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Multidimensional Quantum Generative Modeling by
Quantum Hartley Transform

Hsin-Yu Wu,* Vincent E. Elfving, and Oleksandr Kyriienko

An approach for building quantum models based on the exponentially
growing orthonormal basis of Hartley kernel functions is developed. First, a
differentiable Hartley feature map parameterized by real-valued argument that
enables quantum models suitable for solving stochastic differential
equations and regression problems is designed. Unlike the naturally complex
Fourier encoding, the proposed Hartley feature map circuit leads to quantum
states with real-valued amplitudes, introducing an inductive bias and natural
regularization. Next, a quantum Hartley transform circuit is proposed as a
map between computational and Hartley basis. The developed paradigm is
applied to generative modeling from solutions of stochastic differential
equations, and utilize the quantum Hartley transform for fine sampling from
parameterized distributions through an extended register. Finally, the
capability of multivariate quantum generative modeling is demonstrated for
both correlated and uncorrelated distributions. As a result, the developed
quantum Hartley-based generative models (QHGMs) offer a distinct quantum
approach to generative AI at increasing scale.

1. Introduction

Quantum computing offers speedup in solving certain prob-
lems, with a promise of outperforming classical solvers thanks to
natively quantum effects of entanglement and superposition.[1]

Quantum algorithms that take advantage of these properties
cover various application areas, ranging from cryptography[2]

and quantum simulation,[3,4] to linear equation solvers,[5–7] and
optimization.[8–10] Most of the protocols mentioned above rely on
subroutines that involve the quantum phase estimation and the
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quantum Fourier transform (QFT).[11–14]

The QFT is the implementation of the clas-
sical discrete Fourier transform (DFT) on
a quantum circuit (QC) and it can be de-
rived in an equivalent way from a fast
Fourier transform based on the Danielson–
Lanczos lemma.[15–17] Using the phase kick-
back trick, one can show that both result-
ing QFT circuits are identical. As the vast
majority of applications is concerned with
the processing of real-valued datasets, the
Hermitian-symmetric QFT manifests itself
that there is redundancy in the spectral ex-
pansion of a real-valued signal. In addition,
one complex multiplication requires the ap-
plication of four real multiplications and
three additions/subtractions, while one real
multiplication just needs two multiplica-
tions and one addition/subtraction. Conse-
quently, the use of the Fourier-related algo-
rithms capable of naturally performing real-
valued unitary transformations between
the real and reciprocal spaces is highly

desirable. Namely, it adds an inductive bias, thus reducing
resources required for building quantummodels and generating
quantum probability distributions.
Quantum machine learning (QML) is a burgeoning interdis-

ciplinary field that integrates quantum computing with machine
learning. Usually, it refers to the use of variational quantum al-
gorithms to undertake classical learning tasks and solve prac-
tically relevant problems.[18–26] Motivated by the great success
of their classical counterparts in machine learning,[27–31] various
protocols for quantum generativemodeling (QGM) have recently
been developed to exploit parameterized QCs for modeling of the
probability distribution of a given dataset, including quantum
Boltzmann machines (QBMs), quantum generative adversarial
networks (QGANs) and quantum generative diffusion models
(QGDMs). Once successfully trained, these models can gener-
ate synthetic samples closely resembling the data distribution.
QBMs belong to energy-based models that use a parameterized
QC as a Hamiltonian operator to prepare quantum Gibbs state
whose sampling behavior reflects the probability distribution of
given training data.[32,33] Due to the nature theminmax loss func-
tion, QGANs rely on the simultaneous training of two separate
parameterized QCs in alternating optimization steps to reach
a Nash equilibrium where the quantum generator can produce
samples from the trained distribution.[34–36] Inspired by non-
equilibrium thermodynamics, QGDMs, comprising two separa-
ble phases - the forward diffusion with a specific noise schedule

Adv. Quantum Technol. 2025, 8, 2400337 2400337 (1 of 13) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH

http://www.advquantumtech.com
mailto:h.wu@exeter.ac.uk
https://doi.org/10.1002/qute.202400337
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fqute.202400337&domain=pdf&date_stamp=2024-11-11


www.advancedsciencenews.com www.advquantumtech.com

and the backward denoising with a time-parameterized QC, have
been demonstrated to offer faster convergence, better scalability
and higher fidelity than QGANs.[37–39]

Without a classical analogue, quantum circuit Born ma-
chines (QCBMs) are quantum-inspired generative models and
this model family leverages the inherent probabilistic nature
of quantum measurement[40] and implicitly treats data repre-
sented by binary strings as an observable (thus building an im-
plicit model[41]). As soon as QCBMs are successfully trained,
one can directly produce samples from the parameterized prob-
ability distribution through projective measurements using the
same circuit.[42–47] By contrast, the explicit models allow for sep-
aration of the training and sampling stages of QGM[48,49] and
rely on a differentiable feature map encoding of continuous or
discrete distributions of data at the training stage.[50] A typi-
cal workflow for the quantum explicit models starts with en-
coding classical input data of the form x = {x0,… , x2N−1} to
quantum states via a N-qubit quantum feature map circuit that
acts on a zero product state |𝜙⟩ ≡ |0⟩⊗N . Specifically, a feature
map is a unitary operator that takes an input argument x and
maps it to a distinct quantum state living in a 2N Hilbert space,
x → |𝜑(x)⟩ = ̂𝜑(x)|𝜙⟩. One feature map that associates an in-
put feature with a quantum state in the phase space is the
Fourier (phase) feature map.[48] It is formed by an initial layer of
Hadamard gates on each qubit followed by a layer of scaled phase
shift gates, Pl(x) = diag{1, exp(i2𝜋x∕2l)} applied to the qubit in-
dex l ∈ [1,… , N]. The set of the output states {|𝜑(xj)⟩}2N−1j=0 , eval-

uated at {xj}
2N−1
j=0 representing consecutive integers in the range

of [0, 2N − 1] corresponding to length-N binary strings, forms a
complete orthonormal Fourier basis. These Fourier basis states
can be mapped to the set of computational basis through an
inverse quantum Fourier transform (QFT) circuit, {|xj⟩}2N−1j=0 =

̂ †
QFT{|𝜑(xj)⟩}2N−1j=0 . Unlike other quantum encoding techniques,

such as amplitude and basis embeddings,[51,52] ̂𝜑(x) can be dif-
ferentiatedwith respect to a continuous variable x ∈ ℝ2N−1, allow-
ing solving differential equations modeled in the explicit form.
Different from Fourier feature encoding, the Chebyshev feature
map has recently gathered attention as it generates quantum
states with amplitudes proportional to Chebyshev polynomials of
the first kind, forming an orthonormal Chebyshev basis on non-
equidistant nodes.[53,54] Current classical generative architecture
concentrates on training large-scale models of rapidly increas-
ing complexity. Quantum computing may offer a powerful alter-
native platform for multidimensional generative modeling with
a potential ability to prepare correlated distributions.[48,55] How-
ever, it remains an open problem how to build quantum models
that can efficiently express, learn, and sample from a high dimen-
sional probability distribution, enabling quantum generative ar-
tificial intelligence (AI) in a large scale.
In this paper, we propose an orthonormal Hartley feature

map that enables explicit quantum model building in the Hart-
ley basis.[56] Unlike DFT, the discrete Hartley transform (DHT)
maps a real input to a real output and has the convenient prop-
erty of being its own inverse[57] as well, particularly suitable for
physics-informed quantum machine learning.[54] The DHT has
been shown to offer computational advantages over DFT in appli-
cations of power spectrum and convolution computations.[58,59]

The orthonormal Hartley feature map as a quantum circuit pa-
rameterized by a continuous variable x prepares quantum states
with amplitudes proportional to the so-calledHartley kernel func-
tion, which facilitates building and training quantum models in
the real-valued Hartley (latent) space with an exponentially large
basis set and allows for model differentiation. We apply the de-
veloped quantum protocols for learning probability distributions
motivated by financially-relevant processes. We demonstrate the
efficient sampling of the Hartley-based quantum model by map-
ping the Hartley basis to the computational basis via a quan-
tum Hartley transform (QHT) circuit. We then employ the de-
veloped tools to solve differential equations and compare the re-
sults obtained from the different quantum models constructed
by Fourier and Hartley bases. Finally, we proceed to extend and
implement the proposed strategies to multivariate encoding and
sampling for multidimensional quantum generative modeling.

2. Results and Discussion

2.1. Orthonormal Hartley Feature map Circuit

We design Hartley feature maps to facilitate the learning process
for quantum probability distribution, and make models train-
able, while allowing easy sampling from the trained model via a
unitary transformation to the computational basis. The computa-
tional basis states refer to orthonormal states {|xj⟩}2N−1j=0 such that
overlaps equate to the Kronecker delta function, ⟨xj′ |xj⟩ = 𝛿j′ ,j. In
the case where the initial input states are |𝜙⟩, |xj⟩ can be eas-
ily generated by applying a Pauli X̂ gate to the lth qubit if the
lth classical bit is 1, often referred to as the basis encoding.[60]

Specifically, we want to generate a N-qubit quantum state |h(x)⟩
with amplitude proportional to an equally weighted sum of x-
dependent cosine and sine wave functions, namely the Hartley
kernel cas(2𝜋kx∕2N) ≡ cos(2𝜋kx∕2N) + sin(2𝜋kx∕2N). This state
can be written as |h(x)⟩ = 2−N∕2 ∑2N−1

k=0 cas(2𝜋kx∕2N)|k⟩, where
{|k⟩} are 2N computational basis states. For xj ∈ [0,… , 2N − 1],
the cas(⋅) function satisfies the following orthogonality condi-
tions,

2N−1∑
j=0

cas(2𝜋kxj∕2N) cas(2𝜋𝓁xj∕2N) =

{
2N k = 𝓁

0 k ≠ 𝓁
(1)

As a consequence, the states |h(x)⟩ are orthonormal on the inte-
ger grid points. Namely, the set of Hartley states {|h(xj)⟩}2N−1j=0 sat-
isfies ⟨h(xj′ )|h(xj)⟩ = 𝛿j′ ,j with 𝛿j′ ,j being the Kronecker delta func-
tion. We note that the states |h(x)⟩ also fulfill this orthonormal
condition for half-integer points, {x(j+1∕2)} ∀j ∈ [0, 2N − 1]. Since
the cas(⋅) function can be alternatively expressed as a delayed
cosine function, cas(x) =

√
2 cos(x − 𝜋∕4), Hartley states can be

prepared using a combination of exponents cos(x) = [exp(ix) +
exp(−ix)]∕2 for some scaled variable x, where each amplitude
is embedded via the phase feature map.[48] Therefore, the im-
plementation of Hartley feature map circuit ̂h(x) that prepares
normalized Hartley state for any continuous variable x can be
achieved by the linear combination of unitary (LCU) approach,[61]

as shown in Figure 1. The circuit begins with a Hadamard gate
acting on the ancilla register, being the most significant bit, with

Adv. Quantum Technol. 2025, 8, 2400337 2400337 (2 of 13) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2025, 3, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/qute.202400337, W

iley O
nline L

ibrary on [14/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 1. Quantum Hartley feature map. Quantum Hartley feature map ̂h(x) circuit creates a Hartley state via x-parameterized isometry — a N-
qubit Fourier feature map followed by controlled phase shift gates to embed complex exponents and a constant RZ gate to provide a global phase
delay. A x-dependent RZ gate is acting on the ancilla and sandwiched between two Hadamard gates to ensure favorable mid-point behavior while
retaining the real amplitude of |h̃(x)⟩ after the ancillary measurement yields |0⟩ outcome. Here, scaled single-qubit phase shift gate is defined as P̃m

l
(x) =

diag{1, exp(im2𝜋x∕2l)}, where l ∈ [1,… , N] is the qubit index and m takes values of 1 and −2, for any continuous variable x ∈ ℝ2N−1.

a Fourier feature map applied to N qubits to distribute the scaled
relative phases exp(ix) to all of the states in Fourier space, and
then a series of controlled phase gates are applied to contribute
relative phases based on exp(−ix) = exp(ix) exp(−i2x). A constant
RZ(𝜋∕2) gate is utilized to produce a 𝜋∕4 phase delay in the co-
sine argument. A x-dependent RZ(2𝜋x) gate is appended to the
ancillary qubit to minimize the contributions of the quantum
state associated with non-integer points on the state overlap (see
Appendix A.1 for detailed discussion), followed by a Hadamard
gate. Under the condition that the ancilla register collapses to|0⟩ outcome, the quantum state prepared by ̂h(x) reads |h̃(x)⟩ =|h(x)⟩∕ (x), where the unnormalized state |h(x)⟩ is expressed as
|h(x)⟩ = 1

2N∕2

2N−1∑
k=0

cas
[
(2𝜋k∕2N − 𝜋)x

]|k⟩ (2)

and  (x) =
√⟨h(x)|h(x)⟩ = √

1 − sin(2𝜋x)∕2N is x-dependent
when not evaluated at the half-integer and integer grid points.

2.2. Quantum Hartley Transform Circuit

For sampling purposes, we need to develop a corresponding
transformation circuit that enables the mapping between Hart-
ley states {|h(xj)⟩}2N−1j=0 and the computational states {|xj⟩}2N−1j=0
(and reverse). This unitary transformation reads |h(xj)⟩ =
(−1)j̂QHT|xj⟩, where ̂QHT represents quantum Hartley trans-
form (QHT) and the sign flips for odd integers results from
the introduction of x-dependent RZ gate in the Hartley fea-
ture map circuit. For general sampling, the effect of this phase
modulation on projective measurements can be ignored. As
a result, the matrix representation of QHT can be expressed
as ̂QHT =

∑2N−1
j=0 |h(xj)⟩⟨xj|. We note that QHT is the quan-

tum analogue of DHT. Namely, the vector amplitude of |h(xj)⟩
corresponds to the (j + 1)th column of the DHT matrix de-

fined as DHTN := 2−N∕2
{
cas(2𝜋kj∕2N)

}
∀ k, j ∈ [0, 2N − 1]. It is

worth mentioning that ̂QHT is an involutory matrix ̂ 2
QHT =

̂ 2†
QHT = Î in contrast to ̂ 2

QFT = ̂ 2†
QFT ≠ Î. We realize that ̂QHT =[

(1 − i)̂QFT + (1 + i)̂ †
QFT

]
∕2 is strongly related to the ̂QFT

and thus suggest the use of an extended QFT circuit to build
QHT circuit,[62] as shown in Figure 2. The circuit begins with
a Hadamard gate applied to the ancilla, being the most signifi-
cant bit, and a QFT circuit applied to N qubits, which maps the
input binary state |xj⟩ from the computational basis to Fourier
basis. The combination of a CNOT ladder and a permutation cir-
cuit is used to reorder the amplitudes of the conditioned states
and is equivalent to a controlled ̂ 2

QFT. A Hermitian adjoint of

square root of Pauli X̂ gate is introduced to adjust the relative
phases and the intermediate state at this stage is in the form

of
(|0a⟩̂QHT|xj⟩ + |1a⟩̂ 2

QFT̂QHT|xj⟩) ∕
√
2. The circuit is con-

cluded with the adjoint (conjugate transpose) version of CNOT
ladder and permutation circuits, followed by a Hadamard gate to
ensure that |0ah(xj)⟩ is left alone for any input states |0axj⟩, and
the amplitude of |h(xj)⟩ is purely real. We note that the ancilla
starts and ends in |0⟩ state (’clean run’). In the following sec-
tions, the symbol ̂QHT will be treated as a QHT circuit rather
than matrix itself, providing the unitary transformation as

̂QHT =
2N−1∑
j=0

|0ah(xj)⟩⟨0axj| (3)

We also note that QHT circuit is not unique, and can be poten-
tially optimized or recompiled for any quantum computing ar-
chitecture to be used.
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Figure 2. Quantum Hartley Transform. Quantum Hartley transform ̂QHT circuit maps computational basis states {|0axj⟩}2N−1j=0 into Hartley states

{|0ah(xj)⟩}2N−1j=0 , where xj ∈ ℤ2N−1. The QHT circuit involves a QFT circuit acting on N-qubit system beneath an ancilla qubit, followed by two sequential

sets of CNOT ladder and permutation circuits with an inverse
√
X gate in the middle, sandwiched between two Hadamard gates applied to the ancilla.

The standard single-qubit phase shift gate in QFT circuit is defined as P(𝜙) = diag{1, exp(i𝜙)}. H and X are Hadamard and Pauli X̂ gates, respectively,

and
√
X
†
is equivalent to RZ(𝜋∕2)P(−𝜋∕2)RX(−𝜋∕2).

2.3. Learning and Sampling via the Framework of Quantum
Hartley-Based Generative Models

Next, we demonstrate examples of applying the quantum
Hartley-based generative models (QHGMs) to two relevant
distributions of stochastic models: Ornstein-Uhlenbeck (OU)
and geometric Brownian motion (GBM) processes, which
among others are widely used in financial analysis. For instance,
the former is typically employed to model interest rates and
currency exchange rates,[63] while the latter is usually utilized
to model the log return of stock prices in the Black–Scholes
model.[64] The stochastic process Xt at time t satisfies a stochastic
differential equation (SDE) dXt = 𝜈(𝜇 − Xt)dt + 𝜎dWt for OU
and dXt = 𝜇Xtdt + 𝜎XtdWt for GBM process, where the constant
parameters (𝜇, 𝜎 and 𝜈) represent mean (drift), volatility and re-
version speed, respectively, and Wt denotes the Wiener process.
Using the Fokker-Planck equation to treat Xt as a deterministic
variable x, we obtain the time evolution of the underlying prob-
ability density function p(x, t) for a given initial distribution of
p(x, 0) = 𝛿(x − xi). The results show that Xt follows normal and
log-normal distributions, respectively, as

pOU(x, t) =
√

𝜈

𝜋(1 − e−2𝜈t)𝜎2
exp

{
−𝜈

[
x − 𝜇 − (xi − 𝜇)e−𝜈t

]2
(1 − e−2𝜈t)𝜎2

}
(4)

pGBM(x, t) =
1√

2𝜋𝜎2t x
exp

{
−
[
ln(x∕xi) − (𝜇 − 𝜎2∕2)t

]2
2𝜎2t

}
(5)

Setting p(x, t → 1) = ptarget(x) as a target distribution (ground
truth), we make use of the Hartley feature map followed by an
ansatz parameterized by a vector of variational parameters 𝜽

that can be adjusted in a hybrid classical-quantum optimization
scheme to learn these two distributions. Tomaintain the real am-
plitudes of the state vector, the variational ansatz ̂𝜃 comprises ad-
justable RY rotation and fixed CNOT/CZ gates. An exemplary ̂𝜃
used in this study is illustrated in Figure S1 (Supporting Informa-

tion). Specifically, the N-qubit hardware efficient real-amplitude
ansatz (HERA) consists of an initial layer of parameterized RY
gates applied on each qubit, followed by depth-d blocks presented
in the alternating layered architecture. Each block is composed of
a cascade of entangling (CNOT) gates and a layer of parameter-
ized RY gates applied on each qubit. The total N(d + 1) trainable
parameters are randomly initialized. This ansatz prepares highly
correlated quantum states with real-only amplitude while maxi-
mizing the expressivity of the model.[65,66] We begin with varia-
tionally training both normal and log-normal distributions in the
latent space through feeding an initial product state |0a𝜙⟩ to the
Hartley feature map ̂h(x) connected with a variational ansatz
circuit Î⊗ ̂𝜃 , and then read out the quantummodel as an expec-
tation value of an observable ̂ = |0a𝜙⟩⟨0a𝜙|. Note that the latter
can be substituted by a local proxy during the training stage.[67] In
order to improve the trainability and expressivity of QMLmodels,
they are usually formulated as p𝜃(x) = 𝛼⟨̂⟩ + 𝛽 with variationally
trainable scaling and (optional) bias parameters (𝛼 and 𝛽), as de-
picted in Figure 3a. The quantum model is trained to search for
optimized 𝜽opt to fit the target probability distribution by mini-
mizing a mean squared error (MSE) loss function

(𝜃) = 1
M

M∑
m=1

[
p𝜃(xm) − ptarget(xm)

]2
(6)

where M is a grid of training points consisting of the integers
{xj} and additional half-integers {x(2j+1)∕2} ∀j ∈ [0, 2N − 1]. The
lossminimization is performed via Adam optimizer for gradient-
based training of variational parameters 𝜽. In Figure 3b,c we
show the trained normal and log-normal distributions using N
= 5 qubits with ̂𝜃 of depth d = 4 and 5, respectively. Trained
models (red circles) tightly follow the target functions (black
solid curves). Because qubits are entangled and rotated differ-
ently from the initial state to the target state in each learnable
block, the number of depth blocks can significantly impact the
learning accuracy of both financially-motivated models.
Since p𝜃opt (x) = |⟨0a𝜙|(Î⊗ ̂𝜃opt

)|0ah̃(x)⟩|2 ≃ |⟨0axj|̂ †
QHT

(
Î⊗

̂†
𝜃opt

)|0a𝜙⟩|2, we can sample the probability distribution of the
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Figure 3. Learning and sampling probability distributions with quantum Hartley-based generative models (QHGMs). a) Circuit used to train the model
p𝜃(x) in the latent space. Measured observable is defined as ̂ = |0a𝜙⟩⟨0a𝜙|, where |𝜙⟩ ≡ |0⟩⊗N, with 𝛼 and 𝛽 being trainable scaling and bias param-
eters. b) Trained p𝜃opt (x) and target pOU(x) distributions with parameters 𝜇 = 5, 𝜎 = 3, 𝜈 = 0.5, xi = 24 and t = 1. c) Trained p𝜃opt (x) and target pGBM(x)
distributions with parameters 𝜇 = 0.1, 𝜎 = 0.3, xi = 12 and t = 1 for x > 0. d) Circuit used to sample the trained model in the computational basis|0axj⟩. The quantum state just prior to measurement is denoted as |𝜓⟩. e,f) Sampled probability distributions from the corresponding trained models,
generated with 105 shots. The normalized histogram is plotted with respect to xj ∈ ℤ2N−1. g) Circuit with S-qubit extended registers on the top line used
to perform fine sampling in the computational basis |xsxaxj⟩. h) Sampled probability distribution from the trained (GBM) model using the extended

register of S = 1, generated with 106 shots. The normalized histogram is plotted as a function of x ∈ ℝ2N−1. The bitstring network ̂ for S = 1 is shown
on the right.

trained model by applying the adjoint versions of the trained
ansatz and QHT circuits to the zero product input state, |𝜓⟩ =
̂ †

QHT

(
Î⊗ ̂†

𝜃opt

)|0a𝜙⟩, and then perform projective measure-

ments in the computational basis to collect a batch of binary sam-
ples, as shown in Figure 3d. The histograms in Figure 3e,f show
the resulting sampled probability distributions normalized with
the total number of samples, and both of them are in good agree-
ment with the corresponding target distributions (solid curves in
Figure 3b,c). One can readily increase the sampling rate at the
expense of decrease of maximum probability amplitude through
S-qubit extended registers on the top line, xs ∈ [0,… , 2S − 1].
The relevant circuits associated with the extended registers are
(N+1+S)-qubit inverse QHT and bitstring network ̂ circuits be-
fore projective measurements, as depicted in Figure 3g. The re-
quirement of the inclusion of an extra bitstring network for S ≥ 1
originates from the use of x-dependent RZ gate acting on the an-
cilla in the Hartley feature map during the training procedure.
The nature of x-dependent argumentmakes the training stable at
the cost of having (bit-dependent) periodic signal on the ancilla.
As a demonstration of the double-frequency sampling, the his-
togram of the sampled probability distribution from the trained
(GBM) model with the extended register of S = 1 is plotted as
a function of x ∈ ℝ2N−1 and presented in Figure 3h, where the
length-(N+1+S) readout binary strings are linearlymapped to the
domain x in the range of [0, 2N+1 − 1]. We note that the bitstring
network is just a CNOT ladder for S = 1. Further fine sampling
can be achieved by increasing extended register sizes together
with different types of bitstring network. The other way to per-
form dense sampling is borrowed from the sampling procedure
of Fourier model. One can transform the computational states to

Fourier states by a (N+1)-qubit QFT circuit, followed by an ex-
tended inverse QFT circuit, as shown in Figure S2 (Supporting
Information), where the histograms for double- and quadruple-
frequency sampling corresponding to different sizes of the ex-
tended registers are demonstrated. More importantly, the result-
ing histograms from both sampling configurations qualitatively
match the target distribution, providing a potential pathway to
generate novel and unseen datasets that fall within the learnt
probability distribution (i.e., draw samples from the trained prob-
ability distribution by means of the probabilistic nature of quan-
tum measurements) for practical applications of quantum gen-
erative AI in machine learning tasks and quantum physics. In
the following sections, we will employ the developed protocols
on solving differential equations, making a comparison between
Fourier and Hartley models, and exploring the possibility to-
ward multidimensional quantum generative modeling, followed
by brief discussions on the impact of noise on QHGMs and the
circuit complexity of QHGMs in Appendices A.2 and A.3.

2.4. Solving Differential Equations

We first consider two exemplary second-order differential equa-
tions (DEs) with variable coefficients to be tackled. The first DE
is of the form

d2f (x)
dx2

+
(x − 𝜇)
𝜎2

df (x)
dx

+
f (x)
𝜎2

= 0 (7)

for some real-valued parameters 𝜇, 𝜎 and the bound-
ary conditions f (𝜇) = 1∕

√
2𝜋𝜎2 and df (x)∕dx|||x=𝜇 = 0.

Adv. Quantum Technol. 2025, 8, 2400337 2400337 (5 of 13) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 4. Results of solving differential equations. a) Plots of trained model f𝜃opt (x) and analytic solution f (x) of Equation (7) with boundary conditions

of f (𝜇) = 1∕
√
2𝜋𝜎2 and df (x)∕dx|||x=𝜇 = 0, where parameters are 𝜇 = 7.5 and 𝜎 = 1.406. b) Plots of trained model f𝜃opt (x) and analytic solutions f (x)

of Equation (8) with boundary conditions of f (e𝜇−𝜎
2
) = e(𝜎

2∕2−𝜇)∕
√
2𝜋𝜎2 and df (x)∕dx|

x=e𝜇−𝜎2 = 0, where parameters are 𝜇 = 1.5 and 𝜎 = 0.316. The
corresponding c,d) first and e,f) second derivatives of the analytic solutions and trained models.

This differential equation has a known analytical solution

f (x) = exp
{
−0.5

[
(x − 𝜇)∕𝜎

]2} ∕
√
2𝜋𝜎2. The second DE reads

d2f (x)
dx2

+
[2𝜎2 − 𝜇 + ln(x)]

𝜎2x
df (x)
dx

+
f (x)
𝜎2x2

= 0 (8)

with the boundary conditions f (e𝜇−𝜎2 ) = e(𝜎2∕2−𝜇)∕
√
2𝜋𝜎2 and

df (x)∕dx|||x=e𝜇−𝜎2 = 0. The analytical solution of this DE is

f (x) = exp
{
−0.5

[
(lnx − 𝜇)∕𝜎

]2} ∕(
√
2𝜋𝜎2 x) for x > 0. Solving

DEs requires evaluations of the first and second derivatives
of the quantum model f

𝜽
(x) = 𝛼⟨0a𝜙|̂ †

h (x)
(
Î⊗ ̂†

𝜃

)
̂
(
Î⊗

̂𝜃
)
̂h(x)|0a𝜙⟩ + 𝛽 with respect to x, which relies on a differen-

tiable Hartley feature map ̂h(x) circuit. Gradient calculations
are implemented with automatic differentiation techniques

(backpropagation) or with the application of the parameter shift
rule.[68–70] For the latter case, controlled gates P̃−2

l (x) need to
be decomposed using CNOT conjugations, and differentiation
of ̂h(x) requires 4N + 2 shifts in total. We then variationally
minimize an overall MSE loss function. Specifically, the total
loss function is the equal-weighted sum of the contributions
that match the differential equation and satisfy the boundary
conditions. The loss is minimized with the gradient-based Adam
optimizer with a small learning rate of 0.01 and generally the
loss error converges to the level of 10−6 in a few thousand epochs.
We use the Python programming language (PennyLane from
Xanadu[71] and Qadence from Pasqal[72]) together with machine
learning packages (NumPy, JAX and PyTorch) for the full stat-
evector simulation. In particular, we utilize Hartley encoding
overN = 4 qubits and theHERA of depth 3 to solve Equations (7)
and (8). The results are presented in Figure 4a–f. The red, green,

Adv. Quantum Technol. 2025, 8, 2400337 2400337 (6 of 13) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 5. Comparison between the quantum Fourier- and Hartley-based models. Training a probability exponential distribution with rate parameter 𝜆 =
0.5, ptarget(x) = 𝜆e−𝜆x for x ≥ 0, using Fourier and Hartley feature map circuits over N = 2 a), 3 b), 4 c), and 5 qubits d) with the shallow ansatz circuit
depth of d= 1. For Fourier models, the parameterized gate element in the HEA is composed of two adjustable single-qubit rotation gates per qubit (RYRX,
RZRY, RXRZ, expressed in matrix multiplication order). For Hartley models, only the RY gate is required in the HERA. The insets show the corresponding
relative errors.

and blue hollow-circle curves represent functions and their
first and second derivatives, respectively, f𝜃opt (x), df𝜃opt (x)∕dx and
d2f𝜃opt (x)∕dx

2 evaluated at optimal angles 𝜃opt retrieved after
the optimization procedure. Overall, the trained models are
consistent with the analytic solutions (solid black curves).

2.5. Complex Fourier vs Real Hartley Models

To evaluate the potential of using the Hartley models, we con-
sider an exponential distribution with probability density func-
tion p(x) = 𝜆e−𝜆x as a ground truth. This p(x) describes the dis-
tances between successive events in homogeneous Poisson pro-
cesses. As being the only continuousmemoryless probability dis-
tribution, it is widely used in the calculation of various systems

in queuing theory and reliability theory.[73] We employ N-qubit
Fourier encodings followed by different configurations of hard-
ware efficient ansatz (HEA) to learn this exponential distribution
on a training grid of 2N integer points and compare the results
with Hartley models. Note that the ancillary register is not re-
quired for Fourier models (see Figure A1c). Due to the complex
nature of the Fourier models, the parameterized gate element
inside each depth block of the HEA is composed of two single-
qubit rotation gates per qubit (marked as RYRX, RZRY, RXRZ in
Figure 5), each gate parameterized by a given angle, and the
CNOT-based entangling layers are the same as the HERA (see
Figure S3, Supporting Information, for other cases of parameter-
ized gates). Therefore, there are 2N(d + 1) trainable parameters
for HEA of depth d. These HEAs allow easy access to the solution
space by preparing quantum states with complex amplitude and

Adv. Quantum Technol. 2025, 8, 2400337 2400337 (7 of 13) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 6. Multivariate quantum Hartley-based generative models. a) Circuit used to train the multivariate distribution in the latent space, where a
parameterized correlation circuit ̂Θ is sandwiched between feature maps (̂h(x) and ̂h(y)) and variational ansatzes (̂𝜃 and ̂𝜗). Measured observable
is defined as ̂ = |0a𝜙0a𝜙⟩⟨0a𝜙0a𝜙| is utilized, where |𝜙⟩ ≡ |0⟩⊗N. Here, 𝛼 and 𝛽 are trainable scaling and bias parameters. b) Circuit used to sample
the multivariate distribution from the trained model, where 𝜽opt, 𝝑opt and 𝚯opt are retrieved after the optimization procedure in (a). Two identical sets

of inverse QHT (̂ †
QHT) and bitstring network (̂) circuits associated with extended registers of S qubits are then applied in parallel for fine sampling in

the computational basis |xsxaxjysyayj⟩. The quantum state just prior to measurement is denoted as |𝜓⟩.
Adv. Quantum Technol. 2025, 8, 2400337 2400337 (8 of 13) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 7. Learning and sampling bivariate probability distributions with multivariate quantum Hartley-based generative models. a) Density plots of
target pBN(x, y) distributions with parameters 𝜇x = 8.3, 𝜇y = 8.6 and 𝜎x = 1.5, 𝜎y = 1.8 for different correlation coefficients ranging from 𝜌 = −0.8 to 0.8
in a step of 0.4 (left to right). b) Density plots of corresponding trained p𝜃opt ,𝜗opt ,Θopt

(x, y) models. c) Normalized density plots of sampled distributions

from the corresponding trained models in (b) using the parallel extended registers of S = 1, where 107 shots are measured at the readout. All plots share
the same color bar on the right in each row with the same correlation coefficient in each column.

avoid the training issues such as barren plateaus and local min-
ima for complex Fourier models. As shown in Figure 5a–d, both
Fourier and Hartley models follow ptarget(x) closely with small
relative errors for varying number of qubits N under the same
ansatz depth d = 1. However, the number of variational param-
eters in complex Fourier models is double compared to those in
real Hartley models. Our results indicate for a N-qubit quantum
system (N ≥ 2) that one can simply employ the Hartley model
with the minimal number of parameterized gates needed to ef-
ficiently reach the target solution space compared to the Fourier
model. This becomes important when considering practical im-
plementations with limited quantum resources and relevant ap-
plications.

2.6. Multivariate Quantum Hartley-Based Generative Models

We proceed to extend the proposed strategies from univariate to
multivariate distributions. As an example, we consider a bivari-
ate/binormal distributionwith probability density function in the
form

pBN(x, y) =
1

2𝜋
√
1 − 𝜌2 𝜎x𝜎y

exp

⎡⎢⎢⎢⎣
−
(
z2x + z2y − 2𝜌zxzy

)
2(1 − 𝜌2)

⎤⎥⎥⎥⎦ (9)

where zx = (x − 𝜇x)∕𝜎x and zy = (y − 𝜇y)∕𝜎y with parameters 𝜇x,
𝜇y and 𝜎x, 𝜎y representingmean and standard deviation values for
each (either stochastic or deterministic) variables x and y. Here, 𝜌
is a correlation coefficient, −1 < 𝜌 < 1. We start with Hartley en-
coding of two independent variables x and y in parallel registers,
followed by a parameterized correlation circuit ̂Θ and two sep-
arate variational ansatzes ̂𝜃 and ̂𝜗, as illustrated in Figure 6a.
The quantum model p𝜃,𝜗,Θ(x, y) is trained to represent the target
pBN(x, y) through searching for optimal angles, 𝜽opt, 𝝑opt and𝚯opt,
the same procedure in the previous univariate case. The correla-
tion circuit plays a crucial role in making two otherwise indepen-
dent latent variables correlated for efficient training, while keep-
ing the sampling procedure the same as previously discussed in
the univariate case. As usual, ̂Θ comprises alternating layers of
adjustable RY rotation and fixedCZgates to ensure the real ampli-
tudes of the state vector. Specifically, the (2N + 2)-qubit correla-
tion circuit consists of three layers of parameterized RY gates ap-
plied on each qubit (except for two ancilla), two layers of CZ gates
applied to odd and even subsequent pairs of qubits, respectively,
and a final layer of CZ gates applied to the same qubit index be-
tween separate registers. Therefore, the overall number of train-
able parameters includes 6N by the correlation circuit and 2N(d +
1) contributed by two variational ansatzes, all of which are ran-
domly initialized. For the circuit used to densely sample multi-
variate distributions illustrated in Figure 6(b), we run the trained
circuit with inverted parameters in reverse order and replace

Adv. Quantum Technol. 2025, 8, 2400337 2400337 (9 of 13) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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the Hartley feature maps with extended inverse QHT circuits, a
procedure accounting for the basis transformation from the la-
tent to bitbasis space. Two identical bitstring networks are then
applied in parallel, followed by projective measurements in the
computational basis to collect a batch of binary samples, as de-
scribed in the previous section. Similarly, its variant model via
QFTs is shown in Figure S4 (Supporting Information). Figure 7a
shows density plots of analytical bivariate (binormal) distribution
based on Equations (9) with five different correlation coefficients,
set as 2D target distributions (ground truths). The corresponding
density plots of the trained quantum models with N = 4 qubits
and the variational ansatz of depth d = 2 are displayed in each
column of Figure 7b, respectively. As expected, they all quanti-
tatively follow target distributions presented in Figure 7a. Typi-
cally the loss error reaches to the level 10−6 after a few hundred
iterations for each scenario. Successful bivariate learning over a
wide range of correlation coefficients can be attributed to thewell-
designed architecture of the latent-space training of the quantum
model with a problem-specific correlation circuit included. The
proposed correlation circuit structure is designed to simultane-
ously support the successful training of uncorrelated, partially
and highly (positive/negative) correlated distributions with |𝜌|
smaller than 0.9. For the cases of |𝜌| higher than 0.9, increas-
ing the depth of the variational ansatz circuit or a modification
of the correlation circuit is essential. After projective measure-
ments in the computational basis, we have to perform classical
post-processing tasks on a batch of measured binary datasets.
This involves with periodically dropping out those bits with zero
probability, concatenating rest of the bits in a sequential way and
reshaping the resulting bitstring in a 2D array for data plotting.
For the case of the extended register of S = 1, the correspond-
ing normalized density plots of sampled distributions are shown
in Figure 7c, which are in excellent agreement with the target
distributions. In the cases of |𝜌| = 0.8, some defects (light-purple
spots) emerge from the backgrounds of both trained and sampled
models, but they do not affect the identification of appearance of
the binormal distributions. Finally, the proposed framework en-
ables us to systemically buildmultidimensional quantummodels
and easily scale to larger system sizes without the need of a huge
amount of change. The size of each modular unit such as Hart-
ley feature map, variational ansatz, quantum Hartley transform
and bitstring network, is essentially determined by “local”Hilbert
space independent of neighboring subsystem and each individ-
ual module has the same circuit architecture as that in the uni-
variate case. That is to say, we only need to focus on the modifica-
tion or redesign of layers of CZ gates responsible for “global” cor-
relations among three separate registers when tackling p(x, y, z)
associated with three correlated independent variables. As a con-
sequence, we envision a future research of quantum generative
modeling going beyond simple univariate towards complex mul-
tivariate diffusion models using the developed techniques pre-
sented in this work.

3. Conclusion

In this study, we developed protocols for building quantum gen-
erativemodels based onHartley kernels where embedding is rep-
resented by a quantum state with amplitudes being x-dependent
functions scaling as cas(2𝜋kx∕2N). Being real-valued, Hartley

models are suitable for solving symmetry-related tasks and pro-
vide an advantage over Fourier basis states with inherently com-
plex coefficients. We proposed a data-dependent embedding cir-
cuit to generate the exponentially expressive orthonormal Hart-
ley basis in the latent space, enabling the differentiation of quan-
tum models, and designed a real-amplitude ansatz for efficient
training of quantummodels. We constructed the quantumHart-
ley transform circuit for mappings between Hartley and compu-
tational bases. With these tools, we performed generative mod-
eling from the learnt probability distributions being solutions
of stochastic differential equations that arise in financial model-
ing, and demonstrated efficient sampling of these distributions
in computational basis, revealing the consistent profiles between
the learnt and sampled probability distributions. We then solved
the differential equations and demonstrated favorable generaliza-
tion properties of QHGMs. Finally, we showcased the capability
of multivariate QHGMs, where we developed a problem-specific
correlation circuit and used parallel extended registers for both
correlated and uncorrelated probability distribution. This opens
a way to multivariate learning and sampling enabled by differen-
tiable physics-informed quantum generative models.

Appendix A

A.1. 2D Squared Overlaps

Similar to Equation (1), the squared overlap is employed to examine the
orthonormal behavior of different states of continuous variables. As il-
lustrated in Figure A1a, the squared overlap between mutual normalized

Hartley states, |⟨h̃(x′)|h̃(x)⟩|2, shows unity along the diagonal 45 degree
line, meaning that the diagonal states are orthonormal as usual. However,
those off-diagonal states, i.e., states along 135 degree line, reveal an unfa-
vored behavior as they disrupt orthogonality in between nodes, contribut-
ing at least 50% of the maximum value. This is quite different from the
Fourier (phase) feature map[48] written in the Fourier basis (Figure A1c).
This is mainly caused by the abrupt change in amplitude of the opposite
states, making the model potentially difficult to train when using points
between Hartley nodes. This can be fixed by introducing an additional x-
dependent rotation that fixes overlap in between nodes. Specifically, by
appending a RZ(2𝜋x) gate to the ancilla register (see Figure 1), we ensure
a smooth transition between continuous states while retaining the real-
valued amplitudes of |h̃(x)⟩ over the entire domain with an off-diagonal
contribution less than 5% (Figure A1b). With RZ(2𝜋x) gate included, the
resulting squared overlap looks similar to that in Fourier case.

A.2. Impact of Noise

As the noise-induced error can be compensated by the variational ansatz
during the training stage, the presence of low-level noise is not a major
obstacle to the training of QHGMs (i.e., its level is smaller than that of
sampling noise and there are no noise-induced barren plateaus). How-
ever, the influence of noise on the sampling of QHGMs is not negligible.
To examine the performance of QHGMs operating under noise, for illus-
tration purposes we consider coherent noise and the technical limitations
in setting up correct phases. Practically, at the sampling stage this corre-
sponds to running ̂†

𝜃opt±𝜃noise
with a vector 𝜽noise = p𝜺 such that 𝜺 is drawn

randomly uniformly on [−1, 1] and p represents a percentage error fac-
tor. By varying p, this noise-incorporated model mimics noise-corrupted
QHGMs. Similarly, other sources of noise can be modeled using wave-
function Monte Carlo, again leading to partially modified distributions. As
shown in Figure A2, the sampled OU distributions still follow the target

Adv. Quantum Technol. 2025, 8, 2400337 2400337 (10 of 13) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure A1. 2D squared overlap between mutual normalized states. a,b) Representative 2D squared overlap between normalized Harley states|⟨h̃(x′)|h̃(x)⟩|2 for ̂h(x) (N=5) without and with the RZ(2𝜋x) gate, respectively. Both cases show that Hartley states are orthonormal when x = x′,
but the nonzero overlap residues in (a) are way too high, inhibiting model trainability. c) N-qubit Fourier feature map and representative 2D squared
overlap between Fourier states |⟨𝜑(x′)|𝜑(x)⟩|2 for ̂𝜑(x) (N=5). Notably, the Hartley overlaps are purely real, ⟨h̃(x′)|h̃(x)⟩ ∈ ℝ, unlike the complex
overlaps between Fourier states, ⟨𝜑(x′)|𝜑(x)⟩ ∈ ℂ.

(noiseless) distribution for p less than 10% and deviate from the ideal case
for p around 20%. Ultimately, the utility of the results under noisy sampling
depends on the sensitivity of our task.

A.3. Circuit Complexity

The total number of single-qubit and two-qubit gates for Hartley feature
map circuit is 3N + 4. For quantum Hartley transform circuit, the to-
tal number is N(N + 2)∕2 (contributed by QFT) + 2N (by two sets of
CNOT ladder) + 3 (single-qubit gates on the ancilla) + the contribution
from two sets of permutation elements. The Toffoli-based decomposi-
tions described in Barenco et al.[74] and He et al.[75] can be used to esti-
mate the number of quantum gates contributed by permutation elements.
The circuit complexity of QHGMs can be attributed to quantum Hartley
transform circuit at the sampling stage. QHGMs can be readily differ-
entiated but QCBMs is not automatically differentiable because its vari-
able x is intrinsically length-N binary strings. This differentiation is some-
times infeasible with QGAN architecture as well due to its ill-defined loss
landscape.[76] Therefore, the proposed QHGMs is appropriate for SDE-
based generative modeling when considering to generate samples from
SDE-relevant distributions. In addition, QHGMs is easily trained and allow
for systemically building large-scale generative models, particularly well-

suited for scaling as the complexity of problems increases, while QCBMs
and QGANs are typically difficult to train at increasing scale.
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Supporting Information is available from the Wiley Online Library or from
the author.
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Figure A2. The effect of noise on the sampled probability distributions. Before sampling, the trained noise-free model p𝜃opt (x) is consistent with the
analytic solution pOU(x) with parameters 𝜇 = 5, 𝜎 = 3, 𝜈 = 0.5, xi = 24 and t = 1. The sampled probability distributions from a) noise-free and b–d)
noise-incorporated trained (OU) models, using the extended register of S = 1, generated with 106 shots. The normalized histogram is plotted as a
function of x ∈ ℝ2N−1.
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