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Abstract

We give the quantization and spectrum of an RNS supersymmetric open 2-brane described by a Polyakov-
like action, the model is world-volume supersymmetric. We present the Hamiltonian of the system in terms 
of raising and lowering operators. We get a supersymmetric spectrum of excited states in a discrete form 
after a GSO-like projection, which may be useful for further exploration related to the continuous spectrum 
of supermembranes.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

String is a special case of p-branes. p-Branes are the extended p-dimensional objects moving 
in some D-dimensional spacetime, D � p. The case p = 1 refers to “strings”. These are extended 
structures embedded in some higher-dimensional spacetime from which they inherit induced 
metrics [1,2]. Just like a string sweeps out a 2-dimensional world-sheet as it evolves with time, 
a p-brane sweeps out a d-dimensional world-volume and d = p + 1.
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The idea of relating different elementary particles to different vibrating modes of a membrane 
was put forward in 1962 by Dirac [3]. Later in 1986 there was a breakthrough in membrane 
theory when the work of Hughes, Liu and Polchinski [4] showed that supersymmetry could be 
incorporated into membrane theory, which was the birth of supermembrane theory.

The maximum allowed spacetime dimension is 11 [5,6] in a self-consistent brane-theory. And 
it is also possible [7] to perform a simultaneous dimensional reduction of both the spacetime 
and world-volume which leads to a theory of strings moving in 10D. More precisely, such doing 
yields the Type-IIA superstring theory.

An undesired feature of bosonic string theories is that their spectrum does not contain 
fermions. Fermions play very fundamental roles in nature. In the standard model, they corre-
spond to quarks and leptons. Hence fermions are unavoidable for a theory if it is to describe 
nature. The addition of supersymmetry to the usual bosonic string theory is crucial to achieve 
potentially realistic string theories [8,9]. Such string theories which include fermions are re-
ferred to as superstring theories. Moreover, there are different ways in which one can construct a 
superstring theory on a flat background and all of them require the critical spacetime dimension 
to be D = 10.

Compared to the works on the string quantization, works on the quantization of membranes 
are very few and are in the Green–Schwarz formalism and matrix regularization, [10,11]. How-
ever, quantizations using the Ramond–Neuver–Schwarz scheme are also possible and worthy of 
careful explorations. For the pure bosonic 2-branes, this question has been studied in the refer-
ences [12,13]. It was shown that the Hamiltonian of the system could be constructed in terms 
of raising and lowering operators. The spectrum is shown to contain two kinds of tachyon states 
and some massless states such as graviton states, Kalb–Ramond fields, dilaton states and photon 
states which are all produced at the same level in the open 2-brane model.

In this paper we will add fermionic degrees of freedom to the open 2-brane [12] and focus on 
the resulting system’s quantization and spectra in the RNS formulation. Since we fix the form of 
world volume metric and its supersymmetric partner, our work is a 2 + 1 d analogue of the 1 + 1
d RNS superstring theory.

The organization of this paper is: in Section 2, we follow reference [13] and write down 
the Polyakov-like action for the supersymmetric 2-brane, from which we derive the energy-
momentum tensor and classical equations of motion. In Section 3, we provide the boundary 
conditions and mode expansions for the bosonic and fermionic world-volume fields. In Section 4, 
we derive the commutation/anticommutation relations for the oscillator operators from the com-
mutation/anticommutation relations satisfied by the canonical field variables. In Section 5, we 
construct the Hamiltonian of the system in terms of raising and lowering operators separately 
for R-sector and NS-sector in two separate subsections. In Section 6, we present the physical 
spectrum of states for the quantized supersymmetric open 2-brane at the first few mass levels. 
Section 7 is summary and discussion.

2. Equations of motion for supersymmetric open 2-brane

The dynamics of 2-branes is described by the Nambu–Goto action which physically is nothing 
but the world-volume swept out by the brane when it evolves in the background spacetime. 
However the quantization of this action turns out to be quite awkward because of the presence of 
the square root computation. To avoid difficulties brought by this square root, we follow reference 
[13] and focus on the Polyakov-like action supplemented by a fermionic part
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Sp = −1

4πά

∫
d3σ(−h)

1
2
[
hab∂aX

μ∂bXμ + habΨ̄ μγbDaΨμ + R − 2Λ − χμγ μνρDνχρ

]

where Dνχρ = ∂νχρ + 1

4
ωmn

ν γmnχρ (1)

where μ = 0, 1, . . . , 9, d3σ = dτdσ 1dσ 2, χρ is the graviton and γ a, a = 0, 1, 2 is the two di-
mensional representation of Dirac matrices, which obey the Clifford algebra{

γ a, γ b
} = 2ηab (2)

The action (1) is a simple generalization of that of superstrings. However, there are key differ-
ences between the superstring and supersymmetric 2-brane cases. Firstly, in the superstring case, 
supergravity plus X and Ψ captures all information about the system’s dynamics. In the brane 
case, supergravity plus X and Ψ describes only part of the brane dynamics. What we wish to do 
in this paper is the quantization of 3 dimensional supergravity coupled to X and Ψ , instead of the 
supermembrane. Secondly, in contrast to the superstring case, we do not have enough symme-
tries in the brane case to fix the world volume metric hab (including its superpartner) completely. 
However, if we consider the full dynamics of hab at the very start, then we could almost do 
nothing except various arguments about a continuous spectrum. So, in this paper, we will fix the 
form of hab by hand and focus on the relative dynamics of the system. This is implemented just 
by removing the last three terms from the action (1) and changing the covariant derivative in 
the second term to partial derivative. Physically this corresponds to the fact that we go from a 
continuous spectrum space to a space consisting of infinite discrete points.

In 10-dimensional target space, the 2-brane has 7 transverse oscillating directions but the on 
shell Majorana–Weyl spinor has 8 degrees of freedom. However the supersymmetry of 2-brane 
is still possible when we include the gauge field degrees of freedom on the world-volume of the 
brane.

From the aspect of action, we can check that the action (1) is invariant under the infinitesimal 
world-volume supersymmetry transformations of the form

δXμ = ε̄Ψ μ (3)

δΨ μ = γ a∂aX
με (4)

The free massless fermions Ψ i are two component spinors, i.e., Ψ μ is given by

Ψ μ =
(

ψ
μ
−

ψ
μ
+

)
(5)

Since the gamma matrices in 3 dimensions are purely real, they furnish a Majorana representation 
of the Clifford algebra. Using formalism of [14], the Majorana condition means Ψ μ∗ = Ψ μ.

As a 3-dimensional world-volume field theory, the energy-momentum tensor of Xμ, Ψ μ fields 
can be derived from action (1) as follows

Tab = −2πά√−h

δSp

δhab
= 1

2

[
∂aX

μ∂bXμ − 1

2
habh

cd∂cX
μ∂dXμ − 1

2
habh

cdψ̄μγd∂cψμ

+ 1

2
ψ̄μγb∂aψμ + 1

2
ψ̄μγa∂bψμ

]
(6)

While hab’s equation of motion of action (1) requires

Tab = 0 (7)
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This means that the energy–momentum tensor of the supersymmetric 2-brane system vanishes. 
While the 00-component of this equation when we choose the metric hab as (−, +, +), reads

T00 =
[

1

2
∂0X

μ∂0Xμ + 1

4
ψ̄μγ0∂0ψμ + 1

4
ψ̄μγ0∂0ψμ

+ 1

4
hcd∂cX

μ∂dXμ + 1

4
hcdψ̄μγd∂cψμ

]
= 0 (8)

Using action (1), we write down the equation of motion for Xμ in the following form
(
∂2
τ − ∂2

1 − ∂2
2

)
Xμ

(
τ, σ 1, σ 2) = 0 (9)

This is the same as that in Ref. [12]. While that of the fermionic fields Ψ μ in action (1), which 
are real two component spinors, can be deduced from the general Dirac lagrangian and by spe-
cializing to the case of m = 0 as follows [15,16],

L = ψ̄μ

(
γ a∂a − m

)
ψμ

(
τ, σ 1, σ 2) (m = 0) (10)

From which we get
(
γ a∂a − m

)
ψμ

(
τ, σ 1, σ 2) = 0 (m = 0) (11)

3. Boundary conditions and mode expansions

The R-sector boundary conditions are given by

ψ
μ
+(τ,0,0) = ψ

μ
−(τ,0,0) (12)

ψ
μ
+(τ,π,0) = ψ

μ
−(τ,π,0) (13)

ψ
μ
+(τ,0,π) = ψ

μ
−(τ,0,π) (14)

While the NS-sector boundary conditions read

ψ
μ
+(τ,0,0) = −ψ

μ
−(τ,0,0) (15)

ψ
μ
+(τ,π,0) = −ψ

μ
−(τ,π,0) (16)

ψ
μ
+(τ,0,π) = −ψ

μ
−(τ,0,π) (17)

The corresponding boundary conditions for the bosonic fields are the following,

∂σ 1X
μ
(
τ,0, σ 2) = ∂σ 1X

μ
(
τ,π,σ 2) = 0 (18)

∂σ 2X
μ
(
τ, σ 1,0

) = ∂σ 2X
μ
(
τ, σ 1,π

) = 0 (19)

Now we can write the general solution to Eq. (11) for the R-sector as follows

ψμ(σ) = 1

(2π)2

∞∫
0

d2k√
2ω

(
d

μ

kse
−ikaσ a + d

μ†
ks eikaσ a )

uks (20)

ψ̄μ(σ ) = 1

(2π)2

∞∫
d2k√

2ω

(
d

μ†
ks eikaσ a + d

μ

kse
−ikaσ a )

ūks (21)
0
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and for the NS-sector

ψμ(σ) = 1

(2π)2

∞∫
0

d2k√
2ω

(
b

μ

kse
−ikaσ a + b

μ†
ks eikaσ a )

uks (22)

ψ̄μ(σ ) = 1

(2π)2

∞∫
0

d2k√
2ω

(
b

μ†
ks eikaσ a + b

μ

kse
−ikaσ a )

ūks (23)

with the 2-component spinors uks , ūks satisfying orthogonality conditions like

u
†
ksukt = 2ωδst (24)

while, to implement the Majorana condition one has to require (for fixed spin index)

d
μ†
k = d

μ

−k, b
μ†
k = b

μ

−k (25)

Since the 2-brane has a finite size, thus later in the paper, after quantization we will change the 
oscillator index from continuous parameter to a discrete one by identifying k with “nm”, i.e., the 
parameter k must be proportional to the discrete “nm”.

For the R-sector oscillators dμ

k the index k takes integer values while for the NS-sector oscil-
lators bμ

k the index k takes half integral values.
For the bosonic part of action (1), we get the mode expansion for the bosonic fields Xμ and 

the corresponding canonical momentum

Xμ(σ) = xμ

√
π

+ 2άpμ

√
π

τ + i
√

2ά

+∞∑
m,n=0

(
n2 + m2)− 1

4

× (
Xμ

nmeiτ
√

n2+m2 − X†μ
nme−iτ

√
n2+m2 ) × cosnσ 1 cosmσ 2 (26)

and

P μ(σ) = pμ

π
√

π
+ 1

π

√
2

ά

+∞∑
m,n=0

(
n2 + m2) 1

4

× (
P μ†

nmeiτ
√

n2+m2 + P μ
nme−iτ

√
n2+m2 ) × cosnσ 1 cosmσ 2 (27)

Later in this paper we will identify P μ
nm with αμ†

nm, Xμ
nm with αμ

nm.

4. Commutation and anticommutation relations

In order to quantize the model (1), we have to define the commutation and anticommutation 
relations for bosonic and fermionic world-volume fields respectively{

ψμ(σ),ψν
(
σ ′)} = πημνδ2(σ − σ ′) (28)[

Xμ(σ),P ν
(
σ ′)] = ημνδ2(σ − σ ′) (29)

according to which we will get
{
d

μ†
k′s′ , dν

ks

} = ημνδ2(k − k′)δss′ (30){
b

μ†
′ ′ , bν

} = ημνδ2(k − k′)δss′ (31)
k s ks
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and

[
Xμ

nm,P ν
n′m′

] = ημν

2π
[2δnn′δmm′ − δ−n,n′δmm′ − δnn′δ−m,m′ ] (32)

5. Hamiltonian of the system

Now we need a Hamiltonian of this system in terms of raising and lowering operators which 
would act on the Fock space. From the above mode expansion and anti/commutation relations, 
we can derive the Hamiltonian of the supersymmetric open 2-brane model for R-sector and 
NS-sector by the following formula,

H =
π∫

0

dσ 1

π∫
0

dσ 2(PXμẊμ + Pψμψ̇μ −L
)

(33)

Using the appropriate mode expansions for both fields (for R-sector) in the expression above, 
we achieve the Hamiltonian of the model in the following form after going to discrete space and 
identifying X†μ

nm with αμ†
nm and Xμ

nm with αμ
nm and noting that ω = √

n2 + m2,

H = ημν

∞∑
n=1

n

(
α

μ†
n0 αν

n0 + 1

2
ημν

)
+ ημν

∞∑
m=1

m

(
αμ†

omαν
om + 1

2
ημν

)

+ ημν

∞∑
n,m=1

√
n2 + m2

(
αμ†

nmαν
nm + 1

2
ημν

)
− α′M2

+ ημν

∞∑
n′=1

n′
(

d
μ†
n′0d

ν
n′0 − 1

2
ημνδn′n′

)
+ ημν

∞∑
m′=1

m′
(

d
μ†
m′0d

ν
m′0 − 1

2
ημνδm′m′

)

+ ημν

∞∑
n′,m′=1

√
n′2 + m′2

(
d

μ†
n′m′dν

n′m′ − 1

2
ημνδn′n′δm′m′

)
(34)

From here we can get the desired Hamiltonian for the RNS supersymmetric 2-brane which is 
discussed in the next subsections.

5.1. R-sector

In the R-sector, the normal ordering constants are exactly canceled due to the world-volume 
supersymmetry similar to the superstring case, after this we get the following form of the Hamil-
tonian

H =
∞∑

n=1

nημν

(
α

μ†
n0 αν

n0 + d
μ†
n0 dν

n0

) +
∞∑

m=1

mημν

(
α

μ†
0mαν

0m + d
μ†
0mdν

0m

)

+
∞∑

n,m=1

√
n2 + m2ημν

(
αμ†

nmαν
nm + dμ†

nmdν
nm

) − άM2 (35)

We can interpret the particles created by d†
nms as electrons of either spin up or spin down depend-

ing on whether s is up or down. Since we do not have any other kind of particles involved so 
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this theory will be devoid of any antiparticles. This later fact will make our concept of Majorana 
spinors corresponding to particles with no antiparticles more reasonable. Using Eq. (8) we can 
get the mass squared operator of the system as follows,

άM2 = Nn + Nm + Nnm (36)

Nn =
∞∑

n=1

nημν

(
α

μ†
n0 αν

n0 + d
μ†
n0 dν

n0

)
(37)

Nm =
∞∑

m=1

mημν

(
α

μ†
0mαν

0m + d
μ†
0mdν

0m

)
(38)

Nnm =
∞∑

n,m=1

√
n2 + m2ημν

(
αμ†

nmαν
nm + dμ†

nmdν
nm

)
(39)

Because of the world-volume supersymmetry, we get a definitely positive mass formula.

5.2. NS-sector

While working in the NS-sector and using the NS-sector mode expansions and NS-boundary 
conditions, we have the following form of Hamiltonian

H =
∞∑

n=1

n

(
ημνα

μ†
n0 αν

n0 + 1

2
ημ

μ

)
+

∞∑
n= 1

2

n

(
ημνb

μ†
n0 bν

n0 − 1

2
ημ

μδnn

)

+
∞∑

m=1

m

(
ημνα

μ†
0mαν

om + 1

2
ημ

μ

)
+

∞∑
m= 1

2

m

(
ημνb

μ†
0mbν

0m − 1

2
ημ

μδmm

)

+
∞∑

n,m=1

√
n2 + m2

(
ημνα

μ†
nmαν

nm + 1

2
ημ

μ

)

+
∞∑

n,m= 1
2

√
n2 + m2

(
ημνb

μ†
nmbν

nm − 1

2
ημ

μδnnδmm

)
− άM2 (40)

The mass squared operator in NS-sector reads

άM2 = Nn + Nm + Nnm + aNS + bNS (41)

where

aNS = ημ
μ

∞∑
n=1

n − ημ
μ

∞∑
n= 1

2

nδnn (42)

After a small computation using the Zeta function regularization scheme, the value of aNS turns 
out to be “−2”, while the expression for bNS is given by

bNS = 1

2

∞∑
n,m=1

√
n2 + m2ημ

μ − 1

2

∞∑
n,m= 1

√
n2 + m2ημ

μδnnδmm (43)
2
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After regularization by making use of a special type of Epstein Zeta functions [17], the first sum 
in Eq. (43) gives the finite value of “0.0476873”, however for the second sum we can get that 
some similar regularization scheme exists such that we get an overall value of bNS = 3

2 . Hence 
the mass squared operator for NS-sector reads

άM2 = Nn + Nm + Nnm − 1

2
(44)

6. Analysis of spectrum

The general form of a supersymmetric brane excitation state can be written as

|Ψ 〉 = (αn1m1)
k1(dν1μ1)

κ1 · · · ∣∣0,0, kμ
〉
R

(45)

or

|Ψ 〉 = (αn1m1)
k1(bν1μ1)

κ1 · · · ∣∣0,0, kμ
〉
NS (46)

To tell if a given form of a state is bosonic or fermionic, we first need to know whether the ground 
state is bosonic or fermionic. For example, if the ground state is bosonic, then any state of the 
above form involving odd number of “d” or “b” oscillators will be fermionic, while those states 
including even number of “d” or “b” oscillators will be bosonic. If the ground state is fermionic, 
things will be reversed.

Obviously the bosonic/fermionic property of the ground state is crucial for analysis of brane 
excitations.

6.1. R-sector

From Eq. (30) we can deduce that the zero modes of the fermionic fields obey the SO(1, 9)

Clifford algebra [8,9,14].{
d

μ
00s , d

ν
00t

} = ημνδst (47)

The set of ground states in R-sector must furnish a representation of this algebra so we can say 
that they are spacetime fermions. Moreover, the ground state is degenerate because it satisfies a 
10 D Dirac algebra [8]. From the viewpoint of target space symmetries, the ground state corre-
sponds to a 32 component spinor. The Dirac equation takes away half of the degrees of freedom 
leaving behind only 16 degrees of freedom, we want to further reduce the degrees of freedom 
to 8 in order to match with the bosonic degrees of freedom. Therefore we impose Weyl condi-
tion on these spinors which further reduces the number of degrees of freedom to 8 at the cost of 
introducing chirality to these spinors.

By |ζ 〉 and |ζ̄ 〉 we denote the decomposition of two possible ground states with opposite 
chirality, where ζ, ζ̄ = 1, . . . , 8 are the spinor indices labeling the two Majorana–Weyl spinor 
representations of SO(8). By Lorentz invariance in D = 10, the states must constitute a repre-
sentation of SO(8) or SO(9) depending upon whether they are massless or massive, respectively. 
Therefore the ground state gives two SO(8) representations, a spinor and a conjugate spinor 
representation, whereas the states at the first massive level combine into SO(9) representations.

The first state αi
−1,0|ζ 〉 decomposes under the conjugate spinor representation of SO(9) as 

8c ⊕ 56c, the second state di
−1,0|ζ̄ 〉 decomposes under the spinor representation of SO(9) as 

8s ⊕ 56s. The state αi |ζ̄ 〉 decomposes as 8s ⊕ 56s and decomposition of di |ζ 〉 is 8c ⊕ 56c. 
−1,0 0,−1
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Table 1
The ground and first excited states in R-sector.

άM2 States γ11 Group Representation

0 |ζ 〉 +1 SO(8) 8s ⊕ 8c

|ζ̄ 〉 −1

+1 αi−1,0|ζ 〉;di−1,0|ζ̄ 〉; +1 SO(9)

αi
0,−1|ζ 〉;di

0,−1|ζ̄ 〉; +1 512

αi−1,0|ζ̄ 〉;di−1,0|ζ 〉; −1

αi
0,−1|ζ̄ 〉;di

0,−1|ζ 〉 −1

Therefore the representation of this first massive multiplet is 128 ⊕ 128 ⊕ 128 ⊕ 128 = 512. The 
column “γ11” in Table 1 contains the value of chirality of the corresponding spinors which is 
either positive or negative. This is summarized in Table 1.

6.2. NS-sector

The ground state in the NS-sector is a scalar, i.e., spacetime boson of spin zero. By looking 
at Eq. (46), we know that even when no oscillators are excited, we will still get a negative mass 
square of the sate because of the presence of an anomaly term in Eq. (44), therefore the ground 
state in the NS-sector is tachyonic. By using the selection rule similar to the GSO projections in 
the string theory, we can rule out this state from the physical spectrum of the brane excitation. 
Using such selection rule, we can also get rid of all states with half integer mass square. So, 
by matching the first excited state in NS-sector bosonic spectrum with the ground state in the 
fermionic spectrum of R-sector, we can form a supersymmetric vector-multiplet, and also at the 
first excited state level, we have a Bose/Fermi matching of states which implies that we can 
implement supersymmetry at least up to the ground and first excited state level.

Hence by looking at the bosonic and fermionic spectrum of this model we can say that we 
have achieved a necessary condition for the unbroken spacetime supersymmetry at least at the 
ground and first excited state level after truncating the NS-spectrum.

We have two massless vector bosons bi

− 1
2 ,0

and bi

0,− 1
2

at the ground state level after the GSO 

condition, which decompose under the vector representation of SO(8) as 8v ⊕ 8v. At the massive 
level “+1” we have four states like αi

−1,0b
j

− 1
2 ,0

whose decomposition is 64 = 1 ⊕ 28 ⊕ 35, and 

four states like bi

− 1
2 ,0

b
j

− 1
2 ,0

bk

− 1
2 ,0

which give 56v states, while the two states like bi′±
− 3

2 ,0
with 

i′ = 1, . . . , 7 can be explicitly written like bi′
− 3

2 ,0
+A−; bi′

− 3
2 ,0

+A+ and bi′
0,− 3

2
+A−; bi′

0,− 3
2
+A+, 

where A± is the world-volume gauge field. In the massless case (i = 1, . . . , 8) this is implicit as 
it has just one polarization, while at the massive level this needs to be treated specially because 
it has two polarizations, thus giving us a total of 32 such states. Since it is a massive multiplet, 
all these states should combine into an SO(9) representation. We get a total of 512 states at this 
level.

Combining previous analysis, we list the lowest lying states in the NS-sector spectrum in 
Table 2.
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Table 2
Ground and lowest excited states in NS-sector.

άM2 States G Group Representation

− 1
2 |0〉 −1 SO(9) 1

0 bi

− 1
2 ,0

;bi

0,− 1
2

+1 SO(8) 8v ⊕ 8v

+ 1
2 αi−1,0;αi

0,−1 −1 SO(9) 8v ⊕ 8v ⊕ 84

bi

− 1
2 ,0

b
j

− 1
2 ,0

;bi

0,− 1
2
b
j

0,− 1
2

;

bi

− 1
2 ,0

b
j

0,− 1
2

+1 αi−1,0b
j

− 1
2 ,0

;αi
0,−1b

j

− 1
2 ,0

; +1 SO(9) 512

αi−1,0b
j

0,− 1
2
;αi

0,−1b
j

0,− 1
2

;

bi

− 1
2 ,0

b
j

− 1
2 ,0

bk

− 1
2 ,0

;

bi

0,− 1
2
b
j

0,− 1
2
bk

0,− 1
2

;

bi

− 1
2 ,0

b
j

0,− 1
2
bk

− 1
2 ,0

;

bi

− 1
2 ,0

b
j

0,− 1
2
bk

0,− 1
2

;

bi′±
− 3

2 ,0
;bi′±

0,− 3
2

7. Summary and conclusion

In this paper, we present the quantization and spectrum of an open supersymmetric 2-brane. 
The classical equations of motion for bosonic and fermionic fields are obtained directly from the 
action (1), their mode expansions are also given in the paper, and the fermionic fields have two 
different mode expansions depending on the periodic or anti-periodic boundary conditions for 
them. The quantization scheme that we adopt is something of a hybridization of canonical and 
lightcone quantization of RNS superstrings. However, different from the string case, we have to 
fix the form of the world volume metric. Physically, this means that we partly fix the phase space 
of the supersymmetric 2-brane dynamics.

After quantization, we get the Hamiltonian of the 2-brane in terms of raising and lowering op-
erators, the normal ordering constants arising in the R-sector exactly cancel due to world-volume 
supersymmetry which is the same as in the superstring case. However for the NS-sector, some 
zeta function regularization scheme should be done such that the value of the second infinite sum 
in Eq. (43) is approximated to the value “−0.327313” so that the overall value of bNS turns out 
to be 3

2 . This is the only way we can realize supersymmetry on the target spacetime at least at the 
massless and first massive level.

We give the physical spectrum of the open 2-brane in the lightcone gauge. We get more new 
states in both the R-sector and NS-sector as compared to the superstring case, as well as tachyon 
states in NS-sector spectrum. We resort to a GSO-like selection rule as in the superstring theory 
to remove not only the tachyons but also all half integer mass squared states in the NS-sector. 
We get a supersymmetric spectrum of excited states after a GSO-like projection. But we get 
twice as more states in the open 2-brane quantization as in the superstring case. The massless 
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supermultiplet matches the characterization given in the brane scan of [18]. However, spacetime 
supersymmetry can be certainly achieved at the massless and first massive level after the projec-
tion conditions are imposed. Since, we can realize the Bose/Fermi matching at these two lowest 
levels. The presence of a tachyon implies that the 2-brane is unstable and will decay.

Since we partly fix the phase space of the supersymmetric 2-brane dynamics through fixing the 
form of the world volume metric, the spectrum we obtain is discrete. Nevertheless, the discrete 
part of the spectrum we obtained here may be a useful starting point for further investigation of 
the supermembrane dynamics through methods such as perturbation around these discrete points.
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