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Abstract. We compute the scale dependence of the Planck mass and the Higgs VEV using
two very different methods: a ”holographic” procedure based on Einstein’s equations in five
dimensions, with scalar matter confined to a 3-brane, and a ”direct” procedure based on the
use of renormalization group equations in four dimensional gravity coupled to a nonlinear O(N)
scalar field theory. The two calculations lead to similar results, both suggesting that the coupled
theory approaches a fixed point in the UV.
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1. Motivation
One of the most remarkable recent developments in quantum field theory is the realization
that the coupling of a d-dimensional theory to gravity in d + 1 dimensions yields information
about the renormalization group (RG) running of the couplings of that theory. This idea was
already contained in the famous paper by Randall and Sundrum [1], and has been sharpened
in a number of subsequent publications [2, 3, 5, 4]. While the notion of “holography” has come
to have a rather specific meaning closely related to the AdS/CFT correspondence [6, 7], here I
will generically call “holographic RG” the flow of couplings of a d-dimensional theory which is
obtained by viewing it as living on a (d− 1)-brane coupled to gravity in (d + 1) dimensions, and
identifying the transverse coordinate with the RG scale.

On a different field, there has been significant development in the use of entirely 4-dimensional
“functional RG equations”, i.e. equations which describe in a single stroke and directly the
running of infinitely many couplings [8, 9]. The method has proven particularly helpful in the
study of perturbatively non-renormalizable theories with the aim of establishing (or refuting) the
existence of non-trivial UV fixed points (FPs) that could be used for a fundamental definition
of the theory [10], a property that has become known as “Asymptotic Safety” [11].

To the extent that holographic and functional RG are equivalent descriptions of physics, they
must be related in some way. There has been some work in this direction [16, 17]. In this article,
instead of exploring this relation from first principles, I will evaluate similarities and differences
of the two methods for a simple theory which incorporates some basic features of Nature.
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The toy model to be considered is a SO(N) non-linear sigma model coupled to gravity in 4d
with an action of the form S = Sg + Sm, where

Sg = −m2
P

∫
d4x

√
g R (1)

is the gravitational action. The matter action Sm for the SO(N) non-linear sigma model is
obtained by a limiting procedure from the corresponding linear theory, which contains a multiplet
of N real scalars φa with an action

Sm =
∫

d4x
√

g

(
1
2

N∑

a=1

gµν∂µφa∂νφ
a + λ(ρ2 − υ2)2

)
, (2)

where ρ2 =
∑N

a=1 φaφa. In a phase with spontaneous symmetry breaking, we have υ2 = 〈ρ2〉 > 0.
Without loss of generality we can assume that the background field is φα = 0 for α = 1 . . . N −1
and φN = υ. The N − 1 fields ϕα = φα are the massless Goldstone bosons, while the “radial”
massive mode δρ = φN − υ corresponds to the physical Higgs field.

The non-linear sigma model is achieved by taking the limit λ → ∞ with υ constant. Then
the potential for ρ becomes a constraint ρ2 = υ2, which can be solved to eliminate one scalar
field and describe the theory in terms of the remaining fields ϕα transforming non-linearly under
SO(N), the coordinates on the sphere. Higgs field δρ drops out becoming infinitely heavy in
this limit. In an arbitrary coordinatization of the (N − 1)-sphere, the action becomes

Sm =
1
2
υ2

∫
d4x

√
g gµν∂µϕα∂νϕ

βhαβ(ϕ) . (3)

Our toy model contains two dimensionful couplings m2
P and υ2, which we identify with the

square of the Planck mass and of the Higgs VEV. They appear in a very similar manner as
prefactors of the respective terms (1),(3) in the action.

There are three main motivations for chosing this model as opposed to gravity coupled to
model with linearly transforming scalars. The non-linear model in four dimension has a coupling
constant with inverse mass dimension and is power-counting non-renormalizable, similar to
gravity itself. It also suffers from violation of unitarity at high energy. Recent studies showed
that it displays an UV fixed point [18], with very similar behaviour as found within pure Einstein
gravity [12]. It has therefore been suggested that, quite independently of gravity, a strongly
interacting Goldstone boson sector may exist, able to overcome its perturbative problems in a
dynamical way [13, 14, 15].

Secondly the linear sigma model coupled to gravity displays “Gaussian matter FP”, where
matter couplings are asymptotically free and gravity is safe [19, 20] . Given the existing evidence
for asymptotic safety of the non-linear scalar theory and gravity separately, one may expect to
find a non-trivially interacting FP also for the coupled theory.

The third motivation is of a more direct physical nature namely the non-linear theory is
adequate, at least until the Higgs particle is detected experimentally [21].

2. Holographic RG
In this section we evaluate the running of the two dimensionful couplings m2

P and υ2 of the
four-dimensional toy model using a holographic technique. This flow is obtained by putting
our nonlinear sigma model on a flat 3-brane, coupling to 5d gravity and identification of the
transverse coordinate with the RG scale. Following [1], I consider a 5-dimensional spacetime with
coordinates ym = (xµ, t), µ = 1, 2, 3, 4 and metric Gmn. In the bulk we have only gravitational
part of the action

Sgrav =
∫

d5y
√
−G(2M3R− Λ) , (4)
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where M is the 5-dimensional Planck mass and Λ is the bulk cosmological constant. We make
an ansatz for the metric of the form

ds2 = e2tḡµν(x)dxµdxν + r2
cdt2 . (5)

We are looking for an AdS solution of the spacetime like in Randall-Sundrum model.
Using the 5-dimensional Einstein equations we get the solution with ḡµν = ηµν (preserving 4-
dimensional Poincarè symmetry), where we have identified the arbitrary length scale rc with the
AdS radius

√
24M3/|Λ| and a warping factor is identical to t. We can make the transformation

to “conformal time” coordinates (z, x) defined by the following relation t = − log (z/rc), which
brings the metric to the form

ds2 =
r2
c

z2
(ηµνdxµdxν + dz2) . (6)

Note that the AdS “boundary” z = 0 corresponds to t = ∞. In the holographic interpretation
of the 5-dimensional metric, the 5th dimension t is identified with the (logarithm of the) RG
scale k. Following [5, 4], we make the identification z = 1/k, which implies t = log(krc). We
choose the origin of t to correspond to the electroweak scale k = υ0 = 246GeV, which implies
numeric value for the AdS radius rc = 1/υ0.

To read off the β-functions of couplings in our model we imagine putting a test brane at a given
value of t [22]. Except for dimensionless couplings which run logarithmically, all the natural mass
parameters in the 4-dimensional matter theory are proportional to υ, whose running is governed
by the formula

υ(t) = υ0 et . (7)

The warping in AdS spacetime causes exponential running in t variable of Higgs field VEV υ,
which translates into linear running with RG momentum scale k. This is a manifestation of the
quadratic divergences in the running of (mass)2 in the underlying field theory.

Inserting the ansatz (5) in the action (4), we find that the effective 4-dimensional gravitational
action for the metric ḡµν(x) is equal to

Sgrav = 2M3 rc

∫
dt e2t

∫
d4x

√−ḡR̄ . (8)

The relation connecting the effective 4-dimensional Planck mass mP as seen by observer located
at t and the 5-dimensional parameter M is obtained by performing the integral over t explicitly,
leading to

m2
P (t) = m2

P (0) +
M3 rc

2

[
e2t − 1

]
. (9)

This formula contains the unobservable five-dimensional Planck mass. We can rewrite it in
terms of four-dimensional measurable quantities as follows. The Planck mass at the TeV scale
mP (0) is not too different from the measured value at macroscopic scales mP (−∞). Knowing
the empirical values of υ0 and mP (0) we have tP ≈ 38. Furthermore we define the coefficient

cP =
(

mP (tP )
mP (0)

)2−1 which measures the relative change of the t-dependent Planck mass between
the TeV and Planck scale. The anti-screening nature of gravity implies that cP > 0. From the
definition of cP and the assumption that mP À υ0 we get the relation M3 rc = 2 cP υ2

0, with the
help of which we can rewrite formula (9) as

m2
P (t) = m2

P (0) + cP υ2
0

[
e2t − 1

]
, (10)

where we have replaced the 5-dimensional parameters by the Higgs VEV and the arbitrary
constant cP , which is expected to be of order one.

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012098 doi:10.1088/1742-6596/343/1/012098

3



We observe that equation (7) describes a mass parameter that scales with the cutoff k exactly
as dictated by dimensional analysis (m(t) = m0e

t = m0
k

m0
= k), so the matter sector exhibits

scale-invariance. Therefore, when the mass is measured in units of the cutoff, it is constant. If
we regard this mass as the coupling constant of the non-linear sigma model (3), we are already
at a RG fixed point. Likewise, when t → ∞, also the Planck mass mP scales asymptotically
in the same way (m2

P (t) → cP υ2
0e

2t = cP k2), so if we regard it as the (inverse) gravitational
coupling, (10) describes an RG trajectory for gravity that approaches a non-trivial FP.

3. Functional RG
In this section we evaluate the scale-dependence of m2

P and υ2 directly in the four-dimensional
theory. Our starting point is the “quantum effective action” Γk, a coarse-grained version of
the average effective action at some RG momentum scale k which interpolates between some
classical action at k = k0 and the full quantum effective action at k = 0. The RG momentum
scale k-dependence is introduced at the level of the path integral by adding suitable momentum-
dependent kernels Rk(q2) to the inverse propagators. They must decrease monotonically with
k2, tend to 0 for k2/q2 → 0 (in order to leave the propagation of large momentum modes intact),
and tend to k2 for q2/k2 → 0 (in order to suppress the low momentum modes). In the following
I am going to use logarithmic RG “time” defined by t = log(k/k0). The change of Γk with it is
given by a functional differential Wetterich equation [9]

∂tΓk =
1
2

STr
(
Γ(2)

k + Rk

)−1
∂tRk . (11)

Here, Γ(2)
k denotes the matrix of second functional derivatives with respect to all propagating

fields, and the supertrace stands for a sum over all modes including a minus sign for fermionic
fields.

The β-functions for the couplings are obtained from (11) by projection. For optimized choices
of the momentum cutoff Rk(q2) = k2θ(q2 − k2) the traces can be performed analytically [23].
We use the heat kernel techniques to expand polynomially functional RG flow and later evaluate
traces around R = 0 and ρ2 = υ2. This type of calculation was first described in [24, 25, 12] for
pure gravity, and in [18] for the non-linear sigma model. For the details the reader is referred to
the extended version of this article [28]. The flow for the inverse gravitational coupling m2

P and
for the vacuum expectation value υ2 are then given by d

dR(∂tΓk) and − d
dρ2 ∂tΓk/(2λ) respectively.

Now we take the non-linear limit λ →∞ (or Higgs mass →∞) with υ2 held constant. In this
limit the Goldstone bosons remain fully dynamical, in fact their action is completely unaffected
by the limit. We end up with

∂tυ
2 = BHk2 ; BH =

N − 1
16π2

, (12)

∂tm
2
P = BP k2 ; BP =

Ng −N

96π2
, (13)

where Ng = 109/4. The dependence of the result on the number of Goldstone modes is simple
to understand. In (12), only the Goldstone modes contribute to the running of the VEV. In
(13), the contribution from the modes originating from the graviton self-interaction takes over
the Goldstone modes when Ng > N . Then the combined effect is to increase mP (BP > 0) with
increasing RG time t.

For a better understanding of the system it is convenient to use the inverses G = 1/(16πm2
P ),

f2 = 1/υ2, and to introduce dimensionless couplings υ̃2 = υ2/k2, f̃2 = f2k2, m̃2
P = m2

P /k2,
G̃ = Gk2. This is because the perturbative analysis of the sigma model and gravity is an
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expansion in the couplings f̃ and G̃, respectively. Their β-functions are given by

∂tG̃ = 2G̃−BP G̃2 (14)
∂tf̃

2 = 2f̃2 −BH f̃4 . (15)

Each one of these β-functions admits two fixed points: an IR FP at zero coupling and an UV
FP at finite coupling f̃2 = 2/BH and G̃ = 2/BP respectively.

4. Comparison
For the sake of comparison with the results of the holographic procedure, we can write the
general exact solutions of RG flow equations (12), (13) as:

υ2(t) = υ2
0 +

1
2
BH(k2 − k2

0) = υ2
0

[
1 +

1
2
BH(e2t − 1)

]
, (16)

m2
P (t) = m2

P0 +
1
2
BP (k2 − k2

0) = m2
P0 +

1
2
BP υ2

0(e2t − 1) , (17)

where we have defined, in accordance with the definitions in section II, k0 = k(0) = υ0.
The running of the two couplings have completely independent but very similar behavior. For

k ¿ υ, υ̃ is close to the Gaussian FP. This is the domain where the dimensionful coupling υ is
nearly constant, the dimensionless υ̃ has an inversely linear “classical” running with energy, and
perturbation theory is rigorously applicable. Then there is a regime where υ̃ is nearly constant
and close to the non-trivial FP, while the dimensionful υ scales linearly with energy. These
considerations can be repeated verbatim for mP , the sole difference being that the RG scale
where the transition from “classical running” to non-classical behavior occurs, will be near the
Planck scale. Thus, there are three regimes: the low energy regime k ¿ υ ¿ mP , where both
G and f are constant, the intermediate regime where f̃ has reached its FP value but G is still
constant and the FP regime where both dimensionless couplings have reached the FP.

Strictly speaking, the only physical parameter of the theory is the ratio of mass scales

α(t) ≡ mP (t)
υ(t)

. (18)

The plot of log α(t) is shown in fig. 1 and illustrates the three regimes of the theory alluded
before. For t →∞ the ratio tends, for all trajectories, to the constant value BP /BH , while for
t → −∞ it tends to a number that depends on the initial conditions and is of order m2

P0/υ2
0.

Returning to equations (16) and (17), we see that if we could set BH = 2 and BP = 2cP ,
they would agree with the flow obtained by the holographic method.

There is a difference here between the flows of υ and mP : whereas cP is a free parameter in
the holographic model, which can be adjusted to match the result of the functional RG, there
is no corresponding free parameter for υ. One is thus left with a prediction for the parameter
BH that does not seem to match the result of the functional RG. To clarify this difference
further, we observe that if we set BH = 2, as the AdS holographic RG seems to demand, υ
tends to zero in the IR and therefore α diverges linearly. This is shown by the dashed line in
fig. 1. Therefore the holographic RG describes unique trajectory of the flow, whereas exact 4d
approach allows for arbitrary initial values of the couplings. The holographic description agrees
well with functional RG flow in the second and third regime, but fails to reproduce even at a
qualitative level the generic low-energy regime of the theory. This is due to the fact that the
holographic RG trajectory is such that υ tends to zero in the IR, which is just one amongst
infinitely many RG trajectories in (16) that would tend to different finite limits in the IR. In
contrast, mP can have an arbitrary limit in the IR: this is due to the freedom of choosing the
parameter cP .
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Figure 1. The running of the mass ratio α(t) defined in (18), for N = 4, on a logarithmic scale
as a function of t. Solid curve: solution of the functional RG; dashed curve: solution of the
holographic RG.

We can modify the holographic RG to resemble more closely the functional one by stopping
sharply the flow of υ at k = υ0. This can be achieved by putting a source 3-brane located at
t = 0 with an action √

6 M3 |Λ|
∫

d5y δ(t) . (19)

We generalize the ansatz (5) by replacing e2t with new warping factor e2σ(t). Since σ(t) = t for
t > 0, we get σ(t) = 0 for t < 0 after solving five-dimensional Einstein equations. Thus, we have
a solution where the brane at the origin joins continuously a flat space-time for k rc < 1 with
AdS space-time for k rc > 1, where we recall that t = log(k rc). For the running Planck mass
the above construction implies a weak, logarithmic running for negative value of t coordinate.
We conclude that the resulting five-dimensional spacetime has become very similar to the one
used by Randall and Sundrum [1]. The behavior of the couplings for t < 0 is not exactly the
same as the solution that we found from the functional RG, but it is qualitatively the same.
The comparison could be improved further by making the model more realistic. Namely we can
take into account threshold phenomena at low energy which basically switch off the running of
υ below υ0 [14].

5. Conclusion
There are two aspects of this work that need to be discussed: the physical meaning of a non-
trivial FP for gravity coupled to a non-linear sigma model and the relation between holographic
and functional RG.

We have shown that in the simplest approximation, retaining only terms with two derivatives
of the fields, the non-linear sigma model minimally coupled to gravity exhibits a non-trivial,
UV attractive FP, which could be used to define the theory non-perturbatively. This was
proved in both ways: using holographic and functional approaches to RG flow. In the one of the
realization of asymptotic safety scenario, each type of the interaction present in this model would
be asymptotically safe by itself, and each coupling would reach the FP at a different energy scale:
the TeV scale for electroweak interactions and the Planck scale for the gravitational interactions.
This is the point of view that I am proposing in this work.

Taking this seriously, one is led to a non-standard picture of all interactions, where
both electroweak and gravitational interactions would be in their respective “broken” phases,
characterized by non-vanishing VEVs, and carrying non-linear realizations of the respective local
symmetries. The theory as formulated does not admit the possibility of symmetry restoration
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at high energy. In fact, rather than going to zero, the Higgs VEV goes to infinity at high
energy. The behaviour of the ratio α, illustrated in fig.1, characterizes the three regimes of the
theory, with the electroweak and gravitational interactions becoming scale-invariant above their
characteristic mass scales. We noted good agreement of two methods at FP (high energy) regime
and also at intermediate one. At low energy modification in the spirit of Randall-Sundrum in
the holographic approach and presence of threshold phenomena in functional 4d approach was
called to allow for better accordance in low-energetic behaviour of realistic theory.

We now come to the striking correspondence between the RG flows computed by holographic
and functional methods. The holographic RG is based to a large extent on the AdS5 solution.
Given that the isometry group of AdS5 is the group SO(3, 2), which can be interpreted as the
conformal group in four dimensions, it is not so surprising that this space can be used to describe
in geometric terms a theory with scale-invariance, so possesing nontrivial FP. My view here is
therefore to interpret the five-dimensional metric as a geometrization of the four-dimensional
RG flow. We do not claim to be describing a dynamical duality between a four-dimensional
“boundary” theory and a five-dimensional “bulk” theory, which would typically relate differ-
ent types of degrees of freedom. Here we obtained an example of a duality in a “kinematical”
sense relating particular solution in 5d geometry to particular RG flow of 4-dimensional theory.
Moreover it is claimed that the metric, near the AdS boundary at z = 0 (or t →∞), describes
the RG running in the vicinity of a non-trivial FP. Secondly, if one views the graviton as a
dynamical field propagating in a five dimensional spacetime, then graviton fluctuations that
are nonzero at z = 0 are not normalizable. This is the reason why I stick to only kinematical
meaning of this duality. This is in the same relation as analogue gravity models in fluids remain
to fluid-gravity correspondence [27] derived from AdS/CFT. By this mean simple “kinematical”
analogy between two RG flows was established.

The extended version of this work is contained in [28].
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