The Chiral Bag

The chiral bag or the “little bag’ as formulated in 1979 has in recent years undergone
a dramatic evolution due to the revival and a deeper understanding of the topo-
logical (Skyrmion) description of baryons. In this Comment, we review the present
status of the chiral bag as a possibly realistic candidate model of low-energy quan-
tum chromodynamics, particularly suited to nuclear dynamics, possessing the unique
virtue of interpolating between the long-distance Goldstone-mode regime and the
short-distance asymptotically free regime. Being the only four-dimensional topo-
logical soliton observed so far in pature, the nucleon as described in the model
offers a valuable laboratory to study the intricate way that topology enters into
physics.
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1. INTRODUCTION: THEORY

In a previous Comments article,’ we discussed the role that chiral
symmetry plays in nuclear structure. In this Comment, we address
a related—and potentially more fundamental—issue in hadron
structure, namely the role that chiral symmetry plays in the struc-
ture of the nucleon and other baryons. A close relation is believed
to exist between the two: a logically consistent picture arises from
considerations based on the common features of chiral invariance.

When it was first suggested that the chiral bag (or the little bag)?
be seriously considered as a model for the nucleon, the primary
motivation was to render the bag description of the quark—gluon
structure of the nucleon compatible with observations in nuclei,
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namely success of the independent-particle description and the
meson exchange phenomena in nuclear processes. The M.I.T. bag
model was far from satisfactory in this respect when considered
from the nuclear physics point of view. In the original description
of the chiral bag, as in subsequent developments, pions as the
Goldstone bosons of chiral SU(2) X SU(2) symmetry played a
crucial role, but the pion-cloud effect was treated only perturba-
tively. Based on second-order perturbation theory, it was argued
that the pion cloud surrounding the quark bag exerted a strong
pressure on the quark core, squeezing the quarks into a “little
bag” whose radius turns out to be considerably smaller than what
was predicted by the M.1.T. model or from the simple QCD order-
of-magnitude estimate Aglp, both of which gave radii R = 1 fm.
It was quickly realized, however, accelerated by the work of Wit-
ten, that nonperturbative aspects of the pion could not be ignored
and that the chiral bag, particularly if the bag is small, was a
topological object.* In recent years, the concept of the pion cloud
has undergone a drastic change, thanks to the rediscovery of Skyrme’s
prescient idea® of the baryons as topological solitons. In view of
the recent intense activities which have shed considerable new light
on Skyrme’s picture (Skyrmion) as well as quark-bag models with
pion clouds, the chiral bag of today looks much different—and
more promising as a simple but realistic model (if not a theory)
of the nucleon—than the older version. In this Comment, we wish
to summarize the present status of the model, focusing on what is
understood and which problems are still to be resolved.

The basic idea of the chiral bag is to hybridize two possible
phases of chiral symmetry, i.e., Wigner mode and Goldstone mode.
In the former, the description is in terms of quarks and gluons; in
the latter, in terms of mesons. The motivation for this is to incor-
porate, to the extent that it is feasible, two elements of quantum
chromodynamics—asymptotic freedom and spontaneously broken
chiral symmetry. One hopes in this way to take into account,
simultaneously, both short- and long-distance strong-interaction
properties. There are probably several, perhaps equivalent, ways
of hybridization.® The chiral bag model is constructed in one par-
ticular way that seems to offer the simplest conceptual framework.
The model consists of a bag in which quarks propagate almost
freely within, but confined by a boundary condition on the surface.



The exterior region is populated by meson clouds, in general pions,
vector mesons, etc. The boundary condition is to provide a con-
sistent connection between the two regions.

We will consider first, for concreteness, the nonstrange quark
systems. Imagine further that the u- and d-quark masses are zero.
(The nonzero masses needed for current algebra do not make
qualitative changes.) There is then SU(2), X SU(2)g chiral sym-
metry. (The extension to the strange quark sector will be discussed
later.) We will start with the simplest hybridization scheme: free
quarks inside and massless pions outside, corresponding to the
longest wavelength oscillation. The dynamics are then given by
the action I' involving quark field ¢ and pion field = (i = 1, 2,
3):

L = [, iy oy 0
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where V,, V, are the volume inside and the volume outside, re-
spectively, F_ is the pion decay constant (=93 MeV) and U the
chiral field taking values in SU(2),

U(r) = exp(it - w(r)/F,). 3)

I',.. may contain, as we mention in the Appendix, higher-order
derivatives represented by - - - in Eq. (2) in addition to the low-
energy current algebra term. For the moment, we will ignore them.
[The notation involving U may be unfamiliar to some readers. The
action (2) is just that obtained from the Lagrangian of the nonlinear
o model

@ = %[(auﬂ)2 + (0,007 (3a)

where the scalar field o is given by

o + m? = F2. (3b)



The notation in terms of U is economical, the Skyrmion Lagrangian
offering a convenient nonlinear representation of chiral symmetry. ]
The { and U fields communicate with each other through (clas-
sically) chirally invariant boundary conditions

—in vy = U (4)
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with Us = exp(it - mys/F,).

Equation (4) is the usual confinement boundary condition and
Eq. (5) is the condition on the boundary for axial-current conser-
vation. The right-hand side of Eq. (5) is clearly just the normal
component of the axial current, realized in the internal quark
variables, at the bag surface. The left-hand side is the axial current
realized in meson variables, again at the bag boundary. For the
special case of the hedgehog configuration which we shall introduce
in Eq. (7), the left-hand side is just F2d6/dr, where 6 is the chiral
angle. [Within the respective space, the actions I';, and I',,, are
invariant under (global) chiral transformation.] Equations (1)—(5)
define, when supplemented by a pressure balance relation* (or
energy-momentum tensor conservation), the entire content of the
chiral bag model.

Before addressing what physics this model represents, we first
describe an intriguing phenomenon that is known about this set
of equations. Consider first the Dirac particles (quarks) satisfy-

ing**

iy-ap=0 r<R (6)

subject to Eq. (4) on the boundary r = R. If the pion field describes
a mode built on a topologically trivial vacuum, then Egs. (1) or
(6) and (4) are C (charge conjugation) invariant, so the chiral field

*This may not be needed as an additional condition if, for instance, the Cheshire
Cat picture (described later) holds.
**From now on, we will restrict ourselves to a spherical bag of radius R.



U leaves the Dirac sea in the bag undisturbed and nothing strange
happens. However, suppose that the pion field is of topologically
nontrivial configuration, i.e., soliton; then a surprising thing hap-
pens.”® Consider the hedgehog configuration

Uy(x) = exp(it - 70(r)),

a configuration first studied by Skyrme.’

If at spatial infinity (r — «), U, approaches the trivial config-
uration, U,(®) = 1, then it corresponds to a mapping of a three-
sphere (S?) into the internal space SU(2) (isospin). Because of this
interlocking of the ordinary space and the internal space, while
the equation of motion (6) remains invariant, the boundary con-
dition (4)* is no longer symmetric under C or CP for angles 6 #
nw/2, n = 0, 1, 2, . ... What this implies is that when U, is
considered as a background field in Eq. (4), the solution of the
Dirac equation is, for chiral angles different from nm/2, asymmetric
between positive and negative levels. This spectral asymmetry in-
fluences all the physical observables one wants to calculate. [Said
more prosaically, the bag boundary conditions (4) and (5) affect
not only the valence quark states, but also all of the filled negative
energy states, so that contributions from this sort of vacuum po-
larization pertain to essentially all physical observables. For ex-
ample, there are Casimir effects on the energy.]

The first quantity studied, which is also the simplest, is the
baryon charge.”® In terms of the quark field ¢, the baryon number
operator is

1
2N,
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We will first consider an empty bag (that is, without valence quarks)
for which, naively, the baryon number B,,. would be

221

w<0 w>0

1
2N,

*Note that Uiy = U*dg + Uy, with Yg_, = (1/2)(1 = vs)¥; so what is
relevant is the U field, Eq. (7).



where the sum goes over all negative-energy and positive-energy
Dirac levels. Involving infinite sums, this quantity is not mathe-
matically well defined, so it requires a suitable regularization. A
convenient procedure is the so-called heat-kernel regularization,

B,.. = lim [— %2 sin(w) e‘“‘*"]. (7)
s—0

w

The exponential factor cuts down contributions from large |w|.
(Mathematicians have shown that the quantity in square brackets
is a well-defined quantity and that the limit exists). It is clear from
Eq. (7) that any asymmetry in the Dirac spectra w would induce
a nonvanishing baryon charge B,,.. Indeed, calculations’!° show
that with 6 = 6(R)

1 1
B,..(8) = — ; [6 = EsinZG], (8)

a surprising result that a bag is never empty in the presence of
topologically nontrivial background. When N, quarks are intro-
duced into the bag, one discovers* that the baryon charge is 1 —
(/=)0 — (1/2) sin26).

What happened can be easily understood as follows. Classically
quarks are absolutely confined within the bag by the boundary
condition (4). However, quantum effects involving quarks break
some of the classical symmetries, generating anomalies. In the case
of Eq. (4), the flavor singlet vector current is no longer conserved,
as a consequence of which the baryon charge “leaks” out by the
amount given by Eq. (8). This is an example of chiral anomalies,
a subject at the core of the recent exciting developments in the-
oretical physics.'?

*This baryon charge fractionization was first noticed at 8 = w/2 as follows.” At
this angle (called the “magic angle™), the Dirac spectrum is CP symmetric; however,
there is a CP self-conjugate zero-energy level, so as in the magnetic monopole
case,'! the baryon (or fermion) charge is = 1/2. The generalization (8) was deduced
from the baryon charge lodged outside.



We have thus learned that, quantum mechanically, baryon charge
is not confined within the bag. Where does it leak to? The model
as a whole, if it models QCD, cannot have a vector current anom-
aly. Therefore the anomaly must be a phenomenon localized in
the subsystem, namely, in the bag, and the leaked baryon charge
must reside in the meson cloud. In fact, if we identify the U, field
with a Skyrmion, we obtain a consistent description. Indeed we
have, in the meson-cloud sector,

Bioud = JVD Pxl(x) = i [O(R) — %sinZB(R)] 9

where J,, is Skyrme’s topological baryon current (1/24w?)e,, ,, Tr(U+ 9"
U U*é* U U*9PU], so the vacuum as a whole does have zero
baryon charge as expected. These results are unmodified when
quark mass, gluon and other effects ignored so far are taken into
account.!? The reason is simply that they are topological and hence
unaffected by detailed dynamics.

We now state what physics the chiral bag represents.

The most attractive and perhaps most fruitful way of viewing
the Skyrmion picture is to consider it as a bosonized (albeit ap-
proximate) version of quantum chromodynamics. It is well known
that in (1 + 1) dimensions, some fermion theories can be com-
pletely bosonized. For instance, the massive Thirring model (fer-
mion theory) is known to be identical to the Sine—Gordon model
(boson theory),'® a free Dirac system with non-Abelian flavor
symmetry is the same as a nonlinear o-model with a Wess—Zumino
term,!* to which two-dimenstonal QCD also reduces in the limit
of large number of colors!® and so on. In these examples, solitons
in the boson theories correspond to fermions in the fermion the-
ories. Application of this bose—fermi correspondence to bag models
leads to the so-called Cheshire Cat model,'® which we describe
briefly.

Consider massless Dirac fermions living in the one-dimensional
space —R = x = R, confined by an M.1.T.-like boundary condi-
tion. Let yz be a point within the range, and bosonize the fermion
field Y(x) for yz = x = R. If we let y; = —R, then the theory is
equivalent to a bosonized one, and if y; = R, then it is said to be
completely fermionized. For any other values of yg, it is a hybrid.



The boundary condition to be imposed at yz for a boson—fermion
correspondence is precisely the analog to Eq. (5)

neab = Vmlhn-yysl, x = yg (10)

and the most general condition'® invariant under P, C, T that
physics be independent of yy (called the “Cheshire Cat principle”)
is

—in - yb = Vi, x = yp (11)

which is a precise analog to Eq. (4). [In (1 + 1) dimensions, F,
is dimensionless, equal to 1/\/4w]. The Cheshire Cat phenomenon
can be readily demonstrated explicitly for ground-state and low-
excited state properties of the system by choosing ¢ to be a soli-
ton. !’

Although bosonization may also be feasible in (3 + 1) dimen-
sions,'® no workable method has yet been developed. A few cases
so far studied are: the monopole—fermion system—the monopole
catalysis of the proton decay (Rubakov—Callan effect!”)—where
the problem reduces by a physical condition to an effective two-
dimensional one and the free Dirac system with a boundary con-
dition at the origin.?” In the latter case, one can show that a free
massless Dirac field can be completely bosonized provided an in-
finite set of boson fields consisting of a tower of angular momentum
states is introduced. Limited though they are, both of these cases
are seen to be highly relevant to the chiral bag model.

In the absence of an exact bosonization, then, the chiral bag
may then be viewed as a partial bosonization scheme, with the
boundary conditions (4) and (5) playing the roles of both bose—
fermi correspondence and an approximate Cheshire Cat principle.
The latter is inevitable, because in (3 + 1) dimensions, an exact
Cheshire Cat principle cannot be established unless an exact so-
lution of QCD is known. In the spirit just stated, suppose one
starts with a big bag (radius R > 1 fm, say) with confined quarks
and gluons. Short wavelength properties of the hadrons may be
treated perturbatively in terms of quark—gluon variables, but not
long wavelength properties. To describe the latter, consider bo-
sonizing long wavelength quark—gluon degrees of freedom. The



longest wavelength mode thus bosonized is just the pion; at the
next wavelength scale appear the vector mesons, p and w. Since
for a large bag, R > 1 fm, little baryon charge is expected to be
lodged in the bosonized sector (call it “meson cloud’), the meson
cloud will primarily consist of fluctuating pion fields (hence non-
topological) which couple to the bag via the given boundary con-
ditions. One expects soft-pion—baryon phenomena (i.e., soft-pion
theorems) to be correctly described in this picture. This has been
extensively verified in pion—nucleon processes.?! As one reduces
the bag further by integrating out more quark—gluon degrees of
freedom, the topological chiral field will become non-negligible.
One may still have the boundary conditions (4) and (5), but the
pion field will now consist of a soliton configuration in addition to
the fluctuating field. (As we will see later, this picture seems to
hold up to & = «/2.) If one integrates out more and more of shorter-
wavelength degrees of freedom, an ever-increasing number of me-
son fields, beginning with the vector mesons, will have to be in-
troduced, with an appropriate modification of the boundary con-
ditions. When all the quark—gluon degrees of freedom are integrated
out, the Skyrmion description will presumably result. If this picture
is to be valid when probed at a very short distance, an infinite
number of meson fields will be needed, as suggested by Rubakov’s
result.?® A similar conclusion is reached by a large-N, QCD.3

Two consequences emerge from this discussion: one, the bag
radius R in the chiral bag is an optimal radius at which a partial
bosonization best approximates nature, hence not a genuine phys-
ical quantity, and second, R can be probe-dependent; different
currents with different kinematics may require different values of
R. The crucial element in this hybrid description is that some
properties are better described in boson language, others in fer-
mion language. (This is known in some (1 + 1) dimensional models.
For instance highly nonperturbative properties in fermion fields
can be described simply in semiclassical approximation in boson
fields and vice versa.)

This somewhat eclectic way of choosing R is familiar to nuclear
physicists who work with the Wigner R-matrix. There the radius
is generally chosen so as to minimize higher-order corrections in
the problem one is considering. Whatever value is chosen for R,
one would, in this theory, obtain the same final results, were one
able to calculate all higher-order corrections.



When calculating the properties of single baryons, it may well
be that the hybrid description is not much superior in details to
the M.I.T. bag or the Skyrmion: there is clearly the danger of
losing some accuracies inherent in the two pictures when two ex-
tremes are approximately hybridized. However, when applied to
nuclei where nucleons interact in configurations ranging from
asymptotic freedom (when two nucleons overlap) to Goldstone
mode (when they are apart exchanging one pion), the chiral bag
picture will definitely be more appropriate and more predictive.
It also has the virtue of providing links to the nuclear phenomena
(manifesting chiral symmetry) reviewed in Ref. 1.

A deep theoretical issue that has attracted some attention re-
cently is whether or not the chiral bag is implied by QCD. A fully
satisfactory answer may not be available until QCD is completely
solved. (Presumably future lattice gauge calculations will provide
some hints.) At present, there is no derivation of the chiral bag.
Nonetheless there is a strong indication for it in effective theories
obtained by integrating out gluons and quarks. For instance, in an
attempt to derive a long-wavelength effective Skyrmion Lagran-
gian from QCD, Simi¢?? finds that when heavy-meson degrees of
freedom are ignored, the resulting theory “resembles” the chiral
bag with a rapid delineation between the nonperturbative vacuum
(Skyrmion sector) and the perturbative vacuum (bag). Other au-
thors arrive at a similar qualitative result,?® based on different
considerations. To the best of our knowledge, there is no theo-
retical argument against the chiral bag structure.

2. PHENOMENOLOGY

We now turn to some phenomenological consequences of the bar-
yon number fractionation inherent in the chiral anomaly structure
of the chiral bag. The question is: What happens to physical ob-
servables when the baryon number fractionates, as predicted, into
the quark and Skyrmion sectors? Some interesting answers have
been obtained by the workers of Ref. 24.

The obvious quantity to look at is the nth moment of baryon
number distribution of the nucleon, M,,*

— ba, Skyrmion
M, = MP + M5

10



with (12)
Mgag = anc + M;al.

The nontrivial quantity is the contribution due to the polarized
vacuum

R*M*(0g) = — % lir(})l+ > sin(w) exp[ —s|w|]

R
X fo dr r"”fdﬂ 959, (13)

where ¢, is a normalized quark solution with eigenenergy w;
M the valence quark contribution, and M3¥, the meson-cloud
contribution, are calculated straightforwardly with their known
charge density. For n = 0, we recover Eq. (8), namely, M§**(0z) =
B,.(8g). For n = 2, we get (r>)y%, the mean square isoscalar
charge radius. As noted by Vepstas ef al. and Heller et al., all the
moments (13) are well defined, free of singularities.?*

Of immediate relevance to experiments is the isoscalar charge
radius \V/(r?),_,. This has been investigated in Ref. 24; some of
the results are given in Fig. 1. What is found is that for reasonable
values of parameters, the charge radius is independent of R pro-
vided the coefficient e of Skyrme’s quartic term (see Appendix) is
a constant for § > /2 (see Fig. 1(b)). As we will elaborate later,
this feature is qualitatively consistent with what one expects in
effective Lagrangian theories “derived” from QCD.?2

One cannot extend the analysis to too large a bag radius (say,
R = 1 fm) or smaller 8g, since for larger bags, nonperturbative
corrections in the quark—gluon sector can become very impor-
tant.* This may induce a large deviation from the Cheshire Cat
picture for large bag size.

*For example, in the case of the MIT bag model (R = 1 fm) o, = 2.2. It is then
found® that the Lamb shift, which is of order o, higher than the kinetic energy,
is just as large as the latter.

11
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FIGURE 1 The isoscalar mean square radius (r?),_, times d2 = F3/8¢* vs. chiral
angle 0, on the surface (Fig. 1(a)) and the value of e = (V8e)~! required 10 keep
(r?),-, at the empirical value (0.72 fm)? for 0 = 8; = « (Fig. 1(b)). These results,
taken from Heller ef al. (Ref. 24), arc similar to those obtained by Vepstas et al.
(Ref. 24).

Consider now the vacuum energy inside the bag

E'(0) = lim D, o, exp[—1/Q,] (14)

—>0 m€Esea

with Q,, = ,,R the quark eigenfrequency. The “axial flux” ®(8)
on the bag surface is given by’

o®) = | &S nne (Ao =lm @0, 1)  (19)
—0
with
dw,,
(0, 1) = > — "exp[—7Q,]l.
mesea de
Clearly
dEY(0) _ . 8
5 = lim <1 i TaT)rb(e, 7). (16)
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Here we encounter divergences that are not present in the baryon
density distribution. It has been established®? that as T — 0, [E¥(9,
1) — E¥(0, 7)] contains Int divergence and ®(8, 7) both 7~! and
InT divergences. The logarithmic divergence is harmless, since one
can presumably eliminate it by a suitable renormalization prescrip-
tion. However, the linear divergence* looks at first sight disastrous
and has led the authors of Ref. 26 to conclude that the model is
intrinsically sick. We do not share this opinion, for the following
reason: the chiral bag is not a complete theory on its own but an
effective one. As such, we cannot expect it to be valid over all
ranges of parameters. Now the - ! term comes multiplied by sin 26,
so for the chiral angles 6 = 0, w/2, m, the linear divergence is
absent. At this point, one can take either one of the two options.
One, it may be that the model (and its regularization) is well
defined only for these three angles; two, if one wants to adhere
to the Cheshire Cat principle, one should devise subtraction (and
regularization) procedures such that one can continue smoothly
between the three chiral angles. The latter is the procedure adopted
by Vepstas, Jackson and Goldhaber® and applied in Ref. 27. (This
procedure was recently shown to be the correct one in the (1 +
1) dimensional Cheshire Cat model’.) Specifically, the subtraction
is made such that in the limit 8 — 1, the axial flux relation (5)
holds, involving only finite quantities. Effectively this corresponds
to demanding that as R — 0,

PE'(6)  d®(e)
ae?  ~  do

0. (17)

This procedure may still leave some nonuniqueness in finite sub-
traction terms, while all the divergences in E¥ and ® are taken
care of. Whether this is a serious cause for worry is not known,
but the presently available numerical results indicate that the error
can be at a <10% level. '

Evidently a sensible thing to do is to focus on the chiral angle
m/2, acceptable in both options discussed above. We will indeed
find some remarkable results, working at this angle. [While this

*This may also be an artifact of the regularization chosen and may be absent in
a different regularization scheme. We thank L. Vepstas for a comment on this.
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may appear to the readers to be overly restrictive, let us remind
them that in the fermion—plus—monopole problems® it was thought
for many years that one should work with chiral angle 0 or « (the
latter corresponds to /2 in our case, due to the higher degeneracy
of K = 0 states). Only at these chiral angles is the spectrum of
positive and negative energy states symmetrical. Of course, later®
the problem of fermion number fractionation for arbitrary chiral
angle was worked out.]

In Ref. 27, the energy and static properties of the SU(2) baryons
have been investigated following the subtraction procedure dis-
cussed above. When the contributions from the vacuum and val-
ence quarks of the bag and from the Skyrmion sector are summed,
the results are again found to be remarkably independent of the
bag radius for 0 = R < 1 fm. For instance, the centroid of the
masses of the N and A comes out to be in the range 1.1-1.5 GeV
for a wide range of radii. (For precise conditions on which this
result is based, we refer to the literature.?’) Similar behavior is
found for the axial charge g,, magnetic moments and other static
properties. It is tempting to regard these results as a confirmation
of an approximate Cheshire Cat picture.

A particularly interesting qualitative result of Refs. 27 and 24
is that as the bag size is increased, Skyrme’s quartic term—and
presumably any other higher derivative terms—gets increasingly
suppressed. In fact, at a chiral angle near m/2, it vanishes rapidly.
This is quite consistent with the observation that Skyrme’s quartic
term and higher derivatives arise when quark degrees of freedom
are integrated out. Simi¢ finds a qualitatively similar result by
integrating out fermions from a QCD action?; specifically the
quartic terms occur multiplied by a factor that vanishes at some
short-wavelength scale, simulating an effect similar to what we
discussed above. The latter is what seems to distinguish a QCD-
based calculation from a g-model,*® as far as the quartic terms are
concerned. We think that this is one of the crucial features that
are needed in thinking of nuclear interactions in terms of quarks
and gluons.

Detailed analyses made so far with some obvious refinements
on the model (Egs. (1)—(5)), such as inclusion of the pion mass,
the bag constant B, gluon radiative corrections in the bag, pionic
fluctuations in the cloud etc., lead one to conclude (albeit tenta-

14



tively) that the low-energy baryon properties such as energies and
static moments are insensitive to the bag radius; the chiral bag
provides an interpolation between the two extreme descriptions,
the Skyrmion and the quark bag. Clearly, then, as far as these
properties are concerned, there is no one particular model that is
to be preferred over others. (Of course, one can always get a better
fit with experiments with a particular model by a fine-tuning of
parameters, but this cannot be construed as a sign of superiority.)
The reason for this peculiar (and perhaps unsatisfactory) situation
is not difficult to find: as stated elsewhere,® what really matters
is the broken flavor SU(6) symmetry which figures in all the models
in question.

Where can one see the differences; in particular, where can one
see that the chiral bag has the virtue of interpolating the two
extreme regimes—asymptotic freedom and Goldstone mode?

The first case we will discuss is the axial-vector coupling constant
8a-

One of the prominent failures in the Skyrmion phenomenology??
is that the g, comes out too low (by a factor of about 2). This is
presumably related, in the way the calculation is done in Ref. 32,
to a smaller value of F, that results from the fit. (This gets worse
when the flavor group is SU(3), as we shall discuss later.) On the
other hand, in the M.LI.T. (large bag) limit, when the fluctuating
pion field is introduced to restore axial-current conservation, the
g4 comes out too big,*? g%€ = 1.635. This indicates that even
though the g, is a static quantity, it can be sensitive to short-
distance phenomena. We are thus led to consider the “‘halfway
house,” the magic angle w/2. Here the calculation is extremely
simple.” At this angle, there are no divergence difficulties (as we
discussed above), and furthermore we need to consider only the
K™ = 0% zero mode (where K = J + T). The g, is directly
proportional to the net baryon charge inside the bag. With a suit-
able angular momentum projection onto the nucleon sector, one
finds’* that g, =~ 5/4. (There is a caveat here. In the Skyrmion
case the collective coordinate quantization relies on large-N, limit,
so that one is forced to take (N, + 2)/N.— 1. In the quark model,
such a factor is taken to be 5/3 since N, = 3. The result g, = 5/4
corresponds to this way of calculating the quark contribution. Were
we to impose the large-N, constraint as in the Skyrmion case, we

15



would find instead g, = 5/4 - 3/5 = 3/4. The point is that in quark
models, you “‘see” the quarks, while in the Skyrmion, you do not.)

The next case is the tensor coupling of a p meson to a nucleon
(denoted as k3)* *

1J

‘§£p = prN{wN'Y.LT ' pul!"N lll’N O',Luk T PN’N} (18)

where { is the nucleon field operator, p, the isovector p field,
my the nucleon mass and k,, the momentum transfer. In the vector-
dominance model (VDM), k% is equal to k¥ of the nucleon elec-
tromagnetic current

Tak” + K°

1
{qJN yquN F l"l" HT o-uvkvle}' (19)

Since the vector dominance arises naturally in the Skyrmion pic-
ture,¢ the Skyrmion model should have
Ky = k¥ = 3.5, (20)

the last equality being empirical. Experimentally, however, «? is
not equal to k?; instead®’

K

v = 6.6 = 2«". (21)
This deviation from the VDM has been a long-standing puzzle in
hadron physics.

In nuclear physics, the magnitude of «j is believed to play an
extremely important role in processes in nuclei involving spin—
isospin modes. For instance, the large value (21) has a dramatic
influence on the suppression of would-be collective modes in the
pionic channels.*® The smaller value (20) would have produced in
nuclei some spectacular phenomena that have not been observed.
That the Skyrmion picture corresponds to (20) rather than to (21)

*This was discussed in a previous Comments article; here it illustrates in a clear
way a possible deviation from the Cheshire Cat phenomenon.
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can also be seen in the NN tensor potential predicted in the Skyrme
model,* as compared with the p- and m-exchange prediction of the
same potential with (21). Figure 2 exhibits these features. It seems
that the Skyrmion fails here.

The chiral bag model offers a simple explanation of Eq. (21),
based on the baryon number fractionation near the magic angle
6 = w/2. The argument goes as follows.>> As we know now, the
baryon charge is equally divided into the bag and the Skyrmion

50 | T T |
50— '. ."-,.. -
TL& P exchange

Wk Skyrmion B Lol -

30

Vie (R) (MeV)
B
|

20— : -

:
H
H

]0 : -—

[ | | |
0 0.5 1.0 1.5 20 25
R [FERMIS]
FIGURE 2 The isovector tensor potential V,.(R) predicted by the Skyrmion model
(A. Jackson, private communication and Ref. 55) given in solid line end by the «-
and p-exchange model with the p tensor coupling k2 = 6.6 = 2k” given in dotted
line. Plotted is 3V, (R) where

5 2
VIMR) = (6) STy - Vr(R).
The characteristic feature of the strong p tensor coupling is a sharp drop of the

potential crossing zero at R = 0.6-0.7 fm. The detailed behavior inside of R =
0.6 fm is probably irrelevant because of the repulsive core.

0

*This result was kindly supplied to us by A. Jackson. It is essentially equivalent
to the published result of Jackson ef al.>*
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cloud. One can show® that at & = m/2, the electric charge frac-
tionizes equally just as the baryon charge does. Therefore the
photon will interact with charge e/2 with the quarks in the bag and
with e/2 (through the vector mesons) with the Skyrmion cloud, as
shown in Fig. 3. Furthermore, at this magic angle, only the valence
particles at the zero-energy K™ = 0% level (K™ # 0% levels do
not contribute because of the CP symmetry) participate. However,
the momenta of the valence quarks are zero and hence they con-
tribute nothing to the magnetic coupling in Eq. (19). Thus k> get
their contributions solely from the meson sector (Fig. 3(b)). There-
from follows the relation x” = (1/2)ky. It turns out that one can
build a successful phenomenology of the nucleon electromagnetic
form factors on this relation. (For details, see Ref. 35.)

Here we evidently encounter a case where there is no obvious
Skyrmion or pure bag description equivalent to the chiral bag.
Within the scheme involving pions and vector mesons, it does not
appear possible to obtain Eq. (21) while preserving other successful
results of VDM. It is not inconceivable that with a larger number
of meson fields and derivative terms, one can arrive at Eq. (21);
but the mechanism cannot be simple. It is thus highly appealing
to think that the simple explanation of Eq. (21) provided by the
chiral bag reflects a manifestation of explicit quark—gluon degrees
of freedom. If this is borne out, it will represent the very first
signature of quarks in the low-energy domain. It is amusing that
the effect of the quark/gluon core is here manifested in a factor

12 1/2

p.w

(a) (b)

FIGURE 3 The “halfway house” mechanism for the photon-nucleon coupling in
the chrial bag model. At the magic angle 6; = w/2, the photon couples half of the
time to the quark core and the other half to the meson cloud, as required by the
fractionation of the baryon charge.
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~2 change in k%, or a nearly 100% effect. This should be compared
with the ~10% correction in the np capture, explained by Riska
and Brown,?® which led to the reconstruction of the explicit meson
presence in nuclei through the study of exchange currents (see
Ref. 1 for the development). The puzzle will remain, however:
what is so special about k} and the magic angle?

3. STRANGENESS

So far our discussion has been focused on the flavor SU(2) system.
Most of the low-energy properties of the baryons are insensitive
to specific features of quark—gluon degrees of freedom, although
some characteristics are rendered simpler explanations if quarks
are explicitly included in the form of the chiral bag model. There
are strong indications, however, that when strange quarks are in-
troduced into the baryons, there occur qualitative changes in the
role that the Goldstone mode of chiral symmetry plays. We are
unclear as to what actually happens, but the subject is so intriguing
that we think it deserves comment, particularly regarding the po-
tential advantage of the chiral bag.

Whereas the SU(2) Skyrmion predicts energies, static proper-
ties, and also pion-baryon scattering amplitudes in fair agreement
with experiments (within, roughly, 20-30% accuracy),* the situ-
ation is thus far very different for the strange quark system.*® With
the standard Skyrme Lagrangian with the flavor SU(3), a reason-
able fit can be obtained only if one takes F, ~ (1/4)Fe*® (compare
this to the SU(2) case? where the required F,, ~ 0.7F*P). This
signals a clear failure of the Skyrmion picture. Furthermore, model-
dependent relations are in poor agreement with experiments.*

One might argue that being an effective Lagrangian, the neces-
sity of a small effective F,. is not to be taken as a serious blow to
the model. However, such a low F, would predict*? a disastrously
low-mass dibaryon H. (H would be predicted at a mass comparable
to a single nucleon, while the mass predicted in the M.I.T. bag
model is more than twice the nucleon mass.)

*Model-independent relations are verified with a better accuracy (a few percent),
while some (such as g, as mentioned before) are worse.
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The reason for the failure of the model could be complex. Prom-
inent possible causes are: the flavor SU(3) breaking (i.e., the s-
quark or kaon mass) cannot be treated perturbatively; higher de-
rivative terms may be more important in the strange sector than
in the nonstrange sector.

In the standard treatment of the SU(3) Skyrmion,* flavor quan-
tum numbers are associated with collective coordinate rotations
of the soliton, and the collective coordinates used in quantization
arise from unbroken flavor symmetries. As a consequence, the
kaon mass can be treated only as a perturbation. That treating the
kaon mass as a perturbation is not a good approximation has been
shown by Callan and Klebanov.* Their arguments are subtle and
somewhat complex and we do not have space to cover them here.
We will just point out the salient features that are particularly
relevant to the flavor SU(3) chiral bag. Details will be given else-
where.

In the Callan—-Klebanov scheme, the effect of the strange quark
mass is fully taken into account by considering explicitly kaon—
soliton bound states, avoiding use of SU(3) collective coordinates.
Thus the mass problem is resolved. Consequently, mass relations
valid to O(1) in large-N, expansion are found to work well. How-
ever, grave problems arise at the order O(1/N,); this is the order
in which gluon effects are known to play important roles in quark
models. There is good reason to believe that unlike in the SU(2)
case, higher derivatives in the effective Lagrangian (see Appendix)
play a much more important role in the strange sector, and that
the disastrous result obtained for hyperfine splitting (e.g., the mass
difference 3* — 3 < 0) is caused by this defect.

What this implies in terms of the chiral bag is that as the bag is
shrunk, a lot more shorter wavelength degrees of freedom in the
meson sector than in the case of flavor SU(2) will be required to
obtain the Cheshire Cat phenomenon. It is thus preferable to have
a larger bag with only a small meson cloud, the bulk of dynamics
being given by gluon-exchange interactions between the strange
and nonstrange quarks. The boundary condition (4), suitably gen-
eralized to the flavor SU(3) for U, is expected to provide this
“breaking” of a Cheshire Cat symmetry. There is a compelling
indication that this might be the case in nature: the hyperon mag-
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netic moments are best described with a bigger bag radius than
that of nonstrange baryons.*’

4. PROBLEMS

In this section, we discuss a few important problems that are being
resolved at the moment or will be worked out more fully in the
near future.

Although it is now well established that the baryon charge frac-
tionates due to chiral anomalies, the “fractionation” of other quan-
tum numbers has not yet been fully understood. In discussing the
tensor coupling of the p meson, we discussed how isospin frac-
tionates for 6 = m/2; however, no such proof exists for 0 # w/2.
What about the angular momentum? As discussed before, using
an argument made by Niemi,*s one can establish that the spin
fractionates as does the baryon charge for 6 = m/2, but so far no
general proof exists for 6 # w/2. As we alluded to in the previous
section, strangeness need not be associated with topology and hence
may not fractionate. (Understanding strangeness in the context of
the chiral bag is an open problem.)

In order to answer these questions, and to calculate physical
observables, the model must be quantized. As we mentioned be-
fore, there still remains the question of how to unambiguously
eliminate the infinities that arise due to the polarization of the
Dirac sea inside the bag (except when 6 = 0, w/2, w); there is also
the basic issue as to whether the quantization of the hybrid—bag
plus meson cloud—can be done in a unique and completely con-
sistent way. Related to this is the interpretation of the boundary
conditions: are the meson fields that appear exponentiated in Eq.
(4) full quantum fields? So far, we have treated them as classical
(soliton) fields, but if the boundary conditions are bosonization
relations, then full quantized fields may have to be considered
(particularly if temperature effects are considered).

Significant progress has recently been made on one of these
issues, namely the A — N mass difference. In the pure Skyrmion
description, the mass difference AM arises when the soliton is
quantized by the collective coordinates; it is given by 3/2%,* where
$ is the moment of inertia. In the pure bag description, AM is
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described by one-gluon exchange; it is given by 3Ca,/R* where C
involves an integral of quark wave functions and o, is the color
fine-structure constant. When considering the hybrid system, the
hedgehog quark system of the bag has to be rotated in a way
consistent with the rotation of the Skyrmion cloud. Recently the
collective coordinate quantization of the hybrid system has been
satisfactorily worked out.’” The result is a “cranking” formula
familiar in nuclear physics. (The cranking of the Dirac sea has not
been worked out yet.) One finds, ignoring the contribution from
the cranked Dirac sea which is expected to be small, that the
combined rotation of the soliton cloud and the valence quarks
accounts successfully for the observed A — N splitting over a wide
range of radii, 0 < R < 0.6 fm: the moment of inertia is surprisingly
flat within this region. For R > 0.6 fm, the quark moment of
inertia (and hence the total) increases rapidly, with the consequent
decrease of the A — N splitting. It is reasonable to infer from this
that down to chiral angle 6 ~ /2, the gluon exchange, not ac-
counted for in Ref. 47, is negligible or a, << 1 and that as 0
becomes smaller (R becoming larger), the gluon effect starts dom-
inating or o, becomes large, say, the M.I.T. value o, = 2. This is
another indication of an approximate Cheshire Cat phenomenon
operative in (3 + 1) dimensions.

5. CONCLUSIONS

The chiral bag is the simplest possible modeling of QCD that has
the potential virtue of encompassing the extreme situations: the
Skyrmion and the ML.I.T. bag. The extreme simplicity may not
allow a detailed quantitative fit with experiments (although with
some obvious improvements on the model, one could hope to do
better even quantitatively than other models), but offers an eco-
nomic way to study the physics of strong interactions that take
place in nuclei. In particular, boson-exchange models for the in-
teraction are only slightly changed by the quark bag, modification

*AJ(J + 1)] = 3forJ, = 32 and J = 1/2.
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occurring in the regularization of these at short distances. One can
thus understand the success of the shell model, because the volume
occupied by the quark—gluon core can be effectively taken to be
small, and it is reasonable for the nucleons to carry out nearly
independent motion. This contrasts with the hyperons which are
predicted to be big by the model. There are other successes here
and there, and some of the conceptual problems that one faces
when one wants to think about nuclear processes in terms of quark—
gluon degrees of freedom are resolved in a natural way. Even so,
only a small part of the structure of the chiral bag, simple though
it may be, is understood. The main reason for this is that there is
a deep connection, not yet fully understood, between the structure
of the chiral bag and chiral anomalies. To the extent that the
problem is topological, associated with chiral symmetry, we suspect
that it is a general problem not confined to the chiral bag per se.
Thus whatever sensible model one constructs (independently of
details)—and there are in the literature a plethora of models that
purport to be sensible—must have features in common with the
chiral bag model.

One reason to believe that the chiral bag can be a useful model
is that it shares common features, through chiral anomalies, with
other systems such as the monopole—fermion system. In fact, the
chiral bag can be thought of as an inside-out version of the latter.
This is not so surprising if one realizes that a Skyrmion is like a
particle moving on a sphere in the presence of a Dirac magnetic
monopole.*® In fact, there is an interesting development to treat
both problems in complete parallel with some surprising results.*
We find this exciting.

The most urgent problem, in our opinion, is not to fit other
experimental data on single-baryon properties, but to make qual-
itative predictions based on the striking topological and quark-
gluon properties in a baryon-rich environment. For instance, it
would be interesting to know what happens to the chiral bag struc-
ture or the Cheshire Cat structure when nuclear matter is heated
or compressed.*® How the strong-interaction vacuum changes in a
baryon-rich environment is the most interesting problem in nuclear
physics, and the chiral bag picture should provide a useful tool to
work with.
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APPENDIX: SKYRMIONS*

We briefly summarize the essentials of the Skyrmion, chiefly in
order to define terminologies used in the main text.
The effective action is of the form

[=TN+T14
F2
Y= f d*x Tr(a,Us*U)

2
+ %fd“x Tr[U*8,U, U*a,UP + - - - (A1)

‘A

N,
2402 J’ &X €
x Tt{U*#UU*9iUU+kUU+dUU*amU].

For SU(2) x SU(2) flavor symmetry, U is given by Eq. (3). For
three flavors, 7 — A\, where the \? are the SU(3) matrices, etc.
Here I'V is the normal-parity component. As noted in the text, the
first term corresponds to the nonlinear o-model. It is the current
algebra term. The second term, Skyrme’s quartic term, is often
called the “Skyrme term” for short. It is now understood as sum-
marizing effects from p-mesons. Effects from w-mesons would be
described in a term with six derivatives, etc.

The I'4 is the abnormal-parity (“anomalous’) component known
as the Wess—Zumino term.>? It has its origin in the chiral anom-
alies. Naively this term vanishes for SU(2) x SU(2), but it does
not in general®?: it plays a similar role as in the flavor SU(3) case.
Baryons arise as solitons, static solutions to the equation of motion
for the U field. The spin-statistics of the solitons are signalled by
the W-Z term, the coefficient of which is quantized in a manner
analogous to the Dirac quantization of the magnetic monopole.

*For an extension review of Skyrmions, see Ref. 51.
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The soliton solution is sought in the hedgehog form®
U,(r) = exp(iT * 7 6(r)) for SU(2) (A2)

and quantization is made through the collective coordinate A(¢),
which is an SU(2) matrix, by

Ux, 1) = A(ULX)AQ@) . (A3)

Similar to cranking in nuclear physics, this quantization projects
out correct spin and isospin states; in thiscase I = J = 1/2, . . .,
NJ2.

In flavor SU(3), there are two spherically symmetric embed-
dings. The SU(2) embedding, namely putting Eq. (A2) in the upper
left corner of an SU(3) matrix, gives B = 1 systems, i.e., § for
J = 1/2, 10 for J = 3/2. Here the Wess—Zumino term plays an
essential role. The SO(3) embedding which uses A;, —Xs, A, gives
B = 2 systems,>* i.e., the dibaryons among which the H dibaryon
with § = —2 has attracted the greatest attention. Here the Wess—
Zumino term provides only the triality zero condition and has no
other role. Very little is understood and no phenomenological
success has been obtained in the SU(3) sector. The Callan—
Klebanov scheme** and the chiral bag scheme discussed above
offer a more promising avenue.

Application of the Skyrme model to nucleon-nucleon> and
pion—nucleon®® systems has been rather successful. A very exciting
recent development in this connection is an attempt to derive ex-
change currents (as described in Ref. 1) from the Skyrmion La-
grangian which has led to a remarkable result®”: the isoscalar ex-
change current can be obtained free of model dependence through
the Wess-Zumino term, resolving a long-standing problem!® in
nuclear physics.

The vector mesons (p, w, . . .) that constitute the next wave-
length scale to the pion can be incorporated into Skyrme’s effective
Lagrangian in two different ways. The obvious way is to gauge®®
partly or wholly the flavor symmetry, with the constraint that vec-
tor dominance emerges correctly. There is another, more subtle
way: vector mesons arise as guage particles of a hidden gauge
symmetry through (assumed) quantum effects.®® At low energies,
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the two ways most probably give the same results: current algebra,
vector dominance, etc. However, the second is more attractive for
several reasons. While there is no conceivable reason why SU(N)
X SU(N) chiral symmetry should be gauged (so the first method
is unnatural in this sense) a gauged hidden symmetry does not
suffer from this problem. In fact, the electroweak SU(2), x U(1),
can easily be incorporated into the latter by gauging a subgroup
of explicit chiral symmetry which the former cannot. The basic
idea is the following: starting with the current algebra term in (A1)
that respects the longest wavelength physics, one imagines that the
next wavelength excitation can also be deduced from chiral sym-
metry alone. The point is that the current algebra term in (A1) is
just the nonlinear o-model defined in the quotient space SU(N),.
X SU(N)g/SU(N), since the chiral symmetry is spontaneously bro-
ken down to the diagonal subgroup SU(N), (for instance, the un-
broken group is the isospin for N = 2, or the eight-fold way for
N = 3). Hence it can be formulated as a linear theory provided
one introduces explicit gauge boson degrees of freedom, corre-
sponding to a local SU(N), symmetry.>® At the classical level, such
new gauge bosons are just auxiliary fields and can be algebraically
eliminated, recovering the original Lagrangian. However, it is known
in two-dimensional o-models®® that quantum fluctuations can pro-
duce a kinetic energy term, transforming the gauge fields into
propagating, dynamical fields. In fact, it is claimed® that the ki-
netic energy term is already present in the extended Wess—Zumino
Lagrangian. Suppose it does happen. Then one can show?® that
vector mesons whose masses are generated dynamically (by a Higgs
mechanism) emerge naturally, with gauge couplings consistent with
the vector dominance picture. The vector mesons p and w in par-
ticular have been discussed in this context.?3-3¢ Furthermore, in
the limit that the vector-meson masses are infinite with the gauge
coupling g held fixed, one obtains in the Lagrangian*

L

e TH[U+a,U, U*a,UP?

which is just Skyrme’s quartic term.

*This is the coefficient of the term used in Ref. 32 with e replacing g. Note that
in this limit, the @ meson does not contribute.
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The meson sector (trivial topological sector) of this theory is
equivalent to Weinberg’s nonlinear Lagrangian® written down in
1968. This suggests that up to a mass scale ~1 GeV, the physics
of QCD may be dictated predominantly by chiral symmetry, a
qualitative conclusion also reached from nuclear physics.’
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