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We consider a harmonic oscillator with time-dependent mass and frequency. Using the Lewis-

Reisenfeld invariant approach, we calculate the wave function of the time-dependent harmonic

oscillator. Then, we calculate the Wigner function of that oscillator. For a specific example, we

consider the Caldirola-Kanai oscillator, and we find that the Wigner function of the Caldirola-Kanai

oscillator is squeezed.
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I. Introduction

The time-dependent harmonic oscillator is ubiquitous
in both classical and quantum mechanics. Among them,
one example is a scalar field dynamics in an expanding
universe [1,2]. Because it provides an exact solvable sys-
tems, the time-dependent harmonic oscillator has been
extensively studied over the past several decades. One
of the techniques to handle these systems is to use the
Lewis-Risenfeld invariant method [3-5] which we take in
this study. By suitable coordinate transformation [6],
the time-dependent harmonic oscillator is transformed
into the time-independent harmonic oscillator and the
Lewis-Risenfeld invariant corresponds to the conserved
energy [7] in this new coordinate system.

The Wigner function [8] is useful to describe the phase
space represenation of the quantum state. The Wigner
function plays the role of the probability distribution but
not exactly same as the classical distribution which is al-
ways positive because it could become negative, so called
quasi-probability distribution. The Wigner function of
the time-dependent harmonic oscillator is studied in this
work.

The paper is organized as follows: In Sect. II, we
review the classical and quantum mechanical harmonic

oscillator with the time-dependent mass and frequency
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and obtain the wavefunction for the time-dependent har-
monic oscillator using the Lewis-Reisenfled invariant ap-
proach. In Sect. III, we calculate the Wigner function for
the time-dependent harmonic oscillator. Especially, we
consider the Caldirola-Kanai oscillator in order to plot

the Wigner function. Finally, we summarize in IV.

II. Time-dependent harmonic oscillator

1. Classical harmonic oscillator

The Lagrangian of the time-dependent harmonic os-

cillator is given by

Lig.@:t) = MO 0. (1)

The classical equation of motion for ¢(t) is obtained from

the Euler-Lagrange equation

G+9(8)q +w*(t)g =0, (2)
where y(t) = M—Eg Because the term of ¢ represents the

M
friction for (¢) > 0, the time-dependent mass produces
a friction force. It is analogous to the Hubble friction
in a time-dependent background or expanding Universe.
If v = const. or M(t) ~ e~ it is the Caldirola-Kanai
oscillator [9,10]. The Caldirola-Kanai oscillator corre-

sponds to the scalar field in de Sitter space.
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The canonical momentum of the Lagrangian (1) is
given by

oL
= — = M(t)q, 3

9 (t)q (3)

and the corresponding Hamiltonian is

p

L= 2Ml(t)p2 + %M(t)wz(t)qz. (4)

Performing coordinate transformation ¢ — £/p(t) [6]

H(q,p;t) = pq —

where p(t) is a time-dependent auxiliary function, the
Lagragian (1) in g-coordinate representaion transforms
to the Lagrangrain in £-coordinate representation which
is given by
11,2 3. :
3|62 = APOP +05 + P02,
(5)

where &' = g—f and we introduce the new time variable 7

defined by

L&) =

t 1 ,
0= | S (6)

If the auxiliary function p(t) satisfies

QQ

p+yt)p+w(t)p EOrE (7)
where 2 is a constant, the Lagrangian (5) becomes
1., 1
L(£7§/; T) = §€I - §Q2§2a (8)
and the equations of motion for £ is
d*¢
— +Q%=0. 9
72 T )

Eq. (9) is an equation of motion of the time-independent
harmonic oscillator with the unit mass and constant fre-

quency ).
The Hamiltonian of the Lagrangian (8) is given by
1 1

H(E mT) = §W2+§QQ§2a (10)

where 7 is the canonical momentum conjugate to & which
is given by

=& = Mpg — jq). (11)

If we write the Hamiltonian (10) in terms of ¢ and 4,
it becomes

2
1 . q
H(& m7) = 5{(pp — Mpg)* + (p) p=1. (12)

Eq. (12) turns out to be the Lewis-Reisenfeld invari-
ant satisfying dI/dt = 0. This implies that the Lewis-
Reisenfeld invariant I is the conserved energy in &-
coordinate system.

2. Quantum harmonic oscillator

In this section we obtain the exact wave function of
the time-dependent harmonic oscillator using the Lewis-
Reisenfeld invariant approach. We replace the canonical
variables of the classical harmonic oscillator by the quan-
tum operators and then the Hamiltonian of the quantum

harmonic oscillator is given by

H(q,p;t)

= il SMOLOR, (1)

where p and ¢ satisfy the commutation relations [g, p|] =
ih.

Through the suitable canonical transformation shown
in the previous section, the Hamiltonian (13) transform

to the quantum version of the classical harmonic oscilla-
tor (10) as

H(E mT) = %7%2 + %QQEQ. (14)

Defining the annihilation and creation operator, a and
a' which satisfy the canonical commutation relation

[a,af] =1
R VPSR
i= o€t o), (15)
Q. i
At T I
a o7&~ g™ (16)
the Hamiltonian (14) yields
H(¢,m7) = hQaal +1). (17)

The eigenvalue of (17) is given by A\, = hQ(n + 1/2)
where n = 0,1,2,--- and the eigenstate in the ¢&-
coordinate basis is obtained using @|0) = 0 and |n) =

L (at)"[0) by
a

(€ln) = ¥n(§) = (m

where o = (Q/h)Y/? and H,(z) is the Hermite polyno-

mial of order n.

)1/2 6_0‘252/2Hn(a£), (18)

If we change &-coordinate representation to ¢-

coordinate representation [6], we have

1 S Mp 2

1/1((17'5) = che_i)\w—/ﬁ P1/2 ezt Zﬁn(f)
n
. 1 CMp 2 « 1/2
_ _Z)\TLT/h‘ “2hp 4
= zﬂ:cn@ p12° w (7-(-1/22nn!>
% €—a2q2/2P2Hn <C;q) ’ (19)

where 7 is given by (6) and Y, [c,|* = 1.
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(c)

Fig. 1. The Wigner functions of the harmonic oscillator for (a) n =0, (b) n =1, and (c) n = 2 with v = 0, My =

1, wo=1, h=1.

ITI. Wigner function and the Squeezed
state

The Wigner function is defined as

1 — Yia Yy
- ipy/h L4 _Z
W) = 5o [ Mot Dlole— Day - (20)
1 . Y Y
_ ipy/h N (p — 2
g | ¢ e ) = Ddy (21)

where p is the density operator and for a pure state p =

) (]

For an excited number state, the Wigner function of

the wave function (19) is calculated as

Walgp) = 5= e~ P/, (g + %J)w*(q —~ %J)dy
) (4
= e L, QhI , (22)

where L, (z) is the Laguerre polynomial order of n and I
is the Lewis-Reisenfeld invariant which is given in (12).
Notice that the Wigner function in g-coordinate repre-
sentation is expressed in terms of I not H(q,p;t). The

Wigner function of the wave function (18) is given by

Waler) = Sl edimenor, (Lonemn).
(23)

where H (&, m;7) is given in (14)

For a specific example of the time-dependent harmonic
oscillator, we consider the Caldirola-Kanai oscillator in
which y(t) = 9 = const. and w(t) = wy = const.. From
now on, we consider only for Q = 1. v(¢) = const. implies
that M(t) = Mpe™'. The particular solution of (7) for
the Caldirola-Kanai oscillator is given by [11,12] with

appropriate initial conditions

e~ Yot/2

(Mo (wg — 75 /42

olt) = (24)
where we assume wi > 12 /4.

In Fig. 1, we plot the Wigner function (22) for
n=0n=1adn = 2 with M = My = 1 and
wo = 1 for comparison. This choice of parameters implies
the vanishing friction term v = 0 such that correspond-
ing to the time-independent harmonic oscillator. The
Wigner functions are symmetric centered at the origin
g = 0, p = 0 and give negative values for n = 1 and
n=2.

We plot the Wigner function for v = v = 1 (M =
e ") with w(t) = wp = 1 at ¢ = 0 in Fig. 2. These
figures show that initially the shape is slightly squeezed
compared to Fig. 1 and the squeezed axis is oriented to
the 45° about the g-axis. In Fig. 3, we plot the Wigner
function with the same parameter values of Fig. 2 but
at t = T /4 where T' = 27 /wo. We find that the Wigner
functions is severely squeezed along the g-axis and also
the axis is rotated compared to Fig. 2. We briefly explain
the squeezing process for the time-dependent harmonic
oscillator.

The annihilation and creation operators given in (15)

and (16) are expressed in terms of ¢ and p as

. Q /1. .
a= 2h<pq+l(pp—Mpq>, (25)

Q /1
0" = /= (=4 —ilpp— Mpg ) . 2
a oF (pq i(pp PQ) (26)
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Fig. 2. The Wigner functions of the harmonic oscillator for (a) n = 0, (b) n = 1, and (¢) n = 2 at ¢t = 0 with

70:17 M0:17 w():lyh:l'

Fig. 3. The Wigner functions of the harmonic oscillator for (a) n = 0, (b) n = 1, and (¢) n = 2 at ¢t = T'/4 with

’)/0:1, M0:1, LUQ:LFLZL

Or ¢ and p are expressed as

i= /2@ a), (27)

14 iMpp)a — (1 —iMpp)a']. (28)

. h

The Hamiltonian of (13) is given in terms of @ and af
by

- %[geﬁ +ctat? +n(aa +afa),  (29)
where

(= — Ml —(1 +iMpp)* + p* Mw?, (30)

"= Ml e (L+ M%) + p? M. (31)

This implies that @ and a' can not factorize the Hamil-
tonian of (13) into the form of aaf + 1.

We introduce new annihilation and creation operators,
B, bt which are related to a, a' through the Bogoliubov

transformation as
b= pé + val,
b = pral + va, (32)

satisfying |u|? — [v|*> = 1. Then we can parametrize u

and v as
p=cosh(r), v =e¥sinh(r). (33)

If the Bogoliubov coefficients p and v satisfy the follow-

ing relations,
1 Mw 1 1 M
‘[P\/—+‘\/m+”’\/w—g]’ 34
1 | M
1/_5[ ———\/—+p Q] (35)

the Hamiltonian of (13) can be expressed as

A PN 1
H = hw(bb" + ) (36)
where
- Mw, . N
b= ﬁ(q + M_wp)’ (37)

b =\~ 5. (38)

In terms of the squeeze operator defined by

S(r) = e 30@N 37 (@7 (39)
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where ¢ = re'?, the Bogoliubov transformation (32) can

be written as

b=3810as(), o =81Qals©).  (40)
We can construct squeezed vacuum state by applying the

squeeze operator to the vacuum state

10)¢ = S(¢)10)- (41)

Therefore, when we perfrom the canonical transforma-
tion from (17) of (£, 7) system to (36) of (g,p) system,
the squeezed states are generated through the Bogoli-
ubov transformation. This squeezed vacuum cause the
Wigner function of the time-dependent harmonic oscil-

lator to be squeezed as time evolves.

IV. Summary

We have studied the harmonic oscillator with the time-
dependent mass and frequency. Through the canoni-
cal transformation from (g, p) to (£, 7) we can construct
the time-independent harmonic oscillator system and the
Hamiltonian or energy in (£, 7) coordinates corresponds
to the Lewis-Reisenfeld invariant which is conserved in
time. Quantum mechanically or classically we can obtain
the solution of the time-dependent harmonic oscillatro
by performing inverse transformation from &-coordinates
to g-coordinates. With the wave function obtained by
the Lewis-Reisenfeld invariant method, we calculate the
Wigner function of the time-dependent harmonic oscil-
lator and we have found that the quantum state are
squeezed and as time evolves the squeezing is getting
strong.

The annihilation and creation operators in &-
coordinate, defined in (15) and (16), can not make
the Hamiltonian in g¢-coordinate to the diagonalized

form. The annihilation and creation operators, defined
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in (37) and (38), which can make the Hamiltonian in
g-coordinates to the diagonalized form are related to a
and a' through the Bogoliubov transformation. If we
act the squeeze operator S (¢) to the vacuum defined in
&-coordinate, the squeezed vacuum state are generated in
g-coordinates. This squeezed vacuum cause the Wigner
function of the time-dependent harmonic oscillator to be

squeezed as time evolves.
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