even at zero temperature. In the absence of quantum depletion, the squeezing
also disappears. A thermal fraction of the noncondensate alone does not lead to squeezing and
computational ♯P-hardness of the BEC-gas quantum statistics.

Specifically, we find an analytical solution for the characteristic function and joint probability
distribution of excited atom numbers for the atomic boson sampling from a thermal state of a
dilute weakly interacting BEC gas, see Fig. 1. The starting point of our analysis is a fact of
two-mode squeezing of atom excitations in a trapped BEC gas established in [14] and strongly
pronounced in fluctuations of the total number of condensed atoms in the interacting gas which
were calculated in [15].

Curiously, two-times decrease, as compared to the case of an ideal, non-interacting BEC gas,
in the variance of the total BEC occupation, that occurs due to interaction, had been assigned
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by Pitaevskii and co-authors in [24] to an accident, not to the effect of squeezing.
The central pillar of our approach is the hafnian master theorem [12] that gives the generating

function for the hafnians which determine the joint probability distribution of atom numbers.
The point is that it provides the universal, concise and explicit path to expressing the ♯P-
hardness of computing quantum statistical processes in finite many-body interacting systems.
Note that in general the hafnians and permanents are ♯P-complete, that is, require exponential
time, for computing. Besides, the hafnian master theorem establishes a direct connection with
the Wick’s theorem of the standard quantum field theory and condensed matter physics.

Here we skip discussion of the corresponding equations and formulas which could be
found in our detailed papers [4, 5, 6]. The most important fact is that squeezing of atom
states naturally appears due to interaction and plays a crucial role in the origin of the
computational ♯P-hard complexity of atomic boson sampling. In the absence of squeezing, the
joint probability distribution of the excited atom numbers would be a simple function computable
via Stockmeyer’s approximating algorithm [7, 25] in polynomial time.

5. Conclusions
There is no mystery in the computational ♯P-hardness and quantum supremacy. In fact, the
quantum theory of finite quantum systems is simple. It’s just a linear algebra and combinatorics
of the finite-size matrices, and their ♯P-hardness for computing is fully accounted for by hafnians.

The results [4, 6, 12] discussed above explicitly give the joint probability distribution of atom
numbers for atomic boson sampling as a Fourier series of the characteristic function with the
coefficients given by the hafnians which are ♯P-hard for computing. Therefore, quantum systems
possess quantum supremacy for the problems involving multivariate integral for Fourier-series
coefficients since their life naturally consists of performing such Fourier transforms.

Classical simulators, on the contrary, operate with classical functions of continuous variables
(inverse Fourier transforms) and cannot perform Fourier-series transform in polynomial time.

Specifically, quantum supremacy and ♯P-hardness encrypted into the Gaussian (equilibrium)
states are due to squeezing and interference of the many-body-system modes (see section 4)
processing a multivariate Fourier transform of quantum statistics. In other words, the quantum
statistics of the atom number fluctuations is determined by an interplay between the two intrinsic
entities existing in the interacting BEC gas, the eigen-squeeze modes and the quasipaticle
eigen-energy states, and the observational excited atom wave functions. The conventional,
textbook approach focuses just on one of those two intrinsic entities, the quasiparticles and their
energy spectrum, apparently, because they determine thermodynamic energy-related averaged
properties of the many-body system. However, for the quantum statistics of fluctuations the
central part is played by the other intrinsic entity – the eigen-squeeze modes of the interacting
many-body system. Quantum supremacy, quantum simulations cannot be understood without
analysis of the eigen-squeeze modes. This is the first major conclusion of our analysis [4, 6, 12].

The second major conclusion is that the nature of the quantum supremacy and ♯P-
hard complexity has a universal origin – an intuitively obvious complexity of computing the
multivariate integral in Fourier-series coefficients of a sign-indefinite strongly-oscillating function.
It is related to the ♯P-hardness of computing matrix hafnians (or permanents) [6, 11, 12] which
behave like a lacunary or fractal function with an exponentially wide spectrum.

In fact, any type of the computational ♯P-hardness is equivalent and fully represented by the
aforementioned form of the computational ♯P-hardness in view of the Toda’s theorem [13] on a
♯P-complete oracle. Computing a ♯P-complete hafnian and using it as an oracle is enough for
polynomial-time reduction of every other ♯P-hard problem to an easy, polynomial-time problem.
Thus, the multivariate Fourier-series integration fully reveals the general nature of the quantum
supremacy and the computational ♯P-hardness of the many-body quantum systems.
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