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Stabilization of Bose-Bose mixtures on a spherical surface induced
by the Lee-Huang-Yang correction
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Motivated by recent experimental advances in bubble traps which confine atoms on a thin shell, we investigate
the stabilization of droplet states of a Bose-Bose mixture on a spherical surface due to quantum fluctuations.
We analytically calculate the energy of a weakly interacting Bose-Bose mixture on a spherical surface with
attractive interspecies and repulsive intraspecies interactions using the Bogoliubov approximation. Our findings
show that the energy per particle has a minimum at a finite density in the presence of the Lee-Huang-Yang
(LHY) term, which indicates the presence of liquidlike droplet state stabilized by quantum fluctuations. We also
numerically solve the extended Gross-Pitaevskii equation, incorporating both bubble traps and an additional
repulsive LHY correction derived from the Bogoliubov spectrum of a three-dimensional homogeneous mixture.
Our calculations show that, due to the size limitations of the sphere, droplet states can only exist within specific
parameter ranges. We also verify the transition between droplet states and uniform condensates in spherical
confinement potentials, as well as the coexistence of the two. Our results pave the way for future exploration of
quantum droplets in curved geometries with nontrivial real-space topologies.
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I. INTRODUCTION

Since the physical realization of ultracold quantum gases,
exploring the various exotic quantum states caused by interac-
tions in cold atoms has continuously been an important issue
of significant interest in both theoretical and experimental
research. Although in most cases the conclusions obtained
from the mean-field method have been well matched with
experimental results [1–4], there are also many experiments
that show that fluctuations beyond the mean field can lead to
observable physical effects, resulting in new quantum phases.
Theoretically, Lee et al. provided the ground-state energy
density of a homogeneous weakly repulsive Bose gas, in-
cluding the mean-field term and the first beyond-mean-field
contribution, known as the famous Lee-Huang-Yang (LHY)
correction [1],

εMF + εLHY = gn2

2

[
1 + 128

15

(
a3n

π

)1/2
]
, (1)

where a is the s-wave scattering length, g is the interaction
coupling constant, and n is the particle-number density. In the
weak-interaction regime with n|a|3 � 1 [5], the LHY correc-
tion due to quantum fluctuations is indeed small compared
to the mean-field term, which thus can be safely neglected
in most cases. Due to recent advancements in experimental

*Contact author: gmgong@ustc.edu.cn
†Contact author: zwzhou@ustc.edu.cn
‡Contact author: xfzhou@ustc.edu.cn

techniques and the application of Feshbach resonance in the
field of cold atoms, researchers have succeeded in observing
the effects induced by the LHY correction in some ultracold
atomic experiments [6]. However, the more significant observ-
able physical effects caused by the LHY correction remain to
be explored.

Fortunately, for a Bose-Bose mixture, Petrov found that the
LHY correction can be dominant and leads to the formation
of stable quantum droplet states in such a dilute weak-
interaction systems [7]. Physically, according to mean-field
theory, the stability condition for a Bose-Bose mixture can be
expressed as [8]

g11 > 0, g22 > 0, g11g22 > g2
12, (2)

where gii (i = 1, 2) and g12 represent the intra- and inter-
species coupling constants, respectively. If the Bose-Bose
mixture supports weak interspecies attractive and intraspecies
repulsive interactions, characterized by g12 < 0, g11 > 0, and
g22 > 0, then according to mean-field theory, the ground-
state energy density εMF ∝ n2 can be negative if δg = g12 +√

g11g22 is slightly less than zero. Therefore, naively, one
may think that the system will gradually collapse due to
the effective attractive interaction. However, since the mean-
field term and the LHY term have different dependences on
the inter- and intraspecies coupling constants (εLHY ∝ n5/2)
and can be independently controlled under weak-interaction
conditions [7], this implies that the repulsive force provided
by quantum fluctuations can offset the attractive force cor-
responding to the mean-field predicts. Thus, the Bose-Bose
mixture does not collapse as described by mean-field theory
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but instead enters a dilute quantum droplet state stabilized by
quantum fluctuations. Some experiments have demonstrated
the stabilization of quantum droplets in the weakly interacting
Bose-Bose mixture [9–11]. This provides a direct manifesta-
tion of effects beyond mean-field theory and has rekindled
interest in exploring novel ground-state properties of these
dilute, weakly interacting systems [12–15].

On the other hand, in recent years, the study of the
physical properties of bubble-shaped Bose-Einstein conden-
sates (BECs) has also received increasing attention. Unlike
the situation in free space, bubble-shaped BECs, as the
simplest boundaryless closed systems, have a unique ad-
vantage in exploring the effects of spatial curvature on
the phase of ultracold gases due to their curved geometric
structure and the isotropic nature in all spatial directions.
Theoretically, extensive studies and various intriguing phe-
nomena have been considered and predicted in such novel
systems, including the Haldane spherical surface with a
synthetic magnetic monopole [16–18], unique collective
modes [19–21], self-interference patterns [19], and some
interesting thermodynamic behaviors [22–24]. Additionally,
closed-spherical-shell BECs can form stable vortex-antivortex
pairs [25]. Further studies have investigated the Berezinskii-
Kosterlitz-Thouless transition of spherical-shell BECs in the
thin-shell limit, revealing the connection between BECs with
curved geometry and superfluidity [22].

Experimentally, although the proposal for a bubble-shaped
BEC involving rf-dressed magnetic traps with a nontrivial
topology has been made by Zobay and Garraway in [26], the
physical implementation in real systems has been achieved
only recently due to the influence of the surface’s gravitational
field. In [27] Morizot et al. successfully confined ultracold
atomic clouds on a spherical shell in experiments based on
the theoretical framework proposed in Refs. [26,28]. How-
ever, due to the influence of gravity, ultracold atoms remained
trapped near the bottom of an ellipsoidal surface, making
it challenging to achieve a fully closed spherical shell. In
[29] Carollo et al. observed ultracold atomic bubbles in or-
bital microgravity, where significant cooling associated with
expansion has been demonstrated. Subsequently, by com-
pensating for gravitational effects using inhomogeneous rf
coupling, Guo et al. successfully created a closed spherical
shell using a rf-dressed magnetic trap potential [30]. Mean-
while, Jia et al. also have successfully prepared a closed-shell
BEC using a distinct method that relies on optically trapped
double-species BECs of 87Rb and 23Na atoms in the immis-
cible phase under earth’s gravity [31]. These experimental
advancements thus provide a solid foundation for exploring
novel physics due to interactions and curved geometries in
spherical cold atoms, particularly the exotic states induced by
quantum fluctuations.

In this paper we investigate the stability of binary-
component Bose atoms in a spherical system and explore the
existence of quantum droplets under the LHY correction in-
duced by quantum fluctuations. We analytically calculate the
ground-state energy density of a spherical two-dimensional
weak-interaction Bose-Bose mixture under the Bogoliubov
approximation and analyze the stability of the spherical Bose-
Bose mixture. For weak interspecies attractive (g12 < 0) and
intraspecies repulsive interactions ({g11, g22} > 0), in particu-

lar when g11g22 � g2
12 where the mean-field interaction almost

vanishes, we find that the energy per particle has a minimum
value at finite density in the presence of the LHY correction.
This means that the mixture that would collapse according
to mean-field theory forms a quantum droplet stabilized by
quantum fluctuations. To confirm the above analysis, we also
numerically solve the extended Gross-Pitaevskii equation by
incorporating both bubble traps and the additional energy due
to quantum fluctuations. The results indicate that the forma-
tion of droplet states depends closely on the total particle
numbers of the system due to the finite-size effect of the
thin-spherical-shell traps. We find that the ratio of particle-
number densities between the two bosonic species can drive
the system’s transition from a droplet state to a uniformly
distributed spherical condensate, which is also qualitatively
consistent with our estimation.

The structure of our paper is as follows. In Sec. II we
analytically calculate the energy of a single-component spher-
ical Bose gas using Bogoliubov theory. This calculation is
then extended to the case of a spherical weakly interacting
Bose-Bose mixture in Sec. III. In Sec. IV we theoretically
explored the existence of droplet states on a two-dimensional
sphere and the relationship between the equilibrium density
and the system parameters. In Sec. V we numerically solve
the extended Gross-Pitaevskii equation that includes both the
spherical bubble potential and energy corrections due to quan-
tum fluctuation. A summary is presented in Sec. VI.

II. ENERGY OF A SPHERICAL BOSE GAS

We start by considering the quantum fluctuations of a
single-component Bose gas subject to a spherical-surface trap
potential. The Hamiltonian of the system can be written as

Ĥ =
∫

d�r ψ̂†

(
− h̄2

2m0
∇2 + g

2
ψ̂†ψ̂

)
ψ̂, (3)

where

∇2 = 1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

R2sin2 θ

∂2

∂ϕ2
,

ψ̂ =
∑
lm

Cl,m

R
Yl,m(θ, ϕ). (4)

Here m0 and ψ̂ are the mass and field operator of the boson,
respectively; g is the strength of contact interaction; R is the
radius of the surface trap; Yl,m(θ, ϕ) is the spherical harmonic
function; and Cl,m is the bosonic annihilation operator corre-
sponding to the angular momentum quantum numbers (l, m).
The total particle number N̂ of the system can be written as∫

d�r ψ̂†ψ̂ =
∑
l,m

C†
lmClm = N̂ . (5)

In the case of low temperature and large N , these bosons
condense to the ground state to form a BEC, i.e., N ≈ N0,
where N0 is the number of atoms in the BEC and N is the
total number of atoms. Therefore, we can use the substitution
C00 → √

N0 and expand Eq. (3) to the bilinear terms of the
operators C†

lm and Clm (l 
= 0), which leads to the quadratic
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Hamiltonian

Ĥ = gN2

2S
+

∑
lm

′
[εl (l + 1) + gn]C†

lmClm

+ gn

2

∑
lm

′
(−1)m(ClmCl−m + C†

lmC†
l−m), (6)

where ε = h̄2/2m0R2 and S = 4πR2,
∑′

lm refers to the sum
over all l 
= 0, and n = N/S is the atomic number density. To
obtain the excitation of the system, we introduce the Bogoli-
ubov transformation as

Clm = ulmαlm − vlmα
†
l−m,

C†
lm = u∗

lmα
†
lm − v∗

lmαl−m, (7)

with the constraint |ulm|2 − |vlm|2 = 1. Applying the standard
Bogoliubov theory (see, for example, Ref. [32]), we can diag-
onalize Eq. (6) as

Ĥ = gN2

2S
+

∑
l,m

′
Elα

†
lmαlm + 1

2

∑
l,m

′
(El − εl − gn), (8)

where the Bogoliubov excitation spectrum reads

El =
√

εl (εl + 2gn), (9)

with εl = εl (l + 1). Therefore, the ground-state energy can
then be written as

E = gN2

2S
+ 1

2

lc∑
l=1

(2l + 1)(El − εl − gn), (10)

with the cutoff lc 
 1.
In Eq. (10) it can be seen that the first term is the dominant

interaction energy which clearly represents the mean-field
effect, while the second term originates from quantum fluc-
tuations and serves as a higher-order correction. Combining
Eqs. (8) and (10), it is evident that these higher-order cor-
rections can be attributed to the vacuum zero-point energy of
the Bogoliubov quasiparticle, indicating its quantum nature. If
we define ω(l ) = (2l + 1)(El − εl − gn) and apply the Euler-
Maclaurin formula to the second order, we have

lc∑
l=1

ω(l ) �
∫ lc

1
ω(l )dl − 1

2

lc∑
l=1

dω

dl
− 1

6

lc∑
l=1

d2ω

dl2
. (11)

The ground-state energy density can then be estimated as

E

4πR2
= gn2

2
− m0g2n2

8π h̄2 ln
h̄2lc(lc + 1)

m0(E1 + ε1 + gn)R2e1/2

+ m0E1

8π h̄2 (E1 − ε1 − gn) − C1gn

4πR2
, (12)

where ε1 = 2ε, E1 = √
ε1(ε1 + 2gn), and C1 � 0.62 is ob-

tained from the numerical fit [33] of the summation correction
term in Eq. (11).

To eliminate the dependence of energy density on the cut-
off lc, we introduce the renormalization condition in Ref. [33],
which can be rewritten in our case as

1

g
= m0

4π h̄2 ln
4R2

lc(lc + 1)a2e2γ
. (13)

Finally, we obtain the ground-state energy density of the sys-
tem as

E

4πR2
= gn2 − m0g2n2

8π h̄2 ln

(
4h̄2

m0(E1 + ε1 + gn)a2e2γ+0.5

)

+ m0E1

8π h̄2 (E1 − ε1 − gn) − C1gn

4πR2
, (14)

where γ is the Euler-Mascheroni constant and a is the spher-
ical s-wave scattering length. In particular, when R → ∞,
we have E1 � 0 and ε1 � 0. Therefore, Eq. (14) reduces
to the ground-state energy density of a weakly interacting
Bose gas in the two-dimensional plane case as E2D � gn2 −
c1g2n2[ln(c2/gn)] [2,3,34,35], where c1 and c2 are quantities
that are independent of n. It is evident that this expression
includes contributions from both the mean-field interaction
and the dominant corrections beyond mean-field terms.

Additionally, for a three-dimensional homogeneous Bose
gas, it is well known that the long-wavelength excitations are
sound waves, which also means that its low-energy excitation
is gapless [8,36]. However, in a spherical-surface system, the
single-particle eigenstates are discrete and have good quantum
numbers (l, m) defined by the angular momentum operators
(L2, Lz ). Thus, the Bogoliubov excitation spectra of the spher-
ical system are also discrete and the excitation is gapped.
We note that higher-order quantum fluctuation effects can
also be taken into account by considering the cubic or higher
terms of the operators C†

lm and Clm (l 
= 0). This allows for
further exploration of the interaction between quasiparticles
in the spherical two-dimensional Bose gas, which may lead to
the corresponding Beliaev damping on the spherical-surface
system.

III. BOSE-BOSE MIXTURE ON A SPHERICAL SURFACE

The discussion in Sec. II can also be generalized to the case
of a two-component BEC on the spherical surface. Specif-
ically, the Hamiltonian for the Bose-Bose mixture on the
surface of a sphere can be written as Ĥ = ∫

dr ĥ, with

ĥ =
∑
i=1,2

ψ̂
†
i

(
− h̄2∇2

2mi

)
ψ̂i +

∑
i j

gi j

2
ψ̂

†
i ψ̂

†
j ψ̂ jψ̂i. (15)

Here mi and ψ̂i denote the mass and field operators of bosonic
species i, respectively. The intra- and interspecies coupling
constants gii and g12, respectively, are related to the cor-
responding s-wave scattering lengths, which can be tuned
by Feshbach resonance. We then expand the field operators
ψ̂1(θ, ϕ) and ψ̂2(θ, ϕ) in terms of spherical harmonics as

ψ̂1(θ, ϕ) =
∑
lm

âl,m

R
Yl,m(θ, ϕ),

ψ̂2(θ, ϕ) =
∑
lm

b̂l,m

R
Yl,m(θ, ϕ), (16)

where âl,m and b̂l,m are the annihilation operators of the two
species with angular momentum quantum numbers (l, m),
respectively. The total particle numbers N̂1 and N̂2 of the two
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species can be rewritten as∫
d�r ψ̂

†
1 (θ, ϕ)ψ̂1(θ, ϕ) =

∑
l,m

a†
lmalm = N̂1,

∫
d�r ψ̂

†
2 (θ, ϕ)ψ̂2(θ, ϕ) =

∑
l ′,m′

b†
l ′m′bl ′m′ = N̂2. (17)

Next, following the treatment of a single-component Bose
gas in Sec. II, we consider the fluctuations beyond the mean-
field effect based on the standard Bogoliubov theory. After
expanding the Hamiltonian of the system in terms of the op-
erators a†

lm, alm, b†
lm, and blm (l 
= 0), we obtain the quadratic

Hamiltonian as

Ĥ =
∑

i j

gi jNiNj

2S
+ h1 + h2 + h12. (18)

Here hi represents the effective interactions within a single
component and h12 denotes the coupling between the two
bosonic excitations, whose explicit forms read

h1 =
∑
lm

′
[ε1l (l + 1) + g11n1]a†

lmalm

+ g11n1

2

∑
lm

′
(−1)m(almal−m + a†

lma†
l−m),

h2 =
∑
lm

′
[ε2l (l + 1) + g22n2]b†

lmblm

+ g22n2

2

∑
lm

′
(−1)m(blmbl−m + b†

lmb†
l−m),

h12 = g12
√

n1n2

∑
lm

′
[(−1)malmbl−m

+ (−1)ma†
lmb†

l−m + b†
lmalm + a†

lmblm]. (19)

Here εi = h̄2/2miR2 and ni = Ni/S is the particle-number
density of boson species i. The notation

∑′
lm refers to the

sum excluding l = 0. To facilitate the subsequent discussion,
we consider the case of two equal-mass bosonic species with
m1 = m2 = M. After introducing the Bogoliubov transforma-
tions

alm = ulmαlm − vlmα
†
l−m + xlmβlm − ylmβ

†
l−m,

blm = xlmαlm − ylmα
†
l−m + ulmβlm − vlmβ

†
l−m (20)

and applying the standard Bogoliubov theory [32], we can
diagonalize Eq. (18) and obtain the ground-state energy
density as

E = 1

2

∑
i, j

gi jnin j + 1

8πR2

∑
l,m

′
[E+(l, m) + E−(l, m)

− 2εl (l + 1) − g11n1 − g22n2] (i, j = 1, 2), (21)

where

E±(l, m) =
√

εl (l + 1)[εl (l + 1) + 2c2±] (22)

are the excitation energies of Bogoliubov modes with

c2
± =

g11n1 + g22n2 ±
√

(g11n1 − g22n2)2 + 4g2
12n1n2

2
(23)

and ε = h̄2/2MR2. It is easy to verify that despite the mean-
field term EMF = 1

2

∑
i, j gi jnin j , the second term of Eq. (21)

represents the LHY correction ELHY caused by quantum
fluctuations.

IV. LHY CORRECTION OF BOSE-BOSE MIXTURE
ON THE SURFACE OF A SPHERE

Although the LHY correction ELHY has been theoretically
predicted for more than 60 years [8], for dilute gases, the cor-
rection energy is relatively small compared to the mean-field
interaction, making its effect generally difficult to observe
experimentally. On the other hand, increasing the strength
of interactions through Feshbach resonance may lead to the
presence of other more significant higher-order effects of the
system, which is also unfavorable for detecting the effects.
However, for the Bose-Bose mixture, it has been illustrated in
[7,12] that, under certain special interaction parameters, i.e.,
when the dominant mean-field term is very small and negli-
gible, weakly interacting systems may also exhibit significant
quantum fluctuation effects.

Specifically, we consider the typical case with weak in-
traspecies repulsive and interspecies attractive interactions
between the two components, i.e., (g11, g22) > 0, and g12 < 0
with

1

a12
� {√n1,

√
n2} �

{
1

a11
,

1

a22

}
, (24)

where a11, a22, and a12 are the intraspecies and interspecies
scattering lengths of components 1 and 2, respectively. In
particular, when g2

12 = g11g22, we can rewrite the mean-field
term of the ground-state energy density (21) as

EMF = 1
2 (

√
g11n1 − √

g22n2)2. (25)

If we lock the density ratio of the two components to n1/n2 =√
g22/g11, then EMF becomes negligible and the nonzero

correction term ELHY caused by quantum fluctuations will
dominate. To obtain the explicit form of ELHY, we substitute
g2

12 = g11g22 into Eq. (21) as

ELHY = 1

8πR2

∑
l,m

′{
√

εl [εl + 2(g11n1 + g22n2)]

− εl − g11n1 − g22n2}, (26)

with εl = εl (l + 1). Similarly, by introducing the cutoff lc 

1, we can calculate the summation in Eq. (26) and rewrite
ELHY as

ELHY = Mμ2
12

8π h̄2 ln

(
M(E1 + 2ε + μ12)R2e1/2

h̄2lc(lc + 1)

)

+ ME1

8π h̄2 (E1 − 2ε − μ12) − C1μ12

4πR2
, (27)

where μ12 = g11n1 + g22n2, C1 � 0.62, and E1 =√
2ε[2ε + 2(g11n1 + g22n2)]. It is evident that, when either

of the particle-number densities ni is zero, Eq. (27) reduces
to the single-component case described in Sec. II, which
validates our derivation. Additionally, it is worth noting that
in the two-dimensional case, the coupling parameters g11,
g22, and g12 are not only related to their respective scattering
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FIG. 1. Energy per particle of the symmetric Bose-Bose mixture,
E/n, as a function of the particle-number density n, for different
sphere radii R. We normalize the vertical axis units to E00/n00 =
g/4πR2

0 and the horizontal axis units to n00 = ε00/g, where ε00 =
h̄2/2MR2

0. Clearly, the energy per particle has a minimum value with
respect to the particle-number density n. As the sphere radius R
increases, the equilibrium density gradually decreases.

lengths, but also dependent on the cutoff lc. This relationship
ensures that the ground-state energy density E of the system
can be independent of the cutoff lc, i.e., ∂E/∂lc = 0 [12,15].

By applying the renormalized relation on the surface of the
sphere shown in (13), we can rewrite the LHY correction term
ELHY as the total energy density for the symmetric Bose-Bose
mixture as

E = Mg2n2

2π h̄2 ln

(
M(E1 + 2ε + 2gn)aa12e2γ+1/2

4h̄2

)

+ ME1

8π h̄2 (E1 − 2ε − 2gn) − C1gn

2πR2
, (28)

where the mean-field term EMF disappears as we have set
g11 = g22 = g, a11 = a22 = a, and n1 = n2 = n. Therefore,
the ground state of the condensates is completely determined
by the higher-order correction term ELHY caused by quantum
fluctuations. Notably, Eq. (28) is also consistent with the result
for the two-dimensional plane case when R → ∞ [12].

To illustrate that quantum fluctuation is crucial for the
stability of this weak-interaction system, in Fig. 1 we plot the
dependence of the mean energy density per particle E/n as
described by Eq. (28) on particle-number density n using typ-
ical experimental parameters aa12/8R2 = 5 × 10−5 [33,37].
Clearly, the energy per particle E/n reaches a minimum
value with respect to n. The equilibrium density n0 can then
be theoretically determined by the relation ∂ (E/n)/∂n = 0.
Additionally, in the dilute limit, Eq. (28) shows that as
n → 0, E/n ∝ n(gn/ε − 6.86), indicating that E/n monoton-
ically decreases with n. Conversely, when n → ∞, we have
E/n ∝ gn[ln(gn/ε) − 7.55]/ε − √

2gn/ε, which means that
E/n monotonically increases with n in this opposite case.
Therefore, there must exist a certain n0 such that the energy
reaches a minimum.

The presence of the equilibrium density n0 can lead to
typical dynamical behavior of quantum droplets due to the
finite-size feature of the spherical surface. Specifically, as-
sume the Bose-Bose mixture uniformly occupies the entire
sphere. If the initial particle-number density n is less than n0,
the system will evolve to minimize its total energy, causing
the density to approach the equilibrium value n0. Conse-
quently, the Bose-Bose mixture will not occupy the entire
sphere at equilibrium, and quantum droplets with self-bound
properties may form on the sphere. This provides a direct
manifestation of quantum fluctuations beyond mean-field ef-
fects. Conversely, if the initial local particle-number density
n > n0, the system tends to decrease the density n to min-
imize the total mean energy density E/n. However, due to
the finite-size effects associated with the spherical geometry,
even after reaching equilibrium, the Bose-Bose mixture is dis-
tributed over the entire sphere and does not form a self-bound
droplet state. This is very different from the case of a free
symmetric Bose-Bose mixture [12], where, regardless of the
initial density, the density n of the system will approach the
equilibrium density n0 as the total energy of the system tends
to its minimum. Therefore, a free Bose-Bose mixture always
forms self-bound droplets at equilibrium.

Next we consider the symmetric Bose-Bose mixture with
g12/g = λ. Following the previous treatment, we obtain the
ground-state energy density

E = EMF + ELHY, (29)

where

EMF = (1 + λ)gn2,

ELHY = Mg2n2(1 − λ)2

8π h̄2 ln

(
E1 + 2ε + (1 − λ)gn

h̄2lc(lc + 1)(MR2e1/2)−1

)

+ ME1

8π h̄2 [E1 − 2ε − (1 − λ)gn] − C1(1 − λ)gn

4πR2

+ Mg2n2(1 + λ)2

8π h̄2 ln

(
E2 + 2ε + (1 + λ)gn

h̄2lc(lc + 1)(MR2e1/2)−1

)

+ ME2

8π h̄2 [E2 − 2ε − (1 + λ)gn] − C2(1 + λ)gn

4πR2
,

(30)

with Ek=1,2 =
√

2ε{2ε + 2[1 + (−1)kλ]gn} and C1 = C2 �
0.62 parameters obtained through numerical fitting. It is ev-
ident that when λ = −1, Eq. (29) reduces to Eq. (27). If λ 
=
−1, the mean-field term EMF will not be zero. From Eq. (30)
we find that EMF/n ∝ n, indicating that this term does not tend
to provide a single-particle energy minimum. Additionally,
when λ deviates slightly from −1, within a certain range of
particle-number density, the correction term ELHY should still
be comparable to the mean-field term EMF. Thus, the energy
per particle will still exhibit a minimum value. However, when
λ deviates significantly from −1, within the typical experi-
mental parameter range [33,37], the energy per particle may
no longer exhibit a minimum value, as the mean-field term
EMF becomes the dominant term in the ground-state energy
density.

By applying the renormalized relation on the surface of the
sphere as shown in (13), the ground-state energy density (29)
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(a) (b)

FIG. 2. (a) Dependence of the energy per particle E/n on the particle-number density n for different values of λ. The units of the vertical
axis are adjusted to E00/n00 = g/4πR2 and the units of the horizontal axis are adjusted to n00 = ε/g. Clearly, when λ deviates slightly from −1,
the energy per particle still exhibits a minimum with respect to the particle-number density. (b) Variation of the possible equilibrium density
n0 of a symmetric Bose-Bose mixture with λ. The units of the vertical axis are adjusted to n00 = ε/g. As λ gradually increases, the equilibrium
density n0 decreases.

can be rewritten as

E = 2(1 + λ)gn2 + Mλ2g2n2

4π h̄2 ln
a2

12

a2

+ Mg2n2(1 − λ)2

8π h̄2 ln

(
E1 + 2ε + (1 − λ)gn

4h̄2(Ma2e2γ+1/2)−1

)

+ ME1

8π h̄2 [E1 − 2ε − (1 − λ)gn] − C1(1 − λ)gn

4πR2

+ Mg2n2(1 + λ)2

8π h̄2 ln

(
E2 + 2ε + (1 + λ)gn

4h̄2(Ma2e2γ+1/2)−1

)

+ ME2

8π h̄2 [E2 − 2ε − (1 + λ)gn] − C2(1 + λ)gn

4πR2
. (31)

Figure 2(a) shows the dependence of the energy per particle
E/n as described by Eq. (31) on the particle-number density
n for different values of λ. Here we set 2π h̄2/Mg = 300,
a12/a = 1 × 104, and a2/8R2 = 5 × 10−9. We also numer-
ically calculated the possible equilibrium density n0 as λ

varies, as shown in Fig. 2(b). It is evident that as λ increases,
the equilibrium density n0 decreases. This result is consistent
with our previous analysis. Additionally, it can be observed
from the expression (31) that when λ is much smaller than
−1, the excitation energy E2 of the Bogoliubov mode can
be complex. Therefore, the ground-state energy density of
the system takes an imaginary part, indicating the presence
of instability in the system. The stabilization of the system
due to quantum fluctuation works only when the interspecies
attractive interaction cannot be excessively strong.

Finally, when the densities of the two components are un-
equal and satisfy n1 = n and n2 = ηn, the ground-state energy
density can then be expressed as in Eq. (29) where

EMF = 1

2
gn2(1 − η)2,

ELHY = Mg2n2(1 + η)2

8π h̄2 ln

(
E1 + 2ε + gn(1 + η)

h̄2lc(lc + 1)(MR2e1/2)−1

)

+ ME1

8π h̄2 [E1 − 2ε − gn(1 + η)] − C1gn(1 + η)

4πR2
,

(32)

with C1 � 0.62 and E1 = √
2ε[2ε + 2gn(1 + η)]. It is easy to

verify that for a symmetric Bose-Bose mixture with η = 1,
Eq. (29) reduces to Eq. (27) and the mean-field term EMF

disappears. However, when η deviates from 1, the ground-
state energy density E will be dominated by the mean-field
term EMF, which is minimized only when n = 0 and does
not favor an equilibrium state with the finite particle-number
density n0. Nevertheless, around η ∼ 1, within a certain range
of particle-number density, the correction term ELHY due to
quantum fluctuations should be comparable to the mean-field
term [33,37]. Therefore, in this case, the energy per particle
E/n still has a minimum value with respect to the particle-
number density n.

By applying the renormalized relation on the surface of the
sphere as shown in (13), the ground-state energy density (29)
can be rewritten as

E = gn2(1 − η)2 + Mηg2n2

4π h̄2 ln
a2

12

a2

+ Mg2n2(1 + η)2

8π h̄2 ln

(
E1 + 2ε + (1 + η)gn

4h̄2(Ma2e2γ+1/2)−1

)

+ ME1

8π h̄2 [E1 − 2ε − gn(1 + η)] − C1gn(1 + η)

4πR2
. (33)

In Fig. 3(a) we plot the relationship between the energy per
particle E/n and the particle-number density n for different
values of η, based on the parameters corresponding to Fig. 2.
We can observe that when η deviates slightly from 1, the
energy per particle E/n still has a minimum value with respect
to the particle-number density n. However, as η gradually
deviates further from 1, the minimum point of the energy per
particle, corresponding to the equilibrium density n0, becomes
smaller and its corresponding minimum value becomes larger,
indicating a decreased influence of the quantum fluctuation
effects on the system. To further analyze this, we illustrate the
variation of the possible equilibrium density n0 as η gradually
deviates from 1 in Fig. 3(b). It is evident that as η deviates fur-
ther from 1, the equilibrium density decreases to zeros almost
exponentially with the parameter η − 1, which confirms our
previous discussion.
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(a) (b)

FIG. 3. (a) Values of the energy per particle E/n as a function of the particle-number density n, for different values of η, as described by
Eq. (33). Here we adjust the units of the vertical axis to E00/n00 = g/4πR2 and the units of the horizontal axis to n00 = ε/g. It is evident that
when the value of η deviates slightly from 1, the energy per particle still has a minimum value with respect to the particle-number density.
(b) Variation of the possible equilibrium density as η deviates gradually from 1. Here we adjust the units of the vertical axis to n00 = ε/g.
It can be intuitively observed that as η deviates from 1, the equilibrium density gradually decreases.

V. NUMERICAL DENSITY DISTRIBUTION
OF TWO-COMPONENT BECs IN A SPHERICAL-SHELL

TRAP

Although a strict two-dimensional spherical BEC system
is still difficult to achieve, spherical-shell-shaped constrained
systems for ultracold quantum gases can currently be con-
structed in both space-based and ground-based environments
[29–31]. In this section we numerically solve the coupled
extended Gross-Pitaevskii equation to obtain the ground-state
density distribution of a two-component BEC in the spherical-
shell trap by taking into account the LHY corrections, which
also partly confirms our previous discussion.

We start by considering the Hamiltonian of the Bose-
Bose mixture in three-dimensional free space given by Ĥ0 =∫

dr ĥ0, where

ĥ0 =
∑
i=1,2

ψ
†
i

(
− h̄2∇2

2mi

)
ψi(r) +

∑
i j

gi j

2
ψ

†
i ψ

†
j ψ jψi, (34)

where mi is the mass of the bosonic component i. For two
equal-mass bosonic species (m1 = m2 = m), the interaction
coupling constant between components i and j is gi j =
4π h̄2ai j/m, where ai j is the s-wave scattering length. Ad-
ditionally, to illustrate the effect of LHY corrections, we
consider the weak interspecies attractive and intraspecies re-
pulsive interactions, namely, g12 < 0, g11 > 0, and g22 > 0,
and require δg = g12 + √

g11g22 < 0. For a homogeneous
system with uniform density ni (i = 1, 2), the ground-state
energy density under the mean field is given by

εMF = 1

2

2∑
i, j=1

gi jnin j . (35)

According to the standard Bogoliubov theory [8], the corre-
sponding LHY energy density correction is

εLHY =
∫

d3k
2(2π )3

(
2∑

i=1

(Eik − εik − giini ) +
∑

i j

mg2
i jnin j

h̄2k2

)
= 8

15π2h̄3 m3/2(g11n1)5/2 f

(
g2

12

g11g22
,

g22n2

g11n1

)
. (36)

Here Eik is the Bogoliubov spectrum and f > 0 is a dimen-
sionless quantity that reads

f (x, y) =
∑
±

1

4
√

2
(1 + y ±

√
(1 − y)2 + 4xy)5/2. (37)

We stress that, formally, the LHY energy density correc-
tion becomes complex when g2

12 > g11g22, i.e., it becomes
ill-defined. Fortunately, it has been shown that the complex-
ified energy density can be naturally eliminated through the
introduction of bosonic pairing [14]. For our purpose, we
assume that |δg| is small compared to g11 (or g22), that is,
g2

12/g11g22 ≈ 1 [7]. Following the analysis in Ref. [38], we

can rewrite εLHY as

εLHY � 8m3/2(g11n1)5/2

15π2 h̄3

(
1 + g22n2

g11n1

)5/2

. (38)

Therefore, the extended Gross-Pitaevskii equation can then be
obtained as

ih̄
∂ψi

∂t
=

⎛
⎝− h̄2∇2

2m
+ Vi +

2∑
j=1

gi j |ψ j |2 + ∂εLHY

∂ni

⎞
⎠ψi, (39)

where ni = |ψi|2 (i = 1, 2) is the particle-number density of
component i. The external potential is given by V1 = V2 =
1
2 mω2(r − R)2. When the radius R is much larger than the
characteristic length lT = √

h̄/mω, the radial excitation en-
ergy is much greater than that of the transverse excitations, so
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the radial wave function of the atom remains in the ground
state. Thus, we can express the wave function as ψ (r) =
ψ (θ, ϕ)φ0(r), where φ0(r) denotes the ground state of the har-
monic oscillator. In this case, ψ (θ, ϕ) represents the effective
two-dimensional wave function of the condensate on a spher-
ical surface, with a corresponding two-dimensional atomic
density ns. In particular, when considering very strong har-
monic confinement, i.e., gns/lT h̄ω � 1 (we omit subscripts
assuming that the coupling constants are of the same order of
magnitude {g11, g12, g22} ∼ g), then following similar treat-
ments as in Ref. [15], a perturbative approach allows us to
rewrite the LHY contribution in the form obtained for the
spherical two-dimensional system. The dimensionless Gross-
Pitaevskii equations can then be rewritten as

i
∂φ̃i

∂ t̃
=

[
−∇2

2
+ Ṽi +

2∑
j=1

βi j |φ̃ j |2

+ δii

(
|φ̃i|2 + g j jNj

giiNi
|φ̃ j |2

)3/2
]
φ̃i, (40)

where ψi = √
Nil

−3/2
T φ̃i, t̃ = tω, r̃ = r/lT , R̃ = R/lT , Ṽi =

(r̃ − R̃)2/2, βi j = gi jNj/h̄ωl3
T , and δii is the contribution of

quantum fluctuation that reads

δii ≈ 4m3/2g5/2
ii N3/2

i

3π2h̄4ωl9/2
T

. (41)

In order to obtain the ground state of the system under given
parameters, we solved Eq. (40) using the imaginary-time
method [39]. The ground-state properties of the system can
be derived from the density and phase distributions of the
condensates.

In Fig. 4(a) we numerically plot the dependence of the
ground-state energy per particle E on the total particle number
N for different g12 with fixed R̃ = 12 and g11g22 = 1. It is
evident that the larger |g12| is, the stronger the interspecies at-
tractive interaction becomes, resulting in a larger equilibrium
particle-number density of the system. This is consistent with
the physical behavior depicted in Fig. 2. Additionally, in the
case of g12 = −1.05, three different initial particle-number
densities are considered with N = 0.66N0, 1.54N0, and 3.2N0,
respectively, where the equilibrium particle-number density
is obtained with N00 � 3.0N0 for these typical parameter set-
tings. The corresponding ground-state density profiles of the
Bose-Bose mixture integrated along the radial direction r̂ are
shown in Figs. 4(b)–4(d), respectively. It can be observed that
when the average atomic density is lower than the equilibrium
density with N < N00, the condensates tend to cluster together
in order to lower the total energy of the system, with the
density of atoms within the condensates approximating the
equilibrium density. As the number of particles increases,
the condensate gradually expands and finally spreads across
the entire surface of the sphere when the average density is
greater than the equilibrium density. As the number of atoms
is further increased, due to the finite size of the sphere, the
atomic density of the condensates will increase and at the
same time the average particle energy E will also increase
gradually. Clearly, the behavior presented here is consistent
with the physical picture analyzed in Sec. IV.

FIG. 4. (a) Dependence of the energy per particle E on the
particle number N for different values of g12. Clearly, the smaller
the g12, indicating a stronger interspecies attractive interaction, the
larger the equilibrium particle-number density of the system. This
behavior aligns with the physical observations presented in Fig. 2.
Also shown are the ground-state density profiles of the Bose-Bose
mixture integrated along the radial direction r̂ for the total particle
numbers (b) N = 0.66N0, (c) N = 1.54N0, and (d) N = 3.2N0 when
g12 = −1.05 and N0 = 105.

Moreover, we can also investigate the dependence of the
ground-state profiles of the condensates on the radius of the
spherical shell R̃. It is easy to verify that for small R̃, the
atoms are distributed across the entire surface of the sphere,
and the average atomic density will decrease for larger R̃ as
the surface area of the spherical shell also becomes larger.
When the average density n is less than the critical equilibrium
density, the condensate will cluster together to occupy a spher-
ical cap, rather than being spread across the entire surface of
the sphere. This phenomenon corresponds to the formation
of droplet states. Physically, when the radius of the sphere is
large, the system becomes more like a quasi-two-dimensional
system rather than the usual three-dimensional system when
R̃ � 1. The formation of droplets also indicates that in lower
dimensions, droplet states can be more stable and easier to
form, which is consistent with existing conclusions. In Fig. 5
we numerically present the variation of the ground-state den-
sity profiles of the Bose-Bose mixture after integration along
the radial direction r̂ with different spherical shells R̃, where
all parameters, except for the spherical-shell radius R̃, remain
consistent with those in Fig. 4(d). The numerical results are
consistent with our expectations.

In the above discussion, we assumed that the numbers
of particles in the two components are equal. We can also
examine scenarios where the particle numbers of the two
components are unequal, with the particle number of compo-
nent 1 denoted by N1 and that of component 2 is N2 = ηN1.
For the purpose of comparison, we also fix the intraspecies
interactions for both components as g11 = g22. During the cal-
culations, we assume that the particle number of component
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FIG. 5. Ground-state density profiles of the Bose-Bose mixture, integrated along the radial direction r̂, for different radii of the spherical
shell R̃ = 12, 15, and 18. The other parameters are N = 3.2N0, g12 = −1.05, and N0 = 105. It can be observed that the condensate will cluster
together to occupy a spherical cap, rather than spreading uniformly across the entire surface of the sphere, once the system exceeds the critical
radius as R̃ increases.

2 can be changed, while the particle number of component
1 remains constant. The density profile n = n(φ, θ ) of each
component is then obtained by integration along the radial
direction r̂ for different values of η. Due to the rotational
symmetry of the distribution, we rotate the corresponding
density matrix so that the center of the density profiles aligns
with the north pole of the sphere. The values of the distribution
function on any great circles passing through the center point
can then be viewed as a function of θ only.

In Fig. 6(a) we numerically present the variation in the
angular density profiles of the Bose-Bose mixture for different
values of η. All parameters, except for the particle number
N2 of component 2, are consistent with those in Fig. 4(c).
The ground-state density profiles of the two components for
η = 0.5 are also shown in Figs. 6(b) and 6(c), respectively.
It can be seen that as η decreases, the equilibrium particle-
number density of component 1 also decreases, which is
qualitatively consistent with the analytical results obtained for
the spherical two-dimensional system (Fig. 3). Furthermore,
when η = 0.5 (or 0.4), we observe that n1(θ ) − min[n1(θ )]
closely matches the angular density profile of component 2,
n2(θ ). This suggests that the particles of component 1 can
be divided into two parts: The portion denoted by min[n1(θ )]
corresponds to a uniformly distributed condensate over the en-
tire spherical surface and the remaining part is then combined
with component 2 to form a symmetric quantum droplets
as {n1(θ ) − min[n1(θ )]}/n2(θ ) � 1. In this case, the droplet
achieves greater stability as n2/n1 � √

g11/g22 is fulfilled,
as has been demonstrated both theoretically [7,12] and ex-
perimentally [9–11]. Our numerical calculations have thus
verified the coexistence of droplet states and uniform conden-
sates in a spherical confinement system.

VI. CONCLUSION

To summarize, we have shown that for a Bose-Bose mix-
ture on a spherical surface with attractive interspecies and
repulsive intraspecies interactions, the energy per particle
can have a minimum at a finite density after taking the
LHY correction into account. This indicates the formation of

liquidlike droplet states of condensates stabilized by quantum
fluctuations.

Although in free space droplets with boundaries can al-
ways form for given parameters [7,12], in a spherical system,
due to its finite area and the presence of curvature, droplet
states can only appear within specific parameter ranges and
are dependent on the total number of particles as well as

(a)

(b) (c)

FIG. 6. (a) Variation in the angular density profiles of the Bose-
Bose mixture integrated along the radial direction r̂ for different
values of η. Also shown are the ground-state density profiles of
(b) component 1 and (c) component 2 of the Bose-Bose mixture
for η = 0.5. The red curved line in both figures indicates the cor-
responding spherical cross-sectional line. The other parameters are
N1 = 0.77N0, N2 = ηN1, g12 = −1.05, and N0 = 105.
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the ratio of particles between components. We numerically
found the ground states of the system by solving the extended
Gross-Pitaevskii equation using the imaginary-time-evolution
method for different parameters, incorporating both bubble
traps and an additional repulsive LHY term derived from the
Bogoliubov spectrum of a three-dimensional homogeneous
mixture. Our findings indicate that the physical behaviors they
exhibit are consistent with our theoretical predictions. Mean-
while, the numerical results show that the finite area of the
sphere surface also allows for the coexistence of droplet states
and uniform condensates. We also emphasize that although
our current discussion is limited to the characteristics of the
ground state of the system, the dynamic effects of the system
during the formation of droplets are another very interesting
topic that deserves further in-depth discussion. Our work thus
provides inspiration for exploring the potential new forms of
droplet states in confined systems.
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