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Abstract: In this write-up, we provide an overview of the existing theoretical framework concerning
rare kaon decays, with a particular emphasis on flavour-changing neutral current processes. These
decays offer crucial indirect pathways for investigating short-distance new physics. Our discussion
will encompass standard model predictions for relevant observables, alongside an assessment of their
capacity to probe new physics through a comparison with experimental data.
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1. Introduction

Kaon decays have historically played a crucial role in understanding and establishing
key features of the standard model (SM) of particle physics, such as parity violation [1], the
Cabibbo theory of flavour [2], CP violation [3], and the Glashow–Iliopoulos–Maiani (GIM)
mechanism [4]. They also remain a powerful tool for probing new physics (NP) beyond the
standard model.

Rare kaon decays offer valuable insights into both long-distance and short-distance
(SD) physics. These decays complement B-meson physics, presenting unique opportu-
nities to investigate the CKM matrix, CP violation, lepton flavour universality violation,
and lepton number violation. The distinct quark content and energy scales of kaon and
B-meson decays enhance our ability to explore diverse aspects of fundamental interactions
and potential new phenomena, thereby deepening our overall understanding of under-
lying physics. There are several excellent reviews on rare kaon decays [5–10]; here, we
specifically highlight the role of these decays in probing short-distance phenomena (above
the electroweak scale ∼102 GeV) and uncovering potential contributions from new physics.

The decay rates of rare kaon processes are significantly suppressed due to two factors:
the GIM mechanism, which reduces transitions via the heavy mass of gauge bosons, and
the small magnitude of the relevant CKM-matrix elements. Consequently, they are even
more suppressed than rare B-meson decays. In order to find NP via kaon decays, either
the NP effects must be significantly large or highly precise theoretical predictions within
the standard model (SM) are required. Only a few decay modes provide such precision,
making them especially valuable in the search for NP.

In the study of rare kaon decays, the semi-leptonic decays with neutrinos in the final
state, such as K+ → π+νν̄ and KL → π0νν̄, are of particular interest. These decays are pri-
marily generated via Z-penguin and electroweak (EW) box diagrams and are dominated by
short-distance physics. Their theoretical cleanliness makes them excellent candidates for de-
tecting NP signals. Other decay modes, like K+ → π+ℓ+ℓ−, KS → π0ℓ+ℓ−, KL → π0ℓ+ℓ−,
and KL,S → ℓ+ℓ−, also provide valuable insights into short-distance physics. However,
these modes receive contributions from processes such as K → γ(∗)γ(∗), K → πγ(∗), and
K → πγ(∗)γ(∗), resulting in significant long-distance (LD) hadronic contributions, making
precise theoretical predictions more challenging.

On the experimental side, ongoing experiments such as NA62 and KOTO are dedi-
cated to studying kaon decays with future measurements expected to further enhance our
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capabilities and open new avenues for exploration. Furthermore, the LHCb experiment,
apart from its main objective of studying beauty and charm physics, has demonstrated its
capability for investigating kaon physics, particularly in the decays of KS.

For a description of rare kaon decays, the |∆S| = 1 weak effective Hamiltonian can
be considered

Heff = −4GF√
2

VtdV∗
ts

αe

4π ∑
k

Cℓ
kOℓ

k , (1)

where Vqq′ are the elements of the CKM matrix, and the semi-leptonic local operators are
defined as

Oℓ
L = (s̄γµPLd) (ν̄ℓ γµ(1 − γ5) νℓ) , (2)

Oℓ
9 = (s̄γµPLd) (ℓ̄γµ

ℓ) , Oℓ
10 = (s̄γµPLd) (ℓ̄γµγ5ℓ) ,

with PL = (1 − γ5)/2. The operator OL applies to decays with neutrinos in the final state,
and O9,10 are relevant for decays with charged leptons in the final state. The corresponding
Wilson coefficients Cℓ

k encode potential new physics contributions as modifications to the
SM Wilson coefficients Cℓ

k = Cℓ
k,SM + δCℓ

k . Additionally, NP effects can contribute through
scalar, pseudoscalar, and chirality-flipped operators involving right-handed quark currents
(e.g., see Refs. [11–13]). Here, we focus solely on the operators given in Equation (2).

This paper is organised as follows: In Section 2, we discuss the golden modes K+ →
π+νν̄ and KL → π0νν̄. Section 3 covers the KS → π0ℓ+ℓ− and K+ → π+ℓ+ℓ− decays,
followed by a discussion of KL → π0ℓ+ℓ−, and Section 4 examines K → ℓ+ℓ−. We present
a global picture of these decays in Section 5 and conclude in Section 6.

2. K → πνν̄

The CP-conserving K+ → π+νν̄ and CP-violating KL → π0νν̄ decays are predomi-
nantly governed by Z-penguin and box diagrams, which ensures that they are theoretically
clean. This establishes them as benchmark modes in the study of rare kaon decays.

2.1. K+ → π+νν̄

The branching ratio of the K+ → π+νν̄ decay, summed over the three neutrino
flavours, is given by the following (adapted from Ref. [14] to the notation of Equation (1)):

BR(K+ → π+νν̄) =
κ+(1 + ∆EM)

λ10
1
3

s4
W ∑

ℓ

{

Im2
[

λtC
ℓ
L

]

+ Re2
[

− λcXc

s2
W

+ λtC
ℓ
L

]

}

, (3)

where λ = |Vus|, λi = VidV∗
is , sW = sin θW and ∆EM ≈ −0.003 encodes the electromag-

netic radiative correction [15]. The Wilson coefficient corresponding to the top-quark loop
contribution in the SM is given by CL,SM ≡ −X(xt)/s2

W with xt = m2
t /M2

W . The leading
order Inami-Lim loop calculations were first performed in Ref. [16], the next-to-leading
order (NLO) QCD corrections were calculated in Ref. [17–19], and the two-loop EW cor-
rections were calculated in Ref. [20,21]. The contribution Xc ≡ λ4Pc(X) is described by
Pc(X) = PSD

c (X) + δPu,c, where PSD
c (X) corresponds to the short-distance charm contribu-

tion, known up to and including next-to-next-to-leading order (NNLO) QCD effects [22–24]
and NLO EW corrections [25]. The contribution δPu,c = 0.04 ± 0.02 corresponds to the
long-distance u-quark (from ∆S = 1 four-quark operators) and dimension eight charm-
quark contributions as calculated in chiral perturbation theory (ChPT) [26]. The relevant
hadronic matrix element of the OL operator can be related to semi-leptonic decays of kaons
encoded in the κ+ factor. Taking into account isospin breaking effects at NLO in ChPT [15],
κ+ = (5.173 ± 0.025) · 10−11(λ/0.225)8.
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The SM prediction of the branching ratio of the charged kaon decay is dependent on
the CKM inputs. PDG 2022 [27] reports two sets of results, one from the CKM fitter [28,29]
and one from UTfit [30,31]

λ =

{

0.22499(67)

0.22500(67)
A =

{

0.833(11)

0.826+0.018
−0.015

ρ̄ =

{

0.159(10)

0.159(10)
η̄ =

{

0.348(9) UTfit

0.348(10) CKMfitter

Using these two sets results in slightly different theoretical predictions, as given in Ref. [32]:

BR(K+ → π+νν̄)SM =

{

(

8.38 ± 0.17|SD ± 0.25|LD ± 0.40|param.
)

× 10−11 UTfit input
(

8.19 ± 0.17|SD ± 0.25|LD ± 0.53|param.
)

× 10−11 CKMfitter input
(4)

where the largest uncertainty is parametric and mainly due to CKM inputs (see also Ref. [33]
for a further discussion of the uncertainties). An alternative approach through which the
CKM inputs are extracted from other observables results in theoretical predictions with
slightly smaller parametric uncertainties is given in Ref. [34]:

BR(K+ → π+νν̄)SM = (8.60 ± 0.42)× 10−11 , (5)

with the uncertainty indicating the combined theoretical error.
The most precise measurement for K+ → π+νν̄ comes from NA62 [35] with approxi-

mately 40% precision:

BR(K+ → π+νν̄)NA62 = (10.6+4.0
−3.5 ± 0.9)× 10−11 (6)

where the first and second uncertainties are statistical and systematic, respectively. The
above result is in agreement with the SM prediction, placing rather strong constraints
on lepton flavour universality-conserving (LFUC) new physics effects. This can be seen
in the left plot of Figure 1, where δCe

L = δC
µ
L = δCτ

L ≡ δCL, bounding contributions to
the [0, 17] range. Experimentally, the branching ratios are measured as a sum over the
three neutrino flavours, making it impossible to distinguish new physics contributions to
electrons, muons, and taus. Hence, significant new physics contributions are still possible if
there are lepton flavour universality-violating (LFUV) effects. This can be seen on the right
plot of Figure 1, where NP effects in the muon and taus are considered different from the
electrons, leaving more room for NP effects with δC

µ
L = δCτ

L ∈ [−8, 25] and δCe
L ∈ [−14, 32].

A measurement with 15% precision is expected by the conclusion of the NA62 experiment’s
runtime [36], enabling stronger constraints to be placed on NP contributions.

Figure 1. Left plot: The effect of LFUC new physics on BR(K+ → π+νν̄). The grey dotted line
represents the central value measured with NA62, with the grey band indicating the ±1σ uncertainty.
Right plot: The 68% confidence level (CL) region for LFUV new physics, considering the NA62
measurement. Figure adapted from Refs. [37,38].
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2.2. KL → π0νν̄

The KL → π0νν̄ decay offers a theoretically clean method to investigate CP violation,
as initially highlighted in [39]. This process is particularly useful for studying the CP-
violating phase of the CKM matrix, as it involves precise calculations with minimal hadronic
uncertainties. The branching ratio is given by [14]

BR(KL → π0νν̄) =
κL

λ10
1
3

s4
W ∑

ℓ

Im2
[

λtC
ℓ
L

]

, (7)

where κL = (2.231 ± 0.013) · 10−10(λ/0.225)8.
The standard model prediction for the branching ratio of the neutral mode is again

dependent of the choice of CKM inputs [32]

BR(KL → π0νν̄)SM =

{

(

2.87 ± 0.07|SD ± 0.02|LD ± 0.23|param.
)

× 10−11 UTfit input
(

2.78 ± 0.06|SD ± 0.02|LD ± 0.29|param.
)

× 10−11 CKMfitter input
(8)

Here, the long-distance uncertainties are much smaller than the charged mode, as there are
no contributions from the charm-quark loop. The largest source of theoretical error is due
to parametric uncertainties. Here also, the prediction of Ref. [34] is slightly different:

BR(KL → π0νν̄)SM = (2.94 ± 0.15)× 10−11, (9)

where, again, the smaller uncertainty is due to a different approach in the CKM inputs.
On the experimental side, measuring KL → π0νν̄ presents significant challenges, and

current experimental efforts have set upper limits, with the best bounds coming from
KOTO [40]

BR(KL → π0νν̄)KOTO
< 3.0 × 10−9@90% CL, (10)

which is two orders of magnitude larger than the SM prediction. This leads to loose bounds
on NP contributions, whether LFUC or LFUV, as shown in Figure 2.

Figure 2. Left plot: The effect of LFUC new physics on BR(KL → π0νν̄). The grey band shows the
KOTO upper limit. Right plot: The 68% confidence level region for LFUV new physics, considering
the KOTO upper limit. The blue dotted line corresponds to the Grossman–Nir bound, considering
the NA62 measurement for K+ → π+νν̄.

The matrix elements for KL → π0νν̄ and K+ → π+νν̄ transitions are related through
isospin, resulting in the Grossman–Nir (GN) bound [41] where BR(KL → π0νν̄) ≤ 4.3 ×
BR(K+ → π+νν̄). This bound is valid in the presence of most NP models. Considering the
NA62 measurement of the charged mode, the GN bound results in stronger constraints on
NP contributions, as indicated by the blue dotted contour in Figure 2.

Currently, the GN bound supersedes the upper limit from KOTO. However, in the next
4–5 years, the KOTO experiment will reach a sensitivity below 10−10 [32,42], and future
plans at KOTO-II aim to measure this decay with an uncertainty of ∼25% [32,43,44].
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3. K → πℓ+ℓ−

Rare kaon decays with charged leptons in the final state are influenced by long-
distance effects involving photon emission in hadronic interactions, making their theoretical
descriptions complex. The CP-conserving decays K+ → π+ℓ+ℓ− and KS → π0ℓ+ℓ−

require a different description compared to the KL → π0ℓ+ℓ− decay.

3.1. K+ → π+ℓ+ℓ− and KS → π0ℓ+ℓ−

The decays K+ → π+ℓ+ℓ− and KS → π0ℓ+ℓ− are mainly governed by the long-
distance contribution from a single virtual-photon exchange, K → πγ∗, allowed by CP
invariance. This is in contrast to the KL → π0ℓ+ℓ− decay, which will be discussed in the
next section. In the SM, the amplitude of these decays can be approximated using [45–47]:

A
K→πγ∗
Vi

= −
G f α

4π
Vi(z)ūl(p−)(γµkµ + γµ pµ)vl(p+) , (11)

where z ≡ s/M2
K, with s indicating the dilepton-invariant mass squared and Vi(z) being

the vector form factor given by

Vi(z) = ai + biz + Vππ
i (z), with (i = +, S) . (12)

Theoretically, the one–photon exchange has been studied at O(p4) in the chiral expansion
in [47], where the calculations include an unknown combination of chiral couplings. This
contribution can be described as a linear expansion (ai + biz) where the phenomenological
parameters ai and bi are extracted from experimental data. Recently, there have been ad-
vancements in the theoretical calculation of these parameters (e.g., see [48–50]); nonetheless,
they still suffer from rather large uncertainties. Furthermore, beyond the O(p4) contri-
butions, there are also unitarity corrections from K → πππ, consistent with the chiral
expansion of O(p6). The term Vππ

i (z), which describes this two-pion intermediate contri-
bution, has been calculated in Ref. [46] with good precision, employing external parameter
fits to K → 3π data [51,52] (see [53] for a recent determination of the external parameters).

The branching ratios of K+ → π+ℓ+ℓ− and KS → π0ℓ+ℓ− are obtained by integrating
the differential decay width with respect to z, as given by [8,46]:

dΓ

dz
=

1
3

G2
Fα2M5

K

(4π)5 λ3/2(1, z, r2
π)

√

1 − 4r2
ℓ

z

(

1 +
2r2

ℓ

z

)

|Vi(z)|2 , (13)

where λ(a, b, c) is the Källèn function, rπ = Mπ/MK, and rℓ = mℓ/MK.
The decay K+ → π+ℓ+ℓ−, similar to B → Kℓ+ℓ−, can be influenced by vector and

axial short-distance effects represented in the Wilson coefficients C9 and C10. However,
this decay is primarily dominated by long-distance contributions expressed via the a+
and b+ parameters, which are not yet theoretically known with high enough precision.
Consequently, it is not currently possible to directly extract short-distance information from
this decay. However, long-distance effects are purely universal across all lepton flavours,
and any deviation from this would indicate LFUV contributions in C9 [37,54], as given by

a
µµ
+ − aee

+ = −
√

2 Re
[

VtdV∗
ts(C

µ
9 − Ce

9)
]

. (14)

On the experimental side, for the charged mode with final-state electrons, most events
have been observed in the BNL-E865 [55] and NA48/2 [56] experiments. The form factor
parameters a+, b+ of these two datasets agree for most z values except around z = 0.3 [48].
A combined determination was done by Ref. [48], rescaling the errors in that region by about
2.5 and obtaining aee

+ = −0.561 ± 0.009 and bee
+ = −0.694 ± 0.040. For final-state muons,

the most precise determination of a+ and b+ parameters was recently given by NA62 [57]
with a

µµ
+ = −0.575 ± 0.013 and b

µµ
+ = −0.722 ± 0.043. The measured values result in
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(aµµ
+ − aee

+) = −0.014 ± 0.016 [58], consistent with lepton flavour universality within 1σ.
With additional statistics on the K+ → π+µ+µ− decay and the expected measurements of
the K+ → π+e+e− decay by the end of the NA62 experiment’s runtime, better precision
for a+ and b+ is anticipated in both the muon and electron channels [59,60]. On the theory
side, in the next 5–10 years, lattice calculations are expected to determine these parameters
at the 10% uncertainty level [32]. Furthermore, this decay mode can also be used to probe
scalar contributions [55,61] (see Ref. [62] for a recent constraint on scalar contribution using
the NA62 data [57]).

The branching ratio of the neutral mode, KS → π0ℓ+ℓ−, is about two orders of
magnitude smaller than that of the charged mode, making it even more challenging to
directly extract information on short-distance physics. Nonetheless, the experimental
determination of form-factor parameter aS is crucial for the SM prediction of the branching
ratio of KL → π0ℓ+ℓ−, which is sensitive to NP contributions. Unlike the charged mode, the
spectra for the neutral mode are not available; only the branching ratio has been measured.
The NA48/1 experiment [63,64], considering vector meson dominance with bS/aS = 1/r2

V ,
has determined |aee

S | = 1.06+0.25
−0.21 and |aµµ

S | = 1.54+0.40
−0.32. The LHCb upgrade will be able to

reduce the uncertainty in the determination of a
µµ
S [65,66].

3.2. KL → π0ℓ+ℓ−

The decay KL → π0ℓ+ℓ− is not predominantly influenced by a single-photon ex-
change; instead, it is governed by several distinct contributions [47,67–94]. The branching
ratio of this decay is given by [69]

BR(KL → π0
ℓ
+
ℓ
−) =

(

Cℓ
dir ± Cℓ

int|aS|+ Cℓ
mix|aS|2 + Cℓ

γγ

)

· 10−12 , (15)

where the different terms are

• Cdir) a direct CP-violating term: a purely short-distance effect contributing via the
vector and axial Wilson coefficients C9 and C10. It is proportional to the imaginary
part of λt.

• Cmix) an indirect CP-violating term: a long-distance dominated contribution of the
single photon exchange via the KS → π0γ∗ vertex through K0 − K̄0-mixing. It is
proportional to ε.

• Cint) an interference term from the above two contributions.
• Cγγ) a CP-conserving term: a long-distance-dominated contribution via two virtual

photon exchanges.

These components for the electron and muon channel are given by [69]:

Cℓ
dir Cℓ

int Cℓ
mix Cℓ

γγ

ℓ = e (4.62 ± 0.24)(w2
7V + w2

7A) (11.3 ± 0.3)w7V 14.5 ± 0.5 ≈ 0

ℓ = µ (1.09 ± 0.05)(w2
7V + 2.32w2

7A) (2.63 ± 0.06)w7V 3.36 ± 0.20 5.2 ± 1.6

where the Cℓ
dir and Cℓ

int terms are sensitive to short-distance physics via the following (see,
e.g., [95]):

w7V =
1

2π
Im
[

λt

1.407 × 10−4 C9

]

, w7A =
1

2π
Im
[

λt

1.407 × 10−4 C10

]

. (16)

Considering the combined value of |aS| = 1.20 ± 0.20 [69] as extracted from the NA48/1
measurements [63,64], the SM predictions are given by [37] the following:

BRSM(KL → π0e+e−) = 3.46+0.92
−0.80

(

1.55+0.60
−0.48

)

× 10−11 , (17)

BRSM(KL → π0µ+µ−) = 1.38+0.27
−0.25

(

0.94+0.21
−0.20

)

× 10−11 , (18)
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where the case of destructive interference between direct and indirect CP-violating contri-
butions, which is theoretically disfavoured [67,96], is shown in parenthesis.

The current experimental limits from KTeV [97,98] are approximately one order of
magnitude larger than the SM predictions:

BRKTEV(KL → π0e+e−) < 28 × 10−11 at 90% CL , (19)

BRKTEV(KL → π0µ+µ−) < 38 × 10−11 at 90% CL. (20)

Nonetheless, the upper limits offer interesting insights into short-distance physics. Figure 3
demonstrates the effects of new physics contributions to KL → π0ℓ+ℓ−, under the assump-
tion that δCℓ

9 = −δCℓ
10. The electron channel is more sensitive to NP contributions than the

muon channel. This difference arises primarily from phase space suppression in the muon
channel. Specifically, both C

µ
dir and C

µ
int are approximately 0.4 and 0.2 times their respective

values in the electron mode, leading to reduced sensitivity.

Figure 3. The branching ratio of KL → π0e+e− and KL → π0µ+µ− is shown as a function of new
physics contributions to δCℓ

9 = −δCℓ
10, with the coloured bands representing the 1σ theoretical

uncertainty. Figure adapted from Refs. [37,38].

4. K → ℓ+ℓ−

The rare leptonic decays KL,S → ℓ+ℓ− receive contributions from poorly known
long-distance contributions. Nonetheless, they can offer interesting information on short-
distance physics. The accurate measurement of KL → µ+µ−, as well as the active effort in
the measurement of KS → µ+µ− via LHCb, justifies the inclusion of these decay modes
among the observables of interest to study NP contributions.

The branching fractions for KS → µ+µ− and KL → µ+µ− decays, excluding right-
handed and (pseudo)scalar operators (adapted to the notation of Equation (1), are given
by [13,26]:

BR(KS → µ+µ−) = τS
f 2
Km3

Kβµ

16π

{

β2
µ

∣

∣

∣
NLD

S

∣

∣

∣

2
+

(

2mµ

mK

GFαe√
2π

)2

Im2

[

−λcYc

s2
W

+ λtC
ℓ
10

]}

, (21)

BR(KL → µ+µ−) = τL
f 2
Km3

Kβµ

16π

∣

∣

∣

∣

∣

NLD
L −

(

2mµ

mK

GFαe√
2π

)

Re

[

−λcYc

s2
W

+ λtC
ℓ
10

]∣

∣

∣

∣

∣

2

, (22)

where βµ =
√

1 − 4m2
µ/M2

K and Yc and Cℓ
10,SM = −Y(xt)/s2

W represent the short-distance

SM contributions. The LO calculation of the top-quark contribution Y(xt) was presented
in [16], with NLO corrections given in [17–19,99]. The short-distance charm contributions
are expressed as Yc = λ4Pc(Y), where Pc(Y) has been computed at NNLO in QCD [100].
The long-distance contributions are given in [13] based on [26,69,101,102]:

NLD
S = (−2.65 + 1.14i)× 10−11 (GeV)−2, (23)

NLD
L = ±[0.54(77)− 3.95i]× 10−11 (GeV)−2. (24)
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The long-distance contributions to both decays are mainly due to the two-photon exchanges.
For the KL decay, the LD contribution of the 2γ exchange has a dominating absorptive part,
which is calculable with good precision [70,103,104], and almost saturates the experimental
measurement. While the dispersive part is well established to be smaller [26], it introduces
a large theoretical uncertainty (in the real part of NLD

L above). Furthermore, both signs
are possible for NLD

L , where the ambiguity is due to the unknown sign of the amplitude
of the intermediate KL → γγ decay. The leading O(p4) contribution to A(KL → γγ →
µ+µ−) in ChPT is cancelled out due to the Gell–Mann–Okubo formula, and a reliable
calculation of higher-order terms is challenging to perform, making it difficult to determine
the sign [26,103,105]. For the KS → µ+µ− decay, the LD contribution is cleaner, as the
leading O(p4) chiral contribution of KS → π+π− → γγ → µ+µ− is theoretically under
better control [101].

The SM predictions for these branching ratios, as given in Ref. [37], are as follows:

BR(KS → µ+µ−)SM = (5.15 ± 1.50)× 10−12 , (25)

BR(KL → µ+µ−)SM =







LD(+) :
(

6.82+0.77
−0.24 ± 0.04

)

× 10−9 ,

LD(−) :
(

8.04+1.46
−0.97 ± 0.09

)

× 10−9 ,
(26)

where the theoretical uncertainties of the KL decay are asymmetric, especially for LD+.
There is ongoing progress on the theoretical calculation of KL → µ+µ−, employing disper-
sion theory and using related leptonic and hadronic decay measurements [106].

Experimentally, the decay KL → µ+µ− has been measured with a precision of less
than 2% [27]. Conversely, the theoretical prediction for KS → µ+µ−, which is not affected
by sign ambiguity, remains challenging to test, as the current upper limit from LHCb [107]
is about two orders of magnitude higher than the SM

BRLHCb(KS → µ+µ−) < 2.1(2.4)× 10−10 at 90(95)% CL , (27)

BRPDG(KL → µ+µ−) = (6.84 ± 0.11)× 10−9 . (28)

The measured value of BR(KL → µ+µ−) closely aligns with the theoretical prediction,
assuming a positive LD sign, as indicated in Equation (26). However, given the substantial
theoretical uncertainty, a negative LD sign cannot be excluded and is within 1.2σ of the
experimental measurement. Reducing the theoretical uncertainty in the LD contribution of
Equation (24) could provide greater clarity regarding the sign (see Figure 2 of Ref. [108]).

In Figure 4, the impact of NP contributions on the decays KL → µ+µ− and KS → µ+µ−

is shown, taking into account both signs of the LD contributions for the former. Despite the
great theoretical uncertainty and the unknown LD sign of contributions in the KL → µ+µ−

decay, the NP contribution to δC
µ
10 is constrained within the [−3, 14] range at 1σ. On the

other hand, the current upper limit on BR(KS → µ+µ−) does not significantly constrain
NP. Considering the projected LHCb sensitivity with 300 fb−1 of data, still, this decay
mode alone cannot probe the δC10 regions allowed by BR(KL → µ+µ−). While this is
true for vector and axial NP contributions, future measurements of BR(KS → µ+µ−) at
LHCb will be crucial for exploring new physics scenarios involving scalar and pseudoscalar
contributions [13]. Moreover, interference effects between KL → µ+µ− and KS → µ+µ−,
as proposed in [102] (see also [109]), could provide valuable insights into short-distance
physics, probing NP contribution δC10 ∼ O(1) at the high luminosity phase of LHCb [37].

For the electron mode, there is a measurement of the KL → e+e− decay by BNL-
E871 [110], while for KS → e+e−, there is an upper bound by KLOE [111]:

BRE871(KL → e+e−) = (8.7+5.7
−4.1)× 10−12 , (29)

BRKLOE(KS → e+e−) < 9 × 10−9 at 90% CL . (30)
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Probing short-distance physics with the KS decay appears to be out of reach for the foresee-
able future. However, a percentage-level precision measurement of BR(KL → e+e−) could
effectively investigate underlying short- and long-distance interactions [58].

Figure 4. The left panel shows BR(KL → µ+µ−) as a function of δC
µ
10 for both possible signs of the

long-distance contribution from A
µ
Lγγ. The right panel depicts BR(KS → µ+µ−) as a function of

NP contributions in δC
µ
10. The coloured bands denote theoretical uncertainties, and the grey band

represents the experimental measurement (left) and upper limit (right). The LHCb projection for
BR(KS → µ+µ−), shown with the dashed red line, is in accordance with Ref. [112]. The figure was
adapted from Refs. [37,38].

5. Global Picture

A global study of these rare kaon decays can provide valuable insights beyond what
is obtained from individual studies. The global fit integrates data from the various decay
modes, allowing for the identification of correlations and interdependencies among differ-
ent observables, leading to a more accurate and detailed exploration of possible new physics
scenarios. Such an analysis is given in Ref. [37] for investigating lepton flavour universality-
violating new physics. A fit to LFUV new physics, assuming δCℓ

L ≡ δCℓ
9 = −δCℓ

10, is given
in Figure 5 using the SuperIso public program [113–117]. The 68 and 95% CL fitted regions
are shown with the two shades of purple with the best-fit point indicated by the purple
cross. The constraining power of each observable is also superimposed on the fit, indicating
that, with the current data, K+ → π+νν̄, followed by KL → µ+µ−, puts the strongest
bound on LFUV new-physics contributions. Such global studies, together with improved
measurements at future kaon facilities, have the potential to significantly advance the
exploration of new physics [37,58].

Figure 5. Global fit to rare kaon decays, assuming LFUV new physics effects, together with bounds
from individual observables. The two shades of purple correspond to 68 and 95% CL fit regions. The
other coloured regions correspond to 68% CL when there is a measurement, and the dashed lines
indicate upper limits at 90% CL. On the left (right) plot, the sign of the long-distance contribution
to the KL → µ+µ− decay has been assumed to be positive (negative). The figure was adapted from
Ref. [37].
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6. Conclusions

In this review, we focused on the landscape of rare kaon decays, with particular
emphasis on the insights they offer into short-distance physics. These decays offer valu-
able indirect pathways for probing new physics. The K → πνν̄ decays warrant special
attention among rare decays, as they are predicted in the SM with very high precision.
Nonetheless, although other rare kaon decays lack this level of precision, they still provide
compelling probes for new physics beyond the standard model. The potential of these
probes will be further enhanced via advancements in theoretical precision through contin-
uum, data-driven, and lattice calculations. Coupled with increasingly precise experimental
measurements, the sensitivity of rare kaon decays to short-distance physics makes them a
promising avenue for uncovering signs of new physics.
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