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Abstract

Improving numerical simulations of binary neutron star mergers (BNSM) is essential for
advancing our understanding of and ability to interpret observations of these events. We
demonstrate that smoothed particle hydrodynamic simulations of BNSM yield differing
outcomes for identical merger events. This thesis is the first study to explore these
variations, considering the possibility that they may be physical stochastic effects arising
from small initial perturbations. We perform simulations of a 1.35-1.35 solar mass
binary system with the same physical and numerical setup and discuss the observed
variation in ejecta properties and the post-merger gravitational wave signal. We find
an antiproportional correlation between the ejecta mass and the amplitude of the main
feature fpear Of the gravitational wave frequency spectrum. We show that these fluctuations
depend on how the double core structure evolves after merging. Our simulations do not
yield a reduction of these variations when increasing the resolution, which might be an
indication that these fluctuations are a physical effect.

To make reliable predictions for the electromagnetic signal of merger events, it is necessary
to evolve the mass-outflows on timescales which are significantly longer than the merger
itself. Over this time, the ejecta dilutes and cools down over several orders of magnitude.
We present a method to extend tabulated equation of states (EoS) to encompass lower rest-
mass densities and temperatures. We investigate the issue that outflowing matter evolve
towards negative internal energies in regions of low resolution in our simulations. We
improve the discretization of the general-relativistic energy evolution equation to reduce
the occurrence of this issue. Utilizing the extended EoS and the improved discretization
of the energy equation, we perform a long-term BNSM simulation up to 250 milliseconds
after merger. We estimate how much material reaches homologous expansion within
this time. Our analysis indicates that the majority of the material expelled during the
first 25 milliseconds nearly exhibits homologous expansion, and we estimate an upper
bound of 10% for the alteration in its radial velocity. For later ejecta, we observe that
they attain a reduced velocity, requiring a duration on the order of seconds to reach
homologous expansion. BNSM simulations of this length require a sufficient resolution of
the expanding ejecta. We present a method to efficiently increase the resolution of BNSM
ejecta in smoothed particle hydrodynamic simulations. We implement particle splitting,
test different splitting criteria, and conduct a comparative study between simulations
with and without particle splitting. Our findings indicate that the resolution of the BNSM
ejecta can be enhanced by a factor of five using our proposed method while maintaining
similar computational expenses.
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Zusammenfassung

Die Verbesserung numerischer Simulationen von der Verschmelzung von bindren Neutro-
nensternsystemen (BNSM) ist fiir ein besseres Verstdndnis und eine bessere Interpretation
von Beobachtungen dieser Phdnomene von wesentlicher Bedeutung. Wir zeigen, dass
Smoothed-Particle-Hydrodynamics-Simulationen von BNSM fiir identische Kollisionen
unterschiedliche Ergebnisse liefern. Diese Arbeit ist die erste Studie, die diese Abweichun-
gen untersucht und dabei die Moglichkeit in Betracht zieht, dass es sich um physikalische
stochastische Effekte handelt, die durch winzige Perturbationen entstehen. Wir fiihren
Simulationen eines 1,35-1,35-Sonnenmassen Bindrsystems mit demselben physikalischen
und numerischen Aufbau durch und diskutieren die beobachteten Variationen in den
Ejekta-Eigenschaften und dem Gravitationswellensignal nach der Verschmelzung. Wir fin-
den eine antiproportionale Korrelation zwischen der Ejekta-Masse und der Amplitude des
Hauptmerkmals fyeq des Gravitationswellenfrequenzspektrums. Wir zeigen, dass diese
Fluktuationen davon abhéngen, wie sich die Doppelkernstruktur nach der Verschmelzung
entwickelt. Wir sehen keine Verringerung dieser Schwankungen durch eine Erhéhung der
Auflosung, was ein Hinweis darauf sein konnte, dass diese Fluktuationen ein physikalischer
Effekt sind.

Um zuverldssige Vorhersagen iiber das elektromagnetische Signal von BNSM machen zu
konnen, miissen die Massenauswiirfe auf Zeitskalen entwickelt werden, die deutlich ldnger
sind als die Kollision selbst. Wahrend dieser Zeit verdiinnt sich das ausgeworfene Material
und kiihlt iiber mehrere Groflenordnungen ab. Wir stellen eine Methode zur Erweite-
rung der tabellierten Zustandsgleichungen (EoS) vor, um niedrigere Ruhemassendichten
und Temperaturen zu beriicksichtigen. Wir untersuchen das dabei auftretende Problem,
dass sich die ausstromende Materie in unseren Simulationen in Regionen mit geringer
Auflosung zu negativen inneren Energien entwickelt. Wir verbessern die Diskretisierung
der allgemeinen relativistischen Energieentwicklungsgleichung, um das Auftreten dieses
Problems zu reduzieren. Unter Verwendung der erweiterten EoS und der verbesserten
Diskretisierung der Energiegleichung fithren wir eine Langzeit-BNSM-Simulation bis zu
250 ms nach der Fusion durch. Wir schitzen ab, wie viel Material innerhalb dieser Zeit
eine homologe Expansion erreicht. Unsere Analyse zeigt, dass der Grof3teil des in den
ersten 25 ms ausgestoldenen Materials nahezu homologe Expansion aufweist, und wir
erhalten ein geschitzte Obergrenze von 10% fiir die Anderung der Radialgeschwindigkeit.
Fiir spatere Ejekta stellen wir fest, dass sie eine geringere Geschwindigkeit aufweisen
und typischerweise einige Sekunden benétigen, bis zum erreichen einer homologen
Ausdehnung. Fiir BNSM-Simulationen dieser Linge ist eine ausreichende Auflosung der
expandierenden Ejekta erforderlich. Wir stellen eine Methode vor, um die Auflésung der




BNSM-Ejekta in Smoothed-Particle-Hydrodynamics-Simulationen effizient zu erhohen.
Wir implementieren Teilchen-Splitting, testen verschiedene Splitting-Kriterien und fiih-
ren eine vergleichende Studie zwischen Simulationen mit und ohne Teilchen-Splitting
durch. Wir stellen fest, dass wir mit der von uns vorgestellten Methode die Auflésung
der BNSM-Ejekta bei vergleichbarem Rechenaufwand um einen Faktor fiinf verbessern
konnen.
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1. Introduction

1.1. Physical Context

Neutron stars

neutron stars (NSs) are remnants of massive explosions. At the end of the life cycle of stars
with initial masses of at least 8 M, they explode in a core-collapse supernova ([1-3]).
Depending on the mass of the progenitor star its core either collapse into a black hole (BH)
or forms a proto-neutron star. This hot proto-neutron star with temperatures of several 10
MeV will start to cool down by neutrino emission. Through this process, the temperature
decreases to the point where the thermal energy of neutrons and leptons is negligible
compared to their Fermi energy, resulting in what is called a cold NS. NSs are the most
compact known stable objects in the universe with typical mass ranges from around 1 to
2-3 Mg, while only having radii of 10-15 km [4]. Therefore, their core densities surpass
several times the nuclear saturation density ( psac ~ 2.7 x 10™ gem™2). The lower limit of
possible NS masses is limited by the formation mechanism. The maximum mass and the
mass-radius relationship are still uncertain due to incomplete knowledge of the equation
of state (EoS).

Equation of State

The EoS of a NS defines the relation between pressure P, rest-mass density p, the internal
specific energy ¢, and the ratio between the number of electrons and the number of
baryons, the electron fraction Y, P = P(p,¢,Y.). For cold NSs, the electron fraction is
determined by the beta-equilibrium condition, and depends on the rest mass density.
Temperature and specific energy are considered negligible, making pressure dependent
only on rest-mass density. The EoS is uncertain above the nuclear saturation density psat
because of many challenges in treating the nuclear many-body problem [2, 5, 6]. The
nuclear EoS can be calculated starting with two-, three-, and many-body interactions.
These interactions contain free parameters, which need to be constrained by experiments.
Heavy-ion collisions add constraints for densities up to 5 psar but only for hot, nearly
isospin-symmetric nuclear matter [2, 7]. In contrast, NS matter is cold and very neutron
rich. Therefore, a non-trivial extrapolation is required from hot symmetric matter to cold
neutron-rich matter to constrain the NS EoS. For densities up to 2 psa; and temperatures
< 30 MeV pure neutron matter is well constrained by theoretical calculations using Chiral




Effective Field Theory [8-12]. At very high densities around 40 pg, matter is described
accurately by perturbative quantum chromodynamics (pQCD) [13, 14], however, this is a
regime highly above the expected maximum densities in NSs (~ 10 psat). Since there is
still a wide density range, where the EoS is still unknown, many different EoS models are
proposed, using observational constraints and different microphysical approaches.

Internal Structure

The mass-radius relation of NSs is uniquely determined by the EoS. For a static NS
the equations for relativistic hydrostatic equilibrium, called the Tolman-Oppenheimer-
Volkoff (TOV) equations [15, 16] yield the relations between mass, radius, pressure and
central density. The resulting internal structure of NSs can be divided into five regions:
atmosphere, envelope, crust, outer core, and inner core [2, 17]. The atmosphere and
envelope are extremely thin layers that only contain an insignificant amount of mass
and can consist of a range of light nuclei (for example H, He, C, O) and heavier nuclei
such as iron [17]. With increasing depth, the rest-mass density increases, and the nuclei
become more neutron-rich. Within the crust the neutron drip density (p > 4 x 10!
g cm ™) is reached, where the neutrons start to be unbound from the nuclei [18]. At
densities between 1/4 and 1/2 of pg,;, the nuclei deform and form a so-called nuclear pasta
phase [19]. At the boundary of the outer core a phase transition occurs to homogeneous
nuclear matter. The composition of the inner core is not yet known. It is possible that
homogeneous nuclear matter persists until the center. There could also be another phase
transition to more exotic matter states consisting of hyperons, pions or kaons coexisting
with nucleons or deconfined quark matter in a pure state or mixed with hadrons.

Binary neutron star merger

Binary neutron star (BNS) systems consist of two neutron stars orbiting each other. Over
time, the binary loses energy and angular momentum due to the emission of gravitational
waves (GWs). The GW signal becomes stronger as their orbits shrink and their orbital
velocity increases. The signal amplitude is approximately given by the second time
derivative of the mass quadrupole moment of the source [20]. The frequency increase
over time and the signal is dependent on the chirp mass

B (m1m2)3/5
M G oD

of the system, where m; and ms are the masses of the binary components [21, 22]. At the
end of this inspiral phase, both NSs reach relativistic orbital velocities and the gravitational
forces are so immense that both NSs deform before they merge. These tidal effects are
described by the tidal deformability [23-26]

5
A= 2k <R> , (1.2)




in which ks is the tidal Love number [27] and these are uniquely determined by the
EoS. The inspiral phase can thereby provide invaluable information about the underlying
EoS. The merging phase occurs on a time scale of milliseconds [3]. If the total mass of
the system is below the threshold mass Mgy for a prompt collapse to a BH [28-30]
the merging NSs form a rapidly differential rotating hot NS [31-36]. The total mass of
the remnant can exceed the maximum mass of a non-rotating NS, since it is supported
against gravitational collapse by rapid differential rotation and thermal pressure. The
remnant is severely deformed, non-axisymmetric, and features different fluid oscillations
[26, 33, 37, 38]. These oscillation modes also emit GWs. While the inspiral probe the
cold EoS, the post-merger GW signal can provide important information about the EoS
at finite Temperatures. The dominant frequency feature, fpea, is correlated with the
quadrupole oscillation mode [25, 26, 32, 33, 37, 39-51].

During the merger, tidal arms are forming which expel neutron-rich matter. At the
interface of the two NSs materials is squeezed out by shock-induced heating. Matter that
becomes unbound on the merger-timescale is called dynamical ejecta. Some debris of the
merger does not immediately become unbound and forms an accretion disc around the
central object. Spiral density waves, which are excited in the disc by the oscillations of
the remnant, lead to outward angular moment transport and further mass ejection.

From the hot and dense remnant and disc, a high amount of neutrinos are emitted.
These neutrinos interact with matter and can transport energy and momentum, which
lead to outflows called neutrino driven wind. Over time, the central object-torus system
will continue to eject mass by different mechanisms such as viscous energy dissipation
and turbulent angular momentum transport, magnetic pressure, nucleon-recombination
heating, and neutrino energy deposition [52-61].

R-process nucleosynthesis

In conditions in which the neutron density is high (nx > 10?° cm~2) and the timescale for
neutron capture onto seed nuclei is shorter than the S-decay timescale, elements heavier
than iron can be synthesized via the rapid neutron-capture process, called r-process
[35, 62-67]. The seed nuclei shift away from the valley of stability of the nuclear chart
through repeated neutron captures and reach neutron-rich isotopes, which are highly
unstable. The maximum limit that nuclei can reach is the 'neutron drip line,” beyond which
further neutron capture becomes impossible. The equilibrium between neutron captures
and photodisintegration determine the r-process path and the abundance ratios of the
neutron-rich nuclei. Over time, nuclei will climb up the nuclear chart towards higher
charge numbers Z through repeated neutron captures and 5~ -decays. Along this r-process
path the seed nuclei will traverse the lines of closed neutron shells (magic numbers N=
82, 126, 196). The nuclei with a closed neutron shell are comparatively more stable.
The neutron separation energy is especially low just past a neutron magic number, which
makes these nuclei more vulnerable to photodisintegration. This hinders the flow to more
neutron-rich species and the path mainly driven by 3-decay goes towards stability until the
neutron separation energies become larger again. As a consequence, part of the material




accumulates at the neutron magic numbers. Under the right conditions, the nuclear flow
towards high Z can reach the transactinides region where nuclear fission occurs. The
fission products can then start the cycle from the low point toward the high Z. Eventually,
the free neutron to seed ratio declines and the neutron captures will freeze out. The
neutron-rich matter will approach the valley of stability again through §-decay, a-decay
and fission channels. The abundance distribution has imprints of the accumulation at
the closed neutron-shells approximately at mass numbers A= 80, A= 130 and A = 195
(first, second and third r-process peak). Burbidge et al and Cameron realized already in
the 1950’s that roughly half of the elements heavier than iron in the universe must be
created by this process [68, 69]. But still to this day, the astrophysical sites where the
r-process occurs remain uncertain. One of the most critical quantity to indicate viability of
a potential r-process event is the electron fraction Y, [70-72]. Binary neutron star merger
(BNSM) are so far the only confirmed site for r-process nucleosynthesis with their neutron-
rich ejecta. Numerical simulations with detailed nuclear network calculations [73, 74]
show that elements of the second an third r-process peak (A > 120) are produced for
ejecta with Y, < 0.2, with the synthesis of lighter r-process elements strongly suppressed.
Whereas, for ejecta with Y, > 0.25 only the lighter r-process elements are produced. The
different ejecta components of BNSM leads to a wide range of Y. (~ 0.05-0.5). Which is
an ideal condition for the synthesis of a wide range of elements.

Electromagnetic transient - Kilonova

The radioactive ejecta made up of different newly synthesized elements power an electro-
magnetic transient, analogous to the transient of supernovae powered by the decay of
6Ni [75, 76]. The emitted electrons through 3-decay and accompanied ~-ray emission
are the dominant heating source of the material. Decay channels, such as a-decay and
fission, also contribute to heating, with the extent depending greatly on the quantity of
heavier elements produced. Unlike in supernovae, there are various radioactive decays
with varying half-lives across different timescales involved. The combination of different
exponential decays lead to a power law decay ~ ¢, with o =~ 1.1 — 1.4 [36, 74, 77, 78].
The peak luminosity is approximately one thousand times brighter than a nova, therefore,
called a kilonova! [77]. For determining the light curves and spectra of kilonovae, the
thermalization efficiency and atomic opacities play an essential role. Most of the energy
from the r-process is released on a time scale of seconds [65, 80, 81]. However, a lot of
this initial heating is lost to adiabatic expansion since the ejecta is extremely optically thick
at early times and radiation can only escape from the outer layers. During expansion, the
density decreases and at some point the optical depth becomes small enough so that most
of the ejecta becomes optically transparent [35]. Significant electromagnetic luminosity
is possible as soon as photons can escape the ejecta on the expansion time scale. The
transition from opaque to transparent depends greatly on the opacity of the material.
Especially heavy elements with open atomic f-shells (lanthanides and actinides) have a

'Kulkarni introduced the term *macronova’ which also many authors use today in part because it is not tied
to particular luminosity scale [79]




high number of low-energy excitation levels that highly enhance the number of transition
lines in the optical and infrared bands [3, 82, 83]. This leads to the effect that more
lanthanide-rich ejecta reach their peak luminosity later and at longer wavelength with the
same mass and velocity. The lanthanide and actinide opacities are still uncertain because
the atomic states and line strength of many heavy elements are not measured experimen-
tally. [67] The Y. distribution of the ejecta is essential for radiation transfer calculations
and determining the abundance pattern. Similarly, the total mass, mass distribution,
and velocity distribution are crucial for predicting the resulting light curve. Achieving a
comprehensive understanding of the underlying physics requires both observations and
numerical modeling of these events.

1.2. Observations

In 2017, a BNSM was detected through GWs for the first time [84]. The detection, named
GW170817, measured the late inspiral phase, while no GW signal from the post-merger
phase could be found, since this was beyond the sensitivity of the detectors at that time
[85, 86]. In addition to the GW signal, an electromagnetic counterpart was detected
in different frequency bands, from radio up to gamma-ray emission [87]. First, about
1.7 s after the merging time, a gamma-ray burst was detected [87-90]. Then about
eleven hours after the GW detection an optical counterpart was found, which led to the
identification of the host galaxy NGC 4993 at a distance of around 40 Mpc [87, 91-93].
From there, over the next 30 days the evolution of the ultra-violet, optical and infra-red
components were followed (e.g. [87, 94]). In addition, after 9 and 16 days after the
merger, X-ray and radio emission were also found, respectively [87, 95-97].

The analysis of the GW signal from the inspiral phase provided constraints of the tidal
deformability and the radius of static NSs and, therefore, on the EoS [84, 98, 99]. In
addition to the GW detection, the analysis of the multi-messenger observation from several
groups has resulted in numerous constraints on the stellar properties of NSs and on the
EoS (e.g. [98-107]). These results of a single event show the importance of BNSMs
when it comes to determining the high density EoS. Furthermore, the observed light
curves in the ultraviolet, optical and infrared bands provide strong evidence that r-process
elements are synthesized through the r-process in the ejecta of BNSMs [87, 108-110].
The estimated r-process nucleosynthesis yields are consistent with the idea that BNSM
are the dominant source, given the large uncertainties in BNSM rates [94]. Gamma ray
detection supports the theoretical work which suggests BNSM as possible sources for short
gamma-ray bursts [64, 111, 112]. The detected gamma-ray burst is compared to typical
observed short gamma-ray bursts quite different in spectral evolution and luminosity
[87, 113, 114]. This can be partly explained by the fact that the viewing angle was
off-axis with an estimated viewing angle about 30° [115]. However, the interpretation of
the gamma-ray, X-ray and radio observations and the underlying mechanism that leads to
the emission are not yet fully understood (e.g. [113-116]).




In 2019 GW190425, a GW signal from the inspiral of another event, were detected [117].
The analysis of the signal identified it as a possible BNSM. An interesting feature of the
system is the total mass of about 3.4 My, which is significantly higher compared to other
known BNSs [117, 118]. Because the detected signal had a low signal-to-noise ratio
and some of the detectors where at that time offline, GW190425 was a single-detector
event. Therefore, the analysis of the signal did not provide additional constraints on the
tidal deformability, radii, or EoS of NSs [117]. Furthermore, despite thorough search, no
electromagnetic counterpart was found [117, 119]. The Advanced LIGO [120], Advanced
Virgo [121], and KAGRA [122] GW detectors currently are in the fourth observation run
until October 2025 [123]. Furthermore, an additional detector (LIGO-India [124]) is
planned, which should further increase the detection rates and sky localization accuracy
[125-127]. Moreover, next-generation detectors such as the Cosmic Explorer [128] and
the Einstein Telescope [129] are planned with design sensitivities roughly an order of
magnitude higher than from the current detectors.

All these extensive efforts to enhance the detection capabilities of GWs and increase
the likelihood of observing more BNSM events underscore the need to dedicate similar
efforts to advance our theoretical understanding of these events. Numerical modeling
of the different phases of these systems is the only way to approach this. Especially
hydrodynamical simulations of the post-merger phase are important to understand their
dynamics, and will help to interpret potential future post-merger GW signals. Moreover,
these simulations are essential to determine the properties of ejecta such as amount,
distribution, composition, velocity, and entropy, which are necessary as initial data for
realistic r-process calculations and future kilonovae analysis. Ideally, improving numerical
simulations together with detailed investigations of their results will lead to a better
understanding of BNSMs and help interpret future observations. This thesis tries to
contribute to that goal.

1.3. Numerical modeling

Numerical simulations of BNSM have to take into account several physical aspects for
an accurate representation of the event. The system requires the treatment of general
relativistic hydrodynamics as well as a dynamical spacetime. For the merging phase, the
formation of shocks and fluid instabilities is important, especially at the collision interface.
During that phase, matter can reach temperatures of several tens of MeV. Therefore, the
microphysical description of NS matter needs a fully consistent treatment of thermal
effects. At this point, weak interaction and neutrino radiation also becomes important.
The neutrinos interact with free nucleons and changing for a significant amount of the
ejecta the composition. To be able to determine the abundance of elements synthesized
by r-process nucleosynthesis, neutrino-matter interactions need to be properly taken into
account during the BNSM. For the post-merger phase, it is crucial that the outflowing
matter, which moves with high velocities over large distances, is resolved with high
precision. For accurate calculations of the nucleosynthesis and radiation transfer, this is




needed for timescales that are significantly longer than the merger time scale. While the
matter expands, already within the first second the density can change up to 20 orders of
magnitude. Also, the temperature will cool down several orders of magnitude during that
time. To accurately describe matter over this time scale, the chosen EoS must encompass
a wide range of parameter space. Section (2.3.1) presents how we approach this in this
work.

Another difficulty to tackle, linked to the longer time scale, is the resolution of the ejecta
moving over the vast distances. How to deal with this depends on the model one chooses to
treat relativistic hydrodynamics. The two most common approaches to simulate the system
are Eulerian grid-based code methods and Lagrangian smoothed particle hydrodynamics
(SPH) (for details see e.g. 2.2 and [3, 130-136]). The main difference is that Eulerian
approaches focus on fixed points in space through which a fluid flows while Lagrangian
approaches follow fluid elements as they move through space and time. In this work, we
will use SPH.

SPH discretizes the general relativistic hydrodynamic (GRHD) equations on a set of parti-
cles. The particles follow the fluid motion, which makes tracing the ejecta straightforward.
The particle positions are not limited by a predefined grid. Also, no effort is needed for the
treatment of vacuum, which translates just to an absence of particles, unlike in grid-based
methods. The particles interact with their neighbors within a specific range, called the
smoothing length (see 2.2). Because of this smoothing approximation, the accuracy of the
discretization depends on two aspects: The number of neighbor particles and the scale of
the smoothing length. Typically, one of this two aspects is regulated within the simulation.
In our case we only allow a specific range of number of neighbors. The resolution of an
simulation depends on the number of particles. A region is not well resolved if there
are not many particles distributed, which results in increased smoothing lengths to find
enough neighbor particles. This is especially for the expanding ejecta a challenge. Poor
resolution leads to a low accuracy of the discretization of the GRHD equations and can
result in nonphysical solutions, such as negative internal energy. There is no unique way
to discretize the GRHD equations in SPH and different approaches differ in stability and
accuracy under low resolution. We implement a discretization based on the work in [137]
an show that it increase stability under low resolution and discuss the impact on the
ejecta evolution (see Sect. 4.2).

The improvement of the ejecta evolution helps to reach longer time scales in the simulation,
however increasing also the resolution is necessary. While increasing the total number
of SPH particles might seem as a trivial solution to do that, including various different
physical aspects (e.g. neutrino treatment, viscosity, magnetic fields) in the model with
high resolution can make simulations of these systems very computationally demanding?.
Therefore, an efficient way to tackle this challenge is to increase the resolution only in the
regions of interest and not in the whole simulation. We present one approach to achieve
this in Sec. 6.

2e.g. Kiuchi et al. [138] needed 85 million CPU hours for a grid-based magneto-hydrodynamic simulation
of a BNSM to evolve for one second.




To calculate the nucleosynthesis yields and the resulting kilonova light curve for a given
total ejecta mass and distribution, radiative transfer models are necessary. They describe
how radiation interacts with matter as it propagates through a medium. In the case of
kilonovae nuclear network calculations are necessary within this framework to know the
abundances of the r-process elements, which is essential to estimate the opacity of the
matter and how much radiation gets emitted by radioactive decay. Radiative transfer
models for kilonovae assume as a initial conditions that the matter is in homologous
expansion (the relative velocity between the mass elements is constant). This is a useful
assumption, since it untangles hydrodynamics from radiative transfer and allows these
models to focus solely on the latter. A key objective for hydrodynamic simulations is thus
to attain this phase, where the ejecta is homologous expanding. We present in this work
a long-term BNSM simulation and estimate how much ejected matter reach homologous
expansion within the simulated time (see Sec. 5).

While improvements and further progress to longer and more precise numerical simula-
tions is crucial, one also need to be aware of its limitations, especially when it comes to
interpreting simulation results. Different studies showed that so far no BNSM simulation
are fully converged, meaning that the results depend on the resolution [25, 30, 139-142].
A typical trend which is discussed in this regard is, that the resulting ejecta mass increases
with higher resolution. However, Collins et al. [143] found that beside the dependence
on resolution their simulations showed general fluctuations of their ejecta mass and ejecta
distribution. It is not clear if these fluctuations are purely numerical or have a physical
root. Merger events are very dynamical and turbulent, and it could very well be the case
that already small seed perturbations lead to different outcomes. These small differences
would be impossible to observe, and the variation of the outcome for the same observable
parameter could be described as stochastic effects. So far, this stochastic effects in BNSM
has not been investigated. This thesis is the first study, which investigates this problem
(see Sec. 3). It is possible that cause of fluctuations in the results of simulations is just
numerical, and it is very challenging to get conclusive answers for that problem. However,
even if this is the case, to address these fluctuations, when interpreting simulations results,
is important. The before mentioned studies which reported increasing amount of ejecta
with higher resolution, for example, did not test how much the amount ejecta fluctuate for
different simulation with the same resolution. Even if these fluctuations have a numerical
root one needs to take them into account when drawing conclusions from simulations.
And the extent to which the amount of ejected material depends on the resolution may
have been overestimated in these studies.

1.4. Goals and outline

In this section, we summarize the main goals and provide an outline of this thesis. This
work primarily addresses the challenges associated with simulating BNSM ejecta and
attempts to advance the capabilities of these numerical simulations.




One part of this thesis examines the question if variations in BNSM simulations are
resolving physical stochastic fluctuations of the system or have a numerical root. These
fluctuations are a crucial factor that should be considered in the evaluation of simulation
results, yet they have not been taken into account or investigated so far. We note that
this study does not aim to be entirely conclusive due to inherent challenges posed by the
limitations of numerical simulations and the scarcity of prior research on this subject.
Nonetheless, it offers the first insightful information regarding the fluctuations.

The next part of this thesis focuses on improving the simulation setup. First, we extend
the employed EoS towards lower rest-mass densities and temperatures. We investigate
the energy evolution of ejected matter and adjust the energy equation discretization to
enhance robustness against low-resolution artifacts. Total mass, temperatures and velocity
distribution of the ejecta are still not well constrained, which are important information
for kilonova calculation. Our adjustments are important advancing simulations to higher
validity, which essential to achieve better constraints. The adjustments allow for simulating
BNSM for a longer time, which is a vital point for more realistic kilonova studies. We
present results from a long-term BNSM simulation and discuss how much material reached
homologous expansion within the simulated time.

In the last part we test particle splitting as a method in SPH to efficiently increase the
resolution of the ejecta in BNSM simulations, which is used in this context for the first
time. We introduce our splitting method and assess various splitting criteria to identify
the one that most efficiently achieves higher resolution of ejecta. A comparative resolution
study has been conducted to analyze simulations with and without particle splitting, based
on which the improvements are discussed.

Since this thesis focuses more on the technical aspects of simulating BNSM we decided to
simulate for each part the same physical event. All models simulate a 1.35-1.35 M, equal
mass merger with SFHO as the used EoS [144]. This was essential for the investigation of
stochastic fluctuations; maintaining this approach in other sections assisted in accounting
for fluctuations, particularly in the context of the resolution study trends.

The outline of this thesis is the following:

In Chapter 2, the foundational physical model and computational methods for BNSMs
simulations are detailed. Chapter 3 discusses the impact of stochastic fluctuations on
the numerical results of the simulations and addresses potential numerical and physical
origins. Chapter 4 shows the improvements of the numerical setup to run long-term
simulations and compares the impact of these adjustments under varying the resolution.
In chapter 5, we introduce a BNSM long-term simulation and examine the amount
of material achieving homologous expansion during the simulation period. Chapter 6
describes particle splitting as an efficient technique for enhancing resolution. We compare
simulations with and without particles splitting and discuss the improvements. Finally, in
chapter 7 we summarize results, draw conclusions, and discuss some directions for future
work. In Appendix A, we show a detailed derivation of the employed GRHD equations in
the co-moving frame. Appendix B discusses the impact of using different ejecta criteria.




Appendix C investigates the impact of dissipation in the employed artificial viscosity
scheme on the evolution of BNSM.

1.5. Conventions and notations

Unless otherwise stated, we employ a dimensionless system of units for which ¢ = G =
Mg = 1. Throughout this work Latin indices run from 1 to 3 and Greek indices from 0
to 3. Einstein’s summation convention is used, which means, unless stated otherwise,
that repeated indices are summed over all possible values. The differential operators A
and 0; are with respect to the flat three metric. The metric signature used is (—, +, +, +).
The GW signal is described by two polarizations states h, and hy, which are which
are equivalent in their informational value. For the analysis of GW spectra, we use the
effective spectrum heg ., which is defined as heg 1 (f) = f - Beff’_i_( f), where ilefﬂ_'_( f)is
the Fourier transformation of the strain i (¢) and f the frequency.

10



2. Theoretical formulation and numerical
implementation

This chapter gives an overview of the methods and their numerical implementation for
relativistic hydrodynamical simulations. Section 2.1 focuses on the theoretical background,
Section 2.2 presents the computational method SPH we employ, and 2.3 will describe
specific numerical implementations of our simulation code.

2.1. Numerical Relativistic Hydrodynamics

Numerical models of BNSMs require the treatment of GRHDs and the dynamics of space-
time. Therefore, it is necessary to solve the equations

G/LV = 877T;w (2.1
Vyu(nut) =0 (2.2)
v, TH =0, (2.3)

where G, is the Einstein tensor, 7" the energy-momentum tensor, » the number density,
and v* is the four-velocity. Equation 2.1 is the Einstein field equation that relates the
spacetime geometry with the mass and energy within it. Equations 2.2 and 2.3 are the
relativistic Euler equations which describe the motion of a perfect fluid in a given spacetime
by the conversation of the number of particles, energy and momentum. In general, the
combined system of the Einstein field equation and the relativistic hydrodynamic equations
is too complex to solve analytically. Consequently, numerical approaches are so far the
only way to describe such systems. In order to study the evolution of any physical system,
the first step is to formulate it as a Cauchy problem. To do that for spacetime, one assumes
that it is globally hyperbolic [132]. Any globally hyperbolic spacetime can be sliced in
space-like three-dimensional cuts and a universal time function.

We consider the Arnowitt-Deser-Misner (ADM) 3+ 1 decomposition [145] that foliates the
spacetime into such a set of non-intersecting hypersurfaces ¥; with a constant coordinate
time. The system is described by a timelike four-vector n normal to the hypersurface, the
lapse function o which measures the lapse of proper time between two hypersurfaces,
and the shift vector 5 whose components measure the change of spatial coordinates from
one hypersurface to the next.
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With that the line element in the ADM formulation is
ds* = — (o — BiB") dt* + 2B;dx’dt + v;;da'da?, (2.4)

with ~;; as the spacetime 3-metric. For the perfect fluid the energy-momentum tensor
can be described by
™ = phutu” + Pg"”, (2.5)

where ¢g"” is the metric tensor, p is the rest-mass density, h = 1 + ¢ + P/p is the specific
enthalpy, e the specific internal energy, P is the pressure and u* is the 4-velocity of the
fluid. The EoS of the fluid brings the pressure in relation to the density and the specific
internal energy. With that, a complete hydrodynamic description can be made with a
set of 6 primitive variables W = (p, ¢, €), where #' is the fluid 3-velocity. In the ADM
decomposition it is possible to cast the conservation laws of the energy-momentum tensor
and the matter flux into a system of first-order flux-conservative hyperbolic differential
equations, which is called the Valencia formulation [131, 146]. In this formulation the
GRHD equations are written in the conservative form

3 (VAU) + 8i (VAF') =S, (2.6)

where U is the set of appropriate chosen variables!, F is the flux of the variables and
S is the source vector. Here, Jy and 0; are the partial derivatives with respect to the
chosen local coordinates z# = (z°, z', 2%, 2%). This formulation offers the advantage that
it allows for the use of many high-resolution shock-capturing schemes, initially developed
for Newtonian hydrodynamics, to now also be utilized for general relativistic problems.
For SPH these GRHD equations need to be formulated in the co-moving frame of the fluid.

We will show this in section 2.2, where we talk more in detail about SPH.

2.1.1. Conformal flatness approximation

In addition to the Arnowitt-Deser-Misner (ADM) formalism we employ the conformal
flatness condition (CFC) approach [147, 148], which approximates the spatial 3—metric
as

vig = Vi (2.7)

where 7;; is the flat spatial metric. In isotropic Cartesian coordinates, this leads to n;; = d;;.
Imposing the maximal slicing condition tr(K;;) = dpK = K = 0, the Einstein equations
can be written in a set of five elliptic equations for the metric elements (e.g.[146, 147,
1491):

A () = 2mayy® (E +2S) + gomﬁKinij : (2.8)

1 -
A = —2m)°F — §¢5KinU, (2.9)

!Also called
conserved variables due to the structure of (2.6), which has the form of the continuity equation.
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. 1 .. . .. 10 :
AB = _ga%a]ﬂ] + 290K 9; <z/16> + 16wyt S, (2.10)

in which
E = phW?P, (2.11)

S =5!=ph(W*—-1)+3p (2.12)
are matter contributions to the source terms, W is the Lorentz Factor W = au’ =
(1+ 'YijUin)l/ >and A = V2 is the flat-space Laplacian. In the conformal flatness -
maximal slicing approximation, the extrinsic curvature can be expressed just with the
metric elements

¢4

2
<5ik3j5k +6,,0;8% — 35ijakﬂk> : (2.13)
The equation for the shift vector 3¢ can be cast into the more convenient form of two
Poisson-like differential equations [150] by the definition

, 1
58'=DB"— 1 X - (2.14)

Inserting this definition into equation (2.10) leads to the differential equation for B’ and
X

AB' = 210K 9; <$6> + 16mayp’S’, (2.15)

Ay = 0;B". (2.16)

These equations are discretized on a uniform Cartesian grid covering a domain around the
binary system and are solved iteratively until they converge using a multigrid approach
[151]. A multipole expansion of the source terms (2.9) and (2.8) in spherical harmonics
up to the quadrupole order provides boundary conditions [130]. This expansion scheme
is also used to estimate values of the metric components outside the metric grid for the
cases where particles exit the domain of the metric solver.

The CFC approximation ignores off-diagonal spatial metric terms and therefore excludes
the degrees of freedom for gravitational waves. To take gravitational waves and their back-
reaction to matter into account, a small non-conformally flat correction is implemented.
This scheme was developed in [152], while first elements of the scheme can be found
in [153]. This approach allows post-merger gravitational wave signals, ejecta and torus
masses, and black hole formations, which are in accordance with full general relativistic
simulations of BNS systems [28, 30, 44, 154]. More details of this metric solver scheme
can be found in [42].

2.2. Smoothed particle hydrodynamics

Gingold, Monagham, and Lucy introduced SPH as an alternative to Eulerian finite differ-
ence methods for hydrodynamical problems [155, 156]. An essential part of SPH is the
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interpolation method. The sifting property of the Dirac delta distribution has the ability
to give, for a function f(r') which is continuous at the point r, the exact value at that
point with

f(r):/f(r’)é(r—r’) dr’. (2.17)

SPH using an approximation of this property with a Kernel function W (r — t/, h) which
becomes a true delta distribution at the limit 4, — 0, with h, the smoothing length that
defines the integration domain. The interpolation is with that expressed as

f(r):/f(r’))/v(r—r’,hs) dr'. (2.18)

Conservation of total mass in the complete system volume V is achieved by the normaliza-
tion condition on the kernel W

/W (r— 1y, hy)dV = 1. (2.19)

In this work we use the spherical symmetrical cubic spline kernel

. 1—-3d?+3d%, for0<d<1
W (=1, hs) = — 1(2-d)y?, for 1 <d <2 (2.20)
* 1o, ford > 2
. _r—r|
Wlthd—‘rh:.

To apply this interpolation to a fluid, it is divided into a set of mass elements, called
particles. Particle a is given the mass M, density p, and so on. The interpolation integral
[ f (r')dr’ can be written as
/ F@) yar (2.21)
p(r') ' '

This integral can be approximated by a summation over all particles b which overlap with
point r.

M
HOEDY p—bbf(rb) W (r — 1y, hs) - (2.22)
b
The calculation of any quantity at any point follows from Eq.(2.22). If a particle overlaps
with the point of interest depends on its smoothing length which evolves based on the
local particle number density. Mass density can then expressed by

p(r) = MyW (r—rp,hy). (2.23)
b

Two kind of errors can be attributed to this procedure. First, an error stemming from the
smoothing procedure. This has been estimated to be O(h?), when using the cubic spline
kernel. [157-160]. Second, an error from discretizing the integral, which depends on
the distribution of particles and how well ordered they are in space. Zhu et al. [157]
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parameterized this error on the number of neighbor particles IV, to be O(N/), where 0.5
< g < 1. g = 1is the extreme case where all particles are perfectly ordered and spaced out
like a grid, and g = 0.5 is the opposite extreme, where we assume the particle distribution
is completely random and convergence should be similar as in Monte Carlo estimates as
SPH was originally assumed [155, 156]. In reality, the SPH particles are neither equally
spaced nor randomly distributed but are distributed by the dynamics of the systems they
describe. However, in highly turbulent and complicated dynamical problems such as
BNSM, disorder is to be expected. At low resolution, errors will vary based on the decision
to hold either the smoothing length or the number of neighbors constant. Keeping the
smoothing length fixed at low resolution will decrease the number of neighbors, thereby
raising the discretization error. Conversely, fixing the number of neighbors leads to an
increase in the smoothing length, consequently elevating the smoothing error. In our
setup we allow a range between 80 and 120 neighbor particles, while the smoothing
length evolves accordingly.

In this Lagrangian descriptions of SPH it is possible to formulate the GRHD equations in
a co-moving frame (for a detailed derivation, see Appendix A). Analog to the Valencia
formulation one defines a set of so-called conserved variables: the rest-mass density p*,
the specific momentum 4 and the energy per nucleon 7, which are defined by

p* = pWi° (2.24)
@ = hu; = h (v' + ') v’ (2.25)
Q01167 p
— W — 1 B oy 2.26
T w oW pE w oW w, ( )

with v* = 3—0 the coordinate velocity. In the comoving frame the time derivative operator

% is related to the Eulerian time derivative 0y by % = 9o + v'0;. Accordingly the set of

GRHD equations are
dp*

— o 2.2
g p O (2.27)
di; 1 X o aj 2050y
T a0, P — i’ + ;0,87 + w;&g 9, (2.28)
dr Yo , hW ¢ P ) -
— =— (W 4+8) (11— — )P —¢°—0; (v' + 2.2
- L) (1- M )ar - vt o 4 ) (229)
P . . i hW
5 ) i ?
— 67 —p*(v +B)6ﬂbw4<1 w)&a

1 1 1 | 4
o — 2V 6108 — Z1:0. 57
+¢4 <hW ><uluj8]6 3uzu18]6>.
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2.2.1. Discretization

Besides Eq. (2.22) to describe functions at any point, it is also important how differentia-
tion and differential equations are described in SPH. By using differentiable Kernels we
can express derivatives with

ofr) _ M OW (r — 1, hs)
or Z i (rs) Oz ’ (230

b

which is the exact derivative of the approximate function. Note also that in the relativistic
case the conserved mass density p* is used. The form 2.30 however has the problem
that it does not necessarily vanish if f(r) is constant. To ensure that one can write the

derivative as ofr) 1 [9(®f() 00
r r

or @ < ox —fr ) > ’ (2.31)
where ® is any differentiable function. A common choice for ® is, for example, the density
p*. With that we can write Eq. (2.30) for a particle « as

Of (ts OW (r, — 1y, h,) 1 awa
fr = ZM — f(ra)) (raxrb )—pz Myfra =5 . (2:32)

This makes it possible to describe the same continuous equations with different discretiza-
tions to improve evolution, conservation laws, or minimize numerical noise. The choice
of discretization can have a major impact on the evolution of the system. Here we take a
closer look at the first two terms of Eq. (2.29) which contain the pressure gradient and
the divergence of velocity, and are the part of the conserved energy which is rather related
to the hydrodynamical quantities, while the other terms capture the impact of the metric
parameters on 7. We will keep the notation, that we discretize for a particle a which has
b neighbor particles. The pressure gradient can be discretized by setting & = pi*

; P P P isc. P,
Ol :ai<*> o % ZMb vwab+ZMb -V e Wap
p p p e
=N "M <*”

so we get for the first term

6 hW
v (v' + 8 ( ) 0; P
p* w

dzsc —QpGZMb ’U _I_ﬁz) <1 _ hVV) < + P >v Wab. (234)
w pb pa

;é> vaWab, (233)

a

The second term —wﬁp@@i (v' + ') can be discretized with the relation

v.vzv'(p")*—v'vp, (2.35)
p
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which leads to
P dzsc . ) .
—¢6p 8; (v' + BY) Z *2 L BL) — (v + BE)] VaWa. (2.36)
Another possibility is to set ® = pﬂ*
P . . i . . P
_ 1/16**81 (vz + le) ¢68 ( (U + B )) + 1/)6(1)2 + ,82)8Z (*)
p p* p
disc. M . . M, . .
RSy p—%(vg + B VaWap + 15> pTSwa; + BL)VaWap
b b p Fo

(v + BL) = (vh + B1)] VaWab- (2.37)

It was chosen to take the average of both discretization equations %((2.36) + (2.37))
which leads to

P My (Pe P\,
—U 50 (o + ) Ty ( ot pf;) (v} + BL) = (v + BY)] VaWap. (2.38)
b a b

This is a common method for symmetrizing the discretization in SPH. In Newtonian codes,
for example, it is often used to conserve momentum and energy or to enforce Newton’s
third law [161]. In this case it is also convenient that both terms can be merged together
after discretization

6
— w6 9 (v +B") + qﬁ* a (v + B (1 — h;/V> o;P

dise. P, AW 1N iy L
_7’/}6 Z <Pb *2> [(1 T e 2) (vg + Ba) + 5(% + /Bb):| VaWab

Pa
— B < ?2 + ;) Kl - 2hwW> (vh + B2) + (v} + ﬁf;)] VaWar  (239)
b a

In chapter 4.2 we will discuss in more detail this approach and alternatives.

2.3. Neutron Star merger simulation

This section mainly describes the simulation code of [42, 162]. Here, the main focus will
be on parts which will be relevant or modified later in this work and should only give a
brief overview.

At the start of every time step, the neighbors of every SPH particle are searched with
a linked-list algorithm. The algorithm uses a grid in which it lists all particles in each
cell together. A particle is neighboring if it is in the vicinity of 2h, to another particle.
All particle outside the grid are treated as there were in a single cell together. Since
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most particles in a neutron star merger simulation will be in the center, the grid mainly
covers the remnant (default length is 28 km in the x- and y-directions and 14 km in the
z-direction).

After that, the field equations are solved and the metric components are computed
following the method described in 2.1.1. The metric potentials are solved on an overlaid
grid and mapped onto the SPH particles. With these can now the hydrodynamical
equations be solved. The primitive hydrodynamical quantities are then computed from
the conserved quantities. This can not be analytically done and involves a fixed-point
iteration scheme which also involves interpolation methods for the EoS table. The time
integration is done with an explicit fourth-order Runge-Kutta method. An adaptive time
step is used that obeys the Courant-Friedrichs-Levi condition [163].

2.3.1. Equation of state

For the neutron star merger simulations described here, the SFHO EoS is used [144]. The
SFHO EoS is organized in three parameters: baryon number density np, temperature 7'
and electron fraction Y,. The table has a minimum baryon number density of 10~ 2fm—3
and a minimum temperature of 0.1 MeV while the electron fraction ranges from 0.01
to 0.6. For each point of this 3D parameter space the table provides hydrodynamical
quantities like pressure, total energy per baryon, total entropy per baryon, and several
others. Since the SPH code has rest mass density p and internal energy ¢ as primitive
variables, it is convenient to reorganize the table with only the hydrodynamic quantities
needed and with the primitive variables directly accessible. To compute a rest mass
density, a fixed baryon mass is assumed

p=mnp-mp, (2.40)

where the baryon mass mp is set to the atomic mass unit m, = 931.494 MeV. The table
also gives information on the composition for each point in this 3D parameter space. For
protons, neutrons, and nuclei with a mass number A < 4 the number fractions

e

Y; = — (2.41)

np
is given for each species, while for heavier nuclei a number fraction for an averaged heavy
nucleus is given together with the averaged mass and charge number Apeayy, Zheavy- The
total energy per baryon is defined by

Eot = — (2.42)
n

with etor = p(1 + €) the total energy density.

While e is well defined for a given composition, the separation between rest mass
and ¢ depends on the choice of mpg. In figure 2.1 are the resulting internal energies for
different electron fractions shown at a rest mass density of p = 4.17 x 108gecm~3. At low
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Figure 2.1.: specific internal energy ¢ calculated from the total Energy assuming fixed
baryon mass over temperature T for different electron fractions Y, at a fixed
density of 4 x 108gem—3. At low temperatures the internal energy converges
to the difference of the assumed baryon mass and the mass per baryon for
the given composition. In cases where this mass per baryon is lower than
the atomic mass unit are resulting in negative internal energy.

temperatures converges ¢ to the difference between the atomic mass unit and the resulting
rest mass per baryon for the assumed composition. In some cases, for example for higher
Y,, where the composition consists mostly out of >°Fe, which have a lower rest mass per
baryon than the atomic mass unit, leads that to even negative e. In the very neutron
rich cases converges ¢ - m,, to around 8 MeV per nucleon. The mass contribution is here
the overwhelming dominant part. At low temperatures, the thermal part of the internal
energy becomes negligible, as shown in Figure 2.1, where e remains nearly constant. This
makes the recovery of T challenging. In section (4.1) we will explain how the EoS was
extended to lower temperatures and densities.

2.3.2. Artificial Viscosity

During the merger shocks are produced that heat the material. In addition, they affect
the ejection of matter. Therefore, it is essential to consider shock in BNSM simulations.
In SPH shocks can not be resolved directly. The SPH code uses therefore an artificial
viscosity scheme based on the work of Chow and Monaghan [164]. An additional viscous
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pressure term, I1,;, (symmetric in a and b), is introduced in the first term of the momentum
equation (2.28), while a viscous contribution to the total conserved energy, 2., (also
symmetric in a and b), is added in the first term of the energy equation (2.29). The
viscous pressure term is

Mgy = —2——9 (0.4 — Qi) €4, (2.43)

where ¢; is the unit vector from particle a to b

o, — Iy
e = .
’ra _rb|

(2.44)

Vsig is the so-called signal velocity and K is a free parameter to adjust the strength of the
artificial viscosity. Parallel to I1,;, is the energy contribution

Kvsig

0 0
(7 — 7)) €. (2.45)
Py + P ( “ b) ‘

T
ab__2

The signal velocity takes into account the sound speed but also the relative motion between
particles. This is necessary since shock fronts can propagate supersonically. The signal
velocity is approximated by

Vsig = Cpq T Cop 1 Vil 5 (2.46)

with v*, = (vi — vi)e’ the relative projected speed of the particles a and b. The speed of
sound ¢, as seen in the local frame is approximated by

*
/ _ C'Uza + |Uab’
R v Y

(2.47)

For the free parameter K every particle is assigned to its own time dependent viscosity
coefficient £(¢) [165]. K is then

K =0.5(& + &) - 0.5(f(a) + £(D)), (2.48)
with

|(V ) V)a‘
|(V : V)a| + |(v X V)a| + 0'0001Cv,a/h5 '
The term f reduces the numerical heating in regions of strong vorticity while retaining

good shock capturing attributes of the artificial viscosity [166]. The particle viscosity
coefficient £(¢) evolves according to the equation

fla) = (2.49)

de g

TR + S, (2.50)
with

S = max(—V -v,0) (2.51)
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Through a shock, S will increase ¢ of the particle. After the shock ¢ decays exponentially
to its default value £ with a mean lifetime 7s.. The time scale 7 is defined by

hs

Tvisc — )
C 1Cy

(2.52)

the smoothing length h;, the speed of sound ¢, and a non dimensional parameter C;. In
the simulations of this work C; = 0.05 and ¢° = 0.01 is typically used.

2.3.3. Ejecta

In this work, a greater focus will be on the ejected material. Given the fact that simulations
are run for a limited time, it is necessary to define when a SPH particle is ejected.
There are different criteria to use to define whether the matter becomes unbound. The
geodesic criterion assumes that ejecta follow spacetime geodesics in a time-independent
asymptotically flat spacetime. Therefore, the zeroth component of the contravariant
4-velocity wuy is a conserved quantity. A SPH particle is unbound if

ug < —1. (2.53)

The main critique point on this criterion is the assumption that the fluid just follows the
spacetime geodesic. This is the case if matter just ejects ballistically but for outflows of
BNSM thermal and nuclear binding energy impacts the acceleration of the fluid, which is
ignored by this criterion.

The Bernoulli criterion states that matter is unbound if
hug < —1. (2.54)

Through enthalpy & this criterion considers the internal energy, and allows to account for
thermal and binding energy. The Bernoulli criterion is based on the assumption of steady-
state flow. Although this is in general not true for the outflows of the BNS merger, the
criterion still captures the amount of ejecta reasonably well. A more in-depth discussion
of both criteria can be found in [167]. In this work, we will use, if not stated otherwise,
a virial criterion to decide when a SPH particle is unbound. It is derived and discussed
in detail in [168]. It is analogous to the Newtonian energy criterion in which the total
energy per unit mass ey, + €int + epor— 1S great enough to leave the gravitational potential.
The relativistic counterpart €gggionary 18

- € 1
€stationary = V' + @ + @ —1. (2.55)

Material becomes unbound if
€stationary 0. (2.56)

When we apply this criterion in later chapters we bring the -1 on the the other side and
check
€stationary T 1 = €stat > 1. (2.57)
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Over time all three criteria will converge to the same result when the material is at large
distance away from the gravitational potential. As the outflows expand, both pressure
and internal energy eventually approach zero. In this limit the enthalpy will converge
h — 1 and 2.53 and 2.54 become identical. In the case of 2.55, using the definition of
; from 2.25, the metric terms approach the weak field limit where o — 1, 5 — 0 and
1 — 0, and we get

1
Estat — 1}2’11,0 + 0 > 1. (258)
u
Using the normalization condition u?> = —1 which is in the weak field limit
(W0) (1 +0%) = -1
1 2

we can substitute v? in 2.58 and get

u > 1, (2.60)
which is in the weak field limit the contravariant version of 2.53. The limit, where all
criteria converge, is in simulations typically not reached. We discuss the differences in
the amount of ejecta at different times and distances between the different criteria in
appendix B.

Considering internal energy for defining if material is unbound has also a drawback. Our
ejecta criterion is prone to identify hot material as unbound. Even when this material has
enough energy to overcome the gravitational potential, since it mostly thermal energy it
still remains bound. To avoid defining hot disk material as ejecta we use additionally a
radial cut, which will be always stated in the following chapters.
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2.3.4. Post-merger gravitational wave signal and oscillations modes

In Section 2.1.1 we mentioned the numerical schemes implemented in the calculation of
the gravitational wave signal of BNSMs. Here we want to describe the features and their
cause of the post-merger signal, on an example SPH simulation of a 1.35-1.35 M, equal
mass merger with SFHO as the used EoS and 339 x 10? particles.

y [km]

y [km]

—20 0 20 —20 0 20
x [km] x [km]

107 10° 1013 101°

Figure 2.2.: Early Post-merger density profile of an BNSM SPH simulation in the x-y-plane.
The four different panels show

In figure 2.2 we show the corresponding rest-mass density distribution of the system in the
x-y plane at the very early post-merger phase for four different times. The four contour
lines represent the borders of densities of 9 x 10'*gem™=2 (solid line), 5 x 10'*gem—3
(dashed line),10'*gem—2 (dashed-dotted line) and 10'3gem—2 (dotted line). In this early
evolution, one can identify the oscillations that are the cause of the post-merger signal GW.
Most dominant is the quadrupole oscillation, the fast rotation of the double core structure
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of the hyper-massive neutron star. Over time, the core structure becomes more spherical,
and the quadruple oscillations decrease. During the first oscillation cycles one can see
that the distance between the two cores varies, which can be described as a quasi-radial
oscillation on top of the quadrupole oscillation. Because of the tidal deformation of the
two neutron stars during the merger, two diametrical bulges form which have a lower
rotation frequency than the core structure, as can be seen from the changing relative
orientation at different times of the bulges and the core structure. They form the spiral
arms, which only survives for a few orbital cycles. These three oscillations lead to the
main features of the post-merger GW signal.

Figure 2.3 shows the corresponding post-merger signal in the frequency domain. The
strongest feature in the post-merger GW spectrum, called fpeax, is ascribed to the funda-
mental quadrupole oscillation mode (also called f>) [37]. For our setup, the frequency of
fpeak is 3.3 kHz, marked with a blue dashed line. Although the quasi-radial oscillation
mode f; does not produce a signal GW, because of its spherical symmetry, in this envi-
ronment it can be coupled with the quadrupole mode fpea and create two secondary
frequency peaks fo+o = fpeak & fo (green dashed line and orange dashed line). Another
secondary feature is fspira1, which is generated by the orbital motion of tidal antipodal
bulges [38] (yellow line). Since the bulges move slower, the central structure has a
secondary frequency peak of slightly lower frequency than fpeax.

fpeak i
fa+o '

fspiral

—24 ] ] E |
10 1 2 3 1 5

f [kHz|
Figure 2.3.: Post-merger gravitational wave signal from a SPH simulation in the frequency

domain. The colored dashed vertical lines are marking the frequency peaks
fpeak:f2+0:f2—0 and fpeak-

Another way to study the mass oscillations is by using the complex azimuthal mode
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decomposition of the conserved rest-mass density integrated over the equatorial plane

P= | pre™Pdxdy. (2.61)
RQ

From these modes, one can identify symmetry breaking in the density distribution. The
m=1 mode is a measure for the contravention of 180°-rotation-symmetry (m=2 for
90°-rotation-symmetry and so on) and is therefore used in studies to investigate the
one arm spiral arm instabilities [169-171]. In figure 2.4 we show from this example
simulation the different density modes. In the left panels, we show the raw calculated
modes. Since higher modes can be quite noisy especially, for an easier comparison, we
will use the smoothed modes using the Savitzky-Golay filter [172] as shown in the right
panel. Hydrodynamical vortices form during the merger (under-dense regions in the
center as seen in the upper left panel in figure 2.2). In the early post-merger period,
the m = 2 mode, which was the main driver of the inspiral GW emission, remains the
dominant as long as the double core structure exists in the remnant. The vortices are
moving to the center over time and the double cores subsequently form one off-center
core of the remnant. This leads to the rise of the m = 1 mode in the first milliseconds
after the merger, and it stays the most dominant after that. We will investigate differences
in the post-merger GW signal and density modes in Chapter 3 through the impact of
stochasticity and artificial viscosity.
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Figure 2.4.: Normalized amplitudes of density modes on the equatorial plane. Left panel:
unfiltered modes, right panel: smoothed modes using the Savitzky-Golay
filter.
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3. Fluctuations in BNSM evolution

3.1. Numerical vs. physical fluctuations in BNSM

Various mechanisms are responsible for the mass ejection in BNSM. In the initial stages
of the merger, the NSs develop tidal arms that eject cold, neutron-rich material within
the equatorial plane. On the impact interface shock-heated material is blown out in all
directions. Some of the matter around the new central object forms a disc, and the tidal
arms induce a spiral wind, pushing further material outwards. On timescales that exceed
the merger duration, the remnant-disc system expels secular ejecta (neutrino driven wind,
viscous outflows). The amount of mass that is ejected depends on the binary system. The
mass ratio between the two NSs is an important factor. In more asymmetric mergers,
the lighter NS becomes disrupted, forming a more massive tidal arm which ejects more
mass and forms a more massive disc [25, 30, 33, 173-176]. Moreover, the total mass
of the system impacts mass ejection. More massive systems tend to eject more matter,
while beyond the threshold mass Myesn, at least the dynamical mass ejection is reduced
because of the prompt collapse into a BH [30].

The total amount of ejecta mass remains not well constrained. Since it also depends
on the EoS, one might hope that observations, such as the GW signal, which provides
information about the total mass and mass ratio of the binary system, together with the
kilonova light curve, which may constrain the ejecta mass, could also help constrain the
EoS. However, this is already a challenging task, as deducing the amount of ejecta from
the light curve is highly model-dependent, and it is unclear to which precision is this
possible. Also, this is true only insofar as the ejecta mass closely correlates to the masses
within the binary system, which does not necessarily need to be the case.

Merger events are very dynamical and chaotic, and it could be the case that already
small seed perturbations lead to different outcomes. Small perturbations may result
from the intrinsic rotation of NSs with rotation axis non-aligned to the orbital axis, or
inhomogeneities of their magnetic fields. These minor differences would be unnoticeable
and the variation in outcome for the same observable parameter could be characterized
as stochastic effects. Furthermore can the material orbiting around the newly formed
remnant in a BNSM have a chaotic behavior. It is well established that simple systems in
general relativity, such as a point mass in orbit around a BH, can exhibit complex and
chaotic behavior, being highly sensitive to initial conditions [177-180]. In these systems,
even minimal differences in angular momentum can lead to drastically different orbital
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trajectories. At the moment, it is not known whether small perturbations significantly
affect the evolution of BNSM systems.

In a recent study, Collins et al. [143] discuss the possibility of such stochastic effects.
They analyze merger simulations with small increments in total binary masses. They
observed variations in the total ejecta mass and the north-south symmetry of the mass
distribution of about 10% between near-by models.

Besides this findings, stochastic effects in BNSM has not been investigated. It is not clear, if
observed variations in simulations have a physical reason or are purely numerical. BNSM
simulation are computational highly demanding. Many different physical effects across
various length and time scales need to be addressed with numerical methods which only
allow for a finite accuracy. This makes it challenging to identify variations as physical or
numerical and it might even not possible with the state-of-the-art simulation codes.

In this chapter we will explore how strong are the variations in the results of simulations
with the same physical system using our numerical setup described in chapter 2. In our
setup the NSs are irrotational and we do not consider magnetic fields but chaotic behavior
could still be which can occur. Regardless of the presence of physical stochastic effects, it
is crucial to account for variations in simulation results when drawing conclusions from
them. We will focus on the impact on the ejecta and try to give first indications what
might be the cause of the variations.

3.2. Ejecta

In the following, we will investigate the stochasticity of simulation results in our setup.
First, we check how much stochasticity impact the evolution of ejecta. Therefore, we
conduct a set of simulations that are physically equivalent. Then, we test how much
different quantities of the ejecta are fluctuating and discuss on the basis of the results
correlations and possible reasons.

We set up a BNSM 1.35-1.35 M, system with a total of 339 x 10® SPH particles and the
SFHO EoS. The system is brought to a well-defined initial condition by the relaxation
scheme explained in [162] on a circular orbit. To test the effect of stochasticity we take
the relaxed set up and rotate it around the center of mass. Thus the neutron stars will
inspiral and collide at different angles in the coordinate system of the metric grid, which
is described in 2.1.1, while physically the initial conditions are the same. We run 13
simulations up to 25 ms after merger which are rotated between 0° and 180° in 15° steps.
We will in the following refer to individual simulations of this set by their corresponding
rotation angle (0°-simulation, etc.).

Figure 3.1 shows the ejecta masses outside 100 km (1000 km) over time for the 13
simulations. The mean value of ejected matter at 25 ms after merger is 1.6 x 1072Mg
(5.1 x 1073M). While the spread around the mean value is around +25 % (£20 %)
as can be seen in the lower panels of 3.1. A possible reason for the variations could be
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uncertainties from the metric grid. In our setup, we utilize a three-dimensional Cartesian
grid measuring approximately 143 km along each axis, with a cell size of 1.1 km. The
finite resolution may cause an orientation dependence. This dependence could result in
variations in the metric potentials o, 1, and 3¢ for different rotational angles, thereby
influencing the acceleration of the NSs. If the finite resolution would cause a orientation
dependence, we would expect to see a pattern in the ejecta masses. The cartesian metric
grid has a 90° rotation symmetry which we do not see in the variation of the amount of
ejecta. Even the 0° simulation compared to 180° simulation, which only swaps the two
NSs have different ejecta masses. This might an argument against uncertainties in the
metric as the direct cause. However, during the relaxation phase the NSs might build small
inhomogeneities which are not symmetric and result in different evolution for different
rotation angles.
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Figure 3.1.: Ejected mass over time outside a radius of 100 km (left) and 1000 km (right)
for 13 simulations which started with a different orientations between 0°
and 180° in respect to the metric grid. Lower panel shows how the variation
of ejecta mass in per cent compared to the average ejecta mass of all 13
simulations over the rotation angle. There is a spread in ejecta mass up to
50 % and no direct dependence on the amount of ejecta and rotation angle.

If this were the case, the center-of-mass velocity for the NSs and the velocity spread among
all SPH particles within each NS would be affected. We check the sum of the center of
mass velocity of both NSs before merger

Vem,1 1 Vem,2 = Vem,tot; (3.1)
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Figure 3.2.: Variance in impact velocity and its asymmetry for all 13 simulations. Left
panel: Difference between the maximal coordinate velocity of the mass
centers of the two NSs. Right panel: sum of the maximal coordinate velocity
of the mass centers of the two NSs.

where v 1 is the center of mass velocity of one NS and vep 2 of the other. We use the
coordinate velocity which is in the simulation recovered from the evolved quantities but
does not have a physical meaning in GR. To check the variance of velocity we define first
the variance for a velocity vector component j

2 _ 2 Mi (i — viem)”

o2 (3.2)
7 Mot
The variance of a vector vy, can be described by the variance-covariance matrix
2 2 2
O'gz U%z Oéx
Y= agy O'gy O'gy (3.3)
Ozz Jyz 0%z

To compare a scalar measure of the total spread of the velocity vector we calculate the
square root of the trace of >.

Vi (E) = \/agx +02, +02,. (3.4)

To capture the velocity spread in both NSs, we calculate the average of their respective
velocity spreads.

Figure 3.2 shows in the left panel the sum of both center of mass velocities during the
inspiral phase until the NSs reaches its peak velocity. The right panel shows the spread in
velocity for both NSs. The 0 ms point is defined for each simulation when the density
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reaches its maximum during the merger. The NSs are touching over a millisecond before
that point and the deformed bulges might touch before the center of mass velocity reaches
its maximum. The center of mass velocity difference between the simulations is quite
stable and varies only up to 0.5%. Over the inspiral phase is the spread in velocity over all
SPH particle in the NSs comparable and less than 1 %. Only around 3 ms before merger
when the NSs gets stronger deformed and are about to touch, the spread in velocity rises
and also diverges between the 13 simulations. During the inspiral both NSs are affected
by numerical heating. Especially at the last milliseconds when the stars deform to a drop
shape, the NS crust heats to a temperature of a 2 - 3 MeV, which can also impact the
spread in velocity.

From our findings we can not exclude that metric uncertainties play a role in the observed
variations of the ejecta mass. However, the spread in velocity within the NSs only diverges
between the simulations at times where viscous heating and hydrodynamical effects starts
to matter.
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Figure 3.3.: Ejected mass over time outside a radius of 100 km for three sets with different
resolution of 13 simulations which started with different orientations between
0° and 180° in respect to the metric grid. Left panel shows for simulation
with 136 x 103 particles, middle panel for 339 x 102 particles, and right panel
for 682 x 102 particles. Lower panels show the variation in percent compared
to the average ejecta mass of each set.
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Another possibility could be that numerical uncertainties in the hydrodynamics are the
main driver of this variance. We would expect that if the finite discretization of the fluid
in SPH particles lead to variations that with a increasing number of particles we would
see a converging trend. We conduct a resolution study with additional simulations as the
13 described at the start of the chapter, but this time three sets of 13 simulations. The
difference between each set is the total number of SPH particles. One set has 136 x 103
particles, one set 339 x 10° particles again and one set 682 x 10° particles. In this test we
run the 339 x 10 particles set again, since we did some minor numerical adjustments
to reduce some possible sources of non-deterministic behavior, such as the order of the
neighbor particles when summing over them, and for the comparison we want to use the
exact same setup.

Figure 3.3 displays for all three sets of simulations the spread of ejecta. Surprisingly, we
do not see a reduction of the variation by increasing the resolution. The simulations with
682 x 103 particles have a comparable spread of +-25% in ejecta mass as the simulations
with 339 x 102 particles. In the set with 339 x 10? particles we see three simulations which
start a steep increase in ejecta just before the end of the simulation leading to a spread of
+35% in ejecta mass this time. The trend indicates that over longer time the spread in
ejecta mass might diverge even further between simulations within a set. The variance is
lower by the set of simulations with 136 x 10 particles to less than 20%. These results
speak against the assumption that the finite discretization of the fluid is the cause of the
variation. It may hint to viscous effects such as Kelvin-Helmholtz instabilities which are
less resolved at lower particles numbers. Next we will check how the ejecta distribution is
impacted by the variations.

3.2.1. Distribution and symmetry

We will focus for the rest of this chapter on the first 13 simulations we described at the
start of this section.

Interestingly, in comparing the lower panels of 3.1, the variation in ejecta mass differs
between regions beyond 100 km and 1000 km. For instance, the 60° simulation shows
approximately 7% less ejecta mass than the average beyond 100 km, but about ~ 15%
more than average beyond 1000 km. The difference points out that not only total mass
fluctuates but also the ejecta distribution. The matter closer to the remnant at 25 ms after
merger identified as ejecta by the employed criterion has slower velocities and higher
temperatures. The faster outflowing material is relevant for the early kilonova signal of
the first days, since through faster expansion, it will become transparent earlier. However,
in the amount of time we are simulating the post-merger phase we may have fast inner
ejecta that should loose speed as it collides with slower ejecta. But in general, differences
in the distribution of velocity may result in changes to the timing of peak luminosities,
occurring either earlier or later. Also asymmetries in the angular distribution has the
effect that the observed spectrum of the kilonova is dependent on the viewing angle.
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We will look into the north-south symmetry defining by

HM _ Mnorth - ]\4south7 (3.5)
Mnorth + Msouth

and polar-equatorial symmetry defining sphericity by

B Meq_Mpol

Yop = 4 pol (3.6)
M Meq + Mpol

where My, is the ejecta mass at polar regions with a solid angle 2 = 27 corresponding
to a polar angle # = [0°,60°] and 6 = [120°,180°], which encloses the same solid angle
as the equatorial region for Meq which corresponds to a polar angle § = [120°,180°].
Figure 3.4 shows polarity and sphericity over the rotation angle in the left panel. The
right panel shows the velocity distribution from the 0°-simulation with red bars for each
velocity bin to visualize the spread between the 13 runs. The velocity bins have the size
of Av=0.02 c. For all three quantities only ejecta outside 1000 km at the end of the
simulation was considered. Across all 13 simulations, the velocity distribution shows
a peak at approximately 0.2 c, followed by a decrease extending to 0.7 c, with some
individual SPH particles reaching velocities as high as 0.85 c in a few runs. The main
difference between the runs is in the width and height of the velocity peak. A higher
peak also corresponds to a more rapid decline to 0.7 c, as illustrated by the red bars. This
means less fast material, which would correspond to a weaker early kilonova light signal.
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Figure 3.4.: left: Sphericity and polarity, as defined in 3.5 and 3.6, over rotation angle
of the 13 simulations for ejecta outside 1000 km at 25 ms after merger.
Sphericity varies around 15 % and polarity more than 20 %. right: velocity
distribution of ejecta outside 1000 km at 25 ms after merger for the 0°-
simulation normalized to the total ejecta mass. Red bars shows how velocity
distribution varies between 0°-simulation and the other 12 simulations.
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The north-south asymmetry fluctuates around 20%. It ranges from 20% more mass in the
southern hemisphere for 0°-simulation up to 7% more mass in the northern hemisphere
for the 180°-simulation. The 60°-simulation only deviates 1 % from being north-south
symmetric. On average, there are more simulations with more mass in the souther
hemisphere. All 13 simulations have a oblate distribution, which means they have more
mass in the equatorial region. However, it varies around 15%. The 90°-simulation exhibits
a mere 1% increase in mass within the equatorial plane and maintains a high level of
symmetry.

These symmetry fluctuations are important to take into consideration for interpreting
BNSM detections like GW170817 and the corresponding Kilonova AT2017gfo. Sneppen et
al. [181] found, using the strong Sr* absorption-emission feature of the Kilonova, that it is
remarkably spherical at the first 5 days. In this study is pointed out that current numerical
simulations of merger typically produce aspherical ejecta, referencing as example three
simulation studies [25, 30, 182]. This was interpret as a possible challenge to current
explosion models. For more asymmetric binary component masses, it is understood
that through the stronger deformation of the lighter NS, a more massive tidal arm is
formed which ejects more matter in the equatorial plane (as seen in [25, 30, 182]). This
may indicate that GW170817 was closer to an equal mass merger. From the GW signal
GW170817, the mass ratio of the binary system is ¢ € (0.7, 1.0), which would allow this
conclusion [87]. We want to point out that one of the referenced studies [30] used the
same SPH code, and one of the symmetric merger simulations used the same resolution,
EoS and total mass as in our study. While this study showed aspherical ejecta, we see now
that taking stochasticity of the simulations into account, this is not so clear anymore, since
within the range of variation, we find simulations which have a sphericity close to zero.
This highlights the significance of considering stochasticity, when it comes to interpreting
simulation results. We need to point out that this study only addressed dynamical ejecta,
and the kilonova study showed that also secular ejecta needs to be spherical, which we
do not address here. Also [143] showed that asymmetry in the ejecta mass distribution
does show less asymmetry in the kilonova light curves since the observer does not only
view radiation emitted from one region of the ejecta.

Next we want to look at the post-merger GW signal and look how the variation affects it.
We will also search for possible correlations between the signal and the ejecta evolution.

3.3. Gravitational waves

The mass of the dynamical ejecta is very small relative to the total mass of the binary
system, making it extremely sensitive to slight variations in evolution during the highly
dynamic merging phase. We examine the post-merger GW spectrum to determine if the
variations observed in the ejecta are also reflected there. Figure 3.5 shows the 13 spectra
in frequency domain. The strongest feature in the post-merger GW spectrum, called fpeax,
is ascribed to the fundamental' quadrupole oscillation mode.

fundamental means in this context, the lowest frequency mode of the oscillation
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Figure 3.5.: Upper panel: effective GW spectra hef ;. of the post-merger phase in fre-
quency domain for 13 simulations with different orientation to metric grid.
Middle panel: Maximum amplitude of f,..x over the rotation angle. Lower
panel: Variation of the total ejecta mass over the rotation angle. A correlation
between the amount of ejecta mass and the amplitude of f,..x is apparent.

fpeak depends on the EoS and the total mass of the system. For our set up the frequency
of fpeak is 3.3 kHz. The effect of the stochasticity on the frequency is insignificant with a
variation smaller than 50 Hz.
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Besides fpeak We identified additional secondary features in the spectra as the two fre-
quency peaks foig = fpeak = fo from the coupling of the quadrupole mode and the
quasi-radial oscillation. We estimated for these simulations the frequency of f; from the
Fourier transformation of the oscillation of the maximum density at the first 5 ms after
merger, because f is not distinctively visible in the GW signal. We get on average a fy =
0.995 kHz. Between the runs, frequencies of f differ up to 30 Hz.

This approximately matches with the peaks around f»_¢= 2.2 kHz and fs4¢= 4.4 kHz.
The slight inequality comes from the fact that we determine f,.( at the early post-merger
phase, when the remnant and the different oscillations still can evolve rapidly. Under this
consideration is the numerical uncertainty of fycax and fo not relevant.

Another secondary feature is fgyira1, Which is generated by the orbital motion of tidal
antipodal bulges formed during the merging phase [38]. These bulges formed through the
strong deformation during merging and rotate slower than the inner core of the remnant.
They form the spiral arms which only survives for a few orbital cycles. This leads to a
secondary peak with a slightly lower frequency than fpe.. We define fgpira by the highest
peak next to fyeax Which is around 2.85 and 3.15 kHz. It is noticeable that the spectral
morphology exhibits more variations around that frequency range. In this range, several
spectra display 2 or 3 minor peaks instead of a single prominent one.

The morphology depends on the temporal evolution of the frequency fgpira, making it
non-trivial to define fgpir,. Between the 13 simulations a variation in frequency for fopiral
up to 300 Hz is stronger than the other features of the spectrum. fq,ir1 also couples with
the quasi-radial oscillation f, and produces a secondary peaks fspirai+o [183]. This would
correspond to peaks at around 4 kHz and 2 kHz which are visible features in the spectra.
Also on these feature variation over 200 Hz can be identified between the simulations.
This suggests that the evolution of the spiral arms is correlated with fluctuations in the
ejecta, which is logical, as faster or more massive spiral arms can eject more material.

By looking for any correlations between different features of the GW signal and the ejecta
we had one interesting finding, which we show in the middle and lower panel of figure
3.5. In the middle panel is the amplitude of fye, depicted and the lower panel shows
the variation of the total ejecta mass in terms of the average over the rotation angle as
in 3.1, but inverted. Both depicted over the rotation of the 13 simulations. While the
amplitude of fpeqi also does not change dramatically, one can see in comparison that the
trend between the amplitude of f,c.x and the total amount of ejecta is anti-proportional.
This correlation might give hints how the stochasticity impacts the ejecta mass.

Figure 3.6 compares spectrograms, which utilize a wavelet-based scheme [184]. The top
and right panels show the GW signal /. (¢) in the time-domain and its Fourier transformed
frequency spectrum. We compare the spectrograms of the 75°-simulation and the 90°-
simulation, which have the strongest and weakest amplitude of fpe. in the set. The
amplitude of fyeqy is affected by the evolution of the dominant frequency. In case of
the 75°-simulation the post-merger GW signal decays over a period of 20 ms. In the
spectrogram one can see that in the first 5 ms after merger several frequency components
contribute but after that only the dominant frequency at 3.3 kHz remains.
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Spectrogram of the strain /. (t) for the 75°-simulation and the 90°-simulation.
The top and right panels show the time-domain waveform component of
hy(t) and frequency-domain spectrum. respectively. The spectrograms
are constructed using a wavelet-based scheme. One can see that the 75°-
simulation has a stronger f;c.x amplitude because the dominant frequency
decays slower.
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This results in a narrow and higher fyeqx. For the 90°-simulation we see that the signal
decays faster over a period of 10 ms with a slight re-excitation between 12 and 20 ms.
In the spectrogram are the first 5 ms comparable with the 75°-simulation creating the
secondary frequency features. The dominant frequency component has a slightly stronger
shift towards lower frequencies and decays faster. At 12 ms seconds the component gets
re-excited at a slightly higher frequency. The stronger drift combined with the faster
decay results in a wider fpeqx with a reduced amplitude.

The variation in the post-merger GW signal indicate that the spread in ejecta mass is linked
with the evolution of the remnant. We will look in the next section into the evolution of
the density distributions.

3.4. Density distribution

First, we look into m=2 azimuthal mode decomposition of the rest mass density using
equation 2.61. As described in section 2.3.4 m=2 is the dominant mode during the
in-spiral phase causing GW emission. During the early post-merger phase, a double core
structure forms and the m=2 remains dominant, albeit decaying over time. We observe
for all 13 simulations that the m=2 mode decays to a local minimum at times between 9
and 15 ms after merger before getting in some cases re-excited or the decay just slows
down until m=2 mode stays constant.

Figure 3.7 shows in the right panel the strength of m=2 mode normalized to m=0 for all
simulations over time. We compare it with the mass ejection rates Mej shown in the left
panel. The first dominant peak of Mej is caused by the impact of the two NSs expelling
shock heated material from the surface of contact. During the merging process through
the quasi-radial oscillation of the double core structure more shock heated material is
expelled from the remnant creating the second and third peak of Mej. In this early time
spiral arms are forming at the outer layers. After that we see also around 9 to 15 ms
another local maximum in Mej. In the lower panel of 3.7 we show a comparison between
the times of the maximum of Mej (black line) and the local minimum in the m=2 mode
(gray line) of all 13 simulations, which are in a good agreement with each other. In all
cases, the m=1 mode is increasing in strength from the merger phase and is at that time
of the local minimum of m=2 already the dominant mode. This dominance of the m=1
mode was in previous studies linked to the one-armed instability [169-171, 185].

The comparison between the m=2 mode strength and Mej shows a clear correlation of
the breakdown of the double core structure towards a one-armed spiral instability and
mass ejection. The bar shaped double core merges into a single core with an offset to the
center of mass. This imbalance feeds one strong spiral arm as counterbalance. During
the formation of the one-arm spiral material gets expelled into the disc through shock
heating. We want to note that we do not see a local maximum around 10 ms in Mej if we
use the geodesic criteria to define ejecta, which shows that the expelled material in this
process mostly gets thermal energy.
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The variation we see in the one-arm instability agrees well with the variation in fpeax
amplitude and the variation in the amount of ejecta per simulation. The double core
oscillation is the strongest post-merger source of GWs. The earlier the double core breaks
down, the earlier it stops emitting GW at 3.3 kHz for our set up and the weaker gets the
amplitude of f,cax, while the earlier switch to the one-arm instability leads to an earlier

increase in mass ejection which results in a higher total amount of ejecta at the end of
the simulation.

Figure 3.8 illustrates a comparison of the remnant density evolution between two sim-
ulations. Left panel shows the density distribution from the 75° simulation, which has
longer lasting strong m=2 mode and the right panels show the 90° simulation which had
a quickly growing one-arm instability. The two upper panels show the density profiles
during the inspiral. In the second panels is seen the density profiles shortly after merger
when the double core structure and the two spiral arms are forming. At both times, the
density profiles look especially in the high density region very similar. In the next two
panels, the remnant is shown at around 5 ms after merger.
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Figure 3.7.: upper left panel: mass ejection rates M.;, upper right panel: m=2 density
mode over time. The different mass ejection rates have a local maximum
around 10 to 15 ms after merger, at the same time the m=2 mode has a
local minimum before re-excitation. Lower Panel: Comparison between the
times of local M/ maxima and m=2 density mode minima over the rotation
angle. Both agree with each other indicating a correlation between m=2

mode and the ejection rate. Both Mej and m=2 modes are smoothed using
the Savitzky-Golay filter.
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Figure 3.8.: density distribution at different times compared between two simulations
(left 75°-simulation, right 90°-simulation).
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In both simulations the bar shaped core is visible, but one can see that the double core in
the left panel is more symmetric while in the right panel the core is more bean-shaped
with a slight bulge of opposite curvature forming in the layer around it. In the panels at
the last row one can see that in the left panel the double core still persists, while now one
side becomes slightly bigger. In the right panel the double core broke down to a single
core with an offset and a counterbalance bulge around it.

In the case of the 90°-simulation the early break of the double core structure leads to
an instability in the GW signal. The forming off-center core with the counter balance
bulge around it leads to an re-excitation at a slightly higher frequency. Over time the core
wanders towards the center and the re-excited signal also decays.

Paschalidis et al. [169] linking in there study the one-arm instability with forming
vortices from shearing during merger which move into the center of the remnant, creating
an underdensity around the rotation axis. We see similar behavior in our simulations
(compare upper panels of 3.8). The shearing and the Kelvin-Helmholtz instability might
seed small asymmetries in the mass distribution which trigger the one-arm instability.
This could explain why for lower resolution the spread in ejecta mass is smaller since in
these cases is the Kelvin-Helmholtz instability more poorly resolved. Since we point out
that shock heating and shearing and the Kelvin-Helmholtz instability may play a role in
the divergence of the ejecta mass, we need also to look into the treatment of artificial
viscosity of our setup. We conduct a first test of our artificial viscosity scheme in Appendix
C.

In this chapter we conducted the first study to explore fluctuations in the evolution of
BNSM. While the tests we conducted are not conclusive, we could give the first indications
that stochastic fluctuations in BNSM might exist. We did not see a clear correlation to
resolution effects, which would indicate that the stochasticity is mainly numerical. We
see that the evolution of the ejecta is very sensible to the evolution of the remnant core
structure. This makes it plausible that small seed perturbations could lead to different
outcomes.

However, wether the observed stochasticity in simulations is a real physical effect or has
just a numerical cause, we could show that it is important to take this uncertainty into
account when it comes to drawing conclusions from simulations.
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4. Evolution of ejecta

The goal of this chapter is to present the adjustments we have made for BNSM simulations
in the SPH code to improve the description of the ejecta. Specifically, we address the
problem of artifacts that are caused by poor resolution, such as negative internal energy,
and make the evolution of the hydrodynamic quantities more resilient against it. This
allows to simulate the ejecta over longer times with more meaningful results.

For long-term simulations, the EoS must cover the relevant density and temperature
regime in addition to a robust development of the hydrodynamic quantities. The range of
interest can be for densities from above nuclear saturation density and temperatures of
several tens of MeV to densities and temperatures of interstellar medium (10~'%gcm=—3,
10 K). For the simulations we use the SFHO EoS [144], which uses the statistical model
[186] for EoSs of Hempel and Schaffner-Bielich. In this approach matter consists of nuclei,
nucleons, electrons, positrons and photons. Electrons and positrons are described as a
general Fermi-Dirac gas. The Fermi-Dirac integrals are calculated with high precision
for electrons and positrons as well as for nucleons to take possible degeneracy fully into
account. At high densities for interacting nucleons is a relativistic mean field model applied.
At number densities below 10~°fm ™ (~ 107gcm—3) interactions become negligible and
nucleons are treated as non-interacting ideal Fermi-Dirac gases. Nuclei can form below
nuclear saturation density and treated as non-relativistic Boltzmann gas. While SFHO
already covering a wide range of parameter space, its main focus is on nuclear matter
properties. The lower limits of 1.6 x 103g cm~2 in density and 0.1 MeV in temperature,
while for most astrophysical applications adequate, are insufficient for long-term evolution
of BNSM ejecta. That is why we need to extend the EoS table. Section (4.1) will explain
the employed scheme to do that.

In section (4.2) we will focus on improving the hydrodynamical evolution of the ejecta.
While the ejecta is expanding, the resolution is decreasing. At low resolution the errors
of the employed numerical approximations can become large and impact the evolution.
We will test a alternative discretization of the GRHD equations which improves the
robustness of the evolution of the ejecta even at low resolution. To see how much
resolution impacts the ejecta we run simulation with different numbers of SPH particles
for both discretizations and make comparisons in section (4.3). With the extended EoS
and the new implemented discretization we run a long-term simulation up to 275 ms
after merger. Results from this simulation will be shown in chapter (5).
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4.1. Extension of the equation of state

The extension of the EoS table is for regions of low rest-mass density in the parameter
space. Therefore treating baryonic matter as a Boltzmann gas will be sufficient for a
consistent extension. Under this condition we need for a given p, T and Y, to compute
the total energy per nucleon

3
Ewov =) Yimi+ 3 ) YikpT + B+ By + Ec, 4.1)
% 7

where Y; is the number fraction of each species i of nuclei and nucleons, and their
corresponding baryon masses m;, E, is the energy contribution from electrons, £, the
energy contribution from photons and E¢ is the Coulomb energy contribution. The first
term is the rest mass contribution which depends on the composition of the baryonic
matter. First tests trying to use a second EoS table for low densities showed that the
assumed composition is important. Using two tables resulted in differences of internal
energies for the same p, T" and Y,. Consequently, the discontinuity caused the recovery
scheme of the primitive variables to fail to converge. For this first test we used the EoS
from [60], which was used in their study for a Black Hole Torus system and its outflows.
This EoS assumed for the composition just four species: neutrons, protons, “He and one
representative nucleus >*Mn.

Although employing a second table with a assumed composition of four species was
ineffective, this does not imply that a fully detailed composition is required for a continuous
extension of the EoS table. One approximation which could be made is to average over
all species of nuclei. The number fractions is defined by
ni X
V= &+ 2t 4.2

s T A (4.2)
where X; is the mass fraction of the species and A;. Due to normalization > Y;A; = 1
can the number fraction be expressed just by the average amount of nucleons per nucleus

PR

= = . 3
SV, S *3)
With that the second term, the thermal energy contribution can be computed by
3 31
5 Z YikpT = 5 —kpT. (4.4)

Already by using this approximation and treating electrons as a Fermi-gas it is possible
to get the thermal and the electron contribution. The Coulomb contribution is mostly
negligible in the parameter space where the ejecta are evolving. We can now at a boundary
of the parameter space of SFHO EoS calculate the thermal and electron contribution. We
define the difference between the tabulated energy and our calculated energy as the
missing rest-mass contribution. By this construction the internal energy will match exactly.
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We assume that the composition will stay constant for lower densities and temperatures,
and use the same rest mass contribution as for the edge case. To calculate the thermal and
electron contribution we use the Timmes EoS [187]. The EoS presumes that the described
matter is composed of a photon gas in local thermodynamic equilibrium, along with a
Boltzmann gas of nuclei and a Fermi-gas containing electrons and positrons. The EoS uses
a precise quadrature schemes from [188] to solve the generalized Fermi-Dirac integrals
to describe the Fermi-gas. The input parameters are the temperature, density, average
nucleon count per isotope A, and the average charge per isotope Z, which is provided by
SFHO and used in the extension. It outputs pressure, specific thermal energy, along with
various other hydrodynamic quantities. This treatment for matter is very similar to SFHO
at low densities.

The SFHO table covers the following ranges. The mesh for baryon number density is
defined by
ng = 10712 x 10%94¢* -1 fm—3 with k = 1,..., 308 (4.5)

which corresponds to a rest mass density between 1.6 x 10 and 3.2 x 10'°g cm™3 respec-
tively using Eq. (2.40). The temperature range is

T = 0.1 x 10°94C¢~1) MeV with i = 1,...81. (4.6)

We extend the mesh, while keeping the same definition but extending the range of
the indices. The baryon number density index k ranges then k£ = —517, ..., 308 which
correspond to a minimal rest mass density of 1.9 x 10~%gcm—3, while the temperature
index i ranges from i = —160, . .., 81, which corresponds to a minimum temperature of
3.9 x 1078 MeV (~ 500 K).

Figure (4.1) shows for a given temperature and rest mass density the extension of internal
energy and pressure. The gray line indicates the lower bound of the original SFHO
table. The upper panels show the extension of internal energy. Since for very low
densities and temperatures the rest mass contribution dominates (see discussion in
(2.3.1)), the rest mass contribution ¢, is subtracted. We define ¢, as the internal energy
at the minimum temperature for a specified rest mass density, which corresponds to
the missing contribution at that match of the two EoS. The upper left panel shows the
extension towards lower temperatures for a wide range of rest mass densities. The upper
right panel shows the extension towards lower rest mass densities over a wide range
of temperatures. In both cases the EoS extends smoothly with our procedure. The
assumption that the composition stays constant over the lower range of temperature and
rest mass density seems appropriate, as changes in rest mass contribution would show a
visible change in internal energy. Over those temperatures the r-process will take place
that changes the composition. However, we neglect this energy production here.

The lower panels show the pressure over density (left) and temperature (right). The
values are in very good agreement as a continuous extension. We chose for all four
panels rest mass density an temperature ranges which are relevant for the long time
evolution of BNSM ejecta. The ejecta contains a significant amount of free neutrons. As
we are not taking neutrinos into account, the ejecta remains highly neutron-rich, with
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Figure 4.1.: Extension of EoS table in internal energy e and pressure P in rest mass density
p and temperature T. Upper left: internal energy over temperature for different
rest mass densities. Upper right: internal energy over rest mass density
for different temperatures. Lower Left: Pressure over rest mass density for
different temperatures. Lower Right: Pressure over temperature for different
rest mass densities. For all plots a electron fraction Y, = 0.02 was chosen.
For a better visibility only every tenth row of temperature (density) of the
showed range is plotted. The dots are the tabulated values. Grey vertical line
shows where the extension of the EoS starts.

0.01 <Y, <0.06. Since we assume a Boltzmann gas, the extension to lower temperatures
is only applicable for low densities. At some point degeneracy effects will get non-negligible
for neutrons. These can be estimated with the degeneracy parameter

n=r"" 4.7)

with p the chemical potential including rest mass m. A system is "non-degenerate” when
(—n) > 1, while it is "highly degenerate” for > 1. Apart from these two extreme cases,
degeneracy effects become significant near n ~ 0. We checked for a temperature of 0.1
MeV at which density = —1 and how pressure and other quantities are effected at this
points. We recognized that above 10°g cm ™2 degeneracy effects become apparent and
above 10'%g cm~3 the differences between Timmes EOS and SFHO are greater than 2 %.
This was decided to be the upper limit for the extension. We could extend Timmes EOS to
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allow degenerate nucleons , but we decided against it. Even if we considered degeneracy
we would only increase the upper limit but still not be able to extend the temperature
for the whole density range, since at even higher densities nucleon-nucleon interactions
need to be considered.

However extending not over the full density range has a drawback for using the EOS table
in the SPH simulation. Since now the table is no longer symmetric in all three parameter
ranges. While for high densities the lowest temperatures will be still 0.1 MeV. A switch
has to be implemented into the code to allow lower temperatures for the ejecta in the
simulation as soon as they reach densities where the baryonic matter can be treated as
Boltzmann gas. This is not a trivial task since as mentioned in section (2.3) the primitive
quantities are calculated by an iterative numerical scheme. Switching between possible
temperature ranges (and with that internal energy) is a high non-linearity which can lead
to non convergence and failing the primitive variable recovery. Therefore deciding the
allowed temperature range before the recovery scheme is better to avoid this problem.
To do this, the rest mass density needs to be estimated before calculated in the recovery
scheme. As a criterion we use .

%sz@p. (4.8)
This is an estimated upper limit for the rest mass density before the density and the
Lorentz factor are recovered, since W is bigger or equal one. As soon as this upper limit
reaches a rest mass density of 3.14 x 10°¢ cm~3, we allow the recovery scheme to consider
lower temperatures. We put in the table lower temperature extension up to a rest mass
density of 10'°gcm~3 as leeway for the iterative recovery scheme.

With that, the EoS covers now the necessary density and temperature ranges for long-term
simulations. In the next section we will take a closer look into the hydrodynamic evolution
of the ejecta.

4.2. Evolution of the energy per nucleon

In section (2.2) we described the employed variables (2.24)-(2.26) that are evolved in
the GRHD equations (2.27)-(2.29) and in section (2.3) the numerical scheme that is
used to calculate the primitive variables rest-mass density p, coordinate velocity v, and
specific internal energy e. Other quantities, such as pressure and temperature are in this
scheme evaluated by using the EoS table for the evaluated primitive variables. A trilinear
interpolation is used to find for given rest-mass density p, electron fraction Y, and specific
internal energy e the matching pressure and other quantities of the EoS.

One problem that occurs mostly in regions of the outflowing ejecta, is that the recovery of
the primitive variables starts to fail. The energy per nucleon 7 falls below the minimum
physical value and the inversion to the specific internal energy e produces nonphysical
values. In cases where the recovery produces nonphysical values for ¢ the trilinear inter-
polation to find the matching pressure and temperature just uses the minimal value ¢ in
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the tabulated EoS. This also has an impact on the further evolution of the SPH particle,
since the evolution equations(2.28) and (2.29) uses the recovered pressure. To check for
how many SPH particles in the ejecta this occurs we run a simulation of 1.35-1.35 M,
BNSM up to 25 ms after merger. In the test simulation are 339 x 103 particles, from which
4.0 x 10% got ejected. At 25 ms after merger 0.72 x 103 particles, which is roughly 18% of
the ejecta, suffer from this problem. This can have an impact on the global properties
of the ejecta, including the spatial, velocity, and temperature distributions of the ejecta.
These are important information for nucleosynthesis and radiative transfer calculations to
predict r-process yields and kilonovae light curves.

To improve this, we should first understand how the energy per nucleon = should evolve
for an outflowing SPH particle. While a mass element gets ejected of the system, the
gravitational and pressure forces and the temperature will steeply decrease. When the
particle reaches asymptotically constant velocity the pressure gets negligible and the
enthalpy h = 1+ ¢+ P/p converges to h ~ 1 + ¢y, where ¢ is the specific internal energy
at zero temperature. The total energy per nucleon

0 p
=hW - ——1 4.
T oW (4.9)
should therefore converge to
0~ (1+ €)W —1. (4.10)
The energy per nucleon,
P

which is the variable evolved in the code, has an additional term subtracted, which
accounts for kinetic energies [42]. The additional term can be expressed as

u2h2
w= =1+ Dh2 =~ /1+ 1)(1+€)?, (4.12)

with u? the 4-velocity squared. How it behaves for outflowing particles can be estimated
by a Taylor expansion around ¢, — 0 up to the first order. With

\/1 (1 —+ 60)2 ~W+Wey— Ei (413)
we can now estimate that 7 should converge to
€0
1 1 — = 1
— (14 €)W — (1 + €)W + — (4.14)

In low Y, regions as shown in Figure (2.1) ¢ - m, can be up 7 MeV per nucleon due to
rest mass contributions and while most of the ejected particles have a velocity below 0.3c,
which corresponds to a Lorenz factor of W < 1.05. Thus the energy per nucleon energy
should asymptotically evolve roughly to this minimum of 7 MeV per nucleon. Through
the example of a single trajectory of an ejected SPH particle we can look how ejected
particles behave in the simulation.
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Figure (4.2) shows the energy per nucleon 7, the internal energy ¢, the internal energy
at zero temperature ¢y and the corresponding density, pressure and velocity over time.
The particle gets accelerated during the merger up to a velocity of 0.4c within half of a
millisecond. At 0 ms the density, pressure, and the energy per nucleon 7 are decreasing

rapidly. As

it is flying outwards, it decelerates while overcoming the gravity of the remnant.

At 0.2 ms after merger the particles internal energy e falls below the minimum ¢ indicated

by the red

line in the upper left panel. While it moves outwards it is hit by a shock front

from a spiral arm. At 0.6 ms after merger energy, pressure density and velocity are

increasing

for a short amount of time. After it flies beyond the spiral arm the energy falls

again below the minimal internal energy ¢y. The point is marked with a gray vertical line
in all panels. From this point onward the energy keeps decreasing.
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Figure 4.2.: upper left: temporal evolution of energy per nucleon ~ and the corresponding

internal energy ¢ of a single ejected SPH particle. The red line shows the
minimum internal energy ¢ in the EoS table. At 1.0 ms after merger the
energy per nucleon evolves below ¢, and decreases until it reaches zero,
which is indicated by the gray vertical line. upper right: corresponding density
of the ejected SPH particle. After it gets ejected the density decreases over
several orders of magnitude in 2 ms. lower left: evolution of the particles
pressure, after 1.0 ms it is the minimal pressure for the given density. lower
right: evolution of the velocity. The particle accelerates gets ejected and
decelerates slightly while it overcomes the remnants gravity
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€o is virtually constant even if the density is decreasing over several orders of magnitudes,
like the upper right panel is showing. Since neutrinos were not taken into account in this
simulation the electron fraction of the particle remained constant at Y, = 0.02, which
the parameter ¢, is quite sensitive to, as (2.1) showed. The internal energy e should
asymptotically approach ¢y. The difference ¢ — ¢ is the thermal energy which should
decrease over time. Following eq. (4.14), the energy per nucleon 7 - m,, in the upper
left panel, as the velocity of the particle approaches 0.3¢, which corresponds to a Lorentz
factor of 1.05, should just staying slightly below ¢, at a value of 6.6 MeV per nucleon.
One can see that in general the recovery of the thermal energy is challenging for the
cooling ejecta, because the thermal energy gets very small compared to the binding
energy contribution. Instead of staying around e, 7 is just crossing this limit and evolving
towards zero, without any sign to recover back to physical values.

As a consequence, the recovery scheme fails and the minimal pressure of the EoS is
assigned to the particle, which impacts also energy and momentum evolution from that
point onward. Since the mass element crossed the minimum energy ¢, its thermal energy
is negative. The recovery scheme just assigns the minimum temperature and the EoS
extension in temperature can not be used. Mass elements and their trajectories which
are facing this issue are unusable for nucleosynthesis calculations, since temperature and
internal energy are for that essential quantities.

The example makes clear that already parts of the dynamical ejecta at early times facing
this problem of evolving into nonphysical regimes. To understand why this is happening,
we will take a closer look at the energy equation, its individual terms, and how it is
discretized in the SPH code.

4.2.1. Discretization

The right-hand site of energy equation has 5 terms

%:A—FB—FC—FD—FE, (4.15)
with »
A= —wfigai (v' +5) (4.16)
6
B = —1/}7 (v +5) (1 - hW) O; P 4.17)
p w
5P % %
C=—6v > (v' + B°) O (4.18)
U; hW
D=—a <1 - w) dicx (4.19)
1 /1 1 o1 4
=4[ — - = 0098 — 9. 3]
E=+a ( i w) (uzugagﬁ 5 Qitti0;f ) : (4.20)
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We will now look into how the individual terms contribute to the evolution of energy per
nucleon, on the same example particle as in the section before. The left panel of figure
(4.3) shows ‘fl—; and its individual terms over time. We did not include the viscosity term
which can only increase 7. Around 0.6 ms after merger on can see that f% is greater than
the sum of the individual terms. This is because the viscosity contribution. The right
panel shows how 7 and € evolves over time. As the particle gets ejected the terms C, D,
and € that account for the change in the metric terms d«, 93 and 01 are decreasing and
become negligible since the particle is leaving the strong gravity field of the remnant.
While the pressure is rapidly decreasing the pressure gradient term B is also decreasing.
The divergence of velocity in general does not need to vanish, but since the term A
includes also the pressure, it also should evolve towards zero. While we see that trend the
divergence of velocity term A still dominates and leads to a rapidly decreasing energy per
nucleon. Even after 1 ms after the merger when ¢ is below ¢, the term .4 does not vanish.
Energy is expected to decrease during the ejection but this fast evolution to nonphysical
energies indicates that the divergence of velocity term A in CZT; is overestimated.

We will look into the discretization of this term in the SPH code. In section (2.2.1) we
showed the current implementation of the discretization of the pressure gradient and
divergence of velocity in the energy per nucleon evolution:

P . -\ disc. M Pa P i i i i
_¢6Eai (vf + 87) Ry Z 71’ (p*2 + p,f;) [(vp + B%) — (v + B4)] VaWap. (4.21)
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Figure 4.3.: Left: individual terms of the time derivative from the energy per nucleon

f% and total fl—; over time of a ejected particle. Right: resulting energy per
nucleon 7 as well as internal energy e over time.

This discretization uses a pair-wise symmetrization with arithmetic means for the pressure.
Symmetrization in discretization is typically used for conservation of quantities in SPH,

51



for example momentum. This approach guarantees that the momentum lost by particle a
is transferred to particle b, thereby conserving the total momentum. However, as Springel
and Hernquist pointed out [137], there is no compelling need to distribute pressure work
done by a particle pair equally between them.

As shown in section (2.2.1) symmetrization was in the SPH code also used to combine
term A and B together. Another possibility is to use eq. (2.36) to discretize the divergence
of velocity without symmetrization. With this non-symmetric discretization we get instead
of eq. (2.39) now
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Figure 4.4.: pressure gradient term and divergence of velocity term of the time derivative
from the conserved energy over time after changing the discretization. Right:
conserved energy 7 and internal energy e over time. After minimal pressure
of the EoS is reached 7 stops to decreasing and e decreases asymptotically
to the EOS minimum.

Benz discussed already for the Newtonian case in [189] that the disadvantage of the
symmetrized discretization is that it can lead to non-physical solutions like negative
internal energies and temperatures. A practical way to understand this is by recognizing
that the pressure work of a particle is influenced by the pressure P, of its neighboring
particles b. This is the reason why the divergence of velocity term is overestimated.
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It also implies that, because the total energy is conserved and the evolution with this
discretization tends to underestimate the internal energy, it overestimates the kinetic
energy of the ejecta. Benz showed that the non-symmetrized discretization still conserves
total energy.

In the Newtonian case this discretization is frequently used for the derivative of the internal
energy instead of the symmetrized form [137, 190-199]. Couchman et al. showed that
the non-symmetrized discretization produces less scatter in entropy [194]. Springel and
Hernquist investigated different SPH formulations under conditions of poor resolution
and strong explosions and showed that the non-symmetrized discretization is preferable
since it avoids artifacts from nonphysical behavior [137].

These studies used Newtonian hydrodynamics and focused mainly on physical systems
such as gas cloud collapse and star and galaxy formations. We test now if the non-
symmetrized discretization also in the general relativistic case show improvements and
improve the evolution of the ejecta of BNSMs.

We want to point out, that we focus on the long term evolution of the dynamical ejecta,
which is less then 1 % of the mass of the system but contains all particles which are
reaching non-physical regimes. Studies which focus more on the remnant, for example,
the formation of hyperons or quark gluon plasma and their impact on gravitational waves
may not be impacted by this problem since the system reaches high temperatures through
shock and viscous heating and it may be insignificant to have less accurate ratio between
internal and kinetic energy. Changes in the ejecta velocity, temperature and entropy
might have a significant impact on nucleosynthesis network calculations and resulting
kilonova light curves.

We restarted the test simulation at the time of merger after applying the changes, and
figure (4.4) shows the impact on the same particle we used for figure (4.3) on the Cfl—;
terms on the left side and on the evolution of the energy per nucleon and internal energy
on the right side.

The divergence of velocity term is at 1.0 ms after merger decreases faster towards zero.
The particle gets ejected promptly and density and pressure declines very rapidly. In poor
resolution, this can lead to particles which still fall below the minimum energy of the EoS
for a given density and electron fraction. But in this case as seen around 0.8 ms after
merger the divergence of velocity terms also drops and f% becomes small and the energy
per nucleon 7 stays consistent with the EoS. While in highly dynamical regions still some
particles overshoot the minimal energy of the EoS, the prevention of overestimation of the
divergence of velocity term improves the problem. Figure (4.5) shows the relative amount
of SPH particles which are below the minimal energy of the EoS for a given density and
electron fraction. The dashed line shows the impact of the changed discretization which
halves the amount of particles in the ejecta with non-physical energies. Now only around 5
% of the ejecta faces this issue. Additionally particles which are reaching the non-physical
regime recover over time or stay approximately near the lower limit instead of for drifting
away.
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In the next section we will have a closer look on the impact of the change in discretization
on the ejecta dynamics.
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Figure 4.5.: The relative amount of SPH particles in the ejecta where the recovery scheme
fails. Dashed line shows how the changed discretization of the divergence
of velocity improved the evolution of the ejecta. Upper figure: relative to
the total ejecta mass, lower figure: relative to the total amount of ejected
particles.

4.2.2. Impact of discretization on ejecta evolution

To explore the impact of the choice of discretization we setup two simulations. The original
discretization we refer to as symmetric discretized (SD) and the new implementation as
asymmetric discretized (AD).

Both simulations are set with a 1.35-1.35 M, NS-NS binary system with a total number
of roughly 339 x 10® SPH particles. Both use the extended SFHO EoS described earlier
and also have otherwise the same setup. The only difference is the discretization of the
divergence of velocity in the derivative of the energy per nucleon 7. With this setup, we
ran both simulations up to roughly 60 ms after merger which is more than two times
as long as before. As discussed in the last section the original discretization has the
tendency to underestimate the share of internal energy in the total energy and therefore
overestimates the amount of kinetic energy. This results in higher velocities of the ejecting
material and a higher amount of total ejecta. Figure (4.6) shows the amount of ejecta
outside a radius of 1000 km over time for both simulations. The mass ejection rate in the
SD case is clearly higher, by reaching 1073 M, of ejecta at 60 ms (blue line), while the
AD case reaches only half that value with 5 x 104 M.

We chose to look at ejecta outside of 1000 km since at this radius different ejecta criteria
are converging to the same result (See appendix B) and we showed in (3.2) that stochastic
effects are also smaller (see (3.1)). Compared to the variance caused by stochasticity,
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which was around 20 % the difference caused by using a different discretization is
significant.
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Figure 4.6.: comparison between the total ejecta of the AD and the SD simulation over
time. Bluelineis in the case of the original implemented symmetric discretiza-
tion of the divergence of velocity in the derivative of energy per nucleon r,
red line is with the new implemented asymmetric discretization.

The total ejecta using the virial criteria (eq. (2.57)) is in both cases above 3 x 1072M,
and are comparatively high for the typical dynamical ejecta masses of 10~% — 1072M,
[83, 142, 200-203] at this time after merger. A reason for that is without any treatment
of neutrinos the material does not have an effective cooling mechanism in the simulation.
This leads to higher temperatures of the material outside the remnant resulting to higher
thermal pressure, which pushes more material out. Thermally generated outflows leads
also to more spherical symmetric ejecta.

However, the polar regions of the system still suffer the most from poor resolution, since
most outflow will be ejected perpendicular to the rotation axis. There we expect a stronger
impact on the ejecta. We compare the relative amount of fast ejecta (v > 0.15 c¢) in the
polar region at cos # > 0.9 (corresponding to an opening angle of 26°). Figure (4.7) shows
the evolution over time.

Shortly after the merger part of the shock heated material from the impact will eject the
first material in polar direction. This material is in both cases faster than 0.15 c. Over
the next 60 ms the following ejecta in the AD case is mostly slower than 0.15 c and the
relative amount of fast ejecta drops fast to below 20 % and decreases steadily after and
tangents to 3% at 60 ms. For the SD case the trend is similar but significant more fast
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ejecta is in the polar region at all times and it is still over 40% at 60 ms. Next, we will
look in more detail into the differences in the velocity distribution of the ejecta.
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Figure 4.7.: relative amount of fast ejecta (v > 0.15 ¢ ) of the ejected mass 1/ in the
polar regions (| cos(#)| > 0.9) over time.

Velocity

First we have a look at the velocity distribution at the end of the simulations in figure
(4.8). The velocity is in Av = 0.02 ¢ bins subdivided and each bar shows the relative
amount of ejecta in each velocity bin. In both simulations we see a peak at the 0.02-0.04 ¢
bin. In the AD case this peak is more narrow and falls off first very steep up to 0.16 ¢ and
then slower until 0.7 c. In the SD scenario, the peak widens to 0.24 c, following which
there is a gradual decline until 0.7 c, with a few mass elements exceeding this speed.
The crossed bars show the amount of matter Mg,; in each velocity bin which correspond
to SPH particles for which the recovery scheme failed. In both cases most of the fastest
particles have this problem. Nevertheless in the AD case a clear improvement is visible,
especially at velocities below 0.16 c the relative amount of Mg,; is decreasing even so the
My, is steeply increasing.

This indicates a velocity dependence on Mj,;, which would be expected as very fast ejecta
tend more easily to overshoot the minimum e since their more highly dynamical trajectory
is less accurate resolved. One thing worth to point out is that the slowest velocity bin
of <0.02 c has no SPH particles where the recovery scheme failed. In the SD case this
velocity dependency is not as clear as in the AD case. While in the peak region around 0.1
c also most of the material is consistent with the EoS, the trend of Mg, is still increasing
albeit not steeply as the M, peak.

Another point we want to emphasize here again is that even while in the AD case still
a not negligible amount of SPH particles fails the recovery of the pressure there are in
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most cases only slightly below the minimum of the table and the discrepancy between
the matching pressure p(e) of the EoS and the recovered internal energy e is only a few
percent, while in the SD case all the SPH particles drift further away from thermodynamic
consistency over time and a substantial part of them have negative internal energy e.
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Figure 4.8.: velocity distribution of ejecta at 58 ms for both simulations. Crossed bars
show the amount of matter which correspond to SPH particles for which the
recovery scheme for the primitive variables failed.

In figure (4.9) we look in more detail on the angular distribution of the velocity of the
ejecta. Each angle bin has an equal solid-angle with the width of cos# = 0.1. Every angle
bin is divided in velocity bins with a width of 0.02 c. The color shows how much mass is
in each bin relatively to the total ejected mass Me;.

We can see around 0.04 c in both cases that the peak of (4.8) is evenly distributed over the
polar angle. The broader peak in the SD case comes from the fact, that at the polar region
velocity distribution tends to faster velocities. There, most of the ejecta has velocities
between 0.1 -0.2 c. In general we see relatively more material in higher velocities in the
SD case. In both cases the fastest material is near the equatorial plane. In the AD case we
see clearly less fast ejecta over the polar angles.

The velocity distribution is important for kilonova light curve calculations. Faster material
gets earlier transparent, which impact how much light is emitted. Material faster than
0.2 c contributes mainly to the luminosity within the first day. Viewed from the polar
region, the SD simulation would demonstrate increased luminosity at early times.

Next will have a look at the impact on the temperature and entropy, which are an important
parameter for r-process nucleosynthesis.
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Figure 4.9.: mass distribution in velocity and polar angle bin, where each angle bin has
an equal solid-angle with the width of cos# = 0.1 and a velocity bin a width
of 0.02 c. The color scale indicates how much mass is in each angle at a
certain velocity.

Temperature and Entropy

In BNSM entropy is generated through shock heating or viscous heating. In our simulation
the artificial viscosity increases the entropy by converting kinetic energy into thermal
energy. The matter ejected by tidal forces has typically low entropy, while the ejecta
components which comes from the collision interface consists of hot and high entropy
matter. Furthermore, the shock heating in the disc from the formed spiral arms, which
increases temperature and entropy in the disc steadily also lead to higher entropy in the
disc outflows. In our code entropy is not used for the simulation, but can be extracted
from the EoS using the other primitive quantities.

In figure (4.10) we look on the angular distribution of entropy of the ejecta. We show
entropies between 0-100 k;, but we want to note that a few individual particles had even
higher entropies (more in the SD case). In both cases most of the ejecta has entropies
around 10 -20 k;. We see that in the SD case more material reaches higher entropies than
in the AD case. This is in agreement with the observation in Newtonian SPH applications
[194]. Also in the AD case the higher entropies are more towards the equatorial plane,
while for the SD simulation high entropy matter is more evenly distributed. Similar to the
velocity distribution, we at the poles the most difference between AD and SD in entropy
distribution. While in both cases the entropy interval with the most material is higher
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in the poles in the SD case this behavior is more pronounced. We want to point out the
lowest entropy bin around O kp also includes all nonphysical particles where the recovery
of the primitive quantities failed. The plot shows that more particles are in the SD in this
bin across all polar angles.
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Figure 4.10.: mass distribution in entropy and polar angle bin, where each angle bin has
an equal solid-angle with the width of cos# = 0.1 and a entropy bin a width
of 2 kg. The color scale indicates how much mass is in each angle at a
certain entropy.

Next we take a look on the angular distribution of the temperature in figure (4.11). Each
angle bin has an equal solid-angle with the width of cos§ = 0.1 and a temperature bin
with a width of 0.1 MeV. The color scale indicates how much relative mass is in each angle
at a certain temperature. In both cases higher temperature is reached on the poles, but
the peaks are more clear in the AD case. Most of the ejected material has temperatures
below 1 MeV at that time.

Similar to the entropy plot did we include the particles which failed the recovery scheme
in the lowest temperature interval 0-0.1 MeV. The SD run contains a higher concentration
of particles at the poles within that interval, and across all polar angles, there is more
material present in that temperature interval. In the AD case is more material above 0.5
MeV. While both have very similar peak temperature, the AD run has on average higher
temperatures.

The temperature and entropy of the ejecta is highly relevant for the r-process nucleosyn-
thesis. When the temperature drops below 1 MeV nucleons start to form the initial seed
nuclei. If the ejecta are hotter, this will happen later at lower rest-mass densities. This
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can change the resulting element production yields, which is determined by the balance
between photodisintegration and neutron captures.

In conclusion, we could show with these comparisons, that the discretization has an impact
on the ejecta evolution and especially in the polar region where poor resolution is most
prevalent. This would also impact nucleosynthesis calculations and the resulting kilonova
light curves based on these simulations. We chose for the comparison a total particle
number of 339 x 10% which was often used in previous studies [30, 143, 176, 204-206].
Of course, the impact of the discretization depends on the total particle number so in the
next section we do a resolution study to see if we can reach convergence between the
discretizations.
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Figure 4.11.: mass distribution in temperature and polar angle bin, where each angle bin
has an equal solid-angle with the width of cos§ = 0.1 and a temperature bin
a width of 0.1 MeV. The color scale indicates how much mass is in each
angle at a certain temperature.

4.3. Resolution study

At first we will look how sensitive the total ejecta mass over time is to the total particle
number. Therefore, we conduct simulations with total particle numbers of 70 x 102,
136 x 103, 283 x 103, 339 x 103, 682 x 10 and 1420 x 10® for both discretizations. As
before we look at ejecta which is outside of a radius of 1000 km from the remnant. For
each simulation, Table (4.1) presents the duration until the simulation terminates, the
ejecta mass in 1073Mg, and the count of particles N at that time. The simulations
revealed that the duration of the inspiral phase is resolution-dependent, with higher
resolution runs merging at somewhat later times, even when using the same code time.
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Table 4.1.: comparison of simulations with different particle numbers for both discretiza-
tions. Table shows the amount of ejecta at end of the simulation outside a
radius of 1000 km.

number of particles discretization ¢ — tierg [ms] My [10—3M] Nei

1420 x 10? Sym. 22.70 6.57 12917
682 x 103 sym. 24.33 5.32 3429
339 x 103 sym. 25.09 4.34 1283
136 x 103 sym. 25.65 4.17 495
70 x 103 sym. 25.95 3.64 279
1420 x 103 asym. 22.87 4.21 7518
682 x 103 asym. 24.33 3.71 2346
339 x 103 asym. 25.10 2.21 636
136 x 103 asym. 25.68 1.70 193
70 x 103 asym. 26.06 1.61 115

That is the reason why end of simulations time after merger vary around 2 to 3 ms. For
this comparison we choose to run until roughly 20 ms after merger, since the higher
resolution runs with 682 x 102 and 1420 x 103 particles are computational expensive and
it took already several month to run up to 20 ms after merger.

There is a clear trend between total number of particles and amount of ejecta for both
discretizations.

Also the difference in ejecta between the AD and the SD simulations for the same resolution
decrease with higher particle numbers. While for the 70 x 103 particle runs the SD run
has more than double the amount of ejecta, it is only around 50 % more in the 1420 x 103
particle run. This trend may indicate that simulation with a few million particles could
already converge in terms of total amount of ejecta between this two discretizations.

The two upper panels of figure (4.12) show how the amount of ejecta outside 1000 km
evolves over time for the differently resolved runs. In both cases the mass ejecting rate
increases with higher resolution. Also at around 25 ms the ejection rate for the higher
resolutions are steeper while especially in the AD case the lower resolution runs seem to
flatten out earlier. The lower panels show the relative amount of the total ejecta for which
the recovery scheme fails. In the SD case there is no clear trend between resolution and
the amount of thermodynamically inconsistent particles. For all simulations the amount
stays between 15% to 25%. However, in the AD case one can see that the amount of
thermodynamically inconsistent particles decreases with higher resolution, as one would
expect if one assumes that the reason for it is low resolution. For the highest resolution
run the amount stays around only 3 % while for the lowest resolution it is around 30% at
the run.
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Figure 4.12.: Upper panels: comparison between total ejecta outside 1000 km over time
for different total particle numbers. On the left for the symmetric discretiza-
tion on the right for the asymmetric discretization. Lower panels: relative
amount of ejecta for which the recovery scheme fails for different total
particle numbers.

The only outlier from this trend is the 682 x 103 particle run which has a higher amount
than the 339 x 103 particle run. Since none of these runs are near convergence it is expected
that there is some variation, even between runs with the same set up. The reason, why the
simulation 682 x 10% particle has more particles which reached nonphysical regimes than
the simulation with 339 x 103 particles, could be an effect from stochasticity. How areas in
the outflowing matter are resolved depends also on how the ejecta is distributed, and this
can vary even within the exact same setup as we discussed in chapter (3). Nonetheless, a
clear trend is recognizable.

While for very low resolution the SD simulations have less particle reaching nonphysical
regimes, for higher resolution runs the asymmetric discretization is preferable since in
that case the amount of nonphysical particles drops with higher resolution.

Next we take a look on the polar mass distribution changes with resolution. Figure (4.13)
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shows the ejected mass distributed in 20 solid angle bins, here shown in terms of cos 6.
The black hatched bars show the amount of fast ejecta (v > 0.15 ¢). The rows show the
different total particle number runs from 70 x 103 to 1420 x 103. The left column are the
SD runs, while the right column are the AD runs. It shows the distribution at the end of
each run, at the times stated at table (4.1). For the AD simulation one can see that the
distribution is more sensitive to resolution. At low resolution the angular distribution is
quite noisy and aspherical with almost no ejecta at the polar regions. The main reason is
here the very low amount of ejecta.

As the resolution increases, the ejecta exhibit a trend towards a more spherical distribution.
At the outer most angle bins the amount of fast ejecta to drop down, while around the
equatorial plane is the relative highest amount of fast ejecta. This characteristic get less
pronounced with increasing resolution. Only at the highest resolution the drop in fast
ejecta occurs only on the south pole while the rest of the fast eject distribution is very
evenly distributed over the polar angle. The mass distribution retains a off center peak at
every resolution. For the highest resolution it has a two peak structure at | cos§| = 0.9
with a minimum around cosf = 0.5. Which is similar to how the mass distribution
look in the SD case especially at particle numbers above 339 x 103. In general the mass
distribution in the SD runs do not change drastically with higher resolution. However, one
interesting change can be seen in the fast ejecta distribution. As discussed in the section
before, one characteristic is that at the solid angle bins of the polar region the SD runs
have a peak of fast ejecta. This can also be seen here but with increasing resolution this
feature gets less pronounced and at the highest resolution it is not visible anymore. This
is a strong indication, that this feature arises numerically due to poor resolution in this
discretization and not physically. At the highest resolution the total ejecta and the fast
ejecta distribution are having the same features, which suggest that there is no specific
azimuthal direction where is relatively more fast material is ejected.

Next we look at the velocity distribution over different resolutions. Figure (4.14) shows
for the different simulations the velocity distribution of the ejecta at the end of the run,
at the time stated in table (4.1). The crossed bars showing the amount of ejecta which
reached nonphysical regime within each velocity bin. For all resolutions we see that the SD
simulations are reaching higher velocities than the AD simulations. This comes from the
overestimation of the kinetic energy in the evolution. Also in both cases higher velocities
are reached with increasing resolution. The shift of the highest reached velocities seem
in both cases very similar from 0.5-0.6 ¢ to 0.75-0.85 c and the difference in highest
reached velocity does not decrease with increasing resolution. The distribution gets the
shape of a power law in the high resolution simulations. This could be an indication
that in even higher particle numbers where convergence is reached the distribution will
be a decay from a low velocity peak like a power law up to close to the speed of light.
A characteristic of the AD simulations are, that reaching nonphysical regimes seems to
correlate with the particle velocity. The higher the velocity the higher the chance to reach
nonphysical regimes. This is to be expected, since the fastest material is further away from
the other mass elements. Also in this cases the kinetic energy is large and the material is
expand rapidly. This leads to very small internal energies, which need during the cooling
high precision to recover correctly. For both discretizations the high share of nonphysical
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particles at high velocities is not an issue. In these instances the kinetic energy should
be the dominant driver for the evolution and internal energy be quite small. The failed
recovery assigns the lowest temperature and pressure to the particles, which is in this
cases be close to the actual value. In the SD case this correlation between velocity and
relative amount of nonphysical particles is not prevalent. While there is always a lot of
material physically consistent at the peak around 0.1 c the rest of the distribution of the
nonphysical particles follow a similar shape like the total velocity distribution. Also as
mentioned before in the AD case the amount of thermodynamically inconsistent material
decreases with higher resolution. This can be clearly seen in the highest resolution where
the relative amount of nonphysical particles is roughly one order of magnitude lower for
velocities below 0.3 c.

These comparisons show that the asymmetric discretization improve thermodynamical
consistency and lead to more consistent results by higher resolution, which is a desirable
behavior of simulations. In the next chapter we will investigate the long term evolution of
ejecta and try out different approaches to it.
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Figure 4.13.: Comparison of the mass distribution over polar angles for simulations
with different particle numbers for both discretizations. These are the
distributions at the times which can be find in table (4.1). Crossed bars
shows amount of matter velocities v>0.15 c.
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Figure 4.14.: ejecta velocity distribution of simulations with different total particle num-
bers. Crossed bars are showing amount of matter in each velocity bin for
which the recovery scheme fails.
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5. Long-term evolution simulations

In the last section we could show that the asymmetric discretization of the energy equation
is favorable for a physical consistent evolution of the dynamical ejecta especially within low
resolution. For typically chosen total particle numbers this can affect kilonova light curve
calculations. Another important point, if BNSM simulation results are used as initial data
for radiative transfer calculations, is that the ejecta reached homologous expansion. In
this chapter we will show results of a long-term BNSM simulation and discuss homologous
expansion on the basis of the results.

5.1. Homologous expansion

Over time the ejecta of BNSM expand and move away from the compact remnant. There-
fore pressure and gravitational forces are decreasing. Consider for a ejected fluid element
the Newtonian equation of motion in Lagrangian formulation

av

N v4 2 .
G VP —pVo, (5.1

with P, p, v, ¢ denoting pressure, density, velocity and gravitational potential. One can
see that in the limit of vanishing pressure gradient and gravitational potential the relative
velocity change of fluid elements moving with the expansion also approaches zero. At
this point homologous expansion is reached. The fluid velocity is constant for each fluid
element and the radial profile of velocity becomes proportional to the distance r to the
remnant

v(t) o< r. (5.2)

The morphology of the ejecta remains invariant while its rest-mass density is decreasing

p(r,t) = po (%) <tt°>3 (5.3)

where ¢ defines the ¢ = 0 point of homologous expansion and p, the corresponding rest-
mass density at that time. This characteristic is very useful for kilonova modeling since it
decouples the hydrodynamic evolution of the ejecta from the radiative transfer. Therefore
most studies which calculate kilonova light curves use as a fundamental assumption
homologous expansion of the ejecta from the start.
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Recent studies, which used SPH simulations as initial data for kilonova modeling, typically
took the ejecta at ~10 - 20 ms after merger and either propagated first the SPH particles
with constant velocities for 0.5 s and assumed from there homologous expansion [204,
205] or mapped it into an axial-symmetric simulation to evolve over a longer time [176].
One goal for long-term simulations of BNSM would be to reach the phase where constant
velocity approximations or mapping into a different numerical hydrodynamical simulation
is not anymore necessary for kilonova calculations.

To determine whether the ejecta have reached homologous expansion Rosswog et al.
[182] proposed the homology parameter

, (5.4)

with @ and v the average acceleration and velocity. For y = 1 the material has a constant
acceleration and for y = 0 it has a constant velocity and has reached homologous
expansion. In the SPH framework we have the advantage to evaluate integral quantities
as x always on the same amount of matter, which can be difficult in grid based codes. For
our numerical set up we define y for individual SPH particles and have then later the free
choice over which matter we take the average. We define y in our numerical framework
for a single SPH particle a as follows

’dﬁa ¢

Xa = . (5.5)
|G|

The change in conserved specific momentum will reach zero % — 0 when a particle

reaches homologous expansion. The specific momentum will reach 4; = (1 + % +

€) (v' + %) Y*u® — W - 0" in the limit P — 0,¢ — 0,3 — 0,a — 1,¢ — 1. With this
definition it is possible, to check when individual trajectories reach homologous expansion
but also averaging over a specific or the total amount of ejecta to draw conclusion over
the ejected material as a whole. Following 5.4, we define the averaged parameter as

om — ~ : 9 56
Xh (ap (5.6)

where (|@|) and ( % ) are the mass weighted average of the specific momentum and its
time derivative. Alternatively, one could also average (). A comparison showed us that
both averaging results in very similar values for xpom.

In previous studies, y was used to make qualitative statements of the total ejecta evolving
towards homologous expansion [182, 207]. Rosswog et. al showed x over time for a
long-term simulation where the ejecta was cut out 20 ms after merger and evolved for
100 years. They showed that with considering radioactive heating in the ejecta y falls
below 0.01 after 2000 s for a symmetric mass merger. While that shows that the average
acceleration at that time is only one per cent of the average velocity, it does not necessarily
mean that the velocity will not change more than one per cent for the rest of the time. In
the following will try to get a better understanding on what a certain value of x can say
about the change in velocity.
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To study the long-term evolution we continue the full simulation from previous section
with asymmetric discretization and extended EoS to run up to ~ 250 ms after merger.

5.1.1. Quantifying Homology

At early times various ejecta criteria can differ in the amount of ejecta they are defining.
Over time this should eventually converge to the same amount. Using our setup, we
can determine whether, throughout the simulated post-merger phase, the variation in
the defined amount of ejecta influences the prediction of its proximity to becoming
homologous.
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Figure 5.1.: ejected mass of long term simulation over time. Red line is for the virial
criteria and a radial cut at 1000 km, which we used in the last section. Black
line is the ejecta criteria which is used in [207].

Neuweiler et. al. investigated when the condition of homologous expansion is satisfied for
dynamical ejecta with the grid based code BAM [207]. In that work the unbound matter
was defined by ug < —1 and v, > 0, which is a combination of the geodesic criterion (see
Sec. 2.3.3) and positive radial velocity (G.C.). They cut out the ejecta at 20 to 30 ms after
merger and evolved it further for around 100 ms. On this timescale a decrease of the
homology parameter was not apparent. They argue, that this is because the homologous
parameter is dominated by the dense material with low velocities. One challenge which
might also lead to this result is the difficulty to trace mass flow and define acceleration of
it in grid based codes.

We will use for this section the same ejecta criterion and compare it with the virial criterion
with a radial cut at 1000 km (V.C.) which we used in the chapter before (also discussed

69



in Appendix (B)). Figure (5.1) shows the amount of ejecta for both criteria. V.C. defines
generally more ejecta, since it considers also thermal and nuclear binding energy which
can impact the acceleration of fluid elements. The additional radial cut we impose is to
avoid defining hot disk material as unbound. In this comparison it has the effect that G.C.
has more ejecta in early times, since it does not use a radial cut. Over time, while the
dynamical ejecta and the disc are expanding beyond the chosen radial cut, V.C. starts to
define more unbound material at around 40 ms after merger. At the same time the amount
of unbound matter defined by G.C stagnates for around 10 ms before rising again. This
stagnation is consistent with results from different BNSM simulation studies which run
until a few tens of milliseconds after merger, and used the geodesic criterion to determine
the amount of dynamical ejecta [208-211]. It is conventionally often used to distinguish
between early dynamical ejecta and later phases. We see with both criteria the amount
of ejecta keeps rising until the end of the simulation at 250 ms with a comparable rate at
later times.

We want to point out, since the simulation does not have any treatment of neutrinos or
proper treatment of viscosity there are no neutrino driven wind or viscous disc outflows
ejecta components, but only dynamical ejecta. We note that no effective cooling mech-
anism is present without neutrinos, which leads to stronger thermal expansion and an
overestimated outflow rate.
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Figure 5.2.: left: homology parameter xy,m Over time. right: average velocity over time.
Solid lines is material ejected before 25 ms, dashed lines material which is
ejected between 25 ms to 100 ms. For the Black lines the virial criterion is
used to define ejecta and for the red lines the geodesic criterion.

To investigate when the ejected material satisfies the condition of homologous expansion
we will first consider just the ejecta which became unbound before 25 ms after merger
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(early) and second material which was ejected between 25 ms and 100 ms after merger
(late), and look how the averaged ynom Of this material evolves to later times. Figure
(5.2) shows in the left panel the evolution of y},, for a constant amount of material
defined by the virial (red lines) or geodesic criterion (black lines) ejected either early (full
lines) or late (dashed line) and at the right panel the corresponding average velocities
for this material over time. For the early ejecta ypony Starts at values below 0.1 and is
decreasing to 0.005 at 250 ms, while the average velocity stays constant, which shows
that for the early dynamical ejecta the deviation from homologous expansion are already
negligible at 250 ms. As we saw in figure 5.1, G.C. considers more early ejecta with a
lower average velocity compared to V.C., which results in general higher values for xpom
while the decrease in xpom Over time is the same for both ejecta criteria. This parallel shift
stems mainly from using a radial cut, which leaves out slow material. To reach 1000 km
within the first 25 ms the ejecta needs at least a velocity of 0.13c. In the case of the late
dynamical ejecta, the radial cut excludes only material moving slower than 0.03¢, which
has a minimal impact. For the late ejecta, both criteria begin with y}., values near one
and decrease more slowly than in early ejecta, also possessing significantly lower average
velocities, suggesting that this material reaches a homologous state over a much longer
timescale. Since the virial criterion takes thermal energy into account it considers slow
but hot material. We see now a reversed relation, that V.C. considers more material with
lower average velocity as unbound and has therefore higher values of x than G.C.

One also can see for the later ejecta, that the average velocity is slightly increasing over
time. This shows that for this material a significant part of energy resides as thermal
energy and over time converts to kinetic energy through pressure-volume work. For the
early ejecta with higher kinetic energies is this effect insignificant.

The averaged homologous parameter indicates that, over time, the material progresses to
freely expanding, but does not quantify how much material deviates and how strong this
velocity deviation can be. It is not clear what a value of, for example, ynom = 0.01 says.
This could be helpful for radiative transfer models for error estimation when using ejecta
from BNSM simulations. Next, we want to try to make more quantitative statements
about the ejecta using the homology parameter.

For that we look at the correlation between the value of y and the change in velocity.
We look at the early ejecta and define for specific velocity intervals of the early ejecta
the average xpom value at 25 ms as xnom,0- The early ejecta has velocities between 0.1
c and 0.64 c. We divide it in intervals of the size of Av = 0.02. We look how xom and
v changes over time for each velocity interval. Figure (5.3) shows in the left panel the
normalized decrease Xnom/ Xhom,o for each velocity interval. For ejecta faster than 0.16 ¢
Xhom decay roughly at the same rate. For slower ejecta, one can see that the decay rate is
slower. The right panel shows the change in velocity for each velocity interval relative to
the velocity vy at 25 ms. For the most velocities the change is less than 3 %, while for the
material slower than 0.16 ¢ changes between 6 and 15 %. Most of the ejecta gets slower
over time, but for a few velocity intervals the velocity increased slightly. The average xpom
at 25 ms after merger is 0.07. While on average it might be not a bad estimate to assume
a change of 7 % in velocity, we see through this that especially the slower material can
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have a change up to 15 % in velocity. 10 % of the early ejecta has a velocity between 0.1
and 0.12 c.

For kilonova light curve, using estimation of the photospheric radius, the ejecta faster than
0.2 c is relevant for the roughly the first 4 days [212]. Material with velocities between
0.1 c and 0.2 c are relevant for 4 to 6 days after merger.
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Figure 5.3.: Left: decrease of the homology parameter yyom Over time for different ejecta
velocity intervals normalized to xyom o at 25 ms after merger. Right: Change
in velocity over time for different ejecta velocity intervals relative to the
velocity vy at 25 ms after merger.

5.1.2. radial velocity

Since we defined x on a particle level we can check not only an average of a given time
or velocity, but also the full distribution at a given time. This for once makes it possible
to test if the homologous parameter can be used to predict an upper limit when fluid
elements deviation from homology falls below a certain threshold. Figure (5.4) shows in
the left panel the x value distribution of the ejected particles at ¢, = 25 ms after merger
over the absolute value of change in radial velocity

Ur(to) — UT(tl)

Av, =
(%3 (tO)

(5.7)

until ¢; = 250 ms after merger. The right panel shows the change in radial velocity
over the radial velocity at ¢y. The black points are particles for which the radial velocity
increased, red points for which the radial velocity decreased. While for each value of x
exist a broad range of Av,, one can see a clear linear trend. The change rate depends also
on the velocity itself, as seen in the right panel, which shows a anti-proportional relation
between Awv, and v, and was also indicated by figure (5.3). Slower mass elements have a
larger relative change in velocity, since for the same pressure work will their ratio between
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thermal and kinetic energy change more as for a mass elements, which has already most
of its total energy as kinetic energy. For the correlation between y and Awv, one can think
of Av, /At as an approximation of the acceleration a which is proportional to y and t/v
as the constant of proportionality.

The spread of these roughly linear correlation stems from the variation in temperature
and pressure for different mass elements in different regions. While in some regions a
slower moving particle has more material around it and feels more pressure, a particle
moving in less dense regions with the same velocity might encounter less pressure, which
lead to smaller changes in velocity.

We observe a broadening linear trend between x and Aw,. This can be used at early
times to estimate an upper limit of how much the velocity could change. The gray dashed
line indicate this upper limit, which gives a power law relation Av, = k - X{wm between
homology parameter and the variation in velocity. This makes it possible to give the
homology parameter a quantifiable value of how close matter is to reach homologous
expansion. We get as relation between change in velocity over time Av, and the homology
parameter x

|Av,| = 1.01x 0 (5.8)

hom-*

The value | = 0.74 describes the slope of the gray line. We find only a few outlier from
this trend exist for decreasing velocity but 98 % of particles are below this limit.
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Figure 5.4.: homology parameter at 25 ms after merger. left: over the absolute value of
change in radial velocity after 225 ms for ejected SPH particles at 25 ms.
Black crosses are particles which Av, > 0 ,and red Av, < 0 right: change in
radial velocity over the particles velocity at t= 25 ms after merger.

Using the relation eq. (5.8) we can quantify the amount of matter which falls below a

73



certain threshold deviation in velocity over time. By using different thresholds of o, it is
possible to show how close different relative amount of mass are at reaching homologous
expansion.

Figure (5.5) shows the relative amount from early ejecta and late ejecta, which reached
below a certain value of xpom. As for (5.1) early ejecta is material which became unbound
before 25 ms after, and late ejecta became unbound between 25 ms and 100 ms. Three
different thresholds for yy,,, Were chosen. The solid line shows the relative amount of
ejecta which reached yp,om < 0.01, which correspond to an upper limit of Av of about 3%.
The dashed line shows the amount ejecta with ypom < 0.04 which corresponds to a Av of
10% and the dashed-dotted line shows xpom < 0.1 which corresponds to a Av of 20%.
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Figure 5.5.: Upper limit of expected change in velocity for three different thresholds.
Xhom < 0.01 (solid line) correspond to a maximal change in radial velocity
of about 3%, xhom < 0.04 (dashed line) corresponds to 10% and Xom < 0.1
(dashed-dotted line) corresponds to 20%. The plot shows amount of early
ejecta (black lines, ejected before 25 ms) and late ejecta (red lines, ejected
between 25 ms and 100 ms) which are below the thresholds over time.

From this we can estimate that 97% of early ejecta will change their radial velocity not
more than 10% , and 71% of it not more than 3% from 250 ms after merger onward.
For the late ejecta will change 41% their radial velocity not more than 20% , 26% of it
not more than 10%, and 14% of it not more than 3% from 250 ms after merger onward.
This is consistent with figure (5.2) where we saw that later ejected material is more
turbulent then the early ejecta of the first 25 ms. Over the 150 ms the amount of late
ejecta falling under a certain threshold is comparatively slow, indicating that it will need
several seconds until the velocity remains constant, in which the velocity distribution of
the ejecta still can change. In the next section we look at the velocity distribution of the
ejecta at 250 ms of the long-term simulation and make comparisons with two approaches
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reaching late times to use early ejecta for radiative transfer models assuming homologous
expansion, without evolving the whole system for a long time.

5.2. Velocity distribution

In earlier kilonova studies ejecta was taken at 25 ms from SPH simulations and extrapolated
with constant velocity to later times to map the velocity distribution into a radiative transfer
model and assume homologous expansion. Another common approach to reach later
times is to cut out ejecta at early times and restart a simulation only with the ejected
material, which saves a lot of computational cost. One problem with that approach is
that the material will loose pressure support from the cut out bound matter. We can
compare the velocity distribution of our long-term simulation with distributions using
these approximations.
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Figure 5.6.: velocity distribution at 250 ms of material M,; which is ejected at 25 ms for
three different approaches to reach that late times. left: ballistic extrapola-
tion from 25 ms to 250 ms. middle: complete run until 250 ms. right: cut
out of remnant at 25 ms and only simulate ejecta until 250 ms.

Figure (5.6) shows the velocity distribution at 250 ms of material which was ejected at
25 ms (virial criterion and r > 1000 km) for the three different approaches reaching this
time. The left panel shows the distribution using the extrapolated approximation. This
distribution coincides with the velocity distribution at 25 ms. In the middle panel is the
velocity distribution of the full run of the whole system. The peak velocity at 0.15 c do
not change over time. A part of the material decreased slightly its velocity since now
0.06 c is the slowest ejected material in the full run other than 0.1 c in the extrapolated
approach. The slope is less noisy in the full run. Overall, the extrapolated method yields
a similar velocity distribution and serves as a reasonable approximation. In the simulation
where only the ejecta was evolved, the setup was as follows: We removed all particles
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which were inside a radius of 100 km around the center of mass of the system or were
still bound by the definition of the virial criterion.

We kept the metric from 25 ms after merger fixed and also turned off the back reactions
which are used to account for the loss of energy and angular momentum carried away by
gravitational waves. We modified also the neighbor search routine, which originally uses
a fixed-sized grid and assigns all particles outside that grid in a single cell (see sec. (2.3)).

B cut339% | BN cut682k | B cut 1420k |

v/c v/c v/c

Figure 5.7.. Comparison between the velocity distribution from material ejected at 25
ms and extrapolated with constant velocity (upper row) or cut out ejecta
simulation (lower row) to 250 ms after merger for three different resolutions.

Now the grid size is dynamic such that all particles are within the grid. With that approach
we restarted at 25 ms with 3259 particles. The right panel of figure (5.6) shows the
velocity distribution of the same SPH particles as in the other two panels. Due to the
truncation of bound matter at 25 ms after merger, the absence of pressure support leads
to a reduction in velocity for some material. We chose for the cut a radius of 100 km
to limit the amount of lost pressure support for the ejecta above 1000 km. None of the
ejecta above 1000 km fall back. But we see a wider spread in velocity which is also noisier
than in the full run. Because for some particles a sudden change of neighbor particles, or
change in number of neighbors can lead to numerical effects on their trajectory which
can slow down or accelerate specific particles. With all this impairments the distribution
is still similar to the distribution of the unaltered run. The peak at 0.15 spreads wider
up to 0.35 c and a few particles reached velocities over 0.7 c. One challenge faced by
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the truncated long-term simulation is its very low resolution. Therefore, we check for
the higher resolution runs we did in section (4.3) how the velocity distribution looks like
for long-term cut runs. Figure (5.7) shows for 339 x 103, 682 x 103 and 1420 x 10 a
comparison between the velocity distribution for evolving the ejecta ballistically to 250 ms
(upper row) and and cutting it out and running the simulation until 250 ms (lower row).
While one can see the effect of higher resolution on the velocity distribution towards a
power law from minimum velocity as peak to maximum velocity, the main issue with the
cut out simulations do not improve with higher velocity.

The distributions are becoming less noisy, but the missing pressure is having a clearly
visible impact, causing the velocity distribution to blur. For the evolution of the early
ejecta,it is a better approximation to use the ballistic approach, since one can avoid the
smearing. In all this approaches the biggest flaw is the missing later ejecta, since as we
saw in figure (5.1) the mass ejection does not converge at these early times but continues
over a greater time scale. Using only early time ejecta for kilonova models always excludes
matter which will be relevant for a complete light curve. Because of this, the goal for
long-term simulations should be to track all matter over the whole time of the simulation,
preferably until it reaches homologous expansion with a sufficient resolution to ensure
physical trajectories with minimal impact from numerical effects.

In this chapter we achieved to simulate the complete BNSM system for 250 ms, which is
an order of magnitude longer then our previous simulations. Over this time 5.2 x 1072
My, is ejected, using the virial criterion for defining unbound material. We could estimate
how close material is in reaching homologous expansion. For the outflows of the first
25 ms (2.2 x 1073My) will 97% of this material the velocity not change more than 10%
onward. For later ejecta which is slower and hotter will it take on the order of seconds to
reach homologous expansion. We could show that using a long-term simulation of the full
system results in changes of the velocity distribution even of the early ejecta compared to
ballistic approximations or simulations of the cut out ejecta. Especially for the later is the
missing pressure support prevalent, even for higher resolutions.

While in principle it would be possible to run this simulation even longer, with increasing
time decreases the spatial resolution of the outer ejecta. Therefore is it necessary to
increase also the resolution of the ejecta for long-term simulations. Fulfilling both, high
resolution and long-term evolution is a highly computational expensive task. The next
section discusses a method to increase ejecta resolution with minimal computational
cost.
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6. Particle Splitting

In this chapter we will focus on the resolution of the dynamical ejecta and how to improve
it. We will use the implemented extended EoS and the asymmetric discretization for the
energy equation described in the last chapters for the simulations here.

In the previous chapters we usually used simulations which where initialized with around
300000 particles. Typically between 1500 to 3000 particles are getting ejected at this
chosen resolution. 99 % of the particles stay in the remnant and disc. Increasing the total
amount of particles is a quite inefficient way to increase the resolution of the ejecta, since
the ratio of bound material to ejected stays roughly the same, while the computational
time increases with the total number of particles. A better way to achieve higher resolution
is by trying to lower the ratio between ejected and bound particles by particle splitting.
Kitsionas and Whitworth were the first who used this method for resolution improvements
[213]. Our employed splitting scheme follows the same structure. Particles which fulfill
a certain criteria are split into Ny daughter particles. The mass of the parent particle is
evenly distributed

M arent
Mauehier = —2 (6.1)
aughter Nsplit

between the daughter particles. The hydrodynamical quantities of the parent particle
are inherited by the daughter particles. We run simulations for Ngy;; = 4 + 1, where
“+1” refers to a daughter particle at the original position of the parent particle. This is
an approach similar to Vacondio et al. [214], which found in a systematic study that a
daughter particle at the position of the parent particle reducing differences in density due
to splitting. Fig. 6.1 illustrates how the daughter particles are distributed. A cube frame
is used to position on four opposing vertices a daughter particle. We follow the idea of
[213] and trying similarly to evenly divide the volume between the daughter particles
with setting the position offset d = 0.8 - hy - 4-3 and choose the smoothing length of the
daughter particles as ks = d. The table 6.1 lists the positions of the daughter particles.

The orientation with respect to the coordinate system of the daughter particles are always
the same and is independent of the position, velocity and neighborhood of the parent
particle. We note that the employed splitting scheme is a easy to implement and simplistic
choice for the first tests, since we want to focus more on the choice of the criterion for on-
the-fly splitting to efficiently improve the resolution of the ejecta for minimized additional
computational cost. To achieve this, the scheme should be sufficient, while we are aware
that by choosing the position and orientation of the daughter particles depending on the
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direction the parent is moving and the position of the neighboring particles will reduce
numerical noise.

6.1. Splitting criteria

The splitting criterion should only trigger where higher resolution is in need and mainly
for the ejected material. Different possible criteria can achieve this. Low resolution is
linked with high particle velocity, hence one possibility could be to use particle velocity or
radial velocity as a criterion. The smoothing length normalized by the distance to center
of mass h7 can also be a measure to detect areas with low particle number density. Since
we want to focus on the ejecta, a reasonable choice would also be the ejecta criterion eq.
2.57. Ideally we want the particles split before they are in a low resolution environment.
Therefore as a first check we tested different thresholds for these four criteria to check
when and how many particles would fulfill the criterion. We used the AD simulation from
chapter 4.2.2 and tested at different times how many particles would have been split

under different criteria. In the following we will refer to it as the fiducial simulation.

X \ y \ y4 \ hs
1 d d d d
2 d -d -d d
3 -d -d d d
4 -d d -d d
5 0 0 0 d

Table 6.1.: positions of the daughter parti-
cles relative to position of the par-
ent particle, where d = 0.8 - h; -

1
473,

Figure 6.1.: Implemented particle split-
ting pattern.  From one
parent particle (black) into
four daughter particles (red).
Note that we put a additional
daughter particle at the posi-
tion of the parent.

Figure 6.2 shows a comparison between the criteria and how many particles would have
been split for thresholds which appeared to be reasonable. Upper row shows the system
projected in the x-y-plane, lower row in the x-z-plane. Purple shaded dots indicate particles
which fulfill the criterion, while yellow ones do not. The snapshot of the simulation is
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about 1 ms after merger. On the most left side the criterion v,,q > 0.15 is shown. In this
early phase this criterion shows promising results by detecting only the fast expanding
matter. At later times the slow ejecta material is left out. Next panel shows the criterion
v > 0.24. The main problem is that, although it identified fewer ejected particles than
the radial velocity criterion, it applies to thousands of particles within the differentially
rotating remnant. In the third panel is the criterion % > 0.22. In the x-y-plane one can
see that region outside the remnant and the spiral arms is completely covered by this
criterion. Here interestingly significant more particles in the polar direction would be
split indicating the low resolution in this region. While only loosely bound and ejected
material are caught by this criterion, not all ejecta over time will get split. The far right
panel shows the criterion ega¢ > 0.97 (see ejecta criterion eq. 2.57 ) which satisfies for all
ejected and some loosely bound material. The advantage of this criterion is that all ejecta
will get split shortly before it becomes unbound. At this early phase it has together with
the radial velocity criterion the least amount of particles split. Unlike the radial velocity
criterion, the number of split particles will grow over time,
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Figure 6.2.: Snapshot 1 ms after merger, showing for four different criteria for when
particles should split. Purple shaded dots indicate particles which fulfill
the criterion, yellow ones do not. Upper row show x-y-plane, lower row x-z-
plane of the system. From left to right are the criteria v;,q > 0.15, v > 0.15,
he > 0.22, €gtar > 0.97.

primarily enhancing the resolution within the ejecta and at the outer boundary of the
torus. From this comparison the ejecta criterion seems to be most promising for getting
the whole ejecta split, while the smoothing length criterion really applies splitting where
low resolution starts to emerge.

We opted to examine both of these criteria individually and in conjunction, and see the
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impact and differences between the runs. For that, we restarted at the time of merger the
fiducial run but now with the splitting scheme. With this approach we can compare the
original run with the new simulation including splitting to see what impact splitting has
on the ejecta. Figure 6.3 shows a comparison of the ejected mass over time between the
fiducial run (blue line) and the run including splitting (red line) for the three different
criteria. Additionally, the amount of ejected particles that have been split is depicted
(black dotted line) and the total amount of mass of particles which were split (black
dashed line). Obviously in the cases where the ejecta criterion is also used as splitting
criterion the red and black dotted line are on top of each other. For the smoothing length
criterion we decreased the threshold from % > (.22 to % > 0.2 to try to increase the
fraction of split ejecta. At the right panel one can see that total ejecta is roughly a factor
two higher than the split part of ejecta. Also in comparison to the simulation without
splitting it starts with slightly higher ejecta but over time it converges to same amount of

ejected matter after 15 ms after merger.
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Figure 6.3.: Comparison between three different applied splitting criteria and their impact
on ejecta mass over time. Left panel are eg, > 0.97 and hT > (0.2 as criterion
used, in the middle panel only the first, in the right panel only the latter. Solid
blue line shows fiducial simulation without splitting, solid red line simulation
with splitting, black dotted line is the amount of ejecta which is split, and
dashed line depicts total amount of mass of split particles.

From our resolution study we saw, that with increasing particle number the amount of
ejecta increases. We would expect the same trend through the increased resolution using
particle splitting. This can be seen in the left and middle panel where in the simulation
with splitting the amount of ejecta is increased by a factor two. Interestingly the amount
of ejecta was not impacted if additionally to the ejecta criterion also the smoothing length
criterion was used, even so that the combined criterion split 0.2 M, particles. Using just
the ejecta criterion seems therefore the most efficient way to split and we will continue in

the next section with this criterion.
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Table 6.2.: comparison of simulations with different starting particle numbers with and
without splitting. Table shows the amount of ejecta at end of the simulation
outside a radius of 1000 km.

number of particles simulation ¢ — tyerg [ms] M, [1073Mg]  Nej

283 x 103 split 25.23 3.91 6321
136 x 103 split 26.80 1.46 925
70 x 103 split 27.03 2.56 1045
1420 x 103 fiducial 22.87 4.21 7518
682 x 103 fiducial 24.33 3.71 2346
339 x 103 fiducial 25.10 2.21 636
283 x 103 fiducial 25.33 2.24 737
136 x 10° fiducial 25.68 1.70 193
70 x 103 fiducial 26.06 1.61 115

6.2. Impact on resolution

We compare simulations with particle splitting to simulations of our resolution study in
chapter 4.3 which we call from here on the fiducial simulations. We run three simulations
using splitting with different initial particle number of 70 x 103, 136 x 10% and 283 x 103
up to 25 ms after merger.

Table (6.2) lists the simulations with and without splitting for different starting particles
numbers. The total particle number in the simulations with splitting will rise over time.
It shows also the ejecta in terms of mass and number of particles outside a radius of 1000
km at the end of each simulation. One can see a clear increase in the number of particles
in the ejecta, which is relatively to the ejecta mass comparable with the fiducial runs
which started with 5 times more total particles.

Figure 6.4 shows in the left panel the ejecta mass over time. The black lines depict the
fiducial setup and the red lines the simulations with splitting. The different line styles
correspond to the various initial particle numbers. While in the fiducial simulations a
slight rise in ejecta mass is visible as the particle number increases, is this trend not clear
in the splitting simulations. The splitting simulation with 136 x 10? particle run has least
ejecta compared to the other two. The trend of increasing ejecta with increasing particle
number is still within the uncertainty of the stochasticity, which we explored in chapter 3,
where we show how sensible is ejecta to smallest changes in the system. The numerical
noise, which is introduced through the particle splitting, might also be enough to interfere
with this trend.

The right panel shows how much relative ejecta mass Mj,; correspond to SPH particles
for which the EoS interpolation fails, which we described in Section (4.2). We see the
same trend as in the fiducial simulations, that with increasing particle number the relative
amount of Mp,; decreases. Additionally if we compare simulations with the same initial
particle number, we clearly see a noticeable decrease in Mg,; in the splitting simulations.
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The amount of Mj,; is more comparable with the fiducial simulation with particle number
between 339 x 102 and 1420 x 103 particles. For the ejecta distributions we will compare
the splitting simulations with the particle number in this higher range to see if it shows
the same convergence trend we saw there.

------------ 70k  ----- 136k  ---- 282k  ---- 339k —— 682k —— 1420k
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— i regular
2 i split
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Figure 6.4.: Comparison between fiducial runs and simulations with particle splitting.
Different line styles correspond to different initial particle numbers as de-
scribed in the legend above. Black lines depict fiducial simulations and red
lines simulations with splitting. Left: Amount of ejecta over time. Right:
relative amount of matter which correspond to SPH particles for which the
EoS interpolation failed.

Figure 6.5 shows a comparison between the angular mass distributions of the splitting
simulations and the fiducial simulations at 25 ms after merger. The fiducial simulations ex-
hibit a modest north-south asymmetry of approximately 10% in the total mass distribution
across all resolutions. In contrast, the fast ejecta (v > 0.15 c¢) becomes more uniformly
distributed with increased resolution. The splitting simulation is for lower resolutions but
also show a north-south asymmetry at the highest resolution at around 10%. We can see
the fast ejecta also distributes more evenly for higher resolution. At very low resolution
the amount of fast ejecta decreases towards the poles and with increasing particle number
it starts to even out. For very low initial particle number a mass deficit at the poles occurs
which was also visible in the fiducial simulation with below 339 x 102 particles (see figure
4.13). The splitting simulation with 283 x 103 particles reveals a relatively smooth angular
distribution, displaying less noise compared to other splitting simulations. This result is
comparable to the reference simulation conducted with 1420 x 103 particles.

In figure 6.6 we see a comparison between the velocity distributions of the simulations
with splitting and the fiducial simulations at 25 ms after merger. Similar to figure 4.14
the crossed bars show how much mass corresponds to SPH particles for which the EoS
interpolation fails. In the fiducial simulations, the velocity distribution exhibits a peak
at approximately 0.05-0.1 c, followed by a decline extending up to 0.8 c. With higher
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resolution, this decline approaches a power-law behavior, evident as a linear trend on
the logarithmic scale. The same distribution can be reproduced using particle splitting
while starting with only a fifth of the particle number. Comparing the last two panels, the
ejecta velocity distribution of the ejecta and the velocity distribution of Mg,; agree very
well with each other between the fiducial simulation and the simulation using splitting.

As described in section 2.2 the error of the smoothing approximation in SPH is proportional
to h?2 using the spline kernel. Figure 6.7 shows the ejecta smoothing length distribution
normalized to the particle distance to the center of mass at 25 ms after merger. For the
fiducial simulation with 339 x 103 particles the normalized smoothing length reaches up to
0.7. It decreases to below 0.5 for 682 x 102 particles and it stays below 0.4 for 1420 x 103
particles. For the simulations with splitting the distribution for a initial particle number of
70 x 103 and 136 x 10 particles stays below 0.6 and reduces also below 0.4 for 283 x 103
initial particles. As in velocity and angular distribution we see the same convergence
effect as in the fiducial simulation with five times more total amount of particles. Starting
with 283 x 10 particles with splitting reduces the average smoothing length in the ejecta
by about 40 % and with this the error of the smoothing approximation by 75 % compared
with the simulation without splitting.

Already with this simplistic splitting scheme, it is possible to accomplish an efficient
measurable improvement of the ejecta resolution, which is comparable to simulations
which need up to five times the total amount of particles to achieve the same resolution.
While the computational time was comparable or faster to a run with 339 x 102 particles.
The angular and velocity distribution affects directly kilonova light curve calculations. A
clumpy or noisy distribution or asymmetries can lead to variation in luminosity for different
viewing angles. We see a clear trend for higher resolution simulations that velocity and
polar angle distribution gets smoother, while a north-south asymmetry remains.
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Figure 6.5.: Comparison of the polar angular distribution of ejecta between simulations
with splitting (left) and fiducial simulations (right) for different particle num-
bers at around 25 ms after merger. Crossed bars show relative amount of
ejecta faster than 0.15 c.
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with splitting (left) and fiducial simulations (right) for different particle num-
bers at around 25 ms after merger. Smoothing length is normalized to the
distance of the particle distance to the center of mass.
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7. Summary, conclusions and outlook

7.1. Conclusions

In this thesis, we addressed several challenges associated with simulating BNSM ejecta
and focused on advancing the capabilities of numerical simulations.

First, we examined fluctuations in BNSM simulations, which occur even for a fixed physical
and numerical setup. Collins et al. [143] were the first to discuss these variations and
point out the possibility that these fluctuations might be a physical stochastic effect. We
could show that the ejecta mass varies +25% in our simulations for the same physical
setup. Furthermore, also the ejecta distribution and symmetry as well as their velocity
distribution vary. We found an antiproportional correlation between the amplitude of the
main feature of the post-merger signal GW f,c. and the fluctuations of the ejecta mass.
We showed that the fluctuations in ejecta mass and the fpe,c amplitude were dependent
on how the double core structure evolves. We tested how the spread of ejecta masses
changes with different resolutions and did not see a reduction by increasing resolution.
This might be a first indication that these variations are a physical effect. However, so far it
is not possible to draw a clear conclusion. More research is needed, especially comparative
studies between different numerical codes. This thesis was the first study to investigate
the possibility of stochastic effects in BNSM. Several studies use numerical simulations to
link the EoS and the amount of ejecta or kilonova light curves [104, 174, 202, 215-218].
Often, fit formulas are used to estimate the dynamical ejecta and disc ejecta from binary
masses and tidal deformability. In future kilonova observations, the ejected mass is
expected to be identified, and through the established correlations between the ejecta
mass and the nuclear EoS, it will be possible to impose constraints on EoS. However,
stochastic effects might make this route to constrain the EoS more challenging. Small
perturbations from spin or magnetic fields of the NSs might play a crucial role in the
evolution of the BNSM and the ejecta and therefore make direct fitting from ejecta mass
to tidal deformability not possible. Also taking into account that we find up to 20 %
variation in north-south symmetry gives the possibility that identical merger observed
from the same inclination angle could have different kilonova light curves even if the total
amount of ejecta is similar. So far studies which investigated correlations between ejecta
mass and the EoS, have not discussed the possibility of stochastic fluctuations.

These studies acknowledge the fact that not all microphysical processes are included in
numerical simulations and that the ejecta mass also depends on the resolution. Some
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estimate therefore an error of 50 % on the determined ejecta masses [104, 202, 217].
Whether this estimation is sufficient to also account for the fluctuation we observe for
a fixed resolution is not clear. Even if the fluctuations we observe in our simulation are
numerical, it is still important to take them into consideration when drawing conclusions
from simulations. For a better understanding of the evolution of BNSM, future studies
should take into account these fluctuations.

We address also long-term BNSM simulations, which are necessary to accurately describe
kilonovae. Simulations that run only several tenths of milliseconds do not account for
secular ejecta, which outflows over a significantly longer time scale than the merger time
scale. In kilonova computations, determining the precise luminosities and their temporal
evolution relies heavily on the total ejected matter. Additionally, radiative transfer models,
which employ BNSM simulations as their initial data, operate under the assumption
that the ejecta undergoes homologous expansion. Consequently, it is crucial to simulate
BNSM over extended time scales to predict their electromagnetic counterpart signals. In
chapter 4 we tackle two challenges in running long-term simulations. First, on a time
scale of seconds the outflowing matter will change its density and temperature over
several orders of magnitude. We present a method to extend a tabulated EoS towards
lower values of rest-mass density and temperature. We see with our employed method a
smooth continuation of the tabulated pressures and specific internal energies. Second,
the expanding ejecta is phasing the problem of low resolution which increases numerical
inaccuracy and can lead to nonphysical solutions, such as negative internal energies. We
show that a different choice of discretization of the GRHD equations leads to a more
stable evolution. A comparison between the old and new approach, using simulations of a
1.35 — 1.35M symmetric binary merger system, reveal that the amount of SPH particles
reaching nonphysical energies decreases from around 25% to under 10% of ejected matter.

We present a long-term simulation of a 1.35 — 1.35M, symmetric binary merger system
using the extended EoS and improved discretization. We managed to evolve the complete
system up to 250 ms after merger, which is an order of magnitude longer than our previous
simulations. We are able to give an upper limit on how close outflowing material is to
reach homologous expansion. We find that for 97% of the material ejected within the
initial 25 ms after the merger, the maximum change in radial velocity is below 10%
at the end of the simulation. Material ejected later moves more slowly and remains
warmer, so its velocity is more affected by pressure work. It will take at least seconds
for it to achieve homologous expansion. Previous studies mapped ejecta from BNSM
simulations which only run roughly 20 ms into radial transfer code by propagating SPH
particles at the velocity which they had at the end of the simulation further for 0.5
seconds [204, 205]. An other approach was to cut out the remnant in the hydrodynamic
simulation and evolve only the ejecta further [207]. We compare the velocity distribution
of the early ejecta at the end of our long-term simulation with other approaches to reach
approximately homologous expansion. We see that assuming that velocity stays constant
at early times and evolve matter ballistic gives similar results, but cutting out the central
object and evolve only the ejecta further in the hydrodynamic simulation distort the
velocity distribution. This is caused by the sudden lack of pressure support at the cut and
even in higher resolution is the shift towards slower velocities significant for this method.
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While our long-term simulation is a important step in the right direction, our results
show that even longer simulations are needed. For that, resolution becomes a problem
again for the continuously expanding matter. In our long-term simulation we started with
339 x 10% SPH particles, but only a few thousand particles are ejected. At some point,
even with improved evolution, the numerical scheme will break down because of the lack
of particles over the vast distances the material is expanding. However, increasing the
total number of particles is very computational expensive and highly inefficient. In the
last part of this thesis we introduce a way to increase the resolution efficiently only in the
ejecta. We present particle splitting, which Kitsionas and Whitworth [213] introduced
for resolution improvements in the context of star formation. So far this method was not
employed for BNSMs simulations. We find comparable results in ejecta mass, angular and
velocity distribution between simulations with 1420 x 10? particles and 283 x 10° using
particle splitting, showing that we could improve the ejecta resolution by roughly a factor
of 5.

In this work we did not consider the impact of neutrinos. One reason for it, especially
for long-term simulations, is the high computational cost to include them. However, they
are crucial for the evolution of the ejecta, the nucleosynthesis and the resulting kilonova.
With particle splitting, this would be now be more approachable in the future. Starting
with a lower total particle number but still having higher resolution in the ejecta saves
computational costs and make it easier to conduct such demanding numerical simulations.

7.2. Outlook

We note that our study of stochastic effects in BNSM can at the moment only provide
indications but not stronger statements. For possible more conclusive insights about
this problem we plan for future studies to compare results of different codes to provide
statements if the fluctuations we observe are code independent. Seeing the same effects
in different simulation codes would strengthen the credibility, that what we observe in
BNSM simulation is indeed a physical feature and not just numerical uncertainty. In this
study we only simulated irrotational NSs. A additional method would also to simulate
spinning NSs and see if these have an affect on the fluctuations.

Regarding our presented improvements of the SPH by implementing an extended EoS,
using a more stable discretization of the energy equation and efficiently improving the
ejecta resolution with particle splitting we plan to implement all these scheme also into
the SPH code version which includes neutrino treatment. We pointed out that all this
improvements are important for kilonova studies. To actually make full use of this results
accurate neutrino transport is necessary. Our goals for the future are conducting high-
resolution long-term BNSM simulations with neutrino treatment with an extensive analysis
of the results with nucleosynthesis and radiative transfer calculations.

Future works can also improve some of the implemented schemes. A possible more
consistent extension of the EoS can be implemented using a detailed composition for
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the extended part and also checking the treatment of correct coulomb corrections. The
splitting scheme can be further improved, by trying to minimizing the impact of splitting
on the particle neighbors. Taking the neighbors and the flow velocity into account by the
positioning the daughter particles will decrease numerical noise.
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A. GRHD equations in co-moving frame

In the following we derive GRHD equation used in the SPH code, starting from the
Valencia formulation in the form

9 (vU) + 8; (VAF') =S, A1)
with the conserved quantities
D pW
UW)=|S;| = phW2; : (A.2)
7 phW? —p—D

—1/2 is the Lorentz factor. The vector F corresponds to

D (@i - %)
Feals(oi-2)+P (A.3)
F (q—ﬂ' - %) + Pyl

where W = au® = (1 — v;;0'07)
the flux of conserved variables

and S to the source vector

0
S = ﬁ %aSlkaﬂm + Szajﬁl — E(?joz R A.4)
OtSZ]KZ'j — SjajOé

with E = 7 + D, S¥ = yiJT% = phW?5'%/ + P~" the projection of T in the space
orthogonal to n and K;; := f% (ygvanj + ﬁvani) the extrinsic curvature. If we look
at the first component we get the equation related to the conserved rest mass density

9o (\/7D) + 0; (\FyaD [vi — ’iD =0 (A.5)
The differential operator dy can be expressed as
d u
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in the co-moving reference frame. We can also define the conserved rest mass density as
p* = /D = \/ypW. With that we can write (A.5) as

dp* ui . L 52 B
o —E&p + 0; (ap |:U - a]) =

dp* ui ui . .

——0ip"+ 0 (p" |5 +B -B") = A.
o uoép + 0, (p [O~I—5 B]) A.7)
dp*—uia + p*0; i+ o =
dt ip* + p*0; 20 ip”

dp* '
*8-— =0
dt e "ud ’

where we used the definition of the 3-velocity v = é (%; + ,Bi). With the definition of

the coordinate velocity v* = Z—G we get the equation

dp*
dt

= —p* o’ (A.8)
The second component is the conserved momentum density equation with
. ( . 1 . .
0o (v/7Si) + 0; (ﬁaSj [177’ - %] + ﬁaP*y}) = 50{5”63]'%19 + 5;0;8" — EOjo. (A.9)

We use (A.6) again and simplify the left-hand side of (A.9) with \/7S; = \/’_yphW277¢ =
p*u; and the 3-velocity again.

Ao (p* ;) + 0 (p djo [v - —] + \/’an]>

d ut o, ‘e g B
7 (p* ;) — m&- (p* ;) + 0 (,0 Ujor [ozuo + o ] + \/_ozP*yJ>
d,o LU ut .. U i
g +p" — pn uoai (p™ti) + 0; <P Uit \/704P7j> = (A.10)

Ak ui U’Z ui * A~ ui * Nk ui AR
— U;p*0; <’LL ) +p pr uoai (p* ;) + m& (p™1;) + ;i p*0; (m) + 0; (ﬁapfyj) =

p dt+8 (\/_aP’y])

*

d
where we used Eq. (A.8) for ; CZ

. For the right-hand side we insert the definition of
S%,S; and E and we get

98
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SvAa (phw%—ﬁ@k n Pv““) 057k + APhW 25,08 — J7ph W20 + /7 PO;00 =

1 * zja klﬂ . .
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p*,yijﬁ "'Yklﬁl
2—&]08]’)% + - \/_ozP’)’ ik + p U ]ﬂl —p auoa o+ /yPOjo.

~

Now we can put everything but % on the right-hand side and use the conformal flatness

condition ;; = ¥*4;; to simplify to

dt

1 ) ijﬂ' klal 1 . R .
=— E@' (VyaPrj) + %@'%’k + ﬁﬁap’)’maj%k + 1;0; 3"

1
— atdja + —ﬁpaja

. 1 .
=— p—any]c? i/ — \/_P’y;8 a— e ﬁa’y}@iP — EﬁaPai'y} (A.12)
SRATIRaT : . . . 1
+ 23—:}[;8]"}/1'19 + ﬁ\/’_yany’kaj%k + Uiajﬁz - auoajoz + EﬁPaja
24
_ —¢6a8 o —¢5apazw e wapaﬂp + ;‘f“o’“a b

+ Ezpf’apajw + 0,0, 8" — ati! aja.

With that we get the conserved momentum equation in the form

dﬁz‘ 2ukuk
dt wi’) 0

For the conserved energy density equation we look at the third component, where we
have

=——1/16a8P+u] 0,37 — a9 +

— 0. (A.13)

8o (VA7) + O (ﬁa% [vi - %] +VyaP ”l) = aS; KV — ;0. (A.14)

Similar to the conserved momentum equation we use here on the left-hand side

*

P
VI = pp—W (phW?2 — P — pW) = p* (hW e 1) = p*r0 (A.15)
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with 70 the specific total conserved energy to use (A.8) again. Now we can simplify the
left-hand side to

G ota ()t a{ovlfo)-
i)

For the right-hand side we can first use the definition of S;; and S7 to get

A (p*7°) + 0; (p*mo [v — —} + AaPy )
")

0 )
u u

WO[SUKH — ﬁSjaoz =
Vo (pthl_)ﬂ_lj + P%'j) K9 — ﬁpthz‘;j@ja =

(p*aWh%% + ﬁaP*m) K9 — p*vjlﬁlaja = A.17)
1;; gK” + V/yaPK} — p*”yjlalaja =
hug K — p*'yjlﬂlaja
Both together leads to
dr? 1

T =0 (VAP [ + BT) + “J Sl R Lo (A.18)

This is the evolution equation for 7°, but in simulations with the SPH code was shown
that in regions where the kinetic energy dominates evolving a conserved energy where a
kinetic energy term is subtracted yields to more accurate results [42]. Originally it was

defined as P .
Torig = hW — ,O_W - 5'}/ uzuj7 (A.19)

but to improve numerical stability it was in early studies changed to

P B

[219]. So for going from (A.18) to the evolution equation of 7, we can first use the
CFC approximation again, and with that the fact that the extrinsic curvature K;; can be
calculated directly from the metric elements
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20 K9 = §19;8" + 6,0, 8" — gcsifak,ﬁk. (A.21)
With that we have

d 0 6 ) )

e

_wﬁgai (Ui +5z)

_ %&a (A.22)
1 1 ~ A 3 1 PPN j
+ %W (uzujajﬁ — guzuzajﬁ]) .

Since 7 = 70 4+ 1 — w, where we define the kinetic term w = /1 + 6”:;2“7' . We can write
the time derivative of T as

dr_dr d
at — ar att Y
dr' 1 d [§940i0;
_e 24 A.2
dt  2wdt [ e ] (4.23)
_dr? 12 L ddy Adgd;t dy
Codt 2w ¢t Y dt Y5 dt

At this point we have time derivatives on the right-hand side, one for the conserved
momentum and one for . For the first we can insert Eq. (A.13), for the latter we can use
a relation from the CF approximation (see e.g. [168] Eq. B.2)

oot = Lo + () B, (A.24)

and Eq. (A.6). Applying these leads us to
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If we compare the additional terms with Eq. (A.22) we see that they only differ by the
0

. dt . e
factor of ¥ from the terms in o So we can simplify it to

dr _ 4f ; hW s P ;
i p( +ﬁ)( w)ap w—a(v+ﬁ)

P, hW
—6¢5E(v+ﬁ)ﬂp ¢4( w)aa (A.26)

1 1 1 A ;1. -
+ E (W - O_J) <ulu]835 — guzuzajﬁ”) .

The new set of conserved quantities are now

p* pwwG
| = ph (v + B1) uPy* (A.27)
r phW — P T G

and the GRHD equations are

dp* .o
a = o
di; 6 241
T ——oup 9P — atl® O + U 9B + i o0 (A.28)
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B. Ejecta criteria

Figure B.1.:
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(v. ¢.) -turquoise line, radial velocity criterion (vr c.) - green line and all matter
outside the radius (r c.) - yellow line).
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When it comes to identifying ejecta, one need to be aware of the differences of the
different criteria and what impact this can have on interpreting data. In section 2.3.3 we
introduced already geodesic, Bernoulli and virial criteria, the latter is the criterion we
chose to use in this work. As seen in Chapter 3, 4 and 5 we additionally look only look at
material outside a certain radius for comparing ejecta from different simulations. The
reason is, that each criterion has its short comings in deciding if a SPH particle is unbound
or not, especially in highly dynamic environment. Further out of the system, where matter
flow is less turbulent it is for the criteria easier to identify correctly unbound matter. As
an example we take the simulation from section 4.2.2 with asymmetric discretization and
show in figure B.1 evolution of the amount of ejecta over time for different criteria and
three different radial cuts. The indigo line depicts the geodesic criterion, teal line the
Bernoulli criterion, turquoise line the virial criterion and besides these three criteria shows
the lime-green line how much material has a positive radial velocity and the yellow line
how much material in total is outside the radial cut. The upper panel shows how much
matter is identified as ejecta outside a radius of 100 km. In the first few milliseconds
the different criteria disperse already. The torus around the remnant expands with hot
shock heated material in it. The geodesic criterion only registers the very early dynamical
outflow which moves ballistically out of the system before the torus forms. virial criterion
registers also some hot disc material, and even more so the Bernoulli criterion. Most of
the disc amount has an positive radial velocity component but at late times the Bernoulli
criterion even defines material without that as ejecta. Comparing the middle and lower
panel shows that further out the agreement between the different criteria increases.

Outside 1000 km all the criteria agree with each other except at later times the geodesic
criterion which will at least within this 60 ms converge to 4 - 10~3Mg,. This far out all
material is ejecta, as can be seen by the overlap with the yellow line. We therefore choose
typically a radial cut of 1000 km to compare ejection rate of different simulations. In
some cases it still can be useful to look also at smaller radial cuts to compare how much
material is in the torus or how fast the torus is expanding, as we did it for the stochasticity
study in section 3.1. We want to note that the differences in ejecta between criteria is
mainly due to not having long enough simulations to predict correctly how much material
will be eventually ejected. Over a longer duration all the differences between the criteria
will vanish, at the latest when all ejecta will reach homologous expansion.
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C. Impact of Artificial viscosity

At the start of chapter 3 we mentioned uncertainties in the ejecta mass of numerical
simulation because of limited resolution. In 3.2 we discussed that there exist fluctuations
at a fixed setup which could be numerical but might be even a physical phenomenon. In
this section we want to look into a model dependent uncertainty, the artificial viscosity
scheme. Unlike in the last section, this is certain a purely numerical effect. Specifically,
we want to look into the dissipation.

While SPH have many advantages compared to grid based simulations, one major disad-
vantage for simulating BNSM is that shocks can not be directly captured. Shock fronts are
hydrodynamic discontinuities propagating supersonically through the medium. Through
the smoothing process in SPH would be any discontinuity smoothed out. The artificial
viscosity scheme outlined in 2.3.2 is crucial for accurately capturing shocks, a key aspect
of modeling ejecta outflows. While grid-based codes resolve shocks with higher fidelity,
they still suffer from systematic errors from shock-capturing schemes ([220]).

As the name suggests this scheme does not mimic physical viscosity on a microscopic
scale but rather add an artificial dissipation term, which ensures that shock-waves are
treated correctly. This means that entropy increases in shocks and dissipation occurs in
shock fronts. But the artificial viscosity is not everywhere wanted, because in general
artificial viscosity smooths out velocity and density distributions. That is why the scheme
uses time dependent dissipation parameters. Dissipation is for each particle activated
through a trigger which activates where dissipation is needed (in this case the velocity
divergence is used as trigger). After the trigger increased the dissipation parameter £ its
value decays back to the floor value.

— C.1
dt Teise €1
where £V is the floor value. This is managed by a decay timescale
h (C.2)

Tvisc — )
Cl Cy

with the free parameter C;. These two free parameters ¢° and C; have to be chosen. In
[165] the idea of time-dependent viscosity parameter was introduced for SPH. The pa-
rameters were determined by standard hydrodynamical shock tests. Dissipation depends
on the speed of sound, heat conductivity and viscosity of the medium. For NS matter
these parameters are poorly constraint and so dissipation is.
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Table C.1.: set of simulations with different artificial viscosity parameters. Table show set
of parameters, ending time of the simulation and the amount of ejecta outside
a radius of 1000 km. Some simulations with very high or low dissipation time
C4 terminated at during the merger.

Cy 50 U — tmerg [ms] Mej [10_3M®]

0.5 0.01 14.85 6.68
0.5 0.02 0.20 -
0.5 0.005 0.09 -
0.25 0.01 20.81 8.56
0.25 0.02 23.61 8.04
0.25 0.005 22.16 8.69
0.1 0.01 20.15 6.96
0.1 0.02 20.67 5.06
0.1 0.005 21.30 5.96
0.05 0.01 25.02 4.32
0.025 0.01 23.22 4.06
0.025 0.02 16.67 2.43
0.025 0.005 18.21 2.94
0.01 0.01 23.60 3.13
0.01 0.02 25.06 3.28
0.01 0.005 10.99 1.30
0.005 0.01 20.82 3.00
0.005 0.02 25.02 3.41
0.005 0.005 0.30 -
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In the following we test the impact on varying these two parameters on the BNSM
simulations, not to dismiss or improve their chosen values but as a test to understand how
sensitive the outcome is dependent on those parameters. We run 19 simulations from
which 16 reached the post merger phase. We set them up to run up to roughly 20 ms after
merger. For some chosen values of C; and £ lead to extreme values of ¢ for certain SPH
particles in shock regions, which lead in some occasions to nonphysical values of energy
or momentum and caused the simulation to stop. 3 simulations with the most extreme
values of C stopped around the merger phase, 4 simulations did not reach 20 ms after
merger. We take a standard setup of 1.35-1.35 M, system with 339 x 103 particles.

Table C.1 lists the chosen values of C; and £°, how long each simulation run, and the
ejected mass (r>1000 km). We decide here for a cut off of 1000 km, since we expect two
effects by changing the viscosity. One is changing the amount of viscous heating which
will change thermal outflows. Second is changing the lifetime of tidal arms which will
change amount of dynamical outflows and shock heated outflows. Our ejecta criterion is
prone to identify hot material as unbound. Even when this material has enough energy to
overcome the gravitational potential, since it mostly thermal energy it still remains bound.
With a greater radial cut we can make sure that we identify really only unbound material.
Thereby we avoid identifying higher amount of hot material as higher amount of ejecta
outflows. One can see from the table that for higher C; an increased amount of ejecta.
While decreasing C; from its default value 0.05 decreases it at first but after reaching
minimum at 0.01 there is a upwards trend again. In figure C.1 the evolution of ejecta
is shown for radial cut at 100 km and 1000 km. In both cases the same trend is visible,
that for high C; the rate of ejecta is increased. A minimal ejecta rate is reached for C; =
0.01 and for lower values the rate of ejection increases again. C regulates how fast after
a shock the particle dissipation parameter ¢ decays back to its default value £°. Higher
values of (' results in a faster decay of the dissipation after a shock. If the material stays
for longer time highly viscous more kinetic energy converts to thermal energy. Especially
at early times this weakens dynamical outflow and the formation of spiral arms. While
thermal energy close to the remnant plays at early times only a subdominant role for
ejecta and gets more important at later times further outside the remnant for thermal
disc outflows. Only for C; < 0.01 one can see an increase in ejecta for » > 100 km which
is for » > 1000 km negligible.

We see that already at 5 ms seconds there is a factor three difference in ejecta between the
different simulations. Comparing left and right panel shows the same trend can be seen,
and hot material identified as ejecta do not play a crucial role here in this comparison.
We show the difference in £° by solid, dashed, and dashed-dotted lines for values of 0.01,
0.02 and 0.005 respectively. We do not see a clear trend between different floor values £°
for a chosen value of C;. However, we recognize that for higher value of C; the spread in
ejecta masses for different £° increases, while for very low values like C; = 0.01 there are
only negligible differences between simulations.

This indicates, that the impact of £° on the system evolution depends on the dissipation
decay time. For a longer dissipation decay time more particles stay above the floor value
€9 for a longer duration, so the impact of the high dissipation particles dominates and
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the effect of the dissipation at the floor value is negligible. When dissipation decays fast
the impact of dissipation during shocks is suppressed and the dissipation due to the floor
value which happens everywhere has a relatively stronger impact.

c1=05a*=0.01 ¢1=0.1a*=0.01 —— 1=0.0254*=0.01 c1=0.01 «*=0.02
— =0254*=0.01 o ¢=01a*=0.02 - c1=0.025 a*=0.02 c1=0.01 a*=0.005
----- ¢1=0.25a%=0.02 ——— ¢1=0.12*=0.005 c1=0.025 a*=0.005 c1=0.005a*=0.01
————— c1=0.25a*=0.005 —— ¢1=0.054*=0.01 c1=0.01a*=0.01 c1=0.005 a*=0.02
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Figure C.1.: left: ejecta out side a radius of 100 km for different artificial viscosity pa-
rameter, right: ejecta outside a radius of 1000 km. Different colors indicate
different dissipation decay time C; and base value ¢°.

Figure C.2 shows the impact of the different dissipation parameters on different bulk
properties of the simulations. The upper left panel shows the evolution of the minimum
lapse function in the system which a measure for compactness of the central core. We see,
that the dissipation has a direct effect on the compactness. Systems with slower decay
time of the dissipation are reaching faster higher compactness then systems with fast
decay of dissipation. This can be explained as followed. During the merger the deformed
neutron stars expel matter first from the contact interface of the two stars. For low C;
this interface undergoes stronger heating. The thermal pressure damps down the bounce
between the two neutron star cores, which results in a higher minimum lapse as can be
seen in the first minimum amplitude in the upper left panel of figure C.2. This is also in
accord with the higher average temperature spike in the upper right panel.

This also leads to more matter squeezed out more rapidly at this first contact interface,
which can also be seen in figure C.1 at the first 3 ms after merger. While the two
neutron stars are merging vortices are forming near the contact interface through shearing.
Heating through shearing is with longer dissipation stronger which dampens the quasi-
radial motion of the double core structure as can be seen by the weaker amplitudes of
the lapse function. While after the first bounce of the two cores the under-density in the
center is comparable between the different settings, for low C; this smooths out faster in
temperature and density and let the fused core spiral more towards the center. This leads
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to a more spherical symmetric remnant, which can be seen by the comparable weaker
m=1 and m=2 density modes in figure C.1 lower panels. Because of that the spiral arms
are strongly suppressed which reduces the amounts of ejecta significantly.

—— ¢1=05a*=0.01 —— 1=0.1a*=0.01 c1=0.025 a*=0.01 ¢1=0.01 a*=0.02
—— ¢1=0.25a%=0.01 ---- 1=0.1a*=0.02 —--- 1=0.025 a*=0.02 ¢1=0.01 a*= 0.005
amee =0250a*=0.02 —.—. ¢1=0.1 a*=0.005 ——. ¢1=0.025 a*= 0.005 ¢1=0.005 a*=0.01
——. ¢1=0.25a*=0.005 —— 1=0.05a*=0.01 ¢1=0.01 a*=0.01 ¢1=0.005 a*=0.02
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Figure C.2.: Upper left: minimum lapse function o over time. upper right: average temper-
ature over time. lower left: normalized and smoothed amplitude of the m=1
density mode over time. lower right: normalized and smoothed amplitude
of the m=2 density mode over time. Different colors indicate different dissi-
pation decay time C and base value £°. m=1and m=2 modes are smoothed
using the Savitzky-Golay filter.

Ejecta mass only grows slowly 5 ms after merger through thermal expansion.

The stronger dissipation also weakens the differential rotation faster which ultimately
let the remnant contract faster to a higher density. The thermal expansion cools the disc
down and without strong spiral arms which can shock heat the disc matter the average
temperature is decreasing faster after 8 to 10 ms after merger. The lapse function shows
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a clear correlation between the dissipation decay time and the rising compactness of
the remnant. For the fastest decay time the variation in the default value ¢ becomes
non-negligible for how fast the compactness rises. Also a clear correlation between the
average temperature and the dissipation is visible. Faster decay in dissipation leads two
lower average temperatures of the system.

While stronger dissipation clearly suppresses m=1 mode, the two simulations with the
weakest dissipation are also comparatively weaker. We see that stronger dissipation
smooth out the under-density in the center of the remnant, while for the simulations
with the weakest dissipation the formed hydrodynamic vortices and the corresponding
under-density in the center is from the start not strong enough to trigger the off-set
of the remnant core which also results in a fainter m=1 mode. Similarly diminishes
stronger dissipation the m=2 mode faster. We want to point out, that several simulations
have a minimum at around 10 ms after merger and than m=2 gets slightly re-excited.
We see similar behavior in the stochasticity simulations, so this behavior may not be in
correlations with a change in dissipation.
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