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Abstract

We are demonstrating new relationships among the Hawking temperature, the Cosmic
Microwave Background (CMB) temperature, and the Planck scale. When understood deeply,
these are in line with recent advancements in cosmological quantization and its connection
to the Planck scale. This is also completely consistent with a recently published method for
quantizing Einstein’s general theory of relativity.

Keywords Hawking temperature - CMB temperature - Planck scale - Black holes -
Cosmology

1 Background on the Hawking Temperature and the New CMB
Temperature Formula

Hawking introduced the concept of Hawking temperature in 1974, as detailed in [1, 2]. It is
defined as follows:
hg

Ty = ——.
Hw kb27TC

(D

Where kj, is the Boltzmann constant, and A is the reduced Planck constant, also known
as the Dirac constant (h = %). Further, g represents the gravitational acceleration at the
horizon of a Schwarzschild [3] black hole, and is defined as:

GmM _ GM 5
§707 T eamr T aeM @
C

By substituting this expression back into the original Hawking formula, we arrive at
another well-known way to express the Hawking temperature:
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For the Hubble sphere, the critical Friedmann [4] mass is defined as:

2
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Here, Ry = HLO represents the Hubble radius. Solving this equation for the Hubble radius,

we obtain Ry = %

It’s noteworthy that the Hubble radius is mathematically identical to the Schwarzschild
radius ry = 2?2M when considering a critical universe. This similarity has led several
researchers to speculate that we could be inside a gigantic black hole, as discussed by Patheria
[5] and Stuckey [6]. This question continues to be a topic of discussion in recent papers [7-9].
In this discussion, we will not argue for or against the universe being a black hole but will
follow the mathematics of a Hubble sphere with mass (equivalent energy) equal to the criti-
cal Friedmann mass. It’s important to note that the equivalence between the Schwarzschild
radius and the Hubble radius holds true only in a critical universe and not after the expansion
of space. However, for the sake of our current discussion, we can replace M with M, in
the Hawking radiation formula and hypothetically treat the Hubble sphere as a black hole,
resulting in the following Hawking temperature:
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Next, we will perform a straightforward rewrite of the Hawking temperature. Despite its
simplicity, this step will later assist us in understanding some important relationships between
the cosmic scale, the Hawking temperature, and the CMB temperature:
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where m , is the Planck [10, 11] mass, it is important to note that % = m?,, SO we obtain:
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and the Planck temperature [10, 12] is given by T, = | hed _ Mp , allowing us to rewrite

Gk — kb
the equation above as:
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or as

T, mp
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Tatum et al. [13, 14] heuristically suggested that the temperature inside the Hubble sphere
is determined by a slightly modified Hawking temperature formula:

he3 he
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~ 2.725k. (10)

Haug and Wojnow [15] recently demonstrated that this CMB temperature formula can
be derived from the Stefan-Boltzmann [16, 17] law, as we have also briefly shown in the
appendix. Furthermore, they provided the following formula:

T =T —ﬁ 21—')“'2725k 11
CMB = 1H = ~ Z. . (11)
8w RH

Equations 10 and 11 are identical from a deeper perspective. In a recent paper, Tatum,
Haug, and Wojnow [18] have demonstrated that this new understanding of a deeper theoretical
relationship between the CMB temperature and the Planck scale can be used in practice
to significantly reduce the uncertainty in predictions of Hy, while fully taking into account
uncertainty in input variables. We mention this not only because it has theoretical implications
but also because it leads to practical improvements, opening the door to a new area of high-
precision cosmology, where Ry, tg, and M. can be predicted more accurately than ever
before. One reason for this is that the precision in CMB temperature measurements and
predictions has increased dramatically in recent years, see [19-22]. Additionally, an exact
mathematical relation between CMB temperature and the Hubble constant also plays an
important role here.

However, one should also be aware that there are unsolved challenges, such as the Hubble
tension [23, 24]. We will not attempt to resolve the Hubble tension in this paper, but we
mention it to humbly acknowledge that there could naturally be changes to the foundations
of cosmology that might potentially affect the formulas presented here.

In this paper, we will build upon this foundation and introduce some intriguing relation-
ships between the Hawking temperature, the CMB temperature, the Planck scale, and the
large-scale structures of the cosmos.
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2 Relationships between Hawking Temperature, CMB, Planck Scale,
and the Hubble Scale

Here, we will simply start by squaring T¢cyp and dividing it by the square of Tpy,. This
results in:

2o () =
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This implies that we must have:
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Similarly, for the Hubble time, we obtain:
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where ¢, = Tp represents the Planck time. Furthermore, for the critical mass, we have:
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and for the critical energy, we obtain:

T2

M.* =E, TZB. (16)

And for the Hubble constant, we obtain:

T2

fp a7

TCMB
where f, = i represents the Planck frequency. Furthermore, the entropy of the Hubble
sphere with a critical mass is then:

4
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That is, we have established a meaningful relation between the Hawking temperature, the
CMB temperature, the Planck scale and the large scales of the cosmos (Ry, ty, M.). In all

of these, we have the parameter TC ME | so a natural question arises as to whether this factor

provides new insights into cosmology. We claim that it does, but these insights may not be
readily apparent on the surface. We need to delve deeper into quantum gravity and quantum
cosmology to uncover their significance.

We can also find the CMB temperature from the Hubble entropys; it is given by:

Tp
Tecmp = ——— (19)
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3 The Compton Wavelength

Before we delve into quantum cosmology, we need to briefly discuss the relationship between
the Compton wavelength and mass. Compton [25] provided the following formula for what
is now known as the Compton wavelength:

A= —. (20)

If we solve the Compton [25] wavelength formula with respect to mass, we obtain:

m = T (21)

That formula, as we have asserted in multiple papers, can be used to describe the kilogram
mass in any context, including the critical mass of the universe. Some may possibly protest
here and argue that the Compton wavelength is only related to electrons, as it was initially
determined indirectly through Compton scattering of electrons. First and foremost, there are
also several papers discussing the potential Compton wavelength of the proton, as evidenced
by [26] and [27]. It has been demonstrated in multiple papers [28, 29] that even composite
masses can be described by (21). We believe that only elementary particles possess a physical
Compton wavelength, while composite masses have an aggregated Compton wavelength in
the following form:

n N
m=Yom+
i J

Cc

Al O h 1 Ly

A= . (22)

Here, i indicates the different elementary particles making up the mass m, and j indicates
the different energies contributing to m, such as binding energy. We have a plus-minus sign (&)
in front of what is related to energy, as there could be some energy types one need to extract to
get the right mass and others one need to add. However, even pure energy can be seen as mass
equivalent since we have m = C%, so even pure energy can be treated in this way. For masses
larger than the Planck mass, this means we will obtain an aggregated Compton wavelength
smaller than the Planck length. Even if we consider the Planck length to be the smallest
meaningful length of a physical Compton wavelength, this poses no issues because a Compton
wavelength of a composite mass shorter than a Planck length is simply a mathematical
aggregate useful for calculations, where none of the physical Compton wavelengths for
elementary particles will be below the Planck length.
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4 Finding the Planck Length as well as the Compton Wavelength of the
Critical Mass from CMB and the Hubble Constant

We will commence the following derivation, starting from (11):
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Furthermore, Haug has demonstrated in his papers [30, 31] that the Hubble constant can
be expressed as: }
AeC
Ho = 2, (24)
2
21 F
This implies that the Planck length can be calculated as follows:

Hy R
b= . (25)
Téyp ky32m
Both Hy and T¢pp can be determined without any knowledge of G. We can find Hy from
cosmological redshift [32]:

Hy~ — 26

o~ (26)

where d is the distance to the object emitting light, and z is the observed cosmological
redshift. This naturally means we also have:

oz 2 c? 27
P Sr2 2 :
dTG g k3212
So, this clearly offers another method to determine the Planck length independently of
G from observations in the cosmos. This method is considerably simpler to implement in
practice than the one described by Haug [31] in 2022. Its aim is not to achieve a more precise
measurement of the Planck length compared to existing methods, but it is of great importance
as it clearly demonstrates that the Planck length must also be apparent in cosmological
observations; otherwise, we could not extract it from there.
Itis worth noting that as early as 1984, Cahill [33, 34] suggested simply solving the Planck

hc

mass formula, m, = /&, with respect to G and then expressing G from the Planck mass
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as G = ,Z—g However, in 1987, Cohen [35], who did a similar derivation, also pointed out

that this would lead to an unsolvable circular argument, as there was no known method at the
time to find the Planck units independently of calculating them from G, h, or c. As recently
as 2016, in an interesting paper by McCulloch [36], he highlighted the circular problem. In
2017, Haug [37] was the first to publish a method for finding the Planck length independently
of G, and multiple publications on this topic have appeared since then, see for example [28].

Additionally, the reduced Compton wavelength of the critical mass of the universe can be
determined from the CMB temperature and the Hubble constant.

he = Hy _Re ~3.79 x 107%° m (28)
=g s Y .
Temp kpS12m

This value is much smaller than the Planck length. However, it’s important to note that
this is not a physical Compton wavelength but an aggregate of Compton wavelengths from
fundamental particles and energies that make up the rest mass of the critical Friedmann mass
M .. We do not need to distinguish between energy and mass, as energy is treated as rest mass
equivalent according to m = C%

Alternatively, we can also determine the reduced Compton wavelength from a single
cosmological redshift observation plus the CMB temperature. This gives:

fom L M (29)
¢= T3ra 4 4

A>Ty p k5121

The fact that we can extract the Planck length and the reduced Compton wavelength
directly from two cosmological observations is, in our view, more than just a coincidence.
It implies that cosmology is fundamentally linked to the Planck scale and Compton scale of
matter and energy, a connection that will become much clearer in the next section.

We can also determine the reduced Compton frequency in the universe per Planck time.

It is given by:
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5 The Deeper Meaning of the Relation Between Hawking, CMB and The
Planck Scale and Quantum Gravity

For the critical mass of the universe, we will use the notation A. to indicate that it is the reduced
Compton wavelength of the critical mass. Next, we insert M, into the formula below:

2

TCMB Ry
2

T2, 2

p
2 2R
Téws  56°
I
THw ép
2
Temp _ Me
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THw mp
2
TCMB _ lp 32
2 _— . ( )
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And naturally, we then also have that TC;IW B = \//T It’s important to note that we can
find the reduced Compton wavelength of the critical Friedmann mass-energy without any
knowledge of % or knowledge of the kilogram mass M., as demonstrated in the previous
section. Additionally, the Planck length can be determined independently of any knowledge
of G or c, as demonstrated in this paper as well as in [28].

The last line of (32) is, in our view, a very important result as it demonstrates the deepest
level of understanding. What does ;l represent? It is the reduced Compton frequency in
the universe, mass (energy) per Planck time. We [38] have recently demonstrated that the
reduced Compton wavelength is even mathematically identical to the rest-mass energy photon
wavelength, so even energy can be treated in this way, as energy can be considered as rest-
mass equivalent, as is often done. This should also be seen in line with the fact that we have
been able to quantize general relativity theory without altering any outputs from general
relativity theory; see [39, 40], where Einstein’s [41, 42] field equation is re-written as:

1 8l
iRgﬂv = ?TMV' (33)
This yields a Schwarzschild solution of:

20, 1 20, 1, \ !
ds® = — (1 - Ji) cdi® + (1 - Ji) dr? — r2d? (34)
r }"M r )\-M

Ry —

Where Xy is the reduced Compton wavelength of the mass M, and d Q% = (d6%+sin? 0dp?).
This provides exactly the same predictions as the standard Schwarzschild solution but offers
deeper insight in our view.

This factor % then appears in every gravitational prediction derived from the theory of
general relativity that can be empirically tested, as demonstrated in Table 2. This implies that
we may have a comprehensive quantum gravity theory, along with its associated quantum
cosmology. While this is a bold claim and should not be automatically accepted, we believe it
merits sufficient attention from the physics community. Over time, multiple researchers can
collectively assess whether this represents a breakthrough in our understanding of gravity
and cosmology or not.
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Table 1 This table illustrates the

) . Entit From Ty, and T Deeper level
relationships between the Y fw cmB P
Hawking temperature and the T2 I

. D
CMB temperature, as well as the ~ Hubble radius Ry =2Ip 7%1/1 £ Ry =21+
large-scale properties of the 2” w ¢
o T, I
Hubble sphere Critical mass Me =m,-CHMEB Me=mp i—”
Hw ¢
" 2 ¢ 2 lp
Critical energy Mec™ = E,-CME Mec? = Epii
TH w ¢
. T2 i
Hubble time ty = 2t,-CME g =2+
TH w he
1, T 1, A
— 1 w — & 2c
Hubble constant Hy=5/fp TgMB Hy=5/fp T,
T4 2
Hubble entropy Sy = kpdm ;;{WB Sy = kpdm )_L%
Hw <

Additionally, we depict the deeper level of quantum cosmology

Table 1 summarizes the relationships between the Hubble scale, the Planck scale, and the
2
factor TTCZM. In the rightmost column, we summarize that these formulas, when viewed from
Hw
the deepest level, indicate that the Hubble scale is simply the reduced Compton frequency per

Planck time f\l multiplied by the various Planck units corresponding to the dimension we are
examining within the Hubble sphere. The formulas in the far-right column have independently
been derived by an alternative approach related to the same quantum cosmology described in
[43]. That we can arrive at the same formulas by starting out from different aspects in terms
of observations, etc., strengthens our view that this is a fully consistent theory.

Table 2 displays standard gravity predictions derived from the quantized Planck form of
the general relativity theory. These predictions are consistent with those of general relativity
theory. We present this to demonstrate that the reduced Compton frequency per Planck time,
i, appears in all these formulas as well. In our view, this is the cornerstone of gravity
quantization.

6 More Alternative Ways to Express the Large Scale Properties
of the Universe

In this section, we also demonstrate alternative ways to rewrite the equations from the previous
section, relying solely on the CMB temperature, the Hawking temperature, and the Planck
scale. Please refer to [13, 15, 18] as many of the formulas represented below can also be
simply derived from these sources. As for the Hubble constant, we have:

T2y p 3277
Ho = ~C5% —— (35)
Ty 1p
Where 1, = If is the Planck time. Alternatively, we can express it from the Hawking
temperature:
T? 3272
Hy= fw="— (36)
Ty e
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Table 2 The table displays a series of gravity predictions provided by general relativity theory, obtained both
through the conventional expression of the field equation and the novel quantized formulation of the field

equation

Prediction

Formula:

Gravity acceleration

Orbital velocity

Orbital time

Gravitational red shift

Time dilation
Gravitational deflection (GR)
Advance of perihelion

Schwarzschild radius

§="x R2 %y,
= JGm _ . [lp Ip
Vp = R =CJ/ R XM
T = 27 R — 27 R
GM Jlp Ip
FoEy
|_2GM _2p Ip
Ry 2 ! Ry Ay
z= —1= —1
|_2GM _2p Ip.
chz 2 Ay
_ _2GM _ _2p lp
Tr=Tp 1= %5 =Tp |1 =T 5,
4GM lp Ip
0= =45 ==
2R R m
6xGM_ _ _67lp Ip
a(l—e2)c2 ~ a(l—e?) ay
2GM Ip
Ry = =2l,+
S (,‘2 P )L

1
Once more, we observe the term 7”

mass M per Planck time

For the Hubble time, we have:

1574

or from Hawking temperature

Iy

For the Hubble radius, we have:

Ru

or from the Hawking temperature:

Ry

For the critical mass, we obtain:

or from the Hawking temperature:

c
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For the Hubble entropy, we obtain:
N k T; ! (43)
H =R T004-,3"
Toys 10247

Table 3 summarizes the equations in this section. However, we believe it is important to be
aware that at the deepest level, all these formulas represent what is described in the rightmost
column of Table 1.

Hawking [1] derived his temperature consistent with the Schwarzschild [3] metric, which
is also consistent with the critical Friedmann solution when A = 0. The full A-CDM model
naturally incorporates a cosmological constant. However, our model is not in conflict with it;
rather, it appears that the cosmological constant plays a lesser role in determining the CMB
temperature. One possible reason for this is that the CMB is often considered a relic of the
earlier stage of the universe. Our approach seems to align more closely with the so-called
Ry = ct type cosmological models, which are actively discussed as an alternative to the
A-CDM model to this day [44-50].

The approach described here should also be investigated for other metric solutions to
Einstein’s field equations, not just the Schwarzschild metric. For example, the Kerr [51] and
Kerr-Newman [52, 53] metrics, as well as the new Haug-Spavieri [54] metric.

7 CMB Decoupling

The CMB decoupling plays an important role in modern cosmology. Even though the CMB
(10) and (11) clearly predict a CMB value that closely matches the observed CMB value
now, predicting the CMB value going back in the cosmic epoch by linking it to z is more
model-dependent. In the standard A-CDM model, as well as from observations, one has the
relation Teimp,; = Temp,0(1 + z) or the more general formula Teyp r = Temp,0(1 + 2)17P (see
[55, 56]). Observations have shown that 8 must be very close to zero, as seen in, for example,
[57]. We can again link this to the CMB (10) and (11) to the cosmological red-shift. This can

Table 3 This table illustrates the relationship between Hawking temperature and CMB temperature, as well
as the large-scale properties of the Hubble sphere

Entity From Ty, and Tcpy B From T, and Ty B From T, and Ty,
T2 2 T2 %
Hubble radius Ry =21,-CMB Ry = —2— £~ Ry = -2 tc_.
bble rad A== H= 7z, , 3272 =72 32
72 o Tp 1 ni. Ty 1
Critical mass My =m,-CMB Mo =2 21 = Phe Tp 1
P2 c=d, 72 2 c="2 2
Thw o Téyp 647 cly Ty, 647
2 T =2
.. A 1
Critical ener: Mec? = m,c? -CMB Mot =< _p 1 Mec? = 0e 01
&y ¢ T2, <TI0 72,,, 64 ¢ 2 Th G’
2 72 2
. ! e
Hubble time ty = 2t,SMB t r__P ty = A —2¢
P2 H 7 ) H 2 372
Tihw Témp 327 iy 327
. T? T2 2 T2 2
Hubble constant Hy = 4 f, —fw Hy = -CMB 327 Hy = —Hp ¢327°
2/p 2 72 Ip 2
CMB P P e
T4 T4 T4 32
Hubble entr = k4w —CMB = P 1 P 1A
ubble entropy Su = kydm o St = ko7 = {55473 Su =k A 102473 13

Additionally, we present a deeper level of quantum cosmology
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most elegantly be done inside so called Ry = ct cosmological models. Ry = ct have been
around for multiple decades and are actively discussed to this day, see [45—49]. John [44],
one of the early inventors of Ry = ct cosmological models, even claims that:

Some of those eternal coasting models are published even before the discovery of the
accelerated expansion of the Universe and were shown to have none of the commonly
discussed cosmological problems and also that Hyto = 1. The Ry = ct model is only
the special (flat) case of the eternal coasting model.

Milne [58], in a recent paper, points out that more than 27 different observations have been
compared between the A-CDM model and the Ry = ct model, and the Ry = ¢t model fits
observations just as well, and in some cases, even better than the A-CDM model. In particular,
Milne points out that observations from the early universe strongly favor the Ry = ct type
models. However, there is clearly no consensus on this, and there are also strong critics of
Ry = ct cosmological models, see for example [59]. However, most of the critics have been
claimed not to be valid [60]. There is also not only one single Ry = ct cosmological model,
but underclasses of Ry = ct models, such as growing black hole cosmology, see for example
[50].

In this paper, we will not attempt to determine whether the Ry = ct models are prefer-
able to the A-CDM model. Rather, we acknowledge that considerable research by multiple
scholars over several years is necessary to approach a consensus on this question. However,
we can note that the formulas referenced as (10) and (11) are compatible with Ry = ct
cosmology. This compatibility is based on the assumption that the universe’s radius expands
according to Ry = ct, without any additional space expansion as proposed in the A-CDM
model. Furthermore, to align the Cosmic Microwave Background (CMB) (10) and (11) with
the well-established equation T¢mp r = Temp,0(1 + 2), it is necessary to adopt the perspective
that cosmological redshift conforms to the approach recently suggested by Haug and Tatum
[61]:

he Tcmb.O
kpdm /Ry 21,

Inthatcase Ry ; = ct and Ry = HLO is the Hubble radius now, and the formula above, when
solved for T, corresponds to the standard assumption of T¢np; = Temp,0(1 + z). The
Photon decoupling is closely related to recombination, and the CMB temperature of about
3000K, that according to the A-CDM model occurred approximately 378,000 years after
the Big Bang. This corresponds to a cosmological red-shift of about z = 1100 and a CMB
temperature given by the formula Tpp; = Temp.o(l + 2) & 2.725K (1 + 1100) ~ 3000K .
In reality, one has only measured the CMB temperature in relation to z for the cosmic epoch
up to a z = 6.34 (see [57]), and even here, the uncertainty in measurements is very large.
Riechers et al. report a one standard deviation in the CMB temperature for that cosmic epoch
of 16.4K to 30.2K. So, at the moment, the decoupling at z = 1100 with a corresponding
CMB temperature, even if there is lots of solid research behind it, is still mostly theory.

In our model, if we make it consistent with at least some subclasses of Ry = ct, cos-
mological models of the universe rather than the A-CDM, we find that the decoupling, if it
happened at 3000K, occurred only about 12,052 years after the beginning of the universe.

Aemitted

hc
_ Aobserved — Memitted _ [I;i 1= <kb477\/ R/IJZZP) | = Tcmb.t 1 (44)
t
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CMB temperatur and Z versus age off the universe
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Fig.1 The figure illustrates the predicted Cosmic Microwave Background (CMB) temperature and cosmolog-
ical redshift in relation to the number of years since the universe’s inception. If we align the CMB prediction
formula with the tested principle T¢p.; = Temp,0(1 + 2) and the cosmological model concept of Ry = ct,
then the decoupling, which presumably occurred at approximately 3000K, must have happened about 12,052
years after the beginning of the universe. However, it’s worth noting that other possibilities not discussed in
this article also exist

This is similar in time to what earlier suggested by Tatum and Seshavatharam [14], but then
based on the assumption of a § = % in Temp,r = Temp,0(1+ z)1=# . This is much closer to the
beginning of the universe than predicted by the A-CDM model. Figure 1 shows a graph of
predicted CMB temperature at different epochs. Tatum and Seshavatharam [50] conducted

a similar, interesting analysis, but they based it on Timpr = Temp,0(1 + z)% rather than
Temb,: = Temb,0(1 4 2). However, please also refer to their more recent paper [62], which is
consistent with 8 = 0.

It remains uncertain whether we can empirically test whether the decoupling occurred
significantly earlier than the A-CDM model suggests. However, investigating this possibility
is important. As Milne has noted, the A-CDM model appears to face several challenges in
accurately describing the early universe.

In Table 4, we show some time points from the very beginning of the universe to now,
based on Ry = ct cosmology, similar to the Tatum et. al model [13]. According to this per-
spective, the universe started with a temperature essentially close to the Planck temperature.
If the decoupling event occurred at 3000K, it would have taken place 12,052 years after the
beginning of the universe. The far-right column shows the reduced Compton frequency per
Planck time in this observable universe, representing the quantization of gravity and aligning
with the new approach to Planck quantizing general relativity described in Section 6.

Planck scale cosmology seems to offer an alternative to the Big Bang hypothesis. The
Big Bang hypothesis does not provide a good explanation of how all the mass and energy
in the universe could fit into a singularity with no spatial volume, and what triggered the
Big Bang. Planck scale cosmology can be interpreted as nothing can be compressed to more
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than the Planck mass density or inside a spatial volume smaller than the Planck volume. The
observable universe could have started as a Planck mass black hole that has been growing
in radius based on the Ry = ct cosmological concept, similar to suggested in Tatum et.
al [13]. There could even be many such black hole universes in the universe, each growing
at Ry = ct. The new Haug-Spavieri [54] metric even seems to mathematically impose a
maximum constraint on the mass density anywhere inside the Hubble sphere equal to the
Planck mass density. This indicate the universe either had to start as a Planck mass black hole
or that it alternatively the Hubble sphere could be a steady state black hole, two hypothesises
that should be investigated further. Planck scale cosmology as presented in this paper also
give a quantization of gravity, as it is clearly linked to the reduced Compton frequency per
Planck time, see Section 6. The A-CDM model have not been able to link their theory to the
Planck scale or to quantizastion of gravity.

8 Conclusion

We have demonstrated very simple relationships between the Hubble sphere, the CMB,

Hawking temperature, and the Planck scale. At the deepest level, we find that % = %
which can be interpreted as the reduced Compton frequency of the critical mass al;fa energ

in the universe over the Planck time. All the large-scale properties of the Hubble sphere
are essentially this frequency multiplied by the Planck unit with the same dimensions as
those we want to study within the Hubble sphere. This is in full consistency with a recent
reformulation of the theory of general relativity, where the reduced Compton frequency per
Planck time in the gravity mass of interest also plays a central role. It appears that we have
a quantum gravity theory that is fully coherent with quantum cosmology, linking the largest
and smallest scales of the universe at the Planck scale. Furthermore, the Planck length can

be extracted directly from cosmological observations without any knowledge of G.

Appendix

The formula to predict the CMB temperature (10) was first heuristically suggested by Tatum
etal. in 2015. However, the lack of interest in it by the wider astrophysics community is likely
due to the fact that it has never been demonstrated to be derivable from fundamental laws of
physics. However in a recent paper, Haug and Wojnow [15], for the first time, demonstrated
that the formula is directly derivable from the Stefan-Boltzmann law. In this appendix, we will
briefly repeat that derivation but refer the readers to that paper for more details. According
to Stefan-Boltzmann’s law, the luminosity of the Hubble sphere must be:

Ly =47 R%o T} (45)

Here T is the temperature of the Hubble sphere. In addition, we take advantage of the recent
developments in quantum gravity, where the hypothetical Planck mass particle seems to play
an important role in all of gravity. The energy that is passing through such a particle from
the Hubble sphere luminosity must be.

Ly

= M 46
47111% (46)
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That is, we assume this particle has a Planck length radius. Furthermore, the radiant flux that
is absorbed by the Planck sphere’s cross-section 772 = ml, 2 is then expressed as:

47 R? O'T4 b4
Pyps =L E E=ni2t wly —2

= R0 T 47
P4x 12 4rl? 3 H “7)

Next, we will rely on a likely connection to the Hawking temperature. The Hawking
temperature of a Planck mass particle is determined by Hawking radiation from such a micro
black hole particle and is given by:

hg

Thw y = —2 . 48
Hwp = ek (48)

Further the gravitational acceleration at the Planck mass micro black hole at the

Schwarzschild radius of the Planck mass is g = G’Z!’ = glm)"z This leads to

B Gm
hg 2 he T,
ThHw,p = = = = (49)
2w cky 2mcky 8mlykp 8w
1 m — mpe?
where T), is the Planck temperature T, = 7 =

Further since the the Stefan-Boltzmann law mvolves a fourth power, then the flux emitted
by Planck mass particles should be approximately equal to the flux absorbed. This is especially
true when close to the steady state, where we have:

A7 REL 6 TS
dnloo Ty, ,=nlE = ﬂlﬁ# = 7R, T (50)
P
From this we get:
T, |21
Ty = L2 | =L ~ 272k, (51)
8 RH

The Stefan-Boltzmann derivation is valid for the observable Hubble universe at any date, at
least under the Ry = ct concept. Furthermore, the values of Hy and T,,;, correspond only
to today’s date.Haug and Wojnow also demonstrate mathematically how this is identical to
the CMB temperature formula first heuristically presented by Tatum et al. In addition, Haug
and Tatum [63] have recently derived the same formula from a geometric mean approach,
assuming that the shortest possible wavelength is the Planck length and the longest possible
wavelength is linked to either the diameter or the circumference of the Hubble sphere and
that the CMB temperature is lined to the geometric mean wavelength of these two. It is not
uncommon in physics to solve problems based on geometric means [64-67].
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