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Abstract. We present two applications of the world-line formalism to the calculation of non-
perturbative quantities in QCD. The first quantity is the free energy of the gluon plasma in the
high-temperature limit; the second quantity is the pair-production rate in the chromo-electric
field of a flux tube. In the first case, where effects of spatial confinement in the dimensionally-
reduced 3D Yang-Mills theory are primarily important, we calculate the free-energy density of
a gluon propagating in the stochastic background fields through a suitable parametrization of
the area- and the perimeter laws of the Wilson loop, which enters the corresponding one-loop
effective action. In this way, we find that the order of the leading correction to the Stefan-
Boltzmann free energy changes from O(λ) for N ∼ 1 to O(λ3/2) for N � 1, where λ is the
finite-temperature ’t Hooft coupling, and N is the number of colors. In the second case, we
find that, in the London limit of the dual superconductor, the Schwinger pair-production rate,
∼ e−const·m2

, goes over to e−const·m. Given that the flux-tube field is static, we find such a
conversion of the Gaussian distribution into an exponential one, remarkable.

1. Free energy of the gluon plasma in the high-temperature limit
In this Section, we address an important issue regarding the leading correction to the Stefan-
Boltzmann law for the free-energy density of the gluon plasma at high temperatures. As we
will see, this correction has the order2 O(g2) for N ∼ 1, while this order changes to O(λ3/2)
for N � 1, where λ = g2N is the finite-temperature ’t Hooft coupling, and N is the number
of colors. The corrections to the Stefan-Boltzmann law stem from the spatial confinement of
gluons constituting the plasma, as well as from the Polyakov loop. For our analysis, we will use
the method developed in Refs. [1, 2]. We start with representing the partition function of the
finite-temperature Euclidean Yang-Mills theory in the form

Z(T ) =

〈∫
Daaµ exp

[
− 1

4g2

∫ β

0
dx4

∫
V
d3x (F aµν [A])2

]〉
, (1)

where β ≡ 1/T , and V is the three-dimensional volume occupied by the system. In Eq. (1), we
have modeled spatial confinement of aaµ-gluons by means of the stochastic background fields Ba

µ.
For this purpose, the full Yang-Mills field Aaµ has been represented as a sum Aaµ = Ba

µ + aaµ,
and the stochastic field Ba

µ has been averaged over with some measure 〈. . .〉. Clearly, at

1 The former academic affiliation of the author.
2 In this Section, we denote for brevity the finite-temperature Yang-Mills coupling gT simply as g.
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finite temperature T , both the aaµ- and the Ba
µ-fields obey the periodic boundary conditions

aaµ(x, β) = aaµ(x, 0) and Ba
µ(x, β) = Ba

µ(x, 0). Integrating over the aaµ-gluons in the Gaussian
approximation, and disregarding for simplicity gluon spin degrees of freedom, one obtains

Z(T ) = 〈
{

det
[
−(Da

µ[B])2
]}− 1

2
·2(N2−1)〉 = 〈exp

{
−(N2 − 1)Tr ln

[
−(Da

µ[B])2
]}
〉, (2)

with the covariant derivative (Dµ[B]fν)a = ∂µf
a
ν + fabcBb

µf
c
ν . Equation (2) includes the color

degrees of freedom of aaµ-gluons, and accounts for their 2(N2 − 1) physical polarizations. In the
one-loop approximation for the aaµ-field, this equation can be simplified further:

Z(T ) ' exp
{
−(N2 − 1)〈Tr ln

[
−(Da

µ[B])2
]
〉
}
. (3)

In Eq. (3), "Tr" includes the trace "tr" over color indices and the functional trace over space-time
coordinates.

The free-energy density F (T ) is defined through the standard formula

βV F (T ) = − lnZ(T ). (4)

Using further for ln
[
−(Da

µ[B])2
]
the proper-time representation, one has

F (T ) = −(N2 − 1) · 2
∞∑
n=1

∫ ∞
0

ds

s

∫
Dzµ e−

1
4

∫ s
0 dτ ż

2
µ〈W [zµ]〉. (5)

The integration in Eq. (5) is performed over trajectories zµ(τ), which obey the periodic
boundary conditions: z4(s) = z4(0) + βn and z(s) = z(0). The vector-function zµ(τ) describes
therefore only the shape of the trajectory, while the factor βV on the left-hand side of Eq. (4)
stems from the integration over positions of the trajectories. Furthermore, the summation
over the winding number n yields a factor of 2, which accounts for winding modes with
n < 0. The zero-temperature part of the free-energy density, corresponding to the zeroth
winding mode, has been subtracted [1]. Finally, the Wilson loop that enters Eq. (5), reads
W [zµ] = 1

N2−1
trP exp

(
i
∮
dzµBµ

)
, where Bµ = Ba

µt
a, and (ta)bc = −ifabc is a generator of the

adjoint representation of the group SU(N).
According to the lattice data [3], the correlation function 〈g2Hi(x)Hk(x

′)〉 exceeds by an order
of magnitude the correlation function 〈g2Ei(x)Hk(x

′)〉. This fact allows one to approximately

factorize 〈W [zµ]〉 as 〈W [zµ]〉 ' 〈W [z]〉
+∞∏

n=−∞
〈Pn〉, where 〈W [z]〉 =

〈
1

N2−1
trP exp

(
i
∮
dzkBk

)〉
is the averaged purely spatial Wilson loop, and 〈Pn〉 =

〈
1

N2−1
tr T exp

(
in
∫ β

0 dz4B4

)〉
is a

generalization of the Polyakov loop to the case of n windings. Upon this factorization, the
world-line integral over z4(τ) in Eq. (5) becomes that of a free particle, which yields

F (T ) = −2(N2 − 1)

∞∑
n=1

∫ ∞
0

ds

s

e−
β2n2

4s

√
4πs

〈Pn〉
∮
Dz e−

1
4

∫ s
0 dτ ż

2〈W [z]〉. (6)

In order to calculate the world-line integral over z(τ), we notice that the Wilson-loop average in
the adjoint representation can be written as [4]

〈W [z]〉 =
1

1 + 1
N2

(
e−σΣ +

1

N2
e−c·g

2N
3
T
√

Σ

)
. (7)
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Here, Σ is the area of the minimal surface bounded by the contour z(τ), and c is some
positive dimensionless constant, which will be determined below. Furthermore, Eq. (7) obeys
the normalization condition 〈W [0]〉 = 1. The second exponential on the right-hand side of
Eq. (7) represents the perimeter law e−mL, where L =

∫ s
0 dτ |ż| is the length of the contour z(τ),

and the constant m has the dimensionality of mass. Here, we have substituted L by
√

Σ, and
parametrized m through the soft scale g2NT as m = c · g2N

3 T . The spatial string tension σ
in the adjoint representation can be expressed in terms of the spatial string tension σf in the
fundamental representation by means of Casimir scaling: σ

σf
= 2N2

N2−1
. This ratio is equal to 9/4

for N = 3, while going to 2 in the large-N limit. At temperatures T > T∗ of interest, where T∗
is the temperature of dimensional reduction, one can express σf in terms of the string tension
in the 3D Yang-Mills theory, which was calculated analytically in Ref. [5]. The corresponding
expression for σf reads3 σf = N2−1

8π (g2T )2, which yields the following spatial string tension in the
adjoint representation: σ = 1

4π (g2NT )2.
Hence, the free-energy density (6) can be written in the form F = F1 + F2, where the term

F1 corresponds to the exponential e−σΣ from Eq. (7), while the term F2 corresponds to the
exponential e−c·g

2N
3
T
√

Σ from the same equation. Clearly, in the large-N limit, F1 � F2 due
to the relative factor of 1

N2 , so that the thermodynamics of the gluon plasma in that limit is
fully determined by spatial confinement. Therefore, let us start with calculating the world-line
integral I ≡

∮
Dz e−

1
4

∫ s
0 dτ ż

2−σΣ, which enters the term F1. To this end, we implement for the
minimal area Σ the following ansatz: Σ = 1

2

∫ s
0 dτ |z × ż|. It corresponds to a parasol-shaped

surface made of thin segments. Furthermore, since
∫ s

0 dτ z = 0, the point where the segments
merge is the origin. Therefore, the chosen ansatz for Σ automatically selects from all cone-
shaped surfaces bounded by z(τ) the one of the minimal area. We use further the approximation
Σ '

√
f2, where f ≡ 1

2

∫ s
0 dτ(z × ż). In general, 1

2

∫ s
0 dτ |z × ż| can be larger than

√
f2. This

happens if, in the course of its evolution in spatial directions, the gluon performs backward
and/or non-planar motions. Once this happens, the vector product (z× ż) changes its direction,
and the integral

∫ s
0 dτ(z × ż) receives mutually cancelling contributions. This so-called non-

backtracking approximation is widely used in order to simplify the parametrizations of minimal
surfaces allowing for an analytic calculation of the corresponding world-line integrals [7]. Using
this approximation, one can calculate the integral I by representing the exponential e−σΣ as
e−σΣ =

∫∞
0

dλ√
πλ

e−λ−
σ2f2

4λ , and introducing further an auxiliary space-independent magnetic field
H according to the formula

e−Af
2

=
1

(4πA)3/2

∫
d3H e−

H2

4A
+iHf , where A > 0. (8)

The world-line integral gets then reduced to the one for a spinnless particle of an electric charge 1
interacting with the constant magnetic field H, i.e. to the bosonic Euler-Heisenberg-Schwinger
Lagrangian, which has the form [8]∮

Dz e−
1
4

∫ s
0 dτ ż

2+iHf =
1

(4πs)3/2

Hs

sinh(Hs)
. (9)

Integrating further over λ, we obtain for the world-line integral at issue:

I =
σ

2π5/2
√
s

∫ ∞
0

dH
H3/ sinh(Hs)

(H2 + σ2)2
.

3 Note that, for N = 3, the coefficient 1
π
' 0.32 in this formula agrees remarkably well with the value of 0.5662,

which was used in Ref. [6] for the parametrization of σf at high temperatures.
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In the case of N = 3, the corresponding free-energy density reads

F1

∣∣
N=3

= −18σ

5π3

∞∑
n=1

∫ ∞
0

ds

s2
e−

β2n2

4s 〈Pn〉
∫ ∞

0
dH

H3/ sinh(Hs)

(H2 + σ2)2
.

To perform the perturbative expansion of this expression, we introduce a dimensionless
integration variable h = H/σ. Furthermore, we notice that, in the high-temperature limit of
interest, 〈Pn〉 ' 〈P 〉, where [9]

〈P 〉 = 1 +O(g3). (10)

To find the order of the leading g-dependent term of the perturbative expansion, we use the
approximation sinh(σhs) ' σhs ·

(
1 + (σhs)2

6

)
, which yields for F1

∣∣
N=3

the following expression:

F1

∣∣
N=3

' −9〈P 〉
10π2

∞∑
n=1

∫ ∞
0

ds

s3
· e−

β2n2

4s(
1 + σs√

6

)2 .

Approximating further the sum over winding modes by the first two terms, we obtain

F1

∣∣
N=3

' −9〈P 〉T 4

10π2

[
17− 10√

6
σβ2 +O((σβ2)2)

]
. (11)

Clearly, since σ = O(g4), the obtained term − 10√
6
σβ2 also has the order O(g4). Nevertheless, due

to Eq. (10), the order of the leading g-dependent term of the perturbative expansion of F1

∣∣
N=3

is 3, rather than 4.
We proceed now to the calculation of the free-energy density F2 for N = 3, which will

allow us to find the value of the constant c in Eq. (7). The corresponding world-line integral∮
Dz e−

1
4

∫ s
0 dτ ż

2−cg2T
√

Σ can be calculated by using again the approximation Σ '
√
f2. The

fourth root in the so-emerging exponential, e−cg
2T

4√
f2 , can be got rid of by using two identical

auxiliary integrations as follows:

e−cg
2T

4√
f2 =

1

π

∫ ∞
0

dλ√
λ

∫ ∞
0

dµ
√
µ

e
−λ−µ− (cg2T )4f2

64λ2µ .

Introducing now once again the auxiliary magnetic field H according to the formula (8), we
obtain for the exponential at issue the following representation:

e−cg
2T

4√
f2 =

64

π5/2

1

(cg2T )6

∫ ∞
0

dλλ5/2e−λ
∫ ∞

0
dµµe−µ

∫
d3H e

− 16λ2µ

(cg2T )4
H2+iHf

.

Performing now the functional z-integration as in Eq. (9), and integrating further over µ, which
can be done analytically, we obtain the following intermediate expression:

F2

∣∣
N=3

= −256T 4

π7/2
ξ2
∞∑
n=1

∫ ∞
0

ds

s2
e−

n2

4s 〈Pn〉
∫ ∞

0
dh

h3

sinh(ξ2hs)

∫ ∞
0

dλ
λ5/2e−λ

(16λ2h2 + 1)2
. (12)

Here, we have denoted ξ ≡ cg2, h ≡ H/(ξT )2, and made s dimensionless by rescaling it as
snew = T 2sold. By using the approximation sinh(ξ2hs) ' ξ2hs[1 + (ξ2hs)2/6], we have

F2

∣∣
N=3

' −256T 4

π7/2

∞∑
n=1

∫ ∞
0

ds

s3
e−

n2

4s

∫ ∞
0

dλλ5/2e−λ
∫ ∞

0
dh

h2

(16λ2h2 + 1)2
· 1

1 + (ξ2hs)2/6
.
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The h-integration in this formula can be performed analytically, which yields

F2

∣∣
N=3

' −16T 4

π5/2

∞∑
n=1

∫ ∞
0

ds

s3
e−

n2

4s

∫ ∞
0

dλ
λ3/2e−λ

(4λ+ ξ2s/
√

6)2
.

Approximating again the sum over winding modes by the first two terms, we further have∫ ∞
0

ds

s3

(
e−

1
4s + e−

1
s

)∫ ∞
0

dλ
λ3/2e−λ

(4λ+ ξ2s/
√

6)2
=

17
√
π

16
− 27π3/2

128 · 61/4
· ξ +O(ξ2).

This yields the sought free-energy density

F2

∣∣
N=3

' −〈P 〉T
4

10π2

(
17− 27π

8 · 61/4
· cg2

)
. (13)

Once brought together, equations (11) and (13) yield

F
∣∣
N=3

' −〈P 〉T
4

π2

[
17− 27π

80 · 61/4
· cg2 − 9√

6
σβ2 +O((σβ2)2)

]
. (14)

The two leading terms of this expression can be compared with the known perturbative expansion
of the free-energy density [10],

F2

∣∣
N=3

= −8π2T 4

45

[
1− 15g2

16π2
+O(g3)

]
. (15)

Comparing the leading term of Eq. (14), −17T 4

π2 ' −1.72T 4, with the Stefan-Boltzmann
expression represented by the leading term of Eq. (15), −8π2T 4

45 ' −1.75T 4, we conclude that the
above-used approximation of the full sum over winding modes by the (n = 1)- and the (n = 2)-
terms is very good. Comparing further with each other the O(g2)-terms of Eqs. (14) and (15),
we obtain:

c =
80π

27 · 63/4
' 2.4. (16)

By using Eq. (7), we proceed now to arbitrary N , which yields

F1 = − T 4

8π2
· N

2(N2 − 1)

N2 + 1

(
1 +

λ3/2

8π
√

3

)(
17− 5λ2

2π
√

6
+O(λ4)

)
and

F2 = − T 4

8π2
· N

2 − 1

N2 + 1

(
1 +

λ3/2

8π
√

3

)(
17− 9πc

8 · 61/4
· λ+O(λ2)

)
.

Here, λ = g2N is the so-called ’t Hooft coupling, which stays finite in the large-N limit, and
we have used the leading λ-dependent expression for the Polyakov loop (cf. Eq. (10)) [11]:
〈P 〉 ' 1 + λ3/2

8π
√

3
. Accordingly, we obtain for the full free-energy density F = F1 + F2:

F = − T 4

8π2
·N

2(N2 − 1)

N2 + 1

(
1 +

λ3/2

8π
√

3

)[
17

(
1 +

1

N2

)
− 9πc

8 · 61/4
· λ
N2
− 5λ2

2π
√

6
+O(λ4) +O

(
λ2

N2

)]
.

In the large-N limit of this expression, the c-dependent term, which corresponds to the leading
perturbative correction from Eq. (15), gets 1

N2 -suppressed in comparison with the O(λ2)-term,
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which corresponds to the leading σ-dependent correction from Eq. (11). This result follows, of
course, from the relative factor of 1

N2 between the perimeter- and the area-law exponentials in
Eq. (7). The large-N limit of the free-energy density thus reads

F = −T
4N2

8π2

(
1 +

λ3/2

8π
√

3

)[
17− 5λ2

2π
√

6
+O

(
10

N2

)
+O

(
10λ

N2

)
+O(λ4) +O

(
λ2

N2

)]
.

Accordingly, − F
T 4 could have a maximum corresponding to the most probable configuration of

the system, once the relation 17λ3/2

8π
√

3
= 5λ2

2π
√

6
would hold, i.e. at λ = 289

8 . However, since this
value of λ is much larger than unity, it lies outside the range of applicability of the λ-expansion,
so that such a maximum of − F

T 4 is not realized. Thus, the main qualitative result of our study
is that the leading correction to the Stefan-Boltzmann expression, while being O(λ) for N ∼ 1,
becomes O(λ3/2) for N � 1, and changes its sign.

2. Pair production in the field of a flux tube
In this Section, we present the calculation of the rate of pair production in the field of a flux
tube [12]. Such flux tubes model hadronic strings within the dual-superconductor scenario of
confinement [13], and can be viewed as dual Abrikosov-Nielsen-Olesen strings [14]. Here, we are
mostly interested in the impact of the dispersion of the (chromo-)electric field of a flux tube on
the rate of pair production in this field.

Dual Abrikosov-Nielsen-Olesen strings are the solutions to the classical equations of motion
in the 4D dual Abelian Higgs model. The Euclidean Lagrangian of this model has the form

L =
1

4
F 2
µν + |Dµϕ|2 +

λ

2
(|ϕ|2 − η2)2. (17)

Here, Fµν = ∂µBν − ∂νBµ and Dµϕ = (∂µ − igmBµ)ϕ, where Bµ is the dual gauge field, ϕ is
the complex-valued dual Higgs field, and gm is the magnetic coupling constant, which is related
to the electric coupling constant g via the Dirac quantization condition gm = 2π/g. The masses
of the dual vector boson and the dual Higgs boson, which stem from the Lagrangian (17), are
mV =

√
2gmη and mH =

√
2λη, respectively. In what follows, we will consider the model (17) in

the so-called London limit. This limit corresponds to the extreme type-II dual superconductor,
where not only the Ginzburg-Landau parameter mH

mV
itself, but also its logarithm L ≡ ln mH

mV
is

much larger than unity. The electric field of a straight-line dual Abrikosov-Nielsen-Olesen string
in the London limit can be calculated analytically, and reads [14]

E(r) =
m2
V

gm
K0(mV r), (18)

where r = |x⊥|. From now on, x⊥ = (x1, x2) denotes a 2D vector orthogonal to the string,
and Kν ’s stand for the Macdonald functions. The field averaged over the string cross section,
〈E〉 = 1

S

∫
d2rE(r), obeys the relation g〈E〉 = 4σ/L. Here S = πm−2

V is the area of the cross
section of the string, and σ = 2πη2L is the string tension. A correspondence between the London
limit of the dual Abelian Higgs model and the genuine Yang-Mills vacuum can then be established
through the relation m2

V = 4πσ
g2L

.
The rate of pair production in the field E(r) can be obtained from the one-loop effective

action Γ[Ai] through the Schwinger formula (cf. Ref. [8])

w =
2

S
Im Γ[Ai]. (19)
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With the neglection of spin degrees of freedom of the produced quarks, the one-loop effective
action has the form

Γ[Ai] = NNf

∫ ∞
0

ds

s
e−m

2s

∫
Dx⊥Dx‖ exp

[
−
∫ s

0
dτ

(
1

4
ẋ2
⊥ +

1

4
ẋ2
‖ −

ig

2
E(x⊥(τ))εij ẋixj

)]
.

(20)
Here, x‖ = (x3, x4), the indices i and j take the values 3 and 4, and the field of the flux tube
reads Ai = −1

2εijxjE(x⊥). To calculate the world-line integral (20), we impose the condition of
largeness of the mass m of the produced pair in comparison with mV , i.e. m � 2

g

√
πσ
L . This

condition allows us to treat the field of the flux tube as a nearly constant one. Accordingly,
characteristic proper times s . 1

m2 appear sufficiently small, which opens the possibility to
calculate the world-line integral semiclassically. Furthermore, we assume that not only the
Compton wavelength of a produced pair, 1/m, is much smaller than the range of the field
localization, 1/mV , but also that the characteristic pair trajectories are small in comparison
with 1/mV . As can be seen by solving the corresponding Euler-Lagrange equation, classical
Euclidean pair trajectories in a constant electric field 〈E〉 are circles of the radius R = m

g〈E〉 .
Consequently, the condition of smallness of the pair trajectory, R � 1

mV
, yields m � 2g

√
σ
πL .

Both conditions,
2

g

√
πσ

L
� m� 2g

√
σ

πL
, (21)

are compatible with each other at g � 1.
Owing to the smallness of the pair trajectory, the field E(x⊥(τ)) can be approximated by its

value averaged along the trajectory. Namely, one has∫ s

0
dτE(x⊥(τ))ẋixj ' −Σij ·

1

s

∫ s

0
dτE(x⊥(τ)), (22)

where Σij ≡
∫ s

0 dτxiẋj is the (i, j)-th component of the tensor area associated with the trajectory.
Furthermore, the leading small-s approximation corresponds to the classical limit of the world-
line integral

∫
Dx⊥ =

∫
d2x⊥(0)

∫
x⊥(0)=x⊥(s)

Dx⊥(τ) in Eq. (20):

1

4πs

∫
d2x⊥ exp

[
− ig

2
E(x⊥)εijΣij

]
. (23)

Accordingly, the effective action in this limit reads

Γ[Ai] '
NNf

4π

∫ ∞
0

ds

s2
e−m

2s

∫
Dx‖ exp

(
−1

4

∫ s

0
dτ ẋ2

‖

)∫
d2x⊥ exp

[
− ig

2
E(x⊥)εijΣij

]
. (24)

Neglecting for the moment the dispersion of the field E(x⊥), we have∫
d2x⊥ exp

[
− ig

2
E(x⊥)εijΣij

]
' S exp

[
− ig

2
〈E〉εijΣij

]
, (25)

where we have again used the notation 〈· · · 〉 ≡ 1
S

∫
d2x⊥(· · · ). Therefore, within this

approximation, we arrive at the Euler-Heisenberg-Schwinger Lagrangian in the constant field
Ai ≡ −1

2εijxj〈E〉:

Γ[Ai] ' S
NNf

(4π)2

∫ ∞
0

ds

s2
e−m

2s g〈E〉
sin(g〈E〉s)

. (26)
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Equation (19) yields then for w the result differing from the standard Schwinger formula only
by the factor NNf , which stems from the non-Abelian nature of quarks. This result reads

w ' NNf
(g〈E〉)2

(2π)3

∞∑
k=1

(−1)k+1

k2
exp

(
−πkm

2

g〈E〉

)
. (27)

We can further express the inequality s < 1
m2 in terms of the parameters of the dual Abelian Higgs

model. To this end, we notice that w can only be non-vanishing provided that at least the first
pole from the imaginary part of the Euler-Heisenberg-Schwinger Lagrangian, which corresponds
to the (k = 1)-term from the sum (27), yields its contribution to w. For this reason, s may not be
arbitrarily small, but it should be bounded from below as s > π

g〈E〉 = πL
4σ . The inequality s <

1
m2

yields then m < 2
√

σ
πL . This new constraint is stronger than the above-obtained one, which is

expressed by the right inequality (21), since the large coupling g is now absent. Representing
the new constraint in the form

L <
4

π

σ

m2
' 1.27

σ

m2
, (28)

one can view it as an upper limit for L. Using further the standard value of the string tension,
σ = (440 MeV)2, and a typical value of the hadronic mass, m = 200 MeV, we get an estimate
L < 6.2, which leaves a sufficient window for having L � 1. Approximating then the sum (27)
by the (k = 1)-term, we obtain

w ' 2NNf

π3

(σ
L

)2
exp

(
−πm

2L

4σ

)
. (29)

We will now calculate w in an alternative way, which allows one to avoid the use of
approximation (25) by performing the d2x⊥-integration of every term in the Taylor expansion
of the exponential exp

[
− ig

2 E(x⊥)εijΣij

]
. In the London limit, by virtue of the explicit form of

E(x⊥), the corresponding calculation can be done analytically. Namely, by using Eq. (18), we
have ∫

d2x⊥ exp

[
− ig

2
E(x⊥)εijΣij

]
=
∞∑
n=0

1

n!

(
− ig

2
εijΣij

)n(m2
V

gm

)n ∫
d2x⊥(K0(mV r))

n.

The dominant contribution to the integral on the right-hand side of this expression stems from
the distances r < 1

mV
. By using the leading term in the small-r asymptotic behavior ofK0(mV r),

this contribution can be readily evaluated as π
m2
V

22−nn!. Owing to the factor of n!, it yields the
following closed-form expression for the sum over n:

4π

m2
V

∞∑
n=0

(
− ig

4

m2
V

gm
εijΣij

)n
=

4π/m2
V

1 +
ig2m2

V
8π εijΣij

=
4π

m2
V

∫ ∞
0

dt e
−t
(

1+
ig2m2

V
8π

εijΣij

)
. (30)

For the n-series in Eq. (30) to be convergent, the condition g2m2
V

8π · 2πR2 < 1 should hold. This
condition yields the following upper limit for L:

L <
16

π

σ

m2
' 5.09

σ

m2
. (31)

Furthermore, by virtue of the integral representation introduced in the last equality of Eq. (30),
we obtain for the effective action (24):

Γ[Ai] '
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' S NNf

π

∞∫
0

ds

s2
e−m

2s

∫
Dx‖

∫ ∞
0

dt e
−t
(

1+
ig2m2

V
8π

εijΣij

)
= S

NNf

4π2

∫ ∞
0

ds

s2
e−m

2s

∫ ∞
0

dt e−t
gE

sin(gEs)
.

(32)
Here, E ≡ tgm2

V
4π is a yet another x-independent electric field, which yielded for the integral

∫
Dx‖

the corresponding Euler-Heisenberg-Schwinger Lagrangian. The pair-production rate stemming
from Eq. (32) has the form

w ' NNf

2π3

(σ
L

)2
∞∑
k=1

(−1)k+1

k2

∫ ∞
0

dtt2e−t−
πLm2k
σt = NNf

m3

π3/2

√
σ

L

∞∑
k=1

(−1)k+1

√
k

K3

(
2m

√
πLk

σ

)
.

Due to the exponential fall-off of the Macdonald function K3 at the large values of its argument,
only the terms with k . σ

4πLm2 are relevant in the latter sum. Using again the values
σ = (440 MeV)2 and m = 200 MeV, we obtain k < 1

L < 1. Therefore, only the first term
from the whole sum can be retained, which yields

w ' NNf
m3

π3/2

√
σ

L
K3

(
2m

√
πL

σ

)
. (33)

Furthermore, because of the constraint (31), the argument of the Macdonald function in this
formula is smaller than 8. Nevertheless, as long as L > σ

4πm2 , this argument is still larger than
unity, which results into the formula

w ' NNf
m5/2σ3/4

2π5/4L3/4
e
−2m

√
πL
σ . (34)

If L additionally respects the inequality (28), the obtained expression (34) can be compared
with Eq. (29). This comparison leads us to the conclusion that, averaging the exponential
exp

[
− ig

2 E(x⊥)εijΣij

]
without recourse to the cumulant expansion, one obtains a change of the

Gaussian m-distribution (29) to the exponential distribution (34). It is remarkable that we
have obtained this result for the case of a static field E, namely for the field which is produced
by the flux tube in the dual-superconductor model of confinement. A similar conversion of the
Gaussian mass-distribution of pairs produced in the electric field into an exponential distribution
is known to take place for a time-dependent field E(t) which falls off with t as fast as a certain
exponential. This is, for example, the case if E(t) ∝ 1

cosh2(ωt)
with sufficiently large ω’s [15]. In

our case, the obtained exponential m-distribution is a consequence of the logarithmic growth of
the flux-tube field (18) towards the core of the string, which takes place in the London limit of
the dual superconductor. Therefore, the exponential m-distribution is a specific property of the
London limit, which does not hold away from that limit. For instance, in the opposite, so-called
Bogomolny, limit of mV = mH [16], E(0) was found to be finite [17], rather than growing as
O(ln 1

mV r
). Consequently, the m-distribution in the Bogomolny limit is the standard Gaussian

one.

References
[1] H. G. Dosch et al., Phys. Lett. B 349, 335 (1995).
[2] D. Antonov et al., Nucl. Phys. A 832, 314 (2010).
[3] A. Di Giacomo, E. Meggiolaro and H. Panagopoulos, Nucl. Phys. B 483, 371 (1997); M. D’Elia, A. Di Giacomo

and E. Meggiolaro, Phys. Rev. D 67, 114504 (2003).
[4] S. B. Khokhlachev and Yu. M. Makeenko, Phys. Lett. B 101, 403 (1981); J. Greensite and M. B. Halpern,

Phys. Rev. D 27, 2545 (1983); for reviews, see: Yu. M. Makeenko, Methods of contemporary gauge theory,
Cambridge Univ. Press, 2002; J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003).



Victor Villanueva Memorial Workshop

IOP Conf. Series: Journal of Physics: Conf. Series 1208 (2019) 012005

IOP Publishing

doi:10.1088/1742-6596/1208/1/012005

10

[5] D. Karabali, C.-j. Kim and V. P. Nair, Phys. Lett. B 434, 103 (1998).
[6] G. S. Bali et al., Phys. Rev. Lett. 71, 3059 (1993); G. Boyd et al., Nucl. Phys. B 469, 419 (1996).
[7] N. Brambilla et al., Phys. Rev. D 50, 5878 (1994); A. Yu. Dubin et al., Phys. Lett. B 323, 41 (1994);

A. A. Migdal, Int. Journ. Mod. Phys. A 9, 1197 (1994).
[8] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936); J. S. Schwinger, Phys. Rev. 82, 664 (1951); for

reviews, see: J. S. Schwinger, Particles, sources, and fields. Vol. 2, Addison-Wesley, 1973; C. Itzykson and
J. B. Zuber, Quantum field theory, McGraw-Hill, 1980.

[9] E. Gava and R. Jengo, Phys. Lett. B 105, 285 (1981).
[10] E. V. Shuryak, Sov. Phys. JETP 47, 212 (1978); for a review, see: E. V. Shuryak, The QCD vacuum, hadrons

and superdense matter, 2nd edition, World Scientific, 2004.
[11] A. Dumitru et al., Phys. Rev. D 70, 034511 (2004).
[12] D. Antonov et al., JHEP 08, 011 (2003); ibid. 03, 017 (2005).
[13] S. Mandelstam, Phys. Lett. B 53, 476 (1975); Phys. Rept. 23, 245 (1976); G. ’t Hooft, Nucl. Phys. B 190,

455 (1981).
[14] A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957); for a review, see: E. M. Lifshitz and L. P. Pitaevskii,

Statistical physics. Part 2, Butterworth-Heinemann, 1980; for a relativistic generalization, see: H. B. Nielsen
and P. Olesen, Nucl. Phys. B 61, 45 (1973).

[15] G. V. Dunne and C. Schubert, Phys. Rev. D 72, 105004 (2005); for a review, see: G. V. Dunne, in: From
fields to strings. Vol. 1, World Scientific, 2005 (arXiv:hep-th/0406216).

[16] E. B. Bogomolny, Sov. J. Nucl. Phys. 24, 449 (1976).
[17] H. J. de Vega and F. A. Schaposnik, Phys. Rev. D 14, 1100 (1976).


