
The Chiral Bag 

The chiral bag or the "little bag" as formulated in 1979 has in recent years undergone 
a dramatic evolution due to the revival and a deeper understanding of the topo­
logical (Skyrmion) description of baryons. In this Comment, we review the present 
status of the chiral bag as a possibly realistic candidate model of low-energy quan­
tum chromodynamics, particularly suited to nuclear dynamics, possessing the unique 
virtue of interpolating between the long-distance Goldstone-mode regime and the 
short-distance asymptotically free regime. Being the only four-dimensional topo­
logical soliton observed so far in nature, the nucleon as described in the model 
offers a valuable laboratory to study the intricate way that topology enters into 
physics. 
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1. INTRODUCTION: THEORY 

In a previous Comments article, 1 we discussed the role that chiral 
symmetry plays in nuclear structure. In this Comment, we address 
a related-and potentially more fundamental-issue in hadron 
structure, namely the role that chiral symmetry plays in the struc­
ture of the nucleon and other baryons. A close relation is believed 
to exist between the two: a logically consistent picture arises from 
considerations based on the common features of chiral invariance. 

When it was first suggested that the chiral bag (or the little bag)2 

be seriously considered as a model for the nucleon, the primary 
motivation was to render the bag description of the quark-gluon 
structure of the nucleon compatible with observations in nuclei, 
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namely success of the independent-particle description and the 
meson exchange phenomena in nuclear processes. The M.l.T. bag 
model was far from satisfactory in this respect when considered 
from the nuclear physics point of view. In the original description 
of the chiral bag, as in subsequent developments, pions as the 
Goldstone bosons of chiral SU(2) x SU(2) symmetry played a 
crucial role, but the pion-cloud effect was treated only perturba­
tively. Based on second-order perturbation theory, it was argued 
that the pion cloud surrounding the quark bag exerted a strong 
pressure on the quark core, squeezing the quarks into a "little 
bag" whose radius turns out to be considerably smaller than what 
was predicted by the M.I.T. model or from the simple QCD order­
of-magnitude estimate A0c!:0 , both of which gave radii R = 1 fm. 
It was quickly realized, however, accelerated by the work of Wit­
ten, 3 that nonperturbative aspects of the pion could not be ignored 
and that the chiral bag, particularly if the bag is small, was a 
topological object. 4 In recent years, the concept of the pion cloud 
has undergone a drastic change, thanks to the rediscovery of Skyrme's 
prescient idea5 of the baryons as topological solitons. In view of 
the recent intense activities which have shed considerable new light 
on Skyrme's picture (Skyrmion) as well as quark-bag models with 
pion clouds, the chiral bag of today looks much different-and 
more promising as a simple but realistic model (if not a theory) 
of the nucleon-than the older version. In this Comment, we wish 
to summarize the present status of the model, focusing on what is 
understood and which problems are still to be resolved. 

The basic idea of the chiral bag is to hybridize two possible 
phases of chiral symmetry, i.e., Wigner mode and Goldstone mode. 
In the former, the description is in terms of quarks and gluons; in 
the latter, in terms of mesons. The motivation for this is to incor­
porate, to the extent that it is feasible, two elements of quantum 
chromodynamics-asymptotic freedom and spontaneously broken 
chiral symmetry. One hopes in this way to take into account, 
simultaneously, both short- and long-distance strong-interaction 
properties. There are probably several, perhaps equivalent, ways 
of hybridization.6 The chiral bag model is constructed in one par­
ticular way that seems to offer the simplest conceptual framework. 
The model consists of a bag in which quarks propagate almost 
freely within, but confined by a boundary condition on the surface. 

2 



The exterior region is populated by meson clouds, in general pions, 
vector mesons, etc. The boundary condition is to provide a con­
sistent connection between the two regions. 

We will consider first, for concreteness, the nonstrange quark 
systems. Imagine further that the u- and d-quark masses are zero. 
(The nonzero masses needed for current algebra do not make 
qualitative changes.) There is then SU(2)L x SU(2)R chiral sym­
metry. (The extension to the strange quark sector will be discussed 
later.) We will start with the simplest hybridization scheme: free 
quarks inside and massless pions outside, corresponding to the 
longest wavelength oscillation. The dynamics are then given by 
the action r involving quark field tjJ and pion field 'Tri (i = 1, 2, 
3): 

(1) 

(2) 

where Vi, V0 are the volume inside and the volume outside, re­
spectively, F" is the pion decay constant ( =93 Me V) and U the 
chiral field taking values in SU(2), 

U(r) = exp(iT · Tr(r)/F.,,). (3) 

r ouc may contain, as we mention in the Appendix, higher-order 
derivatives represented by · · · in Eq. (2) in addition to the low­
energy current algebra term. For the moment, we will ignore them. 
[The notation involving U may be unfamiliar to some readers. The 
action (2) is just that obtained from the Lagrangian of the nonlinear 
CT model 

(3a) 

where the scalar field CT is given by 

~3b) 
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The notation in terms of U is economical, the Skyrmion Lagrangian 
offering a convenient nonlinear representation of chiral symmetry.] 
The ljJ and U fields communicate with each other through ( clas­
sically) chirally invariant boundary conditions 

-in · -yljl = Utljl 
p2 
l 
2

"' nµ Tr[T;(aµ U u+ + u+aµU)) 

= il!Jn · 'Y'Y 5,. ;ljl 

with U5 = exp(iT · n-y5/F"'). 

(4) 

on the surface S 

(5) 

Equation (4) is the usual confinement boundary condition and 
Eq. (5) is the condition on the boundary for axial-current conser­
vation. The right-hand side of Eq. (5) is clearly just the normal 
component of the axial current, realized in the internal quark 
variables, at the bag surface. The left-hand side is the axial current 
realized in meson variables, again at the bag boundary. For the 
special case of the hedgehog configuration which we shall introduce 
in Eq. (7), the left-hand side is just F;de/dr, where 0 is the chiral 
angle. [Within the respective space, the actions f; 0 and rout are 
invariant under (global) chiral transformation.) Equations (1)-(5) 
define, when supplemented by a pressure balance relation* (or 
energy-momentum tensor conserv~tion), the entire content of the 
chiral bag model. 

Before addressing what physics this model represents, we first 
describe an intriguing phenomenon that is known about this set 
of equations. Consider first the Dirac particles (quarks) satisfy­
ing** 

i-y · aljl = o r < R (6) 

subject to Eq. ( 4) on the boundary r = R. If the pion field describes 
a mode built on a topologically trivial vacuum, then Eqs. (1) or 
(6) and (4) are C (charge conjugation) invariant, so the chiral field 

*This may not be needed as an additional condition if, for instance, the Cheshire 
Cat picture (described later) holds. 

••From now on, we will restrict ourselves to a spherical bag of radius R. 
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U leaves the Dirac sea in the bag undisturbed and nothing strange 
happens. However, suppose that the pion field is of topologically 
nontrivial configuration , i.e. , soliton; then a surprising thing hap­
pens. 7•8 Consider the hedgehog configuration 

U0 (x) = exp(i-r · f8(r)) , 

a configuration first studied by Skyrme. 5 

If at spatial infinity (r ~ oo) , U0 approaches the trivial config­
uration, U0(00) = 1, then it corresponds to a mapping of a three­
sphere (S3) into the internal space SU(2) (isospin). Because of this 
interlocking of the ordinary space and the internal space, while 
the equation of motion (6) remains invariant, the boundary con­
dition (4)* is no longer symmetric under C or CP for angles 8 f. 
mr/2, n = 0, 1, 2, .... What this implies is that when U0 is 
considered as a background field in Eq. ( 4), the solution of the 
Dirac equation is, for chiral angles different from mr/2, asymmetric 
between positive and negative levels. This spectral asymmetry in­
fluences all the physical observables one wants to calculate. [Said 
more prosaically, the bag boundary conditions ( 4) and (5) affect 
not only the valence quark states, but also all of the filled negative 
energy states, so that contributions from this sort of vacuum po­
larization pertain to essentially all physical observables . For ex­
ample, there are Casimir effects on the energy.] 

The first quantity studied, which is also the simplest, is the 
baryon charge. 7

•8 In terms of the quark field I)/, the baryon number 
operator is 

We will first consider an empty bag (that is, without valence quarks) 
for which, naively, the baryon number Bvac would be 

-- 2:1-2:1 1 [ ] 
2Nc w<O w>O 

•Note that U;l)J = U+l)JR + Ul)JL , with WR-L (112)(1 ± -y5)1)i ; so what is 
relevant is the U field , Eq . (7). 
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where the sum goes over all negative-energy and positive-energy 
Dirac levels. Involving infinite sums, this quantity is not mathe­
matically well defined, so it requires a suitable regularization. A 
convenient procedure is the so-called heat-kernel regularization, 

(7) 

The exponential factor cuts down contributions from large lwl. 
(Mathematicians have shown that the quantity in square brackets 
is a well-defined quantity and that the limit exists). It is clear from 
Eq. (7) that any asymmetry in the Dirac spectra w would induce 
a nonvanishing baryon charge Bvac· Indeed, calculations1- 10 show 
that with e = e(R) 

(8) 

a surprising result that a bag is never empty in the presence of 
topologically nontrivial background. When Ne quarks are intro­
duced into the bag, one discovers* that the baryon charge is 1 -
(lhr)(e - (1/2) sin20). 

What happened can be easily understood as follows. Classically 
quarks are absolutely confined within the bag by the boundary 
condition ( 4). However, quantum effects involving quarks break 
some of the classical symmetries, generating anomalies. In the case 
of Eq. (4), the flavor singlet vector current is no longer conserved, 
as a consequence of which the baryon charge "leaks" out by the 
amount given by Eq. (8). This is an example of chiral anomalies, 
a subject at the core of the recent exciting developments in the­
oretical physics. 10 

*This baryon charge fractionization was first noticed ate = TT/2 as follows. 7 At 
this angle (called the "magic angle"), the Dirac spectrum is CP symmetric; however, 
there is a CP self-conjugate zero-energy level, so as in the magnetic monopole 
case, 11 the baryon (or fermion) charge is± 1/2. The generalization (8) was deduced 
from the baryon charge lodged outside. 
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We have thus learned that, quantum mechanically, baryon charge 
is not confined within the bag. Where does it leak to? The model 
as a whole, if it models QCD, cannot have a vector current anom­
aly. Therefore the anomaly must be a phenomenon localized in 
the subsystem, namely, in the bag, and the leaked baryon charge 
must reside in the meson cloud. In fact, if we identify the U0 field 
with a Skyrmion, we obtain a consistent description. Indeed we 
have, in the meson-cloud sector, 

Bc1oud = t. d3xl0 (x) = ; [ 6(R) - ~ sin26(R)] (9) 

where J µ is Skyrme 's topological baryon current (1/24'TT2)EµvAp Tr( u +av 
U U+a).. U U+iJPU], so the vacuum as a whole does have zero 
baryon charge as expected. These results are unmodified when 
quark mass, gluon and other effects ignored so far are taken into 
account. 12 The reason is simply that they are topological and hence 
unaffected by detailed dynamics. 

We now state what physics the chiral bag represents. 
The most attractive and perhaps most fruitful way of viewing 

the Skyrmion picture is to consider it as a bosonized (albeit ap­
proximate) version of quantum chromodynamics. It is well known 
that in (1 + 1) dimensions, some fermion theories can be com­
pletely bosonized. For instance, the massive Thirring model (fer­
mion theory) is known to be identical to the Sine-Gordon model 
(boson theory), 13 a free Dirac system with non-Abelian flavor 
symmetry is the same as a nonlinear cr-model with a Wess-Zumino 
term, 14 to which two-dimensional QCD also reduces in the limit 
of large number of colors15 and so on. In these examples, solitons 
in the boson theories correspond to fermions in the fermion the­
ories. Application of this bose-fermi correspondence to bag models 
leads to the so-called Cheshire Cat model, 16 which we describe 
briefly. 

Consider massless Dirac fermions living in the one-dimensional 
space -R ~ x ~ R, confined by an M.I.T.-like boundary condi­
tion. Let y8 be a point within the range, and bosonize the fermion 
field ljl(x) for y8 ~ x ~ R. If we Jet y 8 = - R, then the theory is 
equivalent to a bosonized one, and if y8 = R, then it is said to be 
completely fermionized. For any other values of y8 , it is a hybrid. 
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The boundary condition to be imposed at YB for a boson-fermion 
correspondence is precisely the analog to Eq. (5) 

n · acj> = \/IT \jJ n · YYsl)J , x = YB (10) 

and the most general condition 16 invariant under P, C, T that 
physics be independent of YB (called the "Cheshire Cat principle") 
is 

x = Yn (11) 

which is a precise analog to Eq. (4). [In (1 + 1) dimensions, F" 
is dimensionless, equal to llv'47f]. The Cheshire Cat phenomenon 
can be readily demonstrated explicitly for ground-state and low­
excited state properties of the system by choosing <!> to be a soli­
ton.17 

Although bosonization may also be feasible in (3 + 1) dimen­
sions, 18 no workable method has yet been developed. A few cases 
so far studied are: the monopole-fermion system-the monopole 
catalysis of the proton decay (Rubakov-Callan effect 19)-where 
the problem reduces by a physical condition to an effective two­
dimensional one and the free Dirac system with a boundary con­
dition at the origin. 20 In the latter case, one can show that a free 
massless Dirac field can be completely bosonized provided an in­
finite set of boson fields consisting of a tower of angular momentum 
states is introduced. Limited though they are, both of these cases 
are seen to be highly relevant to the chiral bag model. 

In the absence of an exact bosonization, then, the chiral bag 
may then be viewed as a partial bosonization scheme, with the 
boundary conditions ( 4) and (5) playing the roles of both bose­
fermi correspondence and an approximate Cheshire Cat principle. 
The latter is inevitable , because in (3 + 1) dimensions , an exact 
Cheshire Cat principle cannot be established unless an exact so­
lution of QCD is known . In the spirit just stated , suppose one 
starts with a big bag (radius R > 1 fm, say) with confined quarks 
and gluons. Short wavelength properties of the hadrons may be 
treated perturbatively in terms of quark-gluon variables, but not 
Jong wavelength properties . To describe the latter, consider bo­
sonizing Jong wavelength quark-gluon degrees of freedom. The 
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longest wavelength mode thus bosonized is just the pion; at the 
next wavelength scale appear the vector mesons, p and w. Since 
for a large bag, R > 1 fm, little baryon charge is expected to be 
lodged in the bosonized sector (call it "meson cloud"), the meson 
cloud will primarily consist of fluctuating pion fields (hence non­
topological) which couple to the bag via the given boundary con­
ditions. One expects soft-pion-baryon phenomena (i.e., soft-pion 
theorems) to be correctly described in this picture . This has been 
extensively verified in pion-nucleon processes. 21 As one reduces 
the bag further by integrating out more quark-gluon degrees of 
freedom, the topological chiral field will become non-negligible. 
One may still have the boundary conditions (4) and (5), but the 
pion field will now consist of a soliton configuration in addition to 
the fluctuating field. (As we will see later, this picture seems to 
hold up to 0 = -rr/2.) If one integrates out more and more of shorter­
wavelength degrees of freedom, an ever-increasing number of me­
son fields, beginning with the vector mesons, will have to be in­
troduced, with an appropriate modification of the boundary con­
ditions. When all the quark-gluon degrees of freedom are integrated 
out, the Skyrmion description will presumably result. If this picture 
is to be valid when probed at a very short distance, an infinite 
number of meson fields will be needed, as suggested by Rubakov's 
result. 20 A similar conclusion is reached by a large-Ne QCD. 3 

Two consequences emerge from this discussion: one, the bag 
radius R in the chiral bag is an optimal radius at which a partial 
bosonization best approximates nature, hence not a genuine phys­
ical quantity, and second, R can be probe-dependent; different 
currents with different kinematics may require different values of 
R. The crucial element in this hybrid description is that some 
properties are better described in boson language, others in fer­
mion language. (This is known in some (1 + 1) dimensional models. 
For instance highly nonperturbative properties in fermion fields 
can be described simply in semiclassical approximation in boson 
fields and vice versa.) 

This somewhat eclectic way of choosing R is familiar to nuclear 
physicists who work with the Wigner R-matrix. There the radius 
is generally chosen so as to minimize higher-order corrections in 
the problem one is considering. Whatever value is chosen for R, 
one would, in this theory, obtain the same final results, were one 
able to calculate all higher-order corrections. 
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When calculating the properties of single baryons, it may well 
be that the hybrid description is not much superior in details to 
the M.I.T. bag or the Skyrmion: there is clearly the danger of 
losing some accuracies inherent in the two pictures when two ex­
tremes are approximately hybridized. However, when applied to 
nuclei where nucleons interact in configurations ranging from 
asymptotic freedom (when two nucleons overlap) to Goldstone 
mode (when they are apart exchanging one pion), the chiral bag 
picture will definitely be more appropriate and more predictive. 
It also has the virtue of providing links to the nuclear phenomena 
(manifesting chiral symmetry) reviewed in Ref. 1. 

A deep theoretical issue that has attracted some attention re­
cently is whether or not the chiral bag is implied by QCD. A fully 
satisfactory answer may not be available until QCD is completely 
solved. (Presumably future lattice gauge calculations will provide 
some hints.) At present, there is no derivation of the chiral bag. 
Nonetheless there is a strong indication for it in effective theories 
obtained by integrating out gluons and quarks. For instance, in an 
attempt to derive a long-wavelength effective Skyrmion Lagran­
gian from QCD, SimiC22 finds that when heavy-meson degrees of 
freedom are ignored, the resulting theory "resembles" the chiral 
bag with a rapid delineation between the nonperturbative vacuum 
(Skyrmion sector) and the perturbative vacuum (bag). Other au­
thors arrive at a similar qualitative result,23 based on different 
considerations. To the best of our knowledge, there is no theo­
retical argument against the chiral bag structure. 

2. PHENOMENOLOGY 

We now turn to some phenomenological consequences of the bar­
yon number fractionation inherent in the chiral anomaly structure 
of the chiral bag. The question is: What happens to physical ob­
servables when the baryon number fractionates, as predicted, into 
the quark and Skyrmion sectors? Some interesting answers have 
been obtained by the workers of Ref. 24. 

The obvious quantity to look at is the nth moment of baryon 
number distribution of the nucleon, Mm24 
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with (12) 

The nontrivial quantity is the contribution due to the polarized 
vacuum 

- -
2
1 

lim 2: sin( w) exp[ - siwl] 
s---+O+ w 

(13) 

where qw is a normalized quark solution with eigenenergy w; 
M~" 1 , the valence quark contribution, and M~K, the meson-cloud 
contribution, are calculated straightforwardly with their known 
charge density. For n = 0, we recover Eq. (8), namely, M0ac(0R) = 
Bvac(0R). For n = 2, we get (r 2);:c0 , the mean square isoscalar 
charge radius. As noted by Vepstas et al. and Heller et al., all the 
moments (13) are well defined, free of singularities. 24 

Of immediate relevance to experiments is the isoscalar charge 
radius \/(r 2) 1=o· This has been investigated in Ref. 24; some of 
the results are given in Fig. 1. What is found is that for reasonable 
values of parameters, the charge radius is independent of R pro­
vided the coefficient E of Skyrme's quartic term (see Appendix) is 
a constant for 0 > 'ITl2 (see Fig. l(b)). As we will elaborate later, 
this feature is qualitatively consistent with what one expects in 
effective Lagrangian theories "derived" from QCD.22 

One cannot extend the analysis to too large a bag radius (say, 
R :e: 1 fm) or smaller 0R, since for larger bags, nonperturbative 
corrections in the quark-gluon sector can become very impor­
tant.* This may induce a large deviation from the Cheshire Cat 
picture for large bag size. 

*For example, in the case of the MIT bag model (R = 1 fm) as = 2.2. It is then 
found25 that the Lamb shift, which is of order cxs higher than the kinetic energy, 
is just as large as the latter. 
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FIGURE 1 The isoscalar mean quarc radius (r 2),=o times d 2 = · ,/l!e' vs. chi ral 
angle eR on the surface (Fig. I (a) ) and the value of e = (VBE)-' required to keep 
(r2),=o at the empirical vnlue (0.72 Cm? for 0 :s eR :sir (Fig . l(b ) . These results, 
taken from Heller et al. (R f. 24), arc similar to those obtained by Vc psta~ t!l al. 
(Ref. 24) . 

Consider now the vacuum energy inside the bag 

£"(0) = lim 2: Wm exp[ -TIOml] (14) 
,.........+Q mEse a 

with Om = wmR the quark eigenfrequency. The "axial flux" <1>(0) 
on the bag surface is given by9 

with 

Clearly 

12 

<1>(0) = J d2S n;n" (A~)vac = lim <1>(0, T) (15) 
,.._.o 

<1>(0, T) 2: ddwem exp[ - TIOmll. 
mEsea 

d£V(0) 
de 

Jim (1 + T .i)<l>(0, T). 
,.._.a aT (16) 



Here we encounter divergences that are not present in the baryon 
density distribution. It has been established9 •26 that as,.~ 0, [P(e, 
T) - P(O, T)] contains lm divergence and <1>(0, T) both ,. - 1 and 
lm divergences. The logarithmic divergence is harmless, since one 
can presumably eliminate it by a suitable renormalization prescrip­
tion. However, the linear divergence* looks at first sight disastrous 
and has Jed the authors of Ref. 26 to conclude that the model is 
intrinsically sick. We do not share this opinion, for the following 
reason: the chiral bag is not a complete theory on its own but an 
effective one. As such , we cannot expect it to be valid over all 
ranges of parameters. Now the ,. - 1 term comes multiplied by sin 20, 
so for the chiral angles 0 = 0, 'TTl2, 'TT, the linear divergence is 
absent. At this point, one can take either one of the two options . 
One, it may be that the model (and its regularization) is well 
defined only for these three angles; two, if one wants to adhere 
to the Cheshire Cat principle, one should devise subtraction (and 
regularization) procedures such that one can continue smoothly 
between the three chiral angles. The latter is the procedure adopted 
by Vepstas, Jackson and Goldhaber9 and applied in Ref. 27. (This 
procedure was recently shown to be the correct one in the (1 + 
1) dimensional Cheshire Cat model17 . ) Specifically, the subtraction 
is made such that in the limit 0 ~ 'TT, the axial flux relation ( 5) 
holds, involving only finite quantities. Effectively this corresponds 
to demanding that as R ~ 0, 

d2-P(0) = d<l>(0) = O 
d62 d6 . (17) 

This procedure may still leave some nonuniqueness in finite sub­
traction terms, while all the divergences in Ev and <I> are taken 
care of. Whether this is a serious cause for worry is not known , 
but the presently available numerical results indicate that the error 
can be at a :s10% level. · 

Evidently a sensible thing to do is to focus on the chiral angle 
'TTl2, acceptable in both options discussed above. We will indeed 
find some remarkable results, working at this angle. [While this 

*This may also be an artifact of the regularization chosen and may be absent in 
a different regularization scheme. We thank L. Vepstas for a comment on this . 
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may appear to the readers to be overly restrictive, let us remind 
them that in the fermion-plus-monopole problems28 it was thought 
for many years that one should work with chiral angle 0 or 'lT (the 
latter corresponds to 'lT/2 in our case, due to the higher degeneracy 
of K = 0 states). Only at these chiral angles is the spectrum of 
positive and negative energy states symmetrical. Of course, later29 

the problem of fermion number fractionation for arbitrary chiral 
angle was worked out.] 

In Ref. 27, the energy and static properties of the SU(2) baryons 
have been investigated following the subtraction procedure dis­
cussed above. When the contributions from the vacuum and val­
ence quarks of the bag and from the Skyrmion sector are summed, 
the results are again found to be remarkably independent of the 
bag radius for 0 :s R :S 1 fm. For instance, the centroid of the 
masses of the N and Ll comes out to be in the range 1.1-1.5 GeV 
for a wide range of radii. (For precise conditions on which this 
result is based, we refer to the literature. 27

) Similar behavior is 
found for the axial charge gA, magnetic moments and other static 
properties. It is tempting to regard these results as a confirmation 
of an approximate Cheshire Cat picture. 

A particularly interesting qualitative result of Refs. 27 and 24 
is that as the bag size is increased, Skyrme's quartic term-and 
presumably any other higher derivative terms-gets increasingly 
suppressed. In fact, at a chiral angle near 'lT/2, it vanishes rapidly. 
This is quite consistent with the observation that Skyrme's quartic 
term and higher derivatives arise when quark degrees of freedom 
are integrated out. Simic finds a qualitatively similar result by 
integrating out fermions from a QCD action22 ; specifically the 
quartic terms occur multiplied by a factor that vanishes at some 
short-wavelength scale, simulating an effect similar to what we 
discussed above. The latter is what seems to distinguish a QCD­
based calculation from a a-model,30 as far as the quartic terms are 
concerned. We think that this is one of the crucial features that 
are needed in thinking of nuclear interactions in terms of quarks 
and gluons. 

Detailed analyses made so far with some obvious refinements 
on the model (Eqs. (1)-(5)), such as inclusion of the pion mass, 
the bag constant B, gluon radiative corrections in the bag, pionic 
fluctuations in the cloud etc., lead one to conclude (albeit ten ta-
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tively) that the low-energy baryon properties such as energies and 
static moments are insensitive to the bag radius; the chiral bag 
provides an interpolation between the two extreme descriptions, 
the Skyrmion and the quark bag. Clearly, then, as far as these 
properties are concerned, there is no one particular model that is 
to be preferred over others. (Of course, one can always get a better 
fit with experiments with a particular model by a fine-tuning of 
parameters, but this cannot be construed as a sign of superiority.) 
The reason for this peculiar (and perhaps unsatisfactory) situation 
is not difficult to find: as stated elsewhere,31 what really matters 
is the broken flavor SU(6) symmetry which figures in all the models 
in question. 

Where can one see the differences; in particular, where can one 
see that the chiral bag has the virtue of interpolating the two 
extreme regimes-asymptotic freedom and Goldstone mode? 

The first case we will discuss is the axial-vector coupling constant 
gA. 

One of the prominent failures in the Skyrmion phenomenology32 

is that the gA comes out too low (by a factor of about 2). This is 
presumably related, in the way the calculation is done in Ref. 32, 
to a smaller value of F"' that results from the fit. (This gets worse 
when the flavor group is SU(3), as we shall discuss later.) On the 
other hand, in the M.l.T. (large bag) limit, when the fluctuating 
pion field is introduced to restore axial-current conservation, the 
gA comes out too big,4

•
33 g~•s = 1.635. This indicates that even 

though the gA is a static quantity, it can be sensitive to short­
distance phenomena. We are thus led to consider the "halfway 
house," the magic angle 7r/2. Here the calculation is extremely 
simple. 7 At this angle, there are no divergence difficulties (as we 
discussed above), and furthermore we need to consider only the 
K"' = o+ zero mode (where K = J + T). The gA is directly 
proportional to the net baryon charge inside the bag. With a suit­
able angular momentum projection onto the nucleon sector, one 
finds7•34 that gA = 514. (There is a caveat here. In the Skyrmion 
case the collective coordinate quantization relies on large-Ne limit, 
so that one is forced to take (Ne + 2)/Nc - 1. In the quark model, 
such a factor is taken to be 5/3 since Ne = 3. The result gA = 514 
corresponds to this way of calculating the quark contribution. Were 
we to impose the large-Ne constraint as in the Skyrmion case, we 
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would find instead gA = 5/4 · 315 = 3/4. The point is that in quark 
models, you "see" the quarks, while in the Skyrmion, you do not.) 

The next case is the tensor coupling of a p meson to a nucleon 
(denoted as K~)35 * 

where t!JN is the nucleon field operator, Pµ the isovector p field, 
mN the nucleon mass and kµ the momentum transfer. In the vector­
dominance model (VDM), K~ is equal to Kv of the nucleon elec­
tromagnetic current 

(19) 

Since the vector dominance arises naturally in the Skyrmion pic­
ture, 36 the Skyrmion model should have 

K~ = K v = 3.5, (20) 

the last equality being empirical. Experimentally, however, K~ is 
not equal to Kv; instead37 

(21) 

This deviation from the VDM has been a long-standing puzzle in 
hadron physics. 

In nuclear physics, the magnitude of K~ is believed to play an 
extremely important role in processes in nuclei involving spin­
isospin modes. For instance, the large value (21) has a dramatic 
influence on the suppression of would-be collective modes in the 
pionic channels. 38 The smaller value (20) would have produced in 
nuclei some spectacular phenomena that have not been observed. 
That the Skyrmion picture corresponds to (20) rather than to (21) 

*This was discussed in a previous Comments article"; here it illustrates in a clear 
way a possible deviation from the Cheshire Cat phenomenon. 
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can also be seen in the NN tensor potential predicted in the Skyrme 
model,* as compared with the p- and 'TT-exchange prediction of the 
same potential with (21). Figure 2 exhibits these features. It seems 
that the Skyrmion fails here. 

The chiral bag model offers a simple explanation of Eq. (21), 
based on the baryon number fractionation near the magic angle 
0 = 'TT/2. The argument goes as follows. 35 As we know now, the 
baryon charge is equally divided into the bag and the Skyrmion 

50 
.................. 

\.._ / Tt & P exchange 

~ ....• 

~ 30 ! \ ......... ., .... 
> 

E •• 

20 

10 

I 
oi..c:~~~~'--..._~~__J'--~~~__J~~~~--'~~~~~ 

0 0.5 1.0 1.5 2.0 2.5 
RI FERMISJ 

FIGURE 2 The isovector tensor potential V TT(R) predicted by the Skyrmion model 
(A. Jackson, private communication and Ref. 55) given in solid line end by the 'IT­

and p-exchange model with the p tensor coupling K~ = 6.6 = 2K" given in dotted 
line. Plotted is 3VrT(R) where 

V!j.';'(R) = (~)2s1 2T1 . T2VrT(R) . 

The characteristic feature of the strong p tensor coupling is a sharp drop of the 
potential crossing zero at R = 0.6-0.7 fm . The detailed behavior inside of R = 
0.6 fm is probably irrelevant because of the repulsive core . 

*This result was kindly supplied to us by A. Jackson. It is essentially equivalent 
to the published result of Jackson et al. ss 
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cloud. One can show35 that at 0 = TI/2, the electric charge frac­
tionizes equally just as the baryon charge does. Therefore the 
photon will interact with charge e/2 with the quarks in the bag and 
with e/2 (through the vector mesons) with the Skyrmion cloud, as 
shown in Fig. 3. Furthermore, at this magic angle, only the valence 
particles at the zero-energy K"' = o+ level (K" * o+ levels do 
not contribute because of the CP symmetry) participate. However, 
the momenta of the valence quarks are zero and hence they con­
tribute nothing to the magnetic coupling in Eq. (19). Thus Kv,s get 
their contributions solely from the meson sector (Fig. 3(b)). There­
from follows the relation Kv = (1/2)Kg. It turns out that one can 
build a successful phenomenology of the nucleon electromagnetic 
form factors on this relation. (For details, see Ref. 35.) 

Here we evidently encounter a case where there is no obvious 
Skyrmion or pure bag description equivalent to the chiral bag. 
Within the scheme involving pions and vector mesons, it does not 
appear possible to obtain Eq. (21) while preserving other successful 
results of VDM. It is not inconceivable that with a larger number 
of meson fields and derivative terms, one can arrive at Eq. (21); 
but the mechanism cannot be simple. It is thus highly appealing 
to think that the simple explanation of Eq. (21) provided by the 
chiral bag reflects a manifestation of explicit quark-gluon degrees 
of freedom. If this is borne out, it will represent the very first 
signature of quarks in the low-energy domain. It is amusing that 
the effect of the quark/gluon core is here manifested in a factor 

1/2 

y + y 
p,w 

( a ) ( b ) 
FIGURE 3 The "halfway house" mechanism for the photon-nucleon coupling in 
the chrial bag model. At the magic angle 0R = TT/2, the photon couples half of the 
time to the quark core and the other half to the meson cloud, as required by the 
fractionation of the baryon charge. 
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-2 change in K~, or a nearly 100% effect. This should be compared 
with the -10% correction in the np capture, explained by Riska 
and Brown, 39 which led to the reconstruction of the explicit meson 
presence in nuclei through the study of exchange currents (see 
Ref. 1 for the development). The puzzle will remain, however: 
what is so special about K~ and the magic angle? 

3. STRANGENESS 

So far our discussion has been focused on the flavor SU(2) system. 
Most of the low-energy properties of the baryons are insensitive 
to specific features of quark-gluon degrees of freedom, although 
some characteristics are rendered simpler explanations if quarks 
are explicitly included in the form of the chiral bag model. There 
are strong indications, however, that when strange quarks are in­
troduced into the baryons, there occur qualitative changes in the 
role that the Goldstone mode of chiral symmetry plays. We are 
unclear as to what actually happens, but the subject is so intriguing 
that we think it deserves comment, particularly regarding the po­
tential advantage of the chiral bag. 

Whereas the SU(2) Skyrmion predicts energies, static proper­
ties, and also pion-baryon scattering amplitudes in fair agreement 
with experiments (within, roughly, 20-30% accuracy),* the situ­
ation is thus far very different for the strange quark system. 40 With 
the standard Skyrme Lagrangian with the flavor SU(3), a reason­
able fit can be obtained only if one takes F1T - (1/4)F;,xp (compare 
this to the SU(2) case32 where the required F1T - 0.7F;xP). This 
signals a clear failure of the Skynnion picture. Furthermore, model­
dependent relations are in poor agreement with experiments. 41 

One might argue that being an effective Lagrangian, the neces­
sity of a small effective F 1T is not to be taken as a serious blow to 
the model. However, such a low F 1T would predict42 a disastrously 
low-mass dibaryon H. (H would be predicted at a mass comparable 
to a single nucleon, while the mass predicted in the M.I.T. bag 
model is more than twice the nucleon mass.) 

*Model-independent relations are verified with a better accuracy (a few percent), 
while some (such as gA as mentioned before) are worse. 
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The reason for the failure of the model could be complex. Prom­
inent possible causes are: the flavor SU(3) breaking (i.e., the s­
quark or kaon mass) cannot be treated perturbatively; higher de­
rivative terms may be more important in the strange sector than 
in the nonstrange sector. 

In the standard treatment of the SU(3) Skyrmion,43 flavor quan­
tum numbers are associated with collective coordinate rotations 
of the soliton, and the collective coordinate,:. used in quantization 
arise from unbroken flavor symmetries. As a consequence, the 
kaon mass can be treated only as a perturbation. That treating the 
kaon mass as a perturbation is not a good approximation has been 
shown by Callan and Klebanov. 44 Their arguments are subtle and 
somewhat complex and we do not have space to cover them here. 
We will just point out the salient features that are particularly 
relevant to the flavor SU(3) chiral bag. Details will be given else­
where. 

In the Callan-Klebanov scheme, the effect of the strange quark 
mass is fully taken into account by considering explicitly kaon­
soliton bound states, avoiding use of SU(3) collective coordinates. 
Thus the mass problem is resolved. Consequently, mass relations 
valid to 0(1) in large-Ne expansion are found to work well. How­
ever, grave problems arise at the order 0(1/Nc); this is the order 
in which gluon effects are known to play important roles in quark 
models. There is good reason to believe that unlike in the SU(2) 
case, higher derivatives in the effective Lagrangian (see Appendix) 
play a much more important role in the strange sector, and that 
the disastrous result obtained for hyperfine splitting (e.g., the mass 
difference I* - I < 0) is caused by this defect. 

What this implies in terms of the chiral bag is that as the bag is 
shrunk, a lot more shorter wavelength degrees of freedom in the 
meson sector than in the case of flavor SU(2) will be required to 
obtain the Cheshire Cat phenomenon. It is thus preferable to have 
a larger bag with only a small meson cloud, the bulk of dynamics 
being given by gluon-exchange interactions between the strange 
and nonstrange quarks. The boundary condition (4), suitably gen­
eralized to the flavor SU(3) for U, is expected to provide this 
"breaking" of a Cheshire Cat symmetry. There is a compelling 
indication that this might be the case in nature: the hyperon mag-
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netic moments are best described with a bigger bag radius than 
that of nonstrange baryons. 45 

4. PROBLEMS 

In this section, we discuss a few important problems that are being 
resolved at the moment or will be worked out more fully in the 
near future. 

Although it is now well established that the baryon charge frac­
tionates due to chiral anomalies, the "fractionation" of other quan­
tum numbers has not yet been fully understood. In discussing the 
tensor coupling of the p meson, we discussed how isospin frac­
tionates for 0 = -rr/2; however, no such proof exists for 0 =fo -rr/2. 
What about the angular momentum? As discussed before, using 
an argument made by Niemi, 46 one can establish that the spin 
fractionates as does the baryon charge for 0 = -rr/2, but so far no 
general proof exists for 0 =fo -rr/2. As we alluded to in the previous 
section, strangeness need not be associated with topology and hence 
may not fractionate. (Understanding strangeness in the context of 
the chiral bag is an open problem.) 

In order to answer these questions, and to calculate physical 
observables, the model must be quantized. As we mentioned be­
fore, there still remains the question of how to unambiguously 
eliminate the infinities that arise due to the polarization of the 
Dirac sea inside the bag (except when 0 = 0, -rr/2, -rr); there is also 
the basic issue as to whether the quantization of the hybrid-bag 
plus meson cloud-can be done in a unique and completely con­
sistent way. Related to this is the interpretation of the boundary 
conditions: are the meson fields that appear exponentiated in Eq. 
( 4) full quantum fields? So far, we have treated them as classical 
(soliton) fields, but if the boundary conditions are bosonization 
relations, then full quantized fields may have to be considered 
(particularly if temperature effects are considered). 

Significant progress has recently been made on one of these 
issues, namely the~ - N mass difference. In the pure Skyrmion 
description, the mass difference ~M arises when the soliton is 
quantized by the collective coordinates; it is given by 3/2!Ji, * where 
!J> is the moment of inertia. In the pure bag description, ~M is 
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described by one-gluon exchange; it is given by 3Ca)R* where C 
involves an integral of quark wave functions and as is the color 
fine-structure constant. When considering the hybrid system, the 
hedgehog quark system of the bag has to be rotated in a way 
consistent with the rotation of the Skyrmion cloud. Recently the 
collective coordinate quantization of the hybrid system has been 
satisfactorily worked out. 47 The result is a "cranking" formula 
familiar in nuclear physics. (The cranking of the Dirac sea has not 
been worked out yet.) One finds, ignoring the contribution from 
the cranked Dirac sea which is expected to be small, that the 
combined rotation of the soliton cloud and the valence quarks 
accounts successfully for the observed fl - N splitting over a wide 
range of radii, 0 ::s R ::s 0.6 fm: the moment of inertia is surprisingly 
flat within this region. For R > 0.6 fm, the quark moment of 
inertia (and hence the total) increases rapidly, with the consequent 
decrease of the fl - N splitting. It is reasonable to infer from this 
that down to chiral angle 0 - 7r/2, the gluon exchange, not ac­
counted for in Ref. 47, is negligible or as << 1 and that as 0 
becomes smaller (R becoming larger), the gluon effect starts dom­
inating or as becomes large, say, the M.I. T. value as = 2. This is 
another indication of an approximate Cheshire Cat phenomenon 
operative in (3 + 1) dimensions. 

5. CONCLUSIONS 

The chiral bag is the simplest possible modeling of QCD that has 
the potential virtue of encompassing the extreme situations: the 
Skyrmion and the M.l.T. bag. The extreme simplicity may not 
allow a detailed quantitative fit with experiments (although with 
some obvious improvements on the model, one could hope to do 
better even quantitatively than other models), but offers an eco­
nomic way to study the physics of strong interactions that take 
place in nuclei. In particular, boson-exchange models for the in­
teraction are only slightly changed by the quark bag, modification 

*d[J(J + 1)] = 3 for J,,, = 3/2 and JN = 112. 
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occurring in the regularization of these at short distances. One can 
thus understand the success of the shell model, because the volume 
occupied by the quark-gluon core can be effectively taken to be 
small, and it is reasonable for the nucleons to carry out nearly 
independent motion. This contrasts with the hyperons which are 
predicted to be big by the model. There are other successes here 
and there, and some of the conceptual problems that one faces 
when one wants to think about nuclear processes in terms of quark­
gluon degrees of freedom are resolved in a natural way. Even so , 
only a small part of the structure of the chiral bag, simple though 
it may be, is understood. The main reason for this is that there is 
a deep connection, not yet fully understood, between the structure 
of the chiral bag and chiral anomalies. To the extent that the 
problem is topological, associated with chiral symmetry, we suspect 
that it is a general problem not confined to the chiral bag per se . 
Thus whatever sensible model one constructs (independently of 
details)-and there are in the literature a plethora of models that 
purport to be sensible-must have features in common with the 
chiral bag model. 

One reason to believe that the chiral bag can be a useful model 
is that it shares common features, through chiral anomalies, with 
other systems such as the monopole-fermion system. In fact, the 
chiral bag can be thought of as an inside-out version of the latter. 
This is not so surprising if one realizes that a Skyrmion is like a 
particle moving on a sphere in the presence of a Dirac magnetic 
monopole. 48 In fact, there is an interesting development to treat 
both problems in complete parallel with some surprising results. 49 

We find this exciting. 
The most urgent problem, in our opinion, is not to fit other 

experimental data on single-baryon properties , but to make qual­
itative predictions based on the striking topological and quark­
gluon properties in a baryon-rich environment . For instance, it 
would be interesting to know what happens to the chiral bag struc­
ture or the Cheshire Cat structure when nuclear matter is heated 
or compressed.50 How the strong-interaction vacuum changes in a 
baryon-rich environment is the most interesting problem in nuclear 
physics, and the chiral bag picture should provide a useful tool to 
work with. 
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APPENDIX: SKYRMIONS* 

We briefly summarize the essentials of the Skyrmion, chiefly in 
order to define terminologies used in the main text. 

The effective action is of the form 

e2 J + - d4x Tr[U+a U u+a U]2 + 4 µ ' v 
(Al) 

fA - ~f d5 - 2407T2 X E;jklm 

For SU(2) x SU(2) flavor symmetry, U is given by Eq. (3) . For 
three flavors, Ta~ x_a, where the x_a are the SU(3) matrices, etc. 
Here fN is the normal-parity component. As noted in the text, the 
first term corresponds to the nonlinear CT-model. It is the current 
algebra term. The second term, Skyrme's quartic term, is often 
called the "Skyrme term" for short. It is now understood as sum­
marizing effects from p-mesons. Effects from w-mesons would be 
described in a term with six derivatives, etc. 

The fA is the abnormal-parity ("anomalous") component known 
as the Wess-Zumino term.52 It has its origin in the chiral anom­
alies. Naively this term vanishes for SU(2) x SU(2), but it does 
not in general53: it plays a similar role as in the flavor SU(3) case. 
Baryons arise as solitons, static solutions to the equation of motion 
for the U field. The spin-statistics of the solitons are signalled by 
the W-Z term, the coefficient of which is quantized in a manner 
analogous to the Dirac quantization of the magnetic monopole. 

*For an extension review of Skyrmions, see Ref. 51. 
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The soliton solution is sought in the hedgehog form5 

Us(r) = exp(iT · f 0(r)) for SU(2) (A2) 

and quantization is made through the collective coordinate A(t), 
which is an SU(2) matrix, by 

U(x, t) = A(t)Us(x)A(t)- 1• (A3) 

Similar to cranking in nuclear physics, this quantization projects 
out correct spin and isospin states; in this case I = J = 1/2, ... , 
Nj2. 

In flavor SU(3), there are two spherically symmetric embed­
dings. The SU(2) embedding, namely putting Eq. (A2) in the upper 
left corner of an SU(3) matrix, gives B = 1 systems, i.e., 8 for 
J = 1/2, 10 for J = 3/2. Here the Wess-Zumino term plays an 
essential role. The S0(3) embedding which uses "il.7 , - "il.5 , "il.2 gives 
B = 2 systems,54 i.e., the dibaryons among which the H dibaryon 
with S = - 2 has attracted the greatest attention. Here the Wess­
Zumino term provides only the triality zero condition and has no 
other role. Very little is understood and no phenomenological 
success has been obtained in the SU(3) sector. The Callan­
Klebanov scheme44 and the chiral bag scheme discussed above 
offer a more promising avenue. 

Application of the Skyrme model to nucleon-nucleon55 and 
pion-nucleon56 systems has been rather successful. A very exciting 
recent development in this connection is an attempt to derive ex­
change currents (as described in Ref. 1) from the Skyrmion La­
grangian which has led to a remarkable result57 : the isoscalar ex­
change current can be obtained free of model dependence through 
the Wess-Zumino term, resolving a long-standing problem1 in 
nuclear physics. 

The vector mesons (p, w, ... ) that constitute the next wave­
length scale to the pion can be incorporated into Skyrme's effective 
Lagrangian in two different ways. The obvious way is to gauge58 

partly or wholly the flavor symmetry, with the constraint that vec­
tor dominance emerges correctly. There is another, more subtle 
way: vector mesons arise as guage particles of a hidden gauge 
symmetry through (assumed) quantum effects. 36 At low energies, 

. 25 



the two ways most probably give the same results: current algebra, 
vector dominance, etc. However, the second is more attractive for 
several reasons. While there is no conceivable reason why SU(N) 
x SU(N) chiral symmetry should be gauged (so the first method 
is unnatural in this sense) a gauged hidden symmetry does not 
suffer from this problem. In fact, the electroweak SU(2)L x U(l)y 
can easily be incorporated into the latter by gauging a subgroup 
of explicit chiral symmetry which the former cannot. The basic 
idea is the following: starting with the current algebra term in (Al) 
that respects the longest wavelength physics , one imagines that the 
next wavelength excitation can also be deduced from chiral sym­
metry alone . The point is that the current algebra term in (Al) is 
just the nonlinear u-model defined in the quotient space SU(N)L 
x SU(N)R/SU(N)v since the chiral symmetry is spontaneously bro­
ken down to the diagonal subgroup SU(N)v (for instance, the un­
broken group is the isospin for N = 2, or the eight-fold way for 
N = 3). Hence it can be formulated as a linear theory provided 
one introduces explicit gauge boson degrees of freedom, corre­
sponding to a local SU(N)v symmetry.59 At the classical level , such 
new gauge bosons are just auxiliary fields and can be algebraically 
eliminated, recovering the original Lagrangian. However, it is known 
in two-dimensional u-models59 that quantum fluctuations can pro­
duce a kinetic energy term, transforming the gauge fields into 
propagating, dynamical fields. In fact, it is claimed60 that the ki­
netic energy term is already present in the extended Wess-Zumino 
Lagrangian. Suppose it does happen. Then one can show36 that 
vector mesons whose masses are generated dynamically (by a Higgs 
mechanism) emerge naturally , with gauge couplings consistent with 
the vector dominance picture. The vector mesons p and w in par­
ticular have been discussed in this context. 35 •36 Furthermore , in 
the limit that the vector-meson masses are infinite with the gauge 
coupling g held fixed, one obtains in the Lagrangian* 

which is just Skyrme's quartic term. 61 

*This is the coefficient of the term used in Ref. 32 withe replacing g. Note that 
in this limit, the w meson does not contribute . 
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The meson sector (trivial topological sector) of this theory is 
equivalent to Weinberg's nonlinear Lagrangian62 written down in 
1968. This suggests that up to a mass scale -1 GeV, the physics 
of QCD may be dictated predominantly by chiral symmetry, a 
qualitative conclusion also reached from nuclear physics. 1 
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