

Calculating non-perturbative quantities through the world-line formalism

Dmitry Antonov

Departamento de Física and CFIF, Instituto Superior Técnico, ULisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal¹

E-mail: dr.dmitry.antonov@gmail.com

Abstract. We present two applications of the world-line formalism to the calculation of non-perturbative quantities in QCD. The first quantity is the free energy of the gluon plasma in the high-temperature limit; the second quantity is the pair-production rate in the chromo-electric field of a flux tube. In the first case, where effects of spatial confinement in the dimensionally-reduced 3D Yang-Mills theory are primarily important, we calculate the free-energy density of a gluon propagating in the stochastic background fields through a suitable parametrization of the area- and the perimeter laws of the Wilson loop, which enters the corresponding one-loop effective action. In this way, we find that the order of the leading correction to the Stefan-Boltzmann free energy changes from $\mathcal{O}(\lambda)$ for $N \sim 1$ to $\mathcal{O}(\lambda^{3/2})$ for $N \gg 1$, where λ is the finite-temperature 't Hooft coupling, and N is the number of colors. In the second case, we find that, in the London limit of the dual superconductor, the Schwinger pair-production rate, $\sim e^{-\text{const}\cdot m^2}$, goes over to $e^{-\text{const}\cdot m}$. Given that the flux-tube field is static, we find such a conversion of the Gaussian distribution into an exponential one, remarkable.

1. Free energy of the gluon plasma in the high-temperature limit

In this Section, we address an important issue regarding the leading correction to the Stefan-Boltzmann law for the free-energy density of the gluon plasma at high temperatures. As we will see, this correction has the order² $\mathcal{O}(g^2)$ for $N \sim 1$, while this order changes to $\mathcal{O}(\lambda^{3/2})$ for $N \gg 1$, where $\lambda = g^2 N$ is the finite-temperature 't Hooft coupling, and N is the number of colors. The corrections to the Stefan-Boltzmann law stem from the spatial confinement of gluons constituting the plasma, as well as from the Polyakov loop. For our analysis, we will use the method developed in Refs. [1, 2]. We start with representing the partition function of the finite-temperature Euclidean Yang-Mills theory in the form

$$\mathcal{Z}(T) = \left\langle \int \mathcal{D}a_\mu^a \exp \left[-\frac{1}{4g^2} \int_0^\beta dx_4 \int_V d^3x (F_{\mu\nu}^a[A])^2 \right] \right\rangle, \quad (1)$$

where $\beta \equiv 1/T$, and V is the three-dimensional volume occupied by the system. In Eq. (1), we have modeled spatial confinement of a_μ^a -gluons by means of the stochastic background fields B_μ^a . For this purpose, the full Yang-Mills field A_μ^a has been represented as a sum $A_\mu^a = B_\mu^a + a_\mu^a$, and the stochastic field B_μ^a has been averaged over with some measure $\langle \dots \rangle$. Clearly, at

¹ The former academic affiliation of the author.

² In this Section, we denote for brevity the finite-temperature Yang-Mills coupling g_T simply as g .

finite temperature T , both the a_μ^a - and the B_μ^a -fields obey the periodic boundary conditions $a_\mu^a(\mathbf{x}, \beta) = a_\mu^a(\mathbf{x}, 0)$ and $B_\mu^a(\mathbf{x}, \beta) = B_\mu^a(\mathbf{x}, 0)$. Integrating over the a_μ^a -gluons in the Gaussian approximation, and disregarding for simplicity gluon spin degrees of freedom, one obtains

$$\mathcal{Z}(T) = \langle \{ \det [-(D_\mu^a[B])^2] \}^{-\frac{1}{2} \cdot 2(N^2-1)} \rangle = \langle \exp \{ -(N^2-1) \text{Tr} \ln [-(D_\mu^a[B])^2] \} \rangle, \quad (2)$$

with the covariant derivative $(D_\mu[B]f_\nu)^a = \partial_\mu f_\nu^a + f^{abc} B_\mu^b f_\nu^c$. Equation (2) includes the color degrees of freedom of a_μ^a -gluons, and accounts for their $2(N^2-1)$ physical polarizations. In the one-loop approximation for the a_μ^a -field, this equation can be simplified further:

$$\mathcal{Z}(T) \simeq \exp \{ -(N^2-1) \langle \text{Tr} \ln [-(D_\mu^a[B])^2] \rangle \}. \quad (3)$$

In Eq. (3), "Tr" includes the trace "tr" over color indices and the functional trace over space-time coordinates.

The free-energy density $F(T)$ is defined through the standard formula

$$\beta V F(T) = -\ln \mathcal{Z}(T). \quad (4)$$

Using further for $\ln [-(D_\mu^a[B])^2]$ the proper-time representation, one has

$$F(T) = -(N^2-1) \cdot 2 \sum_{n=1}^{\infty} \int_0^{\infty} \frac{ds}{s} \int \mathcal{D}z_\mu e^{-\frac{1}{4} \int_0^s d\tau \dot{z}_\mu^2} \langle W[z_\mu] \rangle. \quad (5)$$

The integration in Eq. (5) is performed over trajectories $z_\mu(\tau)$, which obey the periodic boundary conditions: $z_4(s) = z_4(0) + \beta n$ and $\mathbf{z}(s) = \mathbf{z}(0)$. The vector-function $z_\mu(\tau)$ describes therefore only the shape of the trajectory, while the factor βV on the left-hand side of Eq. (4) stems from the integration over positions of the trajectories. Furthermore, the summation over the winding number n yields a factor of 2, which accounts for winding modes with $n < 0$. The zero-temperature part of the free-energy density, corresponding to the zeroth winding mode, has been subtracted [1]. Finally, the Wilson loop that enters Eq. (5), reads $W[z_\mu] = \frac{1}{N^2-1} \text{tr} \mathcal{P} \exp (i \oint dz_\mu B_\mu)$, where $B_\mu = B_\mu^a t^a$, and $(t^a)^{bc} = -i f^{abc}$ is a generator of the adjoint representation of the group $\text{SU}(N)$.

According to the lattice data [3], the correlation function $\langle g^2 H_i(x) H_k(x') \rangle$ exceeds by an order of magnitude the correlation function $\langle g^2 E_i(x) H_k(x') \rangle$. This fact allows one to approximately factorize $\langle W[z_\mu] \rangle$ as $\langle W[z_\mu] \rangle \simeq \langle W[\mathbf{z}] \rangle \prod_{n=-\infty}^{+\infty} \langle P^n \rangle$, where $\langle W[\mathbf{z}] \rangle = \left\langle \frac{1}{N^2-1} \text{tr} \mathcal{P} \exp (i \oint dz_k B_k) \right\rangle$ is the averaged purely spatial Wilson loop, and $\langle P^n \rangle = \left\langle \frac{1}{N^2-1} \text{tr} \mathcal{T} \exp \left(in \int_0^\beta dz_4 B_4 \right) \right\rangle$ is a generalization of the Polyakov loop to the case of n windings. Upon this factorization, the world-line integral over $z_4(\tau)$ in Eq. (5) becomes that of a free particle, which yields

$$F(T) = -2(N^2-1) \sum_{n=1}^{\infty} \int_0^{\infty} \frac{ds}{s} \frac{e^{-\frac{\beta^2 n^2}{4s}}}{\sqrt{4\pi s}} \langle P^n \rangle \oint \mathcal{D}\mathbf{z} e^{-\frac{1}{4} \int_0^s d\tau \dot{\mathbf{z}}^2} \langle W[\mathbf{z}] \rangle. \quad (6)$$

In order to calculate the world-line integral over $\mathbf{z}(\tau)$, we notice that the Wilson-loop average in the adjoint representation can be written as [4]

$$\langle W[\mathbf{z}] \rangle = \frac{1}{1 + \frac{1}{N^2}} \left(e^{-\sigma \Sigma} + \frac{1}{N^2} e^{-c \cdot g^2 \frac{N}{3} T \sqrt{\Sigma}} \right). \quad (7)$$

Here, Σ is the area of the minimal surface bounded by the contour $\mathbf{z}(\tau)$, and c is some positive dimensionless constant, which will be determined below. Furthermore, Eq. (7) obeys the normalization condition $\langle W[\mathbf{0}] \rangle = 1$. The second exponential on the right-hand side of Eq. (7) represents the perimeter law e^{-mL} , where $L = \int_0^s d\tau |\dot{\mathbf{z}}|$ is the length of the contour $\mathbf{z}(\tau)$, and the constant m has the dimensionality of mass. Here, we have substituted L by $\sqrt{\Sigma}$, and parametrized m through the soft scale $g^2 NT$ as $m = c \cdot g^2 \frac{N}{3} T$. The spatial string tension σ in the adjoint representation can be expressed in terms of the spatial string tension σ_f in the fundamental representation by means of Casimir scaling: $\frac{\sigma}{\sigma_f} = \frac{2N^2}{N^2 - 1}$. This ratio is equal to $9/4$ for $N = 3$, while going to 2 in the large- N limit. At temperatures $T > T_*$ of interest, where T_* is the temperature of dimensional reduction, one can express σ_f in terms of the string tension in the 3D Yang-Mills theory, which was calculated analytically in Ref. [5]. The corresponding expression for σ_f reads³ $\sigma_f = \frac{N^2 - 1}{8\pi} (g^2 T)^2$, which yields the following spatial string tension in the adjoint representation: $\sigma = \frac{1}{4\pi} (g^2 NT)^2$.

Hence, the free-energy density (6) can be written in the form $F = F_1 + F_2$, where the term F_1 corresponds to the exponential $e^{-\sigma\Sigma}$ from Eq. (7), while the term F_2 corresponds to the exponential $e^{-c \cdot g^2 \frac{N}{3} T \sqrt{\Sigma}}$ from the same equation. Clearly, in the large- N limit, $F_1 \gg F_2$ due to the relative factor of $\frac{1}{N^2}$, so that the thermodynamics of the gluon plasma in that limit is fully determined by spatial confinement. Therefore, let us start with calculating the world-line integral $I \equiv \oint \mathcal{D}\mathbf{z} e^{-\frac{1}{4} \int_0^s d\tau \dot{\mathbf{z}}^2 - \sigma\Sigma}$, which enters the term F_1 . To this end, we implement for the minimal area Σ the following ansatz: $\Sigma = \frac{1}{2} \int_0^s d\tau |\mathbf{z} \times \dot{\mathbf{z}}|$. It corresponds to a parasol-shaped surface made of thin segments. Furthermore, since $\int_0^s d\tau \mathbf{z} = 0$, the point where the segments merge is the origin. Therefore, the chosen ansatz for Σ automatically selects from all cone-shaped surfaces bounded by $\mathbf{z}(\tau)$ the one of the minimal area. We use further the approximation $\Sigma \simeq \sqrt{\mathbf{f}^2}$, where $\mathbf{f} \equiv \frac{1}{2} \int_0^s d\tau (\mathbf{z} \times \dot{\mathbf{z}})$. In general, $\frac{1}{2} \int_0^s d\tau |\mathbf{z} \times \dot{\mathbf{z}}|$ can be larger than $\sqrt{\mathbf{f}^2}$. This happens if, in the course of its evolution in spatial directions, the gluon performs backward and/or non-planar motions. Once this happens, the vector product $(\mathbf{z} \times \dot{\mathbf{z}})$ changes its direction, and the integral $\int_0^s d\tau (\mathbf{z} \times \dot{\mathbf{z}})$ receives mutually cancelling contributions. This so-called non-backtracking approximation is widely used in order to simplify the parametrizations of minimal surfaces allowing for an analytic calculation of the corresponding world-line integrals [7]. Using this approximation, one can calculate the integral I by representing the exponential $e^{-\sigma\Sigma}$ as $e^{-\sigma\Sigma} = \int_0^\infty \frac{d\lambda}{\sqrt{\pi\lambda}} e^{-\lambda - \frac{\sigma^2 \mathbf{f}^2}{4\lambda}}$, and introducing further an auxiliary space-independent magnetic field \mathbf{H} according to the formula

$$e^{-A\mathbf{f}^2} = \frac{1}{(4\pi A)^{3/2}} \int d^3 H e^{-\frac{\mathbf{H}^2}{4A} + i\mathbf{H}\mathbf{f}}, \quad \text{where } A > 0. \quad (8)$$

The world-line integral gets then reduced to the one for a spinless particle of an electric charge 1 interacting with the constant magnetic field \mathbf{H} , i.e. to the bosonic Euler-Heisenberg-Schwinger Lagrangian, which has the form [8]

$$\oint \mathcal{D}\mathbf{z} e^{-\frac{1}{4} \int_0^s d\tau \dot{\mathbf{z}}^2 + i\mathbf{H}\mathbf{f}} = \frac{1}{(4\pi s)^{3/2}} \frac{Hs}{\sinh(Hs)}. \quad (9)$$

Integrating further over λ , we obtain for the world-line integral at issue:

$$I = \frac{\sigma}{2\pi^{5/2} \sqrt{s}} \int_0^\infty dH \frac{H^3 / \sinh(Hs)}{(H^2 + \sigma^2)^2}.$$

³ Note that, for $N = 3$, the coefficient $\frac{1}{\pi} \simeq 0.32$ in this formula agrees remarkably well with the value of 0.566^2 , which was used in Ref. [6] for the parametrization of σ_f at high temperatures.

In the case of $N = 3$, the corresponding free-energy density reads

$$F_1|_{N=3} = -\frac{18\sigma}{5\pi^3} \sum_{n=1}^{\infty} \int_0^{\infty} \frac{ds}{s^2} e^{-\frac{\beta^2 n^2}{4s}} \langle P^n \rangle \int_0^{\infty} dH \frac{H^3 / \sinh(Hs)}{(H^2 + \sigma^2)^2}.$$

To perform the perturbative expansion of this expression, we introduce a dimensionless integration variable $h = H/\sigma$. Furthermore, we notice that, in the high-temperature limit of interest, $\langle P^n \rangle \simeq \langle P \rangle$, where [9]

$$\langle P \rangle = 1 + \mathcal{O}(g^3). \quad (10)$$

To find the order of the leading g -dependent term of the perturbative expansion, we use the approximation $\sinh(\sigma hs) \simeq \sigma hs \cdot \left(1 + \frac{(\sigma hs)^2}{6}\right)$, which yields for $F_1|_{N=3}$ the following expression:

$$F_1|_{N=3} \simeq -\frac{9\langle P \rangle}{10\pi^2} \sum_{n=1}^{\infty} \int_0^{\infty} \frac{ds}{s^3} \cdot \frac{e^{-\frac{\beta^2 n^2}{4s}}}{\left(1 + \frac{\sigma s}{\sqrt{6}}\right)^2}.$$

Approximating further the sum over winding modes by the first two terms, we obtain

$$F_1|_{N=3} \simeq -\frac{9\langle P \rangle T^4}{10\pi^2} \left[17 - \frac{10}{\sqrt{6}} \sigma \beta^2 + \mathcal{O}((\sigma \beta^2)^2) \right]. \quad (11)$$

Clearly, since $\sigma = \mathcal{O}(g^4)$, the obtained term $-\frac{10}{\sqrt{6}} \sigma \beta^2$ also has the order $\mathcal{O}(g^4)$. Nevertheless, due to Eq. (10), the order of the leading g -dependent term of the perturbative expansion of $F_1|_{N=3}$ is 3, rather than 4.

We proceed now to the calculation of the free-energy density F_2 for $N = 3$, which will allow us to find the value of the constant c in Eq. (7). The corresponding world-line integral $\oint \mathcal{D}\mathbf{z} e^{-\frac{1}{4} \int_0^s d\tau \dot{\mathbf{z}}^2 - cg^2 T \sqrt{\Sigma}}$ can be calculated by using again the approximation $\Sigma \simeq \sqrt{\mathbf{f}^2}$. The fourth root in the so-emerging exponential, $e^{-cg^2 T \sqrt[4]{\mathbf{f}^2}}$, can be got rid of by using two identical auxiliary integrations as follows:

$$e^{-cg^2 T \sqrt[4]{\mathbf{f}^2}} = \frac{1}{\pi} \int_0^{\infty} \frac{d\lambda}{\sqrt{\lambda}} \int_0^{\infty} \frac{d\mu}{\sqrt{\mu}} e^{-\lambda - \mu - \frac{(cg^2 T)^4 \mathbf{f}^2}{64\lambda^2 \mu}}.$$

Introducing now once again the auxiliary magnetic field \mathbf{H} according to the formula (8), we obtain for the exponential at issue the following representation:

$$e^{-cg^2 T \sqrt[4]{\mathbf{f}^2}} = \frac{64}{\pi^{5/2}} \frac{1}{(cg^2 T)^6} \int_0^{\infty} d\lambda \lambda^{5/2} e^{-\lambda} \int_0^{\infty} d\mu \mu e^{-\mu} \int d^3 H e^{-\frac{16\lambda^2 \mu}{(cg^2 T)^4} \mathbf{H}^2 + i\mathbf{H}\mathbf{f}}.$$

Performing now the functional \mathbf{z} -integration as in Eq. (9), and integrating further over μ , which can be done analytically, we obtain the following intermediate expression:

$$F_2|_{N=3} = -\frac{256T^4}{\pi^{7/2}} \xi^2 \sum_{n=1}^{\infty} \int_0^{\infty} \frac{ds}{s^2} e^{-\frac{n^2}{4s}} \langle P^n \rangle \int_0^{\infty} dh \frac{h^3}{\sinh(\xi^2 hs)} \int_0^{\infty} d\lambda \frac{\lambda^{5/2} e^{-\lambda}}{(16\lambda^2 h^2 + 1)^2}. \quad (12)$$

Here, we have denoted $\xi \equiv cg^2$, $h \equiv H/(\xi T)^2$, and made s dimensionless by rescaling it as $s_{\text{new}} = T^2 s_{\text{old}}$. By using the approximation $\sinh(\xi^2 hs) \simeq \xi^2 hs[1 + (\xi^2 hs)^2/6]$, we have

$$F_2|_{N=3} \simeq -\frac{256T^4}{\pi^{7/2}} \sum_{n=1}^{\infty} \int_0^{\infty} \frac{ds}{s^3} e^{-\frac{n^2}{4s}} \int_0^{\infty} d\lambda \lambda^{5/2} e^{-\lambda} \int_0^{\infty} dh \frac{h^2}{(16\lambda^2 h^2 + 1)^2} \cdot \frac{1}{1 + (\xi^2 hs)^2/6}.$$

The h -integration in this formula can be performed analytically, which yields

$$F_2|_{N=3} \simeq -\frac{16T^4}{\pi^{5/2}} \sum_{n=1}^{\infty} \int_0^{\infty} \frac{ds}{s^3} e^{-\frac{n^2}{4s}} \int_0^{\infty} d\lambda \frac{\lambda^{3/2} e^{-\lambda}}{(4\lambda + \xi^2 s/\sqrt{6})^2}.$$

Approximating again the sum over winding modes by the first two terms, we further have

$$\int_0^{\infty} \frac{ds}{s^3} \left(e^{-\frac{1}{4s}} + e^{-\frac{1}{s}} \right) \int_0^{\infty} d\lambda \frac{\lambda^{3/2} e^{-\lambda}}{(4\lambda + \xi^2 s/\sqrt{6})^2} = \frac{17\sqrt{\pi}}{16} - \frac{27\pi^{3/2}}{128 \cdot 6^{1/4}} \cdot \xi + \mathcal{O}(\xi^2).$$

This yields the sought free-energy density

$$F_2|_{N=3} \simeq -\frac{\langle P \rangle T^4}{10\pi^2} \left(17 - \frac{27\pi}{8 \cdot 6^{1/4}} \cdot cg^2 \right). \quad (13)$$

Once brought together, equations (11) and (13) yield

$$F|_{N=3} \simeq -\frac{\langle P \rangle T^4}{\pi^2} \left[17 - \frac{27\pi}{80 \cdot 6^{1/4}} \cdot cg^2 - \frac{9}{\sqrt{6}} \sigma \beta^2 + \mathcal{O}((\sigma \beta^2)^2) \right]. \quad (14)$$

The two leading terms of this expression can be compared with the known perturbative expansion of the free-energy density [10],

$$F_2|_{N=3} = -\frac{8\pi^2 T^4}{45} \left[1 - \frac{15g^2}{16\pi^2} + \mathcal{O}(g^3) \right]. \quad (15)$$

Comparing the leading term of Eq. (14), $-\frac{17T^4}{\pi^2} \simeq -1.72T^4$, with the Stefan-Boltzmann expression represented by the leading term of Eq. (15), $-\frac{8\pi^2 T^4}{45} \simeq -1.75T^4$, we conclude that the above-used approximation of the full sum over winding modes by the $(n=1)$ - and the $(n=2)$ -terms is very good. Comparing further with each other the $\mathcal{O}(g^2)$ -terms of Eqs. (14) and (15), we obtain:

$$c = \frac{80\pi}{27 \cdot 6^{3/4}} \simeq 2.4. \quad (16)$$

By using Eq. (7), we proceed now to arbitrary N , which yields

$$F_1 = -\frac{T^4}{8\pi^2} \cdot \frac{N^2(N^2-1)}{N^2+1} \left(1 + \frac{\lambda^{3/2}}{8\pi\sqrt{3}} \right) \left(17 - \frac{5\lambda^2}{2\pi\sqrt{6}} + \mathcal{O}(\lambda^4) \right)$$

and

$$F_2 = -\frac{T^4}{8\pi^2} \cdot \frac{N^2-1}{N^2+1} \left(1 + \frac{\lambda^{3/2}}{8\pi\sqrt{3}} \right) \left(17 - \frac{9\pi c}{8 \cdot 6^{1/4}} \cdot \lambda + \mathcal{O}(\lambda^2) \right).$$

Here, $\lambda = g^2 N$ is the so-called 't Hooft coupling, which stays finite in the large- N limit, and we have used the leading λ -dependent expression for the Polyakov loop (cf. Eq. (10)) [11]: $\langle P \rangle \simeq 1 + \frac{\lambda^{3/2}}{8\pi\sqrt{3}}$. Accordingly, we obtain for the full free-energy density $F = F_1 + F_2$:

$$F = -\frac{T^4}{8\pi^2} \cdot \frac{N^2(N^2-1)}{N^2+1} \left(1 + \frac{\lambda^{3/2}}{8\pi\sqrt{3}} \right) \left[17 \left(1 + \frac{1}{N^2} \right) - \frac{9\pi c}{8 \cdot 6^{1/4}} \cdot \frac{\lambda}{N^2} - \frac{5\lambda^2}{2\pi\sqrt{6}} + \mathcal{O}(\lambda^4) + \mathcal{O}\left(\frac{\lambda^2}{N^2}\right) \right].$$

In the large- N limit of this expression, the c -dependent term, which corresponds to the leading perturbative correction from Eq. (15), gets $\frac{1}{N^2}$ -suppressed in comparison with the $\mathcal{O}(\lambda^2)$ -term,

which corresponds to the leading σ -dependent correction from Eq. (11). This result follows, of course, from the relative factor of $\frac{1}{N^2}$ between the perimeter- and the area-law exponentials in Eq. (7). The large- N limit of the free-energy density thus reads

$$F = -\frac{T^4 N^2}{8\pi^2} \left(1 + \frac{\lambda^{3/2}}{8\pi\sqrt{3}}\right) \left[17 - \frac{5\lambda^2}{2\pi\sqrt{6}} + \mathcal{O}\left(\frac{10}{N^2}\right) + \mathcal{O}\left(\frac{10\lambda}{N^2}\right) + \mathcal{O}(\lambda^4) + \mathcal{O}\left(\frac{\lambda^2}{N^2}\right)\right].$$

Accordingly, $-\frac{F}{T^4}$ could have a maximum corresponding to the most probable configuration of the system, once the relation $\frac{17\lambda^{3/2}}{8\pi\sqrt{3}} = \frac{5\lambda^2}{2\pi\sqrt{6}}$ would hold, i.e. at $\lambda = \frac{289}{8}$. However, since this value of λ is much larger than unity, it lies outside the range of applicability of the λ -expansion, so that such a maximum of $-\frac{F}{T^4}$ is not realized. Thus, the main qualitative result of our study is that the leading correction to the Stefan-Boltzmann expression, while being $\mathcal{O}(\lambda)$ for $N \sim 1$, becomes $\mathcal{O}(\lambda^{3/2})$ for $N \gg 1$, and changes its sign.

2. Pair production in the field of a flux tube

In this Section, we present the calculation of the rate of pair production in the field of a flux tube [12]. Such flux tubes model hadronic strings within the dual-superconductor scenario of confinement [13], and can be viewed as dual Abrikosov-Nielsen-Olesen strings [14]. Here, we are mostly interested in the impact of the dispersion of the (chromo-)electric field of a flux tube on the rate of pair production in this field.

Dual Abrikosov-Nielsen-Olesen strings are the solutions to the classical equations of motion in the 4D dual Abelian Higgs model. The Euclidean Lagrangian of this model has the form

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu}^2 + |D_\mu \varphi|^2 + \frac{\lambda}{2} (|\varphi|^2 - \eta^2)^2. \quad (17)$$

Here, $F_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu$ and $D_\mu \varphi = (\partial_\mu - ig_m B_\mu)\varphi$, where B_μ is the dual gauge field, φ is the complex-valued dual Higgs field, and g_m is the magnetic coupling constant, which is related to the electric coupling constant g via the Dirac quantization condition $g_m = 2\pi/g$. The masses of the dual vector boson and the dual Higgs boson, which stem from the Lagrangian (17), are $m_V = \sqrt{2}g_m\eta$ and $m_H = \sqrt{2\lambda}\eta$, respectively. In what follows, we will consider the model (17) in the so-called London limit. This limit corresponds to the extreme type-II dual superconductor, where not only the Ginzburg-Landau parameter $\frac{m_H}{m_V}$ itself, but also its logarithm $L \equiv \ln \frac{m_H}{m_V}$ is much larger than unity. The electric field of a straight-line dual Abrikosov-Nielsen-Olesen string in the London limit can be calculated analytically, and reads [14]

$$E(r) = \frac{m_V^2}{g_m} K_0(m_V r), \quad (18)$$

where $r = |\mathbf{x}_\perp|$. From now on, $\mathbf{x}_\perp = (x_1, x_2)$ denotes a 2D vector orthogonal to the string, and K_ν 's stand for the Macdonald functions. The field averaged over the string cross section, $\langle E \rangle = \frac{1}{S} \int d^2r E(r)$, obeys the relation $g\langle E \rangle = 4\sigma/L$. Here $S = \pi m_V^{-2}$ is the area of the cross section of the string, and $\sigma = 2\pi\eta^2 L$ is the string tension. A correspondence between the London limit of the dual Abelian Higgs model and the genuine Yang-Mills vacuum can then be established through the relation $m_V^2 = \frac{4\pi\sigma}{g^2 L}$.

The rate of pair production in the field $E(r)$ can be obtained from the one-loop effective action $\Gamma[A_i]$ through the Schwinger formula (cf. Ref. [8])

$$w = \frac{2}{S} \text{Im} \Gamma[A_i]. \quad (19)$$

With the neglection of spin degrees of freedom of the produced quarks, the one-loop effective action has the form

$$\Gamma[A_i] = NN_f \int_0^\infty \frac{ds}{s} e^{-m^2 s} \int \mathcal{D}\mathbf{x}_\perp \mathcal{D}\mathbf{x}_\parallel \exp \left[- \int_0^s d\tau \left(\frac{1}{4} \dot{\mathbf{x}}_\perp^2 + \frac{1}{4} \dot{\mathbf{x}}_\parallel^2 - \frac{ig}{2} E(\mathbf{x}_\perp(\tau)) \varepsilon_{ij} \dot{x}_i x_j \right) \right]. \quad (20)$$

Here, $\mathbf{x}_\parallel = (x_3, x_4)$, the indices i and j take the values 3 and 4, and the field of the flux tube reads $A_i = -\frac{1}{2} \varepsilon_{ij} x_j E(\mathbf{x}_\perp)$. To calculate the world-line integral (20), we impose the condition of largeness of the mass m of the produced pair in comparison with m_V , i.e. $m \gg \frac{2}{g} \sqrt{\frac{\pi\sigma}{L}}$. This condition allows us to treat the field of the flux tube as a nearly constant one. Accordingly, characteristic proper times $s \lesssim \frac{1}{m^2}$ appear sufficiently small, which opens the possibility to calculate the world-line integral semiclassically. Furthermore, we assume that not only the Compton wavelength of a produced pair, $1/m$, is much smaller than the range of the field localization, $1/m_V$, but also that the characteristic pair trajectories are small in comparison with $1/m_V$. As can be seen by solving the corresponding Euler-Lagrange equation, classical Euclidean pair trajectories in a constant electric field $\langle E \rangle$ are circles of the radius $R = \frac{m}{g\langle E \rangle}$. Consequently, the condition of smallness of the pair trajectory, $R \ll \frac{1}{m_V}$, yields $m \ll 2g\sqrt{\frac{\sigma}{\pi L}}$. Both conditions,

$$\frac{2}{g} \sqrt{\frac{\pi\sigma}{L}} \ll m \ll 2g\sqrt{\frac{\sigma}{\pi L}}, \quad (21)$$

are compatible with each other at $g \gg 1$.

Owing to the smallness of the pair trajectory, the field $E(\mathbf{x}_\perp(\tau))$ can be approximated by its value averaged along the trajectory. Namely, one has

$$\int_0^s d\tau E(\mathbf{x}_\perp(\tau)) \dot{x}_i x_j \simeq -\Sigma_{ij} \cdot \frac{1}{s} \int_0^s d\tau E(\mathbf{x}_\perp(\tau)), \quad (22)$$

where $\Sigma_{ij} \equiv \int_0^s d\tau x_i \dot{x}_j$ is the (i, j) -th component of the tensor area associated with the trajectory. Furthermore, the leading small- s approximation corresponds to the classical limit of the world-line integral $\int \mathcal{D}\mathbf{x}_\perp = \int d^2 x_\perp(0) \int_{\mathbf{x}_\perp(0)=\mathbf{x}_\perp(s)} \mathcal{D}\mathbf{x}_\perp(\tau)$ in Eq. (20):

$$\frac{1}{4\pi s} \int d^2 x_\perp \exp \left[-\frac{ig}{2} E(\mathbf{x}_\perp) \varepsilon_{ij} \Sigma_{ij} \right]. \quad (23)$$

Accordingly, the effective action in this limit reads

$$\Gamma[A_i] \simeq \frac{NN_f}{4\pi} \int_0^\infty \frac{ds}{s^2} e^{-m^2 s} \int \mathcal{D}\mathbf{x}_\parallel \exp \left(-\frac{1}{4} \int_0^s d\tau \dot{\mathbf{x}}_\parallel^2 \right) \int d^2 x_\perp \exp \left[-\frac{ig}{2} E(\mathbf{x}_\perp) \varepsilon_{ij} \Sigma_{ij} \right]. \quad (24)$$

Neglecting for the moment the dispersion of the field $E(\mathbf{x}_\perp)$, we have

$$\int d^2 x_\perp \exp \left[-\frac{ig}{2} E(\mathbf{x}_\perp) \varepsilon_{ij} \Sigma_{ij} \right] \simeq S \exp \left[-\frac{ig}{2} \langle E \rangle \varepsilon_{ij} \Sigma_{ij} \right], \quad (25)$$

where we have again used the notation $\langle \dots \rangle \equiv \frac{1}{S} \int d^2 x_\perp (\dots)$. Therefore, within this approximation, we arrive at the Euler-Heisenberg-Schwinger Lagrangian in the constant field $A_i \equiv -\frac{1}{2} \varepsilon_{ij} x_j \langle E \rangle$:

$$\Gamma[A_i] \simeq S \frac{NN_f}{(4\pi)^2} \int_0^\infty \frac{ds}{s^2} e^{-m^2 s} \frac{g\langle E \rangle}{\sin(g\langle E \rangle s)}. \quad (26)$$

Equation (19) yields then for w the result differing from the standard Schwinger formula only by the factor NN_f , which stems from the non-Abelian nature of quarks. This result reads

$$w \simeq NN_f \frac{(g\langle E \rangle)^2}{(2\pi)^3} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} \exp\left(-\frac{\pi km^2}{g\langle E \rangle}\right). \quad (27)$$

We can further express the inequality $s < \frac{1}{m^2}$ in terms of the parameters of the dual Abelian Higgs model. To this end, we notice that w can only be non-vanishing provided that at least the first pole from the imaginary part of the Euler-Heisenberg-Schwinger Lagrangian, which corresponds to the ($k = 1$)-term from the sum (27), yields its contribution to w . For this reason, s may not be arbitrarily small, but it should be bounded from below as $s > \frac{\pi}{g\langle E \rangle} = \frac{\pi L}{4\sigma}$. The inequality $s < \frac{1}{m^2}$ yields then $m < 2\sqrt{\frac{\sigma}{\pi L}}$. This new constraint is stronger than the above-obtained one, which is expressed by the right inequality (21), since the large coupling g is now absent. Representing the new constraint in the form

$$L < \frac{4}{\pi} \frac{\sigma}{m^2} \simeq 1.27 \frac{\sigma}{m^2}, \quad (28)$$

one can view it as an upper limit for L . Using further the standard value of the string tension, $\sigma = (440 \text{ MeV})^2$, and a typical value of the hadronic mass, $m = 200 \text{ MeV}$, we get an estimate $L < 6.2$, which leaves a sufficient window for having $L \gg 1$. Approximating then the sum (27) by the ($k = 1$)-term, we obtain

$$w \simeq \frac{2NN_f}{\pi^3} \left(\frac{\sigma}{L}\right)^2 \exp\left(-\frac{\pi m^2 L}{4\sigma}\right). \quad (29)$$

We will now calculate w in an alternative way, which allows one to avoid the use of approximation (25) by performing the d^2x_\perp -integration of every term in the Taylor expansion of the exponential $\exp\left[-\frac{ig}{2}E(\mathbf{x}_\perp)\varepsilon_{ij}\Sigma_{ij}\right]$. In the London limit, by virtue of the explicit form of $E(\mathbf{x}_\perp)$, the corresponding calculation can be done analytically. Namely, by using Eq. (18), we have

$$\int d^2x_\perp \exp\left[-\frac{ig}{2}E(\mathbf{x}_\perp)\varepsilon_{ij}\Sigma_{ij}\right] = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{ig}{2}\varepsilon_{ij}\Sigma_{ij}\right)^n \left(\frac{m_V^2}{g_m}\right)^n \int d^2x_\perp (K_0(m_V r))^n.$$

The dominant contribution to the integral on the right-hand side of this expression stems from the distances $r < \frac{1}{m_V}$. By using the leading term in the small- r asymptotic behavior of $K_0(m_V r)$, this contribution can be readily evaluated as $\frac{\pi}{m_V^2} 2^{2-n} n!$. Owing to the factor of $n!$, it yields the following closed-form expression for the sum over n :

$$\frac{4\pi}{m_V^2} \sum_{n=0}^{\infty} \left(-\frac{ig}{4} \frac{m_V^2}{g_m} \varepsilon_{ij}\Sigma_{ij}\right)^n = \frac{4\pi/m_V^2}{1 + \frac{ig^2 m_V^2}{8\pi} \varepsilon_{ij}\Sigma_{ij}} = \frac{4\pi}{m_V^2} \int_0^\infty dt e^{-t\left(1 + \frac{ig^2 m_V^2}{8\pi} \varepsilon_{ij}\Sigma_{ij}\right)}. \quad (30)$$

For the n -series in Eq. (30) to be convergent, the condition $\frac{g^2 m_V^2}{8\pi} \cdot 2\pi R^2 < 1$ should hold. This condition yields the following upper limit for L :

$$L < \frac{16}{\pi} \frac{\sigma}{m^2} \simeq 5.09 \frac{\sigma}{m^2}. \quad (31)$$

Furthermore, by virtue of the integral representation introduced in the last equality of Eq. (30), we obtain for the effective action (24):

$$\Gamma[A_i] \simeq$$

$$\simeq S \frac{NN_f}{\pi} \int_0^\infty \frac{ds}{s^2} e^{-m^2 s} \int \mathcal{D}\mathbf{x}_{\parallel} \int_0^\infty dt e^{-t \left(1 + \frac{ig^2 m_V^2}{8\pi} \varepsilon_{ij} \Sigma_{ij}\right)} = S \frac{NN_f}{4\pi^2} \int_0^\infty \frac{ds}{s^2} e^{-m^2 s} \int_0^\infty dt e^{-t} \frac{g\mathcal{E}}{\sin(g\mathcal{E}s)}. \quad (32)$$

Here, $\mathcal{E} \equiv \frac{tg m_V^2}{4\pi}$ is a yet another \mathbf{x} -independent electric field, which yielded for the integral $\int \mathcal{D}\mathbf{x}_{\parallel}$ the corresponding Euler-Heisenberg-Schwinger Lagrangian. The pair-production rate stemming from Eq. (32) has the form

$$w \simeq \frac{NN_f}{2\pi^3} \left(\frac{\sigma}{L}\right)^2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} \int_0^\infty dt t^2 e^{-t - \frac{\pi L m^2 k}{\sigma t}} = NN_f \frac{m^3}{\pi^{3/2}} \sqrt{\frac{\sigma}{L}} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}} K_3 \left(2m \sqrt{\frac{\pi L k}{\sigma}}\right).$$

Due to the exponential fall-off of the Macdonald function K_3 at the large values of its argument, only the terms with $k \lesssim \frac{\sigma}{4\pi L m^2}$ are relevant in the latter sum. Using again the values $\sigma = (440 \text{ MeV})^2$ and $m = 200 \text{ MeV}$, we obtain $k < \frac{1}{L} < 1$. Therefore, only the first term from the whole sum can be retained, which yields

$$w \simeq NN_f \frac{m^3}{\pi^{3/2}} \sqrt{\frac{\sigma}{L}} K_3 \left(2m \sqrt{\frac{\pi L}{\sigma}}\right). \quad (33)$$

Furthermore, because of the constraint (31), the argument of the Macdonald function in this formula is smaller than 8. Nevertheless, as long as $L > \frac{\sigma}{4\pi m^2}$, this argument is still larger than unity, which results into the formula

$$w \simeq NN_f \frac{m^{5/2} \sigma^{3/4}}{2\pi^{5/4} L^{3/4}} e^{-2m \sqrt{\frac{\pi L}{\sigma}}}. \quad (34)$$

If L additionally respects the inequality (28), the obtained expression (34) can be compared with Eq. (29). This comparison leads us to the conclusion that, averaging the exponential $\exp \left[-\frac{ig}{2} E(\mathbf{x}_{\perp}) \varepsilon_{ij} \Sigma_{ij} \right]$ without recourse to the cumulant expansion, one obtains a change of the Gaussian m -distribution (29) to the exponential distribution (34). It is remarkable that we have obtained this result for the case of a *static* field E , namely for the field which is produced by the flux tube in the dual-superconductor model of confinement. A similar conversion of the Gaussian mass-distribution of pairs produced in the electric field into an exponential distribution is known to take place for a time-dependent field $E(t)$ which falls off with t as fast as a certain exponential. This is, for example, the case if $E(t) \propto \frac{1}{\cosh^2(\omega t)}$ with sufficiently large ω 's [15]. In our case, the obtained exponential m -distribution is a consequence of the logarithmic growth of the flux-tube field (18) towards the core of the string, which takes place in the London limit of the dual superconductor. Therefore, the exponential m -distribution is a specific property of the London limit, which does not hold away from that limit. For instance, in the opposite, so-called Bogomolny, limit of $m_V = m_H$ [16], $E(0)$ was found to be finite [17], rather than growing as $\mathcal{O}(\ln \frac{1}{m_V r})$. Consequently, the m -distribution in the Bogomolny limit is the standard Gaussian one.

References

- [1] H. G. Dosch *et al.*, Phys. Lett. B **349**, 335 (1995).
- [2] D. Antonov *et al.*, Nucl. Phys. A **832**, 314 (2010).
- [3] A. Di Giacomo, E. Meggiolaro and H. Panagopoulos, Nucl. Phys. B **483**, 371 (1997); M. D'Elia, A. Di Giacomo and E. Meggiolaro, Phys. Rev. D **67**, 114504 (2003).
- [4] S. B. Khokhlachev and Yu. M. Makeenko, Phys. Lett. B **101**, 403 (1981); J. Greensite and M. B. Halpern, Phys. Rev. D **27**, 2545 (1983); for reviews, see: Yu. M. Makeenko, *Methods of contemporary gauge theory*, Cambridge Univ. Press, 2002; J. Greensite, Prog. Part. Nucl. Phys. **51**, 1 (2003).

- [5] D. Karabali, C.-j. Kim and V. P. Nair, Phys. Lett. B **434**, 103 (1998).
- [6] G. S. Bali *et al.*, Phys. Rev. Lett. **71**, 3059 (1993); G. Boyd *et al.*, Nucl. Phys. B **469**, 419 (1996).
- [7] N. Brambilla *et al.*, Phys. Rev. D **50**, 5878 (1994); A. Yu. Dubin *et al.*, Phys. Lett. B **323**, 41 (1994); A. A. Migdal, Int. Journ. Mod. Phys. A **9**, 1197 (1994).
- [8] W. Heisenberg and H. Euler, Z. Phys. **98**, 714 (1936); J. S. Schwinger, Phys. Rev. **82**, 664 (1951); for reviews, see: J. S. Schwinger, *Particles, sources, and fields. Vol. 2*, Addison-Wesley, 1973; C. Itzykson and J. B. Zuber, *Quantum field theory*, McGraw-Hill, 1980.
- [9] E. Gava and R. Jengo, Phys. Lett. B **105**, 285 (1981).
- [10] E. V. Shuryak, Sov. Phys. JETP **47**, 212 (1978); for a review, see: E. V. Shuryak, *The QCD vacuum, hadrons and superdense matter*, 2nd edition, World Scientific, 2004.
- [11] A. Dumitru *et al.*, Phys. Rev. D **70**, 034511 (2004).
- [12] D. Antonov *et al.*, JHEP **08**, 011 (2003); *ibid.* **03**, 017 (2005).
- [13] S. Mandelstam, Phys. Lett. B **53**, 476 (1975); Phys. Rept. **23**, 245 (1976); G. 't Hooft, Nucl. Phys. B **190**, 455 (1981).
- [14] A. A. Abrikosov, Sov. Phys. JETP **5**, 1174 (1957); for a review, see: E. M. Lifshitz and L. P. Pitaevskii, *Statistical physics. Part 2*, Butterworth-Heinemann, 1980; for a relativistic generalization, see: H. B. Nielsen and P. Olesen, Nucl. Phys. B **61**, 45 (1973).
- [15] G. V. Dunne and C. Schubert, Phys. Rev. D **72**, 105004 (2005); for a review, see: G. V. Dunne, in: *From fields to strings. Vol. 1*, World Scientific, 2005 (arXiv:hep-th/0406216).
- [16] E. B. Bogomolny, Sov. J. Nucl. Phys. **24**, 449 (1976).
- [17] H. J. de Vega and F. A. Schaposnik, Phys. Rev. D **14**, 1100 (1976).