

Study of Cluster Emission in Ra Isotopes using Modified Universal Decay Law

A. Jain^{1,*} P. K. Sharma², S. K. Jain¹, and G. Saxena^{3,4}

¹Department of Physics, School of Basic Sciences,

Manipal University Jaipur, Jaipur - 303007, INDIA

²Govt. Polytechnic College, Rajsamand - 313324, INDIA

³Department of Physics (H&S), Govt. Women Engineering College, Ajmer - 305002, INDIA and

⁴Department of Physics, Faculty of Science,
University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia

Cluster radioactivity was first predicted by Sandulescu *et al.* in 1980 [1]; these clusters were heavier than α particles and lighter than fission fragments. However, the experimental proof of this decay was given by Rose and Jones in 1984 [2]: ^{14}C emitted from ^{223}Ra . Till now, many clusters decay from light to heavy clusters (^{14}C to ^{32}Si) have been observed from various trans-lead nuclei (Fr, Ra, etc.) resulting the corresponding daughter as magic ($Z=82$) or neighboring nuclei which indicate the importance of this particular ($Z>82$) region in cluster radioactivity [3].

The half-lives of cluster decay are sensitive to the disintegration energy (Q -value), which is given by:

$$Q = B.E.(d) + B.E.(c) - B.E.(p) + k[Z_p^\epsilon - Z_d^\epsilon]$$

where B.E.(p), B.E.(d) and B.E.(c) are the binding energies of the parent nucleus, daughter nucleus, and emitted cluster, respectively. The term $k[Z_p^\epsilon - Z_d^\epsilon]$ indicates screening effect caused by the surrounding electrons around the nuclei [4] with $k=8.7$ eV [8.7×10^{-6} MeV] and $\epsilon=2.517$ for $Z \geq 60$.

Although, cluster decay half-lives can be estimated with the help of various models [5] but there are also various formulas which are capable to calculate the cluster decay half-lives accurately [6]. In 2009, Qi, proposed a formula for the calculation of half lives of α and

cluster emission. This is also known as universal decay law [8] which was recently modified by Soylu and Qi [9] by adding angular momentum (l) and isospin (I) dependent terms, named as MUDL and represented as,

$$\begin{aligned} \log_{10} T_{1/2}(\text{Sec.}) = & a Z_c Z_d \sqrt{\frac{\mu}{Q}} + b \sqrt{\mu Z_c Z_d} \\ & \sqrt{(A_d^{1/3} + A_c^{1/3})} + c + d \\ & \sqrt{\mu Z_c Z_d (A_d^{1/3} + A_c^{1/3})} \\ & \sqrt{l(l+1)} + e \sqrt{I(I+1)} \end{aligned}$$

In this formula, Z_c and Z_d are the proton number of cluster and daughter nucleus, respectively. μ is reduced mass defined as $A_d A_c / (A_d + A_c)$. Coefficients of MUDL are given as: $a = 0.2760038$, $b = -0.2414764$, $c = -42.3417001$, $d = 0.0011798$, and $e = 49.66757757$.

In the present work, we have attempted to find various clusters which have the chances of emission from Ra ($Z=86$) isotopes ($126 \leq N \leq 147$) considering the proton shell closure effect. Therefore, we have calculated cluster decay half-lives for various clusters (isotopes of C: $Z=6$) from Ra isotopes by using MUDL formula given above. For these theoretical estimates, the disintegration energies (Q -values) are used from WS4 mass model [10], which are found to be more precise than other widely used theories, as shows in our previous work [11]. Consequently, we have found the significant probability of $^{12-16}\text{C}$ emission from $^{220-224}\text{Ra}$, respectively.

*Electronic address: jainakshay311@gmail.com

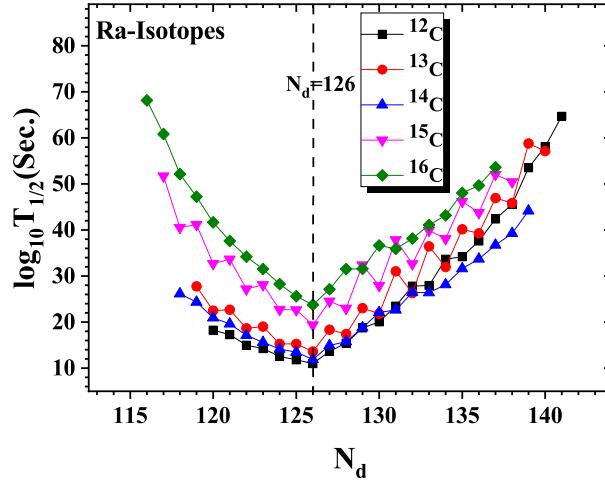


FIG. 1: Variation of half-lives of $^{12-16}\text{C}$ cluster emissions from Ra isotopes ($126 \leq N \leq 147$) as a function of neutron number of daughter nuclei. These half-lives are calculated by using MUDL formula.

For this study, the logarithmic half-lives of unknown cluster emissions (isotopes of C) from Ra isotopes ($126 \leq N \leq 147$) are plotted in Fig. 1 (up to 10^{70} Sec.) where the minima correspond to ^{208}Pb daughter i.e., doubly magic ($Z=82, N=126$). These minima provide us the

TABLE I: The calculated logarithmic half-lives of highly probable clusters emitted from Ra isotopes ($126 \leq N \leq 147$) using MUDL formula.

Parent nucleus	Daughter nucleus	Emitted cluster	Q (MeV)	l	$\log_{10} T_{1/2}$ (Sec.)
^{220}Ra	^{208}Pb	^{12}C	32.13	0	10.98
^{221}Ra	^{208}Pb	^{13}C	31.70	3	13.63
^{222}Ra	^{208}Pb	^{14}C	33.16	0	11.90
^{223}Ra	^{208}Pb	^{15}C	29.22	2	19.38
^{224}Ra	^{208}Pb	^{16}C	26.99	0	23.75

most probable clusters having chances of emission from the respective isotopes. Our main results (most probable clusters) are tabulated in Table I and are within the experimental reach, which are also found in the close match with the recent predictions of Refs. [12, 13].

We acknowledge SERB (DST), Govt. of India for the fund provided under CRG/2019/001851 and SIR/2022/000566.

References

- [1] A. Sandulescu *et al.*, Sov. J. Part. Nucl. II **11**, 528 (1980).
- [2] H. J. Rose *et al.*, Nature (London) **307**, 245 (1984).
- [3] R. Bonetti and A. Guglielmetti, Rom. Rep. Phys. **59**, 301 (2007).
- [4] V.Y. Denisov and A.A. Khudenko, Phys. Rev. C **79**, 054614 (2009).
- [5] A. Soylu and F. Koyuncu, Eur. Phys. A **55**, 118 (2019).
- [6] Y. L. Zhang, Y. Z. Wang, Phys. Rev. C **97**, 014318 (2018).
- [8] C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, Phys. Rev. Lett. **103** 072501 (2009).
- [9] A. Soylu and C. Qi, Nucl. Phys. A **1013** 122221 (2021).
- [10] Ning Wang *et al.*, Phys. Lett. B **734**, 215 (2014).
- [11] G. Saxena, A. Jain, and P. K. Sharma, Phys. Scr. **96**, 125304 (2021).
- [12] K. P. Santhosh and Tinu Ann Jose, Pramana – J. Phys **95**, 162 (2021).
- [13] A. Adel and T. Alharbi, Nucl. Phys. A **187**, 958 (2017).