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Abstract

In this thesis we explore different aspects of unstable D-brane dynamics and open-closed

dualities. The first chapters focus on the properties of the so-called ”tachyon vacuum”

for unstable D-branes, that is conjectured to describe the complete decay of the D-brane,

using the tool of Open String Field Theory. The first chapter discusses a numerical analysis

of this vacuum state, the second discusses and motivates a conjecture on the structure of

String Field Theory around the vacuum state and the third presents in more detail some

important analytic tools that appeared in chapter two.

We shift the focus in chapter four to a time-dependent version of the tachyon decay

process and to the duality between some configurations of D-branes in the imaginary time

direction and some purely closed wave-like backgrounds. Similar ideas have an application in

noncritical string theories in the context of the identification of D-branes as the basic degrees

of freedom of the theory. In chapter five we discuss one particular aspect of this identification

in the context of the (2, 1) noncritical string (2d topological gravity): we reduce Open String

Field Theory on the stable D-branes of the (2, 1) model to the Kontsevich matrix integral,

that is known to encode the whole closed string theory for the (2, 1) model.
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Chapter 1

Introduction and Summary

1.1 Closed string theory and D-branes

The most ambitious dream of physics is to formulate a complete and self-consistent set of

basic laws able to describe our universe. String theory is one strong candidate for this role:

it appears to be self-contained, to include quantum gravity and interesting low energy field

theories, its scope is wide enough to describe not just one, but many different universes.

This power becomes even a problem for a seeker of the ultimate laws of the universe: String

Theory does not seem to offer many a-priori reasons for our universe to be as it is and not

different.

This flexibility makes String Theory a powerful tool to explore and understand several

other physical theories, even to produce powerful mathematical statements. If some day

String Theory will prove itself unable to offer a proper description of our universe, that

would not affect its ability to give powerful and lasting insights on abstract problems. Since

it was discovered that it contains a self-consistent theory of quantum gravity, String Theory

has radically changed a physicist’s perspective on topics like black holes, gauge theories,

geometry, topology...

Many of these important advances have become possible after the discovery of a powerful

tool to explore non-perturbative string physics: D-branes. D-branes are solitonic objects

21



22

that enjoy a very simple description at the level of the perturbative expansion of string

theory but at the same time represent non-perturbative degrees of freedom of the theory.

D-branes have two properties (almost) immediately visible from their definition: first,

inthe presence of a D-brane the closed string equations of motion acquire a source and

second, a new set of degrees of freedom (open strings) is associated with each pair of D-

branes and encodes their dynamics. The first property is evident when one evaluates closed

string scattering amplitudes: the presence of the D-branes affects the propagation of the

closed strings as an added source would do.

A simple physical reasoning then assures that D-branes have to be dynamical objects:

closed string theory includes gravity, and a source for the gravitational fields has to obey

certain equations of motion, i.e. the conservation of the energy momentum tensor. A

D-brane sources the gravitational field and has a certain mass, so it will have to behave

properly during physical processes: for example it will have to recoil appropriately during

a scattering process, to conserve energy and momentum.

This agrees with the presence of “open strings” degrees of freedom. The recoil of a D-

brane will be represented by the emission of a very low energy open string mode associated

with the D-brane displacement. Much harder to understand physically is the fact that there

is an open string sector associated not to each D-brane, but to each pair of them, so that the

“displacements” of a group of N D-branes will be parameterized by N ×N matrix-valued

coordinates.

Loosely speaking, D-brane usually appears as a submanifold in space-time on which open

string endpoints are attached. The degrees of freedom on such a D-brane are organized, in a

low energy limit, into an appropriate quantum field theory living on the D-brane worldsheet,

often a gauge theory coupled with some scalars and fermions and endowed with appropriate

supersymmetry and possibly non-commutativity.

There is strong link between the degrees of freedom of the D-branes and the properties

of the closed string backgrounds sourced by them. In fact, one of the first, surprising,

applications of D-branes was to evaluate the entropy of a black hole by counting the degrees
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of freedom of a system of D-branes that placed in flat space would source the black hole

background.

This link allows, in appropriate limits, to formulate many different dualities, whose

prototype is AdS/CFT: an appropriate scaling reduces the degrees of freedom of certain

D-branes ( N D3-branes in IIB superstring theory) to N = 4 supersymmetric SU(N) Yang-

Mills theory; the same scaling turns out to be a near horizon limit of the supergravity

background sourced by the D-branes, that is AdS5 × S5 with radius ≡ g2
Y MN . As the

scaling focuses on the part of space-time “due” to the presence of the D-branes it is possible

to conjecture that type IIB superstring on AdS5 × S5 and N = 4 SYM in four dimensions,

while apparently very different physical theories, are actually equivalent. [1, 2, 3]

1.2 The string perturbative expansion

String theory is defined perturbatively, and D-branes give access to nonperturbative infor-

mation. While D-branes are non-perturbative objects in closed string theory, for very small

string coupling constant gs they admit a simple description in perturbation theory as extra

”objects” inserted in the closed string theory. As gs increases they would become lighter

and more dynamical, on the same footing as strings.

In closed string theory amplitudes are evaluated through a perturbative sum over closed

Riemann surfaces of various topology. [4, 5] The genus of these surfaces corresponds to the

number of closed string loops: a diagram associated with a sphere is a tree level contribution,

a torus diagram corresponds to 1-loop contributions, etc. A surface of genus g is weighted

with a power g2g−2
s of the string coupling.

In presence of one or more D-branes this sum is extended to Riemann surfaces with

boundaries, with a choice of boundary conditions for the worldsheet fields at each boundary.

Different D-branes corresponds to different boundary conditions. Each boundary added to

the surface is weighted with another factor of gs.

A typical tree level scattering of closed strings from a D-brane corresponds to a disk

topology. The diagram can be interpreted as an exchange of a closed string intermediate
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Figure 1.1: Examples of closed Riemann surfaces of genus 0,1,2,3

state between the scattering string and the D-brane, that acts as a fixed source. (see Figure

(1.2)) The worldsheet amplitude can in fact be decomposed as a sum over infinitely many

field-theoretical Feymann diagrams exchanging different closed string states. The coupling

between these states and the D-brane is determined by the boundary condition associated

with the D-brane, and the intensity of these sources will be of order gs, the weight of the

disk with respect to the sphere.

Figure 1.2: “Space time” view of a closed string scattering from a D-brane in t-channel.
Time flows to the left.

Diagrams with many boundaries can be similarly related to multiple interactions with

the source: the global effect will be as if the D-branes were changing the closed string

background, sourcing all the closed string fields with intensity scaling as gs. In particular
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they will source the gravitational field as masses of order 1/gs, an indication of the fact that

they are non-perturbative objects in the closed string theory.

All of this is already evident in the the disk amplitude that describes scattering of a

tachyon from a D0 brane at the origin (here the kinematic variables are as usual s = −4E2

and t = (Pin − Pout)2 in appropriate units) :

A(Pin, Pout) ∼ Γ(t/4− 1)Γ(s− 1)
2 Γ(t/4 + s− 2)

=
∑ ck(s)

t/4 + k − 1
(1.2.1)

ck(s) =
k∏

i=1

(1 +
1− s

i
) (1.2.2)

The expansion of the amplitude makes evident the exchange of closed string modes of mass

4k − 4 and spin up to 2k between the scattering tachyon and the D-brane. Nevertheless it

obscures a very important piece of physics: there are extra s-channel poles in the amplitude,

not due to closed string intermediate states, but to other excitations with masses going like

k − 1 and spin up to k:

A(Pin, Pout) ∼ Γ(t/4− 1)Γ(s− 1)
2 Γ(t/4 + s− 2)

=
∑ dk(t)

s + k − 1
(1.2.3)

dk(s) =
k∏

i=1

(1 +
1− t/4

i
) (1.2.4)

This different expansion singles out string states whose propagation is not described by a

cylinder, but a strip: open strings. (see figure (1.3))

Figure 1.3: “Space time” view of a closed string scattering from a D-brane in s-channel.
Time flows to the left.

Open strings arise as these extra poles in closed string amplitudes, and they have an

important property: on-shell open strings living on a D-brane are in precise correspondence

with all the possible infinitesimal deformations of the boundary condition that defines the
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D-brane itself. Open strings attached to two different D-branes correspond to deformations

that mix different boundary conditions.

This connection allows one to view the poles and infrared singularities associated to

exchange of open strings as appropriate manifestations of the dynamics of the D-brane

itself, as required for a consistent coupling to gravity and to the other closed string modes.

1.3 String Field Theories

In the previous sections we used a powerful concept: worldsheet amplitudes may be under-

stood better by cutting the worldsheet along cylinders and strips and reducing amplitudes

to sums over field theoretical Feymann diagrams. This can be formalized through the

structure of string field theory, that is a field theory of infinite degrees of freedom whose

perturbative expansion in terms of Feymann diagrams correctly reproduces the amplitudes

from the worldsheet expansion.

The basic principle underlying string field theory is that a cylindrical tube in a Riemann

surface can be cut, and the two resulting holes filled by two disks with an insertion of a

complete set of intermediate states
∑ |̄i〉〈i| , summed over all the closed string Hilbert

space. The moduli of length and twist of the cylinder may then be reabsorbed into a factor

of b0b̄0e
−(l+iθ)L0−(l−iθ)L̄0 in the middle of the sum of states. The integral over the moduli

of length and twist of the cylinder may then be readily executed to yield a field theoretical

propagator.

∫
dldθe−(l+iθ)L0−(l−iθ)L̄0 =

δ(L0 − L̄0)
L0 + L̄0

(1.3.5)

By cutting the right cylinders the surface gets chopped down to a Feymann diagram with

vertexes corresponding to the joining of the cylinders. By integrating on lengths and twists

of the cylinders we cover a certain patch of the moduli space for that Riemann surface.

If an appropriate decomposition of the moduli space of Riemann surfaces in similar

patches is available, such that each patch corresponds to a different Feymann diagram,

then the sum over all Feymann diagrams is equivalent to an integral over the whole the
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Figure 1.4: a cylinder in a surface may be cut and replaced with a pair of punctures, summed
over all possible intermediate states

moduli space. The problem of evaluating amplitudes over Riemann surfaces of various genus

and integrating them appropriately over the moduli space is transformed into the evaluation

of th perturbative expansion of a “string field theory” involving a field for each intermediate

state propagating in the cylinders.

It is actually possible to find such a decomposition, thanks to a beautiful mathematical

result. Unfortunately the decomposition for closed string field theory is complicated, as

it requires vertexes of all possible orders in the action to build all the relevant Feymann

diagrams. Closed string field theory is non-polynomial.

On the other hand a similar reasoning can be applied to Riemann surfaces with at least

a boundary [6] and then the story changes dramatically: a very simple decomposition is

possible that involves only open string intermediate states and trivalent vertexes. Joining

strips is easier than joining cylinders! This procedure works even in presence of external

closed string insertions: it is still enough to cut along strips and use open string intermediate

states, coupled appropriately with the closed string insertions. This construction is at the

hearth of cubic Open String Field Theory, and is one of the main tools used in this thesis.

The OSFT action has a deceptively simple form:

1
2
〈Ψ, QBΨ〉+

1
3
〈Ψ,Ψ,Ψ〉 (1.3.6)

Here Ψ is the string field, a ghost number one element of the Hilbert space of states of
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the Boundary CFT (BCFT) associated with the D-brane. QB is the usual nilpotent BRST

charge associated with fixing the conformal gauge:

QB =
∮

dz

[
c(z)Tm(z) +

1
2

: b(z)c(z)∂c(z) :
]

(1.3.7)

On-shell open degrees of freedom are defined as the cohomology of QB. The two vertex

(, ) is just the usual BPZ pairing of states, that evaluate the amplitude by putting them at

the two ends of a strip. The trilinear vertex (, , ) is defined by putting the three arguments

at the ends of three half strips glued together as shown in figure ((1.5)))(for a detailed

description of the vertexes see for example [12] )

Figure 1.5: How to glue the three half strips to define the OSFT triple product

The equations of motion following from the action (1.3.6) are simply

QBΨ + Ψ ∗Ψ = 0 (1.3.8)

The ∗ product is associative and QB is a derivation for it. As a consequence the OSFT

action has a wide gauge symmetry

δΨ = QBΛ + Ψ ∗ Λ− Λ ∗Ψ (1.3.9)
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The infinitesimal form of the equations of motion and of the gauge symmetry show clearly

that infinitesimal solutions are just on-shell open string states. (i.e. BRST cohomology at

ghost nr. one) Finite solutions will represent finite deformations of the original D-brane.

A simple way to verify that the perturbative expansion for the action (1.3.6) does repro-

duce amplitudes for the BCFT on Riemann surfaces of various genus and number of holes

is to gauge fix it with the Siegel gauge condition:

b0Ψ = 0 (1.3.10)

This gauge fixings requires the introduction of an infinite tower of ghosts and anti-ghosts,

but surprisingly they can be repackaged together in a larger string field Ψ by relaxing the

ghost number one condition. The action remains the same. The propagator becomes b0
L0

and can be rewritten as ∫ ∞

0
e−tL0b0dt (1.3.11)

This corresponds in the BCFT to the propagation along a strip of width π and length t. The

strips are glued together at appropriate trivalent vertexes and the amplitude is summed over

all possible BCFT intermediate states in each strips. The result reproduces by definition

the worldsheet amplitude over the Riemann surfaces built by the gluing process.

The measure b0dt is the correct one to integrate on the patch of the moduli space for

the Riemann surface that is parametrized by the lengths of the propagators. It can be

proved that the patches associated to all possible trivalent ribboned Feymann graphs cover

the whole moduli space properly.

This works even if there are many D-branes: the string field is replaced with the matrix

Ψi
j of string fields living in the Hilbert space of open strings between D-brane i and D-brane

j. All the products include matrix multiplication.

A less trivial extension allows OSFT to deal with amplitudes that include closed string

punctures as well (and at least one boundary). Each closed string puncture is accounted

for by a special open-closed vertex 〈C||Ψ〉 : closed strings are attached to the Feymann

diagram as sources for the open string field. (see figure for the graphical representation of

the open-closed vertex).
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Figure 1.6: The open closed vertex: glue the open string state at the end of the strip, place
the on-shell closed string vertex operator at the tip of the cone

This extension allows OSFT to compute the whole correction to closed string amplitudes

due to the presence of the D-branes. The only thing that it cannot calculate is the original

purely closed (no boundaries) amplitude.

It is very interesting, and almost baffling, that all the information about scattering of

closed strings from a D-branes can be evaluated through a purely open string theory, living

on the D-brane itself. It is probable that this is one of the facts that makes open-closed

duality possible.

1.4 Open-closed duality

Any closed string amplitude that includes at least an interaction with a D-brane can be

reproduced by open string field theory. The way such closed string amplitudes are evaluated

is quite peculiar: internal cylinders that correspond to closed string exchanges are realized

as loops of open string degrees of freedom.

A diagram that looks like a sphere with some boundaries and closed string interactions

will be mapped into a loop planar diagram on open string field theory. Handles will result

from non-planarity. This correspondence works exactly the same way as the t’Hooft ex-
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pansion works for large N Yang Mills theories and is at the hearth of open-closed duality.

[7]

The perturbative expansion for closed string theory in presence of N D-branes of the

same kind can be written a bit formally as

Fcl(gs, N) = Fcl(gs, 0) +
∞∑

g=0

∞∑

b=1

Fg,bg
2g−2
s (gsN)b Fcl(gs, 0) =

∞∑

g=0

F cl
g g2g−2

s (1.4.12)

Here Fg,b are evaluated from the open string field theory. Following t’Hooft intuition we

can recollect the sum as

Fcl(gs, N) =
∞∑

g=0

(F cl
g + δF cl

g )g2g−2
s (1.4.13)

The coefficients (F cl
g + δF cl

g ) should then describe closed string theory on a shifted back-

ground, with a shift proportional to gsN

This shift will be quite peculiar, as it will usually involves all closed string field modes,

but at least its properties will be available through calculations done in the unshifted back-

ground.

As long as we want to keep the perturbative expansion valid and gs small we will nor-

mally need to place many D-branes ( of order 1/gs ) to deform the closed string background

at the order 1. The open degrees of freedom living on N D-branes are organized in N ×N

matrices, so the open string theory will be the theory of some set of large( but finite) N×N

matrix valued fields.

Appropriate limits allow one to extract many useful information. Typically one seeks

a closed string configuration such that the dynamics of the D-branes can be captured by

a relatively small amount of degrees of freedom, whose properties are understood. If the

closed string theory in this background is trivial or simple then this open degrees of freedom

will capture all the nontrivial dynamics of the deformed, possibly complicated closed string

theory.

Until now, only some of the known open-closed dualities have been understood fully at

the level of the worldsheet, either in the environment of solvable noncritical string theories
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or in topological string theories, in which the degrees of freedom of D-branes are necessarily

few. Still it does not appear impossible to work out a similar understanding of more complex

dualities, as AdS/CFT.

There is also an interesting inverse question: why should some shift in closed string back-

grounds admit a realization as boundaries added to the worldsheet? In certain topological

cases an understanding has been developed that relates these boundaries to the appearance

of a new phase in the worldsheet theory: fluctuating phase boundaries can be expressed as

boundaries with fixed boundary conditions. The general story is still unknown.

One possible avenue to understand the relation of D-branes and closed string config-

urations is to study the processes that can create or destroy a D-brane dynamically. For

example certain D-branes or configurations of D-branes are unstable and may decay to

different D-branes or just to closed strings. This instability is related to the presence of a

tachyonic open string mode, and the final configuration of the “classical” decay is presum-

ably described by a nontrivial vacuum configuration of this tachyon field.

1.5 Tachyon vacuum

Open string tachyons appear often on D-branes that are not protected against decay by

some conserved charges, or between D-branes that can annihilate between themselves, or

recombine to diminish the total energy of the system.

The case we are most interested in is a pair of D-brane and anti D-brane close enough

or, even simpler, a D-brane in bosonic string theory. It is natural to expect that the decay

of these D-brane configurations might be described by the dynamics of this open string

tachyon, but how should we interpret the endpoint of the tachyon condensation? There

are some ways to compute an effective potential for the tachyon field on an unstable D-

brane: besides the maximum of the potential at the starting configuration of the brane, this

potential has usually also one minimum. The energy of this minimum appears to exactly

offset the tension of the D-brane, so this field configuration seems paradoxically to describe

the absence of the D-brane. [8, 13, 9] Might some sort of open string theory survive in this
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situation and, maybe, know something about the closed string vacuum?

Open string field theory is a natural tool to address these questions. OSFT classical

equations of motion are quadratic relations on a “string field”, that is a ghost number one

element of the full Hilbert space of open string modes. The equation is written with the

help of the nilpotent QB BRST operator and of a special associative product, Witten’s star

product.

QBΨ + Ψ ∗Ψ = 0 (1.5.14)

The linearized version of this equation is just the condition QBΨ = 0, that we recognize as

the on-shell condition for open string fluctuations. The space of classical solutions of this

equation spans all possible finite deformations of the original D-brane. An on-shell open

string state represent an infinitesimal deformation, that often can be completed to a full

finite deformation. Besides these solutions that are continuously connected to zero there

might be other ones that represent a more drastic change in the D-brane. A nontrivial min-

imum for the tachyon effective potential manifest itself in OSFT as one of these nontrivial

solutions.

Given a classical solution of the equations of motion there is a straightforward way to

evaluate the properties of the corresponding D-brane configuration: a shift of Ψ by the

solution Ψ0 makes the equations of motion into

Q′Ψ + Ψ ∗Ψ = 0 Q′Ψ = QBΨ + Ψ0 ∗Ψ + Ψ ∗Ψ0 (1.5.15)

Q′ is still nilpotent and the equations look formally the same. In fact for solutions that

are infinitesimally connected to zero is possible to act with a field redefinition that rewrites

these equations as the equations of motion for the deformed D-brane.

The same way the solution corresponding to the tachyon vacuum would ideally allow to

study all the properties of the D-brane and of the open string theory living on it after the

decay. It would even be possible to understand the scattering of closed strings from it, to

understand what are the remnants of the D-brane after the decay.

Unfortunately the OFST equations are complicated and no analytic solution has been

found for them. Nevertheless they are amenable of numerical analysis through the “level
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truncation” scheme. Chapter one of this thesis will cover some of the efforts to set up such

a reliable numerical scheme to verify the presence of a true tachyon vacuum and study it’s

properties.

Even though an analytic study of the original OSFT equations has not been possible yet,

solid conjectures have been made about the form Open String Field Theory might assume

around the tachyon vacuum. These conjectures basically amount to proper choices for a

simple Q′ with the right properties. This is assumed to come from the original Q′ around

the tachyon vacuum through a singular field redefinition. This vacuum string field theory

is amenable of analytic treatment. We review in Chapter two how such a description might

arise and what should be able to tell us about open-closed duality.

Vacuum String Field Theory assumes a simplified form for Q′ around the tachyon vac-

uum, but still has to handle the intricacies of Witten’s star product. Basic analytic tools

for this purpose are a family of projectors for the star product, states such that

P ∗A ∗ P = c(A)P (1.5.16)

for any string field A and a normalization constant c(A). These states are described in

detail in Chapter three.

1.6 Time-dependent D-brane decay

As the endpoint of the decay process is so hard to study it may come as a surprise that the

time-dependent process of tachyon decay seems to be amenable of a simpler analysis.

A key fact is that the functional profile of a decaying tachyon, λ cosh(X0) may be

analytically continued to λ cos(X1). This euclidean tachyon profile happens to be one of

the very few examples of a nontrivial infinitesimal deformation of a D-brane that can be

exponentiated to a finite deformation in a controllable way.

In fact it turns out that the cos(X) deformation continuously interpolates between a

D-brane extended in the X direction (Neumann condition on X) and an array of localized

D-branes at a certain critical distance from each other (Dirichlet condition on X).



35

This description ideally allows one to compute both the closed string fields sourced by

the deformed D-branes and to probe it by string scattering. If a careful analytic continuation

of X back to time-like is possible, this will describe the process of tachyon decay in detail,

at least classically. In fact it is possble to see the decay of the D-brane as well as the

production of closed string radiation with interesting properties.

Analytic continuation of the deformed D-brane at an intermediate step between Neu-

mann and Dirichlet will lead to a configuration in which massive closed string radiation

comes together to form a D-brane, that decays again after a certain time. The lifetime goes

to zero as the interpolation parameter moves towards the Dirichlet array configuration.

Thus the analytic continuation of the array of D-branes in imaginary time direction

yields a background purely consisting of a closed string wave (the D-brane never appears).

This equivalence seems to be an interesting sort of open-closed duality and is the main topic

of chapter four of this thesis.

1.7 Noncritical string theory and D-branes

One surprising application of the description of the closed string radiation from D-brane

decay was the identification of D-branes as the basic degrees of freedom in a wide range

of solvable string models. The first example was noncritical string in c = 1, that admits a

description as double scaling limit of matrix quantum mechanics.

The idea beyond double scaling limit is that the t’Hooft expansion of a matrix model

will usually have a finite radius of convergence in the t’Hooft parameter t = gsN so that

the free energy will have a critical behavior.

∫
dMe

− 1
gs

W (M) = exp

(∑
g

g2g−2
s Fg(t = gsN)

)
Fg(t) ∼ (t− tc)(2−2g)α (1.7.17)

These non-analytic pieces in the free energy are universal and independent from details of

the matrix model itself, and can be recollected in a new expansion in terms of an expansion

parameter µ = (t − tc)α/gs. By sending gs to zero and keeping µ finite one reaches a

continuum limit. This limit is traditionally understood as a way to focus on Feymann
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diagrams with infinitely many vertexes, that build up a Riemann surface in the continuous

limit.

This idea motivates the relation between noncritical string theories (i.e. gravity on the

worldsheet coupled to minimal matter theories) and these double scaled matrix models.

On the other hand there is evidence that even without the double scaling limit, the finite

N , finite gs matrix model should describe the dynamics of some D-branes in a topological

string setting, so that again the free energy of the matrix model would be the difference of

two closed topological string free energies, the one living in the geometry deformed by the

D-branes and the one living in the un-deformed one.

In that case the double scaling limit focuses on a particular spot of the deformed ge-

ometry at which a singularity occurs as t → tc and on the universal geometry around that

spot. Details of the original geometry are washed away and one is left with an open-closed

duality.

In the c = 1 model the closed string theory describes the collective excitations of a

Fermi sea built out of the eigenvalues of the matrix. Ripples on the Fermi sea describe

closed string excitations, and the closed string radiation produced by an unstable D-brane

in the model turned out to be due to a single eigenvalue raised from the Fermi sea. Soon it

was realized that D-branes were closely related to the eigenvalues that make up the Fermi

sea, so that the whole closed string dynamics may be reformulated in terms of D-brane

dynamics. [150]

In a similar way in the topological gravity setting it was shown that the dynamics of

a certain class of closed string backgrounds could be more easily understood and solved in

terms of D-branes that could source those background.[172]

In order to understand better the open-closed duality on the worldsheet we need a

situation in which the theory is well under control. In minimal strings there is a statement

known for a long time that has the look of a precise open-closed duality. The partition

function for the (2, n) models is a function of an infinite set of closed string deformations

tn and is the tau function for the famous KdV infinite hierarchy of differential equations.
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It satisfies an interesting formula ( see [180, 181] for a review):

τ

(
tk +

N∑

i

gs

2k + 1
z−2k−1
i

)
= τ(tk)

det[wi(zj , tk)]
det[zi

j ]
(1.7.18)

The last expression is readily identified in the matrix model as a partition function that

includes boundaries on the putative worldsheet: after the double scaling limit it should

correspond to the partition function in the presence of N D-branes (so called FZZT branes

for the Liouville theory[158, 159]) parametrized by the zi.

The formula may be rewritten in an even more tantalizing way for the (2, 1) minimal

model, as the Kontsevich integral (Z = diag(zi))[160]:

Z
(

gs, tk =
N∑

i

gs

2k + 1
z−2k−1
i

)
= ρ(Z)−1

∫
[dX] e

1
gs

Tr[− 1
2
ZX2+ 1

6
X3] , (1.7.19)

The formula is formally similar to a OSFT partition function, and the derivation makes use

of the same decomposition of moduli space that is vital for the construction of OSFT. Of

course there is a big difference as well: X is a matrix and not a matrix valued string field.

In chapter five of this thesis we will give flesh to this correspondence and show how

Open String Field Theory may reduce to a matrix model through topological localization.



Chapter 2

Open String Field Theory and

Tachyon condensation

2.1 Introduction and Summary

The realization that solitonic configurations of the open string tachyon [8, 9] may repre-

sent lower dimensional branes has triggered a revival of interest in open string field theory.

Classical solutions of OSFT should describe in detain such solitonic lumps in the tachyon

field, and thus offer insight on the nonperturbative physics of D-branes. As reviewed in the

introduction, OSFT around the tachionic vacuum condensate also promises an alternative

definition of closed string amplitudes through a purely open construction, so an understand-

ing of this solution is potentially very interesting. Much work has focused on the search of

an analytic form for these classical solutions of cubic bosonic open string field theory [6]

(OSFT). Despite important technical progress in the understanding of the open string star

product, analytic and well defined classical solutions of OSFT are still missing.

On the other hand the OSFT equations of motion can be solved numerically in the

‘level-truncation’ scheme invented by Kostelecky and Samuel [10]. The infinite tower of

fields hidden in the open string field is truncated to modes with an L0 eigenvalue smaller

than a prescribed maximum ‘level’ L. For any finite L the truncated OSFT action can be

38
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evaluated and numerical computations are possible. Remarkably, numerical results [10]-[11]

for various classical solutions appear to converge rapidly to the expected answers as the

level L is increased. Much of our present intuition about the classical dynamics of OSFT

comes from the level truncation scheme, and several exact analytic results were first guessed

based on numerical computations

This motivated us to develop efficient algorithms for level-truncation calculations. Our

main technical innovations are the systematic use of conservation laws [12] to compute the

cubic vertices, and the implementation of our algorithms in a C++ code.

A considerable simplification is possible by restricting the string field to live in the

universal subspace [9, 12], which is the space of string fields generated by ghost oscillators

and matter Virasoro generators acting on the vacuum. This subspace is called universal

because it has always the same structure whatever is the D-brane in consideration, as long

as the identity operator is in the BCFT spectrum.

It is reasonable to assume that the process of homogeneous tachyon decay can be cap-

tured classically by solutions in the universal subspace: it contains the open string tachyon

and is closed under the operation b0
L0

(A∗B) that one would use to build iteratively a solution

starting from the open string tachyon and progressively adding corrections to satisfy the

equations of motion.

Using conservation laws we determine the classical action directly in the universal basis

in a recursive way, with an algorithm whose complexity is linear in the number of vertices

(cubic in the number of fields). Some details about the numerical algorithms can be found in

the last section of this chapter. The gain in efficiency of our methods compared to previous

efforts is of several orders of magnitude, and we are able to obtain the 1010 universal cubic

vertices at level (18,54). This numerical tool is the main tool in our exploration in this

chapter, but is also used for several computations used in the next two chapters.

The tachyon condensate string field, the homogeneous solution of OSFT that we seek,

corresponds to the stable vacuum of the open string tachyon. Its (negative) energy per unit

volume must exactly cancel the D-brane tension. Sen and Zwiebach’s computation [13] of
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the tachyon condensate up to level (4,8) gave the first evidence that OSFT reproduces the

correct D-brane physics. Moeller and Taylor [14] pushed the computation to level (10,20)

finding that 99.91% of the D-brane tension is cancelled in the tachyon vacuum. Given such a

remarkable agreement, it may appear quite pointless to extend their results to higher level.

Not so. Up to level 10, the individual coefficients of the string field appear to converge much

less rapidly than the value of the action. A more precise determination of the coefficients

is likely to provide clues for an exact solution. Indeed various surprising patterns obeyed

by OSFT solutions were ‘experimentally’ observed in [11], and can be checked against our

calculations. Higher level computations can also be expected to shed light on the nature of

the level truncation procedure itself, which still lacks a sound theoretical justification.

The first set of results, described in section 3, is the computation of the Siegel gauge

tachyon condensate in level-truncation up to L = 18. The procedure is fairly straightfor-

ward: at any given level L, there are NL scalar fields that obey the Siegel condition, and

we determine their vev’s by solving the NL equations of motion implied by the gauge-fixed

action. There is a potential subtlety here: the full equations of motion before gauge-fixing

impose a bigger number of constraints [15] (the extra conditions simply enforce extremality

of the action along gauge orbits). Consistency demands that the full set of equations of

motion is satisfied as L → ∞, and we systematically check that this indeed happens, with

remarkable accuracy. As another consistency check, we verify that the tachyon conden-

sate obeys the quadratic relations analytically derived by Schnabl [16], and we again find

excellent agreement.

The values of the vacuum energy as a function of L are shown in Table 2.1. Unexpectedly,

at L = 14 the energy overshoots the predicted answer of -1 and appears to further decrease

at higher levels. As a first reaction, one may wonder whether the level-truncation procedure

is breaking down for L > 10, as could happen if the approximation was only asymptotic.

In this pessimistic scenario, for any OSFT observable there would be a maximum level that

gives the estimate closest to the ‘exact’ value, and beyond this optimal level the procedure

would stop converging. However, the data favor a smooth behavior as L increases, since
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L E(L,3L) E(L,2L)

2 -0.9593766 -0.9485534
4 -0.9878218 -0.9864034
6 -0.9951771 -0.9947727
8 -0.9979302 -0.9977795
10 -0.9991825 -0.9991161
12 -0.9998223 -0.9997907
14 -1.0001737 -1.0001580
16 -1.0003754 -1.0003678
18 -1.0004937 -1.00049

Table 2.1: Values of the vacuum energy in level-truncation, in the (L, 3L) and (L, 2L)
approximation schemes.

the differences between consecutive approximations are getting smaller.

The results in Table 1 may simply indicate that the approach of the energy to -1 as

L → ∞ is non-monotonic, contrary to previous naive expectations. Indeed, Taylor has

presented convincing evidence [17] for this benign interpretation of our results.1 He applies

a clever extrapolation technique to level-truncation data for L ≤ 10 to estimate the vacuum

energies even for L > 10. This procedure reproduces quite accurately our exact values in

Table 1 and further predicts that the vacuum energy reaches a minimum for L ∼ 28, but

then turns back to approach asymptotically -1 for L →∞.

In sections 4 we introduce our second main set of results. We devise an extrapolation

technique in the same spirit of Taylor’s analysis. We consider the effective tachyon potential

VL(T ) around the unstable vacuum, obtained by classically integrating out all the higher

scalars up to level L. VL(T ) is computed ‘non-perturbatively’ by fixing the value of T and

solving numerically the equations of motion for the other scalars2 . We are able to obtain

VL(T ) up to L = 16. Clearly for each L, the minimum of VL(T ) is just the vacuum energy

EL at level L. However the functional dependence on T contains more information than

just the extremal value EL. The idea is to perform an extrapolation in L of the whole

functions in T . In practice, we consider a finite interval of values of T around the non-
1The data in Table 1 were first announced at the Strings 2002 conference, Cambridge, July 2002 [28] .
2In this we differ from Taylor [17], who uses instead a series expansion of the potential in powers of T .
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Figure 2.1: Curves of the vacuum energy as a function of level, as predicted by our extrapo-
lation scheme for various values of M (maximum level of the data used in the extrapolation).
The figure shows the curves E(M)(L) on a logarithmic plot, for M between 8 (lowermost
curve) and 16 (uppermost curve). Data in the (L, 3L) scheme.

perturbative minimum. For a fixed T in this interval we interpolate our data for VL(T )

with a polynomial in 1/L, and then extrapolate this polynomial to higher levels. To check

the stability of this approximation scheme, we vary the maximum level M of the set of

data used as input for the extrapolation: for each M ≤ 16, we apply the extrapolation to

the functions {VL(T ) |L ≤ M}. This gives estimates T
(M)
L for the tachyon vev and for the

corresponding vacuum energy E
(M)
L , for any L > M .

The predicted power of the method is quite impressive. For example, with M = 10, that

is using only level-truncation results up to level 10, the estimate T
(10)
18 reproduces with an

accuracy of 10−5 the exact tachyon vev T18, obtained by straightforward level-truncation at

L = 18. This is remarkable, since the former computation is over a thousand times faster

than the latter.
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Lmin Emin E∞
M = 6 41.1 -1.001171 -1.000949
M = 8 28.2 -1.000660 -1.000140
M = 10 27.8 -1.000646 -1.000113
M = 12 27.5 -1.000637 -1.000077
M = 14 27.3 -1.000633 -1.000046
M = 16 27.3 -1.000632 -1.000030

Table 2.2: Parameters of the curves E(M)(L) (in the (L, 3L) scheme). The energy reaches
its minimum Emin for L = Lmin, and tends asymptotically to E∞ as L →∞.

Figure 2.1 and Table 2.2 summarize the extrapolations of the energy as a function of

level, for various values of M . The data completely confirm (with enhanced precision) the

conclusions of Taylor [17]. The behavior of the energy as a function of level is non-monotonic,

but eventually the asymptotic limit of -1 is reached with spectacular accuracy.

These results greatly reassure us of the validity of the level-truncation scheme. Observ-

ables in OSFT have a smooth limit as L → ∞, which (in the absence of an alternative

definition) should be identified with their ‘exact’ value. In all cases where an indepen-

dent prediction for the observable is available (as for the vacuum energy, or for Schnabl’s

quadratic identities), the L →∞ extrapolation gives the correct answer.

A practical lesson of this analysis is that polynomial interpolations in 1/L have great

predictive power, at least for the (L, 3L) approximation scheme3 . This observation makes

the level-truncation scheme much more efficient, as reliable estimates can be extracted from

(relatively) painless numerical work.

In section 5 we describe the results for the individual coefficients of the tachyon string

field extrapolated to L = ∞. We hope that our accurate data will stimulate new imaginative

approaches to the problem of finding an exact solution. It will be straightforward to extend

the methods of this chapter to the computation of more general classical solutions of OSFT,

which should provide more analytic clues.

To make this chapter self-contained, we begin in the next section with a review of some
3In the (L, 3L) scheme, the string field is truncated up to level L and all of its mode are kept in the

OSFT action. By contrast, in the (L, 2L) scheme one keeps only the cubic terms in the action whose total
level is ≤ 2L. It turns out that(L, 3L) results display a much smoother dependence on L.



44

basics.

2.2 OSFT and the Universal Tachyon Condensate

In this section we describe the basic setup for classical equations of motion in OSFT, with

an emphasis on the symmetries obeyed by the tachyon condensate string field in Siegel

gauge.

2.2.1 The Tachyon Condensate

The action of OSFT takes the well-known (deceptively) simple form [6]

S = − 1
g2

(
1
2
〈Ψ, QBΨ〉+

1
3
〈Ψ, Ψ ∗Ψ〉

)
. (2.2.1)

This action describes the worldvolume dynamics of a D-brane specified by some Boundary

CFT. The string field Ψ belongs to the full matter+ghost state-space of this BCFT. In

classical OSFT, Ψ has ghost number one4 . According to Sen’s conjecture [8], the classical

OSFT eom’s

QBΨ + Ψ ∗Ψ = 0 (2.2.2)

must admit a Poincaré invariant solution Ψ ≡ T corresponding to the condensation of the

open string tachyon to the vacuum with no D-branes. The tachyon potential V(Ψ) is given

by [9]
V(Ψ)
2π2M

≡ 1
2π2

f(Ψ) =
1
2
〈Ψ, QBΨ〉+

1
3
〈Ψ, Ψ ∗Ψ〉 , (2.2.3)

where M is the brane mass. The normalized potential f(Ψ) is expected to equal minus one

at the tachyon vacuum,

f(T ) = −1 . (2.2.4)
4Our conventions and notations are the same as [12]. In particular we define the SL(2,R) vacuum |0〉

to have ghost number zero, and the ghost and antighost fields c(z) and b(z) to have ghost number one and
minus one, respectively.
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Universality

A basic property of the tachyon condensate string field T is universality [9],

T ∈ H(1)
univ , (2.2.5)

where

Huniv ≡ Span{Lm
−j1 . . . Lm

−jp
b−k1 . . . b−kq c−l1 . . . c−lr |0〉 , ji ≥ 2, ki ≥ 2, li ≥ −1} (2.2.6)

with Lm
k denoting the matter Virasoro generators. The universal space is further decom-

posed into a direct sum of spaces with definite ghost number

Huniv = ⊕n∈ZH(n)
univ . (2.2.7)

The restriction of the classical action to Huniv can be evaluated using purely combinatorial

algorithms that only involve the ghosts and the matter Virasoro algebra with c = 26 [9, 12].

It follows that the form of T does not depend on any of the details of the BCFT that defines

the D-brane background before condensation.

Twist

An obvious symmetry of the tachyon condensate is twist symmetry. The twist is a parity

that is preserved by the star product, so that OSFT equations of motion admit a consistent

truncation to twist even string fields [46], and indeed the tachyon condensate solution turns

out to be twist even. In H(1)
univ, twist is defined simply as (−1)L0+1, so T contains only

states with even level L ≡ L0 + 1.

Siegel gauge and SU(1,1)

The Siegel gauge condition b0Ψ = 0 is particularly natural in level truncation since it is

easily imposed level by level by simply omitting all Fock states containing the ghost zero

mode c0.

The Siegel gauge-fixed equations of motion

L0Ψ + b0(Ψ ∗Ψ) = 0 (2.2.8)
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admit a consistent truncation to the subspace of string fields which are singlets of SU(1,1)

[47]. The SU(1,1) symmetry in question is generated by

G =
∞∑

n=1

(c−nbn − b−ncn) X = −
∞∑

n=1

(n c−ncn) Y =
∞∑

n=1

(
1
n

b−nbn

)
(2.2.9)

and the singlet subspace is defined as

Ψ ∈ Hsingl iff b0Ψ = GΨ = XΨ = Y Ψ = 0 . (2.2.10)

Notice that acting on Siegel states G is just ghost number shifted by one unit, so all states

in Hsingl have ghost number one. To show consistent truncation of equations (2.2.8) to the

singlet subspace, we need to prove that if Ψ ∈ Hsingl, then b0(Ψ ∗ Ψ) ∈ Hsingl, so that all

components of Ψ outside Hsingl can be consistently set to zero. A simple argument is as

follows. The generator X is a derivation of the ∗-algebra5 , and commutes with b0. Hence if

XΨ = 0, X b0(Ψ∗Ψ) = 0. Clearly G is also zero on b0(Ψ∗Ψ), since ghost number adds under

∗-product. By the structure of the finite-dimensional6 representations of SU(1,1), a vector

with zero G and X eigenvalues must also have zero Y eigenvalue, that is, b0(Ψ∗Ψ) ∈ Hsingl,

as desired.

The SU(1,1) singlet subspace has a simple characterization in terms of the Virasoro

generators of the ‘twisted’ ghost conformal field theory of central charge −2 [24] 7 ,

Hsingl = Span {L−k1 . . .L−knc1|0〉 , ki ≥ 2} ⊗Hmatter (2.2.11)

where

Lk ≡ Lg
k + kjgh

k + δk,0 =
+∞∑

n=−∞
(k − n) : bnck−n : . (2.2.12)

The statement that

TSiegel ∈ H(1)
univ ∩Htwist+ ∩Hsingl = (2.2.13)

Span
{
L−k1 . . .L−kn Lm

−j1 . . . Lm
−jl

c1|0〉 , ki ≥ 2, ji ≥ 2,
∑

ki +
∑

ji ∈ 2N
}

5It is enough to notice that −2X = {QB , c0}, see (2.2.16) below. Both QB and c0 are derivations [12],
and (anti)commutators of (graded) derivations are derivations. On the other hand, the generator Y is not
a derivation.

6Since SU(1,1) commutes with L0, we can run the argument in the subspaces of Huniv with given L0,
which are finite-dimensional.

7A proof of the equivalence of definitions (2.2.10) and (2.2.11) for Hsingl can be found in [48], section 3.
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L 0 2 4 6 8 10 12 14 16 18 20
ML,1 1 2 6 17 43 102 231 496 1027 2060 4010
NL 1 3 9 26 69 171 402 898 1925 3985 7995
ML,2 0 1 4 12 32 79 182 399 839 1700 3342
N ′

L 0 1 5 17 49 128 310 709 1548 3248 6590

Table 2.3: Dimensions of some relevant subspaces of Huniv.

summarizes all the known linear symmetries of the Siegel gauge tachyon condensate. Other

exact constraints (quadratic identities [16]) are considered in section 2.3.3.

2.2.2 Level-Truncation and Gauge Invariance

We measure the level L of a Fock state with reference to the zero momentum tachyon

c1|0〉, which we define to be level zero, in other terms L ≡ L0 + 1. As usual, the level

truncation approximation (L,N) is obtained by truncating the string field to level L, and

keeping interactions terms in the OSFT action up to total level N , with 2L ≤ N ≤ 3L.

In our numerical work we have systematically explored both the (L, 2L) scheme, which is

(naively) the most efficient, and the (L, 3L) scheme, which is the most natural. In section

2.4.3 we discuss some empirical differences between these two schemes, but in short it

appears that the natural (L, 3L) scheme has better convergence properties.

The most economic representation of TSiegel is using the basis (2.2.13), but unfortunately

we have not found a simple algorithm to perform computations within the SU(1,1) singlet

subspace8 . We shall work instead with the universal basis (2.2.6) using fermionic ghost

oscillators. In this basis, the number NL of modes in TSiegel truncated at level L (with L

an even integer) is given by

NL =
L/2∑

j=0

M2j,1 , (2.2.14)

where Ml,g denotes the number of Siegel Fock states in Huniv with level l and ghost number

g. Ml,g which is computed by the generating function

∑

l,g

Ml,gx
lyg−1 =

∞∏

p=2

1
1− xp

∞∏

q=1

(1 + xqy)(1 +
xq

y
) . (2.2.15)

8The twisted ghost Virasoro’s L′gn do not have simple conservation laws on the cubic vertex.
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The Siegel gauge-fixed eom’s (2.2.8) truncated at level L are a system of NL equations

in NL unknowns. The solution can be found very efficiently using the Newton method. By

construction the resulting string field T L
Siegel solves the truncated Siegel gauge eom’s with

extremely good accuracy. However the full gauge invariant eom’s (2.2.2) impose an extra

set of constraints on the solution. Recall that the BRST operator can be written as

QB = c0L0 − 2b0X + Q̃ , (2.2.16)

where

Q̃ =
∑

m,n6=0

m+n6=0

m− n

2
cmcnb−m−n +

∑

n 6=0

c−nLm
n . (2.2.17)

The extra conditions on a Siegel string field are then

Q̃Ψ + b0c0(Ψ ∗Ψ) = 0 . (2.2.18)

At level L, this equation entails N ′
L extra constraints on T L

Siegel, with

N ′
L =

L/2∑

j=0

M2j,2 . (2.2.19)

Table 2.3 shows the numbers ML,1, NL, ML,2 and N ′
L up to L = 20.

The role of equation (2.2.18) is simply to enforce extremality of the solution along gauge

orbits. However, in principle there could be an issue about the non-perturbative validity of

the Siegel gauge condition (are gauge orbits non-degenerate at the non-perturbative Siegel

gauge vacuum? [44]). Moreover, the level truncation procedure explicitly breaks gauge

invariance, which is formally recovered only as L → ∞. Thus equation (2.2.18) gives an

independent set of constraints which are not a priori satisfied by the level-truncated solution.

If Siegel gauge is a consistent gauge choice and if gauge invariance is truly recovered in the

infinite level limit, then we expect (2.2.18) to hold asymptotically as L →∞. This is a very

non-trivial consistency requirement on T L
Siegel. Numerical evidence for this is examined in

section 2.3.2.
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2.3 The Level-Truncated Tachyon Condensate

Using the numerical methods outlined in appendix A, we have determined TSiegel up to

L = 18, both in the (L, 2L) and in the (L, 3L) schemes. (L, 3L) results appear to be better

behaved (we come back back to this point in section 2.4.3), and in this section we only

consider this scheme. It is clearly impossible to reproduce here all the coefficients of the

tachyon condensate up to level 18. We give some sample results in Table 2.4.

In this section we perform some consistency checks of the level-truncation results, veri-

fying some exact properties that the tachyon condensate must obey.

2.3.1 SU(1,1) invariance

We have systematically checked that our solutions for the tachyon condensate can be written

in the basis (2.2.13), and thus obey the full SU(1,1) invariance. This property holds with

perfect accuracy (that is, with the same precision as the number of significant digits that we

keep, which is 15 for double-precision variables in C++). This is nice, but not surprising,

since the SU(1,1) generators commute with L0, and thus SU(1,1) is an exact symmetry of

the level-truncated theory.

2.3.2 Out-of-Siegel Equations

We now turn to the crucial check of the extra conditions imposed by the full equations of

motion before gauge-fixing. We were able to carry out this computation up to L = 14. Table

2.5 shows some sample results for the string field (2.2.18) evaluated for Ψ = TSiegel. The

extra constraints are satisfied already very well at L = 6, and significantly better at L = 149

. This is happening thanks to large cancellations between the two terms in (2.2.18)10 , as

can be easily checked by applying the operator Q̃ to the results in Table 2.4.

Even more remarkable are the extrapolations of the data to L = ∞, which give values

two or three orders of magnitude smaller than the L = 14 results! Our extrapolation method
9This behavior is common to the higher level modes not reproduced in Table 2.5.

10At L = 14, each term in (2.2.18) is typically one or two orders of magnitude bigger than their sum.
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L = 4 L = 6 L = 8 L = 10
c1|0〉 0.548399 0.547932 0.547052 0.546260
c−1|0〉 0.205673 0.211815 0.215025 0.216982
Lm
−2c1|0〉 0.056923 0.057143 0.057214 0.057241

c−3|0〉 -0.056210 -0.057392 -0.057969 -0.058290
b−2c−2c1|0〉 -0.033107 0.034063 0.034626 0.034982
b−3c−1c1|0〉 0.018737 0.019131 0.019323 0.019430
Lm
−2c−1|0〉 -0.0068607 -0.0074047 -0.0076921 0.0078698

Lm
−4c1|0〉 -0.005121 -0.005109 -0.005102 -0.005095

Lm
−2L

m
−2c1|0〉 -0.00058934 -0.00062206 -0.00063692 -0.00064553

L = 12 L = 14 L = 16 L = 18
c1|0〉 0.545608 0.545075 0.544637 0.544272
c−1|0〉 0.218296 0.219236 -0.219942 -0.220491
Lm
−2c1|0〉 0.057252 0.057256 0.057257 0.057257

c−3|0〉 -0.058489 -0.058625 -0.058721 -0.058794
b−2c−2c1|0〉 0.035225 0.035402 0.035535 0.035640
b−3c−1c1|0〉 0.019496 0.019542 0.019574 0.019598
Lm
−2c−1|0〉 0.0079906 0.0080782 0.0081445 0.0081966

Lm
−4c1|0〉 -0.005090 -0.005086 -0.005082 -0.005079

Lm
−2L

m
−2c1|0〉 -0.00065124 -0.00065532 -0.00065839 -0.00066081

Table 2.4: (L, 3L) level-truncation results for the lowest modes of TSiegel.
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L = 6 L = 14 L = ∞
c−2c1|0〉 0.00841347 0.00257255 -0.0000400232
c−4c1|0〉 -0.0103276 -0.00307849 0.0000536768
c−1c−2|0〉 0.0107901 0.00483115 0.000005367
Lm
−2c−2c1|0〉 0.000892329 0.000612637 0.00000877198

Lm
−3c−1c1|0〉 -0.00212947 -0.000877716 0.00000163665

c−6c1|0〉 0.0130217 0.00341282 0.0000208782
c−4c−1|0〉 -0.0110576 -0.00431119 -0.000160066
c−3c−2|0〉 0.00360400 0.00160614 -0.0000134344
b−2c−3c−1c1|0〉 -0.00306293 -0.000919219 -0.0000799493
b−3c−2c−1c1|0〉 -0.00324329 -0.00114819 -0.0000488214
Lm
−2c−4c1|0〉 0.000132483 -0.000183042 -0.0000162206

Lm
−2c−2c−1|0〉 -0.00188148 -0.000811710 -0.0000098375

Lm
−3c−3c1|0〉 0.000834397 0.000303847 -0.0000004570

Lm
−4c−2c1|0〉 0.000127107 0.0000135260 0.0000021124

Lm
−2L

m
−2c−2c1|0〉 -0.000179524 -0.0000980000 -0.0000014704

Lm
−5c−1c1|0〉 0.000903154 0.000310410 0.0000131051

Lm
−3L

m
−2c−1c1|0〉 0.000271962 0.000105286 0.0000014747

Table 2.5: Sample (L, 3L) level-truncation results for the out-of-Siegel equations of motion.
The table shows data for L = 6 and L = 14, and L = ∞ extrapolations obtained from the
data for 2 ≤ L ≤ 14 with a polynomial fit in 1/L.

consists in interpolating the data with a polynomial in 1/L of maximum degree (that is,

with as many parameters as the number of data points). For example, for the mode c−4c1|0〉
we have six data points (L = 4, 6, 8, 10, 12, 14) and we use a polynomial in 1/L of degree

five. Empirically, this method gives better results (L = ∞ extrapolations closer to zero)

than making fits with polynomials in 1/L of lower degree.

This analysis leaves little doubt that the full equations of motion are satisfied as L →∞.

2.3.3 Exact Quadratic Identities

As pointed out by Schnabl [16], any solution of the OSFT eom’s must obey certain exact

quadratic identities that follow from the existence of anomalous derivations of the star

product. An infinite set of identities is obtained from the anomalous derivations Km
2n =

Lm
2n − Lm

−2n. They are [16]:

〈Ψ|c0L
m
2n|Ψ〉 = (−1)n 65

54
〈Ψ|c0L0|Ψ〉 , (2.3.1)
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Lm
2 Lm

4 Lm
6 Lm

8 Lm
10 Lm

12 Lm
14 Lm

16

2 1.127927
4 1.069643 1.079864
6 1.046467 1.051898 1.053517
8 1.034587 1.037554 1.040767 1.036977
10 1.027439 1.029304 1.031367 1.033082 1.025628
12 1.022688 1.023975 1.025369 1.026797 1.027437 1.017346
14 1.019312 1.020257 1.021261 1.022317 1.023271 1.023102 1.011026
16 1.016795 1.017520 1.018279 1.019076 1.019875 1.020461 1.019662 1.006039
∞ 0.999916 0.999877 1.00429 1.00526

Table 2.6: (L, 3L) level-truncation results for Schnabl’s quadratic matter identities. The
table shows the values for the ratios Rn of equ. (2.3.2).

where Ψ is a solution in Siegel gauge.

In Table 2.6 we show the level-truncation results for the ratios

Rn ≡ (−1)n 54
65
〈T |c0L

m
2n|T 〉

〈T |c0L0|T 〉 , (2.3.2)

which are of course predicted to be exactly one. The quadratic identities are satisfied

quite well already at low levels, and the extrapolations to L = ∞ (performed again with

polynomials in 1/L of maximum degree) give really good results.

Both the quadratic identities just analyzed and the out-of-gauge eom’s (2.2.18) are exact

constraints on the solution that are broken by level-truncation. We have found that the

level-truncated answers for this class of observables are very accurately converging to their

known exact values as L →∞. This is strong evidence for the idea that level-truncation is

a convergent approximation scheme. We have also learnt that maximal polynomials in 1/L

give very precise extrapolations. It seems safe to assume that this should be a universal

feature, and in the following we shall adopt the same extrapolation technique to quantities

whose exact asymptotic value is a priori unknown11 .
11Polynomials in 1/L have also been used in the extrapolation procedure of of [17]. It was also noted in

[49] that large level results appear to have corrections of order 1/L, although there the definition of level is
somewhat different.
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2.4 Extrapolations to Higher Levels

Encouraged by the successful extrapolations to L = ∞ described in the previous section,

and inspired by Taylor’s analysis [17], we have set up a systematic scheme to extrapolate to

higher levels the results for the vacuum energy and for the tachyon condensate string field.

In this section we focus on the results for the vacuum energy, while in the next we shall

examine the results for the individual coefficients of the tachyon condensate.

Unless explicitly stated otherwise, the use of the (L, 3L) scheme is implied in the rest of

the chapter. We justify this choice in section 2.4.3, where we briefly contrast (L, 2L) versus

(L, 3L) results.

2.4.1 Extrapolations of the Tachyon Effective Action

The basic idea of our method has already been explained in the introduction. The first

step is the computation of the tachyon effective action VL(T ), obtained by integrating out

the higher modes up to level L. Some details of how this is done numerically are explained

in appendix A. Figure 2.4.1 shows the plots of VL(T ) for 0 ≤ L ≤ 16. There is good

convergence as L increases, indeed the curves for L ≥ 6 are indistinguishable on the scale

of Figure 2.2.

For our extrapolations, we focus on a interval for the tachyon vev around the non-

perturbative vacuum. We take 0.54 ≤ T ≤ 0.55. The function V
(M)
L (T ), where M is an

even integer ≤ 16, is the extrapolation ‘of order M ’ of the tachyon effective action at level

L, and is constructed as follows. We fix the dependence on L by writing

V
(M)
L (T ) =

M/2+1∑

n=0

an(T )
(L + 1)n

, (2.4.3)

for some coefficients functions an(T ). The functions an(T ) are determined by imposing the

conditions

V
(M)
L (T ) = VL(T ) , for L = 0, 2, · · · ,M , ∀ T ∈ [0.54, 0.55] . (2.4.4)
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Figure 2.2: Plots of the tachyon effective potential VL(T ) at level L, for L between zero
(uppermost curve) and 16 (lowermost curve). The curves for L = 6, 10, 12, 14, 16 appear
superimposed in the figure.

In other terms, we interpolate the M/2+1 values {VL(T )|L = 0, 2, . . . M} with a polynomial

in 1/(L + 1) that passes through all the data points12 .

Our best estimate for the tachyon effective action at level L is the function V
(16)
L (T ).

Figure 2.3 shows the plots of V
(16)
L (T ) for L between ten and infinity. The position of the

minimum in each curve defines our order M = 16 estimates T
(16)
L and E

(16)
L for the tachyon

vev and vacuum energy at level L. We can follow very clearly the behavior of the minima

as L increases. The energy falls below -1, reaches its lowest point in L = 28 curve, and then

turns back to approach asymptotically the value E
(16)
∞ = −1.00003 ! In Figure 2.4 we see

the same phenomenon in a plot of E
(16)
L as a function of 1/L.

It is interesting to consider how the extrapolations change as we vary M . Table 2.7 shows

the estimates E
(M)
L up to L = 18, while Table 2.10 (appendix B) shows the analogous

estimates for the tachyon vev. By construction, the diagonal entries E
(L)
L and T

(L)
L are

12The rationale for using polynomials in 1/(L + 1) rather than 1/L is that we wish to include also the
data for L = 0. This works somewhat better than excluding the L = 0 point and making extrapolations in
1/L. Committed readers can find more about this technicality in footnote 13.
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Figure 2.3: Plots of the order 16 estimates V
(16)
L (T ) for the effective tachyon potential, for

some sample values of L ≥ 10. The minimum of each curve is indicated by a black dot,
which by definition has coordinates (T (16)

L , E
(16)
L ). The isolated uppermost plot corresponds

to L = 10. To follow the curves from L = 10 to L = ∞, focus on the position of the
minima: as L increases, the dot moves from right to left (i.e., the tachyon vev decreases). As
L →∞, the curves crowd towards an asymptotic function with minimum at (T (16)

∞ , E
(16)
∞ ) =

(0.5405,−1.00003).

simply the exact values obtained by direct level-truncation at level L. One can observe from

the tables that the method has remarkable predictive power. For example, by only knowing

level-truncation results up to level 10, one can obtain the prediction E
(10)
16 = −1.0003780 for

the energy at level 16, to be compared to the exact value E16 = −1.0003755. We thus feel

quite comfortable in trusting the extrapolations even for L large. Figure 2.1 and Table 2.2

(already discussed in the introduction) illustrate the main features of the larger L results

for the vacuum energy, for various M ’s. It is pleasant to observe that, as M increases,

the estimates L
(M)
min and E

(M)
min (Table 2.2) quickly reach stable values, while E

(M)
∞ steadily

approaches minus one13 .
13 Finally we would like to comment on how results change if instead of using a polynomial extrapolation
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Figure 2.4: Plot of E
(16)
L as a function of 1/L. The black dots represent the exact values

up to L = 18 computed by direct level-truncation (Table 1, (L, 3L) scheme). To first
approximation, the curve in the figure is roughly a parabola: since the energy overshoots
-1 at 1/L = 1/14 ' 0.07, we have a visual understanding of the position of the minimum of
the energy around 1/L = (1/14)/2 = 1/28 ' 0.036.

It is remarkable that extrapolations to higher levels work so well. The data have a

smooth and predictable dependence on L, which is very well captured by polynomials in

1/L. This property was not a priori obvious, and indeed it appears to be true only for

(L, 3L) data, as we shall see in section 2.4.3.

2.4.2 Comparison with Straightforward Extrapolations

The method just described appears to work remarkably well. To which extent does the

success of the method depend on the sophisticated idea of extrapolating the functional

in 1/(L + 1) we use an extrapolation in 1/L (excluding the L = 0 point), or alternatively we keep the L = 0
point and use a polynomial in 1/(L + a) for some other a > 0. One finds that for M = 16 the differences
among all these schemes are very minor, even for a wide range of reasonable values of a (say 0.1 < a < 3).
For M < 10, including the L = 0 data (and using 1/(L + a)) works somewhat better than excluding it

(and using 1/L). For example the prediction E
(8)
16 obtained excluding L = 0 differs by the exact value by

an error of 0.0003, which is 30 times bigger than for the prediction obtained including L = 0. All of this
scheme-dependence is expected to disappear for M large, and indeed is already irrelevant at M = 16.
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L = 4 L = 6 L = 8 L = 10
M = 4 -0.98782176 -0.99546179 -0.99850722 -1.0000023
M = 6 -0.99517712 -0.99798495 -0.99930406
M = 8 -0.99793018 -0.99918359
M = 10 -0.99918246

L = 12 L = 14 L = 16 L = 18
M = 4 -1.0008372 -1.0013461 -1.0016765 -1.0019017
M = 6 -1.0000079 -1.0004169 -1.0006692 -1.0008317
M = 8 -0.99982545 -1.0001796 -1.0003843 -1.0005057
M = 10 -0.99982266 -1.0001750 -1.0003780 -1.0004979
M = 12 -0.99982226 -1.0001739 -1.0003759 -1.0004947
M = 14 -1.0001737 -1.0003755 -1.0004938
M = 16 -1.0003755 -1.0004937
M = 18 -1.0004937

Table 2.7: Estimates E
(M)
L for the vacuum energy obtained from extrapolations of the

effective tachyon potential, at various orders M and for L ≤ 18. Data in the (L, 3L)
scheme. By definition, the diagonal entries E

(M=L)
L coincide with the exact computation

from direct level-truncation at level (L, 3L) (Table 1).

form of the tachyon effective action? We can answer this question by considering the more

straightforward procedure of simply extrapolating the values of the vacuum energies EL

(as opposed to the full functions VL(T )). We define the ‘straightforward’ order M estimate

Ẽ
(M)
L at level L by considering the data {EL|0 ≤ L ≤ M}, and interpolating them with a

polynomial in 1/(L+1) of maximum degree. (This is in complete analogy with (2.4.3)). The

results for L ≤ 18 in the (L, 3L) scheme are presented in Table 2.8, while in Table 2.9 we give

the extrapolations to L = ∞. We see that for M < 10, the more sophisticated method gives

much more accurate predictions (compare Table 2.7 and Table 2.8: for example E
(8)
18 , Ẽ

(8)
18

and the exact value E
(18)
18 ). However for M > 10 there is no significant difference between

the two procedures14 . We also compared the results for the individual coefficients of the

tachyon string field obtained with the two procedures, and found a very similar pattern.

We conclude that with the sophisticated procedure one can achieve remarkable accuracy

even for small M , where a naive extrapolation would work quite poorly. However if one
14A comparison with the results of [17], which in our language correspond to M = 10, shows that the

accuracy of the perturbative method of [17] seems comparable with the accuracy of the straightforward
extrapolation. For M = 10 our non-perturbative method based on the tachyon effective action appears to
be more accurate.
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L = 4 L = 6 L = 8 L = 10
M = 4 -0.98782176 -0.99730348 -1.0020443 -1.0048888
M = 6 -0.99517712 -0.99845611 -1.0002959
M = 8 -0.99793018 -0.99921882
M = 10 -0.99918246

L = 12 L = 14 L = 16 L = 18
M = 4 -1.0067851 -1.0081397 -1.0091556 -1.0099457
M = 6 -1.0014693 -1.0022814 -1.0028762 -1.0033304
M = 8 -0.99991100 -1.0003187 -1.0005753 -1.0007448
M = 10 -0.99982332 -1.0001767 -1.0003811 -1.0005023
M = 12 -0.99982226 -1.0001738 -1.0003758 -1.0004946
M = 14 -1.0001737 -1.0003755 -1.0004939
M = 16 -1.0003755 -1.0004937
M = 18 -1.0004937

Table 2.8: The estimates Ẽ
(M)
L for the vacuum energy in the (L, 3L) scheme, obtained with

the ‘straightforward’ polynomial extrapolation in 1/(L + 1).

is willing to perform level-truncation up to level 12 or above, the simpler extrapolation

procedure is equally effective.

2.4.3 (L, 3L) versus (L, 2L)

(L, 3L) (L, 2L)
M = 6 -0.998698 -0.988625
M = 8 -0.999784 -1.00261
M = 10 -1.00010 -0.999316
M = 12 -1.00008 -1.00048
M = 14 -1.00004 -0.999655
M = 16 -1.00003 -1.00057

Table 2.9: The estimates Ẽ
(M)
∞ for the asymptotic vacuum energy in the (L, 3L) and (L, 2L)

schemes, obtained with the ‘straightforward’ polynomial extrapolation in 1/(L + 1).

All the extrapolations described so far are for results in the (L, 3L) scheme. We have

investigated the data in the (L, 2L) scheme and concluded that their behavior as a function

of L is not nearly as smooth: as a consequence, extrapolations to higher levels are less

reliable. A glance at Table 2.9 and Figure 2.5 is sufficient to illustrate our point. We are

comparing the ‘straightforward’ extrapolations of the vacuum energy to L = ∞, for various
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Figure 2.5: Plot of the results in Table 2.9. The continuous line represents the (L, 3L)
results, while the dashed line represents the (L, 2L) results.

M ’s, obtained with data in the (L, 3L) scheme, with the analogous quantities in the (L, 2L)

scheme. While the (L, 3L) data have a really smooth dependence on M and converge nicely

to -1, the (L, 2L) data have a much more irregular behavior. A similar pattern is observed

for extrapolations at finite L: estimates Ẽ
(M)
L of exact results at level L ≤ 18 are not nearly

as accurate in the (L, 2L) scheme as they are in the (L, 3L) scheme. An analogous behavior

is found in comparing (L, 3L) and (L, 2L) data for the tachyon vev. We have also repeated

for (L, 2L) data the full analysis based on extrapolations of the tachyon effective action,

and found no improvement with respect to the straightforward extrapolations shown in

Table 2.9.

It would be interesting to explain these findings from an analytic point of view. The

(L, 3L) scheme can be understood as a cut-off procedure in which only the kinetic term of

the OSFT action is changed, such to give an infinite mass to modes with level higher than

L. On the other hand, in the (L, 2L) scheme both the kinetic and the cubic term of the

action are changed. This may explain why (L, 3L) data have a simpler dependence on L.
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2.5 The Numerical Algorithms

In this section we explain some technical details about the algorithms that we have used to

compute the universal star products and find the tachyon solution in level truncation.

2.5.1 Star Products from Conservation Laws

The strategy for evaluating star products using conservation laws is explained in detail in

[12]. Each Fock state in H(1)
univ can be represented as a string of negatively moded ghost

or Virasoro generators acting on the zero-momentum tachyon c1|0〉. The triple product of

three such states is evaluated recursively by converting a negatively moded generator on

one state space to a sum of positively moded generators acting on all three state spaces,

〈A−kΦ1, Ψ2, Ψ3〉 = (2.5.1)

rk〈Φ1,Ψ2,Ψ3〉+ 〈
∑

n≥0

αk
nAnΦ1,Ψ2,Ψ3〉+ 〈Φ1,

∑

n≥0

βk
nAnΨ2,Ψ3〉+ 〈Φ1,Ψ2,

∑

n≥0

γk
nAnΨ3〉 ,

where A−k is any constructor symbol and the coefficients appearing in this ‘conservation

law’ are computed from the geometry of the Witten vertex [12]. All triple products in H(1)
univ

are thus reduced to the coupling 〈c1, c1, c1〉 of three tachyons.

Once the triple products are known, star products are easily obtained by inverting the

non-degenerate bpz inner product. If {Ψi} is a Fock basis for H(1)
univ, we define the dual

basis {Ψi} of H(2)
univ by the bpz pairing

〈Ψi, Ψj〉 = δj
i . (2.5.2)

Then

Ψi ∗Ψj ≡
∑

k

〈Ψi, Ψj , Ψk〉Ψk . (2.5.3)

We automated this algorithm on a C++ computer code. We briefly highlight some

features of our implementation:

• We use the factorization of the star product into matter and ghost sectors. The

algorithm to find the triple products is executed separately in the two subsectors.
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• We use cyclic and twist symmetry of the vertex to reduce the computation to triple

products 〈Ψi, Ψj , Ψk〉 with a canonical ordering i ≤ j ≤ k.

• While in the matter sector the algorithm can be implemented in a straightforward

way, in the ghost sector we need to face a slight complication. We are ultimately

interested in triple products of ghost number one states, but the use of fermionic

ghost conservation laws necessarily brings us outside the ghost number one subspace.

We found it most efficient to use only conservation laws for the b−k oscillators. A

single application of a b-ghost conservation law reduces the evaluation of a 〈1, 1, 1〉
product (ghost number one in all three slots) to a sum of terms of the form 〈1, 1, 1〉
and 〈0, 1, 2〉. Products of this latter type can be treated by applying a b-conservation

law to the first state (of ghost number zero), obtaining a sum of terms 〈1, 1, 1〉 and

again (after cyclic rearrangement) 〈0, 1, 2〉. It is easy to show that this algorithm

always terminates on the product of three tachyons. So we see that we only need to

consider triple products of the form 〈0, 1, 2〉 besides the standard products 〈1, 1, 1〉.

• After each application of a conservation law, the resulting triple products on the r.h.s

of (2.5.1) are processed using the Virasoro algebra or the ghost commutation rela-

tions, till all states are reduced to the Fock basis (2.2.6) with the canonical ordering

j1 ≥ · · · ≥ jp, k1 ≥ · · · ≥ kq, l1 ≥ · · · ≥ lr. The evaluation of expressions like

LkL−n1 · · ·L−nic1|0〉, with n1 ≥ n2 · · · ≥ ni (and similarly for the ghosts) is thus a

basic elementary operation. There is a critical gain in efficiency in evaluating be-

forehand all such expressions (up to the desired maximum level) and reading the

results from a file, rather then re-computing them each time. The size of such a file

grows only linearly with the number of modes, whereas the table of triple products

grows cubically, so this strategy is not problematic from the point of view of memory

occupation.

This algorithm can be easily extended to evaluate more general star products of string

fields belonging to a larger space than Huniv, for example the space relevant for tachyon
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lump solutions [33] or Wilson line solutions [35]. One needs to enlarge the algebra of matter

operators and consider the appropriate conservation laws.

2.5.2 Solving the Equations of Motion

Once all triple products at level L have been computed, the evaluation of the star product

of two Siegel gauge string fields at level L involves O(N3
L) algebraic operations. It is clearly

desirable to have an algorithm to solve the classical eom’s that requires as few star products

as possible. We tried various options, which can all be represented as a recursive procedure

Ψ(n+1) = F (Ψ(n)), where Ψ = F (Ψ) implies that Ψ is a solution.

The most obvious idea is to invert the kinetic term in Siegel gauge and define

F (Ψ) = − b0

L0
(Ψ ∗Ψ) . (2.5.4)

Clearly this iteration cannot converge since F (λΨ) = λ2F (Ψ). There is a simple way to fix

this problem, defining

F̃ (Ψ) =
(

T [Ψ]
T [F (Ψ)]

)2

F (Ψ) , (2.5.5)

where T [Φ] indicates the coefficient of c1|0〉 in the string field Φ. Unfortunately the algorithm

based on the recursion F̃ still fails to converge, and generically falls into stable two-cycles.

An improved recursion is

Fα(Ψ) = α Ψ + (α− 1)
b0

L0
Ψ ∗Ψ (2.5.6)

where α is a real number which is chosen randomly in some reasonable interval (say 0.2 <

α < 0.8) at each iteration step. This randomization breaks the cycles and the algorithm

converges to a unique solution in about 20-30 steps. (The algorithm stops when the eom’s

are satisfied with the same accuracy as the accuracy of double-precision variables in C++,

which have 15 significant digits). This algorithm is very robust with respect to the choice

of the starting point Ψ0, in fact at any given level L we found only one non-trivial solution.

A more efficient approach is the standard Newton algorithm. Recall that given a system

of N algebraic equations in N variables, fi[xα] = 0, 1 ≤ i, α ≤ N , the Newton recursion is

x(n+1)
α = x(n)

α −M−1
αi [x(n)]fi[x(n)] (2.5.7)
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where the matrix Miα[x] is defined as

Miα[x] ≡ ∂fi

∂xα
. (2.5.8)

In our case, the truncated Siegel equations of motion are a system of NL algebraic equations

in NL variables (Table 2.3) and this method can be directly applied. It is interesting to

write the Newton algorithm as a recursion for the Siegel string field itself. One finds the

compact expression

Ψ(n+1) = Q−1
Ψ(n)(Ψ

(n) ∗Ψ(n)) . (2.5.9)

Here the operator QΨ is defined by

QΨ Φ ≡ QBΨ + Ψ ∗ Φ + Φ ∗Ψ (2.5.10)

for any ghost number one string field Φ. The inverse operator Q−1
Ψ is naturally defined by

projecting onto the Siegel subspace. In other terms, for any ghost number two string field

Σ, we look for the ghost number one string field Q−1
Ψ Σ that obeys

b0 (Q−1
Ψ Σ) = 0 , c0b0 Σ = c0b0 QΨ(Q−1

Ψ ) Σ . (2.5.11)

The operator QΨ has a natural physical interpretation: If Ψ is a solution of the OSFT

eom’s, then QΨ is the new BRST operator obtained expanding the OSFT action around Ψ.

Thus as we approach the fixed point of the Newton recursion, QΨ(n) becomes a better and

better approximation to the BRST operator around the tachyon vacuum.

In level-truncation, the action of the operator QΨ in the Siegel subspace is represented

by an NL × NL matrix. Since there is an order O(N3
L) algorithm to invert a matrix, the

Newton recursion is not significantly more time-expensive than the evaluation of a single

star product. The Newton algorithm is very fast, effectively squaring the accuracy at each

step, and the solution is reached in four or five iterations. On our pc, the complete algorithm

(computing the vertices from scratch and finding the tachyon solution) takes less than 10

seconds at level (10,20), and less than a minute at level (12,36)! There is however a rather

critical dependence on the initial conditions: one finds convergence only from a starting

point sufficiently close to the solution (it is enough to take e.g. Ψ(0) = 0.5 c1|0〉).
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We compared the solution obtained with the Newton method with the solution found

with the alternative algorithm described above, finding exact agreement up to level 16. (At

level 18 the recursion (2.5.6) runs too slowly on our pc). This gives a strong check on the

correctness of the solutions. As another check, we compared our results at level (10,20)

with the results of Moeller and Taylor [14]15 , finding agreement to the tenth significant

digit.

2.5.3 Tachyon Effective Action

To compute the tachyon effective action, we write the string field as

ΨL = T c1|0〉+ Ψ̃L , (2.5.12)

where Ψ̃L contains all the modes up to level L, except c1|0〉. For a given numerical value of

of the variable T , we solve the classical OSFT equations of motion for all the higher modes,

using the Newton method. This gives ΨL[T ] = Tc1|0〉+Ψ̃L[T ] as a function of T . Plugging

ΨL[T ] into the OSFT action16 we obtain the effective tachyon potential VL(T ).

The Newton algorithm that finds the solution Ψ̃L[T ] fails to converge if the variable

T is outside an interval [Tmin
L , Tmax

L ]. We find for example Tmin
16 ∼ −0.1 and Tmax

16 ∼ 0.7

(notice that both the tachyon vacuum and the perturbative vacuum are safely inside the

convergence region). The failure of the numerical algorithm can be explicitly traced to the

existence of other branches in the tachyon effective action. This phenomenon has been

studied in [14, 44], where it has also been related to the non-perturbative failure of the

Siegel gauge condition. In this chapter we only need VL(T ) in an interval around the non-

perturbative vacuum, which we take to be 0.54 ≤ T ≤ 0.55. We postpone a more detailed

investigation of the global behavior of the tachyon potential.
15We thank the authors of [14] for making their full results available to us.
16More precisely, VL(T ) ≡ f(ΨL[T ]), where f(Ψ) is defined in (2.2.3).
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2.6 Concluding Remarks

Our results support the idea that level-truncation is a completely reliable approximation

scheme for OSFT, with a convergent limit as the level is sent to infinity. All available

exact predictions (notably the value of the vacuum energy) are accurately confirmed by

the data. No inconsistencies seem to arise from the fact that gauge-invariance is broken

at finite level, indeed we found strong evidence that it is smoothly restored as L → ∞.

Quantities computed in level-truncation exhibit a predictable dependence on level which is

very well approximated by polynomials in 1/L (at least for the (L, 3L) scheme). This allows

reliable extrapolations to higher levels. Combining this observation with efficient computer

algorithms based on conservation laws [12], we have developed very powerful numerical tools

to study OSFT.

In this work we have focused on the universal subspace and obtained accurate data for

the tachyon condensate. An obvious direction for further research is to use our results to

learn about the kinetic term around the tachyon vacuum. The nature of this kinetic term

is still rather mysterious. No perturbative open string states are expected to be present,

and numerical evidence for this has already been obtained [40].

The most intriguing aspects of the non-perturbative vacuum are related to the elusive

closed string states. In OSFT, amplitudes for external closed strings (on a surface with

a least one boundary) are given by correlation functions of certain gauge-invariant open

string functionals, the “open-closed” vertexes [50, 51, 52, 24]. It would be very interesting

to compute such amplitudes in the non-perturbative vacuum. This should shed some light

on the mechanism by which open string moduli are frozen in the tachyon vacuum, but

closed string moduli are still present. There are promising ideas for how this may come

about [24, 53, 54], but the actual mechanism realized in OSFT is still unknown.

Another avenue for future work is the application of our methods to more general classi-

cal solutions. It will be straightforward to extend our algorithms to include the matter states

necessary to construct non-universal solutions, e.g. tachyon lump solutions [33] and Wilson
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line solutions [35]. It would also be very nice to investigate numerically time-dependent so-

lutions, and demonstrate the existence of tachyon matter [55] in OSFT. The study of several

classical solutions will help to build the intuition that is needed for analytic progress.

2.7 Some Further Numerical Data

L = 4 L = 6 L = 8 L = 10
M = 4 0.54839904 0.54849677 0.54814406 0.54777626
M = 6 0.54793242 0.54711284 0.54639593
M = 8 0.54705245 0.54626520
M = 10 0.54626093

L = 12 L = 14 L = 16 L = 18
M = 4 0.54745869 0.54719393 0.54697362 0.54678893
M = 6 0.54581507 0.54534684 0.54496539 0.54465027
M = 8 0.54561932 0.54509452 0.54466463 0.54430807
M = 10 0.54560864 0.54507682 0.54464004 0.54427703
M = 12 0.54560809 0.54507524 0.54463714 0.54427267
M = 14 0.54507515 0.54463683 0.54427204
M = 16 0.54463682 0.54427198
M = 18 0.54427196

Table 2.10: Estimates T
(M)
L for the tachyon vev obtained from extrapolations of the effective

tachyon potential, at various orders M and for L ≤ 18. Data in the (L, 3L) scheme. By
definition, the diagonal entries T

(M=L)
L coincide with the exact computation from direct

level-truncation at level (L, 3L) (Table 2.4).
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Matter Ghost L = ∞ L = 18
.5405 0.5443

b−1c−1 -0.2248 -0.2205
Lm
−2 0.05721 0.05726

b−1c−3 0.05928 0.05879
b−2c−2 0.03650 0.03564
b−3c−1 0.01976 0.01960

Lm
−2 b−1c−3 0.008627 0.008197

Lm
−4 -0.005049 -0.005079

Lm
−2L

m
−2 -0.000681 -0.000661

b−1c−5 -0.03091 -0.03076
b−2c−4 -0.01976 -0.01941
b−3c−3 -0.01152 -0.01151

b−2b−1c−2c−1 -0.008626 -0.008316
b−4c−2 -0.00988 -0.009704
b−5c−1 -0.00618 -0.006152

Lm
−2 b−1c−3 -0.003702 -0.003605

Lm
−2 b−2c−2 -0.003186 -0.003056

Lm
−2 b−1c−1 -0.001234 -0.001202

Lm
−3 b−1c−2 -0.000076 -0.0000775

Lm
−3 b−2c−1 -0.000038 -0.0000387

Lm
−4 b−1c−1 -0.0012 -0.001242

Lm
−2L

m
−2 b−1c−2 -0.000248 -0.000215

Lm
−6 0.001434 0.001446

Lm
−3L

m
−3 0.0000075 0.0000075

Lm
−4L

m
−2 0.000311 0.000310

Lm
−2L

m
−2L

m
−2 -0.0000049 -0.0000065

Table 2.11: Asymptotic values for the first coefficients of the tachyon condensate string
field, compared with the L = 18 data. The L = ∞ results are obtained from the M =
16 extrapolation procedure based on the effective tachyon potential. Data in the (L, 3L)
scheme.
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L = 4 L = 6 L = 8 L = 10
M = 4 -0.20567285 -0.21119493 -0.21392087 -0.21552208
M = 6 -0.21181486 -0.21499106 -0.21690691
M = 8 -0.21502535 -0.21697620
M = 10 -0.21698254

L = 12 L = 14 L = 16 L = 18
M = 4 -0.21656852 -0.21730328 -0.21784642 -0.21826369
M = 6 -0.21818110 -0.21908711 -0.21976325 -0.22028663
M = 8 -0.21827982 -0.21920964 -0.21990503 -0.22044413
M = 10 -0.21829559 -0.21923573 -0.21994128 -0.22048993
M = 12 -0.21829570 -0.21923600 -0.21994171 -0.22049051
M = 14 -0.21923603 -0.21994180 -0.22049069
M = 16 -0.21994181 -0.22049069
M = 18 -0.22049069

Table 2.12: Estimates for the vev of c−1|0〉, obtained from extrapolations of the effective
tachyon potential, at various orders M and for L ≤ 18. Data in the (L, 3L) scheme.
By definition, the diagonal entries coincide with the exact computation from direct level-
truncation at level (L, 3L) (Table 2.4).

L = 4 L = 6 L = 8 L = 10
M = 4 0.056923526 0.057062755 0.057068423 0.057045668
M = 6 0.057143493 0.057209039 0.057229308
M = 8 0.057214101 0.057239805
M = 10 0.057241066

L = 12 L = 14 L = 16 L = 18
M = 4 0.057018045 0.056991677 0.056968053 0.056947298
M = 6 0.057233609 0.057231744 0.057227479 0.057222387
M = 8 0.057248895 0.057251070 0.057250189 0.057247946
M = 10 0.057252093 0.057256442 0.057257742 0.057257584
M = 12 0.057252005 0.057256182 0.057257253 0.057256834
M = 14 0.057256190 0.057257279 0.057256887
M = 16 0.057257279 0.057256886
M = 18 0.057256885

Table 2.13: Estimates for the vev of Lm
−2c1|0〉, obtained from extrapolations of the effective

tachyon potential, at various ‘orders’ M and for L ≤ 18. Data in the (L, 3L) scheme.
By definition, the diagonal entries coincide with the exact computation from direct level-
truncation at level (L, 3L) (Table 2.4).
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L = 10 L = 12 L = 14 L = 16 L = 18 conj

r9,1 0.0259407 0.0261085 0.0262255 0.0263037 0.0263594 0.027063
r7,3 0.0104886 0.0104825 0.0104948 0.0105063 0.0105159 0.0105868
r5,5 0.00658638 0.0065773 0.00658224 0.00658778 0.00659265 0.0066192

r11,1 -0.0200117 -0.0201181 -0.0201948 -0.0202469 -0.0208326
r9,3 –0.00818159 -0.00817378 -0.00818 -0.00818657 -0.00824041
r7,5 -0.00525767 -0.00524794 -0.00524929 -0.00525185 -0.00526601

r13,1 0.0161045 0.0161778 0.0162318 0.0167396
r11,3 0.00662999 0.00662276 0.0066262 0.0066689
r9,5 0.00431978 0.00431134 0.00431141 0.00431915
r7,7 0.00315946 0.00315272 0.00315241 0.0031549

r15,1 -0.0133607 -0.0134141 -0.013871
r13,3 -0.0055259 -0.00551968 -0.005553
r11,5 -0.00363327 -0.00362626 -0.003629

Table 2.14: (L, 3L) numerical results for the pattern coefficients rn,m for the tachyon con-
densate.



Chapter 3

Vacuum String Field Theory

3.1 Introduction and Summary

As reviewed in the introduction, the possibility of formulating open string field theory

directly around the tachyon vacuum by guessing the form of the kynetic term has led to

a proposal for such vacuum string field theory (VSFT), made in [56], and investigated in

[57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72].

Lacking an exact analytic solution of OSFT that describes the tachyon vacuum, it has

not been possible yet to confirm directly, or to derive the VSFT action from first principles.

Therefore VSFT has been tested for consistency. The main property of VSFT is that

the kinetic operator, which in OSFT is the BRST operator, is chosen to be independent

of the matter conformal theory, and is thus built only using the reparametrization ghost

conformal field theory. Families of consistent candidates for this kinetic term, many of

which are related via field redefinitions, were exhibited in [56]. It was possible to show

that in VSFT the ratios of tensions of D-branes are correctly reproduced from the classical

solutions purporting to represent such D-branes. This was seen in numerical experiments

[57], and analytically using a boundary conformal field theory (BCFT) analysis whose key

ingredient was the construction of the sliver state [59] associated with a general BCFT.

The sliver is a projector in the star algebra of open strings (see for the next chapter for

70
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more about projectors); its matter part is identified with the matter part of the solution

representing a D-brane [57, 12, 73]. These tests did not select a particular kinetic term, in

fact, data concerning the kinetic term, as long as it is only ghost dependent, cancel in the

computation of ratios of tensions.

The formulation of VSFT cannot be considered complete unless a choice is made for its

kinetic term. This choice seems necessary in order to understand confidently issues related

to: (a) the normalization of the action giving us the brane tensions, (b) the spectrum of

states around classical solutions, and (c) the emergence of closed string amplitudes. It has

been suggested by Gross and Taylor [62] and by Schnabl [16] that it may be difficult to

obtain solutions of VSFT with non-zero action if we insist on finite normalization of the

kinetic term, leading to the conclusion that VSFT could be a workable, but singular limit

of a better defined theory. Even if this is the case, it is important to find which particular

choice of the kinetic term appears in this limit, and to investigate it thoroughly.

We are led by various pieces of evidence to a specific form of Q that is quite canonical

and interesting. We should say at the outset that this form ofQ leads to vanishing action for

classical solutions unless its overall normalization is taken to be infinite. Hence regulation

appears to be necessary, and as we shall discuss, possible. Q is a ghost insertion at the open

string midpoint. More precisely it takes the form

Q ∝ 1
2i

(c(i)− c(−i)) = c0 − (c2 + c−2) + (c4 + c−4)− · · · (3.1.1)

The open string is viewed as the arc |z| = 1, =(z) > 0, and thus z = i is the midpoint.

The selected Q arises from a consideration of the equations of motion in the Siegel gauge.

Again, there was early evidence, based on level expansion [56], that for a finite kinetic term

the Siegel gauge would yield zero action, and perhaps other gauges would be more suitable.

But in the spirit of the present chapter, where we are willing to allow infinite normalization

of the kinetic term, the Siegel gauge is a good starting point. This strategy was investigated

in a stimulating paper by Hata and Kawano [66]. In the Siegel gauge the equation of motion

Ψ+b0(Ψ∗Ψ) = 0 can be solved analytically not only in the matter sector, where the matter
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sliver arises [73, 57], but also in the ghost sector1 . It is then possible to compute Ψ ∗ Ψ

and determine Q by requiring that that Ψ ∗ Ψ takes the form −QΨ. The authors of [66]

obtained expressions that could be analyzed numerically to glean the form of Q. We have

done this analysis and obtained evidence that the operator in (3.1.1) arises.

We can also do a rather complete analytical study using BCFT techniques to obtain

a solution of the equations of motion with kinetic term given in (3.1.1). Here, as a first

step we twist the ghost conformal field theory stress tensor to obtain an auxiliary BCFT

where the ghost fields (c, b) have spins (0, 1). This is clearly a natural operation in view of

(3.1.1) since local insertions of dimension zero fields are simple to deal with. Moreover the

resulting Virasoro operators commute with b0 and the new SL(2,R) vacuum coincides with

the zero momentum tachyon. Analytic treatment of the string field equations of motion

becomes possible by rewriting the original equations in this twisted BCFT, and one finds

that the solution is simply the sliver of the twisted BCFT! This geometrical approach gives

a directly calculable expression for the Neumann coefficients characterizing the solution,

as opposed to the analytic solution [66] that involves inverses and square roots of infinite

matrices. We give numerical evidence that the solutions are one and the same.

Given that the classical solution in OSFT describing the tachyon vacuum is quite regular,

one could wonder about the origin of the infinite normalization factor that appears in the

choice of our kinetic term. The only way this could arise is if the variables of VSFT are

related to those of OSFT by a singular field redefinition. We give examples of singular

field redefinitions which could do this. They involve reparametrizations of the open string

coordinate which are symmetric about the mid-point and hence preserve the ∗-product.

We start with a Q that is sum of integrals of local operators made of matter and ghost

fields, and consider a reparametrization that has an infinite squeezing factor around the

mid-point. This transforms the various local operators (if they are primary) according to

their scaling dimension, with the coefficient of the lowest dimension operator growing at

fastest rate. Thus if the initial Q contains a piece involving the integral of c, then under
1The methodology was introduced in [73], but the correct expressions were given in [66].
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this reparametrization the coefficient of this operator at the mid-point grows at the fastest

rate. This not only provides a mechanism for explaining how the coefficient of the kinetic

term could be infinite, but also explains how a kinetic operator of the form c(i) − c(−i)

emerges under such field redefinition even if the initial Q contains combinations of matter

and ghost operators. This scenario supports a viewpoint, stressed in [62, 74], that a purely

ghost Q is a singular representative of an equivalence class of kinetic operators having

regular representatives built from matter and ghost operators. This singular limit is useful

for some computations, e.g. ratios of tensions of D-branes, but working with a regular

representative may be necessary for other computations like the overall normalization of

the tension.

While the BRST operator QB happens to be invariant under the action of the reparametriza-

tion generators Kn that are symmetric about the the string midpoint, Q is not invariant

under an arbitrary reparametrization of this type. Nevertheless, being a midpoint insertion,

it transforms naturally under reparametrizations z → f(z) leaving invariant the midpoint.

c(±i) simply scale with factors proportional to the inverse of the derivatives of f at ±i.

The expression for Q chosen here is rather special in that it is concentrated at the

midpoint, and thus it would seem to be an operator that cannot be treated easily by

splitting into left and right pieces. In particular the action of Q on the identity string field

is not well defined. One can define Q, however, as the limit of ghost insertions Qε that

approach symmetrically the midpoint as ε → 0, so that Qε annihilates the identity for every

non-zero ε. Although the action of Qε on a state |A〉 can be represented as |Sε ∗A〉−|A∗Sε〉
for an appropriate state |Sε〉, and thus Qε would be seen to be an inner derivation, the state

|Sε〉, involving insertion of a c on the identity string state just left of the midpoint, diverges

as ε approaches zero. It thus seems unlikely that Q can be viewed as an inner derivation.

As mentioned above, Q defined this way has infinite normalization. Via a field redefi-

nition we could make Q finite, at the cost of having an infinite overall normalization of the

VSFT action. In either description regularization is necessary. We examine this directly at

the gauge fixed level. Working in the Siegel gauge we introduce a parameter “a” to define
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a deformation S(a) of the gauge fixed action, such that the VSFT action is recovered for

a = ∞. We introduce a multiplicative factor κ0(a) in front of the action to have a complete

action Sa = κ0(a)S(a). In order to have a succesful regularization we require that S(a)

for any fixed a gives a finite value for the energy of the classical solution representing a

D-brane. We find evidence that this is the case using the level expansion procedure. The

prefactor κ0(a) can then be adjusted to give, by construction, the correct tension of the

D-brane solution. The Feynman rules in this regulated VSFT generate correlation functions

on world-sheet with boundary, with an additional factor involving a boundary perturbation,

in close analogy with the effect of switching on constant tachyon background in boundary

string field theory (BSFT) [75].

The level expansion analysis of the VSFT equations of motion leads to a surprise. The

numerical data indicates that the solution is converging towards a projector that is different

from the sliver. Like the sliver the new projector is a surface state. Considering that the

sliver represents only one of an infinite set of projectors, this result is not totally unexpected.

We provide a list of a whole class of surface states, refered to as the butterfly states, satisfying

properties similar to the sliver. There is strong numerical evidence that the solution in level

expansion is approaching one particular member of this class, − a state which is a product

of the vacuum state of the left half string and the vacuum state of the right half-string.

Further properties of the butterfly states are currently under investigation [76].

Another subject we discuss in great detail is that of closed strings.2 Our analysis begins

with the introduction of gauge invariant operators in OSFT. These open string field oper-

ators OV (Ψ) are parametrized by on-shell closed string vertex operators V , and concretely

arise from an open/closed transition vertex that emerged in studies of closed string fac-

torization in OSFT loop diagrams[77]. This open/closed vertex was studied geometrically

in [51] where it was shown that supplemented with the cubic open string vertex it would

generate a cover of the moduli spaces of surfaces involving open and closed string punctures.

In OSFT the correlation functions of such gauge invariant operators gives us the S-matrix
2For other attempts at getting closed strings from open string theory around the tachyon vacuum, see

refs.[86, 87, 71].
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elements of the corresponding closed string vertex opertors computed by integration over

the moduli spaces of surfaces with boundaries.

We argue that in VSFT gauge invariant operators take an identical form, and confirm

that our choice of Q is consistent with this. We then sketch how the correlation function

of n gauge invariant operators in regulated VSFT could be related to the closed string

S-matrix of the n associated vertex operators arising by integration over moduli spaces of

surfaces without boundaries. This means that conventional pure closed string amplitudes

could emerge from correlators of gauge invariant operators in VSFT. In this analysis we

begin by noting that at the level of string diagrams a = 0 gives us back the usual OSFT

Feynman rules, whereas as we take the regularization parameter a to ∞ this corresponds to

selecting a region of the moduli space where the length of the boundary is going to zero. By

a scaling transformation, and a factorization analysis we find that the amplitude reduces

to one involving the n closed string vertex operators and an additional zero momentum

closed string vertex operator of dimension ≤ 0. We show in detail how a new minimal area

problem guarantees that the string diagrams for these n+1 closed string vertex operators do

generate a cover of the relevant moduli space of closed Riemann surfaces. This shows how

closed string moduli arise from the original open string moduli. If the only contribution

to this (n + 1)-point amplitude comes from the term where the additional closed string

vertex operator is the zero momentum dilaton, then we get back the n-point closed string

amplitude of the external vertex operators. In the picture that emerges, closed string states

are not introduced by hand – bulk operators of the CFT (necessary to even define the BCFT

in question) are used to write open string functionals that represent the closed string states.

Those are simply the gauge invariant operators of the theory. Since the analysis, however,

is sensitive to the regularization procedure, complete understanding will require a better

control of the regularization procedure.
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3.2 The Proposal for a Ghost Kinetic Operator

In this section we state our proposal for the purely ghost kinetic operator Q in VSFT and

discuss the novel gauge structure that emerges. The kinetic operator Q is a local insertion

of a ghost field with infinite coefficient. We explain how such kinetic term could arise from

less singular choices via reparametrizations that map much of the string to its midpoint.

With this choice of kinetic term, the gauge symmetry is enlarged as compared with that

of usual open string field theory. Finally we explain the sense in which Q is not an inner

derivation, but can be viewed as the limit element of a set of derivations that are inner.

3.2.1 Ghost kinetic operator and gauge structure

The conjectured action for vacuum string field theory is given by [60]:

S = −κ0

[1
2
〈Ψ,QΨ〉+

1
3
〈Ψ,Ψ ∗Ψ〉

]
, (3.2.1)

where κ0 is an overall normalization constant, Q is an operator made purely of the ghost

world-sheet fields, |Ψ〉 is the string field represented by a ghost number one state in the

matter-ghost BCFT, and 〈A, B〉 ≡ 〈A|B〉 denotes the BPZ inner product of the states |A〉
and |B〉. If Q is nilpotent, is a derivation of the ∗-algebra, and satisfies the hermiticity

condition 〈QA|B〉 = −(−1)A〈A|Q|B〉, then this action is invariant under the gauge trans-

formation:

δ|Ψ〉 = Q|Λ〉+ |Ψ ∗ Λ〉 − |Λ ∗Ψ〉 . (3.2.2)

Although the constant κ0 can be absorbed into a rescaling of Ψ, this changes the normaliza-

tion of Q. We shall instead choose a convenient normalization of Q and keep the constant

κ0 in the action as in eq.(3.2.1).

A class of kinetic operators Q satisfying the required constraints for gauge invariance

was constructed in [56]. They have the form:

Q =
∞∑

n=0

unC2n , (3.2.3)
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where the un’s are constants, and,

Cn = cn + (−1)nc−n n 6= 0,

C0 = c0 . (3.2.4)

We propose the following form of Q as a consistent and canonical choice of kinetic

operator of VSFT:

Q =
1
2i

(c(i)− c̄(i)) =
1
2i

(c(i)− c(−i)) =
∞∑

n=0

(−1)nC2n ,

= c0 − (c2 + c−2) + (c4 + c−4)− · · · . (3.2.5)

With this choice of Q, the overall normalization κ0 will turn out to be infinite, but we shall

discuss a specific method for regularizing this infinity. In writing the expression for Q we

are using the standard procedure of using the double cover of the open string world-sheet,

with anti-holomorphic fields in the upper half plane being identified to the holomorphic

fields in the lower half plane.

It is instructive to discuss in which sense the cohomology of Q so defined vanishes. In

fact, the equation Q|Ψ〉 = 0 has no solutions if |Ψ〉 is a Fock space state. This is clear

since any state built from finite linear combinations of monomials involving finite number

of oscillators must have bounded level, while Q involves oscillators of all levels, including

therefore infinitely many oscillators that do not annihilate the state |Ψ〉. Therefore, there

is no standard Fock-space open string cohomology simply because there are no Q closed

states in the Fock space. Suppose on the other hand that a more general state |χ〉 is

annihilated by Q. Then, given that Q contains c0 with unit coefficient, we have that

|χ〉 = {Q, b0}|χ〉 = Q(b0|χ〉). Two things should be noted: |χ〉 also has a local insertion

at the string midpoint, and, it appears to be always Q trivial. The only subtlety here is

that (b0|χ〉) could be infinite in which case the triviality of |χ〉 is questionable. In fact, this

possibility arises for the case of gauge invariant operators related to closed strings, as will

be discussed in section 3.7.

As discussed in earlier papers, field redefinitions relate many of the kinetic terms of the

form (3.2.3). Typically these field redefinitions are induced by world-sheet reparametrization
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symmetries which are symmetric around the string mid-point, and leaves the mid-point

invariant. Such a reparametrization z → f(z), while acting on the kinetic operator of the

form (3.2.5), will transform Q to (2i)−1((f ′(i))−1c(i) − (f ′(−i))−1c(−i)). This leaves Q
invariant if f ′(i) = 1. Thus we see that the kinetic operator Q is actually invariant under

a complex codimension 1 subgroup of the group generated by the Kn transformations.

The choice of kinetic term is special enough that the action defined by (3.2.1) and (3.2.5),

generally invariant only under the gauge transformations in(3.2.2), is in fact invariant under

two separate sets of gauge invariances:

δ|Ψ〉 = Q|Λ〉 , (3.2.6)

and

δ|Ψ〉 = |Ψ ∗ Λ〉 − |Λ ∗Ψ〉 . (3.2.7)

In fact, the quadratic and the cubic terms in the action are separately invariant under each

of these gauge transformations. These follow from the usual associativity of the ∗-product,

nilpotence of Q, and the additional relation:

〈QA,B ∗ C〉 = 0 , (3.2.8)

which holds generally for arbitrary Fock space states A, B and C (other orderings, such as

〈A,QB ∗ C〉 and 〈A,B ∗ QC〉 also vanish). This relation in turn follows from the fact that

Q involves operators c, c̄ of dimension −1 inserted at i. As a result:

〈QA,B ∗ C〉 = 〈f1 ◦ (QA(0))f2 ◦B(0)f3 ◦ C(0)〉 (3.2.9)

vanishes since the conformal transformation of Q gives a factor of (f ′1(i))
−1, and f ′1(i) is

infinite.3 (fi’s are the standard conformal maps appearing in the definition of the ∗-
product and have been defined below eq.(3.4.11)). The symmetry of the action under the

homogeneous transformation (3.2.7) is in accordance with the conjecture that at the tachyon

vacuum many broken symmetries should be restored[88, 87].
3For more general states, such as surface states or squeezed states the inner product (3.2.9) might be

nonvanishing. For example, note that (3.2.8) does not imply that 〈A,QB〉 = 0 as might be suggested by the
identity 〈A,QB〉 = 〈I, A ∗ QB〉. This latter expression does not vanish since the identity string field is not
a Fock space state. We cannot therefore assume that A ∗ QB can be set to zero even for Fock space states
A and B.
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3.2.2 Possible origin of a singular Q

While the VSFT action described here is singular, the original OSFT action is non-singular.

In this subsection we shall attempt to understand how a singular action of the type we have

proposed could arise from OSFT.

In order to compare VSFT with OSFT, it is more convenient to make a rescaling |Ψ〉 =

(g2
oκ0)−1/3|Ψ̃〉 to express the action as:

S = − 1
g2
o

[1
2
〈Ψ̃, Q̃Ψ̃〉+

1
3
〈Ψ̃, Ψ̃ ∗ Ψ̃〉

]
, (3.2.10)

where

Q̃ = (g2
oκ0)1/3Q . (3.2.11)

Here go is the open string coupling constant. OSFT expanded around the tachyon vacuum

solution |Φ0〉 has the same form except that Q̃ is replaced by the operator Q̂:

Q̂|A〉 = QB|A〉+ |Φ0 ∗A〉 − (−1)A|A ∗ Φ0〉 . (3.2.12)

Since κ0 is infinite, so is Q̃. On the other hand, since the classical solution |Φ0〉 describing

the tachyon vacuum in OSFT is perfectly regular, we expect Q̂ to be regular. Thus one

could ask how a singular Q̃ of the kind we are proposing could arise. Clearly for this to

happen the OSFT and the VSFT variables must be related by a singular field redefinition.

We shall now provide an example of such field redefinition which not only explains how the

coefficient of the kinetic term could be infinite, but also provides a mechanism by which

ghost kinetic operator proportional to c(i)− c(−i) could arise.

Let us begin with a Q̃ of the form:

Q̃ =
∑

r

∫
dσar(σ)Or(σ) , (3.2.13)

where ar are smooth functions of σ and Or are local operators of ghost number 1, constructed

from products of b, c, and matter stress tensor. The above expression is written on the

double cover of the strip so that σ runs from −π to π and we only have holomorphic

fields. Since ar are finite such a Q̃ might be obtained from OSFT by a non-singular field
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redefinition. Given this Q̃, we can generate other equivalent Q̃ by reparametrization of

the open string coordinate σ to f(σ) such that f(π − σ) = π − f(σ) for 0 ≤ σ ≤ π and

f(−σ − π) = −π − f(σ) for −π ≤ σ ≤ 0. Such reparametrizations do not change the

structure of the cubic term but changes the kinetic term. If Or corresponds to a primary

field of dimension hr, then under this reparametrization Q̃ transforms to:

∑
r

∫
dσar(σ)(f ′(σ))hrOr(f(σ)) . (3.2.14)

Consider now a reparametrization such that f ′(±π/2) is small and in particular
∫

dσ(f ′(σ))−1

gets a large contribution from the region around σ = ±π/2. Let us for example take

f ′(σ) ' (σ∓ π
2 )2 + ε2 for σ ' ±π/2.4 In this case the dominant contribution to eq.(3.2.14)

will come from the lowest dimensional operator c as long as the corresponding ar does not

vanish at ±π/2, and the transformed Q̃ will be proportional to

1
ε
(c(π/2) + c(−π/2)) . (3.2.15)

The relative coefficient between c(π/2) and c(−π/2) has been fixed by requiring twist invari-

ance. In the upper half plane coordinates (z = eτ+iσ) this is proportional to ε−1(c(i)−c(−i)),

− precisely the kinetic term of our choice. Thus this analysis not only shows how a divergent

coefficient could appear in front of the kinetic term, but also explains how such singular field

redefinition could give rise to the pure ghost kinetic term even if the original Q̃ contained

matter operators.

If Or is not a primary operator, then its transformation properties under a reparametriza-

tion is more complicated. Nevertheless, given any such operator containing a product

of matter and ghost pieces, the dominant contribution to its transform under a singular

reparametrization of the form described above will come from the lowest dimensional oper-

ator, i.e. c or c̄, unless the coefficients of these terms cancel between various pieces (which

will happen, for example, if the operator is a (total) Virasoro descendant of a primary other

than c, e.g. the BRST current).
4Another special case of this would be a choice of f(σ) where a finite region around the mid-point is

squeezed to an infinitesimal region.
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To summarize, according to the above scenario the singular Q̃ of VSFT given in eq.(3.2.11),

(3.2.5) is a singular member of an equivalence class of Q̃’s whose generic member is non-

singular and is made of matter and ghost operators. The singular pure ghost representative

is useful for certain computations e.g. ratios of tensions of D-branes, construction of multi-

ple D-brane solutions etc., whereas the use of a regular member may be necessary for other

computations e.g. overall normalization of the D-brane tension, closed string amplitudes

etc.

Singular reparametrizations of the kind discussed above could also explain the appear-

ance of a sliver or other projectors as classical solutions of VSFT. As an example we shall

illustrate how an appropriate singular reparametrization could take any finite |m〉 wedge

state to the sliver. From refs.[12, 59] we know that the wave-functional of a wedge state |m〉
can be represented as a result of functional integration on a wedge of angle αm = 2π(m−1)

in a complex (ŵ) plane, bounded by the radial lines ŵ = ρei π
2 and ŵ = ρei(π

2
+2π(m−1)).

We put open string boundary condition on the arc, and identify the lines ŵ = ρei π
2 and

ŵ = ρei(π
2
+2π(m−1)) as the left and the right halves of the string respectively. In particular

if σ denotes the coordinate on the open string with 0 ≤ σ ≤ π, then the line ŵ = ρei π
2 is

parametrized as:

ŵ =
1 + ieiσ

1− ieiσ
= i tan(

π

4
− σ

2
) , for 0 ≤ σ ≤ π

2
. (3.2.16)

From the above description it is clear that we can go from an wedge state |m〉 to an wedge

state |n〉 via a reparametrization:

(ŵ′/i) = (ŵ/i)γ , γ =
αn

αm
=

n− 1
m− 1

. (3.2.17)

In terms of σ, this corresponds to the transformation:

tan(
π

4
− σ′

2
) = tanγ(

π

4
− σ

2
) . (3.2.18)

In order to get the sliver, we need to take the n →∞ limit. In this limit γ →∞. Since for

0 < σ < π/2, | tan(π/4− σ/2)| < 1, we see that as γ →∞ any σ in the range 0 < σ < π/2

gets mapped to the point σ′ = π/2. This corresponds to squeezing the whole string into the
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mid-point. This shows that using such singular reparametrization we can transform any

wedge state |m〉 into the sliver, and provides further evidence to the conjecture that the

VSFT action with pure ghost kinetic term arises from OSFT expanded around the tachyon

vacuum under such singular reparametrization.

3.2.3 Action of Q on the identity state

Among the constraints for gauge invariance is the derivation property

Q(A ∗B) = QA ∗B + (−1)A A ∗ QB (3.2.19)

which must hold. This property indeed holds for each Cn and therefore holds for the chosen

Q. On the other hand, there was a criterion related to the identity string field I that

distinguished two classes of kinetic operators. There are candidate operators for Q which

viewed as integrals over the string, have vanishing support at the string midpoint. Those

operators annihilate the identity and they split into left and right parts, as discussed in

[62]. On the other hand there are operators, such as c0, which do not kill the identity.5

As we will discuss below, our choice of Q, using insertions precisely at the midpoint,

does not annihilate the identity. In fact, a direct computation shows that QI is divergent.

However, we will also show that Q can be considered as the limit of a sequence such that

every member of the sequence annihilates the identity state.

Recall that |I〉 is defined through the relation:

〈I|φ〉 = 〈h1 ◦ φ(0)〉D (3.2.20)

for any Fock space state |φ〉. Here h ◦ φ(0) denotes the conformal transform of the vertex

operator φ(0) by the conformal map h, 〈 〉D denotes correlation function on a unit disk,

and the conformal map hN for any N is defined as

hN (z) =
(1 + iz

1− iz

)2/N
. (3.2.21)

5Since they are derivations of the star algebra we believe they should be viewed as outer derivations.
Indeed, an inner derivation Dε acts as DεA = ε ∗ A − A ∗ ε, so it is reasonable to demand that all inner
derivations annihilate the identity string field. Not being inner, c0 would have to be outer.
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Thus 〈I|c(i)|φ〉 = 〈h1 ◦ c(i)h1 ◦ φ(0)〉 is divergent since h1 ◦ c(i) = h′1(i)
−1c(0) and h′1(i)

vanishes.

We now define a new operator Qε by making the replacements

c(i) → 1
2

(
e−iεc(ieiε) + eiεc(ie−iε)

)
,

c(−i) → 1
2

(
e−iεc(−ieiε) + eiεc(−ie−iε)

)
, (3.2.22)

in (3.2.5). In the local coordinate picture where the open string is represented by the arc

|ξ| = 1 in the upper ξ half-plane, this corresponds to splitting the midpoint insertion c(ξ = i)

into two insertions, one on the left-half and the other on the right-half of the string. The

splitting is such that for ε → 0 we recover the midpoint insertion, but this time

〈I|
(
e−iεc(ieiε) + eiεc(ie−iε)

)
= 0 , (3.2.23)

as can be verified using equations (3.2.20), (3.2.21) – the point being that by the geometry

of the identity conformal map the two operators land on the same point but with opposite

sign factors multiplying them, and thus cancel each other out exactly.

The replacements (3.2.22) in (3.2.5) lead to the operator Qε:

Qε =
1
4i

(
e−iεc(ieiε) + eiεc(ie−iε)− e−iεc(−ieiε)− eiεc(−ie−iε)

)

=
∞∑

n=0

(−1)nC2n cos(2nε) . (3.2.24)

Because of (3.2.23), and an analogous result for the split version of c(−i), the operator Qε

defined above annihilates the identity |I〉 for every ε 6= 0. In addition, being a superposition

of the anti-commuting derivations Cn, it squares to zero, and is a derivation. It also has the

expected BPZ property

〈QεA, B〉 = −(−)A〈A,QεB〉 . (3.2.25)

Therefore, Qε satisfies all the conditions for gauge invariance.

Since Qε approaches the Q defined in (3.2.5) as ε → 0, we could define

Q ≡ lim
ε→0

Qε . (3.2.26)
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Defined in this way, Q annihilates the identity. Acting on Fock space states, such care is

not necessary, and we can simply use (3.2.5), but in general the definition (3.2.26) is useful.

We can express the action of Qε on a state |A〉 as an inner derivation:

Qε|A〉 = |Sε ∗A〉 − (−1)A|A ∗ Sε〉 , (3.2.27)

where

|Sε〉 =
1
4i

(
e−iεc(ieiε)− eiεc(−ie−iε)

)
|I〉 . (3.2.28)

However note that |Sε〉 diverges in the ε → 0 limit since 〈Sε|φ〉 for any Fock space state |φ〉
involves (h′1(ie

iε))−1, which diverges as ε → 0. Thus while the Qε operators may be viewed

as inner derivations for ε 6= 0, it does not follow that Q can also be viewed as an inner

derivation.

3.3 Algebraic Analysis of the Classical Equations

In this section we reconsider the algebraic analysis of the classical equations of motion of

VSFT in the Siegel gauge carried out in refs.[66, 73]. The main result of the analysis of [66]

is an expression for the coefficients un defining Q (see (3.2.3)) in terms of infinite matrices

of Neumann coefficients in the ghost sector of the three string vertex. We shall summarize

briefly their results and evaluate numerically the coefficients un, finding striking evidence

that the Q that emerges is indeed that in (3.2.5).

As usual we begin by looking for a factorized solution:

Ψ = Ψg ⊗Ψm , (3.3.1)

with Ψg and Ψm denoting ghost and matter pieces respectively, and satisfying:

|Ψm〉 = |Ψm ∗m Ψm〉 , (3.3.2)

and

Q|Ψg〉+ |Ψg ∗g Ψg〉 = 0 . (3.3.3)
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If we start with a general class of kinetic operators of the form (3.2.3) with u0 normalized

to one, and make the Siegel gauge choice

b0|Ψ〉 = 0 , (3.3.4)

then the equation of motion (3.3.3) takes the form

|Ψg〉+ b0|Ψg ∗Ψg〉 = 0 . (3.3.5)

Note that these contain only part of the equations (3.3.3) which are obtained by varying the

action with respect to fields satisfying the Siegel gauge condition. The full set of equations

will be used later for determining Q.

The solution for |Ψm〉 can be taken to be any of the solutions discussed in [58, 59, 60, 61].

The solution for |Ψg〉 is given as follows. Denote the ghost part of the 3-string vertex as:6

|Vg〉123 = exp
( 3∑

r,s=1

∑

n≥1,m≥0

c
(r)
−n Ṽ rs

nmb
(s)
−m

) 3∏

r=1

(c(r)
0 c

(r)
1 )|0〉(1) ⊗ |0〉(2) ⊗ |0〉(3) , (3.3.6)

where c
(r)
n , b

(r)
n are the ghost oscillators associated with the r-th string and |0〉(r) denotes the

SL(2,R) invariant ghost vacuum of the r-th string. The matrices Ṽ rs
mn have cyclic symmetry

Ṽ rs
mn = Ṽ r+1,s+1

mn as usual. We now define:

(Ṽ0)mn = Ṽ rr
mn, (Ṽ±)mn = Ṽ r,r±1

mn , C̃mn = (−1)mδmn,

(ṽ0)m = Ṽ rr
m0, (ṽ±)m = Ṽ r,r±1

m0 , for 1 ≤ m,n < ∞ ,

(3.3.7)

M̃0 = C̃Ṽ0, M̃± = C̃Ṽ± , (3.3.8)

and,

T̃ =
1

2M̃0

(
1 + M̃0 −

√
(1− M̃0)(1 + 3M̃0)

)
, S̃ = C̃T̃ . (3.3.9)

The solution to eq.(3.3.5) is then given by:

|Ψg〉 = Ng exp
( ∑

n,m≥1

c−nS̃nmb−m

)
c1|0〉 , (3.3.10)

6The coefficients eV rs
nm are related the ghost Neumann functions eNsr

mn introduced in ref.[78] as eV rs
nm =

−n eNsr
mn.



86

for some appropriate normalization constant Ng. Given the solution |Ψg〉, one can explicitly

construct |Ψg ∗g Ψg〉. It was shown in ref.[66] that

|Ψg ∗g Ψg〉 = −
(
c0 +

∑

n≥1

un Cn

)
|Ψg〉, (3.3.11)

where the vector u = {u1, u2, . . .} is given by:

u = (1− T̃ )−1
[

ṽ0

+(M̃+, M̃−)(1− M̃0)−1(1 + T̃ )−1


1− T̃ M̃0 T̃ M̃+

T̃ M̃− 1− T̃ M̃0


 T̃


ṽ+

ṽ−




]
. (3.3.12)

This expression was simplified in refs.[67, 70], but we use eq.(3.3.12) for our analysis. Using

eqs.(3.3.3) and (3.3.11) we see that Q can be identified as:

Q = c0 +
∑

n≥1

unCn . (3.3.13)

The coefficients Ṽ rs
mn and hence the matrices M̃0, M̃±, T̃ and the vectors ṽ0, ṽ± can be

calculated using the results of [78]. In turn, this can be used to calculate un from eq.(3.3.12).

For odd n, un vanishes by twist symmetry. The numerical results for un’s for even n at

different levels of approximation, and the values extrapolated to infinite level using a fit,

have been shown in table 3.1. The results are clearly consistent with u2n = (−1)n and hence

the choice of Q given in (3.2.5).

3.4 BCFT Analysis of Classical Equations of Motion

In this section we shall discuss a method of solving the equations of motion (3.3.3) using

the techniques of boundary conformal field theory. As a first step we introduce a twisted

version of the ghost CFT where the ghost field c(z) is of dimension zero. We also establish a

one to one map between the states of the twisted and untwisted theory. We then study the

star product in the twisted theory and relate it to that in the untwisted theory. The upshot

of this analysis is that with our Q the ghost part of the standard string field equations is

solved by the state representing the sliver of the twisted ghost CFT. We conclude with a
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L f2 f4 f6 f8 f10

40 -0.87392 0.830099 -0.803468 0.784561 -0.770184

80 -0.881488 0.840223 -0.814839 0.796433 -0.781999

160 -0.888335 0.849592 -0.825743 0.808389 -0.7947

240 -0.892017 0.85465 -0.831672 0.814956 -0.801763

320 -0.894496 0.858053 -0.835666 0.819388 -0.806544

∞ -0.97748 0.96864 -0.961296 0.953502 -0.944372

Table 3.1: Numerical results for f2n at different level approximation. The last row shows
the interpolation of the various results to L = ∞, obtained via a fitting function of the form
a0 + a1/ ln(L) + a2/(ln(L))2 + a3/(ln(L))3.

direct CFT construction of the Fock space representation of this twisted sliver and find that

it compares well with the algebraic construction of the solution [66].

3.4.1 Twisted Ghost Conformal Theory

We introduce a new conformal field theory CFT′ by changing the energy momentum tensor

on the strip as

T ′(w) = T (w)− ∂jg(w), T̄ ′(w̄) = T̄ (w̄)− ∂̄j̄g(w̄) , (3.4.1)

where T , T̄ denote the energy momentum tensor in the original matter-ghost system, T ′,

T̄ ′ denote the energy momentum tensor of new theory, and jg = cb, j̄g = c̄b̄ are the ghost

number currents in the original theory. The ghost operators in the new theory, labeled as

b′, c′, b̄′, and c̄′, to avoid confusion, have spins (1,0), (0,0), (0,1) and (0,0) respectively, and

satisfy the usual boundary condition b′ = b̄′, c′ = c̄′ on the real axis. A few important facts

about the b′, c′ system are given below:

• The first order system (b′, c′) has a central charge of minus two.

• Since c′ has dimension zero, the SL(2,R) vacuum |0′〉 of this system, defined as usual
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in the complex plane, satisfies

c′n≥1|0′〉 = 0 . (3.4.2)

• The Virasoro operators from T ′ commute with b0.

The mode expansions of T , T ′ and jg on the cylinder with coordinate w = τ + iσ (obtained

from the double cover of the strip, identifying the holomorphic fields at (τ, σ) with anti-

holomorphic fields at (τ,−σ) for −π ≤ σ ≤ 0) are given by:

T (w) =
∑
n

Lne−nw − c

24
, T ′(w) =

∑
n

L′ne−nw − c′

24
, jg(w) =

∑
n

jne−nw, (3.4.3)

where c = 0 is the total central charge of the original theory and c′ = 24 is the total central

charge of the auxiliary ghost-matter theory. It follows from (3.4.1) and (3.4.3) that

L′n = Ln + njn + δn,0 . (3.4.4)

In the path integral description the euclidean world-sheet actions S and S ′ of the two

theories are related as:

S ′ = S +
i

2π

∫
d2ξ

√
γR(2)(ϕ + ϕ̄) , (3.4.5)

where ξ denotes the world-sheet coordinates, γ denotes the Euclidean world-sheet metric,

R(2) is the scalar curvature computed from the metric γ and ϕ, ϕ̄ are the bosonized ghost

fields related to the anti-commuting ghost fields as follows:

c ∼ eiϕ, c̄ ∼ eiϕ̄, b ∼ e−iϕ, b̄ ∼ e−iϕ̄ , (3.4.6)

and

c′ ∼ eiϕ, c̄′ ∼ eiϕ̄, b′ ∼ e−iϕ, b̄′ ∼ e−iϕ̄ . (3.4.7)

It should be noted that on general world-sheets the ϕ field has different dynamics in the two

theories. On the strip, however, the world-sheet curvature vanishes and we have S = S ′.
The ϕ fields in the two theories can be identified, and hence the above equations allow an

identification of states in the two theories by the following map between the oscillators and

the vacuum states of the two theories:

bn ↔ b′n, cn ↔ c′n, c1|0〉 ↔ |0′〉 〈0|c−1 ↔ 〈0′| , (3.4.8)
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where |0〉 and |0′〉 denote the SL(2,R) invariant vacua in the original theory and the auxiliary

theory respectively. The last two relations follows from the oscillator identification and

(3.4.2). We thus see that the zero momentum tachyon in the original theory is the SL(2,R)

vacuum of CFT′. The two vacua are normalized as

〈0|c−1c0c1|0〉 = 〈0′|c′0|0′〉 = V (26) , (3.4.9)

where V (26) denotes the volume of the 26-dimensional space-time. We shall denote by 〈· · · 〉
and 〈· · · 〉′ the expectation values of a set of operators in |0〉 and |0′〉 respectively. Also given

a state |A〉 we shall denote by A and A′ the vertex operators of the state in the two theories

in the upper half plane coordinates. Thus:

|A〉 = A(0)|0〉 = A′(0)|0′〉 . (3.4.10)

Finally we note that BPZ conjugation in the twisted theory, obtained by the map |0′〉 → 〈0′|,
cn → (−1)nc−n, and bn → (−1)n+1b−n, can be shown to give a state identical to the one

obtained by BPZ conjugation in the original theory, given by |0〉 → 〈0|, cn → (−1)n+1c−n,

and bn → (−1)nb−n. Thus we do not need to use separate symbols for the BPZ inner

product in the two theories.

3.4.2 Relating Star Products and the analytic solution

Next we would like to find the relationship between the star-products in the two theories.

We shall denote by ∗ and ∗′ the star products in the original and the auxiliary theory

respectively. Thus:

〈A|B ∗ C〉 = 〈f1 ◦A(0)f2 ◦B(0)f3 ◦ C(0)〉,

〈A|B ∗′ C〉 = 〈f1 ◦A′(0)f2 ◦B′(0)f3 ◦ C ′(0)〉′ , (3.4.11)

where we have f1(z) = h−1
2 (h3(z)), f2(z) = h−1

2 (e2πi/3h3(z)), and f3(z) = h−1
2 (e4πi/3h3(z)),

with hN (z) defined as in eq.(3.2.21), are the standard conformal maps used in the definition

of the ∗ product. The simplest way to relate these two star products is to use the path

integral prescription for 〈A|B ∗ C〉 and 〈A|B ∗′ C〉 given in [6]. In this description the star
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product is a result of path integral over a two dimensional surface in which three strips,

each of of width π and infinitesimal length ε, representing the external open strings, are

joined together such that the second half of the r-th string coincides with the first half of

the (r + 1)-th string, for 1 ≤ r ≤ 3, with the identification r ≡ r + 3. The result is a flat

world-sheet with a single defect at the common mid-point of the three strings where we

have a deficit angle of −π. Thus for this geometry
∫

d2ξ
√

γR(2) gets a contribution of −π

from the mid-point, and S and S ′ are related as:

S ′ = S − i

2
(ϕ(M) + ϕ̄(M)) (3.4.12)

where M denotes the location of the midpoint. Since the action appears in the path integral

through the combination e−S , we have

〈f1 ◦A(0)f2 ◦B(0)f3 ◦C(0)〉 = K0〈f1 ◦A′(0)f2 ◦B′(0)f3 ◦C ′(0)σ+′(M)σ−′(M)〉′ (3.4.13)

where K0 is an overall finite normalization constant,

σ+′ = eiϕ/2, σ−′ = eiϕ̄/2, (3.4.14)

and M = f1(i) = f2(i) = f3(i). The primes on σ±′ denote that these are operators in

the auxiliary b′, c′ system. These operators have conformal weights (−1/8, 0) and (0,−1/8)

respectively. We have explicitly verified eq.(3.4.13) using specific choices of the states |A〉,
|B〉, |C〉. Since in the local coordinate system the mid-point of the string is at i, we can

write

f1 ◦A′(0)σ+′(M)σ−′(M) = lim
ε→0

|f ′1(i + ε)|1/4f1 ◦ (A′(0)σ+′(i + ε)σ−′(i + ε)) . (3.4.15)

This, together with (3.4.11) and (3.4.13), and the relation I ◦ (σ+′(i + ε)σ−′(i + ε)) '
σ+′(i− ε)σ−′(i− ε) for I(z) = −1/z gives

|B ∗ C〉 = lim
ε→0

K0|f ′1(i + ε)|1/4σ+′(i− ε)σ−′(i− ε)|B ∗′ C〉 ,

∝ σ+′(i− ε)σ−′(i− ε)|B ∗′ C〉 , (3.4.16)
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where the constant of proportionality is infinite since f ′i(i + ε) ∼ ε−1/3 diverges as ε → 0.

However at this stage we are analyzing the solution only up to a (possible infinite) scale

factor, and so we shall not worry about this normalization.

The equations of motion

Q|Ψ〉+ |Ψ ∗Ψ〉 = 0 , (3.4.17)

can now be written as:

Q|Ψ〉 ∝ −σ+′(i− ε)σ−′(i− ε)|Ψ ∗′ Ψ〉 . (3.4.18)

We shall show that for the choice of Q given in (3.2.5), eq.(3.4.18) is satisfied by a multiple

of Ξ′ where Ξ′ is the sliver of the auxiliary ghost - matter system, satisfying

〈Ξ′|φ〉 = 〈f ◦ φ′(0)〉′ , (3.4.19)

for any Fock space state |φ〉. Here f(ξ) = tan−1 ξ. For this we first need to know what form

the operator Q takes in the auxiliary ghost-matter theory. We use

Q = c0 +
∑

n≥1

(−1)n(c2n + c−2n)

= c′0 +
∑

n≥1

(−1)n(c′2n + c′−2n)

= c′(i) + c′(−i) , (3.4.20)

where the argument of c′(±i) in the last two expressions refer to the coordinates on the

upper half plane. If we now take the inner product of eq.(3.4.18) with a Fock space state

〈φ|, then for the choice |Ψ〉 ∝ |Ξ′〉, the left hand side is proportional to:

〈f ◦
(
φ′(0)

(
c′(i) + c′(−i)

))〉′ = 〈f ◦ φ′(0)
(
c′(i∞) + c′(−i∞)

)
〉′ . (3.4.21)

Note that since c has dimension zero in the auxiliary BCFT, there is no conformal factor

in its transformation. On the other hand, since Ξ′ ∗′ Ξ′ = Ξ′, and f(i + ε) ' − i
2 ln ε ≡ iη,

the right hand side is proportional to

〈f ◦
(
φ′(0)σ+′(i + ε))σ−′(i + ε)

)
〉′ ∝ 〈f ◦ φ′(0)σ+′(iη)σ−′(iη)〉′

∝ 〈f ◦ φ′(0)σ+′(iη)σ+′(−iη)〉′ ,

(3.4.22)
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where in the last expression we have used the Neumann boundary condition on ϕ to relate

σ−′(iη) to σ+′(−iη). Thus we need to show that (3.4.21) and (3.4.22) are equal up to

an overall normalization factor independent of 〈φ|. This is seen as follows. Since both

correlators are being evaluated on the upper half plane, the points ±i∞ correspond to the

same points.7 Thus on the right hand side of eq.(3.4.21) we can replace c′(i∞)+c′(−i∞) by

2c′(i∞). On the other hand on the right hand side of (3.4.22) we can replace σ+′(iη)σ+′(−iη)

by the leading term in the operator product expansion of σ+′ with σ+′, i.e. c′(i∞). As a

result both (3.4.21) and (3.4.22) are proportional to 〈f ◦ φ′(0)c′(i∞)〉′.
At this point we would like to note that a different kind of star product has been

analyzed in works by Kishimoto [67] and Okuyama [72] which helps in solving the Siegel

gauge equations of motion in the oscillator formalism. It will be interesting to examine the

relation between the ∗′ product and the product discussed by these authors.

3.4.3 The twisted sliver state from CFT and a comparison

Since in the arguments above we have ignored various infinite normalization factors, the

result may seem formal. In this subsection, therefore, we verify explicitly that the solution

Ξ′ obtained this way agrees with the solution obtained in refs.[73, 66] by algebraic method.

This has an added advantage. The geometrical construction of Ξ′ given below expresses the

Neumann coefficients in terms of simple contour integrals that can be evaluated exactly for

arbitrary level. On the other hand the algebraic solution, as usual, involves inverses and

square roots of infinite matrices, and therefore can only be evaluated approximately using

level expansion.

This is done as follows. Writing Ξ′ = Ξ′g ⊗ Ξm, we have for the ghost part:

〈Ξ′g| = N̂g〈0′| exp
(
−

∑

n,m≥1

cnS̄nmbm

)
(3.4.23)

7This can be made manifest by making an SL(2,R) transformation that brings the point at ∞ to a finite
point on the real axis.
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where N̂g is a normalization factor. The BPZ dual ket is

|Ξ′g〉 = N̂g exp
( ∑

n,m≥1

c−nŜnmb−m

)
|0′〉, Ŝnm = (−1)n+mS̄nm . (3.4.24)

The calculation of the matrix elements S̄ (or Ŝ) is done using the a small variant of the

CFT methods in [79]. The idea is to evaluate

h(z, w) ≡ 〈0′| exp
(
−

∑

n,m≥1

cnS̄nmbm

)
c(w)b(z) c0|0′〉 (3.4.25)

in two different ways. In the first one we expand using c(w) =
∑

p c−pw
p and b(z) =

∑
q b−qz

q−1 and find

h(z, w) = −
∑
n,m

wmzn−1S̄nm → S̄nm = −
∮

0

dz

2πi

1
zn

∮

0

dw

2πi

1
wm+1

h(z, w) . (3.4.26)

In the second evaluation of (3.4.25) the right hand side is viewed as a correlator

h(z, w) = 〈f ◦ c′(w)f ◦ b′(z)f ◦ c′(0)〉′

=
〈
c′(f(w)) b′(f(z))

df(z)
dz

c′(f(0))
〉′

=
df(z)
dz

1
f(w)− f(z)

f(w)− f(0)
f(z)− f(0)

, (3.4.27)

where the function f(ξ) denotes the insertion map associated with the geometry of the

surface state, and the derivative df
dz arises because b has conformal dimension one. The

general result now follows from comparison of (3.4.26) and (3.4.27) together with (3.4.24)

Ŝnm = (−1)n+m

∮

0

dz

2πi

1
zn

∮

0

dw

2πi

1
wm+1

df(z)
dz

1
f(z)− f(w)

f(w)− f(0)
f(z)− f(0)

. (3.4.28)

This is the general expression for the Neumann coefficients of a once punctured disk in the

twisted ghost CFT. For our particular case, the twisted sliver is defined by f(z) = tan−1(z)

and the Neumann coefficients vanish unless n + m is even. Therefore we find:

Ŝnm =
∮

0

dz

2πi

1
zn

∮

0

dw

2πi

1
wm+1

1
1 + z2

1
(tan−1(z)− tan−1(w))

tan−1(w)
tan−1(z)

. (3.4.29)

The first few coefficients are

Ŝ11 = −1
3
∼= −0.33333 , Ŝ31 =

4
15
∼= 0.26667 , Ŝ22 =

1
15
∼= 0.06667 ,

Ŝ51 = − 44
189

∼= −0.23280 , Ŝ33 = − 83
945

∼= −0.08783 ,

Ŝ42 = − 64
945

∼= −0.067724 . (3.4.30)
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L S̃11 S̃31 S̃22 S̃51 S̃33 S̃42

100 -0.31526 0.248339 0.066288 -0.21432 -0.081680 -0.067263

150 -0.316448 0.249482 0.066269 -0.21543 -0.082030 -0.067220

200 -0.317244 0.250270 0.066271 -0.21621 -0.082281 -0.067215

250 -0.31783 0.250862 0.066279 -0.21680 -0.082473 -0.067220

∞ -0.33068 0.26345 0.067965 -0.22916 -0.08642 -0.06698

Table 3.2: Numerical results for S̃nm at different level approximation. The last row shows
the interpolation of the various results to L = ∞, obtained via a fitting function of the form
a0 + a1/ ln(L).

Since |0′〉 = c1|0〉, we see that |Ψg〉 defined in eq.(3.3.10) and |Ξ′g〉 describe the same state

if the matrices S̃mn defined in eq.(3.3.9) and Ŝmn defined in eq.(3.4.29) are the same. The

numerical results for S̃mn are given in table 3.2, and can be seen to be in good agreement

with Ŝmn given in eq.(3.4.30).

3.5 Regularizing the VSFT action

As pointed out already in section 3.2, in order to get a D-25-brane solution of finite energy

density, we need to take the overall multiplicative factor κ0 appearing in eq.(3.2.1) to be

infinite. We shall now discuss a precise way of regularizing the theory so that for any

fixed value of the regulator a, the value of κ0(a), needed to reproduce the D-25-brane

tension correctly, is finite. The action (3.2.1) is then recovered by taking the a →∞ limit.

Presumably this regularization captures some of the physics of the correct regularization

procedure coming from the the use of nearly singular reparametrization instead of the

singular reparametrization discussed in section 3.2.2.
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3.5.1 The proposal for regulated gauge fixed VSFT

The regularization is done by first fixing the Siegel gauge b0|Ψ〉 = 0. In this way, the kinetic

operator in (3.2.1), with Q given in (3.2.5), becomes c0. We then replace this gauge fixed

kinetic operator by c0(1 + a−1L0). The result is the regulated action Sa given by:

Sa = −κ0(a)
[1
2
〈Ψ, c0(1 + a−1L0)Ψ〉+

1
3
〈Ψ,Ψ ∗Ψ〉

]
. (3.5.1)

The gauge fixed unregulated VSFT is recovered in the a →∞ limit.

Although the parameter a has been introduced as a regulator, the Feynman rules derived

from the regulated action (3.5.1) have some close resemblence to boundary string field theory

(BSFT) rules [75] in the presence of a constant tachyon background. To see this, let us note

that the propagator computed from this action is proportional to:

b0

L0 + a
= b0

∫ ∞

0
dle−l(L0+a) . (3.5.2)

This is similar to the propagator in OSFT except for the factor of e−la in the integrand. The

three string vertex computed from the action (3.5.1) is also proportional to the three string

vertex of OSFT. Thus when we compute the Feynman amplitudes using these Feynman

rules, we shall get an expression similar to that in OSFT except for an additional factor

of exp(−a
∑

i li), where the sum over i is taken over all the propagators in the Feynman

diagrams. Now in OSFT a Feynman diagram can be interpreted as correlation function

on a Riemann surface obtained by gluing strips of length li using the three string overlap

vertices. Since each strip of length li contributes 2li to the total length of the boundary in

the Feynman diagram, we see that a factor of e−a
P

i li can also be interpreted as e−aB/2,

where B is the total length of the boundary of the Riemann surface associated with the

Feynman diagram. This is reminiscent of the term a
∫

dθ representing constant tachyon

perturbation in the boundary string field theory, with θ denoting the coordinate on the

boundary. We should, however, keep in mind that the world-sheet metric used in defining

constant tachyon background in boundary SFT is different from the world-sheet metric that

appears naturally in the Feynman digrams of OSFT, and so we cannot directly relate the
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tachyon of boundary SFT to the parameter a appearing here. Presumably the a →∞ limit

corresponds to the same configuration in both descriptions.

3.5.2 Level truncation analysis

To test the consistency of our regulation scheme, we now perform a numerical analysis using

the level truncation approximation. We must find that for any fixed value of the regulator a,

computations with the regulated action (3.5.1) have a well-defined finite limit as the level of

approximation L is sent to infinity. We define in the standard way the level approximation

(L, 2L) by truncating the string field up to level L (level is defined as L ≡ L0 + 1) and

keeping the terms in the action which have a total level of 2L. For a fixed value of a, and

a given level of approximation (L, 2L), we look for translationally invariant solutions ΨL
a in

Siegel gauge corresponding to D-25 brane.

The energy density of the D-25-brane solution in the regulated theory at level (L, 2L)

approximation can be expressed as:

Ea(L) =
κ0(a)

6
〈ΨL

a , (c0 + a−1L0)ΨL
a 〉 ≡ κ0(a)f(a, L) , (3.5.3)

where f(a, L) can be computed numerically. It indeed turns out that for a fixed a, as the

level of approximation L becomes larger than a, the function f(a, L) approaches a finite

value F (a). This is best seen from Fig.3.1, where we have displayed the plot of a3f(a, L)

vs. a for different levels of approximation L. Thus for a fixed a, we get the energy density

of the D-25-brane solution to be:

Ea = κ0(a)F (a) . (3.5.4)

We can now take the a →∞ limit keeping κ0(a)F (a) to be fixed at the D-25-brane tension

T25. In other words we choose the overall normalization of the action as

κ0(a) ≡ T25

F (a)
. (3.5.5)

This gives a precise way of defining the vacuum string field theory using level truncation

scheme.
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Figure 3.1: This figure shows the plot of the function a3f(a, L), computed at level (L, 2L)
approximation, as a function of a. Starting from the topmost graph, the six continuous
curves correspond to L = 2, 4, 6, 8, 10 and 12 respectively. The lowermost dotted curve is
an L = ∞ extrapolation of the data obtained with a fit of the form a0+a1/L+a2/L2+a3/L3.

If we go back to the analog of the Ψ̃ variables by defining

Ψ = (κ0(a)g2
o)
−1/3Ψ̃ (3.5.6)

then the action takes the form:

Sa = − 1
g2
o

[1
2
〈Ψ̃, Q̃aΨ̃〉+

1
3
〈Ψ̃, Ψ̃ ∗ Ψ̃〉

]
, (3.5.7)

where

Q̃a = (g2
oκ0(a))1/3(c0 + a−1c0L0) =

(
g2
oT25

F (a)

)1/3

c0 +
(

g2
oT25

a3F (a)

)1/3

c0L0 .

(3.5.8)

The data in Fig.3.1 suggests that a3F (a) grows linearly, i.e. F (a) ∼ 1/a2 for large a. Hence,

in the a →∞ limit, the coefficient of c0 diverges, and that of c0L0 vanishes.

We now examine the form of the D-25 brane solution. The solutions Ψa
L are string fields

belonging to the universal ghost number one subspace [8, 12] obtained by acting on the
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U(a, L) L = 4 L = 6 L = 8 L = 10 L = 12 L = ∞

a = 2.0 -.0812 -.0834 -.0846 -.0855 -.0861 -0.0904

a = 2.5 -.1121 -.1164 -.1191 -.1210 -.1224 -0.1315

a = 3.0 -.1372 -.1436 -.1478 -.1508 -.1530 -0.1673

a = 3.5 -.1576 -.1660 -.1715 -.1754 -.1785 -0.1994

a = 4.0 -.1744 -.1845 -.1911 -.1959 -.1996 -0.2251

a = 4.5 -.1884 -.1999 -.2075 -.2130 -.2173 -0.2468

a = 5.0 -.2002 -.2130 -.2214 -.2275 -.2323 -0.2656

Table 3.3: Sample numerical results for the coefficient U(a, L) at different level approxima-
tion (L, 2L) for different values of a.

V (a, L) L = 4 L = 6 L = 8 L = 10 L = 12 L = ∞

a = 2.0 -.1440 -.1440 -.1438 -.1436 -.1435 -0.1429

a = 2.5 -.1884 -.1887 -.1886 -.1885 -.1884 -0.1878

a = 3.0 -.2225 -.2232 -.2234 -.2234 -.2234 -0.2227

a = 3.5 -.2495 -.2506 -.2510 -.2512 -.2513 -0.2515

a = 4.0 -.2712 -.2728 -.2735 -.2738 -.2740 -0.2742

a = 4.5 -.2892 -.2912 -.2920 -.2925 -.2928 -0.2946

a = 5.0 -.3043 -.3066 -.3076 -.3082 -.3086 -0.3109

Table 3.4: Sample numerical results for the coefficient V (a, L) at different level approxima-
tion (L, 2L) for different values of a. The last column of tables 3.3 and 3.4 shows a large L
extrapolation obtained with a fit c0 + c1/L + c2/L2 + c3/L3. The further large a extrapo-
lation in (3.5.10) is done with a more complete set of data than shown in these tables (all
values of a from 2 to 5 with an increment of 0.1).
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vacuum with ghost oscillators and matter Virasoro generators. Up to level 4,

ΨL
a = T (a, L)

[
c1|0〉+ U(a, L)Lm

−2c1|0〉+ V (a, L)c−1|0〉 (3.5.9)

+A(a, L)Lm
−4c1|0〉+ B(a, L)(Lm

−2)
2c1|0〉+ C(a, L)Lm

−2c−1|0〉+

D(a, L)(−3 c−3 + b−3c−1c1)|0〉+ E(a, L)b−2c−2c1|0〉+ . . .
]
.

Our regulation prescription instructs us to first take the large L limit of ΨL
a , and then

remove the regulator by sending a → ∞. As shown in tables 3.3 and 3.4, up to the

overall normalization T (a, L) which has been factored out, the coefficients of the solution

for a given regulator a are fairly stable as the level is increased. Considering data for

2 ≤ a ≤ 5, and L = 2, 4, 6, 8, 10, 12, we first perform a large L extrapolation with a fitting

function of the form c0 + c1/L + c2/L2 + c3/L3; then we extrapolate to a = ∞ with a fit

γ0 + γ1/a + γ2/a2 + γ3/a3. This procedure gives

lim
a→∞ lim

L→∞
ΨL

a

T (a, L)
∼= c1|0〉 − 0.4564Lm

−2c1|0〉 − 0.4901 c−1|0〉 (3.5.10)

+ 0.0041Lm
−4c1|0〉+ 0.0917 (Lm

−2)
2c1|0〉+ 0.2037Lm

−2c−1|0〉

−0.1131(−3c−3 + b−3c−1)|0〉 − 0.0024 b−2c−2c1|0〉+ . . .

While this double extrapolation procedure is the correct general prescription, we would

like to show that for certain purposes it is possible to work in the non-regulated theory, or

in other words to commute the limits in (3.5.10) by first removing the regulator sending

a →∞ and then performing level truncation in the theory with Q = (c(i)− c(−i))/(2i). In

fact, we know that the non-regulated theory gives correct results about existence of classical

D-p brane solutions and the ratios of their tensions [57, 59] so it should be the case that the

limits in (3.5.10) can be commuted for this class of physical questions. This will obviously

be the case if we can show that up to an overall normalization, classical solutions are the

same regardless of the order of limits,

lim
a→∞ lim

L→∞
ΨL

a

T (a, L)
= lim

L→∞
lim

a→∞
ΨL

a

T (a, L)
. (3.5.11)

It is easy to perform numerical analysis directly at a = ∞ for a given level of approxima-

tion. Although the energy, being proportional to F (a), goes to zero in this limit unless we
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U(L) V (L) A(L) B(L) C(L) D(L) E(L)

L = 2 -.2879 -.4576 – – – – –

L = 4 -.3015 -.4357 .0094 .0358 .1082 -.0844 -.0103

L = 6 -.3394 -.4596 .0080 .0523 .1440 -.0995 -.0037

L = 8 -.3631 -.4708 .0072 .0627 .1640 -.1072 -.0019

L = 10 -.3798 -.4771 .0066 .0700 .1768 -.1114 -.0011

L = 12 -.3923 -.4811 .0060 .0755 .1858 -.1141 -.0007

L = ∞ -.4603 -.4900 .0029 .1049 .2311 -.1258 .0001

Table 3.5: Coefficients of the a = ∞ solution, at different level approximation (L, 2L) (we
use U(∞, L) ≡ U(L), and he same convention for the other coefficients). The last row shows
an extrapolation to infinite level with a fitting function of the form a0+a1/L+a2/L2+a3/L3.

compensate for it by making κ0(a) large, the solution approaches a finite limit up to the

overall normalization. Numerical results are shown in table 3.5.

We find:

lim
a→∞ lim

L→∞
ΨL

a

T (a, L)
∼= c1|0〉 − 0.4603Lm

−2c1|0〉 − 0.4900 c−1|0〉 (3.5.12)

+ 0.0029Lm
−4c1|0〉+ 0.1049 (Lm

−2)
2c1|0〉+ 0.2311Lm

−2c−1|0〉

−0.1258(−3c−3 + b−3c−1)|0〉+ 0.0001 b−2c−2c1|0〉+ . . .

This is compatible with (3.5.10) and (3.5.11).

We thus find evidence that classical solutions of VSFT are independent of the order

of limits, up to an overall normalization factor that needs to be adjusted so as to keep

the tension fixed. This justifies the analytic treatment of the equations of motion based

on matter/ghost factorization, which has been an important assumption in all studies of

VSFT, and which holds only in the a →∞ limit. Moreover, we can study numerically the

D-25 brane solution in the a →∞ theory at fixed L, which is much simpler than taking the

L →∞ limit first and then taking the a →∞ limit.

It is illuminating to write the D-25 brane solution in a basis of Fock states obtained by
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v2 ṽ2 v4 ṽ4 v6

L = 2 -.2879 -.4576 – – –

L = 4 -.3364 -.4736 .0056 -.00193 –

L = 6 -.3655 -.4816 .0048 -.00216 -.00111

L = 8 -.3852 -.4861 .0043 -.00197 -.00080

L = 10 -.3999 -.4891 .0039 -.00176 -.00065

L = 12 -.4105 -.4912 .0036 -.00157 -.00056

L = ∞ -.4778 -.5027 .0012 -.00007 -.0002

Table 3.6: Coefficients of the a = ∞ solution written as an exponential of matter and twisted
ghost Virasoro operators, at different level approximation (L, 3L). The last row shows an
extrapolation to infinite level with a fitting function of the form a0 +a1/L+a2/L2 +a3/L3.

acting on the zero-momentum tachyon with the matter Virasoro generators Lm−n and the

ghost Virasoro generators L
′g
−n (n ≥ 2) of the twisted bc system introduced in section 3.4.8

It turns out that to a very good degree of accuracy the solution can be written as

Ψa=∞ ∼ exp(
∞∑

n=1

v2nLm
−2n) exp(

∞∑

n=1

ṽ2nL
′g
−2n)c1|0〉. (3.5.13)

This is precisely the form expected for a surface state of the twisted BCFT introduced in

section 3.4. The results for the coefficients v2n and ṽ2n at various level approximations

(L, 3L) are shown in table 3.6. Extrapolating for L →∞ with a fit of the form a0 + a1/L+

a2/L2 + a3/L3 we find

Ψa=∞ ∼ exp(−0.5027L
′g
−2 − 0.00007L

′g
−4 + . . . )c1|0〉g

⊗ exp(−0.4778Lm
−2 + 0.0012Lm

−4 − 0.0002Lm
−6 + . . . )|0〉m .

(3.5.14)

We note that although the solution has precisely the form expected for a surface state of

the auxiliary matter-ghost system, it does not approach the twisted sliver Ξ′, for which the
8A simple counting argument along the lines of section 2.2 of [12] shows that all ghost number one Siegel

gauge string fields that belong to the SU(1, 1) singlet subspace [47] can be written in this form.



102

coefficient of L′−2 is −1/3. This should not bother us, however, since we can generate many

other surface states (related to the sliver by a singular or non-singular reparametrization of

the string coordinate symmetric about the mid-point) which are all projectors. Moreover,

at least formally, all rank one projectors are gauge-related in VSFT. The numerical result

(3.5.14) strongly suggests that as L →∞ the solution is in fact approaching the remarkably

simple state

|B′〉 ∼ exp(−1
2
(Lm
−2 + L

′g
−2)c1|0〉, (3.5.15)

which we call the (twisted) butterfly state. It is possible to show that the state |B′〉 is

indeed a projector of the ∗′ algebra and an exact solution of the VSFT equations. In the

next section we shall come back to this point.

Let us finally check numerically that the Siegel gauge D-25 brane solution obtained

in level truncation solves the equation of motion of VSFT with our proposed Q. To this

end we take the solution Ψa=∞ compute Ψa=∞ ∗ Ψa=∞, and try to determine Q = (c0 +
∑

n≥1 u2n(c2n + c−2n)) up to a constant of proportionality using the equation:

Ψa=∞ ∗Ψa=∞ ∝ QΨa=∞ . (3.5.16)

The results for the coefficients u2n at various level approximation (L, 3L) are shown in table

3.7 and are indeed consistent with our choice (3.2.5) for Q.

3.6 The Butterfly State

The level truncation results have led to the discovery of a new simple projector, the butterfly

state, different from the sliver. There are in fact several surface states that can be written

in closed form and shown to be projectors using a variety of analytic approaches. In this

section we briefly state without proof some of the relevant results. A thorough discussion

will appear in a separate publication [76].

Consider the class of surface states |Bα〉, defined through:

〈Bα|φ〉 ≡ 〈fα ◦ φ(0)〉D (3.6.1)
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u2 u4 u6 u8 u10

L = 2 -.8020 – – – –

L = 4 -.8672 .7249 – – –

L = 6 -.9003 .7918 -.6854 – –

L = 8 -.9201 .8333 -.7451 .6615 –

L = 10 -.9334 .8627 -.7868 .7138 -.6457

L = ∞ -.9969 .9983 -.923 – –

Table 3.7: Coefficients of the BRST operator deduced from the a = ∞ solution, at different
level approximations (L, 3L).The last row shows an extrapolation to infinite level with fits
of the form a0 + a1/L + a2/L2 + a3/L3 (a3 ≡ 0 for u4, a3 = a2 ≡ 0 for u6).

with

fα(ξ) =
1
α

sin(α tan−1 ξ) . (3.6.2)

As α → 0, we recover the sliver. For α = 1 we have the butterfly state |B〉 ≡ |Bα=1〉,
defined by the map

f1(ξ) =
ξ√

1 + ξ2
. (3.6.3)

In operator form the butterfly can be written as

|B〉 = exp(−1
2
L−2)|0〉 . (3.6.4)

For any α, these states can be shown to be idempotents of the ∗ algebra,

|Bα〉 ∗ |Bα〉 = |Bα〉 . (3.6.5)

Moreover, in analogy with the sliver, the wave-functional of |Bα〉 factorizes into a product

of a functional of the left-half of the string and another functional of the right half of the

string. These states are thus naturally thought as rank-one projectors in the half-string

formalism [58, 61, 62]. The key property that ensures factorization is the singularity of the

conformal maps at the string midpoint,

fα(±i) = ±i∞ . (3.6.6)
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It is possible to give a general argument [76] that all sufficiently well-behaved conformal

maps with this property give rise to split wave-functionals.

The case α = 1 is special because the wave-functional of the butterfly |Bα=1〉 factors into

the product of the vacuum wave-functional of the right half-string and the vacuum wave-

functional of the left half-string. It is thus in a sense the simplest possible projector. It is

quite remarkable that the same state emerges in VSFT as the numerical solution preferred

by the level truncation scheme.

Finally, in complete analogy with the ‘twisted’ sliver Ξ′, the ‘twisted’ states |B′
α〉 solve

the VSFT equations of motion with Q = (c(i)− c(−i))/(2i),

Q|B′
α〉 ∝ |B′

α〉 ∗ |B′
α〉 . (3.6.7)

Indeed the proof of section 3.4 that Ξ′ satisfies the VSFT equations of motion QΞ′ ∝ Ξ′ ∗Ξ′

only depends on the fact that the map f(ξ) = tan−1 ξ associated with the sliver takes the

points ±i to ±i∞. As can be seen from (3.6.6), this property is shared by the map fα

associated with the state |Bα〉.

3.7 Gauge invariant operators in OSFT and VSFT

Since open string field theory on an unstable D-brane has no physical excitations at the

tachyon vacuum, the only possible observables in this theory are correlation functions of

gauge invariant operators. A natural set of gauge invariant operators in this theory has been

constructed in [51] by using the open/closed string vertex that emerges from the studies of

[77]. In this section we will describe in detail these gauge invariant operators in OSFT and

show how they give rise to gauge invariant operators in VSFT. It would be interesting to

analyze the correlation functions of these operators around the tachyon vacuum by using

OSFT in the level truncation scheme.

The same gauge invariant operators discussed here have been considered independently

by Hashimoto and Itzhaki, who examined the gauge invariance in an explicit oscillator

construction, and motivated their role mostly in the context of OSFT [52].
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We shall begin by reviewing the construction of ref.[51] and then we will consider the

generalization to VSFT.

3.7.1 Gauge invariant operators in OSFT

The original cubic open string field theory [6] describing the dynamics of the unstable

D-brane, is described by the action:

S = − 1
g2
o

[1
2
〈Φ, QBΦ〉+

1
3
〈Φ, Φ ∗ Φ〉

]
, (3.7.1)

with gauge invariance:

δ|Φ〉 = QB|Λ〉+ |Φ ∗ Λ〉 − |Λ ∗ Φ〉 . (3.7.2)

Here QB is the BRST charge, go is the open string coupling constant, |Φ〉 is the string field,

and |Λ〉 is the gauge transformation parameter. In this theory there are gauge invariant

operators OV (Φ) corresponding to every on-shell closed string state represented by the

BRST invariant, dimension (0, 0) vertex operator V = cc̄Vm, where Vm is a dimension (1,1)

primary in the bulk matter CFT. Given any such closed string vertex operator V , we define

OV (Φ) as the following linear function of the open string field Φ:

OV (Φ) ≡ 〈h1 ◦ (V (i)Φ(0))〉D = 〈V (0)h1 ◦ Φ(0)〉D , (3.7.3)

where hN has been defined in eq.(3.2.21), and 〈 〉D denotes correlation function on a unit

disk. Since V is dimension (0, 0) it is not affected by the conformal map h1 despite being

located at the singular point z = i.9 In [51] these operators were added to the OSFT action

and it was shown that the resulting Feynman rules would generate a cover of the moduli

spaces of closed Riemann surfaces with boundaries and closed string punctures thus produc-

ing the appropriate closed string amplitudes. The operators OV (Φ) can be interpreted as

the open string one point function

OV (Φ) = 〈I|V (i)|Φ〉 , (3.7.4)
9In dealing separately with ghost and matter contributions, however, it may be useful to define OV (Φ)

as limε→0+ limη→0+〈V (−η)h1+ε ◦ Φ(0)〉.
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where 〈I| is the identity state of the ∗-product. The world sheet picture is clear, OV (Φ)

corresponds to the amputated version of a semi-infinite strip whose edge represents an open

string, the two halves of which are glued and a closed string vertex operator is located at

the conical singularity. Gauge invariance of OV (Φ) under (3.7.2) follows from the BRST

invariance of V and the relations

|A〉 ∗ (V (i)|B〉) = V (i)|A ∗B〉, (V (i)|A〉) ∗ |B〉 = V (i)|A ∗B〉 . (3.7.5)

3.7.2 Gauge invariant operators in VSFT

Since the VSFT field Ψ must be related to the original unstable D-brane OSFT field |Φ〉 by a

field redefinition, the existence of gauge invariant observables in the OSFT implies that there

must exist such quantities in the VSFT as well. Even though the explicit relation between

|Ψ〉 and |Φ〉 is not yet known, we now argue that the VSFT gauge invariant observables

actually take the same form as in OSFT.

The possible field redefinitions relating VSFT and OSFT were discussed in ref.[56]. If

we denote by |Φ0〉 the classical OSFT solution describing the tachyon vacuum, then the

shifted string field |Φ̃〉 = |Φ〉 − |Φ0〉 may be related to |Ψ〉 by homogeneous redefinitions

preserving the structure of the cubic vertex, namely

(g2
oκ0)1/3 |Ψ〉 = e−K |Φ̃〉 , (3.7.6)

where K satisfies:

K(A ∗B) = (KA) ∗B + A ∗ (KB) ,

〈KA, B〉 = −〈A, KB〉 . (3.7.7)

The explicit normalization factor (g2
oκ0)1/3 on the left hand side of eq.(3.7.6) has been

chosen to ensure the matching of the cubic terms in (3.2.1) and (3.7.1) (see eq.(3.2.10)).

Two general class of examples of K satisfying (3.7.7) are:

K|A〉 =
∑

n

anKn|A〉 , (3.7.8)
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where Kn = Ln − (−1)nL−n, and

K|A〉 = |S ∗A〉 − |A ∗ S〉 , (3.7.9)

for some ghost number zero state |S〉. Let us now consider the gauge invariant operator

OV (Φ̃) = 〈V (0)h1 ◦ Φ̃(0))〉D = 〈I|V (i)|Φ̃〉 , (3.7.10)

invariant under the gauge transformation

δ|Φ̃〉 = QB|Λ〉+ |(Φ̃ + Φ0) ∗ Λ〉 − |Λ ∗ (Φ̃ + Φ0)〉 , (3.7.11)

and study what happens to this under an infinitesimal field redefinition generated by a K

of the form (3.7.8) or (3.7.9). It is easy to see that both these field redefinitions preserve the

form of OV , replacing Φ̃ by (g2
oκ0)1/3Ψ. For transformations of the form (3.7.8) this follows

because V (i), being a dimension zero primary, commutes with the Kn’s and the identity is

annihilated by Kn. For transformations of the form (3.7.9), form invariance follows from

eq.(3.7.5). Thus if Φ̃ and Ψ are related by a field redefinition of the form (3.7.6), with K

being a combination of transformations of the type (3.7.8) or (3.7.9), then we can conclude

that OV (Φ̃) is given by (g2
oκ0)1/3OV (Ψ), with

OV (Ψ) = 〈V (0)h1 ◦Ψ(0))〉D = 〈I|V (i)|Ψ〉 . (3.7.12)

This must be a gauge invariant operator in VSFT. Invariance of (3.7.12) under the VSFT

gauge transformation (3.2.7) follows directly from (3.7.5), and the relation 〈I|A ∗ B〉 =

〈A|B〉. Invariance under (3.2.6) requires

〈I|V (i)Q|Λ〉 ≡ 〈h1 ◦ (V (i)QΛ(0))〉D = 0 . (3.7.13)

If we choose Q to be of the form
∑

n unCn, then for any choice of the coefficients un, Q
commutes with V (i). Thus if we further restrict the un’s so that Q annihilates |I〉, then the

gauge invariance of OV is manifest. Our choice Q = (c(i) − c(−i))/2i, however, does not

annihilate |I〉 unless we define Q in a specific manner discussed in (3.2.24). Nevertheless,

as we shall now show, Q annihilates V (i)|I〉 independently of the definition (3.2.24) and
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simply because of the collision of local ghost insertions. Consider a definition of Q that

does not annihilate |I〉, by putting the operators in Q at i + ε for some finite ε and then

take the ε → 0 limit. This gives:

〈h1 ◦ (V (i)QΛ(0))〉D ∝ lim
ε→0

〈
h1 ◦

(
V (i)(c(i + ε)− c̄(i + ε))Λ(0)

)〉
D

= lim
ε→0

〈
V (h1(i))

{c(h1(i + ε))
h′1(i + ε)

− c̄(h1(i + ε))
h̄′1(i + ε))

}
h1 ◦ Λ(0)

〉
D

. (3.7.14)

Using the results:

h1(i + ε) ∼ ε2, h′1(i + ε) ∼ ε, V (0)c(η) ∼ η, V (0)c̄(η) ∼ η , (3.7.15)

we see that the expression between
〈
· · ·

〉
vanishes linearly in ε. Thus OV (Ψ) defined in

(3.7.12) is invariant under each of the transformations (3.2.6) and (3.2.7) for Q given in

(3.2.5).

It is interesting to relate the present discussion to our observations on the cohomology

of Q below equation (3.2.5). It was noted there that Q closed states had to have ghost

insertions at the open string midpoint. The question that emerges is whether or not the

gauge invariant operators discussed here are Q trivial. Presumably they are not. Indeed,

thinking of cc̄Vm as c acting on c̄Vm we find that the insertion of c̄Vm, which is not of

dimension zero but rather of negative dimension, on a point with a defect angle leads to

a divergence. Therefore one cannot think of the gauge invariant operators as ordinary

trivial states. Alternatively, one may wonder if the condition that the closed string vertex

operator V be a dimension-zero primary can be relaxed and still have OV be a sensible

gauge invariant operator. Again, the answer is expected to be no. Inserting an operator

with dimension different from zero at the conical singular point either gives zero or infinity.

Moreover, if the operator is not primary there are also difficulties with equation (3.7.5).

3.7.3 Classical expectation value of OV

Given a classical solution of VSFT representing a D-brane we can ask what is the value of

OV (Ψcl) = 〈I|V (i)|Ψcl〉 . (3.7.16)
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For |Ψcl〉 = |Ψg〉 ⊗ |Ψm〉, and V = cc̄Vm, we have:

OV (Ψcl) = 〈Ig|cc̄(i)|Ψg〉 〈Im|Vm(i)|Ψm〉 . (3.7.17)

The ghost factor is universal, − common to all D-brane solutions, and all closed string

vertex operators of the form cc̄Vm. If we take |Ψm〉 to be a solution of the form discussed

in [60], representing a D-brane associated with some boundary CFT ˜BCFT , then it is easy

to show following the techniques of [60] that 〈Im|V (i)|Ψm〉 has the interpretation of a one

point correlation function on the disk, with closed string vertex opertor Vm inserted at the

center of the disk, and the boundary condition associated with ˜BCFT on the boundary of

the disk. This, in turn can be interpreted as 〈B̃m|Vm〉 where 〈B̃m| is the matter part of the

boundary state associated with ˜BCFT and |Vm〉 is the closed string state created by the

vertex operator Vm.

3.8 Closed string amplitudes in VSFT

In this section we give our proposal for the emergence of pure closed string amplitudes in the

context of VSFT. The basic idea is that the open string correlation of the gauge invariant

observables discussed in the previous section give rise to closed string amplitudes obtained

by integration over the moduli spaces of Riemann surfaces without boundaries. In order to

justify this we will have to make use of the regularized version of VSFT.

3.8.1 Computation of correlation functions of OV

We shall now study correlation functions of the operators OV in VSFT. In particular, we

shall analyze the following gauge invariant correlation functions:

〈〈OV1(Ψ) · · · OVn(Ψ)〉〉 (3.8.18)

where 〈〈 〉〉 stands for correlation functions in string field theory and should not be confused

with correlation functions in two dimensional conformal field theory. These correlation

functions are calculated by the usual Feynman rules of string field theory, − in particular
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O
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O V3

V1
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Figure 3.2: The feynman diagram contributing to the correlation function 〈〈OV1OV2OV3〉〉.

for n = 3 the tree level correlation function receives contribution from just one Feynman

diagram shown in Fig.3.2. In computing these Feynman diagrams we shall work with the

regulated action (3.5.1) and take the a → 0 limit at the end. Including all the normalization

factors, the Siegel gauge propagator is given by:

a(κ0(a))−1 b0

L0 + a
=

a

κ0(a)
b0

∫ ∞

0
dle−l(L0+a) . (3.8.19)

We should, however, keep in mind that this regularization procedure is ad hoc, and so the

results obtained from this should be interpreted with caution The correct regularization

procedure presumably comes from replacing the singular reparametrization discussed in

section 3.2.2 by a nearly singular reparametrization.

Since the propagator (3.8.19) is closely related to the propagator of OSFT, and reduces

to it up to an overall normalization in the a → 0 limit, it will be useful to first review the

calculation of these correlation function in OSFT around the D-25-brane background. In

OSFT, the Feynman diagrams just have closed string vertex operators attached to strips of

length `i and these strips, together with internal open string propagators, are glued with

three open string vertices. So a typical diagram will have schematically

∏

i

∫ ∞

0
d`ie

−`iL0
∏

J

∫ ∞

0
d`Je−`JL0

where the `J are intermediate propagator lengths. For an amplitude with n external closed

strings there are altogether (2n− 3) propagators and (n− 2) vertices. Let us denote by lα
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(1 ≤ α ≤ (2n − 3)) the lengths of the strips associated with these (2n − 3) propagators.

Thus the contribution to the amplitude can be written as (ignoring powers of the open

string coupling constant go):

∫ 2n−3∏

α=1

dlαF (l1, . . . l2n−3) (3.8.20)

for some appropriate integrand F which is computed in terms of correlators of closed string

vertex operators and ghost factors associated with the propagators on an appropriate Rie-

mann surface.

If we repeat the calculation in VSFT with the regularized propagator (3.8.19), we get

an additional factor e−a
P

lα in the integrand. This, in effect will restrict the integration

region to lα of order a−1 or less. Also each propagator carries a multiplicative factor of

a/κ0(a) and each vertex carries a multiplicative factor of κ0(a). Thus the amplitude now

takes the form:

An = (a/κ0(a))2n−3(κ0(a))n−2

∫ 2n−3∏

α=1

dlαe−a
P

lαF (l1, . . . l2n−3)

=(a2/κ0(a))na−3κ0(a)
∫ ∞

0
dv

∫ 2n−3∏

α=1

dlαδ(v −
∑

lα)e−avF (l1, . . . l2n−3) .

(3.8.21)

We can absorb the n factors of (a2/κ0(a)) into a multiplicative renormalization of the

operators OV . Using eq.(3.5.4) with Ea = T25, the renormalized amplitude may be written

as:

An =
T25

a3F (a)

∫ ∞

0
dv e−av

∫ 2n−3∏

α=1

dlα δ(v −
∑

lα)F
(
l1, . . . l2n−3

)
. (3.8.22)

F (l1, . . . l2n−3) is computed by evaluating a correlation function on a Riemann surface

of the form shown in Fig.3.3. Since v in the above integral represents the sum of the length

parameters lα, we have lα ≤ v, and the closed string vertex operators are inserted within a

distance of order v of each other. The boundary, shown by the thick line at the bottom, has

length 2v since each length parameter lα contributes a length 2lα to the boundary. Finally,

the height of the diagram, measured by the distance between the boundary and the closed



112

V

V

V

1

2

3

M

A

B C

l
1

l2

3

l

π/2

V

V

V

2

1

3

l3

1

2

l
l

A

B C

/2π

(a) (b)

Figure 3.3: The Riemann surface representations of the Feynman diagram contribution
to the three closed string amplitude. Vi denote the locations of the closed string vertex
operators, lα denote the lengths of the strips representing open string propagators, and
AMB, BMC and CMA denote the three strings interacting via the three string vertex with
a common mid-point M . The thick line at the bottom is the boundary of the world-
sheet diagram created from the Feynman diagram. The two diagrams originate from two
different contributions to the three string vertex, corresponding to 〈A, B∗C〉 and 〈A, C∗B〉
respectively.

string vertex operators, is constant and equal to π/2 – this is because open string strips

have width π. In addition to the closed string vertex operators, the correlator also includes

an insertion of b0 on each propagator.

Let us now rescale the metric on this world-sheet by multiplying all lengths by πv−1. In

the resulting metric, and with v now small, the Riemann surface looks like a long cigar of

circumference 2π and height lc = π2/(2v). All the closed string vertex operators are inserted

within a finite distance of each other at the closed end of the cigar, and their positions are

naturally parametrized by quantities uα defined, for α = 1, 2 · · · , 2n− 3, as

uα = 2π
lα
v

→
∑
α

uα = 2π . (3.8.23)

The other end of the cigar is open and represents the boundary of the surface. The inte-
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gration contours for the b-integrals run parallel to the length of the cigar. We will call this

surface Cv(~u), and as defined it is a cylinder of height π2/(2v), circumference 2π, with one

end open and the other sealed and having closed string punctures with positions parame-

terized by the uα. We can use v and uα as independent variables of integration. Since the

b-contour integrals in the correlation function guarantee that the integrand transforms as

a volume form dv ∧ du1 ∧ · · · in the moduli space, we can formally denote these insertions

as BvB~u, where Bv denotes a single b insertion associated with the v-integration and B~u is

product of (2n − 4) b-insertions associated with the integration over ~u. Calling M(~u) the

moduli space of uα’s, the amplitude in (3.8.22) can thus be written as

An =
T25

a3F (a)

∫ ∞

0
dv e−av

∫

M(~u)
〈V1 · · ·VnBvB~u〉Cv(~u) . (3.8.24)

π2

u i

C 0 (u) bV

Figure 3.4: Pictorial representation of C0(~u) and Vb which are glued together to produce
the surface Cv(~u).

In order to proceed further we build the surface Cv(~u) by sewing the semi-infinite cylinder

C0(~u), obtained when v = 0, to the closed/boundary vertex Vb represented by a semi-infinite

cylinder of circumference 2π ending on an open boundary. If we denote by w1 and w2 the

coordinates used to describe the above two cylinders Cv(~u) and Vb, with wi ≡ wi + 2π and
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=(wi) < 0, and we let zi = exp(−iwi); the sewing relation z1z2 = t, with real t produces

the surface Cv with v = −π2/(2 ln t). We therefore have that the amplitude in question can

be written as:

An =
T25

a3F (a)

∫ ∞

0
dv e−av

∫

M(~u)

∑

k

〈V1 · · ·VnB~uχk〉C0(~u)

· 〈χc
k|Bve

−π2

2v
(L0+L̄0)|Vb〉 , (3.8.25)

where the χk is a basis element in the space of ghost number two closed string vertex opera-

tors, χc
k is the conjugate basis of ghost number four vertex operators satisfying 〈χc

k|χl〉 = δkl,

|Vb〉 denotes the boundary state associated with the D-brane under consideration, and L0, L̄0

refers to the closed string Virasoro generators. In the first correlator, χk is inserted on the

puncture at infinity, and the second correlator is the one point function on the semi-infinite

cylinder.

We now need to determine Bv. This is done by going to the lc = π2/2v coordinate

system, and using the transformation property of the b-insertions under a change of coor-

dinates. In particular, we have

Bvdv = Blcdlc . (3.8.26)

Furthermore the form of Blc is well known, − it simply corresponds to an insertion of a

contour integral of (b + b̄) along the circumference of the cigar. We shall denote this by

(b0 + b̄0). This gives:

dvBv =
π2

2v2
dv(b0 + b̄0) . (3.8.27)

Substituting this into eq.(3.8.25) we get,

An =
T25

a3F (a)
π2

2

∫ ∞

0

dv

v2
e−av

∫

M(~u)

∑

k

〈V1 · · ·VnB~uχk〉C0(~u)

· 〈χc
k|(b0 + b̄0)e−

π2

2v
(L0+L̄0)|Vb〉 , (3.8.28)

The key geometrical insight now is that the moduli space M(~u) defines a space of

surfaces C0(~u) which is precisely the moduli space Mn+1 of n + 1-punctured spheres. This

is a rigorous result and follows from a new minimal area problem that will be discussed in
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the next subsection. Therefore the integral above can be written as

T25

a3F (a)
π2

2

∑

k

∫
dv

v2
e−ave−

π2

2v
(hk+h̄k)〈χc

k|(b0 + b̄0)|Vb〉

·
∫

Mn+1

〈V1 · · ·VnB~uχk〉C0(~u)

=
∑

k

CkAc(V1, . . . Vn, χk) , (3.8.29)

where (hk, h̄k) is the conformal weight of χk, and Ac(V1, . . . Vn, χk) is the (n+1)-point closed

string amplitude of states V1, . . . Vn and χk. Ck are constants defined as:

Ck =
T25

a3F (a)
π2

2

∫
dv

v2
e−ave−

π2

2v
(hk+h̄k)〈χc

k|(b0 + b̄0)|Vb〉 . (3.8.30)

The multiplicative factor Ck is non-zero in the a → 0 limit only for hk + h̄k ≤ 0. For this

range of values of (hk, h̄k) Ck’s are actually infinite due to the divergence in the v-integral

from v ' 0 region. However, note that the multiplicative factor T25/(a3F (a)) vanishes as

a →∞ as is seen from Fig.3.1. Thus this competes against the divergent v-integral. It will

be interesting to see if in the correct regularization procedure inherited from OSFT, the

divergences in the v integral are also regulated (as will happen, for example, if the kinetic

operator is multiplied by an additional factor of eεL0 for some small ε), and the final answer

for the closed string amplitude is actually finite.

We also note that among the contributions to (3.8.29) is the contribution due to the zero

momentum dilaton intermediate state. By the soft dilaton theorem, this is proportional to

the on-shell n-point closed string amplitude on the sphere. One could again speculate that

in the correct regularization procedure this is the only contribution that survives, and so

the correlation function (3.8.18) in the correctly regularized VSFT actually gives us back

the on-shell n-point amplitude at genus zero. A similar argument has been given in [87] in

the context of boundary string field theory.

Since the regularization procedure we have been using is ad hoc, one can ask what aspect

of our results can be trusted in a regularization independent manner. To this end, note that

if the kinetic operator is simply c0, then the corresponding propagator is represented by a

strip of zero length. Thus whatever be the correct regularization procedure, the regulated
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propagator will be associated with strips of small lengths if the regularization parameter

(analog of a−1) is small. As our analysis shows, in this case the corresponding Feynman

diagram contribution to (3.8.18) will be associated with a world-sheet diagram with small

hole, and this, in turn, is related to genus zero correlation functions of closed string vertex

operators with one additional closed string insertion. Thus we can expect that whatever

be the correct regularization procedure, the correlation function (3.8.18) will always be

expressed in terms of a genus zero correlation function of closed string vertex operators.

In the absence of a proper understanding of the correct regularization procedure of

the VSFT propagator, a more direct approach to the problem of computing closed string

amplitude in the tachyon vacuum will be to try to do this computation directly in OSFT

around the tachyon vacuum. There are two competing effects. On the one hand we have

divergence due to the dilaton and other tadpoles. On the other hand, the coefficient of the

divergence vanishes since the tachyon vacuum has zero energy. Both of these are regulated

in level truncation. Thus it is conceivable that if we compute the correlation functions of

the operators OV in OSFT around the tachyon vacuum by first truncating the theory at

a given level L, and then take the limit L → ∞, then we shall get a finite result for these

correlation functions.

3.8.2 Closed string moduli from open string moduli

We have seen in the previous subsection that the calculation of a correlator of gauge invariant

observables in regulated VSFT can be related to the amplitude involving closed string states

parametrizing these observables if a certain kind of string diagrams produces a full cover of

the moduli space of closed Riemann surfaces with punctures. The diagrams in question are

obtained by drawing all the diagrams of OSFT supplemented by the open/closed vertex with

the constraint that the total boundary length is 2v. Here v =
∑

lα where the lα’s are the

lengths of the open string propagators. The diagrams are then conventionally scaled to have

cylinder with a total boundary length of 2π and height of π2/(2v). The patterns of gluing

are described by the parameters uα ≥ 0 defined in (3.8.23) and satisfying
∑

α uα = 2π. At
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this stage one lets v → 0 and thus the cylinder becomes semi-infinite, with the boundary

turning into the (n + 1)-th puncture. The claim is that the set of surfaces obtained by

letting the uα parameters vary generate precisely the moduli space of (n + 1) punctured

spheres.

In order to prove this we will show that the above diagrams arise as the solution of

a minimal area problem. As is well-known, minimal area problems guarantee that OSFT,

closed SFT, and open/closed SFT generate full covers of the relevant moduli spaces.10 The

basic idea is quite simple; given a specific surface, the metric of minimal area under a set of

length conditions exists and is unique. Thus if we can establish a one to one correspondence

between the string diagrams labelled by {uα} and such metrics, we would establish that the

uα integration region covers the moduli space in a one to one fashion. The minimal area

problem for our present purposes is the following

Consider a genus zero Riemann surface with (n + 1) punctures. Pick one special pucture

P0, and find the minimal area metric under the condition that all curves homotopic to P0

have length larger or equal to 2π.

As usual homotopy equivalence does not include moving curves across punctures, thus

a curve surrounding P0 and P1 is not said to be homotopic to a curve surrounding P0. This

problem is a modification of the minimal area problem defining the polyhedra of classical

closed string field theory [80] – in this case one demands that the curves homotopic to all

the punctures be longer than or equal to 2π [85].

We use the principle of saturating geodesics to elucidate the character of the minimal

area metric solving our stated problem. This principle [81] states that through every point

in the string diagram there must exist a curve saturating the length condition. Therefore

the solution must take the form of a semi-infinite cylinder of circumference 2π. The infinite

end represents the puncture P0. The other side must be sealed somehow, and the other n

punctures must be located somewhere in this cylinder. Since there are no length conditions
10In the case of OSFT, the first proof of cover of moduli space was given in [83] who focused on the case

of surfaces without open string punctures, and argued that by factorization the result extends to the case
with punctures. In [84] a direct proof based on minimal area metrics is seen to apply for all situations.
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for the other punctures, they do not generate their own cylinders.

Assume now that the other punctures are met successively as we move up the cylinder

towards the sealed edge. This is actually impossible, as we now show. Let P1 be the first

puncture we meet as we move up from P0. Consider a saturating circle just below the first

such puncture. That circle has to be of length 2π since it is still homotopic to P0. If the

cylinder continues to exist beyond P1 a geodesic circle of length 2π just above P1 is not

homotopic any more to P0, and there is no length constraint on it anymore. This cannot be

a solution of the minimal area problem since the metric could be shrunk along that circle

without violating any length condition. This shows that all the punctures must be met

at once. Thus the picture is that of a semiinfinite cylinder, where on the last circle the n

closed string punctures are located, and the various segments of the circle are glued to each

other to seal the cylinder, so that any nontrivial curve not homotopic to P0 can be shrunk

to zero length.

This is exactly the pattern of the string diagrams that we obtained. It is clear that

the uα parameters associated to a fixed Feynman graph are in fact gluing parameters.

Thus the string diagrams solve the minimal area problem and due to the uniqueness of the

minimal area metric they do not double count. Can they miss any surface ? There are

two alternative ways to see that the answer is no. First, the space of uα parameters has

no codimension one boundaries, and includes all the requisite degenerations of the (n + 1)

punctured sphere associated with the collision of two or more punctures. Since these are

the standard properties of moduli spaces, no surfaces can be missing. Second, for any

surface there is a string diagram – this is guaranteed because this minimal area problem is

known to have a solution defined by a Jenkins-Strebel quadratic differential. Such quadratic

differential builds a string diagram consistent with our Feynman rules, and thus must have

been included.

We illustrate the above result with an example, the case of four-punctured spheres

generated by considering the correlation of three gauge invariant observables. We shall

explain that the only boundaries of the uα integration region are the known boundaries of
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the moduli space corresponding to degeneration of the four-punctured sphere. In this case

three strips of lengths `1, `2, `3 representing the three external propagators are joined by a

3 open string vertex – no internal propagator is possible here. The amplitude contains sum

over two different world-sheet digrams, coming from two different cyclic arrangements of

the open strings at the vertex, as shown in Fig.3.3(a) and (b). If we denote by l1, l2, l3 the

lengths of the strips associated with the open string propagators, and v = l1 + l2 + l3, then

the region of integration, with ui = 2πli/v, is

ui ≥ 0 ,
∑

ui = 2π . (3.8.31)

There are apparently three codimension one boundaries of the ui integration region, as-

sociated with each ui = 0. These correspond to li = 0. It is easy, however, to see from

Fig.3.3 that the configuration li = 0 for any i are actually identical configurations in the

two diagrams, and hence in the sum of two diagrams the li = 0 configuration simply marks

the transition from the component of the moduli space covered by the first diagram to

another component of the moduli space covered by the second diagram. On the other hand

the codimension two boundaries corresponding to the three cases of ui = 2π, represent the

configurations where two length parameters vanish and produce the expected degenerations

of the 4-punctured sphere. In particular the li = lj = 0 configuration represents the de-

generation where the i-th and the j-th vertex operators come close to each other, and the

other vertex operator approaches, in the conformal sense, the boundary of the surface.

Indeed even if the height of the cylinders is finite we are producing a boundaryless

subspace of the moduli space of a sphere with three punctures and one hole. As the height

of the cylinder goes to infinity we really have four punctures and again we are producing

a boundaryless moduli space involving four punctures on a sphere and all the requisite

degenerations. This must be the moduli space of four punctured spheres.

The generalization to the case of n-point amplitude is straightforward. Any codimension

one boundary corresponding to a single li vanishing marks a transition to another component

of the moduli space represented by another diagram, whereas if a group of li associated with

a connected part of the diagram, and containing at least two external propagator vanishes,
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it corresponds to a degeneration of the Riemann surface. A detailed argument along the

lines of [84] should be possible to construct, but as we do not expect complications, we shall

not attempt to give the complete argument here.

The discussion above clearly holds for surfaces of arbitrary genus, and the minimal area

problem is just the same one. More interestingly, however, the discussion also generalizes for

the case of multiple boundary components. Given our Feynman rules of regularized VSFT,

the analysis of the previous subsection would lead to surfaces in which each boundary

component would give rise to a semi-infinite cylinder of circumference 2π. The various

cylinders would join simultaneously with a generalized set of uα parameters describing

their gluing. If the Feynman graph represents a surface of genus g with n gauge invariant

operators and b boundaries, the space of uα parameters will generate the moduli space

Mg,n+b of genus g boundariless Riemann surfaces with n + b punctures. The associated

minimal area problem justifying this result would consider the metric of minimal area on a

genus g surface with n + b punctures under the condition that all curves homotopic to the

b punctures be longer than or equal to 2π. Thus the correlation function would reduce to

the pure closed string amplitude of n closed string vertex operators and b zero momentum

massless states.

3.9 Discussion

In this chapter we have presented a specific form of the kinetic termQ of VSFT that can give

a precise definition of the theory and make it possible to study in detail various questions.

While the selected Q is special in several ways, VSFT thus defined needs regulation for

some but not all computations. Our regulation of VSFT is admittedly somewhat tentative.

If VSFT can be shown explicitly to arise as a singular reparametrization of the OSFT

action expanded around the tachyon vacuum, a more natural regulator may be obtained

by viewing the reparametrization as a flow and using the representatives near the singular

endpoint.
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We believe other results presented in this chapter may have uses beyond the ones inves-

tigated presently.

• Our explicit level expansion calculations have uncovered the existence of surface states

different from the sliver and still satisfying the projector condition. These new pro-

jectors may have important applications and we further analyze them in the next

chapter.

• The twisted CFT used to obtain exact analytic solutions may be a useful tool to

obtain exact solution of string field theory even for the original OSFT representing

the vacuum around unstable D-branes.

• We have uncovered local gauge invariant operators in open string field theory. Their

natural relation to closed string vertex operators is reminiscent of AdS/CFT, and of

gauge invariant operators in non-commutative gauge theory. There could be interest-

ing uses for these operators in studying observables of VSFT.

• We have seen how closed string moduli arise from the open string moduli of regulated

VSFT, by noting how a minimal area problem involving open string curves naturally

dovetails into a minimal area problem involving closed string curves. This, we believe

may capture the essence of the mechanism by which closed strings emerge in vacuum

string field theory.



Chapter 4

Projectors for the Star Product

4.1 Introduction and Summary

The star-algebra of open string fields, the associative multiplication introduced in [6], is the

key algebraic structure in string field theory theory. We saw in the previous chapter that

D-brane solutions for Vacuum SFT correspond to open string fields were projectors of the

star algebra, i.e. elements which square to themselves.

As the complicated algebraic structure of the star product is one big obstacle to the

effort of finding exact solutions to OSFT equations of motion, and as the set of projectors

of an algebra contains rich information about the algebra itself, it is interesting to learn

more about projectors of the star algebra.

For many years, the only string field known to multiply to itself was the identity string

field. In fact, there were heuristic reasons to believe that projectors should be scarce in

the star algebra.1 One can understand the difficulty in constructing projectors within

the large class of field configurations that arise from path integration over fixed Riemann

surfaces whose boundary consists of a parametrized open string and a piece with open string

boundary conditions. Such string fields, called surface states, are easily star multiplied.2

1We learned of such ideas from E. Witten.
2We shall be using the standard correspondence between quantum states of the first quantized theory and

classical field configurations in the second quantized theory to refer to string field configurations as ”states”.
In the same spirit we use the term “wave-functional” to refer to the functional of the string coordinates that
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One glues the right-half of the open string in the first surface to the left-half of the open

string in the second surface, and the surface state corresponding to the glued surface is the

desired product. It is clear from this description that multiplication of a surface state to

itself leads to a surface state that looks different from the initial state. This is the reason

why it seemed difficult, in general, to find projectors.

Leaving aside the identity string field, the first projector of the star algebra to be found

was the sliver state [12, 73, 57]. It circumvents the above mentioned difficulty in an inter-

esting way. Consider wedge states, surface states where the Riemann surface is an angular

sector of the unit disk, with the left-half and the right-half of the open string being the

two radial segments, and the unit radius arc having the open string boundary conditions.

A wedge state is thus defined by the angle at the open string midpoint, and this angle

simply adds under star multiplication, as is readily verified using the gluing prescription.

The identity string field is the wedge state of zero angle, and the sliver is the wedge state

of infinite angle! The addition of infinity to infinity is still infinity, and the sliver does star

multiply to itself.3

The sliver state was later recognized to be a string wave-functional that is split: it is the

product of a functional of the left-half of the string times the same functional of the right-

half of the open string. From this viewpoint, however, it seemed surprising that projectors

would be hard to find: any symmetric split string wave-functional could serve as a projector.

At least algebraically other projectors could easily be constructed by transforming the sliver

by the action of star conjugation. Geometrically, however, it was not clear if there are other

projectors which could be simply interpreted as other surface states.

In this chapter we find large classes of projectors that indeed arise as surface states, and

we explain the general mechanism by which they all evade the heuristic argument sketched

earlier. All the projectors we find correspond to surface states where in the Riemann surface,

the open string midpoint reaches the boundary where the open string boundary conditions

represents the classical string field configuration.
3The only question here is whether the sliver defined as the infinite angle limit of a sector state exists.

It does, as seen in [12], explained in detail in [59] and confirmed numerically.
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are imposed (this is also the case for the sliver). The general situation is illustrated in

figure 4.1. The vertical boundary is the open string, and its midpoint is indicated by a

heavy dot. The rest of the boundary has open string boundary condition. More precisely,

one can regulate the surface state by letting the open string midpoint reach the boundary

when the regulator is removed. We explain that in the limit as the regulator is removed,

the string wave-functional splits into a product of functionals. In considering the projector

property, we examine the gluing of two regulated projector surface states. The gluing of the

two regulated surfaces does not give a surface that looks like the original one, but rather, a

surface that looks like the original one plus a short neck connecting it to an additional disk.

We will explain that, conformally speaking, the short neck and the extra disk are in fact

negligible perturbations in the sense that the resulting surface is accurately conformally

equivalent to the original one without the extra disk. The agreement becomes exact as the

regulator is removed. We consider this a key insight in the present chapter. It shows how

conformal equivalence is subtle enough to circumvent the heuristic arguments against the

existence of projectors.

Figure 4.1: The generic kind of surface state providing a projector of the star algebra. The
open string is the vertical boundary, and the open string midpoint is shown with a heavy
dot. The rest of the boundary has open string boundary condition. Note that this part of
the boundary touches the open string midpoint.

All the above are rank one projectors, and are expected to be related by star conjugation.

Nevertheless there are special projectors that deserve special attention, for they satisfy a
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number of unusual conditions that may be of some relevance. In addition to the sliver, our

studies have uncovered two special projectors – the butterfly and the ‘nothing’ state. We

now summarize the special properties of these three projectors.

For the sliver |Ξ〉 we have:

• It is the projector that arises by repeated star multiplication of the SL(2,R) vacuum,

namely |Ξ〉 = limn→∞(|0〉)n.

• It is a projector whose Neumann matrix in the oscillator representation commutes

with those defining the star product.

• It is the limit element of a sequence of surface states, the wedge states, defining an

abelian subalgebra of the star algebra. The sliver state is annihilated by the star

algebra derivation K1 = L1 + L−1.

The properties of the “butterfly” state were announced in [24]:

• It has an extremely simple presentation in the Virasoro basis. It is just exp(−1
2L−2)|0〉.

It is annihilated by the star derivation K2 = L2 − L−2.

• Its wave-functional is the product of vacuum wave-functionals for the left-half and

the right-half of the string. Thus, it is the simplest projector from the viewpoint of

half-strings.

• This is the state that appears to arise when considering the projector equations in the

level expansion.

We constructed a family of projectors, all of them generalized butterflies, that interpolate

from the sliver to the above canonical butterfly. The family can be continued beyond this

canonical butterfly state up to a projector that we call the “nothing state”. The nothing

state has the following properties:

• As we reach this state the Riemann surface becomes vanishingly small.
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• It is annihilated by all the derivations K2n = L2n − L−2n.

• It has a constant wave-functional.

Our general discussion shows that the condition that the open string midpoint touches

the boundary ensures that projectors have split wave-functionals, that is, wave-functionals

that factorize into a product of functionals each involving a half-string. We also show that

the half-string states associated to surface state projectors are themselves surface states

defined with the same boundary condition as the original projector, and give an explicit

algorithm for the construction of such half-string states (see (4.4.14) and (4.4.15)). For

example, our construction explains why the butterfly is the state corresponding to the

tensor product of half string vacua with Neumann boundary condition at both ends if

the original butterfly is defined with Neumann boundary condition. We believe this is

an interesting insight into half-string formalisms, where boundary conditions at the string

midpoint are subject to debate, and little geometrical understanding is available. We also

point out a subtletly. When we say that a surface state is defined using a boundary condition,

this means that the functional integral defining the state is done imposing the boundary

condition in question along the boundary of the surface. A surface state |Σ〉 defined using a

given boundary condition, say of Neumann type, may not necessarily satisfy this condition,

namely, expectation values of the operator ∂σX(σ) on the state |Σ〉 may not necessarily

vanish at σ = 0, π. This may happen when the boundary of the surface Σ has a corner type

singularity at the string endpoints. While such corner type singularities are not common

in familiar surface states, they are generic for half-string states. Thus, for example, we find

that unlike the canonical butterfly half-string state, the nothing half-string state satisfies a

Dirichlet boundary condition at the point corresponding to the full string midpoint.

We also show that, just as for the sliver [71], all projectors defined with Neumann bound-

ary condition have wave-functionals invariant under constant and opposite translations of

the half-strings. This implies that the Neumann matrices associated to projectors all have

a common eigenvector, the κ = 0 eigenvector of K1. This simply follows, as we explain in

the text, because the associated half-string surface states carry no momentum.
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This chapter is organized as follows. We begin in section 4.2 by reviewing various

geometrical presentations of surface states, and various concrete algebraic representations

of the states. Section 4.3 is devoted to a discussion of some properties of conformal maps and

conformal field theories which we use in later analysis. In particular we discuss factorization

properties of conformal field theory correlators on a pinched disk that is about to split into

two disconnected disks. Although we do not attempt to state precisely the way in which the

surface must be pinched to achieve the desired factorization property, we state a conjecture

that we expect to hold, and would guarantee the key properties. We also illustrate the

conjecture with an example.

In section 4.4 we explain in general terms our understanding of the construction of split

wave-functionals. In particular we argue, based on the results of sections 4.2, 4.3 that the

surface state associated with a conformal map that sends the string midpoint to a point on

the boundary of the disk will give a state whose wave-functional factorizes into a functional

of the left half of the string and a functional of the right half of the string. The analysis in

this section is done in the context of a general boundary conformal field theory. We show

how to construct the half-string surface states corresponding to split wave-functionals.

In section 4.5 we explain in general terms that the same condition that gives rise to split

wave-functionals also guarantees that the corresponding states are projectors. We show

that the projectors are of rank one. In addition, we prove that all surface state projectors

have Neumann matrices that share a common eigenvector.

In section 4.6 we describe in detail the butterfly state. We show how to regulate it and

prove explicitly that the state satisfies the projector equation by constructing the requisite

conformal maps. We also use the method of section 4.4 to show the factorization property

of the butterfly wave-functional, and explicitly determine the functional of the left and the

right-half of the string to which the butterfly wave-functional factorizes. Both of these turn

out to be the wave-functional of the vacuum state. Section 4.7 is devoted to a similar study

of the nothing state.

In section 4.8 we introduce the family of generalized butterflies parametrized by a pa-
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rameter α, interpolating from the sliver at α = 0 up to the ‘nothing’ state at α = 2,

passing through the butterfly at α = 1. We show explicitly that for every α the associated

surface state is a projector. The nothing state at α = 2 is particularly interesting, since

after removing the local coordinate patch the corresponding surface has vanishing area. We

also show explicitly that the wave-functionals of these generalized butterfly states factor-

ize into functionals of the left- and the right-half string coordinates, and determine these

functionals.

In section 4.9 we discuss additional simple projectors, which just as the butterfly, can be

represented by the exponentiation of a single Virasoro operator. We discuss some properties

of these projectors, and sketch the construction of certain star-subalgebras. In section 4.10

we discuss butterfly states associated to general boundary conformal field theories (BCFT’s),

represented as a state in the state space of some fixed reference BCFT. This generalizes

previous arguments that were known to hold for the sliver state. Finally we offer some

concluding remarks in section 4.11. We include an appendix where we give the explicit

numerical computation of the ∗-product of the butterfly state with itself to show that it

indeed behaves as a projector of the ∗-algebra. We also test sucessfully the expected rank

one property of the projector.

Related but independent research on the matter of projectors and butterfly states has

been published recently by M. Schnabl [102].

4.2 Surface States – Presentations and Representations

In this section we shall discuss general properties of surface states. After reviewing the

geometric description of surface states in various coordinates, we discuss the computation

of star products and inner products of surface states in the geometric language. We then

discuss the explicit operator, oscillator and functional representations of general surface

states.
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4.2.1 Reviewing various presentations

For the purposes of the arguments in this chapter we will review the various coordinate

systems used to describe surface states. A surface state 〈Σ| for the present purposes arises

from a Riemann surface Σ with the topology of a disk, with a marked point P , the puncture,

lying on the boundary of the disk, and a local coordinate around it.

The ξ coordinate. This is the local coordinate. The local coordinate, technically speaking

is a map from the canonical half-disk |ξ| ≤ 1,=(ξ) ≥ 0 into the Riemann surface Σ, where

the boundary =(ξ) = 0, |ξ| < 1 is mapped to the boundary of Σ and ξ = 0 is mapped to

the puncture P . The open string is the |ξ| = 1 arc in the half-disk. The point ξ = i is the

string midpoint. The surface Σ minus the image of the canonical ξ half-disk will be called

R. Using any global coordinate u on the disk representing Σ, and writing

u = s(ξ) , with s(0) = u(P ) , (4.2.1)

the surface state 〈Σ| is then defined through the relation:

〈Σ|φ〉 = 〈s ◦ φ(0)〉Σ , (4.2.2)

for any state |φ〉. Here φ(x) is the vertex operator corresponding to the state |φ〉 and 〈 〉Σ
denotes the correlation function on the disk Σ. There is nothing special about a specific

choice of global coordinate u, and the state 〈Σ| built with the above prescription does not

change under a conformal map taking u to some other coordinate and Σ into a different

looking (but conformally equivalent) disk. Nevertheless there are particularly convenient

choices which we now discuss in detail.

The z- presentation. In this presentation the Riemann surface Σ is mapped to the full upper

half z-plane, with the puncture lying at z = 0. The image of the canonical ξ half-disk is

some region around z = 0. Thus if z = f(ξ), we have

〈Σ|φ〉 = 〈f ◦ φ(0)〉UHP . (4.2.3)

The ẑ-presentation. In this presentation the Riemann surface Σ is mapped such that the

image of the canonical ξ half-disk is the full strip |<(ẑ)| ≤ π/4,=(ẑ) ≥ 0, with ξ = i
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mapping to ẑ = i∞, and the open string mapping to the vertical half lines at <(ẑ) = ±π
4 .

This is implemented by the map

ẑ = tan−1 ξ . (4.2.4)

The rest R of Σ will take some definite shape that will typically fail to coincide with the

full upper-half ẑ plane. This shape actually carries the information about the surface Σ.

The ŵ- presentation. In this presentation the Riemann surface Σ is mapped such that the

image of the canonical ξ half-disk is the canonical half disk |ŵ| ≤ 1,<(ŵ) ≥ 0, with ξ = 0

mapping to ŵ = 1. This is implemented by the map

ŵ =
1 + iξ

1− iξ
≡ h(ξ) . (4.2.5)

The rest R of the surface will take some definite shape R̂ in this presentation. This shape

actually carries the information about the surface Σ. We also note that the ŵ-presentation

and the ẑ presentation are related as

ŵ = exp(2iẑ) . (4.2.6)

The ξ- presentation. In this presentation the Riemann surface Σ is mapped into the ξ-plane

by extending to the whole surface Σ the map that takes the neighborhood of the puncture

P ∈ Σ into the ξ-half-disk. This extended map, of course, may require branch cuts. In this

presentation the surface is the canonical ξ half-disk plus some region in the ξ-plane whose

shape carries the information of the state. We call Σξ the surface in this presentation. In

this case the equation defining the state takes a particularly simple form since no conformal

map is necessary

〈Σ|φ〉 = 〈φ(0)〉Σξ
. (4.2.7)

The ξ presentation can be obtained from the ŵ presentation by the action of h−1.

4.2.2 Inner products and star-products of surface states

In this subsection we will address the computation of correlation functions of the form

〈Σ|∏n
i=1Oi(ξi)|Σ〉 with ξi’s lying on the unit circle. These are inner products of surface
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H

Σ Σ

R

R R

Figure 4.2: The geometry involved in computing the inner product of a surface state |Σ〉
with itself.

states with operator insertions. Such computations will play a role in our later analysis of

split wave-functionals and half-string states. We will also discuss star products of surface

states.

These computations are particularly simple in the representation of the surface Σ in the

ŵ coordinate system. Let R̂ and Σ̂ denote the images of R and Σ in the ŵ plane. Then we

can rewrite eq.(4.2.2) as

〈Σ|φ〉 = 〈h ◦ φ(0)〉bΣ , (4.2.8)

where h has been defined in eq.(4.2.5). To compute 〈Σ|∏n
i=1Oi(ξi)|Σ〉 we begin with two

copies of Σ̂, remove the local coordinate patches from each so that we are left with two

copies of R̂, and then simply construct a new disk by gluing the left-half string of the first

disk to the right half-string of the second string and vice versa, as shown in Fig.4.2. If we

denote the new disk by Σ̌ then we have

〈Σ|
n∏

i=1

Oi(ξi)|Σ〉 = 〈
n∏

i=1

h ◦ O(ξi)〉Σ̌ . (4.2.9)

The h ◦ Oi(ξi) factors are inserted at the images of the points ξi = eiσi in the ŵ plane, i.e.

on the imaginary axis.

We shall also need to compute the star product of a surface state with itself. This is

again simple in the ŵ coordinate system. We begin with two copies of the disk Σ̂, remove
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H

Σ S

H
R R

R

Figure 4.3: The geometry involved in computing the star product of a surface state with
itself. The local coordinate patch, shown as the shaded half-disk to the right, is to be glued
to the shaded region of the diagram representing Ŝ.

the local coordinate patch from the second Σ̂, and then glue the right half-string of the first

Σ̂ with the left half-string of the second Σ̂. The result is a new disk Ŝ, as shown in Fig.4.3.

As indicated in the figure, the local coordinate patch is glued in and thought as part of Ŝ.

The surface state |S〉 associated with the new surface Ŝ gives |Σ ∗ Σ〉. Thus we have:

〈Σ ∗ Σ|φ〉 = 〈h ◦ φ(0)〉 bS . (4.2.10)

4.2.3 Operator representation of surface states

We shall now review the explicit representation of surface states in terms of Virasoro op-

erators acting on the SL(2,R) invariant vacuum, rather than the implicit representation

through correlators given eq.(4.2.3). Using the SL(2,R) invariance of the upper half plane,

we can make the map f appearing in eq.(4.2.3) satisfy f(0) = f ′′(0) = 0, f ′(0) = 1. We can

write the corresponding surface state 〈Σ| as

〈Σ| = 〈0|Uf ≡ 〈0| exp

( ∞∑

n=2

v(f)
n Ln

)
, (4.2.11)

where the coefficients v
(f)
n are determined by the condition that the vector field

v(ξ) =
∞∑

n=2

v(f)
n ξn+1 , (4.2.12)
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exponentiates to f ,

exp (v(ξ)∂ξ) ξ = f(ξ) . (4.2.13)

We now consider the one-parameter family of maps

fβ(ξ) = exp
(
β v(ξ)

∂

∂ξ

)
ξ . (4.2.14)

This definition immediately gives

d

dβ
fβ(ξ) = v(fβ(ξ)) . (4.2.15)

Solution to this equation, subject to the boundary condition fβ=0(ξ) = ξ, gives:

fβ(ξ) = g−1(β + g(ξ)) , (4.2.16)

where

g′(ξ) =
1

v(ξ)
. (4.2.17)

Thus

f(ξ) = g−1(1 + g(ξ)) . (4.2.18)

Equations (4.2.17) and (4.2.18) readily give f(ξ) if v(ξ) is known. Alternatively, they also

determine v(ξ) in terms of f(ξ), although not explicitly, since eqn. (4.2.18) is in general

hard to solve for g. When a solution for v(ξ) is available, eqn.(4.2.11) gives the operator

expression for |Σ〉.

4.2.4 Oscillator representation of surface states

If the BCFT under consideration is that of free scalar fields with Neumann boundary con-

dition describing D-25-branes in flat space-time, we can also represent the state in terms of

the oscillators associated with the scalar fields. For simplicity let us restrict our attention to

the matter part of the state only. If am, a†m denote the annihilation and creation operators

associated with the scalar fields, then we have:

|Σ〉 = exp


−1

2

∞∑

m,n=1

a†mV f
mna†n


 |0〉 . (4.2.19)
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where we have suppressed spacetime indices and [79]

V f
mn =

(−1)m+n+1

√
mn

∮

0

dw

2πi

∮

0

dz

2πi

1
zmwn

f ′(z)f ′(w)
(f(z)− f(w))2

. (4.2.20)

Both w and z integration contours are circles around the origin, with the w contour lying

outside the z contour, and both contours lying inside the unit circle. In eq.(4.2.19) we have

also omitted an overall normalization factor.

We now show that when the vector field v(ξ) generating the conformal map f(ξ) is

known (see the discussion in the previous subsection) the above integral expression for the

matrix V f of Neumann coefficients can be given an alternate form which is sometimes easier

to evaluate. For this purpose, we now consider the matrix V (β) associated to the family of

maps (4.2.14), and rewrite (4.2.20) as

Vmn(β) ≡ V
fβ
mn =

(−1)m+n+1

√
mn

∮

0

dw

2πi

∮

0

dz

2πi

1
zmwn

∂

∂z

∂

∂w
log(fβ(z)− fβ(w)) . (4.2.21)

Taking a derivative with respect to the parameter β,

d

dβ
Vmn(β) =

(−1)m+n+1

√
mn

∮

0

dw

2πi

∮

0

dz

2πi

1
zmwn

∂

∂z

∂

∂w

∂

∂β
log(fβ(z)− fβ(w)) (4.2.22)

=
(−1)m+n+1

√
mn

∮

0

dw

2πi

∮

0

dz

2πi

1
zmwn

∂

∂z

∂

∂w

(
v(fβ(z))− v(fβ(w))

fβ(z)− fβ(w)

)
,

where we have exchanged the order of derivatives and used (4.2.15). Integration by parts

in z and w then gives

d

dβ
Vmn(β) = (−1)m+n+1√mn

∮

0

dw

2πi

∮

0

dz

2πi

1
zm+1wn+1

v(fβ(z))− v(fβ(w))
fβ(z)− fβ(w)

. (4.2.23)

This is a general formula that we have found useful in concrete computations. If the above

matrix is calculable, the desired Neumann coefficients Vmn(β = 1) are then readily obtained

by integration over β.

4.2.5 Wave-functionals for surface states

In this subsection we wish to establish a dictionary between the geometric interpretation of

surface states as one-punctured disks and their representation as wave-functionals of open
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string configurations. For this we consider open strings on a D-25-brane in flat space-time

so that we have Neumann boundary condition on all the fields, and write, for a surface state

associated to the map z = f(ξ)

〈Σ|X(σ)〉 = Nf exp
(
−1

2

∫ π

0

∫ π

0
dσdσ′X(σ)Af (σ, σ′)X(σ′)

)
. (4.2.24)

Here we have suppressed the Lorentz indices and used the fact that the wave-functional

is in fact gaussian. This follows since the vacuum |0〉 is represented by a gaussian wave-

functional, and the action of Uf preserves this property. The normalization constant Nf is

chosen so that 〈Σ|Σ〉 = 1. The wave-functional can also be represented in terms of modes:

〈Σ|X〉 = Nf exp(−1
2

∞∑

n,m=1

XnA(f)
nmXm) , (4.2.25)

where we have adopted the convention of ref.[103] to define the modes Xn:

X(σ) = X0 +
√

2
∞∑

n=1

Xn cos(nσ) . (4.2.26)

For simplicity we are considering the case where the coordinate X has Neumann boundary

condition. Using eqs.(4.2.24), (4.2.25), (4.2.26) we see that Af (σ, σ′) is related to A
(f)
nm

through the relation:

Af (σ, σ′) =
2
π2

∑

m,n≥1

A(f)
nm cos(nσ) cos(mσ′) . (4.2.27)

Note that X0 does not appear in the expression for the wave-functional in (4.2.25), since

all surface states are translationally invariant. We shall from now on restrict to twist-even

surface states, which is equivalent to the condition that f is an odd function.

The relation between the oscillator representation (4.2.19) and the wave-functional

representation (4.2.25) is given by the following relation between the matrices V f and

A(f)[58, 61]:

A(f) = 2E−1 1− V f

1 + V f
E−1 , Enm = δmn

√
2
n

. (4.2.28)

We want to determine Af (σ, σ′) from f . To this end, we evaluate the normalized corre-

lator

Bf (σ1, σ2) ≡ 〈Σ|∂σ1X̂(σ1)∂σ2X̂(σ2)|Σ〉 (4.2.29)



136

in two different ways. First, we use the wave-functional representation and obtain

Bf (σ1, σ2) = N 2
f

∫
DX exp

(
−

∫ π

0
dσdσ′X(σ)Af (σ, σ′)X(σ′)

)
∂σ1X(σ1)∂σ2X(σ2)

=
1
2
∂σ1∂σ2(A

−1
f (σ1, σ2)) . (4.2.30)

Here the inverse kernel A−1
f (σ1, σ2) is defined by

∫ π

0
dσAf (σ1, σ)A−1

f (σ, σ2) = δ(σ1 − σ2)− 1
π

. (4.2.31)

The constant 1/π in the above equation represents the contribution from the zero mode

part. Since Af does not depend on the zero modes, it has an inverse only in the subspace

spanned by the functions cos(nσ) for n 6= 0. Thus (A−1
f )mn is nonzero only for m,n ≥ 1.

In the second computation, we interpret (4.2.29) as a CFT correlator on an appropriate

Riemann surface following the procedure of section 4.2.2. This is nicely done using the ẑ

presentation (see section 4.2.1) where the surface will occupy a region Cf in the ẑ plane, and

the local coordinate patch is the strip =(ẑ) ≥ 0, −π/4 ≤ <(ẑ) ≤ π/4. As usual the vertical

line corresponding to <(ẑ) = π/4 is the image of the left-half of the string, and the vertical

line corresponding to <(ẑ) = −π/4 is the image of the right-half of the string. In order

to compute a correlation function of the form 〈Σ| · · · |Σ〉, we simple start with two copies

of Cf , strip off the local coordinate patch from each of them, and compute the correlation

function on the surface obtained by gluing the left half-string on the first Cf with the right

half-string on the second Cf and vice versa. Thus the right hand side of (4.2.29) can be

computed by this method. If we denote the new surface by Čf , then Bf is given by

Bf (σ1, σ2) = ∂σ1∂σ2〈X(ẑ1)X(ẑ2)〉Čf
, (4.2.32)

where ẑi are the images of the points ξ = eiσi . Comparing (4.2.30) with (4.2.32) we can

determine A−1
f (σ1, σ2) and hence the wave-functional of the surface state.

Let us illustrate this for the vacuum state |0〉. In this case the CFT computation is

immediate, since we can directly compute the correlator (4.2.29) using the OPE’s of X’s on
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the UHP,

B|0〉(σ1, σ2) = ∂σ1∂σ2

(
− 1

2
log(|eiσ1 − eiσ2 |2|eiσ1 − e−iσ2 |2)

)

= −∂σ1∂σ2 log(2 cos(σ1)− 2 cos(σ2))

= ∂σ1∂σ2

∞∑

n=1

2
n

cos(nσ1) cos(nσ2) . (4.2.33)

Using (4.2.30) and inverting the kernel, we get

A|0〉(σ1, σ2) =
2
π2

∞∑

n=1

n cos(nσ1) cos(nσ2) . (4.2.34)

This gives

A|0〉nm = nδnm . (4.2.35)

This is the expected result, as can be seen by using eq.(4.2.28) with V f = 0.

4.3 Conformal Field Theories on Degenerate Disks

In this section we shall consider some properties of degenerate disks involving singular

conformal maps, and of conformal field theories on such degenerate disks.

4.3.1 A conformal mapping claim

Consider a set of surfaces parametrized by t ∈ [0, 1]. For each t different from one, the

surface R(t) is a finite region of the complex plane with the topology of a disk (see figure

4.4). As t goes to one the region varies smoothly throughout but develops a thin neck and

at t = 1 it pinches, breaking into two pieces R1 and R2, both of which are finite disks.

Let P denote the pinching point, common to R1 and R2, and assume there are no other

pinching points. Because disks can always be mapped to disks, any R(t) with t < 1 can be

mapped to R1. The map in fact is not unique due to SL(2,R) invariance of the disk. We

now claim that:

Claim: There exists a family of conformal maps m(t) : R(t) → R1, for t ∈ [0, 1], continuous

in t, where m(1) is the identity map over R1 and maps all of R2 to P .
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The intuition here is that as far as one of the sides of the pinching surface is concerned,

call it side one, all that is going on on the other side, side two, can be viewed as happening

near the pinching point. The complete side two, lying on the other side of the neck, can

be mapped to a vanishingly small region while the conformal map is accurately close to the

identity on side one. An explicit example of this will be given next.

R(t) R(1)

R R
1 2P

Figure 4.4: The surface R(t) is pinching for t = 1. The pinching point P separates the
regions R1 and R2 of the surface R(1).

4.3.2 A prototype example

To illustrate the claim in the above subsection we consider the following situation. Let a

surface Σ with the topology of a disk be the region in the û-plane defined by =(û) ≥ −π

with two cuts, both along the real axis, the first for real û ∈ (−∞,−∆] and the second

for real û ∈ [∆, +∞) where ∆ is a small positive real number. As illustrated as a shaded

region in figure 4.5(a), this region is the upper half plane, joined through the small interval

û ∈ [−∆, ∆] to an infinite horizontal strip of width π. We have also marked some special

points P1, · · ·Pn at some real coordinates û(Pi) with |û(Pi)| À ∆, for all i.

This surface, in the limit ∆ → 0, is pinching, and in the terminology of the claim, the

region R1 is the upper half û-plane, and the region R2 is the horizontal infinite strip of width

π in the lower half plane. We will now show that the surface can be mapped completely

to the upper-half u plane (figure 4.5(b)) such that the conditions in the claim are satisfied.

Indeed, in the limit ∆ → 0, the map will become the identity over the upper half plane (R1)

and will map all of the lower strip (R2) into a point. We will also see that this is the limit



139

(b)

Q 1 Q 4

(a)

−∆ ∆
1P Q 1

−α
Q 2

−β
Q 3

β
Q 4

α
P1 nP

π

Pn

3QQ2

u u

R

R 2

1

Figure 4.5: Illustration of a conformal map from the upper-half plane plus a strip of width
π connected by a narrow neck (part (a)) to the upper-half plane (part (b)).

of a family of maps that near degeneration leave R1 mostly unchanged (in a quantifiable

way).

The conformal map differential equation is readily written, as it is of Schwarz-Christoffel

type. Noting that the turning points Q1 and Q4 are points of turning angle (−π), while Q2

and Q3 are turning points of turning angle (+π) we write:

dû =
u2 − α2

u2 − β2
du . (4.3.1)

The turning points Q1, Q2, Q3, Q4 are mapped to the points {−α,−β, β, α} on the u-plane

real axis, as shown in 4.5(b). We have two parameters {α, β} and two conditions, one

defining the width of the strip, and the other specifying the separation 2∆ between Q1 and

Q4 in the û plane. The normalization above was fixed so that for large u À {α, β}, we

have dû ∼ du, – a necessary condition for the map to become the identity when u and û

are large. The condition that the strip corresponding to R2 has width π demands that the

residues of the above right hand side at u = ±β be equal to (∓1). This gives

α2 − β2

2β
= 1 . (4.3.2)
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With this condition, the differential relation in (4.3.1) becomes:

dû =
(
1− 1

u− β
+

1
u + β

)
du . (4.3.3)

By symmetry, we require that u = 0 correspond to û = −iπ and thus we have that

∆ = P

∫ α

0

(
1− 1

u− β
+

1
u + β

)
du , (4.3.4)

where P denotes principal value, which must be taken at u = β. Evaluation gives

∆ = α + ln
(α + β

α− β

)
. (4.3.5)

It is clear from this equation that to have ∆ small we need α small and β ¿ α. This, and

the constraint in (4.3.2) can be satisfied with

α =
√

2β + β2, α, β ¿ 1 → β ' 1
2
α2 . (4.3.6)

Note that given these relations, (4.3.5) gives us

∆ = 2α +O(α2) , → ∆ ' 2α . (4.3.7)

This shows that the whole boundary of the strip R2, which is mapped to u ∈ [−α, α], is

indeed mapped to a vanishingly small segment as ∆ → 0.

Finally, we confirm that the map goes to the identity map for {u, û} À ∆ when ∆ → 0.

For this purpose integrating from α to u > α we have

û = ∆ +
∫ u

α

(
1− 1

u− β
+

1
u + β

)
du , (4.3.8)

which using (4.3.5) gives

û = u + ln
(u + β

u− β

)
, u > α . (4.3.9)

Since u > α À β we have

û ' u +
2β

u
' u +

∆2

4u
→ u ' û− ∆2

4û
. (4.3.10)

This confirms that away from the pinching area the map goes to the identity map as ∆ → 0.
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4.3.3 Conformal field theory and factorization

Let us now consider a unitary s boundary conformal field theory on a surface R(t) of the

type described in section 4.3.1 and consider a correlation function of the form:

〈
n∏

i=1

Oi(zi)〉R(t) . (4.3.11)

Oi could be bulk or boundary operators of the theory. We shall assume that all operators

in the theory have dimension > 0 except the identity operator which has dimension zero.

Let us now consider the case where in the t → 1 limit the points z1, . . . zm lie inside the

disk R1 and the points zm+1, . . . zn lie inside the disk R2. In this limit, using the results of

the previous subsection we can map the disk R to the disk R1 in such a way that the map

is the identity inside R1 and maps the whole of R2 to a point P . Thus the insertion points

zm+1, . . . zn approach the point P . The correlation function on such a disk can be evaluated

by picking up the leading terms in the operator product expansion of the appropriate

conformal transforms of the operators Om+1, . . .On. Since the lowest dimension operator

in the theory is the identity operator, we get:

〈
n∏

i=1

Oi(zi)〉R(t=1) = 〈
m∏

i=1

Oi(zi)〉R1g(zm+1, . . . zn) , (4.3.12)

where g(zm+1, . . . zn) is the function that appears in evaluating the coefficient of the identity

operator in the operator product expansion of the appropriate conformal transforms of

Om+1, . . .On.

On the other hand, we could also carry out the analysis using a different conformal

transformation that maps the disk R(1) to R2 and maps the disk R1 to the point P . In

this case we have

〈
n∏

i=1

Oi(zi)〉R(t=1) = 〈
n∏

i=m+1

Oi(zi)〉R2f(z1, . . . zm) . (4.3.13)

Combining eqs.(4.3.12) and (4.3.13), and normalizing the correlator so that the 〈1〉Σ = 1

on any disk Σ, we get

〈
n∏

i=1

Oi(zi)〉R(t=1) = 〈
m∏

i=1

Oi(zi)〉R1 〈
n∏

i=m+1

Oi(zi)〉R2 . (4.3.14)
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Thus the correlation function on the splitting surface factors into the product of correlation

functions of the separate surfaces.

4.4 Split wave-functionals and Half-string States

In this section we will show that the split wave-functional property of surface states holds

when the boundary of the surface reaches the open string midpoint. This is a very general

statement, and our purpose here will be to explain it just based on the conformal mapping

properties of pinching surfaces, and the factorization properties of CFT correlators, both

of which were discussed in the previous sections. In the process we shall find an explicit

surface state construction of half-string states that emerge from the split wave-functional.

Throughout this section we shall focus on the matter part of the surface state only.

4.4.1 Factorization of the string wave-functional

We shall examine the condition under which a string state |Ψ〉 gives rise to a wave-functional

Ψ[X(σ)] that factorizes into a functional of the left half of the string and a functional of

the right half of the string. As is clear from the discussion of section 4.2.5, all information

about the wave-functional associated to a state |Ψ〉 is contained in correlation functions of

the form

〈Ψ|
n∏

i=1

Oi(ξi)|Ψ〉 =
∫

[DX(σ)]
n∏

i=1

Õi(X(σi))Ψ[X(π − σ)]Ψ[X(σ)] , (4.4.1)

where ξi = eiσi , Oi denote an arbitrary set of local vertex operators, and Õi are these

vertex operators viewed as classical functionals of X(σ). Let us consider the case where σi

for 1 ≤ i ≤ m lie in the range [0, π/2), and σi for (m + 1) ≤ i ≤ n lie in the range (π/2, π].

If the wave-functional is factorized into a functional ΦL of the coordinates of the left-half of

the string (X(σ) for 0 ≤ σ < π/2) and a functional ΦR of the coordinates of the right-half

of the string (X(σ) for π/2 < σ ≤ π):

Ψ[X(σ)] = ΦL[X(2σ)]ΦR[X(2(π − σ))] . (4.4.2)
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Note that the parametrization of the right half-string has reversed direction; as σ increases

we move towards the full string midpoint, just as for the left half-string. It now follows that

the correlation function (4.4.1) has the factorized form:

〈Ψ|
n∏

i=1

Oi(ξi)|Ψ〉 = f(σ1, . . . σm) g(σm+1, . . . σn) . (4.4.3)

Alternatively, if eq.(4.4.3) is satisfied by all such correlation functions, we can conclude that

Ψ has a factorized wave-functional. This will be our test of factorization.

Furthermore, if |ΦL〉 and |ΦR〉 denote the states associated with the left and the right

half of the string respectively, then we have:

f(σ1, . . . σm) = 〈Φc
R|

m∏

i=1

s ◦ Oi(ξi) |ΦL〉 , (4.4.4)

where s denotes the conformal transformation s : ξ → ξ2 and the superscript c denotes

twist transformation: σ → (π − σ), needed for the right half-string. Here the conformal

transformation s rescales the coordinate σ so that the coordinate labeling the left half-string

runs from 0 to π. Similarly we have

g(σm+1, . . . σn) = 〈Φc
R|

n∏

i=m+1

s̃ ◦ Oi(ξi) |ΦL〉 , (4.4.5)

where s̃ denotes the conformal transformation ξ → ξ−2.
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Figure 4.6: The geometry of the disks Σ̂ and Σ̌ when the boundary of Σ̂ touches the string
midpoint.
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We shall now show that (4.4.3) is satisfied for |Ψ〉 = |Σ〉 if any part of the boundary of

R, – the part of the disk Σ outside the local coordinate patch – touches the point ξ = i,

or equivalently, if in the ŵ plane any part of the boundary of R̂ touches the point ŵ = 0.

Such a situation has been shown in Fig.4.6(a). According to the general result discussed in

section 4.2.2, the left hand side of (4.4.3) for |Ψ〉 = |Σ〉 is expressed as a correlation function

on a surface Ŝ, obtained by gluing together two copies of R̂ along the procedure illustrated

in Fig.4.2. In the present context, the gluing of two such disks produces a disk Σ̌ which is

pinched at the origin of the ŵ plane, as shown in Fig.4.6(b). In the diagram the images

of the points σ1, . . . σm, lying on the left half-string, are on the positive imaginary axis,

whereas those of the points σm+1, . . . σn, lying on the right half-string, are on the negative

imaginary axis. Σ̌ can be viewed as the union of two disks N̂ and r ◦ N̂ , joined at the

origin, where r denotes the conformal map ŵ → −ŵ. Since the total surface is pinched, the

conformal field theory results of section 4.3.3 hold, and working with normalized correlation

functions so that the partition function on a disk equals one, the correlation function (4.2.9)

factorizes as

〈
n∏

i=1

h ◦ O(ξi)〉Σ̌ = 〈
m∏

i=1

h ◦ O(ξi)〉 bN 〈
n∏

i=m+1

h ◦ O(ξi)〉r◦ bN . (4.4.6)

This establishes eq.(4.4.3). Furthermore this gives:

f(σ1, . . . σm) = 〈
m∏

i=1

h ◦ O(ξi)〉 bN . (4.4.7)

Comparing with eq.(4.4.4) we have:

〈Φc
R|

m∏

i=1

s ◦ Oi(ξi) |ΦL〉 = 〈
m∏

i=1

h ◦ Oi(ξi)〉 bN = 〈
m∏

i=1

s ◦ Oi(ξi)〉s◦h−1◦ bN . (4.4.8)

where in the last step we used the conformal invariance of the correlator to act on the region

N̂ first by the h−1 conformal map, and then by s. If the region s◦h−1 ◦ N̂ is simple enough

the explicit identification of the half string state is possible.

4.4.2 Half-string surface states

The above results lead to a representation of the state of the half-string as a surface state.

For convenience, let us restrict ourselves to the case where the original projector was twist
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Figure 4.7: Fig. (a) shows the the disk associated with a a surface state, describing the
state of the half-string, in the ŵ plane. Fig.(b) shows the twist conjugate of the surface
state of Fig.(a). Fig.(c) shows the result of computing inner product between these two
stares. M̂1/2 in this figure is the union of R̂1/2 with its image under a reflection about the
imaginary axis. The dots signal the half-string endpoint corresponding to the full-string
midpoint. The other half- string endpoint coincides with one of the end-points of the original
string.

invariant, which in this context means that Σ̂ (and hence R̂) are symmetric under reflection

about the real axis. Thus for these states |ΦL〉 = |ΦR〉 ≡ |Φ〉. In that case we can rewrite

eq.(4.4.8) as

〈Φc|
m∏

i=1

s ◦ Oi(ξi) |Φ〉 = 〈
m∏

i=1

s ◦ Oi(ξi)〉s◦h−1◦ bN . (4.4.9)

Let us take as a trial solution for 〈Φc| a surface state, represented by a disk Σ̂1/2 in the ŵ

coordinate system, so that

〈Φc|φ〉 = 〈h ◦ φ(0)〉bΣ1/2
. (4.4.10)

As usual we denote by R̂1/2 the part of Σ̂1/2 with local coordinate patch removed. This has

been shown in Fig.4.7(a). The surface state associated with 〈Φ| will have an associated R̂
which is the reflection of R̂1/2 about the real axis. This has been shown in Fig.4.7(b). In

this case, we can represent the left hand side of (4.4.9) as

〈Φc|
m∏

i=1

s ◦ Oi(ξi) |Φ〉 = 〈
m∏

i=1

h ◦ s ◦ Oi(ξi)〉cM1/2
, (4.4.11)
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where M̂1/2 represents the disk obtained by the union of R̂1/2 with its image under a

reflection about the imaginary axis. This has been shown in Fig.4.7(c). The operators

h ◦ s ◦ Oi(ξi) are inserted on the dotted line in this figure. We can rewrite this equation as

〈Φc|
m∏

i=1

s ◦ Oi(ξi) |Φ〉 = 〈
m∏

i=1

s ◦ Oi(ξi)〉h−1◦cM1/2
. (4.4.12)

Comparing (4.4.9) and (4.4.12) we get

M̂1/2 = h ◦ s ◦ h−1 ◦ N̂ . (4.4.13)

Let R̂top denote the top wing of R̂ associated with the original projector describing a

state of the full string. This is what has been labeled as the region A in Fig.4.6(a). Given

that for twist invariant state the region B in Fig.4.6(a) is related to the region A by a

reflection about the real axis, we see from Fig.4.6(b) that the region N̂ is the union of

R̂top with its reflection about the imaginary axis. On the other hand we have already seen

that M̂1/2 is the result of the union of R̂1/2 with its reflection I about the imaginary axis.

Finally, it can be easily seen that conjugation by h ◦ s ◦ h−1 leaves invariant the reflection

I. Thus (4.4.13) implies that:

R̂1/2 = h ◦ s ◦ h−1 ◦ R̂top . (4.4.14)

Conversely

R̂top = h ◦ s−1 ◦ h−1 ◦ R̂1/2 . (4.4.15)

These equations show how to pass back and forth from the split full-string surface state to

the associated half-string surface state. We will use this strategy to identify the half-string

state associated to the butterfly.

Before concluding this section we would like to explain an issue concerning boundary

conditions. From Fig.4.6(a) we see that other than the part of the boundary representing

the string, the boundary of the region A (called R̂top in the current discussion) has boundary

condition identical to that of the original disk Σ̂, since this part of the boundary of A comes

from part of the boundary of Σ̂. Eq.(4.4.14) then implies that the disk R̂1/2 also has the



147

same boundary condition. Thus the half-string state is given by the surface state associated

with the disk Σ̂1/2 in the ŵ-coordinate system, with the same boundary condition as that

in the original full string surface state.

This, however, does not imply that both the half-string end-points satisfy the same

boundary conditions as the end-points of the original string, since, as we now explain,

the surface states defined with certain boundary conditions may actually fail to satisfy the

boundary condition. In a surface state “the open string” is a specific line with endpoints

at the boundary – in the ŵ presentation it is the vertical boundary of the shaded region

called H. Consider a boundary condition of Neumann type. This is the statement that the

normal derivative of fields at the boundary vanishes. We may thus expect on a surface state

to find that the expectation values of the operator ∂σX(σ) vanish at σ = 0, π. But this

vanishing will only happen if the tangent to the open string at the boundary coincides with

the normal derivative to the boundary. This need not be the case when the boundary has

corners at the open string endpoints. Corners at the open string endpoints happen when

the map z = f(ξ) has singularities at the points ξ = ±1. While this is not the case for

slivers nor butterflies, we will see examples of this phenomenon in section 4.9.1.

In the case of half-string states associated to projectors, the above subtleties are in fact

quite generic. If the original projector is such that the tangent to the open string coincides

with the normal to the boundary, the corresponding half-string endpoint will carry the

boundary condition (this is the case illustrated in figure 4.7). On the other hand the nature

of the boundary near the full string midpoint, which is controlled by the behavior of f(ξ)

near ξ = i, will tell whether or not the boundary condition is satisfied at the other half-

string endpoint. Getting a little ahead of ourselves we can have a look at the butterfly

state, in particular at figure 4.9(d). Note that the tangent to the half-string AQ at Q is

indeed along the normal to the boundary DQ at Q. Thus we may expect the half-string

state for the butterfly to satisfy Neumann boundary conditions at both endpoints. It does,

because as it will be checked, the half string state is simply the vacuum state. On the other

hand, for a generalized butterfly, such as that shown in figure 4.19 the two directions do not
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coincide and we do not expect the half-string state to satisfy a simple boundary condition.

For the nothing state, shown in figure 4.17, the normal to the boundary at the midpoint is

orthogonal to the open string tangent. Thus the interpretation here is that ∂τ X̂ vanishes

at this point. This is a Dirichlet boundary condition.

The above considerations may be relevant for understanding the applicability of the two

different half-string formalisms [104], − one where the mid-point satisfies Dirichlet boundary

condition [105] and the other where the midpoint satisfies Neumann boundary condition

[106]. We now see that for half-string states arising from projectors, neither formalism is

natural in all cases. Since the set of functions are (at least formally) complete, we can use

either formalism, but the results will take simplest forms when the boundary conditions

match those that arise geometrically at the string midpoint.

4.5 Star Algebra Projectors

In this section we will show that the projection property of surface states also holds when

the boundary of the surface reaches the open string midpoint. We will explain why the

projectors that arise are of rank one. Finally we will prove that the Neumann matrix of

any projector has a common eigenvector, the −1/3 eigenvector of the star algebra Neumann

matrices. An intuitive explanation for this fact is given.

4.5.1 Projection properties

A surface state |Σ〉 defined as in (4.2.8) will be called a projector if it satisfies:

|Σ ∗ Σ〉 = |Σ〉 . (4.5.1)

We shall show that a surface states |Σ〉 is a projector if the corresponding surface Σ has the

property that the boundary of Σ touches the string mid-point ξ = i, – the same condition

under which its wave-functional factorizes. However, unlike in the previous section, in

this subsection we shall work with the full surface state in the matter-ghost conformal

field theory so that the total central charge vanishes, and the gluing relations required for
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Figure 4.8: The geometry of Ŝ when the boundary of Σ̂ touches the string midpoint. The
local coordinate patch, shown to the right by the shaded half disk, is to be glued to the
shaded region of the diagram representing Ŝ.

the computation of ∗-product are valid without any additional multiplicative factors. For

computing |Σ∗Σ〉 we follow the procedure described in section 4.2.2. In this case the surface

Ŝ that appears in eq.(4.2.10), constructed following Fig.4.3, is the pinched union of Σ̂ and

an extra disk r ◦ N̂ as shown in Fig.4.8. We have, as in eq.(4.2.10),

〈Σ ∗ Σ|φ〉 = 〈h ◦ φ(0)〉 bS . (4.5.2)

The operator h ◦φ(0) is being inserted on the Σ̂ component of Ŝ, on the boundary of H, as

usual. Hence there is no operator insertion on r◦N̂ . Our factorization result of section 4.3.3

implies that the correlator factorizes and the contribution of r◦N̂ is simply a multiplicative

factor of one. Thus eq.(4.5.2) can be rewritten as:

〈Σ ∗ Σ|φ〉 = 〈h ◦ φ(0)〉bΣ . (4.5.3)

But the above right hand side is precisely 〈Σ|φ〉 and therefore this establishes (4.5.1).

There is also a nice geometrical understanding that projectors that arise as surface states

of the type discussed above are of rank one, – at least in a limited sense. For operators on

separable Hilbert spaces, a projector P is of rank one if and only if PAP = Tr(AP ) P for

all A. Let now Σ be a surface state projector Σ∗Σ = Σ, and let Υ denote an arbitrary state

of the star algebra (a Fock space state, or a surface state, for example). We then claim that
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the condition characterizing Σ as a rank one projector holds:

Σ ∗Υ ∗ Σ = 〈Σ|Υ〉Σ . (4.5.4)

This equation is understandable in terms of pictures. Back to Fig.4.8, the above left hand

side would be represented by a modified Ŝ where the r◦N̂ disk would be changed by cutting

open the dashed line separating the sides B and A, and gluing in the state Υ. The new

r ◦ N̂ disk, still pinched with respect to the remaining surface Σ̂ would be producing the

〈Σ|Υ〉 inner product. The factorization implied by the pinching of the surfaces then yields

(4.5.4).

There is, however, a subtlety involved in the derivation of (4.5.4) which we now discuss.

In order to apply the factorization results of section 4.3.3 we need a unitary BCFT –

otherwise the contribution from operators of negative dimension to the operator product

expansion will invalidate (4.3.14). Thus (4.5.4) is not valid in general for the combined

matter-ghost system, but could be valid for example for the matter part of the surface state.

On the other hand since the matter part of the BCFT has a non-zero central charge, gluing

of surface states typically involve (possibly infinite) multiplicative factors. Thus we expect

(4.5.4) to be valid for the matter part of the state up to an overall multiplicative factor that

depends only on the central charge of the matter BCFT and does not depend on the state

|Υ〉 or the particular BCFT under consideration. Alternatively, (4.5.4) is valid without any

additional multiplicative factor in the combined matter-ghost BCFT if we restrict |Υ〉 to

be a state of ghost number 0, so that the leading contribution to the factorization relation

comes from the identity operator as has been assumed in the derivation of (4.3.14).

4.5.2 A universal eigenvector of V f for all projectors

Give a projector of the type described above, we can use the procedure of section 4.2.3 to

represent it as the exponentials of matter (and ghost) oscillators acting on the vacuum as

in (4.2.19). We shall now show that the matrix V f
mn associated with any projector has the

property that it has an eigenvector of eigenvalue one, the eigenvector being the same as
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the κ = 0 eigenvector of K1[91]. This generalizes the same property obeyed by the sliver

Neumann matrix.

We start with (4.2.20) and integrate by parts with respect to w,

V f
mn =

(−1)m

√
m

∮
dw

2πi

∮
dz

2πi

1
zm

f ′(z)
f(z)− f(w)

√
n

(
− 1

w

)n+1
. (4.5.5)

For definiteness we shall take the w contour to be outside the z contour. Acting on an

eigenvector with components vn we find

∞∑

n=1

V f
mn vn =

(−1)m

√
m

∮
dw

2πi

∮
dz

2πi

1
zm

f ′(z)
f(z)− f(w)

1
w2

∞∑

n=1

√
n vn

(
− 1

w

)n−1
. (4.5.6)

We have argued that for all sufficently well-behaved maps f(ξ) such that f(±i) = ∞,

Ψf is a projector. We now show that f(±i) = ∞ suffices to show that the C-odd κ = 0

eigenvector v− of the Neumann matrices is in fact an eigenvector of eigenvalue one for the

matrix V f . The eigenvector in question is defined by the generating function

∞∑

n=1

v−n√
n

un = tan−1 u →
∞∑

n=1

√
nv−n un−1 =

1
1 + u2

|u| < 1. (4.5.7)

For regulation purposes we pick a number a slightly bigger than one and write

∞∑

n=1

√
nv−n un−1 =

1
1 + (u/a)2

, |u| < a , (4.5.8)

with the understanding that the limit a → 1+ is to be taken. Therefore back in (4.5.6) we

get

∞∑

n=1

Vmn v−n =
(−1)m

√
m

∮
dw

2πi

∮
dz

2πi

1
zm

f ′(z)
f(z)− f(w)

a2

1 + a2w2
, |w| > 1

a
. (4.5.9)

The w integral must run over a contour of radius bigger than 1/a because of the use of

(4.5.7) with w = −1/u. At the same time the radius of the contour must be less than 1

so that the contour does not enclose the singularities at w = ±i. Therefore we pick up

contributions from the poles at w = ±i/a and w = z. After this we can take the a → 1

limit. Since f(±i) = ∞, only the w = z pole contributes and we get

∑
n

Vmnv−n =
(−1)m+1

√
m

∮
dz

2πi

1
zm

1
1 + z2

= v−m . (4.5.10)
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This establishes the claim.

An intuitive explanation for this property can be given using the half-string interpre-

tation. The eigenvector in question implies that the projector wave-functional is invariant

under constant and opposite translation of the half-strings [71]. If we denote by PL and

PR respectively the momentum carried by the left and right half-strings we have that the

eigenvector condition is interpreted as the condition that

(PL − PR)|Σ〉 = 0 , (4.5.11)

where |Σ〉 is the projector surface state. Being a surface state defined with Neumann

boundary condition (in the sense described in section 4.4.2), the total momentum PL + PR

carried by the state vanishes. Thus the condition above is simply the statement that PL

and PR annihilate |Σ〉. But this must be so, since |Σ〉 = |ΣL〉 ⊗ |ΣR〉, where |ΣL〉 and |ΣR〉
are themselves surface states defined with Neumann boundary condition.

4.6 The Butterfly State

In this section we shall introduce and investigate in detail the butterfly surface state. After

giving the details of its definition and viewing it in various possible ways we shall verify

that it is a projector of the star algebra. Throughout this section except in section 4.6.4

we shall work in the combined matter-ghost system with zero central charge so that we can

apply the gluing theorem without any additional factors coming from conformal anomaly.

4.6.1 A picture of the butterfly

The butterfly state, just as any surface state, is completely defined by a map from ξ to the

upper half z plane (z-presentation, as reviewed in section 2.1). We thus write

z =
ξ√

1 + ξ2
≡ fB(ξ) , (4.6.1)

and define the butterfly state |B〉 through the relation:

〈B|φ〉 = 〈fB ◦ φ(0)〉UHP . (4.6.2)
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Figure 4.9: Representation of the disk associated with the butterfly state in various coor-
dinate systems. The shaded region denotes the local coordinate patch.

In the z-presentation the surface is the full upper half plane, and therefore in order to gain

intuition about the type of state this is, we plot the image of the canonical ξ half-disk in

the z-plane (see Fig. 4.9 (a) and (b)). The open string |ξ| = 1,=(ξ) ≥ 0 is seen to map

to the hyperbola x2 − y2 = 1
2 (in the upper half plane, with z = x + iy). We note that

z(ξ = i) = ∞ and thus, as expected for a projector, the open string midpoint coincides

with the boundary of the disk.
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Further insight into the nature of the state is obtained by examination of the disk in

the ẑ-presentation. To this end we use (4.2.4) to recognize that (4.6.1) can be rewritten as

z = sin(tan−1(ξ)) = sin ẑ (4.6.3)

This maps the image of the local coordinate in the ẑ-presentation to the image of the local

coordinate in the z-presentation. As explained before, the surface need not fill the upper-

half ẑ-plane. To figure out the extension of the surface in the ẑ presentation we simply

invert the previous equation to write

ẑ = sin−1 z . (4.6.4)

As shown in the figure (4.9 (c)), this transformation maps the full upper half z-plane into

the region |<(ẑ)| ≤ π/2 ,=(ẑ) ≥ 0. Note that the vertical lines <(ẑ) = ±π/2 are images of

the boundary and not identification lines. Even though the surface occupies a portion of the

ẑ-plane the boundary reaches the point at infinity, and so does the midpoint (as expected).

The above conformal map is perhaps most easily thought about in differential form, where

it belongs to the class of Schwarz-Christoffel transformations. We have

dẑ =
dz√

(1− z)(1 + z)
(4.6.5)

The real line in the z-plane is mapped into a polygon in the ẑ presentation, where the

turning points are z = ±1 and the turning angles are both π/2. This, of course is the result

shown in the figure.

Finally, we give the ŵ presentation (fig. 4.9(d)). Using (4.2.6) the region |<(ẑ)| ≤
π/2 ,=(ẑ) ≥ 0 of the ẑ presentation turns into the full disk with a pair of cuts zooming into

the ŵ origin from ŵ = −1. Indeed the boundary of the surface is the arc eiθ with 0 < θ < π

together with the line going from ŵ = −1 to ŵ = 0, plus the backwards line from ŵ = 0

to ŵ = −1 plus the arc eiθ with −π < θ < 0. It is perhaps in this presentation that it is

clearest that the string midpoint ŵ = 0 touches the boundary of the disk.
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−π/4 π/4−π/2 π/2 −π/4 π/4 π/2
P P2 3 P4

P5 P1

P24P3P

P 5P1

(a) (b)

3π/4

Figure 4.10: The geometry of the disk associated with the regularized butterfly in the
complex ẑ plane. The shaded region denotes the local coordinate patch. The lines <(ẑ) =
−π/4, <(ẑ) = 3π/4 are identified in the second figure.

4.6.2 The regulated butterfly

In order to regulate the butterfly it is simplest to do it in the ŵ coordinates. Here we

simply stop the cut at some point ŵ0 with −1 < ŵ0 < 0 a real negative number. In

the ẑ- presentation this turns into a picture shown in fig 4.10 (a). Note that the vertical

lines <(ẑ) = ±π/2 are not all boundary. Indeed the segments P1P2 and P4P5 are part of

the boundary, but the remaining parts of the vertical lines, shown dashed in the figure,

are identification lines. For more clarity and also later convenience we have shown in fig.

4.10(b) the same regulated butterfly where the region to the left of the right-half string has

been moved, and the two extreme vertical lines are identified.

In order to find the relation between z and ẑ in the regulated butterfly we must construct

the map, which is a variation on (4.6.5). In order to produce the identification shown by

dashed lines, while preserving the property that the real line is mapped to a polygon a pair

of complex conjugate poles are necessary. We write

dẑ =
dz

(1 + β2z2)
√

1− z2t2
(4.6.6)

where we have fixed the normalization from the condition dbz
dz = 1 at z = 0. The images of
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P P P PP1 2 3 4 5

i/β

−1/t 1/t 88−

Figure 4.11: The singular points of the map z → ẑ for the regulated butterfly in the z-plane.

the marked points P1, . . . P5 in Fig.4.10(a) in the z-plane is indicated in figure 4.11. The

identification lines emerge from the pole at z = i/β. Since the identification lines differ by

∆ẑ = π the residue at the pole z = i/β in (4.6.6) must equal 1
2i . This requires β2 = 1− t2

and thus we have

dẑ =
dz

(1 + (1− t2)z2)
√

1− z2t2
. (4.6.7)

This equation is readily integrated to give

ẑ = tan−1
( z√

1− z2t2

)
, (4.6.8)

and inverting the relation one finds

z =
tan ẑ√

1 + t2 tan2 ẑ
=

ξ√
1 + t2ξ2

. (4.6.9)

This is a rather simple result. The regulator parameter t can be related to the height h

of the points P1 or P5. Say, for P5, ẑ(P5) = π
2 + ih must map to z = ∞. This requires

1 + t2 tan2(π
2 + ih) = 0. A short calculation gives

h = tanh−1 t , thus h →∞ when t → 1− . (4.6.10)

The regulator parameter t must therefore satisfy t < 1. Clearly when t = 1 in (4.6.9) we

recover the butterfly as defined in (4.6.1).
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4.6.3 Star multiplying two regulated butterflies

−π/4 π/4 π/2 3π/4 5π/4π
(a)

P
−3π/4

1

P3

4PP2

−π/4−π/2 π/4 π/2
P5 P7

P6

3π/4
P8

(b)

Figure 4.12: Representation of the ∗-product of a regulated butterfly with itself in the ẑ
plane.

To star multiply two regulated butterflies we take the first one, and glue to the right-

half of its open string the left-half of the open string of the second butterfly, whose local

coordinate patch has been removed. In order to perform these operations it is easier to

view the butterfly as the cylinder −π
4 ≤ <(ẑ) ≤ 3π

4 , =(ẑ) ≥ 0 with the vertical lines,

corresponding to the right half of the open string, identified (see fig. 4.10(b)). The second

(amputated) butterfly can be glued to the right of this one giving the result in fig 4.12(a).

Finally we choose a symmetric arrangement of this figure as shown in figure 4.12(b). Special

points P1, · · ·P8 have been marked, and the complete picture is a cylinder with circumference

3π/2 and with the dashed lines identified. The image of this disk in the ŵ coordinate system

is shown in Fig.4.13. In the t → 1 limit, the vertices P3 and P6 of the two wedges approach
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P

P P

PP P5 6 3

P1

7 2

4

Figure 4.13: Representation of the ∗-product of a regulated butterfly with itself in the ŵ
plane. The local coordinate patch, which is to be glued to the rest of the digram, is shown
separately on the right.

the origin of the ŵ plane, and in this limit the surface clearly has the stucture of a split

disk of the form discussed in section 4.3.1.

i/d

P1
− 8

P P P32 4 PP P P5 6 7 8 8

−1/c −1/b −1/a 1/a 1/b 1/c

Figure 4.14: The singular points of the map z → ẑ for the ∗-product of two regulated
butterflies in the z-plane.

The map of this nontrivial polygon in the ẑ plane into the upper half z-plane is defined

by a map whose singularity structure is symmetrically arranged as shown in figure 4.14.
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Taking into account the various turning points, the map is of the form

dẑ =
1

(1 + d2 z2)
(1− b2z2)√

(1− a2z2)(1− c2z2)
dz ≡ H(z)dz . (4.6.11)

The complex poles at z = ± i
d play no role in the turning points but are needed for the

implementation of the identification of the dashed lines in the ẑ-plane (figure 4.12(b)). The

length conditions are

∫ 1/a

0
H(z)dz =

π

2
, (4.6.12)

∫ 1/b

1/a
H(z)dz = ih , (4.6.13)

∫ 1/c

1/b
H(z)dz = −ih , (4.6.14)

∫ ∞

1
c

H(z)dz =
π

4
, (4.6.15)

where

h = tanh−1 t . (4.6.16)

These are four equations, for our four unknowns a, b, c and d. These four equations, with

the analogous ones integrating over the negative z axis, added together imply that

∫ ∞

−∞
H(z)dz =

3π

2
. (4.6.17)

This means that that the residue around z = i
d in (4.6.11) must equal 3

4i . A short calculation

shows that this residue condition requires

9
4

d2 (d2 + a2)(d2 + c2) = (d2 + b2)2 . (4.6.18)

It should be noted that this residue condition is not independent from conditions listed in

(4.6.12) to (4.6.15).

The issue to be examined here is how to achieve very large h by adjusting the parameters

a, b, c and d. The analysis that follows is a special case of the discussion in section 2.2. As the

slits become higher and higher by growing h the surface is pinching. In the representation

of Fig.4.12(a), the role of R2 is played by the region π
2 ≤ <(ẑ) ≤ π, =(ẑ) ≥ 0, which
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in Fig.4.12(b) corresponds to the region π
2 ≤ |<(ẑ)| ≤ 3π

4 ,=(ẑ) ≥ 0. Our expectation is

therefore that as the slits go up to infinity, this region vanishes away in a map that preserves

the inner region, and we recover a single butterfly. We will now show that the large h limit

can be achieved by taking b, c and d much smaller than a, and c to be much smaller than

b, d:

{b, c, d} ¿ a , c ¿ {b, d} . (4.6.19)

Since such small parameters imply that the turning points 1/b, 1/c and 1/d are going to

infinity, it is convenient to bring them near zero to understand how they are collapsing into

each other. We therefore let z = −1/z′ and find that (4.6.11) gives

dẑ =
1

(z′2 + d2)
(z′2 − b2)√

(z′2 − a2)(z′2 − c2)
dz′ ≡ G(z′)dz′ . (4.6.20)

Our first condition will be to achieve (4.6.12). This gives

∫ ∞

a
G(z′)dz′ '

∫ ∞

a

dz′

z′
1√

z′2 − a2
=

π

2
, (4.6.21)

where we have noted in (4.6.20) that for a < z′ < ∞ and the inequalities in (4.6.19),

z′ À b, c, d, and the expression for G(z′) simplifies considerably. This equation requires

a ' 1 . (4.6.22)

With a ' 1 and much bigger than b, c and d, and c much smaller than b, d, equation (4.6.18)

now gives
1
2

d2 ' b2 . (4.6.23)

With d comparable to b, and c ¿ {d, b} we now claim that all the conditions listed in

(4.6.12) to (4.6.15), and the demand that h be large, can be satisfied. Since (4.6.18) and

thus (4.6.23) is a consequence of (4.6.12) and (4.6.15), and we have already satisfied (4.6.12),

we should be able to see that (4.6.15) is satisfied. Indeed, we must have

∫ c

0
G(z′)dz′ '

∫ c

0

b2

d2
√

c2 − z′2
dz′ ' π

4
. (4.6.24)
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A short calculation shows that this equation holds on accound of (4.6.23).

It only remains now to verify that conditions (4.6.13) and (4.6.14) can be satisfied with

ever increasing h. Condition(4.6.13) requires that the integral

∫ 1

b

1
z′2 + 2b2

z′2 − b2

√
1− z′2

dz′

z′
(4.6.25)

obtained using (4.6.19) grow without bounds as b is made progressively small. This is clearly

the case, since the integral diverges at the bottom limit when b is set to zero. This means

that for any h we can satisfy (4.6.13) for sufficiently small b, with c ¿ b. Condition (4.6.14)

requires that the integral ∫ b

c

dz′

z′2 + 2b2

z′2 − b2

√
z′2 − c2

(4.6.26)

obtained using (4.6.19), grow without bounds as c is made progressively small. This is

clearly the case, since the integral diverges at the bottom limit when c is set to zero. This

means that having satisfied (4.6.13) for a fixed and very large h by choosing a sufficiently

small b while keeping c ¿ b, we can now satisfy (4.6.14) by making c sufficiently small.

We have thus shown that as we multiply two regulated butterflies and let the regulator

go away, the map defining the composite surface is that of (4.6.11), with the limit a → 1,

and {b, c, d} → 0 taken. This gives us

dẑ =
1√

1− z2
dz , (4.6.27)

which, by comparison to (4.6.5), it is immediately recognized to be the definition of the

butterfly. This concludes our proof that the butterfly emerges from the star product of two

regulated butterflies in the limit as the regulator is removed.

It is natural to wonder if the multiplication of two regulated butterflies also gives a

regulated butterfly for t ' 1. We find that this product is a butterfly regulated in a slightly

different way. To see this note that using (4.6.23), we can go back to (4.6.18) to find a more

accurate evaluation of a, which previously was just set to one. We find

d2 ' 1− a2 . (4.6.28)
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With such relation, the map (4.6.11) becomes

dẑ =
1

(1 + (1− a2) z2)
(1− 1

2(1− a2)z2)√
1− a2z2

dz , (4.6.29)

where we used c ¿ {b, d}. The correspondence with the regulated butterfly map given in

(4.6.7) is very close, but not exact. The reason for this is intuitively clear. Our conformal

map statement in section 4.3.1 states that the map that shrinks away the extra surface at

the other side of a thin neck only affects the region around this neck. In addition, regulators

control the approach of the boundary to the open string midpoint. Since the neck arising

from star multiplication occurs around the open string midpoint of the product string (see,

for example fig. 4.8), the regulator arising after star product is affected by the way in which

the map shrinks away the extra surface.

4.6.4 Half-string wave-functional for the butterfly state

R

h−1
P

Q

P Q

s

P

Q

P

Q
h

R
1/2

top

Figure 4.15: The R̂1/2 associated with the butterfly state, and its images under the maps
h−1, s ◦ h−1 and h ◦ s ◦ h−1. P and Q are two marked points on the boundary of the disk,
and the labels P and Q are always located in the inside of the disk.
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Σ 1/2

Figure 4.16: The Σ̂1/2 associated with the butterfly.

According to the general arguments given in section 4.4.1, the wave-functional of the

butterfly state splits into a product of a functional of the left half of the string and a

functional of the right half of the string. We can now ask: what particular half-string wave-

functional does the butterfly state have? To answer this question we go back to eq.(4.4.14).

In the case of the butterfly, R̂top is the unit quarter disk in the second quadrant as shown

in the top left hand diagram of Fig.4.15. As shown in the rest of the figure, under the map

h ◦ s ◦ h−1 this gets mapped to the unit half-disk to the left of the vertical axis. This then

is the R̂1/2 for the butterfly. Thus the disk Σ̂1/2, obtained by joining with R̂1/2 the copy

of the local coordinate patch, is the full unit disk as shown in Fig.4.16. This gives the half

string state associated with the butterfly to be:

|Φ〉 = |0〉 , (4.6.30)

thereby establishing that the half-string wave-functional associated with the butterfly state

is the vacuum state.

4.6.5 Operator representation of the butterfly state

We can represent the regulated butterfly |Bt〉 in the operator formalism following the general

procedure outlined in section 4.2.3. In this case we have

z = ft(ξ) =
ξ√

1 + t2ξ2
= exp

(
vt(ξ)

∂

∂ξ

)
ξ . (4.6.31)
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Eqs.(4.2.18), (4.2.17) give

vt(ξ) = −t2 ξ3/2 . (4.6.32)

Eq.(4.2.11), (4.2.13) now gives:

|B t〉 = exp
(
− t2

2
L−2

)
|0〉 . (4.6.33)

This is a remarkably simple expression involving a single Virasoro operator in the exponent.

The formalism of Virasoro conservation laws [12] allows us to derive an interesting

property of the butterfly state,

K2|B〉 = 0 , (4.6.34)

where K2 = L2 − L−2. Indeed, consider in the global UHP the vector field

ṽ2(z) = 2z − 1
z

, (4.6.35)

which is holomorphic everywhere, including infinity, except for the pole at the puncture

z = 0. It follows that
〈∮

dz T̃ (z) ṽ2(z)fB ◦ φ(0)
〉

UHP
= 0 , (4.6.36)

for any state |φ〉, where the contour circles the origin. Changing variables to the local

coordinate ξ, we find

〈
fB ◦

( ∮
dξ T (ξ)(ξ3 − ξ−1)φ(0)

)〉
UHP

= 0 . (4.6.37)

This gives

〈B|K2|φ〉 = 0 (4.6.38)

since 〈B|χ〉 = 〈fB ◦ χ(0)〉 for any state |χ〉. This, in turn, is equivalent to (4.6.34).

4.6.6 Oscillator representation of the butterfly state

We can also represent the matter part of the regulated butterfly state in the oscillator

representation using eq.(4.2.19), (4.2.23). In this case, with β ≡ t2,

v(ξ) = −ξ3

2
, fβ(ξ) =

ξ√
1 + βξ2

. (4.6.39)
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Equ. (4.2.23) gives

d

dβ
Vmn(β) = (−1)m+n

√
mn

2

∮

0

dw

2πi

∮

0

dz

2πi

1
zm+1wn+1

fβ(z)3 − fβ(w)3

fβ(z)− fβ(w)
(4.6.40)

= (−1)m+n

√
mn

2

∮

0

dw

2πi

fβ(w)
wm+1

∮

0

dz

2πi

fβ(z)
zm+1

= (−1)m+n

√
mn

2
xmxn ,

where

xm =
∮

0

dw

2πi

fβ(w)
wm+1

= (−β)
m−1

2
Γ[m2 ]√

πΓ[m+1
2 ]

for m odd , (4.6.41)

= 0 for m even .

Integrating (4.6.40) with the initial condition V (β = 0) = 0, we find the Neumann coeffi-

cients of the regulated butterfly (β → t2):

Vmn(t) = −(−1)
m+n

2

√
mn

m + n

Γ[m2 ]Γ[n2 ]
πΓ[m+1

2 ]Γ[n+1
2 ]

tm+n , for m and n odd , (4.6.42)

= 0 , for m or n even .

4.7 The Nothing State

The nothing state is defined by the relation:

〈N |φ〉 = 〈fN ◦ φ(0)〉UHP , (4.7.1)

with

fN (ξ) =
ξ

ξ2 + 1
. (4.7.2)

Under the map ŵ(ξ) = h(ξ) with h(ξ) defined as in eq.(4.2.5), the upper half z = fN (ξ)

plane gets mapped to the vertical half-disk Σ̂ as shown in Fig.4.17. Clearly the boundary

along the vertical line passes through the string mid-point which is at the origin of the ŵ-

plane, and hence this state satisfies the usual criterion of being a projector of the ∗-algebra.

Various properties of the nothing state can be derived along the same lines as those of

the butterfly. Here we summarize the main results:

• The nothing state factorizes into a product of the nothing state for the left half-string

and the nothing state for the right half-string. This follows from the results of section
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H

Σ

φ

φ 0

Figure 4.17: The geometry of the disk Σ̂ for the nothing state. Since the local coordinate
patch fills the whole disk, the region R̂, which represents the full disk Σ̂ minus the local
coordinate patch, collapses to nothing.

4.4.2, – since in this case R̂ associated with the original projector collapses, R̂top also

collapses and hence from (4.4.14) it follows that R̂1/2 also collapses. Thus Σ̂1/2 is

identical to Σ̂. This proves that the half-string state is the same as the original state.

• The map fN (ξ) defining the nothing state is related to the map fI(ξ) defining the

identity string field by

fN (ξ) = −ifI(iξ) . (4.7.3)

It follows from (4.2.11)–(4.2.13) that the operator expressions of the identity and of the

nothing state are related by the formal replacement L−2n ↔ (−)nL−2n. The identity

admits an elegant operator expression [43] as an infinite product of exponentials of

Virasoro generators. Changing the sign of L−2 in (3.3) of [43], we immediately have

|N 〉 =

( ∞∏

n=2

exp
{
− 2

2n
L−2n

})
e−L−2 |0〉

= . . . exp(− 2
23

L−23) exp(− 2
22

L−22) exp(−L−2)|0〉 . (4.7.4)

• V f
mn computed using (4.2.20), (4.7.2) turns out to be equal to δmn. Thus the oscillator
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representation of the matter part of the nothing state is given by:

|N 〉m = exp


−1

2

∞∑

m,n=1

a†na†n


 |0〉 . (4.7.5)

• Computation of Af following eq.(4.2.28) gives Af = 0. Using eq.(4.2.25) we then

see that the wave-functional of the nothing state, expressed as a functional of the

coordinates Xn, is a constant independent of Xn.

• The nothing state is annihilated by all even reparametrizations of the cubic vertex,

K2n|N 〉 = 0 ∀n , (4.7.6)

where K2n = L2n − L−2n. This is shown with an argument similar to the one used

for the butterfly state, eqs.(4.6.34)-(4.6.38). Taking in this case the globally-defined

vector fields

ṽ2(z) = −1
z

+ 4z , ṽ4(z) = − 1
z3

+
6
z
− 8z , (4.7.7)

we find that

K2|N 〉 = 0 , K4|N 〉 = 0 . (4.7.8)

The commutation relations

[Km ,Kn] = (m− n)Km+n − (−1)n(m + n)Km−n (4.7.9)

then imply (4.7.6) for all n. Let us recall that the identity string field is annihilated

by all, even and odd, vertex reparametrizations [12], so from this point of view the

nothing state is the most symmetric surface state apart from the identity.

4.8 The Generalized Butterfly States

In this section we shall introduce a new class of surface states, − called generalized butter-

flies, − each of which is a projector of the star algebra. We shall first define these states, and

then show that each of these states satisfies the projector equation. We shall also determine

the half-string wave-functionals that the wave-functional of the generalized butterfly state

factorizes into.
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4.8.1 Definition of general butterflies

Let us begin by defining the generalized butterfly state |Bα〉. We generalize eq.(4.6.1) to

z =
1
α

sin(α tan−1 ξ) ≡ fα(ξ) . (4.8.1)

As a result eq.(4.6.3) is generalized to

z =
1
α

sin(αẑ) . (4.8.2)

Comparing eqs.(4.6.3) and (4.8.2) we see that the generalized butterfly differs from the

original butterfly by a rescaling of the ẑ coordinate by a factor α. Having a look at figure

4.9(c), we see that the generalized butterfly occupies the region − π
2α < <(ẑ) ≤ π

2α in the

upper half ẑ plane. We denote by Cα this region in the ẑ coordinate system, or more

precisely, a convenient translate of it.

As can be easily seen from eq.(4.8.1), the map fα(ξ) is singular at the string mid-point

ξ = i. In particular the mid-point is sent to i∞ and hence touches the boundary of the

upper half z-plane. Thus from the general analysis of section 4.4 we expect these states

to be projectors of the ∗-algebra and have factorized wave-functionals. Also note that we

have:

fα=1 =
ξ√

1 + ξ2
. (4.8.3)

Comparison with eq.(4.6.1) shows that the state |Bα=1〉 is identical to the butterfly state

defined in the previous section. On the other hand, we have:

fα=0 = tan−1 ξ . (4.8.4)

This shows that the state |Bα=0〉 is identical to the sliver. The family of surface states |Bα〉
gives a family of projectors, interpolating between the butterfly and the sliver. Finally, note

that for α = 2 we have the map

fα=2 =
ξ

1 + ξ2
. (4.8.5)

For reasons to be explained shortly, we call this the ‘nothing’ state.
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+ i arctanh t/ α
π/2α

−π/4 π/4 π/2α π/α−π/4

Figure 4.18: The geometry of Cα,t in the complex ẑ plane. The shaded region denotes the
local coordinate patch, and the lines <(ẑ) = −π/4, <(ẑ) = π/α− π/4 are identified.

We can regularize the singularity at the midpoint and define the regularized butterfly

by generalizing (4.6.9) to

z = fα,t(ξ) =
1
α

tan(α tan−1 ξ)√
1 + t2 tan2(α tan−1 ξ)

=
1
α

tan(αẑ)√
1 + t2 tan2(αẑ)

. (4.8.6)

In the ẑ plane we get

〈Bα,t|φ〉 = 〈f (0) ◦ φ(0)〉Cα,t , (4.8.7)

where Cα,t is the image of the upper half z plane in the ẑ coordinate system and f (0)(ξ) =

tan−1 ξ. Comparison between (4.6.9) and (4.8.6) shows that the regularized butterfly and

the regularized generalized butterfly are related by a rescaling of the ẑ coordinate by 1/α.

Thus Cα,t can be obtained by a rescaling of Fig.4.10(a) by 1/α, and moving the region to

the left of the coordinate patch all the way to the right, as shown in Fig.4.18. Note that

the local coordinate patch always occupies the same region |<(ẑ)| ≤ π
4 , =(ẑ) ≥ 0, since

ẑ = tan−1 ξ.

As shown, Cα,t is a semi-infinite cylinder with circumference π/α, obtained by the re-

striction =(ẑ) ≥ 0, −π/4 ≤ <(ẑ) ≤ π/α − π/4, and the identification <(ẑ) = <(ẑ) + π/α
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in the ẑ plane, with a cut along the line <(ẑ) = π/2α, extending all the way from the base

ẑ = π/2α to ẑ = π/2α + i(tanh−1 t)/α. As we move along the real z axis, in the ẑ plane we

go from ẑ = −π/4 to π/2α along the real axis, then along the cut to π/2α + i(tanh−1 t)/α

and back to π/2α, and finally along the real axis to −π/4+π/α. The local coordinate patch,

corresponding to the unit half-disk in the upper half ξ plane, is mapped to the semi-infinite

strip =(ẑ) ≥ 0, −π/4 ≤ <(ẑ) ≤ π/4. The lines <(ẑ) = π/4 and <(ẑ) = π/α− π/4 ≡ −π/4

correspond to the images of the left and the right half of the string respectively. As t → 1

the cut goes all the way to π/2α + i∞. The image of Cα,t in the complex ŵ = e2ibz plane in

the t → 1 limit has been shown in Fig.4.19.

The tip of the cut at ẑ = π/2α + i(tanh−1 t)/α corresponds to the branch point coming

from the square root in the denominator of (4.8.6). According to our convention we choose

the positive sign of the square root to the left of this cut, − this forces us to choose the

negative sign to the right of the cut. Thus in the t → 1 limit, the map from the z-plane to

the ẑ plane takes the form:

z = fα,t=1(ξ) =
1
α

sin(αẑ) for <(ẑ) < π/2α ,

= − 1
α

sin(αẑ) for <(ẑ) > π/2α . (4.8.8)

The difference from (4.8.2) for <(ẑ) > π/2α arises because we redefined asymmetrically the

fundamental domain in the ẑ plane. Note that for α = 2 the region of Cα,t outside the local

coordinate patch collapses to nothing. For this reason we call the associated surface state

the ‘nothing’ state.

4.8.2 Squaring the generalized butterfly

We now want to show that |Bα〉 squares to itself under ∗ product. For this we shall first

compute |Bα,t ∗Bα,t〉, and then take the t → 1 limit. Throughout this section we shall work

in the combined matter-ghost system with zero central charge so that we can apply the

gluing theorem without any additional factors coming from conformal anomaly. Since the

discussion proceeds in a manner closely parallel to that in section 4.6.3, we shall omit the

details and only point out the essential differences.
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π(1−α)

w

Figure 4.19: The image of Cα in the complex ŵ = e2ibz plane. The shaded region denotes
the local coordinate patch.

i arctanh t/

−π/4 π/4 π/2α 3π/2α−π/2 2π/α−3π/4

π/2α
α i arctanh t/ α

3π/2α−π/2
+ +

Figure 4.20: The geometry of C′α,t in the complex ẑ plane. The shaded region denotes the
local coordinate patch, and the lines <(ẑ) = −π/4, <(ẑ) = 2π/α− 3π/4 are identified.

As in section 4.6.3, we work in the ẑ coordinates. We begin with two copies of Cα,t (one

for each Bα,t), simply remove the local coordinate patch from the second Cα,t and glue the

image of the right half string on the first Cα,t with the image of the left half string on the
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second Cα,t. The result is a cylinder C′α,t of circumference

2π

α
− π

2
, (4.8.9)

defined as the region =(ẑ) ≥ 0, −π/4 ≤ <(ẑ) ≤ 2π/α − 3π/4. It also has two cuts,

one along the line <(ẑ) = π/2α, extending from ẑ = π/2α to ẑ = π/2α + i(tanh−1 t)/α,

and the other along the line <(ẑ) = 3π/2α − π/2, extending from ẑ = 3π/2α − π/2 to

ẑ = 3π/2α − π/2 + i(tanh−1 t)/α. The local coordinate patch on C′α,t is the vertical strip

bounded by the lines <(ẑ) = ±π/4. This has been shown in Fig.4.20.

Let z = Fα,t(ẑ) describes the map of C′α,t to UHP. In order to show that Bα squares to

itself, we need to show that as t → 1, the map Fα,t(ẑ) approaches the map given in (4.8.2)

in the vicinity of the origin. Thus the task is now to determine the map Fα,t that maps the

ẑ plane to the upper half plane labeled by the coordinate z. It is defined implicitly through

the differential equation analogous to (4.6.11):

dẑ =
1

(1 + d2 z2)
(1− b2z2)√

(1− a2z2)(1− c2z2)
dz ≡ H(z)dz . (4.8.10)

The analog of eqs.(4.6.12)-(4.6.15) are:
∫ 1/a

0
H(z)dz =

π

2α
, (4.8.11)

∫ 1/b

1/a
H(z)dz = ih/α , (4.8.12)

∫ 1/c

1/b
H(z)dz = −ih/α , (4.8.13)

∫ ∞

1
c

H(z)dz =
π

2α
− π

4
, (4.8.14)

with h as defined in eq.(4.6.16).

In the t → 1 limit the height h of the cylinder goes to ∞. We shall now show that this

can be achieved by taking

{b, c, d} ¿ a, c ¿ {b, d} . (4.8.15)

As in section 4.6.3 we define z → −1/z′ and rewrite (4.8.10) as

dẑ =
1

(z′2 + d2)
(z′2 − b2)√

(z′2 − a2)(z′2 − c2)
dz′ = G(z′)dz′ . (4.8.16)
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In the limit {b, c, d} ¿ a, (4.8.11) gives:

∫ ∞

a
G(z′)dz′ '

∫ ∞

a

dz′

z′
1√

z′2 − a2
=

π

2α
. (4.8.17)

This requires

a ' α . (4.8.18)

Proceeding as in the case of section 4.6.3, we can now show that all the other conditions

(4.8.12)-(4.8.14), and the requirement of large h can be satisfied by taking:

c ¿ b, d, d ∼ b . (4.8.19)

Using eqs.(4.8.15) and (4.8.18), we see that eq.(4.8.10) now takes the form:

dẑ =
1√

1− α2z2
dz , (4.8.20)

which gives:

z =
1
α

sin(αẑ) . (4.8.21)

This is precisely the map for the generalized butterfly. This establishes that the generalized

butterfly squares to itself under ∗-product.

4.8.3 Wave-functionals for generalized butterfly states

In this subsection we shall apply the general method described in section 4.2.5 to compute

the wave-functional of the generalized butterfly state. In this process, we shall show explic-

itly that the wave-functional factorizes into a product of a functional of the left-half of the

string and a functional of the right-half of the string. The wave-functional of the butterfly

state is expressed as

〈Bα|X〉 = NBα exp
(
−1

2

∫ π

0

∫ π

0
dσdσ′X(σ)ABα(σ, σ′)X(σ′)

)
. (4.8.22)

As seen from eqs.(4.2.29) and (4.2.30), computation of ABα(σ1, σ2) defined in eq.(4.8.22)

requires computing correlation functions of the form 〈Bα,t| · · · |Bα,t〉, and then taking the

limit t → 1. To do this computation one simply removes the local coordinate patch from
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Figure 4.21: The geometry involved in the computation of the inner product of two gener-
alized butterflies in the ẑ-plane.

each Cα,t and glues the left half of one with the right half of the other and vice versa. The

result is a semiinfinite cylinder C′′α,t of circumference (2π/α−π), corresponding to the region

=(ẑ) ≥ 0, π/4 ≤ <(ẑ) ≤ π/4 + 2π/α − π, with the identification ẑ ≡ ẑ + (2π/α − π), and

with two vertical cuts, one going from ẑ = π/2α to ẑ = π/2α+ i(tanh−1 t)/α, and the other

going from ẑ = 3π/2α − π/2 to ẑ = 3π/2α − π/2 + i(tanh−1 t)/α respectively. The two

halves of the string along which we have glued the two copies of Cα,t to produce the cylinder

C′′α,t lie along the lines <(ẑ) = π/4 and π/α − π/4 respectively. This has been shown in

Fig.4.21. Thus we have, using (4.2.29) and (4.2.30):

1
2
∂σ1∂σ2A

−1
Bα

(σ1, σ2) = ∂σ1∂σ2〈X(ẑ1)X(ẑ2)〉C′′α,t
. (4.8.23)

This correlation function can be calculated by finding the conformal transformation that

maps the cylinder C′′α,t to the upper half plane, and re-expressing (4.8.23) as a correlation

function on the upper half plane. This gives

1
2
∂σ1∂σ2A

−1
Bα

(σ1, σ2) = ∂σ1∂σ2〈X(z1)X(z2)〉UHP

= −1
2
∂σ1∂σ2{ln |z1 − z2|2 + ln |z1 − z̄2|2} , (4.8.24)
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with zi’s computed in terms of σi’s with the help of the map that relates ẑ = tan−1 ξ =

tan−1(eiσ) to the upper half plane coordinate z. We could proceed as in section 4.8.2 to

construct the map from the ẑ plane to the z-plane, but in this case we can write down a

closed form expression for this map. The function that maps C′′α,t in the ẑ coordinate to the

upper half plane labeled by z is given by:

z = gα,t(ξ) = gα,t(tan ẑ) (4.8.25)

with

gα,t(ξ) =

√
tan2(β tan−1 ξ + γ) + u2

1 + u2 tan2(β tan−1 ξ + γ)
=

√
tan2(βẑ + γ) + u2

1 + u2 tan2(βẑ + γ)
(4.8.26)

where
1
β

=
2
α
− 1, γ =

π

2
(1− β

α
),

1
β

tanh−1 u =
1
α

tanh−1 t . (4.8.27)

To see that this maps C′′α,t to the upper half plane, we can start from ẑ = π/4 and follow

the boundary of C′′α,t to see that it maps to the real line in the z plane. As we start from

ẑ = π/4 and travel along the real axis to ẑ = π/2α, z travels along the real line from 1 to

1/u As ẑ goes from the point ẑ = π/2α towards π/2α + i(tanh−1 t)/α, z goes from 1/u to

∞. Then as ẑ returns back to π/2α along the same line, z goes from −∞ to −1/u, and

as ẑ travels along the real axis to ẑ = (3π/2α − π/2), z goes from −1/u to −u, passing

through −1 at ẑ = (π/α−π/4). As ẑ travels along the vertical line from ẑ = (3π/2α−π/2)

to ẑ = (3π/2α − π/2) + i(tanh−1 t)/α, z goes from −u to 0, and as we return back to the

point ẑ = 3π/2α − π/2 along the same line, z goes from 0 to u. Finally, as we move from

ẑ = (3π/2α − π/2) to ẑ = (π/4 + 2π/α − π), z goes from u to 1. Since in the ẑ plane we

identify the lines <(ẑ) = (π/4 + 2π/α− π) with <(ẑ) = π/4, the contour closes.

From the map of the boundary to the real z axis described above we see that the ends

of the half strings, ẑ = π/4 and ẑ = (π/α − π/4) maps to 1 and −1 respectively. From

eqs.(4.8.25), (4.8.26), (4.8.27) we see that the half string <(ẑ) = π/4 gets mapped to

z =

√
(1 + iS)2 + u2(1− iS)2

(1− iS)2 + u2(1 + iS)2
, (4.8.28)

where

S = tanh(β=(ẑ)) . (4.8.29)
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On the other hand the half-string <(ẑ) = (π/α− π/4) gets mapped to

z = −
√

(1− iS)2 + u2(1 + iS)2

(1 + iS)2 + u2(1− iS)2
. (4.8.30)

From eq.(4.8.27) we see that as t → 1 we have u → 1. Eqs.(4.8.28) and (4.8.30) then show

that as u → 1, the left and right half-strings are mapped in such a way that all points of

the left one, and all points on the right one, except for the one associated to the full string

midpoint, approach the points 1 and −1 respectively. The half strings remain infinite in

the z plane but are being reparametrized so that all of their inner points are approaching

either 1 or −1. Eq.(4.8.24) now gives

1
2
∂σ1∂σ2A

−1
Bα

(σ1, σ2) = 0 if 0 ≤ σ1 < π/2, π/2 < σ2 ≤ π . (4.8.31)

Indeed, since the half-string points σ1 and σ2 are mapped to fixed points in the limit t → 1,

the derivatives dzi/dσi go to zero, and with |z1− z2| finite, the evaluation of the right hand

side of Eq.(4.8.24) gives zero. This is consistent with the wave-functional factorizing into

a product of a functional of the left half-string and a functional of the right half-string.

Indeed, since the interior of the right half-string is going into a point and the interior of the

left half-string is going into another point in the z-plane, we have an explicit verification of

the factorization relation (4.4.3).

In order to determine which particular state of the half-string appears in the product,

we need to evaluate the right hand side of (4.8.24) when σ1 and σ2 lie on the same half

of the string. For definiteness we shall take 0 ≤ σ1, σ2 < π/2. The coordinate σ of the

half-string is related to ẑ through ẑ = tan−1(eiσ). On the left half string, we can rewrite

this as:

ẑ = π/4 +
i

2
ln

(
1 + sinσ

cosσ

)
. (4.8.32)

Using eqs.(4.8.29), (4.8.32) we get:

S(σ) =
(1 + sin σ)β − cosβ σ

(1 + sin σ)β + cosβ σ
. (4.8.33)

We can now use eqs.(4.8.24), (4.8.30) and (4.8.33) to compute ∂σ1∂σ2A
−1
Bα

(σ1, σ2). Note from

eqs.(4.8.30), (4.8.33) that as t → 1, the points z1 and z2 come close together and dzi/dσi
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also vanishes. Thus we need to do this computation by keeping t slightly away from 1 and

then take the limit t → 1. To first order in (1− t),

z = 1 + i(1− u2)
S

1− S2
. (4.8.34)

Substituting this into (4.8.24) we get

∂σ1∂σ2A
−1
Bα

(σ1, σ2) = ∂σ1∂σ2

[
−ln

∣∣∣∣
S(σ1)

1− S(σ1)2
− S(σ2)

1− S(σ2)2

∣∣∣∣
2

−ln
∣∣∣∣

S(σ1)
1− S(σ1)2

+
S(σ2)

1− S(σ2)2

∣∣∣∣
2]

.

(4.8.35)

This, in turn, gives us the wave-functional of the generalized butterfly state through eq.(4.8.22).

As a special example we can consider the case of the butterfly state α = 1. In this case

we have β = 1 and hence

S(σ) =
(1 + sinσ)− cosσ

(1 + sinσ) + cosσ
. (4.8.36)

Substituting this into eq.(4.8.35) we get

∂σ1∂σ2A
−1
Bα=1

(σ1, σ2) = −∂σ1∂σ2

[
ln |2 cos(2σ1)− 2 cos(2σ2)|

]
, for 0 ≤ σ1, σ2 < π/2 .

(4.8.37)

Comparing this with (4.2.33) we see that after a rescaling σ → 2σ the half string wave-

functional coincides with the ground state wave-functional of the string. This is in accor-

dance with the analysis of section 4.6.4.

We could also try to derive the wave-functional of the nothing state by taking the α → 2

limit. From (4.8.27) we see that in this limit β →∞. Eq.(4.8.29) then gives,

S ' 1− 2e−2β=(bz) . (4.8.38)

Eqs.(4.2.29), (4.2.30), (4.8.35) then gives:

〈N |∂σ1X(σ1)∂σ2X(σ2)|N 〉 = ∂σ1∂σ2A
−1
Bα=2

(σ1, σ2)

' −∂σ1∂σ2

[
ln

∣∣∣e2β=(bz1) − e2β=(bz2)
∣∣∣
2
+ ln

∣∣∣e2β=(bz1) + e2β=(bz2)
∣∣∣
2]

' −∂σ1∂σ2 ln
∣∣∣1− e−4β|=(bz1)−=(bz2)|

∣∣∣
2
. (4.8.39)

This clearly vanishes in the β →∞ limit for σ1 6= σ2. This is consistent with the fact that

the wave-functional of the nothing state is a constant independent of X(σ), since as we see
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from eq.(4.2.30), if Af vanishes, then the path integration over X makes the expectation

value of ∂σ1X(σ1)∂σ2X(σ2) vanish for σ1 6= σ2 due to the X(σ) → −X(σ) symmetry at

each point σ.

4.9 Other Projectors and Star Subalgebras

So far in this chapter we have developed general properties of split wave-functionals and

projectors, and also discussed in detail certain projectors, such as the butterfly and its gen-

eralizations, and the nothing state. Of these, the butterfly has the simplest representation

as the exponential of a single Virasoro generator acting on the vacuum. In this section we

exhibit other projectors whose Virasoro representation is as simple as that of the butterfly.

We also discuss subalgebras of surface states that generalize the commutative wedge state

subalgebra.

4.9.1 A class of projectors with simple Virasoro representation

The butterfly state, which is simply given as exp(−1
2L−2)|0〉 (see Eq.(4.6.33)), suggests

the question whether there are other projectors which can be written as an exponential

involving a single Virasoro operator. To this end, we consider the vector fields

v(n)(ξ) = −β

n
ξn+1 , (4.9.1)

which generate the diffeomorphisms [79]

z = f(n)(ξ) = exp
(
v(n)(ξ)

∂

∂ξ

)
ξ =

ξ

(1 + β ξn)1/n
. (4.9.2)

The associated surface states are

|Bn(β)〉 = exp
(
−β

n
(−1)nL−n

)
|0〉 . (4.9.3)

For even n one can readily implement the projector condition f(ξ = ±i) = ∞ by a choice

of the parameter β. Indeed, this condition fixes

β = −(−)n/2 , n even . (4.9.4)
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We therefore obtain candidate projectors

|P2m〉 = exp
(
(−1)m 1

2m
L−2m

)
|0〉 . (4.9.5)

The case m = 1 is the canonical butterfly, and the next projectors are

exp
(1

4
L−4

)
|0〉 , exp

(
−1

6
L−6

)
|0〉 , exp

(1
8
L−8

)
|0〉 · · · (4.9.6)

and so on. These projectors obey the conservation law

K2m|P2m〉 = 0 , (4.9.7)

which is the obvious generalization of (4.6.34) and can be proven in the same way considering

the global vector fields

ṽ2m(z) = 2(−1)m+1z − z−2m+1 . (4.9.8)

It is interesting to note that |P4〉 for example, is a state where the open string boundary

condition chosen to define the state does not hold at the string endpoint. This is because

the map f4(ξ) = ξ/(1− ξ4)1/4 is singular at ξ = ±1. The boundary of Σ is discontinuous at

the open string endpoints, and the phenomenon discussed at the end of section 4.4.2 occurs.

4.9.2 Subalgebras of surface states annihilated by Kn

The family of wedge states |Wr〉 [12, 107], defined in the z representation by the maps

z =
r

2
tan

(2
r

arctan(ξ)
)

, (4.9.9)

obeys K1|Wr〉 = 0 , for all values of the parameter r, 1 ≤ r ≤ ∞. The wedge states

interpolate between the identity |W1〉 ≡ |I〉 and the sliver, |W∞〉 ≡ |Ξ〉. By analogy, it is

natural to ask if there is a family of states all annihilated by K2, interpolating between the

identity and the butterfly, and also containing the nothing state, see (4.7.6). Indeed, we

have found such a family, defined by the maps

z = g(2)
µ (ξ) =

1√
4µ

[
1−

(
1− ξ2

1 + ξ2

)2µ
] 1

2

. (4.9.10)
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For µ = −1 we recover the identity, for µ = 1/2 the canonical butterfly and for µ = 1 the

nothing state. The condition g
(2)
µ (±i) = ∞ is satisfied for µ ≥ 0, so according to our general

arguments all the states with µ ≥ 0 are candidate projectors.

More generally, for any given integer n, we can look for the family of all surface states

in the kernel of Kn. Since Kn is a derivation, each family will be closed under star-

multiplication. Let z = g(n)(ξ) be a map that defines a surface state annihilated by Kn.

We require as usual that g(n)(ξ) has a regular Taylor expansion in ξ = 0 with g(n)(0) = 0,
dg(n)(0)

dξ = 1. We can find the general form of g(n)(ξ) by demanding that the vector field

ṽn(z) =
dz

dξ
(ξn+1 − (−1)nξ−n+1) , (4.9.11)

be globally defined in the UHP – this is precisely the condition that the state is annihilated

by Kn. Clearly ṽn(z) must have a pole of order (n − 1) at z = 0. The most general form

for such a globally defined vector field is

ṽn(z) =
Pn+1(z)

zn−1
, (4.9.12)

where Pn+1(z) is a polynomial of order (n+1) with non-vanishing constant term. The order

of Pn+1 is fixed by the requirement that the vector field is regular at infinity, limz→∞ z−2ṽn(z) =

const. Distinguishing between the cases of n even or odd we find that the two previous equa-

tions lead to the differential equations

1
2n

d ln
(

1− ξn

1 + ξn

)
=

zn−1

Pn+1(z)
dz for n even , (4.9.13)

1
n

d arctan(ξn) =
zn−1

Pn+1(z)
dz for n odd .

Demanding that the surface state is twist even requires that z be an odd function of ξ, and

this restricts the polynomial Pn+1 to contain only even powers of z. For n = 1, the most

general twist even solution is the family of maps (4.9.9) defining the wedge states; for n = 2,

imposing again the twist even condition, we find the one-parameter family (4.9.10). Higher

values of n give multi-parameter solutions.
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i arctanh t/
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−

Figure 4.22: The geometry involved in the computation of (4.10.2). The two dots on the
real line denote the insertion of χ± at distance ε away from the two edges. The thick dashed
line on the boundary represents BCFT ′ boundary condition, whereas the thick continuous
line represents BCFT boundary condition.

4.10 Butterfly States Associated with General BCFT

In Ref.[59] we described the construction of sliver states associated with a general boundary

conformal field theory (BCFT). A very similar construction can be carried out for gener-

alized butterfly states associated with a general BCFT. For this we denote by BCFT the

reference BCFT in whose Hilbert space we wish to represent all the butterfly states, and

by BCFT ′ some other BCFT. Let χ± denote a pair of boundary condition changing oper-

ators of dimension h, such that an insertion of χ+ (χ−) on the real axis separates BCFT

(BCFT ′) boundary condition to the left of the insertion from BCFT ′ (BCFT ) boundary

condition to the right of the insertion. Furthermore, χ± are required to satisfy the operator

product expansion:

χ−(x)χ+(y) = (y − x)−2h + non-leading terms . (4.10.1)

Let us now define the state |B′α,t〉 associated to a regulated butterfly through the relation:

〈B′α,t|φ〉 = (2ε)2h
〈
f (0) ◦ φ(0)χ+(

π

4
+ ε)χ−(

π

α
− π

4
− ε)

〉
Cα,t

, (4.10.2)
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where ε is any finite positive number, f (0)(ξ) = tan−1 ξ, and Cα,t denotes the semi-infinite

cylinder with circumference π/α with a cut parametrized by t, as shown in Fig. 4.22. Let

us define |B′α〉 to be the state |B′α,t=1〉 and Cα to be the cylinder Cα,1. Using the conformal

transformation

z =
1
α

sin(αẑ) ≡ gα(ẑ) , (4.10.3)

that maps Cα to the upper-half z-plane, we can reexpress 〈B′α|φ〉 as

〈B′α|φ〉 = (2ε)2h
〈
gα ◦ f (0) ◦ φ(0) gα ◦ χ+(

π

4
+ ε) gα ◦ χ−(−π

4
− ε)

〉
UHP

. (4.10.4)

In the last step we have used the periodicity in the ẑ plane to replace χ−(π/α − π/4 − ε)

by χ−(−π/4− ε).

ε 2ε ε

χ χχ+ +− χ −

Figure 4.23: The geometry involved in the computation of |B′α,t ∗ B′α,t〉. The boundary
components labeled by thick continuous line represent BCFT boundary conditions and the
boundary components labeled by thick broken lines label BCFT ′ boundary conditions. The
coordinate labels of various points are identical to those in Fig.4.20.

The computation of |B′α,t ∗ B′α,t〉 is straightforward using the gluing rules in the ẑ coor-

dinate system. The result is:

〈B′α,t ∗B′α,t|φ〉 = (2ε)4h
〈
f ◦φ(0)χ+(

π

4
+ε)χ−(

π

α
− π

4
−ε)χ+(

π

α
− π

4
+ε)χ−(

2π

α
− 3π

4
−ε)

〉
C′α,t

.

(4.10.5)

The geometry of C′α,t has been shown in Fig.4.23. This correlation function can be evaluated

by mapping it to the UHP via the map given in eq.(4.8.10). As shown in section 4.8.2, as t →
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1 this approaches eq.(4.8.21), with part of the C′α,t plane in the middle collapsing to a point in

the ẑ plane. In this case this part includes the insertion χ−(π/α−π/4−ε)χ+(π/α−π/4+ε),

and hence this can be replaced by the leading term in the operator product expansion which

is (2ε)−2h. Thus in the t → 1 limit, we can rewrite (4.10.5) as,

〈B′α ∗ B′α|φ〉 = (2ε)2h
〈
f ◦ φ(0)χ+(

π

4
+ ε)χ−(−π

4
− ε)

〉
C′α,1

, (4.10.6)

where we have used the periodicity in the ẑ plane to replace χ−(2π/α − 3π/4 − ε) by

χ−(−π/4 − ε). Using the result of section 4.8.2 that the map gα(ẑ) defined in eq.(4.10.3),

that maps Cα to the upper half plane, also maps C′α,t to the upper half plane for t = 1, we

have:

〈B′α ∗ B′α|φ〉 = (2ε)2h
〈
gα ◦ f ◦ φ(0)gα ◦ χ+(

π

4
+ ε)gα ◦ χ−(−π

4
− ε)

〉
UHP

. (4.10.7)

Comparing eqs.(4.10.4) and (4.10.7) we see that

〈B′α| = 〈B′α ∗ B′α| , (4.10.8)

as we wanted to show. We end this section by noting that this construction can be easily

generalized to construct any of the projectors discussed in section 4.5 associated with a

general BCFT.

4.11 Concluding Remarks

In this chapter we have given a rather general discussion of projectors of the open string

∗-algebra and split wave-functionals. It was found that in addition to the sliver, infinitely

many projectors exist which have pure geometrical interpretation as surface states. We have

also seen that such surface states, in general, can be viewed as tensor products of half-string

surface states. This viewpoint makes it clear that the half-string surface states are naturally

defined with the same open string boundary conditions as the full string states. Moreover,

all projectors are clearly recognized as being invariant under opposite constant translations

of the half strings. We have illustrated in detail our general considerations, by discussing

explicitly several interesting projectors.
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While we have indicated that the projectors considered here are expected to be equiv-

alent in that they define physically equivalent solutions of vacuum string field theory, our

focus on specific projectors and their properties may have applications in other contexts.

For example, it seems clear that OSFT solutions are not projectors. It follows, that if OSFT

solutions are eventually built in terms of deformations of projectors, particular projectors

could be of special use. As noted, level expansion does seem to single out the butterfly as

a special projector. There may still be other surface state projectors deserving particular

attention which we have not uncovered.

One question we have not attempted to investigate is how the approach of the midpoint

to the boundary controls the behavior of the projector. While f(ξ = i) = ∞ seems necessary

to have a projector, it may be of interest to understand the full significance the behavior

of f near ξ = i. We have already seen that this behavior controls the boundary conditions

satisfied by the half string states.

In this chapter we have only considered string fields which have a purely geometric

interpretation as surface states associated to Riemann surfaces. All such string fields belong

to the Virasoro module on the vacuum. We have uncovered the general geometric mechanism

that gives rise to rank-one surface state projectors. It should be kept in mind that there

are many projectors that lie outside the Virasoro module of the vacuum and do not have a

purely geometric interpretation. For example there are squeezed states built with flat space

oscillators that star-multiply to themselves but are not surface states.

It has been recently recognized [106, 21] that the open string star product can be in-

terpreted as a continuous tensor product of mutually commuting two-dimensional Moyal

products. This algebraic approach is likely to shed new light on projectors, and it will

be interesting to understand in detail the connection with the geometric methods of the

present chapter. A complete understanding of projectors could well help eventually give a

concrete description of the star-algebra. In fact, given the central role of projectors in the

study of non-commutative field theory, it is natural to expect that star-algebra projectors

will have an important role in our future understanding of string field theory.
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4.12 Numerical Computations Involving the Butterfly

In this appendix we shall present numerical results for computations involving the butterfly

at various levels of approximation. We approximate the butterfly by truncating it to a given

level L, and calculate various star products keeping only terms up to level L. The results

are given in Tables 1, 2 and 3. The last column gives the expected answers, and the last

but one column gives the extrapolation of the numerical answers to infinite level using a fit

of the form a + b/L + c/L2.

Table 1 contains numerical results for the square of the butterfly. As we see from this

table, as we include more and more terms in the expression for the butterfly, the closer is

its square to the expected answer.

We can also test the property (4.5.4) that the butterfly is a rank-one projector. We

need to work in a unitary BCFT, so we choose to consider butterfly states |Bc=1〉 built

with Virasoro generators of central charge one. Star multiplication of surface states in this

theory works as in the c = 0 case but with extra (infinite) overall factors arising from the

conformal anomaly. These infinite factors are regulated by the level truncation procedure

and we ignore them, considering the results up to their overall normalization. In Table 2

and Table 3 we present the numerical results for the normalized products |Bc=1〉∗|0〉∗|Bc=1〉
and |Bc=1〉∗L−2|0〉∗|Bc=1〉. From (4.5.4) we expect these products to be proportional to the

butterfly, and indeed this is seen to hold more and more accurately as the level is increased.

These numerical results confirm the formal arguments of this chapter that the butterfly

is a rank-one projector of the ∗-algebra.



186

L = 2 L = 4 L = 6 L = 8 L = 10 L = 12 L = ∞ Exp

|0〉 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

L−2|0〉 -0.43230 -0.46035 -0.47214 -0.47858 -0.48263 -0.48540 -0.49981 -0.50000

L−4|0〉 0 -0.00351 -0.00213 -0.00146 -0.00108 -0.00084 0.00021 0.00000

L−2L−2|0〉 0 0.10845 0.11309 0.11567 0.11732 0.11847 0.12307 0.12500

L−6|0〉 0 0 0.00168 0.00117 0.00087 0.00068 0.00005 0.00000

L−4L−2|0〉 0 0 0.00040 0.00027 0.00021 0.00017 0.00003 0.00000

L−3L−3|0〉 0 0 -0.00034 -0.00023 -0.00016 -0.00012 0.00001 0.00000

(L−2)3|0〉 0 0 -0.01771 -0.01843 -0.01887 -0.01918 -0.02017 -0.02083

Table 4.1: Numerical results for the coefficients of |B〉 ∗ |B〉.

L = 2 L = 4 L = 6 L = 8 L = 10 L = 12 L = ∞ Exp

|0〉 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

L−2|0〉 -0.39892 -0.44581 -0.46296 -0.47192 -0.47743 -0.48115 -0.50002 -0.50000

L−4|0〉 0 -0.00617 -0.00231 -0.00136 -0.00093 -0.00069 0.00009 0.00000

L−2L−2|0〉 0 0.09982 0.10808 0.11217 0.11465 0.11633 0.12312 0.12500

L−6|0〉 0 0 0.00349 0.00143 0.00088 0.00063 -0.00002 0.00000

L−4L−2|0〉 0 0 0.00117 0.00054 0.00033 0.00024 -0.00005 0.00000

L−3L−3|0〉 0 0 -0.00005 -0.00011 -0.00009 -0.00007 0.00000 0.00000

L−2L−2L−2|0〉 0 0 -0.01652 -0.01761 -0.01825 -0.01867 -0.02007 -0.02083

Table 4.2: Numerical results for the coefficients of |Bc=1〉 ∗ |0〉 ∗ |Bc=1〉. The coefficient of
|0〉 in the result has been normalized to one.
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L = 2 L = 4 L = 6 L = 8 L = 10 L = 12 L = ∞ Exp

|0〉 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

L−2|0〉 -0.48377 -0.49010 -0.48462 -0.48562 -0.48720 -0.48862 -0.48519 -0.50000

L−4|0〉 0 -0.05238 -0.00861 -0.00461 -0.00312 -0.00233 -0.00689 0.00000

L−2L−2|0〉 0 0.11387 0.11410 0.11565 0.11712 0.11823 0.12254 0.12500

L−6|0〉 0 0 0.02146 0.00456 0.00247 0.00166 0.00258 0.00000

L−4L−2|0〉 0 0 0.00288 0.00054 0.00043 0.00035 0.00086 0.00000

L−3L−3|0〉 0 0 -0.00083 -0.00093 -0.00055 -0.00038 0.00059 0.00000

L−2L−2L−2|0〉 0 0 -0.01738 -0.01795 -0.01848 -0.01886 -0.02016 -0.02083

Table 4.3: Numerical results for the coefficients of |Bc=1〉 ∗ L−2|0〉 ∗ |Bc=1〉. The coefficient
of |0〉 in the result has been normalized to one.



Chapter 5

Closed string emission and

D-brane decay

5.1 Introduction

Our starting point for the work in this chapter is the real-time process of D-brane creation

and annihilation. In [109] Sen introduced a simple class of models in bosonic string theory

obtained by perturbing the flat-space c = 26 CFT with the exactly marginal deformation

λ

∫
dt cosh(X0(t)) , (5.1.1)

where t is a coordinate on the worldsheet boundary, and λ is a free parameter in the range

0 ≤ λ ≤ 1
2 . This is a family of exact solutions of classical open string theory whose space-

time picture is that of an unstable brane being created at a time X0 ∼ −τ and decaying at

a time X0 ∼ +τ , with τ = − log(sin(πλ)). For λ = 1
2 the lifetime of the brane is zero, that

is, there is no brane to be found anywhere. Moreover, the corresponding boundary state

appears to vanish identically [109]. This is fascinating as it seems to suggest that for λ = 1
2

the BCFT (5.1.1) describes the stable closed string vacuum, where open string degrees of

freedom are absent. Somehow the boundary perturbation (5.1.1) with λ = 1
2 must get rid

of the worldsheet boundary!

188
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In the framework of (5.1.1), we have the opportunity to precisely test a scenario [53, 24]

for how purely closed string amplitudes may be obtained at the tachyon vacuum. The basic

idea is that as the tachyon condenses, worldsheets with large holes are suppressed, and

the integration over moduli space should localize to the region where the holes shrink to

points. This heuristic picture was made somewhat more concrete in chapter two, where it

was argued that amplitudes for m external closed strings on the disk reduce at the tachyon

vacuum to sphere amplitudes with the same m closed string punctures plus an additional

insertion of a zero-momentum state (possibly a soft dilaton), a remnant of the shrunk

boundary. This analysis [24] was performed in the framework of a regulated version of

vacuum string field theory [129]. However, due to subtleties in the regulation procedure, it

was difficult to make this conclusion completely precise.

Since we wish to focus on the case λ = 1
2 , it is very useful to realize that at this critical

value the BCFT admits a simple description. By Wick rotation X0 → iX, one obtains the

well-known exactly marginal deformation λ cos(X) [130] (infact this is how Sen arrived at

(5.1.1) in the first place), which for λ = 1
2 is equivalent to an infinite array of D-branes

located at X = 2π(n + 1
2) [130, 131]. We could thus say that at the critical value λ = 1

2 ,

the time-dependent boundary deformation (5.1.1) becomes an array of D-branes located at

imaginary times

X0 = i 2π(n +
1
2
) , n ∈ Z . (5.1.2)

This is an empty statement if we do not define the meaning of D-branes in imaginary time.

Our approach to that issue is very simple: Any quantity that one wishes to compute for

a configuration of D-branes in imaginary time should be obtained by Wick rotation of the

configuration in real space. This prescription gives consistent answers with an interesting

physical meaning.

A natural class of observables is given by scattering amplitudes of closed strings on the

disk in the background of the brane configuration (5.1.2). We find that these reduce to

sphere amplitudes with m+1 punctures. The extra puncture is, however, not a soft dilaton

as in [24], but a non-trivial closed string state that involves the whole tower of massive
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modes. Thus the BCFT (5.1.1) with λ = 1
2 describes a purely closed string background with

no physical open string degrees of freedom. This background, however, is not the closed

string vacuum, but a specific time-dependent state with non-zero energy. The detailed

features of this background are very reminiscent of ‘tachyon matter’ [110, 111].

While these results were first obtained in the special case (5.1.2), the basic conclusion is

much more general. A generic configuration of imaginary D-branes defines a closed string

background. The details of the background depend on the details of the configuration of

imaginary D-branes. Exactly marginal open string deformations, for example deformations

that move the positions of the imaginary branes, are naturally reinterpreted as deformations

of the closed string background. The case (5.1.2) is seen to be very special as the closed

string state has divergent norm [119], and the background admits an additional exactly

marginal deformation which is associated with the creation of an actual brane in real time.

An outline of the chapter is as follows. In section 2 we spell out the basic prescription for

how to deal with the array of D-branes in imaginary time. We consider a more general case in

which X0 = ia(n+ 1
2), where a is an arbitrary parameter, and find a general formula for disk

amplitudes associated with such an array. In section 3 we analyze in detail disk amplitudes

for scattering of m external closed strings from the array of D-branes in imaginary time.

By an exact computation, we show that they are equivalent to sphere amplitudes with the

same m closed strings insertions plus the insertion of an extra closed string state |W 〉. The

details of this closed string state, in particular its space-time interpretation, are studied

in section 4. The energy of the state is finite and of order O(g0
s) = O(1) for any a > 2π.

The case a = 2π, corresponding to λ = 1
2 in the BCFT (5.1.1), is seen to be special as the

normalization and energy of the state diverge [119]. We suggest a heuristic mechanism to

cutoff this divergence, namely we point out that the gravitational back-reaction makes the

effective distance aeff = 2π + γ gs, with γ > 0, leading to a total energy of order 1/gs.

In section 5 it is shown that although the imaginary array of branes does not have

propagating open string degrees of freedom, open strings still play an important role. There

still exists a discrete set of on-shell open string vertex operators corresponding to exactly
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marginal deformations, for example deformations that move the branes around in imaginary

time. These open string moduli are re-interpreted as closed string deformations, according

to a precise dictionary. In section 6 we show that, subject to certain reality conditions,

one can distribute D-branes quite freely in the complex X0 plane. The reduction of disk

amplitudes to sphere amplitudes still holds in this general case. We briefly comment on

extensions to the superstring. In section 7 we briefly discuss some ideas about the open

string field theory associated with D-branes in imaginary time and speculate that a version

of vacuum string field theory may be obtained in the limit a →∞.

Section 8 is devoted to the case a = 2π. In this case there is an additional exactly

marginal open string deformation (which we may label as ‘cosh(X0)’) which is not dual to a

purely closed deformation, as it introduces instead an actual D-brane in real time. We give

a treatment of (5.1.1) for all λ ≤ 1
2 by representing the boundary state as an infinite array

of some specific smeared sources, and then performing the Wick rotation. We find that for

λ < 1
2 a time-delay of order τ is introduced between the incoming and the outgoing parts

of the closed string wave, while for |X0| < τ there is an actual source for the closed string

fields.

Finally in section 9 we describe a curious application of our set-up. We consider an

array of branes in imaginary time, and tune various parameters in such a way that the

closed string state |W 〉 becomes simply a classical, spherically symmetric dilaton wave with

barely enough energy to form a black hole. Fascinating critical behavior was discovered by

Choptuik [132] in such a system. We observe that in the corresponding Euclidean theory

this critical point corresponds to a phase transition reminiscent of the Gregory-Laflamme

[133] phase transition. We speculate on a possible realization of this phase transition in

large N open string field theory.

5.2 Preliminaries

We wish to give a meaning to the notion of an array of D-branes located at imaginary times

X0 = i(n + 1
2)a. The distance a = 2π (in units α′ = 1) corresponds to the λ = 1

2 case
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of the BCFT (5.1.1), but it is interesting and not more difficult to keep a arbitrary. In

this section we define our basic prescription to compute disk amplitudes of external closed

strings in the background of this ‘imaginary array’. We first give a naive argument why

all such scattering amplitudes vanish. Then we illustrate, via a simple example, a natural

analytic continuation prescription that actually yields non-zero answers. Finally we derive

a simple general formula that expresses the scattering amplitude S in the background of the

imaginary array in terms of the scattering amplitude Ã for a single D-brane in real time.

5.2.1 Naive argument

Let us denote the scattering amplitude of some closed strings off a single D-brane located

at X = 0 by Ã. Here X is a spatial coordinate. To find the scattering amplitude S for an

array of D-branes located at imaginary time we could proceed in two steps:

(i) Find the scattering amplitude S̃ for an array of D-branes located at the real positions

X = (n + 1
2)a, n ∈ Z. This is given by

S̃(P, . . . ) =
∞∑

n=−∞
Ã(P, . . . )ei(n+ 1

2)aP = Ã(P, . . . )
∞∑

n=−∞
(−1)n 2πδ(Pa− 2πn), (5.2.1)

where P is the total momentum in the X direction and the dots denote other variables

that the amplitude may depend on. This is a precise equality in the sense of distributions.

Simply put, the momentum has to be quantized due to the periodicity in X.

(ii) Apply (inverse) Wick rotation

X → −iX0, P → iE, (5.2.2)

where now X0 and E are real. This has the effect of turning the spatial coordinate X into

a temporal coordinate X0 and of rotating the array of D-branes from the real axis to the

imaginary axis, X0 = i(n + 1
2)a. So it takes us exactly to the set-up that we wish to study.

Wick rotating (5.2.1) we get the formal expression

S(E, . . . ) ≡ S̃(iE, . . . ) = Ã(iE, . . . )
∞∑

n=−∞
(−1)n 2πδ(iEa− n). (5.2.3)
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Naively this implies that S(E, . . . ) is identically zero since for any real E the delta functions

vanish. However one has to be more careful, as Ã(iE, . . . ) may blow up for some real values

of E yielding a non-zero S(E). Clearly the discussion so far has been quite formal, for

example the summation (5.2.1) does not commute with the Wick rotation (5.2.2) in the

sense that if we first Wick rotate and then sum over the array, the sum does not converge

for any real E. We need to specify an unambiguous prescription for the analytic continuation

(5.2.2). Let us illustrate how a natural prescription comes about in a simple example.

5.2.2 Example

The example we wish to study is

Ã(P, . . . ) =
1

P 2 + c2
, (5.2.4)

where c is a real number (we take for definiteness c > 0) that can depend on the other

variables but not on P . This is the one-dimensional Euclidean propagator. In position

space,

G̃(X) =
∫

dP Ã(P ) eiPX =
π

c
e−c|X| , (5.2.5)

which obeys
(

d2

dX2 − c2
)

G̃(X) = −δ(X) . All the amplitudes we study in this chapter can

be expanded in terms of (5.2.4). Hence this example is of special importance.

The advantage of working in position space is that now we can simply sum over all the

contributions of the array of D-branes explicitly:

G̃array(X) =
π

c

∞∑
n=−∞

e−c|a(n+ 1
2
)+X| . (5.2.6)

This is a periodic function with period a (see Fig.1), given in a neighborhood of X = 0 by

G̃array(X) =
π cosh(cX)
c sinh( ca

2 )
, |X| ≤ a

2
. (5.2.7)

Now we wish to Wick rotate. Of course, G̃array(X) is not an analytic function, precisely

because of the δ-function sources located at X = (n + 1
2)a. So we need to specify what we
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Figure 5.1: A graph of G̃array(X), which has the interpretation of the field produced by an
infinite array of δ-function sources (‘D-branes’) located at X = a(n + 1

2) . The dashed line
represents the analytic continuation to |X| > a

2 of the branch around the origin.

exactly mean by the analytic continuation X → −iX0. A natural prescription is to focus

on the branch around the origin to find

Garray(X0) =
π cos(cX0)
c sinh( ca

2 )
. (5.2.8)

Fourier transforming (5.2.8) back to momentum space we find

S(E, . . . ) =
π

2c sinh( ca
2 )

(δ(E − c) + δ(E + c)). (5.2.9)

As anticipated by the heuristic discussion in the previous subsection, while Ã(P, . . . ) is

non-zero for any real P , we find that S(E, . . . ) has support only for those values of E

corresponding to singularities of Ã(P, . . . ), namely E = −iP = ±c. As we shall see in the

context of string theory this will have the interpretation of a change in the dimension of

the moduli space.
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5.2.3 General prescription

In principle, all amplitudes considered in the chapter could be expanded in terms of the

example studied above. It would be nice however to have a general formula that gives

S(E, ...) in terms of Ã(P, . . . ). To this end consider, for generic Ã(P, . . . ),

G̃array(X) =
∫ ∞

−∞
dP eiP X

∞∑
n=−∞

(−1)n 2πδ(aP − 2πn)Ã(P, . . . ). (5.2.10)

In all cases that we study in the present chapter Ã(P, . . . ) is an analytic function with

poles or cuts only along the imaginary P axis. Moreover Ã(P, . . . ) goes to zero for |P | → 0

sufficiently fast to validate to following argument.

With the help of the residues theorem we can write

G̃array(X) =
1
2i

∮

C
dP eiP X Ã(P, . . . )

sin(aP
2 )

, (5.2.11)

where the contour C is depicted in Fig.2. By our analyticity assumptions on Ã(P, . . . ), the

curve C can be deformed to C̃ without crossing any singularities (see Fig.2) and without

picking up any contributions from the two semi-circles at infinity (that are not shown in

the figure). So we conclude, after Fourier transforming back to momentum space, that

S(E) = F (E)DiscE [Ã(iE)] (5.2.12)

where

F (E) =
1

2 sinh
(

aE
2

) . (5.2.13)

Here by DiscE we mean the discontinuity with respect to E, namely

DiscE [f(E)] =
f(E + iε)− f(E − iε)

i
, (5.2.14)

so for example DiscE(1/E) = −2πδ(E). Let us check our master formula (5.2.12, 5.2.13)

in the example studied in the previous subsection. From (5.2.4), Ã(iE) = 1/(−E2 + c2);

applying (5.2.12, 5.2.13) we immediately reproduce the result (5.2.9).
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Figure 5.2: Integration contours in the complex P plane. The zeros of sin(aP/2) are denoted
by the symbols ‘x’ along the real P axis. The black dots represent possible poles of Ã and
the thick line represents a possible cut. We assume that the only singularities of Ã are on
the imaginary P axis.

5.3 Disk amplitudes

To gain some insight into the meaning of the D-brane array at imaginary times (5.1.2), we

now turn to a detailed analysis of disk scattering amplitudes of external closed strings. We

start by considering the simplest possible case, namely the amplitude of two closed string

tachyons. We first study this concrete example using standard methods, and then describe

a more abstract point of view, that can be generalized easily to m-point functions involving

arbitrary on-shell closed strings. A clear physical interpretation will emerge.

5.3.1 Tachyon two-point amplitude

The simplest non-trivial case that we consider is the disk amplitude with the insertion of

two closed string tachyons. This example, which we are going to work out in full detail,

contains already much of the essential physics.
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To apply the prescription derived in the previous section, we need to evaluate the disk

two-point function Ã(p1, p2) for a standard D-brane. We consider a D(p-1) brane with

Dirichlet boundary conditions for X̃M , M = 0, · · · , 25 − p and Neumann boundary condi-

tions for X̃m, m = 26 − p, · · · , 25. We are using a notation that will be natural for the

theory after the Wick rotation: X̃0 is a spatial coordinate that will become timelike after

Wick rotation. In order to have a standard D-brane with Neumann conditions in time,

we take one of the X̃m to be timelike. So the Wick rotation is actually a double Wick

rotation: It transforms X̃0 from spacelike to timelike and one of the parallel directions X̃m

from timelike to spacelike1 . In practice, the amplitude Ã(p1, p2) will be written in terms

of kinematic invariants, so these distinctions are of no much consequence.

It is convenient to break up the momenta into parallel and perpendicular directions,

pµ = (pM
⊥ , pm

‖ ) , (5.3.1)

and define the kinematic invariants

s = p2
1‖ = p2

2‖ (5.3.2)

t = (p1 + p2)2 = (p1⊥ + p2⊥)2 .

In our conventions2 α′ = 1, so that the on-shell condition for closed string tachyons is

p2 = 4.

The two-point disk amplitude has one modulus (four real coordinates minus three con-

formal Killing vectors). We work with a slightly unconventional parametrization of this

moduli space that will be easy to generalize later when we turn to higher-point functions.

Namely we shall fix the positions of the two vertex operators and integrate over the radius

of the disk. We represent the disk as the complex domain Hρ = {z ∈ C, |z| ≥ ρ}, that is

we cut out a hole of radius ρ from the complex plane. The measure for the modulus ρ is

(b0 + b̄0)
dρ

ρ
. (5.3.3)

1The case p = 0 is special, as we must choose one of the transverse directions eXM to be timelike.
2Moreover in writing a string amplitude eA(p1, . . . pm) , we treat all momenta as incoming. Finally our

convention for the Minkowski metric is ‘mostly plus’.
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Using the standard doubling trick, a closed string vertex operator V (p, z, z̄) is replaced by

the two chiral insertions VL(p, z) and VL(p′, ρ2/z̄), where p′ = (−p⊥, p‖). For closed string

tachyons, V (p, z, z̄) = c(z)c̄(z̄) exp(ipX(z, z̄)) and VL(p, z) = c(z) exp(ipXL(z)). Fixing the

tachyon vertex operators at z = 1 and z = ∞, we have

Ã(p1, p2) =
1

2πi

∫ 1

0

dρ

ρ

∮

|z|=ρ
dz 〈VL(p1;∞)VL(p2; 1) b(z) VL(p′2; ρ

2)VL(p′1; 0) 〉 , (5.3.4)

where the symbol 〈 , 〉 denotes a CFT correlator on the plane. A short calculation gives

Ã(p1, p2) =
∫ 1

0
dρ ρt/2−3(1− ρ2)s−2 =

Γ(t/4− 1)Γ(s− 1)
2 Γ(t/4 + s− 2)

. (5.3.5)

This is of course a standard result, with a familiar interpretation [134, 135]. The scattering

amplitude of a closed string off a D-brane shows the usual ‘dual’ structure with poles both in

the open and in the closed string channel. In the open string channel, the poles are located

at s = 1, 0,−1, . . . and arise from expanding around ρ = 1 where the vertex operators

approach the boundary. In the closed string channel, we see poles at t = 4, 0,−4, . . . ,

arising from expanding around ρ = 0 where the boundary shrinks to zero size.

We are now in a position to apply the prescription (5.2.12)3 . The discontinuity with

respect to E = E1 + E2 = −i(p0
1 + p0

2) comes from the poles in the variable t, and so we

find that

S(p1, p2) =
1

2 sinh
(

a|E|
2

)
∞∑

k=0

fk(s) δ(t/4− 1 + k) , (5.3.6)

where

fk(s) =
(−1)kΓ(s− 1)

2 k!Γ(s− k − 1)
=

(2− s)(3− s) · · · (1 + k − s)
2 k!

. (5.3.7)

Several remarks are in order. First, all the contributions to S come from the ρ → 0

region of the moduli space. The sharpest way to see this is to introduce a cut-off ε ≤ ρ ≤ 1.

Then the amplitude Ã becomes analytic in t since the poles in the closed string channel

disappear. Applying (5.2.12) yields S = 0 for any ε. This vindicates the original intuition

that the boundary state for the array of imaginary D-branes should correspond to a ‘hole

3Notice that eA(p1, p2) obeys our analyticity assumptions, indeed it is an analytic function of the total
momentum P 0 with singularities (poles) only for imaginary P 0, and behaves as 1/|P 0|2s for large |P 0|.
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of zero size’ (an extra puncture) in the worldsheet. This intuition will be made very precise

below. Second, S has no poles in s, the open string channel! The external closed strings

do not couple to any on-shell open string degrees of freedom. Since there are no D-brane

sources in real time, this is as expected. We are describing a purely closed string background.

More precisely, (5.3.6) describes a sphere amplitude with the two tachyons insertions

and an additional on-shell closed string state that involves excitation at all levels of the

tower of massive modes. Indeed, the prefactor fk(s) is a polynomial of degree 2k in p‖,

consistently with the fact that a closed string mode at level k has up to 2k Lorentz indices.

5.3.2 Boundary state computation

In order to secure this result, and to prepare for the generalization to higher-point am-

plitudes, we now repeat the computation in a more abstract language. We still write the

amplitude in the domain Hρ, but instead of using the doubling trick, we represent the effect

of the boundary at |z| = ρ by the insertion of a boundary state |B̃p−1〉|z|=ρ. This is the full

boundary state defining the D(p-1) brane located at X̃M = 0.

A boundary state is a ghost number three state in the closed string Hilbert space,

obeying among other things the conditions

(QB + Q̄B)|B̃p−1〉 = 0 , (b0 − b̄0)|B̃p−1〉 = 0 . (5.3.8)

In radial quantization, a state at radius ρ can be obtained from a state at radius ρ = 1 by

propagation in the closed string channel,

|B̃p−1〉|z|=ρ = ρL0+L̄0 |B̃p−1〉|z|=1 . (5.3.9)

We can then write

Ã(p1, p2) =
∫ 1

0

dρ

ρ
〈|V (p1;∞,∞)V (p2; 1, 1) (b0 + b̄0) ρL0+L̄0 |B̃p−1〉|z|=1 . (5.3.10)

To proceed, we insert a complete set of states {|k, i〉},

Ã(p1, p2) =
∫

dk
∑

i

∫ 1

0

dρ

ρ
〈|V (p1;∞,∞)V (p2; 1, 1) |k, i〉 ρ( k2

2
+2li) 〈k, i|(b0+b̄0)|B̃p−1〉|z|=1 ,

(5.3.11)
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where li is the level of the state |k, i〉, and we integrate over the modulus ρ to get

Ã(p1, p2) =
∫

dk
∑

i

〈|V (p1;∞,∞)V (p2; 1, 1) |k, i〉 1
k2

2 + 2li
〈k, i|(b0 + b̄0)|B̃p−1〉|z|=1 .

(5.3.12)

This expression exhibits the decomposition of the amplitude into a source term from the

boundary state, a closed string propagator, and the 3-point interaction vertex. If we now

apply the master formula (5.2.12) we find

S(p1, p2) = 〈|V (p1;∞,∞) V (p2; 1, 1) |W 〉 , (5.3.13)

where4

|W 〉 ≡
∫

dk
∑

i

|k, i〉 δ(k2/2 + 2l(i))

2 sinh
(

a|E|
2

) 〈k, i| (b0 + b̄0)|Bp−1〉|z|=1 (5.3.14)

=
δ(L0 + L̄0)

2 sinh
(

a|E|
2

) (b0 + b̄0)|Bp−1〉|z|=1 .

We see that the interaction of the two tachyons with the imaginary array is captured by a

ghost number two closed string state |W 〉. Using (5.3.8) and {b0, QB} = L0, we have

(QB + Q̄B)|W 〉 = 0 , (b0 − b̄0)|W 〉 . (5.3.15)

These are precisely the physical-state conditions for closed strings. Moreover, we have the

freedom to add to |W 〉 BRST trivial states, that would decouple in the computation of the

correlator (5.3.13). We recognize |W 〉 as an element of the closed string cohomology. A

more detailed discussion of this state and of its space-time interpretation will be carried out

in section 4.

Finally we can trade the state |W 〉 with a vertex operator insertion at the origin, and

re-write the amplitude (5.3.13) as a CFT correlator in the plane,

S(p1, p2) = 〈V (p1;∞,∞) V (p2; 1, 1)W(0, 0) 〉 . (5.3.16)
4Notice that in the formula below we drop the ‘tilde’ on the symbol for the boundary state: |Bp−1〉

denotes the boundary state after double Wick rotation.
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This is manifestly the scattering amplitude for three closed strings on the sphere! Having

explicitly performed the integral over ρ there are no remaining moduli, as it should be for

a sphere three-point function.

Clearly this conclusion does not depend on the vertex operators V (pi, z, z̄) being closed

string tachyons. The analysis immediately generalizes to arbitrary physical closed string

vertex operators: in the background of the imaginary array, a two-point function on the

disk is equal to a three-point function on the sphere, with the on-shell vertex operator W
as the extra insertion.

5.3.3 Higher-point disk amplitudes

The computation of higher-point amplitudes is now a straightforward generalization. We

still represent the disk as the complex domain Hρ and describe the moduli space of m closed

strings on the disk by fixing the positions of two vertex operators, say V1 at z = ∞ and V2

at z = 1, and varying the positions of the other m − 2 insertions and the radius ρ of the

hole. More precisely, we vary the m − 2 coordinates over the full complex plane, {zi ∈ C,

i = 3, . . . m}, and for a given choice of the {zi} we vary the radius ρ between 0 and the

distance of the closest insertion, 0 ≤ ρ ≤ ρ0 = min[|zi|, i = 1, . . .m] (see Fig.3). This way

we cover moduli space exactly once, as can be easily checked for example by mapping the

above configuration to the the interior of the unit disk. We then have

Ã(p1, . . . , pn) =
∫

d2z3 . . . d2zm

∫ ρ0

0

dρ

ρ
(5.3.17)

〈|R{V1(p1;∞,∞)V2(p2; 1, 1) . . . Vm(pm; zm, z̄m)} (b0 + b̄0) ρL0+L̄0 |B̃p−1〉|z|=1 ,

where R{ .} denotes radial ordering. Inserting as before an intermediate complete set of

states, and performing the ρ integral, we find

Ã(p1, . . . , pn) =
∫

dk
∑

i

∫
d2z3 . . . d2zm (5.3.18)

〈|R{V1(p1;∞,∞)V2(p2; 1, 1) . . . Vm(pm; zm, z̄m)}|k, i〉 ρ
k2

2
+2li

0
k2

2 + 2li
〈k, i| (b0 + b̄0) |B̃p−1〉|z|=1 .
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Now we extract the discontinuity with respect to the energy E. Clearly we get contributions

from the poles in the propagators ∼ 1
k2/2+2li

. A priori, the integrals over the coordinates

zi may generate additional singularities. However it is not difficult to show that extra

singularities can only arise when a (proper) subset of the vertex operators have an on-shell

total momentum. We can define the amplitude by analytic continuation away from these

singular points, and then disregard these singularities. This is reminiscent of the celebrated

canceled propagator argument [5]. We can then write5 (see Fig.3)

S(p1, · · · , pm) =
∫

d2z3 . . . d2zm 〈V1(p1;∞,∞)V2(p2; 1, 1) . . . Vm(pm; zm, z̄m)}W(0, 0) 〉 .

(5.3.19)

The coordinates zi, i = 3, . . .m, are integrated over the full complex plane, so this is the

string theory amplitude for m+1 insertions on the sphere. We can check that the counting of

moduli is consistent with this result. We started with 2m−3 moduli for a disk with m closed

punctures and performed an explicit integration over ρ. This gives 2m− 4 = 2(m + 1)− 6,

which is the number of moduli for a sphere with m + 1 punctures.

5.3.4 Interpretation

Let us summarize what we have learned. Disk amplitudes for m external closed strings off

the D-brane array at the imaginary times X0 = i(n + 1/2)a are completely equivalent to

m+1-point amplitudes on the sphere, with the extra closed string insertion

gs

∫
d2zW(z, z̄) ,

where W is given by (5.3.14). The explicit factor of gs, which was omitted in the previous

formulae, comes from the relative normalization of disk amplitudes to standard sphere

amplitudes. Unlike the case of an ordinary brane, we are finding that for the imaginary

array disk amplitudes give a purely closed correction (of order gs) to the background. There

are no D-brane sources in real time, only closed strings satisfying the homogeneous wave

equation.
5Notice that the dependence on ρ0 drops because of the delta function δ(L0 + L̄0). In other terms, the ρ

integral localizes to ρ → 0 and the upper limit of integration ρ0 is immaterial.
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Figure 5.3: Before the double Wick rotation we have a standard disk amplitude. The disk
can be viewed as the region Hρ, which is the complex plane with a hole of radius ρ. There
are contributions to the scattering amplitude from all values of ρ ≤ ρ0, where ρ0 is the
distance of the closest puncture. After the double Wick rotation the only contribution is
coming from ρ = 0. The hole shrinks to a point leaving behind an extra puncture W
inserted at the origin.
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The absence of sources in real time can also be deduced from the fact that all one-point

functions on the disk are trivially zero in our prescription. This is consistent with the

computations in [110], where the stress tensor (related to the graviton one-point function)

was found to vanish in the BCFT (5.1.1) for λ = 1
2 . There are two equivalent ways to see

this in our language. The one-point function on the disk is a smooth function of the total

energy E, so there is no discontinuity in E. Alternatively, the discussion above implies that

a disk one-point function is equal to a sphere two-point function with the extra insertion

of W; but sphere two-point functions are zero because of the infinite volume of the unfixed

moduli.

Since disk amplitudes provide the first order correction to the background, it is very

natural to expect that amplitudes with multiple boundaries give the necessary higher-order

corrections. A genus zero amplitude with m external closed strings and b boundaries, is

expected to become after Wick rotation a sphere amplitude with m + b punctures, with b

insertions of gs

∫
d2zW. Notice that since the boundaries are indistinguishable, the sum over

boundaries exponentiates to the insertion of exp(
∫

d2z gsW), which has the interpretation of

a coherent state of closed strings. One may investigate this issue rigorously by representing

the effect of the boundaries using boundary states, and decomposing the moduli space of a

surface with b boundaries and m closed string punctures in terms of closed string vertices

and propagators [80]. The moduli space integration should localize to the region where

each boundary shrinks to an extra puncture. A priori, one may also expect that regions of

moduli space where zero-size boundaries collide could provide additional contributions. For

example one may expect that an annulus amplitude would reduce to a sphere amplitude

with two insertions of gsW, plus a sphere amplitude with a single insertion of a new operator

g2
sW1 coming from the shrinking of both boundaries to the same point. This issue should

be investigated further.
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5.4 The closed string state

In this section we study the physical properties of |W 〉 in more detail and make contact

with [118] and [119]. Our starting point is the boundary state |Bp−1〉, which is obtained

from double Wick rotation of |B̃p−1〉. So |Bp−1〉 is associated with a D(p-1) brane located

at XM = 0, in a space with metric (ηMN , δmn). One has

|Bp−1〉 = N δ(XM ) exp

(
−

∞∑

n=1

aµ†
n Sµν ã

ν†
n

)
|0; k = 0〉 . (5.4.1)

N is a normalization constant that can be found for example in [136], and

SMN = −ηMN , Smn = δmn. (5.4.2)

With the help of (5.3.14) we can expand |W 〉 in terms of closed string physical states,

|W 〉 = N c1c̄1|0〉gh⊗
∫

dk25−p
⊥

(2π)25−p

1
2|E|

1

2 sinh
(

a|E|
2

)
(
|k2 = 4〉−Sµν ∂Xµ∂̄Xν |k2 = 0〉+· · ·

)
,

where the dots indicate higher massive modes. The first term is the closed string tachyon,

which is an artifact of the bosonic string and is standard practice to ignore. Below we first

discuss the massless modes and then consider the massive modes.

5.4.1 Massless sector

In order to read off the dilaton and gravity wave profile from the second term we have to

undo their mixing. The unmixed dilaton and graviton (in the Einstein frame) take the form

(see e.g. [136])

hµν = Sµν − S · ε(φ)

η · ε(φ)
ηµν , φ = S · ε(φ), (5.4.3)

where

ε(φ) =
1
2
(ηµν − kµlν − kν lµ) , k · l = 1, l2 = 0. (5.4.4)

Let us first look at the case p = 0 (an array of imaginary D(-1) branes). One finds that the

Einstein metric is completely flat as all the expectation values of hµν vanish. This means

that the part of the leading term in the ADM mass, which scales like 1/gs, vanishes (see
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also [119])6 . The dilaton, on the other hand, does not vanish. So for p = 0, the massless

fields in |W 〉 consist of a spherically symmetric dilaton wave φ(r,X0) in 25+1 dimensions,

whose energy is of order O(g0
s) = O(1).

For p > 0 the 26-dimensional metric in the Einstein frame is non-trivial. However

the fields profiles are translationally invariant in the p longitudinal directions Xm, and to

read off the ADM mass we are instructed to dimensionally reduce to the 26− p transverse

dimensions. One finds that in the 26−p-dimensional Einstein frame the metric is zero, and

we have again only a spherically-symmetric dilaton wave. We conclude that to order 1/gs

the mass vanishes for general p.

The space-time profile of this dilaton wave is quite interesting [118].7 For fixed radius

r =
√

XMXM , the field decays exponentially fast as X0 → ±∞. For fixed X0, the field

decays as 1/r23−p as r → ∞, just like the fields produced by an ordinary Dp-brane, but

with a different numerical coefficient. (These two asymptotic behaviors match in a region

of thickness of the order of a around the light-cone X0 = ±r). To be precise, up to an

overall numerical constant that will not be relevant for the discussion below, the leading

asymptotic behavior as r →∞ of the various fields is, in the 26-dimensional Einstein frame,

h00 → (1 + K)(d− 3)− 2p

d− 2
1

r23−p
,

hmn → δmn

2

(
2d− 2p− 5−K

d− 2

)
1

r23−p
, (5.4.5)

hMN → δMN

2

(
2p + 1 + K

d− 2

)
1

r23−p
,

φ → d− 2p− 3−K

4
1

r23−p
.

Here d = 26 and the parameter K is set to 1 for the standard Dp-brane and is set to −1

for the background |W 〉.

An exercise one can now do is to compute the force acting on a probe D0-brane in this

dilaton wave background [118]. One has to be a bit careful here with the exact meaning
6This is consistent with Sen’s observation [110] that the stress tensor vanishes for the λ = 1

2
BCFT

(5.1.1).
7From the discussion in section 6 of [118] it is not obvious that eq.(6.27) in that section describes just a

dilaton wave. However, this can be verified with the help of eq. (5.4.3) above.
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of the ‘force’ between the brane and the wave since this is not a static set-up. The ‘force’

that can be computed using (5.4.5) for K = −1 is acting during a finite time interval

−T ≤ X0 ≤ T at a distance r in the limit T
r → 0. In the Einstein frame in 26 dimensions

the DBI action for the D0 brane takes the form

∫
dX0 e−

11
12

φ√g00 . (5.4.6)

From this and (5.4.5) with p = 0 we can deduce that the ratio between the force acted upon

the D0 by a standard brane and the ‘force’ acted on it by the dilatonic wave in |W 〉 is

Fstandard

FW
=

11
12φ(K = 1) + 1

2h00(K = 1)
11
12φ(K = −1) + 1

2h00(K = −1)
=

12
11

. (5.4.7)

This is in agreement with [118] where this ratio was calculated in a different way.

5.4.2 Massive modes

The massive closed string states in |W 〉 obey the dispersion relation E2 = k2
⊥ + m2, with

m2 = 4(n − 1). For n > 1, their field profile (proportional to 1/ sinh(a|E|/2)) is strongly

peaked at energies |E|−m ≤ 1/a. This means that for any a ≥ 2π, the states are with good

approximation non-relativistic already at level n = 2, with the approximation improving at

higher levels. Their fields at X0 = 0 are Gaussians of the form

δ(k‖) exp(−ma

2
) exp(−ak2

⊥
4m

) , (5.4.8)

that is, the closed string modes occupy the directions Xm and are localized at XM = 0

(M 6= 0) with a width of order
√

a/m in the transverse directions. The time evolution

of these field profiles follows non-relativistic Schrödinger equation, so their width scales

as |X0|/√am for large times. Interestingly, the massive modes behave as non-relativistic

matter located at the would-be position of the brane. This conclusion was also reached in

[119].

Let us now compute the normalization of |W 〉 and its the space-time energy, following

[119]8 . The normalization has the interpretation of (the expectation value of) the total
8Equs. (5.4.9) and (5.4.11) below were not obtained independently of [119].
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number of particles n̄ in the background. One has

n̄ = 〈W|c0c̄0|W〉 = N 2
∞∑

n=0

dn

∫
dk25−p
⊥

(2π)25−p

1
2|E|

1
4 sinh2

(
aE
2

) , (5.4.9)

Ē = N 2
∞∑

n=0

dn

∫
dk25−p
⊥

(2π)25−p

1
2|E|

|E|
4 sinh2

(
aE
2

) ,

where dn can be computed from the generating function

∞∑

n=0

dnwn = f(w)−24, f(w) =
∞∏

m=1

(1− wn). (5.4.10)

The asymptotic behavior of dn for large n is [4] dn ∼ n−27/4e4π
√

n . It is easy to see that for

a > 2π the exponential suppression from 1/ sinh2(a|E|
2 ) wins over the exponential growth of

states, and both n̄ and Ē are perfectly finite. On the other hand, in the limit a → 2π we

get

Ē ∼
∞∑

n=0

e−2(a−2π)
√

n

np/4
∼ (a− 2π)p/2−1 . (5.4.11)

For a = 2π the expectation value of the energy diverges for p = 0, 1, 2. Naively, for p > 2 the

energy is finite. However, for any p the expectation values of powers 〈Ek〉 will eventually

diverge for sufficiently high k [119], and hence for a = 2π the uncertainty in the energy9 is

infinite for any p.

This divergence has a very natural physical interpretation. As reviewed in the introduc-

tion and further discussed in section 8 below, for a = 2π the background of imaginary branes

admits an infinitesimal deformation that introduces a D-brane source in real time, and we

should then expect that this background also has an energy of order 1/gs. Since we are com-

puting this energy in the limit gs → 0 in a perturbative expansion Ē =
∑

n=0 (gs)n E(n),

it is natural to find that leading term E(0) = ∞. At finite gs this divergence should be

regulated in such a way that Ē ∼ 1/gs.

Before discussing a heuristic mechanism that supports this expectation, we would like

to point out that for a = 2π the state |W 〉 has all the features to be identified with ‘tachyon

matter’ [110, 111]. Indeed for a = 2π the energy is stored in very massive closed strings
9A similar behavior is found for n̄, which is logarithmically divergent for p = 0 and finite for p > 0, but

with higher moments diverging for any p.
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modes that behave like non-relativistic matter strongly localized along the directions Xm.

This is the closed string dual of Sen’s discussion on ‘tachyon matter’ in the context of open

string field theory; for large times |X0| → ∞ the classical open string solution corresponding

to the BCFT (5.1.1) approaches, for all λ, an open string configuration with zero pressure

and with all the energy localized along the Xm directions10 .

It is very tempting to suspect that at finite gs the distance a is renormalized to an

effective value

aeff = 2π + ε where ε = γ gb
s , (5.4.12)

where both b and γ are positive numbers of order one. This would make the energy finite.

Restricting in the following to p = 011 , we find from (5.4.11)

Ē ∼ 1
ε
. (5.4.13)

So to obtain the expected scaling ∼ 1/gs the parameter b has to be equal to one. An

argument why this is plausible was given in [119] from the point of view of open string field

theory. Here we provide an alternative heuristic argument from the closed string channel,

that justifies why b = 1 and also why γ > 0.

Let us think about this issue from the point of view of the array before Wick rotation.

When gs = 0 the distance between the branes is 2π. When gs is turned on the branes

will slightly curve space-time due to their mass so that the distance between them is no

longer 2π. Actually since their mass is ∼ 1/gs and the Newton constant scales like g2
s the

back-reaction is of order gs and so the proper distance between the branes is indeed as in

(5.4.12). γ is positive simply because the metric components in the transverse direction to

the brane scale like

g⊥ ∼ 1 + gs
γ̃

r23−p
, (5.4.14)

with γ̃ > 0.
10More precisely, as shown in [119] and further elaborated in section 8 of this chapter, the limit X0 →∞

of (5.1.1) corresponds for all λ (up to a trivial time translation) to the outgoing (X0 > 0) part of our state
|W 〉, and symmetrically X0 → −∞ of (5.1.1) corresponds to the incoming (X0 < 0) part of |W 〉.

11For p > 0 (5.4.11) cannot be trusted as the higher moments of the energy (〈Ek〉−〈E〉k)1/k have a worse
degree of divergence than the mean value Ē = 〈E〉.
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It is interesting to check if this argument generalizes when we put N rather than just

one brane at each site. First, the back-reaction of the metric scales like gsN which means

that now ε ∼ gsN . Combining this with (5.4.13) and with the fact that |W 〉 gets multiplied

by a factor of N we find for the total energy

ĒN ∼ N2

ε
∼ N

gs
, (5.4.15)

which is the correct scaling for the tension of N D-branes.

Clearly this heuristic reasoning is not powerful enough to fix γ in (5.4.12). One obvious

reason is that the distance between the branes is of the order of the string scale and hence

the gravity approximation should not be trusted. A closely related point is the following.

Suppose that we could somehow fix γ and that we found the correct D-brane mass. If γ was

just a fixed number then it is easy to see that the uncertainty in the D-brane mass would

be of the same order as the mass itself, which is of course not the case for D-branes at weak

coupling. This seems to suggest that γ should not be viewed as a constant but rather as a

fluctuating field.

5.5 On open and closed string moduli

In section 3 we showed that scattering amplitudes off the imaginary array do not have

any open string poles. This means that there are no propagating open strings degrees of

freedom, consistently with the fact that there are no branes in real time. However there still

is a discrete set of on-shell open string vertex operators, which demand an interpretation.

In this section we argue that they are dual to deformations of the closed string state |W 〉.

For simplicity let us start by considering the case p = 0, the array of D(-1) branes at

imaginary times X0 = i(n + 1
2)a. The open string spectrum should be read off from the

theory before double Wick rotation, where we have an array of D(-1) branes at the spatial

locations X̃0 = (n + 1
2)a. For generic12 distance a, the only matter primaries of dimension

one are Ṽ
(n)
µ = ∂X̃

(n)
µ , where µ are space-time indices and n ∈ Z labels the position of the

12The case a = 2π is of course special and will be discussed in section 8.
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D(-1) brane. In the double-Wick rotated theory the physical open string states are just the

same, up to trivial relabeling. So the most general state in the open string cohomology of

the theory of D(-1) branes at imaginary times can be written as

|f〉 =
25∑

µ=0

∞∑
n=−∞

fµ
(n) ∂X(n)

µ (0) c1|0〉 . (5.5.1)

Clearly these are the exactly marginal open string deformations that correspond to moving

the positions of the D(-1) branes.

Next we can consider disk amplitudes S(p1 . . . pm; f) for m closed strings scattering off

the imaginary array, with one additional insertion of (5.5.1) on the boundary of the disk.

Without any open strings puncture, S(p1, . . . pm) was shown in section 3 to be a sphere

amplitude with an extra insertion of the closed string state |W 〉. How does the addition of

|f〉 change this conclusion?

To get some insight, consider first the case fµ
(n) = fµ for all n. This deformation is

simply a Goldstone mode associated with a rigid translation Xµ → Xµ + fµ of the whole

array. It is clear that in this simple case S(p1 . . . pm; f) is obtained from S(p1 . . . pm; f) by

replacing |W 〉 with its infinitesimal translation, |W 〉 → fµ∂µ|W 〉. In this special example

the open string insertion |f〉 corresponds to a symmetry of the vacuum broken by the closed

string background |W 〉.

In the more general case (5.5.1), it is not difficult to show13 that S(p1 . . . pm; f) will

still be a sphere amplitude with m + 1 punctures, where the extra closed puncture is now

δfW, the infinitesimal deformation of W obtained by displacing the branes according to |f〉.
Generically this deformation will change the total energy of the closed string state. The

intuitive picture is that the branes act as sources for the closed string fields. Since these

sources are not in real time, the resulting closed string fields are homogeneous solutions

of the wave equation, and we have a purely closed background. Changing the positions

of the branes changes the details of the closed string field profiles. Thus the open string
13We cannot directly apply the prescription of section 2. However, the relevant disk amplitude is simple

enough that can be evaluated directly in the theory of the spatial array eX0 = a(n + 1
2
), and then Wick

rotated.
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Figure 5.4: The two possible motion modes of a pair of D-branes in the complex X0 plane.

moduli (5.5.1) are re-interpreted as deformations of the closed string background. In the

next section this picture is made precise.

There is one important restriction on the allowed motions of the branes: The resulting

closed string fields must be real. This imposes certain constraints on the moduli fµ
(n).

Starting from the array at X0 = in(a + 1
2), reality of the closed string fields demands that

the D(-1) branes be moved in pairs, that is, the k-th D(-1) brane at X0 = ia(k + 1
2), k > 0,

together with its mirror partner at X0 = ia(−k + 1
2). The reality condition is

fµ
(k) = (fµ

(−k))
∗ ∀k ∈ N , (5.5.2)

where ∗ denotes complex conjugation. As long as we refrain from considering branes with

complex spatial coordinates Xi, i = 1, . . . 25, we should keep the spatial moduli f i
(k) real,

and then (6.4.4) implies f i
(k) = f i

(−k). For the time coordinate X0 on the other hand, there

are two possible motions for a given pair of branes, as illustrated in Fig.414 .

The reality condition can be simply rephrased by saying that the D-brane configuration

must be symmetric under reflection with respect to real time axis. A simple way to see this

constraint is to focus for example on the massless closed string fields. The field produced by
14Interestingly, for a pair of branes before the double Wick rotation there are also two allowed exactly

marginal motions along X = −iX0, but of course they are the independent translations of each brane along
the real X axis.
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some δ-function sources located at the origin in space and at times X0 = Y 0
k is schematically

[118]

φ(Xµ) ∼
∑

k

1
[−(X0 − Y 0

k )2 + (Xi)2]σ
(5.5.3)

where the power σ depends on the number of transverse directions. We are interested in

measuring the field φ(Xµ) for real values of its arguments Xµ. It follows that for φ(Xµ)

to be real, the locations of the sources {Y 0
k } must either be real or come in complex conju-

gate pairs. In the next section we write down the prescription to obtain the closed string

background associated with an arbitrary configuration of imaginary branes, and it will be

apparent that the same reality condition is valid in full generality.

For p > 0 there are additional on-shell open strings since the open string tachyon

can be put on-shell provided pmpm = 1, where pm is the momentum along the Neumann

directions. These are precisely the exactly marginal deformations studied in the original

work by Callan et al. [130]. For example the deformation λ′ cos(Xm), where Xm is one of

the directions along the brane, continuously interpolates between Neumann and Dirichlet

boundary conditions for the coordinate Xm. At the critical value λ′ = 1
2 , we get an array

of D(p-2) branes localized at Xm = 2π(n + 1
2)i. The deformed boundary state is known

for all values of λ′ [130] and we can easily apply our prescription (5.3.14) to compute

|W (λ′)〉. As λ′ varies, these states are a family of purely closed string backgrounds. An

open string deformation, in this case cos(Xm), is then again re-interpreted as a closed string

deformation.

5.6 A more general set-up

One important conclusion from the discussion in the previous section is that there is nothing

fundamentally special about the array of D-branes at X0 = i(n + 1
2)a. Exactly marginal

open string deformations allow to move the positions of the branes in the complex X0 plane,

with the only constraints coming from the reality condition. By sending off most of the

branes to large imaginary time, we can also consider configurations with a finite number of
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branes.

The simplest configuration consists of only one pair of branes at X0 = ±iβ (with β real,

β > 0). As in section 2.2, we start with the pair in Euclidean space at X = ±β. The analog

of (5.2.7) is

G̃pair(X) =
2π

c
e−βc cosh(cX) , |X| ≤ β . (5.6.1)

Notice that the only change relative to (5.2.7) is in the prefactor. This was foreordained

since in a finite neighborhood of X = 0 both G̃pair(X) and G̃array(X) obey homogeneous

wave equation
(

d
dX2 − c2

)
G̃ = 0 and are even under X → −X. Wick rotation then gives

the usual sourceless solution ∼ cos(cX0). In Fourier transform

Spair(E, . . . ) =
π

2c
e−βc (δ(E − c) + δ(E + c)) , (5.6.2)

which we can write

Spair(E, . . . ) = Fpair(E)DiscE [Ã(iE)] , (5.6.3)

where

Fpair(E) = sign(E) e−β|E| . (5.6.4)

This result should be compared with (5.2.9), (5.2.12), (5.2.13).

This formula can be generalized further by displacing the D-brane pair along real time,

that is at X0 = α± iβ. In this case Fpair(E) → sign(E)e−β|E|+iαE . By linear superposition,

an arbitrary configuration of M D-brane pairs at positions X0 = αk ± iβk, k = 1, . . .M ,

leads again to an amplitude of the form (5.2.12), where now the prefactor takes the general

form

F (E) =
M∑

k=1

sign(E) e−βk|E|+iαkE . (5.6.5)

The usual array is a special case of this formula: With = ∞, αk = 0, βk = a(k − 1
2) we

immediately recover (5.2.13).

All the conclusions of section 3 are valid in this more general case. The basic step is the

extraction of the discontinuity in E, which localizes the moduli space integration to ρ → 0.

A general configuration of imaginary D-branes leads to a sphere amplitude with an extra
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closed string insertion W, only the details of this insertion change. All we have to do is to

replace 1/ sinh( |E|a2 ) in (5.3.14) with the general F (E) given in (5.6.5). The state |W〉 is

normalizable and has finite energy as long as all D-branes are at distances βk > π from the

real axis, generalizing the condition a > 2π that we had for the array.

For a generic configuration of a finite number of imaginary D-branes, the space-time

dependence of W is, however, quite different than the case of the infinite array. This

difference is sharpest for the massless fields outside the lightcone, r À |X0|. For the array,

they have the same dependence ∼ 1/r23−p as for a static Dp-brane, whereas for a finite

configuration they decay one power faster ∼ 1/r24−p. This nicely dovetails with the fact

that the infinite array with a = 2π admits the exactly marginal deformation that creates

an actual Dp- brane in real time. The incoming and outgoing radiation that makes up

Warray are precisely tuned to admit the deformation that reconstructs the brane, whereas

for a generic finite configuration, brane creation would require an abrupt change of the field

asymptotics.

It is worth pointing out that our prescription to compute the closed string fields asso-

ciated with imaginary D-branes is equivalent to the second-quantized point of view taken

in section 3 of [119]. They propose to obtain the wavefunction for the closed string fields

at X0 = 0 by cutting open the Euclidean path integral in the presence of D-brane sources

located at Euclidean time X̃0 < 0. To evaluate the expectation value of the closed string

fields in such a wave function, one needs to construct the full configuration of sources sym-

metric under X̃0 → −X̃0 (obtained by simply reflecting the sources located at X̃0 < 0 to

X̃0 > 0), and read off the solution at X̃0 = 0. This is the second-quantized version of what

we do here.

An interesting open question is whether as we vary the configuration of imaginary D-

branes, the state |W 〉 spans the full closed string cohomology. It is clear that to have any

chance of success we must introduce more general boundary states than the ones considered

in this chapter (for example, D-branes with magnetic and electric fields on their worldvol-

ume), and allow for an infinite number of imaginary branes. If the answer to this question
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is in the affirmative then the open/closed string duality takes a new form since at the fun-

damental level closed strings and D-branes are unified. Each closed string puncture in a

string theory amplitude could be effectively represented by a hole in the worldsheet with

appropriate boundary conditions.

5.6.1 Superstring

This general set-up can be generalized to the superstring in a straightforward way. There is

now more variety of D-brane sources, since we can consider both stable BPS Dp-branes and

unstable non-BPS Dp-branes. For non-BPS branes the discussion is completely analogous

to the bosonic case. One can distribute non-BPS brane pairs freely in the complex X0

plane, subject to exactly the same reality condition as we discussed in section 5.

BPS Dp branes introduce on the other hand an important novelty: They are sources of

Ramond-Ramond fields. The reality condition for the RR fields forces us to consider pairs

composed of a BPS brane at X0 = α + iβ and of its anti-brane partner at X0 = α − iβ.

It can be checked that the RR fields produced by a generic configuration of such pairs are

non-vanishing only inside the lightcone, r ¿ |X0| (see also [118]); this is consistent with

the fact that the configuration has zero total RR charge, so we do not see long range RR

fields.

Like in the bosonic string, infinite ‘critical’ arrays of branes at X0 = i acrit (n + 1
2)

correspond to special limits of BCFTs related to real time processes of brane creation and

annihilation. Here acrit =
√

2π (this is the familiar
√

2 in translating between the bosonic

string and the superstring). There are two interesting classes of examples. One can consider

a critical array of non-BPS D(p-1) branes in imaginary time, which is dual to the closed

string background related to the decay of a Dp-D̄p pair; or a critical array of alternating

BPS D(p-1)/D̄(p-1) in imaginary time, related to the decay of non-BPS Dp. (Needless to

say, given p, any of these examples makes sense in either Type IIA or IIB, but not in both).

The subject is potentially quite rich.
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5.7 Open string field theory

We have found an intriguing relation between D-branes in imaginary time and purely closed

backgrounds. Since D-branes admit an open string description, this suggests that one may

be able to obtain a dual description of closed string theories in terms of open strings. We

have already seen in section 5 that the exactly marginal open string deformations have a

natural re-interpretation as deformations of the closed string background. However since

there are no propagating on-shell open string degrees of freedom on imaginary D-branes,

it is clear that if such a complete open/closed duality exists, it must involve the off-shell

open strings. In this section we offer some very brief and incomplete speculations in this

direction.

We would like to propose that the open string field theory (OSFT) on a configuration

of imaginary D-branes is dual to the corresponding closed string theory. To make sense

of this speculation we must define what is the OSFT for imaginary branes. Applying our

usual strategy, we start with OSFT on standard D-branes, and double Wick rotate. While

from a first quantized point of view it may be subtle to define the Wick-rotated open string

theory, in the second quantized approach we have the luxury of a space-time action, which

seems straightforward to analytically continue.

Let us sketch how this may come about in the example of the array of D(-1) branes.

We start with an array of D(-1) branes at X̃0 = (n + 1
2)a. The open string field Ψjk has

Chan-Paton labels j, k ∈ Z running over the positions of the D(-1) branes, and the cubic

OSFT action [137] takes the form

S[Ψ] = − 1
g2
0


1

2

∑

jk

〈Ψjk, QBΨkj〉+
1
3

∑

jkl

〈Ψjk, Ψkl,Ψlj〉+
∑

j

〈Ψjj , C〉

 . (5.7.1)

Here we have also included the gauge-invariant open/closed vertex [138, 139, 51, 52, 24]

〈Ψ, C〉 that couples external on-shell closed strings C to the open string field. Notice that

the string fields Ψij do not depend at all on the zero modes of the space-time coordinates.

Double Wick rotation is then immediate. There is little to do in all the purely open terms
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of the action.15 Only the open/closed vertex is affected. We conjecture that the resulting

action describes the non-trivial closed string state |W 〉.

In principle it should be possible to recover the results of section 3 from the point of

view of the second quantized Feynman rules for the action (6.4.1). In OSFT, amplitudes

of external closed string on the disk are obtained by computing expectation values of the

gauge-invariant operators discussed in [138, 139, 51, 52, 24], or in other terms by the use of

the open/closed vertex. We expect that for (6.4.1) such amplitudes collapse to the region

of moduli space where the open string propagators have zero length, reducing to sphere

amplitudes with an extra insertion of |W 〉. The mechanism for such a collapse must be of a

somewhat different nature than in [24] or in [140], since here we are using the conventional

BRST operator but a highly unconventional state-space.

Finally, the OSFT (6.4.1) may provide us with new clues about the string field theory

around the tachyon vacuum. As a →∞, the energy of |W 〉 goes to zero, and we approach

the tachyon vacuum. Interestingly, in the same limit |W 〉 does not vanish completely, but

it becomes purely a zero-momentum dilaton. Thus we recover precisely the scenario of [24].

Since for any a such an open string field theory should make sense this may provide us with

a consistent regularization of vacuum string field theory, which should be related to the one

considered in [24] by some non-trivial field redefinition.

5.8 a = 2π and reconstruction of the brane

As discussed in section 4, for a = 2π the normalization and the energy associated with the

closed string state |W〉 diverge [119]. This singularity signals the appearance of new open

string degrees of freedom. Open strings stretched between neighboring branes in imaginary

time have conformal dimension L0 = (a/2π)2, which equals one for a = 2π. The infinite

periodic array has the special property that a specific linear combination of these marginal

operators (the one which is invariant under X0 → X0 + 2πi and is even under X0 → −X0)
15Note however that one has to be careful here with the reality conditions discussed in the previous sections

[76].
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is in fact exactly marginal16 . A new branch of moduli space opens up for a = 2π. Indeed,

the theory for a = 2π is equivalent to the λ = 1
2 critical point of the BCFT (5.1.1). Turning

on the exactly marginal open string deformation (‘cosh(X0)’) we can reduce the value of

λ, from λ = 1
2 (the purely closed string background |W 〉) to λ = 0 (the usual brane with

Neumann boundary condition in time). This is the sense in which the array for a = 2π is

very special: it admits an exactly marginal deformation that cannot be interpreted purely

as a deformation of the closed background.

5.8.1 Smearing and brane creation

One can obtain many insights into the physics for λ < 1/2 by a simple extension of the

methods in section 2. The basic idea is that in the Euclidean BCFT with X = −iX0, taking

λ < 1
2 amounts to regulating the delta-function sources located at X = 2π(n + 1/2) with

smooth lumps. The precise way to make this regulation can be gleaned from the boundary

state [130] for general λ. Focusing on the oscillator free part of the boundary state,

|B0〉 ∼
[
1 + 2

∞∑

n=1

(−1)ne−nτ cos(nX(0))

]
|0〉 , τ ≡ − log(sin(πλ)) . (5.8.1)

By Poisson resummation, one finds

|B0〉 ∼
∞∑
−∞

j̃τ (X + 2π(n +
1
2
))|0〉 , j̃τ (X) =

τ

π(X2 + τ2)
. (5.8.2)

The interpretation of this formula is clear: for λ < 1
2 , the boundary state corresponds to

an infinite array of smeared sources j̃τ ; indeed j̃τ is a well-known representation for δ(X)

in the limit τ → 0.

If we sum the source j̃τ (X) over the infinite array and then Wick rotate X → −iX0 we

find

Jτ (X0) =
tanh((X0 + τ)/2)− tanh((X0 − τ)/2)

4π
. (5.8.3)

Already at this stage we see the crucial difference compared to λ = 1
2 (τ = 0). Now there

is a non-zero source localized at real time for |X0| < τ , which is to say that an unstable
16In principle also the odd operator, ‘sinh(X0)’, is exactly marginal. However in the bosonic string this

deformation would bring us to the ‘wrong’ side of the tachyon potential for X0 < 0.
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D-brane appears at X0 = −τ and disappears at X0 = τ . For later use let us record the

Fourier transform of this function,

ρτ (E) =
sin(τE)
sinh(πE)

. (5.8.4)

The next step is to repeat the exercise for the fields generated by this smeared array.

The Fourier transform of the Euclidean source j̃τ (X) is e−τ |P | . Therefore, in the notations

of section 2.2, eq.(5.2.4) should be replaced by

Ã(P, ...) =
e−τ |P |

P 2 + c2
. (5.8.5)

As in section 2.3, we sum over the array and use the residue theorem to write the total field

as a contour integral,

G̃τ (X) =
1
2i

∮

C
dPeiPX e−τ |P |

(P 2 + c2) sin(πP )
. (5.8.6)

If we now move the contour over the imaginary P axis as in Fig.2, and Wick rotate, we find

Sτ (E) =
1

2 sinh (πE)

(
eiτE

(E + iε)2 − c2
− e−iτE

(E − iε)2 − c2

)
, (5.8.7)

which we recognize as

Sτ (E) =
1

2 sinh (πE)
(
Gret(E)eiτE −Gadv(E)e−iτE

)
. (5.8.8)

This way of writing the answer makes the space-time interpretation manifest (see also [119]).

For X0 < −(τ + r), we have purely incoming radiation. For X0 > τ + r, we have purely

outgoing radiation. Outside of these two cones (for (X0)2 − r2 < τ2), the fields are the

same as the ones produces by a static source. The thickness of the transition regions is of

the order of the string length. Notice that the outgoing radiation is produced by the rapid

change of the source for X0 ∼ τ , and similarly the incoming radiation is correlated with the

change at X0 ∼ −τ . This process can be described as some finely tuned incoming closed

strings that create an unstable D-brane at X0 = −τ , which then decays at X0 = τ into

outgoing closed strings.
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We can also write

Sτ (E, ...) = GF (E) ρτ (E) + cos(τE)
π

2c sinh( ca
2 )

(δ(E − c) + δ(E + c)) , (5.8.9)

where GF (E) is the Feynman propagator and ρ(E) the Fourier transform of the source in

real time Jτ (X0), see (5.8.4). The two terms in (5.8.9) have very different interpretations.

While the first term contains a propagator, and is non-zero for any finite E, the second

term has support only for E = ±c. The second term in (5.8.9) is proportional to (5.2.9); in

section 3 it was seen to correspond to the extra insertion |W 〉 in a sphere amplitude. The

first term is instead a real D-brane source, associated to an earnest disk amplitude.

In the limit λ → 1
2 (τ → 0) only the second term in (5.8.9) contributes, since the

source ρτ (E) → 0. It is a bit less obvious to see why only the first term contributes as

λ → 0. In this limit, τ →∞ and since the oscillations of both terms are controlled by the

dimensionless parameter τE, to have a non-zero contribution E must go to zero, hence for

any fixed finite c the second term vanishes. The fact the E → 0 is consistent with the fact

that the for λ = 0 the unstable D-brane exists for an infinite amount of time; X0 becomes

an ordinary Neumann direction and the total energy (with all insertions as incoming) must

vanish.

We see that as we vary λ, not only does the D-brane source vary, but the closed string

background (captured by the second term in (5.8.9)) also changes in a very non-trivial

way. This phenomenon requires some comments. Although the BCFT (5.1.1) may be

naively thought of as a deformation of the open string background only, infact we need

to simultaneously change the closed string background to cancel tadpoles. Indeed, while

the operator cosh(X0) is exactly marginal in the open string sense, one point functions of

generic on-shell closed strings have a non-trivial dependence on λ. Of course, tadpoles for

closed string operators are also generated in the familiar case of time-independent boundary

deformations. However in the time-independent case only one-point functions of zero-energy

on-shell bulk operators can change, whereas for a time-dependent perturbation like (5.1.1)

there are tadpoles with a non-trivial space-time dependence. As we turn on the cosh

deformation, the closed string background needs to be corrected introducing closed string
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matter. Happily, as (5.8.9) shows, this seems to be automatically taken care of by the

analytic continuation procedure.

The discussion in this section has been at the level of the discussion of section 2. It would

be very interesting to repeat the analysis of section 3 and compute scattering amplitudes

of closed strings for general λ. It would also be of interest to find the behavior of the open

string spectrum for 0 < λ < 1
2 .

5.9 From Choptuik to Gregory-Laflamme

As was explained in section 5.4 the massless sector of |W 〉 is a spherically symmetric dilaton

wave in 26 − p dimensions. In the limit that the Newton constant GN goes to zero the

linearized solution is an exact solution to the gravity-dilaton equations of motion. As

the coupling constant is turned on the non-linearity of the equation of motion becomes

more and more important. With spherical symmetry much is known about the non-linear

aspects of the system. In particular, Choptuik showed [132], via numerical analysis, that a

universal behavior occurs at the critical point where black hole formation first occurs. A

crude summary of his results is the following. Consider a spherically symmetric wave of a

massless scalar field

η φ(r,X0). (5.9.1)

The strength of the non-linear effects of the gravitational back-reaction of the wave grows

with the overall coefficient η. When η → 0 the linearized approximation is exact while for

η → ∞ a large black hole will be formed, with an exponentially small amount of energy

escaping the black hole formation as an outgoing radiation.17 Therefore, for a given

field profile φ(r,X0) there is a special value η∗ where the black hole formation first takes

place. While η∗ certainly depends on the details of φ, the time evolution of the system for

η → η∗ admits scaling behavior that is fixed by a certain constant, ∆. This constant is

universal in the sense that it does not depend on φ, but it can depend for example on the
17The system is classical so this radiation is classical and should not be confused with Hawking radiation.
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number of spatial directions. Another critical exponent δ is related to the scaling of the

mass of the black hole near the transition. These fascinating results have been explored

quite extensively in the last decade.

In this section we take advantage of the fact that a spherically symmetric dilaton wave

can be viewed as a configuration of D-branes located in imaginary time to relate Choptuik’s

findings to a phase transition somewhat reminiscent of the Gregory-Laflamme instability

[133]. For simplicity we will mostly phrase the discussion in the context of the bosonic

string, ignoring as usual the closed string tachyon. The extension to the superstring of the

scaling arguments given below is straightforward.

The first step is to understand how to get from our |W 〉 a background containing only

a classical dilaton wave. It is clear that to suppress massive closed string modes we need to

take a
ls
→∞. (Here we have restored the string length ls, that was set to one in the rest of

the chapter). However the total energy of the wave will then go to zero as 1/a25−p in this

limit (see (5.4.9)), and a black hole will not be formed this way. A simple way to obtain

a configuration with enough energy without exciting the massive modes is to increase the

number of branes at each point X0 = ia(n+ 1
2), as in the discussion at the end of section 5.4.

With N D-brane at each point the particles density, n̄/V , and the energy density ε = Ē/V

(V is the volume along the wave) of the wave for large a are (from (5.4.9))

n̄

V
∼ N2l24−2p

s

a24−p
, ε ∼ N2l24−2p

s

a25−p
. (5.9.2)

Let us now state the exact conditions that must be satisfied in the limit we want to take:

1. The string coupling gs should go to zero to suppress quantum effects, and the total

number of particles n̄ should go to infinity so that |W 〉 is well described by a classical

wave.

2. ls
a → 0 to ensure that the massive closed strings decouple.

3. The gravitational radius associated with the total energy of the wave,

rG = (GN ε)
1

23−p , (5.9.3)
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(here GN is the Newton constant in 26 dimensions) should be comparable to the

wavelength a. If we define the dimensionless parameter

ζ =
rG

a
=

( g2
sN

2l48−2p
s /a25−p )

1
23−p

a
, (5.9.4)

then in our set-up ζ plays the role of η in (5.9.1) That is, for small ζ the linearized

approximation is valid and a black hole will not be formed while for large ζ non-linear

effects are important and lead to black hole formation. So the critical value ζ∗ is a

number of order one.

It is easy to verify that these conditions are satisfied in the following limit

a fixed, ls → 0, gs ∝ lβs , N ∝ 1/l24+β−p
s , β > 0. (5.9.5)

-So far what we have done is to take a certain ‘decoupling’ limit that leaves us with the

classical picture of black-hole formation. The obvious question to ask is what does this mean

from the D-brane point of view. In particular, does anything special happen at ζ = ζ∗ in

the array of D(p-1) branes located at X̃0 = (n + 1
2)a, i.e. in the spatial array before the

double Wick rotation?

The gravitational radius associated with N D-branes located at each site is

lG ∼ (gsN)
1

24−p ls. (5.9.6)

When lG is much smaller than the distance between the D-branes, a, the gravitational

interactions between them is small and they can be considered as separated points. How-

ever, when lG is larger than a the gravitational interaction between them is so strong that

effectively they form a black hole along X̃0. It is easy to see from (5.9.6,5.9.4) that this

transition occurs at the same point as the wave to black hole transition. Since the two

processes are related by Wick rotation it is very tempting to suspect that there is a precise

numerical relation between the exponents of [132] and the exponents, yet to be found, in

the phase transition just described.

It should be stressed that although the transition considered here is somewhat rem-

iniscent of the Gregory-Laflamme instability, there are also obvious differences. In the
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Gregory-Laflamme case one starts with a black p-brane and finds, at the level of linearized

equations of motion, an instable mode; condensation of this tachyon is then conjectured to

lead to an array of black (p-1)-branes. (This expectation however may even be false, see

e.g. [141, 142, 143] for recent discussions). In our case we start from the array and we turn

on the coupling constant to eventually form a (possibly non-uniform) black p brane, so we

are going in the opposite direction. More crucially, we do not start with an array of black

p-branes. The D-branes are extremal to begin with, in the sense that they have no finite

area horizon. In the process of turning on the coupling constant the radius of their zero

area horizon grows until they meet. At that point a combined finite area horizon will be

formed.

Let us illustrate this in the context of the superstring. In this case there are no closed

string tachyons so the whole discussion makes more sense. We can consider either an array

of BPS D(p-1)-branes, which must then be alternating as D/D̄, or an array of non-BPS

D(p-1) branes. Consider for example an array of D3/D̄3 in Type IIB. For small ζ the D3

branes interact weakly and so they can be treated as separated stable objects. As we turn

on ζ their gravitational radius start to touch. At that stage the fact that we have alternating

branes anti-branes is crucial since the charges can annihilated to form a black 4-brane. This

black 4-brane does not carry any 6-form charge (we are in type IIB).

It would be extremely interesting to understand Choptuik’s critical behavior from the

point of view of the dual open string field theory discussed very briefly in section 7. Very

schematically, the way this could work is as follows. From the open string field theory

point of view the classical non-linear gravity dynamics is obtained in the loop expansion.

We expect that the lightest open string mode stretched between the branes, which at the

classical level has large positive m2, becomes tachyonic for ζ > ζ∗ due to quantum open

string effects. It may be possible to see this effect in a one-loop computation, in the spirit

of [144]. If this scenario is correct, the universal physics at the transition point would be

completely captured by a massless field, and we would have an explanation of gravitational

critical behavior in terms of a second order phase transition in the dual OSFT.



Chapter 6

D-branes and the Kontsevich

model

6.1 Introduction and Summary

As we saw in the introduction to the thesis it is of interest to develop exactly solvable

models of open/closed duality. An important class of such models is offered by topological

string theories, the paradigmatic example being the duality between Chern-Simons and the

closed topological A-model [145].

Non-critical strings in low dimensions are an ideal context to sharpen our understanding

of open/closed duality. Theories with c ≤ 1 are fully solvable through the double-scaling

limit of matrix models.1 Indeed, the double-scaled matrix model for c = 1 strings has

recently been re-interpreted [150] as the “open string field theory” for an infinite number

of D0-branes. This provides another beautiful incarnation of exact open/closed duality.

The doubled-scaled matrix model arises [151] as the worldvolume theory of the localized

Liouville branes. These are the so-called “ZZ branes” [152], the unstable Liouville branes

localized in the strong coupling region of the Liouville direction.2

1For reviews, see [146, 147, 148, 149].
2A similar understanding is available for the double-scaled matrix models of c < 1 and ĉ ≤ 1 theories

[153, 154, 155]. See [156] for recent related work.

226
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Liouville theory admits also stable branes, the “FZZT” branes [158, 159], which are

extended in the Liouville direction. What is the worldvolume theory on such extended

branes?

Besides the well-known double-scaled matrix models, another, more mysterious, class

of matrix models makes its appearance in low-dimensional string theories. The prototype

of these models, which we shall collectively refer to as topological matrix models, is the

Kontsevich cubic matrix integral [160], which computes the exact generating function of

minimal (2, 2k+1) matter coupled to gravity. Several other examples exist [161], covering a

large class of c ≤ 1 string theories.3 These models deserve to be called topological because

they compute certain topological invariants associated with the moduli space of Riemann

surfaces [166, 160, 167, 168, 169, 165]. However, it must be noted that they actually contain

all the information of the physical theories which are reached from the “topological point”

by turning on deformations. As a result, any known bosonic string theory with c < 1

admits a polynomial matrix model à la Kontsevich which completely encodes its exact

solution. Topological matrix models are treated in the usual ’t Hooft expansion, with no

double-scaling limit.

The reader will have guessed our punchline. Our basic contention is that topological

matrix models generically arises in topological non-critical string theories as the open string

field theory on N extended (FZZT) Liouville branes (tensored with an appropriate matter

boundary state depending on the string theory under consideration). In this chapter we

work out in detail the prototype of the Kontsevich model. It is easy to envision that

several generalizations should exist. We are going to argue that topological matrix models

are examples of exact open/closed duality in very much the same spirit as the AdS/CFT

correspondence.

Perhaps the most interesting general lesson is that in this exactly solvable context we

will able to precisely describe the mechanism by which a Riemann surface with boundaries

is turned into a closed Riemann surface. Open string field theory [6] on an infinite number
3The Penner model [162], the W∞ model [163] and the normal matrix model [164] are particularly

intriguing examples, related to c = 1 at the self-dual radius (see [165] for a recent review).
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of D-branes is seen to play a crucial role. Essentially the same mechanism is at work in

the large N transition for the topological A-model [170, 145, 171]. The Kontsevich integral

offers an even more tractable case-study.

In an interesting [172], building on previous work (e.g.[173]), the authors interpret topo-

logical matrix models as describing the dynamics of non-compact branes in the topological

B-model for non-compact Calabi-Yau spaces. Although the language of [172] is very differ-

ent from ours, there are clearly deep correspondences as well. Understanding in detail the

relation between their point of view and ours should be an illuminating enterprise.

Since the subject of topological matrix model may not be very widely known, and our

explicit analysis will involve a few technicalities, in the rest of this introduction we review

some background material and summarize our main conceptual points.

6.1.1 From open to closed worldsheets

It may be useful to begin by recalling the classic analysis [7] of the large N limit of a gauge

theory. In ’t Hooft’s double line notation, each gluon propagator becomes a strip, and gauge

theory Feynman diagrams take the aspect of “fatgraphs”, or open string Riemann surfaces,

classified by the genus g and the number h of holes (boundaries). The generating functional

for connected vacuum diagrams has then the familiar expansion (assuming all fields are in

the adjoint),

logZopen(gY M , t) =
∞∑

g=0

∞∑

h=2

(g2
Y M )2g−2 th Fg,h , t ≡ g2

Y MN . (6.1.1)

Nowadays we interpret this quite literally as the perturbative expansion of an open string

theory, either because the full open string theory is just equal to the gauge theory (as e.g.

for Chern-Simons theory [170]), or because we take an appropriate low-energy limit (as e.g.

for N = 4 SYM [1]).

The general speculation [7] is that upon summing over the number of holes, (6.1.1) can

be recast as the genus expansion for some closed string theory of coupling gs = g2
Y M .

This speculation is sometimes justified by appealing to the intuition that diagrams with a
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larger and larger number of holes look more and more like smooth closed Riemann surfaces.

This intuition is perfectly appropriate for the double-scaled matrix models, where the finite

N theory is interpreted as a discretization of the closed Riemann surface; to recover the

continuum limit, one must send N →∞ and tune t to the critical point tc where diagrams

with a diverging number of holes dominate.

However, in AdS/CFT, or in the Gopakumar-Vafa duality [145], t is a free parameter,

corresponding on the closed string theory side to a geometric modulus. The intuition

described above clearly goes wrong here. A much more fitting way in which the open/closed

duality may come about in these cases is for each fatgraph of genus g and with h holes to

be replaced by a closed Riemann surface of the same genus g and with h punctures: each

hole is filled and replaced by a single closed string insertion. Very schematically, we may

write

t

∫
dρ ρL0 |B〉P ↔ tW(P ) . (6.1.2)

Here the symbol |B〉P denotes the boundary state creating a hole of unit radius centered

around the point P on the Riemann surface. Upon integration over the length of the

boundary (indicated here by the modulus ρ), we can replace the boundary state with a

closed string insertion W located at P . This idea is based on a correspondence between the

moduli space of open surfaces and the moduli space of closed punctured surfaces which can

be made quite precise (see section 8.2 of [24]).

Clearly the position P in (6.1.2) is a modulus to be integrated over. Moreover, summing

over the number of holes is equivalent to exponentiating the closed string insertion. As a

result, we obtain the operator ∼ exp(t
∫

d2zW(z)), which implements a finite deformation

of the closed string background. This is precisely what is required for the interpretation of

t as a geometric parameter.

We were led to this viewpoint about open/closed duality, which probably has a long

history (see e.g. [174, 175, 145, 171, 176, 24, 177, 178, 179]), by thinking about D-branes

in imaginary time [177], where the mechanism (6.1.2) of boundaries shrinking to punctures
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can be described exactly.4 In this chapter we argue that topological matrix models are

another very precise realization of this idea.

6.1.2 Review of (2,2k + 1) strings and the Kontsevich model

Minimal bosonic string theories are specified by a pair (p, q) of relatively prime integers.5

In the continuum, they are formulated in the usual way by taking the total CFT =

CFT(p,q)⊕CFTLiouville⊕CFTghost. Here CFT(p,q) is a minimal (p, q) model [183], of central

charge

cp,q = 1− 6
(p− q)2

pq
. (6.1.3)

The central charge of the Liouville CFT is of course chosen to be 26 − cp,q to cancel the

anomaly.

The (2, 2k + 1) theories will be the focus of this chapter. Perhaps the most familiar

among these models is (2, 3), which is pure two-dimensional quantum gravity (c = 0), or

string theory embedded in one dimension. One way to find their complete solution is by the

double-scaling limit of the one-matrix model, with the potential tuned to the multicritical

point of order k + 2 [184]. Each of these theories has an infinite discrete set of physical

closed string states, conventionally labeled as {O2m+1}, m = 0, 1, 2, · · · . Observables are

correlators of these operators, which is convenient to assemble in the following partition

function, summed over all genera g,

logZclosed(gs, tn) =
∞∑

g=0

g2g−2
s 〈exp(

∑

n odd

tnOn)〉g . (6.1.4)

The partition functions for the different (2, 2k + 1) theories are connected to each other by

flows of the KdV hierarchy. This means that we simply need to expand Zclosed(gs, tn) around

different background values of the sources tn in order to obtain the correlators of the different

(2, 2k+1) models. We choose our conventions so that {tn = 0 ,∀n} corresponds to the (2, 1)

theory. Then correlators for (2, 2k + 1) are found by perturbing around tn = δn,3 − δn,2k+3.

4A closely related viewpoint has been explained very clearly by Ooguri and Vafa [171], using a linear
sigma-model perspective.

5See [146, 181, 180] for reviews and [182] for very recent progress in this subject.
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As first conjectured by Witten [166], the (2, 1) model is equivalent to two-dimensional

topological gravity [185, 186, 187], superficially a completely different theory. Topolog-

ical gravity is a topological quantum field theory of cohomological type. In that con-

text, the operators O2n+1 are interpreted as Morita-Mumford-Miller classes, certain closed

forms of degree 2n on the moduli space of closed punctured Riemann surfaces; correlators

〈Ok1 · · · Okn〉g are intersection numbers, topological invariants of this moduli space. An

index theorem gives the selection rule

k1 + · · ·+ kn = 6g − 6 + 3n (6.1.5)

in order for the correlator to receive a non-zero contribution at genus g.

The remarkable equivalence of the (2, 1) string theory with topological gravity was

proved by Kontsevich [160], who found a combinatorial procedure to compute these inter-

section numbers. Kontsevich further recognized that his result for the partition function

(6.1.4) could be efficiently summarized by the following matrix integral,6

Zclosed(gs, t) = ρ(Z)−1

∫
[dX] exp

(
− 1

gs
Tr

[
1
2
ZX2 +

1
3
X3

])
, (6.1.6)

ρ(Z) ≡
∫

[dX] exp
(
− 1

2gs
TrZX2

)
.

The integration is over the N × N hermitian matrix X. The matrix Z appearing in the

quadratic term is another N × N hermitian matrix which encodes the dependence on the

sources tk through the dictionary

tk =
gs

k
TrZ−k =

gs

k

N∑

n=1

1
zk
n

(k odd) , (6.1.7)

where {zn} are the N eigenvalues of Z.

The Kontsevich integral works in a way which is truly miraculous - but which may also

strike a familiar chord. The basic idea is an n-point closed string correlator

〈Ok1 · · · Okn〉g (6.1.8)

6Of course, as written, the integral diverges. Analytic continuation X → iX makes the integral convergent
for Z negative definite.
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is extracted from the genus g vacuum amplitude with n holes. One can proceed perturba-

tively, using the obvious Feynman rules that follow from (6.1.6) (Figure 6.1).

i

j
i

j

k
2 gs

������������������
zi + zj

1
�������
gs

Figure 6.1: Feynman rules for the Kontsevich model.

Let us define Γg,n,N to be the set of all connected fatgraphs of genus g, n holes, and a

choice of a Chan-Paton index ranging from 1 to N for each hole (see examples in Figure

6.2). The connected vacuum amplitude at genus g and with n holes is then

Fg,n,N = g2g−2+n
s

∑

γ∈Γg,n,N

1
#Aut(γ)

∏

(i,j)∈γ

2
zi + zj

. (6.1.9)

i

j k

i

j k

Figure 6.2: The two fatgraphs with g = 0 and h = 3. The indices i, j, k are Chan-Paton
labels ranging from 1 to N . The sum of the two graphs is gs/(zizjzk). Upon summing over
the Chan-Paton labels, this gives t31/(6g2

s) −→ 〈O1O1O1〉g=0 = 1.

Individual Feynman diagrams give complicated rational expressions in the parameters

{zi}, but remarkably the total answer can always be expressed as

Fg,n,N = g2g−2
s

ki odd∑

{k1···kn}

C{k1···kn}
# Aut(k1 · · · kn)

n∏

i=1

gs
TrZ−ki

ki
. (6.1.10)
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We see from the definition (6.1.7) that the parameters tk play the role of generalized ’t

Hooft couplings. From (6.1.4), we recognize

〈Ok1 · · · Okn〉g = C{k1···kn} . (6.1.11)

The selection rule (6.1.5) is a simple consequence of Euler’s theorem,

3(2− 2g) = 3(#V −#P + n) = −#P + 3n = −
∑

i

ki + 3n , (6.1.12)

where #V and #P are the numbers of vertexes and propagators, and we used that 2(#P ) =

3(#V ).

In this computation, the rank N can be kept generic, as long as it is big enough to

guarantee that the traces TrZ−k are functionally independent (otherwise the expression

(6.1.10) is not uniquely defined); N > max(ki)/2 suffices. If instead we are interested in

the full partition function Zclosed(gs, tk) for some fixed values of the infinitely many sources

tk, it is necessary to send N → ∞ in order for the relation (6.1.7) to be invertible. So in

particular we need infinite N to compute the correlators of the higher (2, 2k + 1) models,

k > 0. Nevertheless, it makes perfect sense to keep N finite; the finite N Kontsevich model

covers an N -dimensional submanifold in the moduli space of the closed string theory.

6.1.3 The Kontsevich model is cubic open string field theory

As we have just reviewed, the correlator of n closed string operators at genus g is computed

in the Kontsevich model by the fatgraph vacuum amplitude of genus g and n boundaries.

We propose that this is an exact open/closed duality: the Kontsevich model is to be inter-

preted as an open string field theory, dual to the (2, 1) bosonic closed string theory. The

Kontsevich integral is to (2, 1) string theory as N = 4 SYM is7 to IIB on AdS5 × S5.

The duality works just as explained in section 1.1. The closed string partition function

Zclosed(gs, tn) is identified with the vacuum partition function Zopen(gs, zi) of the open
7An apparent difference is that in AdS/CFT the SYM theory is obtained only in the low-energy limit of

the theory on the D3 branes in flat space, whereas the Kontsevich model is the full open string field theory.
We take this as a small hint that a better way to understand AdS/CFT should exist, where the SYM theory
is the full open string field theory of some appropriate branes. See Section 7.
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string field theory. Each hole in the open description is replaced by the insertion of a closed

string puncture, indeed, as we have emphasized in our review of the Kontsevich model,

powers of the generalized ’t Hooft couplings tk count insertions of the closed string operator

Ok.

The reasoning that led Kontsevich to (6.1.6) uses the decomposition of the moduli space

of Riemann surfaces [162, 188, 189, 190, 191] that arises naturally in open string field theory

[6] (OSFT), but so far this had not been given a direct physical interpretation. Here we

are saying that in the Kontsevich model is OSFT. With the advantage of modern insight

into the physics of D-branes, we can give a string theory “proof” of Kontsevich result. The

logic is summarized by the following claims:

1. One can construct a family of stable D-branes in the (2, 1) string theory, labeled by a

continuous parameter z.

2. Insertion of the boundary state |B(z)〉 for any one such brane in a string amplitude is

fully equivalent to the insertion of a closed string puncture, as in (6.1.2). In this case,

the precise correspondence is
∫

dρ ρL0 |B(z)〉P ↔
∑

k odd

Ok(P )
k zk

. (6.1.13)

3. The full cubic OSFT [6] on a collection of N of these D-branes, reduces precisely to

the Kontsevich action (6.1.6). The parameters labeling the branes, {zi}, i = 1 · · ·N ,

are the same as the parameters appearing in the quadratic term of the matrix integral.

These claims are sufficient to establish Kontsevich result. We just have to evaluate the string

theory vacuum amplitude Z in the presence of N branes. We do this in two equivalent ways.

Evaluating Z in the open channel, we have (claim 3) the sum of vacuum amplitudes of the

Kontsevich integral, Zopen(gs, zi). Evaluating Z in the closed channel, we can replace each

hole by a sum of closed string operators (claim 2), and obtain the generating function

Zclosed(gs, tn) of closed string correlators. This identifies the vacuum amplitude of the

Kontsevich integral with the closed string partition function,

Zclosed(gs, tn) ≡ Zopen(gs, zi) , (6.1.14)
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which is what Kontsevich showed by more abstract and rigorous methods. The dictionary

(6.1.2) between the “open parameters” {zk} and the “closed parameters” {tk} has its mi-

croscopic explanation in the rule (6.1.13) to replace a boundary with a specific closed string

operator.8

6.1.4 Extended Liouville D-branes in topological string theory

Our goal is now to justify these claims by standard worldsheet methods. The (2, 1) string

theory is strictly speaking outside the range of the definition given at the beginning of

section 1.2, since the Kac table is empty and there is no (2, 1) minimal model. A possible

definition is formal analytic continuation to k → 0 of the double-scaling results [184], but

this is unsatisfactory for our purposes. Fortunately, there are several other more intrinsic

formulations, appearing to all yield the same results.

Since c2,1 = −2, the simplest choice for the matter CFT is a pair of free, Grassmann

odd scalars Θ1 and Θ2. This provides a continuum definition of the (2, 1) model as c = −2

matter coupled to c = 28 Liouville, and it is the set-up that we shall use in this chapter.

The “topological point” {tk = 0} corresponds to taking the bulk cosmological constant

µ ≡ t1 = 0.9

Claim 1 is established by taking Dirichlet boundary conditions for the Θα and FZZT

boundary conditions in the Liouville direction. The FZZT boundary state depends on a

continuous parameter µB, the boundary cosmological constant, which can be thought of

as the vev of the open string tachyon living on the brane. We identify µB = z. The full

boundary state is then

|B(z)〉 = |BDirichlet
Θ 〉 ⊗ |FZZT(µB = z)⊗ |Bghost〉 . (6.1.15)

FZZT boundary conditions are closely related to the notion of macroscopic loop operator

w(`) in two-dimensional quantum gravity [193]. w(`) is the operator that creates a hole of
8It makes sense to consider open string vacuum amplitudes at fixed values of {zi} because these are

superselection parameters that do not fluctuate. This statement is dual to the statement that the closed
string background {tk} is superselected [192].

9It may be useful to recall that in this theory (unlike the generic (p, q) model, q 6= 1) amplitudes depend
analytically on µ and it makes sense to treat µ perturbatively.
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length ` in the Riemann surface, where the length is measured with the metric obtained by

taking the Liouville field as the conformal factor. Then10

∫
dρ ρL0 |B(z)〉 ∼

∫ ∞

0

d`

`
e−` z w(`) . (6.1.16)

To obtain claim 2, we appeal to a standard bit of lore in non-critical string theory [193].

Under rather general conditions, the macroscopic loop operators can be expanded as ` → 0

as a sum of local closed string operators,

w(`) ∼
∑

`xk Ok , (6.1.17)

where xk ≥ 0. A simple argument based on conservation of the Liouville momentum (section

3.1), fixes the exponents to be xk = 2k + 1. The ` → 0 expansion of w(`) translates after

Laplace transform (6.1.16) into a z →∞ expansion of |B(z)〉 as a sum of terms ∼ z−2k−1Ok.

This gives claim 2, modulo fixing the precise normalization of the operators Ok. In principle

these normalization coefficients could be obtained by a very careful analysis of the boundary

state, but it it easiest to determine them indirectly by consistency, as we explain in section

5. This replacement of a boundary with a sum of closed string insertions is a generic fact

in low-dimensional string theory, and does not appear to depend on the topological nature

of the (2, 1) model.

By contrast, claim 3 is based on a mechanism of topological localization, closely reminis-

cent of the way the open topological A-model reduces to Chern-Simons theory [170]. The

worldsheet boundary CFT admits a nilpotent scalar supercharge QS [194], anti-commuting

with the usual BRST operator QB. The open string (first-quantized) Hamiltonian is a QS

anti-commutator, so it can be rescaled by an overall constant without changing the physics.

As in the case of the open topological A-model [170], the only contributions to open string

amplitudes come from the region of moduli space where the Riemann surfaces degenerate

to ordinary Feynman graphs. In the usual OSFT decomposition of moduli space in terms

of trivalent vertices and propagators (strips) of length t(α), this is the limit in which each
10Here we are just tensoring the well-known relation between FZZT branes and macroscopic loops [193, 158]

with the (trivial) Dirichlet b.c. for the Θα.
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t(α) → ∞. In this limit, the full cubic OSFT collapses to a cubic matrix integral for the

open string “tachyon”. A detailed analysis of Liouville BCFT correlators (section 4.3 and

appendix) shows that this matrix integral is exactly the Kontsevich model, provided we

identify the boundary cosmological constants {µi
B}, i = 1, · · · , N , with the parameters

{zi}.

6.2 Closed bosonic strings in D = −2

We define the (2, 1) closed string theory by choosing the total worldsheet action to be

S = Sc=−2
matter + Sc=28

Liou + Sc=−26
ghost . (6.2.1)

The matter CFT is that of a pair of real, Grassmann odd scalar fields Θ1(z, z̄) and Θ2(z, z̄),

with the free action

Sc=−2
matter =

1
2π

∫
d2z εαβ∂Θα∂̄Θβ , α, β = 1, 2 . (6.2.2)

There is some freedom as to which CFT with c = −2 one should pick. Another possibility

[194] would be to take the more familiar ξη ghost system, related to the Θα system as

follows:

η(z) = ∂Θ2(z, z̄) , ξ(z) + ξ(z̄) = Θ1(z, z̄) . (6.2.3)

The two theories differ only in the treatment of the zero-modes. Θ1(z, z̄) has only one

non-chiral zero-mode (the same is true for Θ2(z, z̄)), so the mode expansion reads

Θα(z, z̄) = θα
0 +

1
2

dα
0 ln |z|2 +

1√
2

∞∑

n=−∞ ,n6=0

(
dα

n

nzn
+

d̄α
n

nz̄n

)
. (6.2.4)

This is a rather subtle difference, but we believe that the choice of the Θα is the correct one.

First, this is the most obvious choice to describe “strings in minus two dimensions”. It is

indeed the choice singled out by defining the theory from double-scaling of a matrix model

for random surfaces embedded in minus two dimensions [195, 196, 197, 198, 199]. Second,

the treatment of closed string correlators is simpler, as unlike the ξη system, the Θα system
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does not require the introduction of screening charges. We come back to this point in the

next subsection. Finally, this is the choice that will naturally lead to the Kontsevich model.

The Θα system has of course properties very similar to those of a pair of free bosons,

one need only keep track of Grassmann minus signs. The OPE reads

Θ1(z, z̄)Θ2(0) ∼ −1
2

log |z|2 , (6.2.5)

and the stress tensor is

TΘ = εαβ∂Θα∂Θβ . (6.2.6)

(Note that in this chapter we set α′ = 1). The Θα CFT as an obvious global SL(2) invariance

that rotates the fields. This symmetry does not extend to an affine symmetry but to a W3

algebra [200].

It is amusing to check the modular invariance of the Θα system. The vacuum amplitude

on the torus can be easily found by explicit computation of the trace,11

Tr
[
(−1)F θ1

0θ
2
0 qL0+1/12 q̄L̄0+1/12

]
= 2πτ2 |q|1/6

∞∏

n=1

|1− qn|4 = 2πτ2 |η(τ)|4 , (6.2.7)

and is indeed modular invariant. The unusual factor of τ2 is a consequence of the zero-mode

insertions, while the (−1)F factor follows from odd-Grassmanality. As it should be, this

is the inverse of the torus vacuum amplitude for two free bosons. We should also mention

that (orbifolds of) Θα systems have been studied in detail [200] as prototypes of logarithmic

CFTs [201, 202].

Liouville CFT has been well-understood in recent years (see e.g. [159, 158, 152] and

references therein), and it is largely thanks to this progress that we shall be able to carry
11To obtain a non-zero amplitude, we must of course insert the two zero modes θ1

0 and θ2
0.
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our analysis. We collect here some standard facts:

SLiou =
1
2π

∫
d2z

(
∂φ∂̄φ + QR φ + µ e2bφ

)
(6.2.8)

cLiou ≡ 1 + 6Q2 , Q = b +
1
b

(6.2.9)

φ(z, z̄)φ(0) ∼ −1
2

log |z|2 (6.2.10)

TLiou = −∂φ∂φ + Q∂2φ (6.2.11)

Vα ≡ e2αφ , hα = α(Q− α) . (6.2.12)

Specializing to cLiou = 28, we have Q = 3/
√

2, b = 1/
√

2. We shall keep the symbol b in

many formulas to facilitate future generalizations; unless otherwise stated, it is understood

that b ≡ 1/
√

2.

6.2.1 Remarks on closed string observables

In this subsection we offer some side remarks about closed string amplitudes. Our main

interest is in the open string sector, indeed the essential point is that one can bypass

the closed string theory altogether and compute everything using open string field theory

(the Kontsevich model), which is structurally much simpler. The subject of closed string

amplitudes in topological gravity is notoriously subtle [166, 187, 203, 204, 205, 206]. Here

we attempt to make contact with some of the previous work and suggest that the action

(6.2.1,6.2.2) may offer a different and simpler starting point.

A model very similar to (6.2.1, 6.2.2) (but with the ξη system instead of the Θα system)

was considered by Distler, who observed that by an elegant change of variables (see (6.3.12)

below) the bosonic (2, 1) theory could be formally related to the topological gravity for-

mulation of [185]. This is one of the several [166, 187, 203, 204, 205, 206] (closely related)

field-theoretic formulations of topological gravity (see [207, 208] for reviews). They all have

in common a sophisticated BRST machinery extending the ordinary moduli space to a

(non-standard) super-moduli space, which in essence is just the space of differential forms

over the bosonic moduli space. These formulations (as particularly transparent in Verlinde’s

set-up [187]) make it manifest that closed string amplitudes are intersection numbers on
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the moduli space. In this chapter we will carry our analysis in the context of the bosonic

(2, 1) theory, but we believe that an analogous derivation of the Kontsevich model must be

possible in the BRST formulations of topological gravity.

A potential worry is the claim by Distler and Nelson [205] that the bosonic (2, 1) model

(with the ξη system) does not correctly reproduce the topological gravity results, and that

the full BRST machinery is necessary to obtain the correct measure of integration over

the moduli space. It is quite difficult to compute topological gravity amplitudes from first

principles using standard worldsheet methods, in any of the field-theoretic formulations.

The difficulty stems from the very nature of the observables: amplitudes are naively zero

before integration over the moduli space, and receive contributions only from “contact

terms” (degenerations of the punctured surface). This is related to the fact that there are

no non-trivial closed string states in the absolute BRST cohomology, the only observables

being in the semi-relative cohomology.

However, the different zero-mode structure of the Θα system does certainly affect the

calculation of these contact terms. We believe that a careful analysis using the action

(6.2.2) would fully account for the correct contact term algebra. This is very plausible in

light of the fact that using this worldsheet action we will obtain the Kontsevich model.

More concretely, our derivation of the Kontsevich model suggests a “canonical” form for

the closed string vertex operators,

O2k+1 = e2(1−k)bφ Pk(∂Θα, ∂̄Θβ) cc̄ . (6.2.13)

Here Pk(∂Θα, ∂̄Θβ) is a primary of dimension
(

k(k+1)
2 , k(k+1)

2

)
, and it should be invariant

under the SL(2) symmetry. This follows from the fact that the D-branes which we use

to obtain the Kontsevich model are SL(2) invariant. It turns out that there is a unique

such operator in the Θα CFT. This can be seen from the results in [200]. In that paper it

is proved that (in the chiral theory), for each j ∈ N/2, there is exactly one spin-j SL(2)

multiplet of primaries, of conformal dimension j(2j + 1). Since there is only one way to

combine the chiral and antichiral fields into an SL(2) singlet, this shows the uniqueness of

Pk(∂Θα, ∂̄Θβ).
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The operators (6.2.13) differ from the ones considered by Distler [194], which are not

SL(2) invariant. In [194] a further operation of “picture changing” was necessary in order

to obtain non-zero correlators. In that language, the operators (6.2.13) are already in

the correct picture and in principle their correlators can be evaluated without any extra

screening insertions. The only selection rule comes from anomalous conservation of Liouville

momentum, and it is precisely (6.1.5).

6.3 Open string theory on stable branes

We now turn to the open string sector of the (2, 1) theory. The natural boundary conditions

for the Θα system are either Neumann or Dirichlet. Boundary conditions for the Liouville

CFT are either ZZ (unstable, localized at φ →∞) or FZZT (stable, extended in the Liouville

direction). The choice leading to the Kontsevich model is to combine Dirichlet b.c. for Θα

and FZZT b.c. for Liouville,12

i(∂φ− ∂̄φ)|∂ = 4πµB ebφ , Θα|∂ = 0 . (6.3.1)

The FZZT boundary conditions are generated by the adding to the Liouville action the

boundary term

µB

∫

∂
ebφ . (6.3.2)

One of the basic ingredients of our construction is the claim that amplitudes with bound-

aries can be reduced to amplitudes where each boundary is replaced by a specific closed

string insertion. The same phenomenon was demonstrated for D-branes in imaginary time

through a precise CFT analysis in the usual framework of (critical) string theory. In the

present case it is easiest to use instead the language of two-dimensional quantum gravity

(or non-critical string theory). This language gives a very useful geometric understanding

of the FZZT boundary state, which we now review.
12Another interesting choice is Neumann for Θα and ZZ for Liouville, related to the double-scaled matrix

model, see section 6.1.
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6.3.1 Macroscopic loops

In critical string theory, we are instructed to integrate he appropriate CFT amplitudes

over the moduli space of Riemann surfaces. In quantum gravity, we integrate over the

two-dimensional metric (modulo diffeomorphisms). Of course the two points of view are

completely equivalent, as the integral over metrics can be replaced by the Liouville path-

integral followed by integration over the moduli. Schematically,
∫

[Dgab]
Diff

∫
[DX] (O1 · · · On ) ↔

∫

Mg,n

[dm]
∫

[DX] [Dφ] [Db] [Dc] (O1 · · · On ) . (6.3.3)

Here Mg,n denotes the moduli space of closed Riemann surfaces of genus g and n punctures,

φ the Liouville field, X a collective label for the matter fields, and {Ok} a generic assortment

of local operators. To compute amplitudes in the presence of h boundaries, in the language

of critical string theory we would of course integrate over the moduli space of Mg,n,h

of Riemann surfaces with h holes, specifying appropriate boundary conditions for all the

fields. In the language of quantum gravity, FZZT boundary conditions have the simple

interpretation of introducing a ‘weight’ for each boundary length `i [193, 158],
∫

[Dgab]
Diff

e−
Ph

i=1 µi
B `i[g]

∫
[DX] (· · · ) ≡ 〈

∏

i

[∫
d`i

`i
e−µi

B`iw(`i)
]
· · · 〉 . (6.3.4)

Here on the r.h.s. we have introduced the definition of the macroscopic loop operator w(`),

which is the operator creating a boundary of length ` in the two-dimensional universe.

Note that we have also left implicit a choice of boundary conditions for the matter fields

X. Another standard object is the Laplace transform of w(`),

W (µB) ≡
∫

d`

`
e−µB`w(`) . (6.3.5)

In the presence of three or more boundaries, each loop operator w(`) can be expanded in

non-negative powers of ` [193], or equivalently, W (µB) can be expanded in inverse powers

of µB [193]. Each term in this expansion represents a local disturbance of the surface, and

is thus equivalent to the insertion of a local operator.

In our case, the expansion will take the general form

WDirichlet(µB) = gs

∞∑

k

ck
Ok

µxk
B

. (6.3.6)
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The superscript on W is a reminder that we are imposing Dirichlet boundary conditions for

the matter fields Θα. Recall that we are taking the bulk cosmological constant µ = 0. For

µ 6= 0, the coefficients ck would be replaced by functions ck(µ2
B/µ). The operators {O2k+1}

are the matter primaries, appropriately dressed by the Liouville field,

Ok = e2(1−k)bφPk(∂Θα, ∂̄Θβ) . (6.3.7)

To write this expression, we are using the information that the set of matter primaries

{Pk(∂Θα, ∂̄Θβ)} of the Θα system have dimensions
(

k(k+1)
2 , k(k+1)

2

)
. Their explicit expres-

sions can be found in [200].13 The value of the Liouville dressing follows as usual by

requiring that the total dimension be (1, 1). It is then immediate to determine the powers

of µB in (6.3.6) by conservation of the Liouville momentum. One has to recall that each

boundary carries a Liouville momentum Q/2, and that each factor of µB carries momentum

b/2. This fixes xk = 2k + 1. The normalization coefficients ck could also be computed with

some effort, but we shall ignore this here. Consistency of the contact term algebra (section

5) will be an easier route to fix normalizations.

Although this logic seems perfectly satisfactory, it would be nice to have a derivation

of the same result using the language of critical string theory, treating the Liouville theory

as an ordinary CFT, in the same spirit as the argument given for branes in imaginary time

[177]. The FZZT boundary state can be written as an integral over the continuum spectrum

of Liouville momenta Q
2 + iP of appropriate Ishibashi states,

|FZZT(µB)〉 =
∫ ∞

0
dP Ψ(µB, P ) |Q

2
+ iP 〉 . (6.3.8)

It is conceivable that the analyticity properties of the theory in the complex P plane may

allow a contour deformation that would pick up only the poles corresponding to on-shell

states in b0
L0

(|FZZT(µB)〉 ⊗ |matter〉 ⊗ |ghost〉). This should reduce the boundary state

to the same sum of on-shell closed string insertions expected from the quantum gravity

argument.
13There is in fact a whole SL(2) multiplet of primaries of dimension k(k+1)

2
in each chiral half of the theory.

However the Θα boundary state is an SL(2) singlet (see (6.3.9)), and this fixes uniquely Pk(∂Θα, ∂̄Θβ) for
each k, as remarked in section 2.1.
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6.3.2 Boundary CFT

The next logical step is to determine the spectrum of open strings living on these stable

branes.

In the open sector of the Θα system with Dirichlet boundary conditions, chiral and

antichiral oscillators dn and d̄n are identified, and we find a single copy of the chiral current

∂Θ1 (the same for ∂Θ2) without any zero modes.14 It is amusing to check this statement

by a modular transformation of the annulus partition function. For this purpose we write

the boundary state,

|BDirichlet
Θ 〉 = exp

( ∞∑

n=1

1
n

εαβdα
−nd̄β

−n

)
θ1
0θ

2
0 |0〉 . (6.3.9)

The annulus amplitude can be swiftly evaluated,

〈BDirichlet
Θ |qL0+1/12 q̄L̄0+1/12|BDirichlet

Θ 〉 = 2πt̃ η(t̃)2 , qq̄ ≡ e−2πt̃ . (6.3.10)

Modular transformation gives η(t)2, which is indeed the same result obtained by tracing

over the open string spectrum described above,

Tropen

[
(−1)F e−2πt(L0+1/12)

]
= η2(t) . (6.3.11)

The open string spectrum of the Liouville BCFT for FZZT boundary conditions is

known to have the usual primaries {eαφ}, of dimension hα = α(Q − α) (note the factor

of two difference with respect to the bulk primaries (6.2.12)). As usual in Liouville field

theory, the continuum spectrum α = Q/2 + iP corresponds to delta-function normalizable

states, while real exponents α ≤ Q/2 correspond to local operators and are used in the

dressing of the matter primaries.

A crucial observation, due to Distler [194], is that Liouville and c = −2 matter can be

formally combined into a βγ bosonic ghost system of conformal dimensions (2,−1),

β = ∂Θ1ebφ , γ = ∂Θ2e−bφ . (6.3.12)
14Had we defined the (2, 1) string theory using a ξη system, a zero mode for ξ would survive on the

boundary (ξ0 ≡ ξ̄0, but one zero mode is still there). This would spoil our construction.



245

(Recall that for cLiou = 28 the parameter b ≡ 1/
√

2). Distler applied this construction to

each chiral half of the closed theory, where the Liouville CFT was taken to be a free linear

dilaton (µ = 0). The validity of the bosonization formulas (6.3.12) is then a simple conse-

quence of the free OPEs. This commuting βγ system has conformal dimensions (2,−1), the

same dimensions of the usual anticommuting bc ghost system. This makes the topological

nature of the theory intuitively clear. In any open string vacuum amplitude, the oscillator

parts of the bc and βγ path-integrals will exactly cancel each other, and we should expect

the only surviving contributions to arise from classical configurations. This expectation will

be made more precise below. A basic ingredient is the scalar supersymmetry, or topological

charge,

QS ≡
∮

JS(z) , JS(z) ≡ b(z)γ(z) =
∮

b(z)∂Θ2(z)e−bφ(z) , (6.3.13)

which obeys

Q2
S = 0 . (6.3.14)

The usual BRST operator of the bosonic string theory,

QB =
∮

c(z)
(

Tmatter(z) + TLiou(z) +
1
2
T ghost(z)

)
, (6.3.15)

turns out to be QS-exact,

QB = {QS ,

∮
1
2
β(z)c(z)∂c(z)} . (6.3.16)

Turning on the bulk Liouville interaction (µ 6= 0) is expected to preserve the topological

nature of the theory, since the Liouville term is QS-closed; it is easy to check that QS is

still nilpotent for non-zero µ. Even more crucially for our purposes, an FZZT brane with

Dirichlet b.c. for the Θα will preserve the total charge QS + Q̄S . This is obvious for zero

boundary cosmological constant, and holds also for µB 6= 0 since the boundary interaction

is killed by Qboundary
S . Here we are defining an operator Qbondary

S acting on boundary vertex

operators by integrating the current JS + J̄S on a semicircle around the boundary operator.

We are going to focus first on the case t1 = µ = 0 (recall that this was already assumed

in the expression (6.3.6)). We shall comment on the more general case µ 6= 0 at the end of

section 5.
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We devote the rest of this section to the computation of the cohomology of Qboundary
S ,

a technical ingredient that we shall need in our analysis of the open string field theory.

There is a slight complication due to the fact that for non-zero boundary cosmological

constant µB, the BCFT is interacting and the action of Qboundary
S is non-trivial. Let us first

consider the case µB = 0. Then the action of Qboundary
S is just the same as for the chiral QS

operator (6.3.13) and the cohomology may be readily evaluated. The task is simplified by

the realization that the cohomology must lie in the kernel of L0 and of J0, the zero-mode

of an appropriately defined current J(z).

Consider the current15

J(z) ≡ JLiou(z)− Jbc(z) =
1
b
∂φ + : b(z)c(z) : . (6.3.17)

JLiou is an anomalous current that counts the Liouville momentum in units of b, for example

ebφ has J0 charge one. The linear combination J(z) is non-anomalous and it is QS-exact,

J(z) = {QS , c(z)β(z)} . (6.3.18)

This implies that the cohomology of QS is contained in the kernel of J0. Indeed QS is

invertible outside this kernel. Similarly, the total energy momentum tensor is QS exact.

Indeed using (6.3.16)

T (z) = {QB, b(z)} = {QS , G(z)} , G(z) ≡ 2β(z)∂c(z)− ∂β(z)c(z) . (6.3.19)

Hence the cohomology of QS is in the kernel of L0. These two facts readily allow to identify

the cohomology of QS as the states

enbφ(0)c(0)∂c(0) · · · ∂nc(0)|0〉 , e−nbφ(0)b(0)∂b(0) · · · ∂nb(0)|0〉 . (6.3.20)

When we turn on µB the BCFT becomes interacting and the action of Qboundary
S more

complicated. Luckily the operator e−bφ(z) that appears in QS is a degenerate field of level

two for the Liouville CFT, and its OPEs truncate to two terms,

[e−bφ] [eαφ] = [e(α−b)φ] + C−[e(α+b)φ] . (6.3.21)
15No confusion should arise between the parameter b ≡ 1/

√
2 and the antighost field b(z)!
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Hence we can write

Qboundary
S = Q

(0)
S + µ2

BQ
(2)
S . (6.3.22)

Note that for µB 6= 0, Qboundary
S does not have definite J0 charge, but it is a sum of the

original charge zero term Q
(0)
S plus a deformation of charge two Q

(2)
S . (Q(2)

S has charge two

under J0 becayse it has ghost number minus one and shifts the Liouville momentum of +b).

This is a mild deformation of Q
(0)
S . Nihilpotency of the total Qboundary

S for any µB implies

(Q(0)
S )2 = 0 {Q(2)

S , Q
(0)
S } = 0 , (Q(2)

S )2 = 0 . (6.3.23)

As the J0 charge of Q
(2)
S is nonzero, this implies that Q

(2)
S = {Q(0)

S , · · · } and hence it acts

trivially on Q0
S cohomology.

We conclude that the cohomology of Qboundary
S = Q

(0)
S + µ2

BQ
(2)
S has the same dimensionality

as the one of Q
(0)
S : one operator for each ghost number. We will mainly be interested in the ghost

number one operator, the open string “tachyon” ebφ(0)c1|0〉. It is immediate to check that this state

is in the cohomology for any µB . We can repeat the same reasoning also to the BCFT with different

boundary cosmological constants µi
B and µj

B at the two endpoints of the open string. The only

states of ghost number one in the cohomology of Qboundary
S are the open tachyons between brane i

and brane j,

ebφ(0)c1|0〉ij . (6.3.24)

6.4 Open string field theory and the Kontsevich model

It is our prejudice that open string field theory (OSFT) [6] must play a fundamental role in the

understanding of open/closed duality. The Kontsevich model provides the prototypical example. In

this section we construct the OSFT on N of the stable branes of the (2, 1) string theory, and show

how it reduces to the Kontsevich matrix integral.

6.4.1 Generalities

The OSFT on N D-branes takes quite generally the familiar form

S[Ψ] = − 1
gs


1

2

∑

ij

〈Ψij , QBΨji〉+
1
3

∑

ijk

〈Ψij , Ψjk,Ψki〉

 . (6.4.1)
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Let us briefly review the basic ingredients of this action, referring to [211] for background material.

The string field |Ψij〉, i, j = 1, · · ·N , is an element of the open string state spaceHij between D-brane

i and D-brane j. This is the full state-space of the matter + Liouville + ghost BCFT. In classical

OSFT, we restrict |Ψij〉 to have ghost number one (in the convention that the SL(2,R) vacuum |0〉
has ghost number zero). In the BCFT language, which is the most natural for our purposes, one

uses the state-operator map to represent string fields as boundary vertex operators. The string field

|Ψij〉 can be expanded as a sum over a complete set of vertex operators,

|Ψij〉 =
∑
α

cαVα
ij(0)|0〉 . (6.4.2)

Here Vα
ij(0) is a vertex operator inserted at the origin of the upper half plane, with boundary

conditions for brane i on the negative real axis, and boundary conditions for brane j on the positive

real axis.

The 2-point and 3-point vertices are then defined in terms of BCFT correlators on the boundary

(real axis) of the upper half-plane,

〈A, B〉 ≡ 〈I ◦A(0) B(0)〉UHP , I(z) ≡ −1
z

(6.4.3)

〈A,B, C〉 ≡ 〈f1 ◦A(0) f2 ◦B(0) f3 ◦ C(0)〉UHP .

Here f ◦ A(0) denotes the conformal transform of the operator A(0) by the complex map f . The

precise form of the maps fi(z), which implement the midpoint gluing of the three open strings, can

be found in many places and will not be important for us.

We also recall that the string field obeys the reality condition

|Ψij〉∗ = |Ψji〉 , (6.4.4)

where the ∗ involution is defined to be [46]

∗ = bpz−1 ◦ hc = hc−1 ◦ bpz . (6.4.5)

The operation ‘hc’ is hermitian conjugation of the state (it sends bras into a kets, with complex

conjugation of the coefficients). The operation ‘bpz’ sends a bra into a ket according to the rule

bpz(V(0)|0〉) = 〈0|I ◦ V(0) . (6.4.6)

Definition of the quantum theory requires gauge-fixing. This is customarily accomplished by

imposing Siegel gauge b0|Ψ〉 = 0. One must introduce Fadeev-Popov ghosts for this gauge fixing,
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and in fact, since the gauge symmetry is reducible, one needs ghosts for ghosts, and ghosts for ghosts

for ghosts, ad infinitum. It is a famous miracle [212] that the full second-quantized gauge-fixed action

+ ghosts can be written in the form

SSiegel = − 1
gs


1

2

∑

ij

〈Ψij , c0L0Ψji〉+
1
3

∑

ijk

〈Ψij , Ψjk,Ψki〉

 , (6.4.7)

where |Ψij〉 is now a string field of unrestricted ghost number, obeying

b0|Ψij〉 = 0 . (6.4.8)

The propagator
b0

L0
=

∫ ∞

0

b0 dt e−t L0 (6.4.9)

has the geometric interpretation of building worldsheet strips of canonical width π and length t.

The Feynman diagrams are fatgraphs built joining these flat strips at trivalent vertices (with the

curvature concentrated at the common midpoint of the three open strings). This gives the famous

decomposition of the moduli space of open Riemann surfaces [162, 188, 189, 190, 191] which plays

a crucial role in Kontsevich construction as well.

6.4.2 Topological localization

The general OSFT action (6.4.7) is a very complicated object. In the critical bosonic string, ex-

plicit calculations are available for some simple perturbative amplitudes. Off-shell, non-perturbative

calculations in the classical theory have so far been possible only using numerical methods (level

truncation). In the present case, a drastic simplification occurs thanks to a mechanism of topological

localization. A precedent of this phenomenon was discovered by Witten for the topological open

A-model on the cotangent bundle T ∗(M), which reduces to Chern-Simons on the three-dimensional

manifold M .

The localization works in the way familiar for topological theories of cohomological type. The

nilpotent supersymmetry Qboundary
S (henceforth simply QS) induces a pairing of the states of the

theory, such that in a vacuum amplitudes almost all states cancel pairwise; only unpaired states

(the cohomology of QS) give a non-zero contribution. Let us demonstrate this in a more formal way.

We are going to prove that QS is a symmetry of the gauge-fixed OSFT action (6.4.7); moreover

the action is almost entirely QS-exact, except for the terms involving only the open string tachyons

between the N branes. This reduces the OSFT action to an N ×N matrix integral.
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The topological symmetry is defined as

δS |Ψ〉 = QS |Ψ〉 , (6.4.10)

and it is an invariance of the gauge-fixed action.

δS SSiegel = 0 . (6.4.11)

The formal properties that ensure this invariance are

〈V2| (Q(1)
S + Q

(2)
S ) = 0 (6.4.12)

〈V3| (Q(1)
S + Q

(2)
S + Q

(3)
S ) = 0 .

Here we are regarding the 2-point and 3-point vertices as elements of H∗ ⊗H∗ and H∗ ⊗H∗ ⊗H∗,
i.e., as bilinear and trilinear functionals on the state space H = ⊕ijHij . These properties are an

immediate consequence of the fact that QS is the zero-mode of a conserved current. They are easily

proved by contour deformations on the 2- and 3-punctured disks that define the vertices (see e.g.

[210]).

We can now write

〈V2| = 〈V2|QS coho + 〈W2| (Q(1)
S + Q

(2)
S ) , (6.4.13)

〈V3| = 〈V3|QS coho + 〈W3| (Q(1)
S + Q

(2)
S + Q

(3)
S ) . (6.4.14)

Here we have defined a cohomology problem for QS in the spaces H∗ ⊗ H∗ and H∗ ⊗ H∗ ⊗ H∗ in

the natural way. Equ.(6.4.13) is simply the statement that since the 2-point and 3-point vertices are

QS closed (6.4.12), they can be written as a sum of a term in the QS cohomology plus a QS-exact

term. By Künneth formula the cohomology in the tensor product space is the tensor product of the

cohomology. Thus, dropping QS-exact terms, we can restrict the whole OSFT action to the string

fields in the cohomology of QS .

The cohomology of QS was computed in section 3.2 and consists of the states

enbφ(0)c(0)∂c(0) · · · ∂nc(0)|0〉ij , e−nbφ(0)b(0)∂b(0) · · · ∂nb(0)|0〉ij . (6.4.15)

Of these states, only the ones with bc ghost number ≥ 1 satisfy the Siegel gauge condition. Among

them, only the open string “tachyons”

|Tij〉 ≡ ebφc1|0〉ij (6.4.16)
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can give a contribution to the action, since all the other fields do not saturate the conservation of

bc ghost number, which must add up to three. This concludes the argument that the OSFT action

reduces to the terms containing only the open string tachyons.

6.4.3 Liouville BCFT and the matrix model

Writing the string field |Ψij〉 as

|Ψij〉 = Xij |Tij〉+ · · · (6.4.17)

for some coefficient Xij , i, j = 1, · · ·N , the OSFT reduces to a matrix model for the N ×N matrix

X. The reality condition (6.4.4) for the string field implies that X is hermitian. The action for the

matrix integral is

S[X] = −V olume

gs

(
1
2

XjiXij 〈Tji, c0L0Tij〉+
1
3

XijXjkXki 〈Tij , Tjk, Tki〉
)

. (6.4.18)

Here we are normalizing the inner products so that

〈c1, c0c1〉 = 1 , (6.4.19)

and correspondingly we have extracted a factor of the (divergent) volume of the brane coming from

the integration over the zero mode of the Liouville field.16 It only remains to evaluate the 2- and

3-point vertices for the open string tachyons, which define the coefficients in this matrix action.

The structure of the result can be understood by a simple reasoning. It turns out that for

the specific values of Liouville momenta that we are interested in, the effect of µB can be treated

perturbatively. The Liouville anomaly on the disk is Q = 3b. A correlator in which the total Liouville

momentum adds to three (in units of b) should then not get any correction from the presence of a

boundary cosmological constant. Since the open string tachyon has Liouville momentum one, we

expect that the cubic vertex can be evaluated as a free BCFT correlator,

〈Tij , Tjk, Tki〉 = 1 . (6.4.20)

Notice that the local coordinates fi(z) play no role since these are on-shell primary vertex operators.

On the other hand, in the kinetic term we expect to need one insertion of the boundary cosmological

constant to saturate the anomaly. This contribution can come from either side of the strip, so it is

reasonable to guess

〈Tij , c0L0Tij〉 ∼ µ
(i)
B + µ

(j)
B . (6.4.21)

16This overall factor is present also in all the closed string correlation functions of the the Ok operators,
and it will consistenly cancel out in all formulas.
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With these values for the coefficients the OSFT action would then become

S[X] = − 1
gs

(
1
2
XijXji(µ

(i)
B + µ

(j)
B ) +

1
3
XijXjkXki

)
(6.4.22)

This is the Kontsevich model (6.1.6), after the identification µ
(i)
B ≡ zi.

One may raise an immediate objection to this reasoning: the kinetic term should actually be

zero, since the open tachyon has conformal dimension zero and is thus apparently killed by L0.

Exactly at cLiou = 28 there is a loophole in this objection, because the scalar product 〈Tij , c0Tji〉 is

divergent. A more careful analysis is then called for, involving the full machinery of Liouville BCFT.

To regulate the divergence in the tachyon 2-point function, we can go slightly off-shell, consider-

ing the state e(b+ε)φc1|0〉ij . As we show in the appendix, the 2-point function in boundary (FZZT)

Liouville theory has a pole as ε → 0, precisely with the expected residue,

〈e(b+ε)φe(b+ε)φ〉1,2 ∼ µ
(1)
B + µ

(2)
B

ε
. (6.4.23)

This pole cancels the zero from the action of L0,

L0 eαφc1|0〉 = (α− b)(α− 2b)eαφc1|0〉 = ε (−b) eαφc1|0〉 , (6.4.24)

giving the desired result. The careful computation of the 3-point function (see the appendix) is

rather uneventful and confirms (6.4.20).

This resonant behavior of Liouville field theory correlators is related to the fact that the critical

exponent γstr ≡ 1−1/b2 equals minus one. In general, a similar resonant behavior occurs when γstr

is a negative integer [196]. The corresponding values of the central charge cLiou = 1 + 6(p + 1)2/p,

with integer p ≥ 2, are precisely the ones needed to dress the matter minimal models (p, 1). These

are also the models where the string theory is known to be topological and a matrix model à la

Kontsevich exists.

6.4.4 Discussion

We have seen that only on-shell fields (the open string tachyons) give non-zero contributions. This

can be given a geometric interpretation: the whole vacuum amplitude has support on the region of

moduli space where all propagator lengths in the fatgraph diverge. The localization on such singular

Riemann surfaces is again familiar from the Chern-Simons example [170]. In the language of [170],

we can say that there are no ordinary instantons, and only virtual instantons at infinity contribute.

It is well-known that in topological gravity closed string amplitudes are localized on singular surfaces
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[166, 187]. Here we are seeing this phenomenon in the open channel. While in the closed channel

contact terms are quite intricate, the open string moduli space is structurally much simpler, and

open string contact terms arise only when boundaries touch each other or pinch. This geometric

intuition could be used to streamline the combinatorial proofs [213, 214] of the Virasoro constraints

for the Kontsevich model.

6.5 Open/closed duality and Ward identities

The main conclusion to draw is that in this theory, the effect of D-branes can be completely accounted

for by turning on a simple source term for the closed strings,

Zopen(gs, zi) = Zclosed

(
gs, tk = gs

∑

i

1
k zk

i

)
. (6.5.1)

This conclusion can be strengthened by considering the partition function of the theory in the

presence of both a D-brane and a non-trivial closed string background.

Recall that in the closed string theory, the partition function is completely determined by the

Virasoro Ward identities [187, 215]

∂

∂t1
Z = L−2Z ≡ t21

2g2
s

Z +
∞∑

k=0

(2k + 3)t2k+3
∂Z

∂t2k+1

∂

∂t3
Z = L0Z ≡ 1

8
Z +

∞∑

k=0

(2k + 1)t2k+1
∂Z

∂t2k+1
(6.5.2)

∂

∂t2n+5
Z = L2n+2Z ≡

∞∑

k=0

(2k + 1)t2k+1
∂Z

∂t2k+2n+1
+

g2
s

2

n∑

k=0

∂2Z
∂t2k+1∂t2n−2k+1

.

Each of these equations details how a specificOk operator, when integrated over the Riemann surface,

picks contributions from collision with other operators or with nodes of the surface [187, 215]. The

second term in the L−2 and L0 equations, and the first term in the L2n+2 equation, represent the

collision of two operators. The last term in the L2n+2 equation represents the collision between an

operator and a node. (The first term in the L−2 equation accounts for the conformal Killing vectors

of the sphere, and similarly the first term in the L0 equation accounts for the CKV of the torus.)

The structure of these equations is strongly constrained by self-consistency; it is only because the

L2n form (half) a Virasoro algebra that these equations have a solution.

To find the partition function when both D-brane sources and closed string sources are turned on,

we will now extend these Ward identities by adding the contact terms that arise from the new ways

the surface can degenerate: when an operator Ok collides with a boundary; and when a boundary
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collides with a node. The collision of an operator with a boundary has the schematic aspect shown

in Figure 6.3.

Ok

Ok
Ok

Figure 6.3: Degeneration of the Riemann surface as the closed string operatorOk approaches
the boundary. The shadowed region represents the hole. As the short neck pinches, the
surface factorizes into two surfaces, each with the extra insertion of an open string tachyon,
indicated by a cross.

The short neck of the pinching surface is conformally equivalent to the insertion of a very long

open string propagator; the collision leaves behind an open string tachyon insertion, with a power

of z fixed by conservation of the Liouville momentum. This piece of knowledge, together with the

requirement that we still have a Virasoro algebra, uniquely fixes the open + closed Ward identities.

Considering for simplicity the case of a single D-brane with parameter z, they have the following

form:

∂

∂t1
Z = L̃(z)

−2Z ≡ L−2Z + (
t1
zgs

+
1

2z2
)Z − 1

z

∂Z
∂z

∂

∂t3
Z = L̃(z)

0 Z ≡ L0Z − z
∂Z
∂z

(6.5.3)

∂

∂t2n+5
Z = L̃(z)

2n+2Z ≡ L2n+2Z − z2n+1 ∂Z
∂z

− gs

n∑

k=0

z2k+1 ∂Z
∂t2n−2k+1

.

The terms involving ∂Z
∂z represent the collision of an operator with a boundary. The last term in

the L̃(z)
2n+2 equation represents the collision of a boundary and a node. Finally the second term in

the L̃(z)
−2 equation accounts for the CKV of the disk with two closed punctures and of the annulus

with one closed puncture.

These identities are sufficient to completely determine the open + closed partition function

Zopen+closed(gs, tk, zi). Not surprisingly, one can easily verify that the solution is

Zopen+closed(gs, tk, zi) = Zclosed

(
gs, tk + gs

∑

i

1
k zk

i

)
. (6.5.4)
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This shows that even when there are non-trivial closed string sources to begin with, D-branes can

still be re-absorbed into a shift of these sources. This argument also fixes the overall normalization

in the relation between tk and
∑

i z−k
i . The closed operators Ok have an intrinsic normalization

fixed by the algebra of closed contact terms. The algebra of open/closed contact terms can then be

used to fix the coefficients of this canonically normalized Ok in the expansion of the boundary state.

This ties a loose end in our derivation of the Kontsevich model.

We can also define an open partition function in a non-trivial closed background by subtracting

the purely closed amplitudes,

Zopen(gs, zi|tk) =
Zopen+closed(gs, tk, zi)

Zclosed(gs, tk)
. (6.5.5)

An interesting question is whether this open partition function is computed by an appropriate

generalization of the Kontsevich matrix model.

6.6 Future directions

There are many interesting directions in which the work of this chapter may be continued. In this

section we mention some of them.

6.6.1 Relation with discretized random surface in D = −2

In this chapter we have focused on the Kontsevich model for the (2, 1) string theory. We have stressed

that the finite N Kontsevich model There is also a double-scaled matrix model for this closed string

theory, defined in terms of a matrix M(θ1, θ2) that depends of two Grassmann-odd coordinates

[195, 196, 197, 198, 199]. This model has a rich structure with many intriguing properties.

In the continuum limit, the coordinates θ1 and θ2 become precisely our fields Θα. This is one

of the reasons why one should prefer the Θα system to the ξη system. Following the philosophy

of [150], this doubled-scaled matrix model should be understood as the open string field theory on

unstable D-branes of the theory. Indeed, if one considers in the continuum (2, 1) string theory ZZ

boundary conditions for the Liouville direction, and Neumann b.c. for the Θα system, one finds that

the tachyon dynamics is captured by a matrix M(θ1
0, θ

2
0), where θα

0 are the zero-modes of Θα living

on the Neumann boundary.

In [198], macroscopic loop operators for this matrix model are considered. The operators of

topological gravity appear to be related to loop operators with Dirichlet boundary conditions on the
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θα. This seems to agree with our construction, and it would be nice to understand this connection

in detail.

More generally, it is of interest to see whether our approach can shed some light on open/closed

duality [150] for the double-scaled matrix models. In the “old” approach, the doubled-scaled matrix

model is thought of as a trick to discretize the Riemann surface, and it is essential to send N to

infinity and t → tc to recover the continuum theory. The modern approach starts instead from

considering the worldvolume theory of a finite number N of ZZ branes in the continuum string

theory. The precise relation between the old and the new approach is still a bit mysterious, as it

seems that one cannot directly identify the finite N matrix model before double-scaling limit and

the finite N open string field theory of the ZZ branes. The OSFT of N ZZ branes, with N finite,

is presumably a unique and consistent continuum quantum theory, while the finite N matrix model

has non-universal features, like the precise form of the potential. The OSFT on N ZZ branes may

be expected [218] to be dual to a subsector of the full continuum closed string theory. This is in

analogy with the finite N Kontsevich model.17

6.6.2 Generalizations

The most obvious generalization of this work that comes to mind is to the other (p, q) minimal string

theories. (p, q) theories are solved by double-scaling of the (p−1)-matrix chain, where again q labels

the order of criticality. (p, 1) models represent the ‘topological points’, from which the (p, q) models

with q > 1 are obtained by flows of the p-KdV hierarchy. There is a Kontsevich model for any (p, 1)

theory, it is a one-matrix integral with a potential of order p + 1. Our logic leads us to believe that

the OSFT on the stable branes of the (p, 1) theory will localize topologically to a matrix integral.

Since OSFT is cubic, this process will lead to a cubic matrix integral involving several matrices (a

matrix for each open topological primary). The simplest guess is that such cubic models are related

to the known polynomial Kontsevich models by integrating out all matrices but one. A formulation

in terms of a cubic multi-matrix integral may have the advantage of making more transparent the

relation with a decomposition of moduli space, which has not been completly understood for the

intersection numbers associated to the (p, 1) models. Work is in progress along these lines.

Several other generalizations can be contemplated. ĉ < 1 theories admit topological points and

to the best of our knowledge there is no known topological matrix model description; our procedure

should give one. The case of c = 1 at the self-dual radius should also be attacked.
17We thank Ashoke Sen for pointing out this analogy.
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6.7 Conclusions

In this chapter we have described an example of exact open/closed duality that should represent the

simplest paradigm for a large class of similar dualities. The worldsheet picture of holes shrinking to

punctures is not, we believe, an artifact of the simplicity of the model, and the same mechanism may

be at work in more physical situations. We have found that at least in this example, open string

field theory on an infinite number of branes is capable of describing the full string theory. This may

contain a more general lesson.18 Although here we have stressed the importance of open string

field theory as a tool to understand open/closed duality, one of our original motivations was to learn

about the structure of OSFT itself in the solvable context of low-dimensional string theories. The

Kontsevich model is arguably the simplest imaginable OSFT - it is still a good question whether

this and related examples can be used to sharpen our understanding of OSFT.

We would like to conclude with a speculation about how this may come about in the case of

AdS/CFT. The example of the Kontsevich model suggests that the natural starting point is the

closed string theory dual to free SYM (’t Hooft parameter t = 0). At the point t = 0, which in

some sense must correspond to an infinitely curved AdS space, the closed string theory is expected

to have an infinite dimensional symmetry group. This is analogous to the statement that {tk = 0}
is the topological point of the Kontsevich model. If a a concrete description of this closed string

theory were available, one may also hope to define D-branes. D-branes of a peculiar nature may

exist, such that: 1)The open string field theory on these D-branes is precisely the SYM theory, with

no extra massive open string modes. 2)When considered in the closed string channel, the presence

of the D-brane can be completely re-adsorbed in a shift of the closed string background. Adding

D-branes would then be equivalent to turning on a finite t, that is, to recovering a smooth AdS space.

Statement 1) is analogous to the topological localization that we have described for the Kontsevich

model, while statement 2) is the by now familiar mantra of replacing boundaries with punctures.

This scenario would offer a derivation of AdS/CFT orthogonal to the usual one [1] that begins with

D-branes in flat space and proceeds by “dropping the one” in the harmonic function.

18Open string field theory on an infinite number of branes has been conjectured [217] to be relevant for
the issue of background independence in string theory.
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6.8 Liouville BCFT correlators

In this appendix we give the technical details of the computation of 2- and 3-point vertices of open

string tachyons.

We need the explicit expressions of 2- and 3-point functions of boundary primary operators in

Liouville BCFT (with FZZT boundary conditions). The relevant formulas can be found in [158, 209].

We use the notations of [158]. The variable s is conventionally introduced19

µB√
µ

= cosh bπs . (6.8.1)

Here µ is the bulk cosmological constant. We are interested in the limit µ → 0, since this is the

topological point tk = 0. Interestingly, the results for 2- and 3-point correlators of open string

tachyon turn out to be independent of µ. We do not have a complete physical understanding of this

fact. We suspect that turning on a non-zero µ would spoil our construction in other places.

An important ingredient is the special function Gb(x) defined in [158]. This function is entire-

analytic and has zeros for x = −nb −m/b, with m,n = 0, 1, 2, · · · ; it is symmetric under b ↔ 1/b.

A convenient combination of Gb’s is the function Sb(x) = Gb(Q− x)/Gb(x), which obeys the shift

relation

Sb(x + b) = 2 sin(πbx)Sb(x) . (6.8.2)

The 2-point function of boundary primary fields is then [158]

d(α, µ
(1)
B , µ

(2)
B , µ) ≡ 〈eαφeαφ〉 = (

π√
2
µγ(

1
2
))

3
2− α√

2 × (6.8.3)

×
G 1√

2
(−2α + 3√

2
)S 1√

2
( 3√

2
+ i( s1 + s2)/2− α )S 1√

2
( 3√

2
+ i( s1 − s2)/2− α)

G 1√
2
(− 3√

2
+ 2α)S 1√

2
(i( s1 + s2)/2 + α)S 1√

2
(i( s1 − s2)/2 + α)

.

We now take α = b + ε. As ε → 0 there is a pole arising from the zero of the first Gb in the

denominator. The interesting residue is contained in the part of the expression, finite for α → b = 1√
2
,

that contains the four S 1√
2

functions,

S 1√
2
( 2√

2
+ i( s1 + s2)/2)S 1√

2
( 2√

2
+ ( s1 − s2)/2)

S 1√
2
(i( s1 + s2)/2 + 1√

2
)S 1√

2
(i( s1 − s2)/2 + 1√

2
)

= (6.8.4)

4 sin(
π

2
+

iπ

2
√

2
(s1 + s2)) sin(

π

2
+

iπ

2
√

2
(−s1 + s2)) =

2 cosh(
π√
2
s1) + 2 cosh(

π√
2
s2) = 2

µ
(1)
B + µ

(2)
B√

µ
.

19The FZZT BCFT shows an interesting monodromy in the complex µB plane [219]. The physics is instead
entire-analytic in terms of s.
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The factor of 1/
√

µ cancels against the
√

µ in the prefactor of (6.8.3). This proves the claim (6.4.23).

The three point function simplifies when one takes the three Liouville momenta to be equal to

b. For generic b, this 3-point function is proportional to a rational function of µ, µB and the ‘dual’

cosmological constant µ̃B [209],

〈ebφ ebφ ebφ〉 ∼ µ̃
(1)
B (µ(2)

B − µ
(3)
B ) + µ̃

(2)
B (µ(3)

B − µ
(1)
B ) + µ̃

(3)
B (µ(1)

B − µ
(2)
B )

(µ(2)
B − µ

(3)
B )(µ(3)

B − µ
(1)
B )(µ(1)

B − µ
(2)
B )

. (6.8.5)

For cLiou = 28, the dual cosmological constants obey

µ̃
(i)
B ∼ (2(µ(i)

B )2 − µ) (6.8.6)

and the tachyon 3-point function is just a constant independent of µ and µi
B .

Here we have computed the Liouville correlators using analytic continuation in the Liouville

momentum. Equally well, we could have use analytic continuation in b to regulate the expressions

that become singular as b → 1/
√

2. Indeed one of the achievements of the past few years has

been the recognition that Liouville correlators have nice analytic properties with respect to all the

parameters. If one insists in working strictly at b = 1/
√

2 and with the on-shell vertex operators

ebφ, an alternative way to phrase the results is the language of logarithmic CFT [201]. For generic

b, the two operators eαφ and e(Q−α)φ are identified as

eαφ = d(α, µ
(1)
B , µ

(2)
B , µ) e(Q−α)φ . (6.8.7)

The reflection coefficient d(α, µ
(1)
B , µ

(2)
B , µ) has poles for Q − 2α = nb + m/b. For these cases, the

identification becomes ill-defined. One way around this is that for these resonant values α̃ we modify

the identification as

(L0 − hα̃) eα̃φ =
[

lim
α→α̃

((hα − hα̃)d(α, µ
(1)
B , µ

(2)
B , µ))

]
e(Q−α̃)φ . (6.8.8)

Notice that the term is in square brackets is just a finite coefficient. L0 cannot be diagonalized in

the subspace spanned by eα̃φ and e(Q−α̃)φ, which forms a non-trivial Jordan cell. In other terms,

the two operators are a logarithmic pair. In our case, α̃ = b. Working at b strictly equal to 1/
√

2,

we can write

L0 eφ(0)/
√

2c1|0〉ij = (µ(i)
B + µ

(j)
B ) e

√
2φ(0)c1|0〉ij . (6.8.9)

This gives an alternative way to understand why the tachyon kinetic term in the OSFT action is

(µ(i)
B + µ

(j)
B ).
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in 2D topological gravity,” Nucl. Phys. B 462, 571 (1996) [arXiv:hep-th/9510003].

[207] S. Cordes, G. W. Moore and S. Ramgoolam, “Lectures on 2-d Yang-Mills theory, equivariant

cohomology and topological field theories,” Nucl. Phys. Proc. Suppl. 41, 184 (1995) [arXiv:hep-

th/9411210].

[208] M. Weis, “Topological aspects of quantum gravity,” arXiv:hep-th/9806179.

[209] I. K. Kostov, B. Ponsot and D. Serban, “Boundary Liouville theory and 2D quantum gravity,”

arXiv:hep-th/0307189.

[210] L. Rastelli and B. Zwiebach, “Tachyon potentials, star products and universality,” JHEP

0109, 038 (2001) [arXiv:hep-th/0006240].

[211] C. B. Thorn, “String Field Theory,” Phys. Rept. 175, 1 (1989).

W. Taylor and B. Zwiebach, “D-branes, tachyons, and string field theory,” arXiv:hep-

th/0311017.

[212] M. Bochicchio, “String Field Theory In The Siegel Gauge,” Phys. Lett. B 188, 330 (1987).

C. B. Thorn, “Perturbation Theory For Quantized String Fields,” Nucl. Phys. B 287, 61 (1987).

[213] E. Witten, “On the Kontsevich model and other models of two-dimensional gravity,” IASSNS-

HEP-91-24

[214] C. Itzykson and J. B. Zuber, “Combinatorics Of The Modular Group. 2. The Kontsevich

Integrals,” Int. J. Mod. Phys. A 7, 5661 (1992) [arXiv:hep-th/9201001].

[215] R. Dijkgraaf, H. Verlinde and E. Verlinde, “Loop Equations And Virasoro Constraints In

Nonperturbative 2-D Quantum Nucl. Phys. B 348, 435 (1991).

[216] J. A. Shapiro and C. B. Thorn, Phys. Rev. D 36, 432 (1987). J. A. Shapiro and C. B. Thorn,

Phys. Lett. B 194, 43 (1987). B. Zwiebach, Mod. Phys. Lett. A 7, 1079 (1992) [arXiv:hep-

th/9202015]. A. Hashimoto and N. Itzhaki, JHEP 0201, 028 (2002) [arXiv:hep-th/0111092].

D. Gaiotto, L. Rastelli, A. Sen and B. Zwiebach, Adv. Theor. Math. Phys. 6, 403 (2003)

[arXiv:hep-th/0111129].

[217] E. Witten, “Overview of K-theory applied to strings,” Int. J. Mod. Phys. A 16, 693 (2001)

[arXiv:hep-th/0007175].



277

[218] A. Sen, “Open-closed duality: Lessons from matrix model,” arXiv:hep-th/0308068.

[219] J. Teschner, “On boundary perturbations in Liouville theory and brane dynamics in noncritical

string theories,” arXiv:hep-th/0308140.


	UMI_PGnocr.pdf
	UMI Number: 3077409
	________________________________________________________
	UMI Microform 3077409
	
	
	
	300 North Zeeb Road
	PO Box 1346






