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Abstract

We report on a measurement of the D0 meson production cross-section as a func-
tion of the D0 transverse momentum in the range 1.5 <pT(D0)< 14.5 GeV/c.
Hadronic D0 → K−π+ decays are reconstructed in the full CDF Run II data set
collected with the zero bias and minimum bias triggers. Their event yields, sub-
tracted by the component originated from b-hadron decays, are corrected for the
effect of acceptances and efficiencies, derived from simulation, to determine the
cross section. The results may provide useful information to understand heavy
flavor hadroproduction at energy scales where predictions based on perturbative
approaches are not possible.
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1 Introduction and motivation

The early Run II CDF measurement of the prompt charm production cross section
[1, 2] had a significant impact in the QCD community. It was the first TeV-scale mea-
surement of charm production in hadron-hadron collisions in a scenario where large
discrepancies were observed between measured heavy-flavor cross sections and NLO
predictions. Nowadays, the predictions have been improved and calculations with
the FONLL expansion [3] accommodate better the experimental data. However, the
kinematic regime studied by that measurement was limited, since the cross section,
differential in the D0 transverse momentum, probed a minimum pT of 5.5 GeV/c, be-
cause of the biases introduced by the Two Track Trigger (TTT) selection. Extending
the measurement to lower transverse momenta would be extremely useful for the the-
ory, providing additional experimental lever arm to refine the calculations in a regime
where c-quark production occurs in nonperturbative conditions. The large amount of
data collected during CDF Run II offers the chance to study the production of heavy-
flavored mesons in the zero bias (ZB) and minimum bias (MB) samples. These samples
are collected through minimal experimental biases, hence allowing to extend the trans-
verse momentum range of the produced particles to the lowest values achievable at
CDF II. The ZB and the MB triggers impose minimal and generic requests in order to
reduce biases to the physics properties of the collected data, at the price of a reduced
fraction of heavy-flavor events compared to the large light-quark background. However,
in the full 10/fb sample of Run II data, the size of these minimally biased samples is
such that a significant amount of charm decays may be present and allow reconstruc-
tion of visible exclusive signals. Recently, other measurements of charm production
cross-section at low-pT became available from the ALICE and LHCb experiments at
the CERN LHC proton-proton collider. However, the present measurement maintains
its uniqueness in terms of initial state (pp̄) and center-of-mass energy, and supplements
the LHC determinations.

This measurements builds upon the study of [4], where we reported the first attempt
at reconstructing an exclusive charm signal in the minimum bias sample. We choose the
D0 → K−π+ decay mode because of its simple topology (two-body decay with charged
final state), its sizable branching fraction (Br(D0 → K−π+) ≈ 3.9 %) and because
the previous CDF measurement [1, 2] provides a useful reference in the fraction of
kinematic regime that is common to both measurements.

The analysis is a standard cross-section measurement, differential in D0 meson
transverse momentum in the range 1.5 < pT (D0) < 14.5 and |y(D0)| < 1. First,
candidate two-body decays are reconstructed in the ZB and MB samples with a loose
set of standard selection requirements for track and vertex quality, without exploiting
any kind of particle identification information. The charged kaon mass is arbitrarily
assigned to the negatively-charged final-state particle and the charged pion mass to
the positively-charged one to determine each candidate’s two-body invariant mass. We
take into account of the equal amount of misreconstructed charge-conjugate decays in
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the yields determination. Then, a pT (D0)-specific multidimensional optimization of the
selection criteria yields a more effective final selection able to isolate a visible charm
signal down to pT ≈ 1.5 GeV/c. The D0 → K−π+event yields are determined by fitting
the invariant Kπ mass distribution and subtracting the component originated from b-
hadron decays. This is derived from data, using auxiliary fits of the D0 candidates’
impact parameter distribution.
Geometric acceptance and reconstruction efficiencies derived from simulation are used
to correct the raw yields, which are finally divided by the integrated luminosity of the
sample to obtain the cross section.

2 Differential Cross Section

Equation 1 describes how the cross section is calculated in this analysis. The determi-
nation of each factor in the formula is described separately in a section of this note.

dσ

dpT

∣∣∣∣∣
|y|≤1

=
1
2
Y (pT)fD(pT)

∆pTLTRIGεTRIGεREC(pT)Br(D0 → Kπ)
(1)

• Y (pT) is the number of charm mesons in each pT bin measured from a fit of the
invariant K−π+ mass distribution. The factor of 1/2 is included because the fit
determines both D0 and D̄0 meson yields, while we report the cross section for
D0 mesons only. See Section 4.

• fD(pT ) is the fraction of direct charm, that is the fraction of charm mesons pro-
duced directly in the proton-antiproton hard scatter, in that bin (prompt signal).
See Section 5.

• ∆pT is the bin width.

• LTRIG is the trigger live luminosity. See Section 3.

• εTRIG is the efficiency associated with the trigger selection. See Section 6.

• εREC(pT) is the efficiency associated with the reconstruction. It includes accep-
tance effects and accounts for the slope of the cross section within each bin. See
Section 7.

• Br(D0 → Kπ) is the decay branching ratio.

Because in general the average value of cross section in bin i, σi/∆pT,i, differs
from the value corresponding to the pT value of the center of the bin, we report the
differential cross section dσ/dpT integrated over the width of each bin. We reweighted
the cross section distribution used to generate the simulated signal to match the one
observed.
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3 LTRIG - The data samples

We use the samples collected by the ZEROBIAS (ZB) and the MINBIAS (MB) trigger
paths over the course of the whole Run II Tevatron operations. Information on total
event yields is summarized in Tables 1 and 2.

DSID gcrs (ZB) gmbs (MB)

cm 43 605 515 25 687 729
ah 20 658 162 12 334 739
ai 5 451 922 3 177 091
bi 23 992 815 16 439 018
bj 15 585 273 11 629 919
bk 11 122 054 8 902 794
ap 93 541 841 75 574 822

Sum 213 957 582 153 746 112

Total 367 703 694

Table 1: Total events in the sample divided by dataset ID (DSID).

gcrs (ZB) gmbs (MB)

Sum 182 565 407 132 871 206

Total 315 432 920

Overlap 409

Table 2: Events in the sample after the GRL selection.

3.1 Zero Bias trigger

The ZEROBIAS trigger requirements are the following:

Level 1: any bunch crossing fires L1. Prescale factor = 1,000,003.

Level 2: no requests.

Level 3: no requests.

No information from any CDF II subdetector is used by this trigger to set its decision.
The ZB trigger is designed to provide a genuine random sampling of the bunch crossing,
independently of whether the crossing produced a hard scattering or not. Because of
the L1 prescale factor, approximately 1.7 events per second are accepted.
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3.2 Minimum Bias trigger

The MINBIAS requirements are the following:

Level 1: CLC signals coincidence. Prescale factor = 100,003.

Level 2: any event is automatically accepted by L2 within a rate limit = 3 Hz.

Level 3: any event is automatically accepted by L3 within a rate limit = 1 Hz.

The events collected by the MB trigger are enriched in inelastic collisions because at
L1 a signal of at least 250 ADC counts is required in at least one of the East Cherenkov
luminosity counters (CLC) in coincidence with an equivalent signal in the West CLC.

3.3 Event overlap

The two trigger selections operate at the same time during the data taking. Hence,
the same event might be accepted by both triggers and be duplicated in the sample. If
there were no prescales or rate limiters, the MINBIAS sample would be fully included in
the ZEROBIAS sample. However, because of the prescales and rate limiters, the fraction
of duplicated events is at the 10−6 level. Indeed, we find that 409 events out of more
than 315×106 events are present in both samples. In what follows these events are
used only once and the effect of the overlap on key variables (e.g. trigger luminosity)
is completely negligible w.r.t. their uncertainties.

3.4 Good Run List and luminosity

We use the official QCD good run list (GRL) that contains only runs where SVX II
and the COT were working properly. The small fraction of runs for which the database
reports unreliable luminosity values are discarded. After these requests the ZB sample
isreduced to ∼ 183 million events while the MB sample to ∼ 133 million events.
The raw integrated luminosity stored on the database is corrected for the usual 1.9%
factors listed in Table 3 to derive the actual trigger luminosity of the sample LTRIG (=
LRAW · 1.019).

LRAW LRAW · 1.019
ZB 8.90 9.07
MB 6.83 6.96

Tot 15.73 16.03

Table 3: Luminosity corrections for ZB, MB and total samples in (nb)−1.
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3.5 Monte Carlo simulation

Simulated Monte Carlo samples are used in this analysis chiefly to evaluate the absolute
reconstruction efficiency, derive mass templates for the yields fits, and derive the impact
parameter distributions of charm mesons from b hadron decays used to separate the
direct fraction. The simulated samples are generated using BGENERATOR with input
y–pTin the [-1.3; 1.3]×[0; 15] GeV/c range, derived from heavy flavor events filtered
out of a Pythia-generated sample (see Figure 1) and use it to generate the samples with
BGENERATOR. No trigger simulation or selection is performed on the generated samples.

Figure 1: y–pTdistribution used to generate the D0 samples: linear (left) and

log (right) scale.

3.5.1 D0 → Kπ

We generate a sample of about 124 million D0 and D̄0 mesons in equal proportions,
forced to decay into the Kπ final state. The simulation of the CDF II detector repro-
duces the changes in configurations observed across the actual operations. The events
are distributed across the data-taking periods P0–P38, in proportions that approxi-
mate the integrated luminosity collected in each period. These samples are used to
derive mass templates to be used in the yields fits.

Figure 2 shows the resulting invariant K−π+ mass distribution2. The plot shows a
narrow peak centered at the known D0 mass with a width of about 8 MeV/c2 and a
wider enhancement centered at the same mass but with a ten-times larger width. The
narrow structure represents the charm signal obtained when the masses are correctly
assigned to the charged particles, the broad enhancement is the result of misaligned
masses.

Figure 3 shows the same candidates of Figure 2 but in a two-dimensional mass plot
showing the K+π−mass in the vertical axis and the K−π+mass on the horizontal axis.
hypothesis. Figure 2 is the projection of this plot on the horizontal axis.

2The candidate selection used to obtain this distribution will be discussed in Section 4.
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Figure 2: Invariant K−π+mass of candidates reconstructed in the D0 →
Kπ MC sample: linear (left) and logarithmic scale (right).

D̄0 → K+π−

D
0
→
K

−
π
+

Figure 3: 2D invariant mass plot of candidates reconstructed in the D0 →
Kπ MC sample: K+π− assignment in the y axis vs K−π+ assignment in the

x axis.
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3.5.2 B0,± → D0X

We generated a sample of 37 million B0 and 37 million B± decays forcing them to
decay only into channels involving at least one D0 in the final state. We forced the
charm mesons to decay into Kπ final states. This sample, discussed in Section 5, is
used to extract the templates to assess the direct fraction of D0.

4 Y - Signal yield

4.1 Reconstruction

Figure 4 illustrates the topology of a D0 that decays into K−π+.

Figure 4: Graphical representation of the topology of the D0 → K−π+ decay

channel in the transverse plane.

In each event, the D0 candidates are reconstructed offline by combining all the
possible pairs of tracks (with opposite curvature) into a kinematic fit looking for an
intersection point displaced from the primary vertex. The charged kaon (pion) mass
is arbitrarily assigned to the negative (positive) final state particle. In addition to
the D0 → K−π+ Cabibbo favored (CF) channel, the D̄0 → K+π− doubly-Cabibbo-
suppressed (DCS) channel contributes to the signal with the same final state, but its
effect is negligible. Offline tracks are subject to the following baseline requirements:

• SVX II small angle stereo (SAS) hits ≥ 1 (out of 2);

• SVX II stereo (z) hits ≥ 2 (out of 3);

• SVX II axial (r-ϕ) hits ≥ 3 (out of 6);

• COT stereo hits ≥ 25 (out of 48);

• COT axial hits ≥ 25 (out of 48);
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• pT(TRK) ≥ 0.5 GeV/c;

• |η| ≤ 1.2;

• 0 ≤ |d0| ≤ 0.1 cm;

where η is the track’s pseudorapidity and d0 its impact parameter.

All possible pairs of good tracks are then required to meet the following criteria:

• q1 · q2 < 0;

• d0,1 · d0,2 < 0;

• ∆z0(TRK) = |z0,1 − z0,2| ≤ 0.5 cm;

with q1 and q2 the charges of the tracks.

Then each pair of tracks is fit looking for a possible common origin point displaced
from the primary vertex using the CTVMFT package [8]. A D0 candidate is selected
if:

• Lxy ≥ 0 cm;

• |y(D0)| ≤ 1;

• χ2 ≤ 10;

where y(D0) is the candidate’s rapidity, Lxy its travelled path (in the transverse plane)
before decaying and χ2 is the global fit χ2. Figure 5 shows the invariant K−π+ mass
distribution for candidates selected with the base selection, as described above, inte-
grating the candidates with pT(D0) ≥ 1.5 GeV/c.

The distribution shows a clear peak at the known D0 mass. We expect that only
a half of the D0 → Kπ candidates are contained in the visible signal, while the other
half (with misassigned masses for the outgoing particles) has a broader shape indistin-
guishable from the background.

4.2 D0 → K−π+ shapes

The event yield of signal events restricted to each transverse momentum range is de-
termined by a fit to the invariant Kπ mass distribution. The shapes used in this
fit are obtained from simulation. We study the D0 signal shape as a function of
pT(D0)using the simulated D0 → Kπ sample described in Sec. 3.5.1. The mass line
shape is parametrized through the probability density function (pdf) shown in Eq. (2).
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Figure 5: Invariant K−π+ mass distribution of candidates that satisfy the

base selection discussed in the text (zoom of the fit region on the right).

pdfD0(m; ~θD0) = f (g G (m;mD0 + δ1, σ1) + (1− g)G (m;mD0 + δ2, σ2)) +

+ (1− f)T (m; b, c,mD0 + δ1)

(2)

where G (m;µ, σ) is the usual normalized Gaussian distribution, and

T (m; b, c, µ) =
1

K
eb(m−µ) · Erfc(c(m− µ)) (3)

is an empiric function including the normalization factor K and the error function

Erfc(x) = 1− Erf(x) =
2√
π

∫ +∞

x

e−t
2

dt (4)

The pdf is a sum of two Gaussians and a low-mass tail, which accounts for soft photon
emission; the parameter f is the relative fraction of the double Gaussian contribution
w.r.t. the total, g is the relative fraction of the narrow Gaussian core labeled with the
index 1 w.r.t. the sum of the two Gaussians, σ1(2) is the width of the Gaussian 1 (2 )
and δ1(2) is a mass shift from the known mD0 mass due to the asymmetry induced by

the soft photon emission. The parameters ~θD0 = {f, g, σ1, σ2, δ1, δ2, b, c} are extracted
by fitting the simulated invariant K−π+ mass for signal-only canddiates. Figures 6
and 7 show the result of the parametrization of the D0 signal in each bin of pT(D0)
in linear and logarithmic scale, respectively. The small discrepancies in the tail model
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are well below the precision we need3. The shapes obtained show that the D0 signal
width does not depend significantly on pT in the range of interest.

4.3 D̄0 → K+π− shapes

We’ve similarly studied the D̄0 signal shape as a function of pT(D̄0). We used again the
D0 → Kπ MC sample described in Section 3.5.1. The mass line shape of the D̄0 decay
is parameterized through the same pdf used for the D0 but the vector of parameters
~θD̄0 is now extracted by fitting the simulated invariant K−π+ mass distribution when
a D̄0 is generated, as shown in Equation 5.

pdfD̄0(m; ~θD̄0) = f (g G (m;mD0 + δ1, σ1) + (1− g) G (m;mD0 + δ2, σ2)) +

+ (1− f) ·T (m; b, c,mD0 + δ1)

(5)

Figure 8 shows the result of the parameterization for the D̄0 signal for each bin of
pT(D̄0). Figure 9 shows the same plots but in logarithmic scale on the y axis to
highlight the presence of the radiative tail. The small discrepancies in the tails are
well below the precision we need. Unlike the D0 signal, the D̄0 fits show an evident
dependence on the pT(D̄0): the width of the distribution increases when the momentum
grows.

4.4 Background

4.4.1 Combinatorial component

The shape of background candidates formed by pairs of random tracks that accidentally
meet the selection’s cannot be reliably determined from the mass sidebands, since these
are also populated by a significant fraction of signal decays where the mass assignment is
swapped. Hence, we study the shape of the combinatorial background by reconstructing
candidates in which the charges of the final state particles are required to be the same.
This allows keeping the same selection and the secondary vertex fitting procedures
used for signal reconstruction, while ensuring that no real D0 → Kπcontribute, due
to the same-charge requirement. A decreasing exponential shape provides an accurate
approximation of the combinatorial background mass as shown in Figure 10. While
we used an arbitrary selection of the candidates for this example plot, similar level
of agreement is observed in any configuration of the selection. The combinatorial
background parametrization is shown in Eq. (6).

pdfB(m; ~θB) =
1

K
e−m·q (6)

3The value Nf/NH reported on the plots represents the ratio between the integral of the fit function
and the entries in the plot.
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Figure 6: Invariant K−π+ mass distribution of MC events for the D0 recon-

struction for each bin of pT(D0) and for pT(D0) ≥ 1.5 GeV/c.
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Figure 7: Invariant K−π+ mass distribution of MC events for the D0 recon-

struction for each bin of pT(D0) and for pT(D0) ≥ 1.5 GeV/c.
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Figure 8: Invariant K−π+ mass distribution of MC events for the D̄0 recon-

struction for each bin of pT(D̄0) and for pT(D̄0) ≥ 1.5 GeV/c.
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Figure 9: Invariant K−π+ mass distribution of MC events for the D̄0 recon-

struction for each bin of pT(D̄0) and for pT(D̄0) ≥ 1.5 GeV/c.
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where K is an appropriate normalization and ~θB = {q}.

Figure 10: Invariant K±π± mass distribution of data events for same sign

candidates in the first pT(D0) bin used in the analysis. Also the opposite sign

candidates are plotted to show that the two fits for the background (red lines)

are compatible. The SS distribution is scaled by a + 5 %.

4.4.2 Background from misreconstructed D0 → X decays

A number of other D0 decays can contribute to the signal region [15], Figure 11 shows
the two-dimensional invariant mass plot for a data sample collected using the TTT,
whose leading various component can be identified using simulation. Figure 12 shows
these components in a projection onto the K+π− axis. This allows identifying the
region 1.8 < K+π−< 2.4 GeV/c2, where D0 → X contributions are negligible. Hard-
to-model multibody backgrounds are kinematically excluded from this region, which
only suffers from a small D0 → π−π+ tail, which is expected to be negligible in the
yield fits.

4.5 K−π+ mass fit

We now have all the ingredients needed to fit the invariant K−π+ distributions to
measure the yield of the D0 signal. All fits use the function shown in Eq. (7). We
perform a likelihood fit to the binned K−π+ mass distribution in the range 1.8 < m <
2.4 GeV/c2

F (Y ;B; q) = Y (f pdfD0 + (1− f) pdfD̄0) +B pdfB(q) (7)

where
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Figure 11: 2D invariant mass plot of candidates reconstructed in the D0 →
X MC sample: K+π− assignment in the y axis vs K−π+ assignment in the x

axis.
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Figure 12: Invariant K−π+ mass of candidates reconstructed in the D0 → X MC sample.

• Y , B and q are free parameters.

• the D0 and D̄0 pdfs are fixed as described in the previous sections.
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• The fraction, f , of the D0 signal w.r.t. the sum of D0 and D̄0 is fixed to 0.5
because we assume charge invariance in the QCD production and identical re-
construction efficiencies.

4.6 Selection optimization

Before proceeding to fit the signal yield in each transverse momentum bins, we use the
fit to obtain an optimized offline selection to minimize the final statistical uncertainty
on the cross-section measurement. We optimize the candidate selection separately for
each bin of pTby maximizing the figure-of-merit f(S;B) = S/

√
S +B, where S and B

are the signal and background yields, respectively, within 16 MeV/c2 from the D0 peak
, as a function on various thresholds in a suited set of selection requirements. After
exploring various combinations of discriminating variables, we choose the following
five most discriminating variables to perform the optimization: pT(TRK), ∆z0(TRK),
d0(TRK), χ(D0) and Lxy(D0). For each variable ten different thresholds are tested, as
defined in Table 4.6.

Variable Range Step

pT(TRK) 0.5 – 1.4 GeV/c 0.1 GeV/c
∆z0(TRK) 0.5 – 0.05 cm 0.05 cm
d0(TRK) 0 – 180 µm 20 µm
χ(D0) 10 – 1 1
Lxy(D0) 0 – 360 µm 40 µm

Table 4: Cuts tested for the 5 variables of the optimization.

Each selection is identified through a five-digits code, where each digit represent the
step for each variable; e.g., the base selection used to obtain the plot in Figure 5 is
coded as 00000.

We follow [10] to perform an unbiased optimization directly on data. The main
steps of the procedure are as follows:

• Consider the data sample S in which an optimization of the selection is required.

• S is subdivided into two mutually exclusive subsamples, A and B, using a random
criterion.

• The same optimization procedure is applied independently on both subsamples:

1. A criterion is defined to identify the signal events SAi and the background
events BAi surviving the i-th configuration of the selection cuts in sample A
(e.g., performing a fit of the candidates invariant mass distribution).
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2. The chosen figure of merit, f(SAi , B
A
i ), is maximized over the space of con-

figurations for the selection requirements (e.g., all combinations of cuts).

3. The configuration of cuts corresponding to the maximum of f defines the
set of cuts optimized in sample A.

4. Steps 3 and 4 are repeated in sample B to obtain the set of cuts optimized
in sample B, different in general from the one obtained in sample A.

• The final sample used for the analysis is obtained by applying to the subsample
B the cuts optimized in sample A and viceversa.

Figure 13 visually describes the procedure.

Figure 13: Scheme of the data based selection optimization procedure.

To apply this optimization method in our analysis we define the following criteria:

• The two statistically independent subsamples of approximately the same size are
obtained using the event number, splitting the sample between even and odd
events.

• Signal and background are obtained through a likelihood fit of the invariant
K−π+ mass plot as described in Section 4.5.

• Two sets of cuts are obtained based on the event number, an “even” optimal
configuration and an “odd” optimal one. They are swapped, applying the even
optimal configuration to the odd subsample and the odd optimal configuration
to the even sample.
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For each subsample the optimization algorithm evaluates the figure of merit for each
selection configuration, thus, probing the whole five-dimensional space of requirements.
Figures 14 and 15 are an example of the optimization procedure for the candidates with
pT(D0) ≥ 1.5 GeV/c. The plots at the top of Figure 14 show the two optimal selections
for even (left) and odd (right) events; the bottom plots are the result of the crossing of
the selections. Figure 15, finally, shows the union of the optimized subsamples (the two
on the bottom of Figure 15) and Table 5 summarizes the results of the optimization
for the even and odd samples.

Figure 14: Invariant K−π+ mass plots of the selections that maximizes the

FoM (top), for even (left) and odd (right) events, and for the crossed selections

(bottom). Candidates with pT(D0) ≥ 1.5 GeV/c are used.
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Figure 15: Invariant K−π+ mass plots of the resummed optimized sub-

samples for candidates with pT(D0) ≥ 1.5 GeV/c.

pT [GeV/c] E \O Code pT(TRK) ≥ ∆z0 ≤ |d0(TRK)| ≥ χ2 ≤ Lxy ≥ FoM

1.5 – 2.5
Even 44540 0.9 0.3 100 6 0 10.45
Odd 14776 0.6 0.3 140 3 240 12.25

2.5 – 3.5
Even 33400 0.8 0.35 80 10 0 16.21
Odd 13456 0.6 0.35 80 5 240 16.87

3.5 – 4.5
Even 26217 0.7 0.2 40 9 280 16.18
Odd 40306 0.9 0.5 60 10 240 16.64

4.5 – 6.5
Even 10129 0.6 0.5 20 8 360 17.98
Odd 40227 0.9 0.5 40 8 280 17.42

6.5 – 14.5
Even 42008 0.9 0.4 0 10 320 15.99
Odd 44007 0.9 0.3 0 10 280 13.99

Table 5: Selections that optimize the FoM for the even and odd samples.

4.7 Yields as a function of pT(D0)

Figure 16 shows the results of the fits of the signal yield on data for each bin of pT(D0)
after the optimization procedure. The plot on the bottom right graphically summarizes
the results, also reported in Table 6.



23

pT [GeV/c] Y = D0 + D̄0

1.5 – 2.5 1537 ± 124 (8.1 %)
2.5 – 3.5 2361 ± 125 (5.3 %)
3.5 – 4.5 1662 ± 88 (5.3 %)
4.5 – 6.5 1697 ± 82 (4.8 %)
6.5 – 14.5 1399 ± 73 (5.2 %)

Table 6: Signal yields (D0 + D̄0) and statistical errors as a function of pT(D0).

5 fD(pT ) - Direct fraction

5.1 B meson feed-down

Secondary D0 and D̄0 decays produced in decays of B meson contribute to the signal
sample. The direct fraction of D0 mesons that are promptly produced in the pp̄ inter-
actions is determined by exploiting the difference in the d0(D0) distributions between
direct and secondary D0 mesons. Because of the B lifetime, secondary D0 appear as
originating from a space-point displaced from the beam. Hence, the d0(D0) distribu-
tion has a larger width with respect to the distribution from direct D0 mesons. For
each bin of pT(D0), the invariant mass of the candidates is fitted as a function of their
d0(D0) value. Then, the resulting event yields are plotted as a function of the impact
parameter, and fit with a linear combination of impact parameter templates for prompt
and for secondary mesons, as extracted from simulation.

5.2 Direct shape

The simulated D0 → Kπ sample is used to parametrize the d0(D0) distribution of the
direct component in each pT(D0) bin using the linear combination of three Gaussian
functions

pdfDIR(d0; ~θDIR) = f G (d0; d0,1, σ1) + g G (d0; d0,2, σ2) + (1− f − g) G (d0; d0,3, σ3) (8)

in which f (g) is the relative fraction of the Gaussian labeled with the index 1 (2 )
w.r.t. the sum of the three Gaussians and σ1(2,3) is the width of the Gaussian 1 (2,

3 ). The parameters ~θDIR = {f, g, σ1, σ2, σ3, d0,1, d0,2, , d0,3} are extracted by fitting the
impact parameter distribution of simulated direct mesons. Figures 17 and 18 show
the result of the parametrization for each pT(D0) bin in linear and logarithmic scale,
respectively. The small discrepancies in the tails are well below the needed precision..
The width of d0(D0) decreases as the momentum grows.
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5.3 Secondary shape

Similarly, we parametrize the d0(D0) distribution as a function of pT(D0) for the sec-
ondary component using the simulated B0,± → D0Xsamples and the same Gaussian
expansion used for the direct component:

pdfSEC(d0; ~θSEC) = f · G (d0; d0,1, σ1) + g · G (d0; d0,2, σ2) + (1− f − g) · G (d0; d0,3, σ3) (9)

Figures 19 and 20 show the result of the parametrization for the d0(D0) for each bin
of pT(D0) in linear and logarithmic scale, respectively. The small discrepancies in the
tails are well below the precision we need. As for the direct component, the shapes
obtained show that the d0(D0) width decreases when the momentum grows.

5.4 Direct fraction fit

We now have all the ingredients needed to fit the d0(D0) distributions to measure the
direct fraction of D0 mesons in our signal. We perform a fit to the binned impact
parameter distributions, using the following function

F (Y ; fD) = Y · (fD · pdfDIR + (1− fD) · pdfSEC) (10)

where Y and fD are the only free parameters and direct and secondary pdfs are fixed.

Figure 21 visually describe the described procedure to measure the direct fraction.

5.5 Direct fraction as a function of pT(D0)

Figure 22 shows the results of the fits of the d0(D0) distribution on data for each
bin of pT(D0) (Figure 23 shows the same plots but in logarithmic scale); the plot on
the bottom right of the Figures graphically summarizes the results and they are also
reported in Table 7.

pT [GeV/c] fD

1.5 – 2.5 0.658 ± 0.021 (3.2 %)
2.5 – 3.5 0.678 ± 0.017 (2.5 %)
3.5 – 4.5 0.826 ± 0.017 (2.1 %)
4.5 – 6.5 0.863 ± 0.016 (1.9 %)
6.5 – 14.5 0.840 ± 0.022 (2.6 %)

Table 7: D0 direct fraction (fD) and statistical errors as a function of pT(D0).
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6 εTRIG - Trigger efficiency

6.1 εZB

The only possible source of inefficiency for the ZB trigger is the dead time occurred
through the three-level trigger chain. However, each trigger path’s luminosity is auto-
matically corrected by this non-operating time. Hence, the value stored in the lumi-
nosity database does not need to be corrected because of data cellection inefficiency
and the value for the ZB trigger εZB is 1 [11].

6.2 εMB

The MB trigger efficiency may depend on crossing and event conditions as instanta-
neous luminosity (LINST), number of charged particles in the event, maximum track
pT, overall ET, pile-up, etc. This is reflected in an increasing efficiency as a function
of these variables because the probability of a matching signal in both East and West
CLC increases. Several studies to understand these dependencies were performed dur-
ing Run II [12, 13, 14]. Because the ZB trigger path is 100 % efficient, we use data to
evaluate the efficiency correction for the MB sample. In fact, each CDF event reports
the trigger status for each trigger present in the trigger table. Thus we check if a
particular ZB event was also triggered by the MINBIAS trigger at L1 and perform a
combined fit of the invariant K−π+ mass distributions for ZB events that fired or not
the MB trigger. Figure 24 shows the result of the fit for candidates with pT(D0) ≥
1.5 GeV/c. We performed the fit using the same function used for the other invariant
K−π+ mass plots (see Equation 7) but setting the slope of the exponential function
used for the background as a common parameter. We can then evaluate the efficiency
of the MB trigger, εMB, as stated in Equations 11 and 12:

εMB =
YZB & MB

YZB & MB + YZB no MB

(11)

σεMB
=

√
εMB · (1− εMB)

YZB & MB + YZB no MB

(12)

where YZB & MB and YZB no MB are the fitted signal yields in ZB events that triggered
the MB L1 bit or not. In our case we hit a limit case because we obtain εMB = 1 and
σεMB

= 0. To be conservative, we’ve decided to assess it in the worst case scenario:
YZB no MB = 2 ·σ+YZB no MB

= 8.34. Equations 13 and 14 show the values we obtain

εMB =
1494.03

1494.03 + 8.34
= 0.9944 (13)

σεMB
=

√
0.9944 · (1− 0.9944)

1494.03 + 8.34
= 0.0019 (14)
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This result confirms that the two subsamples (ZB and MB) can be safely added because
any uncertainty is negligible with respect to the final 5–10% uncertainties we expect.
In principle the MB trigger might be sensitive to the effects listed above also in case
of events with a D0 candidate. Since the efficiency is so high, it turns out not to be
sensitive to them. We assume εMB to be 1 and treat the uncertainty as a systematic
effect.4.

7 εREC(pT) - Reconstruction efficiency

To evaluate the reconstruction efficiency as a function of pT(D0) we use simulated
D0 → Kπ decays. We determine the efficiency as the fraction of D0 and D̄0 candidates
reconstructed after the full analysis with respect to the candidates generated in |y| ≤
1

εREC(pT(D0)) =
NREC(pT(D0))

∣∣
CUTS

NGEN(pT(D0))
∣∣
|y|≤1

(15)

Table 8 summarizes this ratio in our range of interest and Figure 25 shows the global
trend.

pT(D0) [GeV/c] εREC(pT) [%]

1.5 – 2.5 0.5894 ± 0.0013
2.5 – 3.5 2.140 ± 0.003
3.5 – 4.5 3.680 ± 0.005
4.5 – 6.5 5.918 ± 0.007
6.5 – 14.5 12.455 ± 0.016

Table 8: Reconstruction efficiency as a function of pT(D0).

This definition of εREC(pT) represents a global reconstruction efficiency for our candi-
dates. It takes into account several corrections introduced by the detector response,
the reconstruction process and our selection:

• detector geometrical acceptance and response to the passage of particles;

• tracking efficiency in finding the charged particle’s passage;

• efficiency and acceptance corrections introduced by our selection of the candi-
dates;

• slope of the cross section used to generate the candidates within a bin.

4The ZB sample represents about the 42 % of the total; this reduces the effect of the MB trigger
inefficiency to less than the 1 per mille.



27

The last point in the list assures that the value we will plot in each bin of the cross
section distribution represents the integral of the cross section within each bin taking
into account the slope of the distribution within that bin, as we discussed in Section
2.

8 Systematic uncertainties

8.1 Luminosity

As we discussed in Section 3.4 the measured trigger luminosity is obtained through
the extrapolation of the total pp̄ cross section from the measured value at

√
s = 1.8

TeV during the Run I; the systematic uncertainty associated to this extrapolation is
assessed in [7] to be σSYS

LTRIG
= 5.8 %.

8.2 Yield

Section 4.5 describes how we fit the invariant K−π+ mass plot. Each pdf used in the
fit could be a possible source of systematic uncertainty: D0, D̄0 and background.

To assess the possible variations to the final results due to a mismodeling of the
D0 and the D̄0 shapes, we’ve repeated the fits of the yields varying the parameters of
the shapesone-at-a-time by ± 1σ of their values (as obtained from the fits described in
Sections 4.2 and 4.3). The maximum variations, ∆YSIG, from the measured values are
taken as systematic uncertainties.

For the combinatorial background, instead, we’ve repeated the fits using a second
order polynomial function instead of the exponential one. The variations, ∆YBKG, from
the measured values are taken as systematic uncertainties.

Another possible source of systematic uncertainty is the assumption that the ratio
D0:D̄0 is 1:1; we know from [15] that our choice is wrong at the per mille level. We
can neglect this contribution.

Table 9 summarizes the numbers obtained for ∆YSIG and ∆YBKG; σSYS
Y is the sum in

quadrature of the two contributions.

pT [GeV/c] ∆YSIG ∆YBKG σSYS
Y

1.5 – 2.5 0.1 % 2.3 % 2.3 %
2.5 – 3.5 0.4 % 2.9 % 2.9 %
3.5 – 4.5 0.5 % 2.2 % 2.3 %
4.5 – 6.5 0.8 % 2.5 % 2.6 %
6.5 – 14.5 0.4 % 0.4 % 0.6 %

Table 9: Systematic uncertainties related to the yield measurement.
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8.3 Direct fraction

Section 5.4 describes how we fit for the direct fraction of D0. Possible sources of
systematic uncertainty are the mismodeling of direct and secondary shapes and the
step width used to scan the d0(D0). The fit is highly sensitive to the statistics of the
plots and the tails of the distributions.

To assess the possible variations to the final results due to a mismodeling of the
direct and the secondary components, we’ve repeated the fits of the direct fraction
varying the parameters of the shapes by ± 1σ of their values (as obtained from the
fits described in Sections 5.2 and 5.3). The maximum variations, ∆fSHAPE

D , from the
measured values are taken as systematic uncertainties.

We repeated the fit using a different step width to scan the d0(D0): 20 µm instead of
15 µm. The variations from the measured values are taken as systematic uncertainties.
Table 10 summarizes the numbers obtained for ∆fSHAPE

D and ∆fBIN
D ; σSYS

fD
is the sum

in quadrature of the two contributions.

pT [GeV/c] ∆fSHAPE
D ∆fBIN

D σSYS
fD

1.5 – 2.5 0.6 % 0.6 % 0.8 %
2.5 – 3.5 1.3 % 1.0 % 1.6 %
3.5 – 4.5 1.9 % 0.6 % 2.0 %
4.5 – 6.5 0.8 % 2.4 % 2.5 %
6.5 – 14.5 2.9 % 2.2 % 3.6 %

Table 10: Systematic uncertainties related to the direct fraction measurement.

8.4 Trigger efficiency

As described in Section 6.2 we measured the efficiency of the MINBIAS trigger to be
(99.44 ± 0.19) %; we’ve assumed it to be 1 when summing the ZB and the MB sub-
sample in the analysis and we treat the 0.19 % as a systematic uncertainty on this
assumption. Because the MB sample is the 43 % of the total, the final effect on the
measurement is σSYS

εTRIG
= 0.08 %.

8.5 Reconstruction efficiency

Section 7 describes how we assess the reconstruction efficiency. To test the stability
of the simulation, the D0 → K−π+ MC sample described in Section 3.5.1 has been
generated mimicking all the 39 data taking periods. We’ve split it into 3 subsamples
([P0; P12], [P13; P25] and [P26;P38]) and reassessed the efficiencies for each one;
the maximum variations, ∆εSYS

TIME, from the measured values are taken as systematic
uncertainties.

Also the reweighting procedure we described in the same Section introduces a sys-
tematic uncertainty. We assessed it varying the parameters of the function we use to
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fit the cross section shape by ± 1σ. The maximum variations, ∆εSYS
REWEIGHT, from the

measured values are taken as systematic uncertainties.

Table 11 summarizes the numbers obtained for ∆εSYS
TIME and ∆εSYS

REWEIGHT; σSYS
εREC

is the
sum in quadrature of the two contributions.

pT [GeV/c] ∆εSYS
TIME ∆εSYS

REWEIGHT σSYS
εREC

1.5 – 2.5 3.8 % 0.7 % 3.9 %
2.5 – 3.5 3.9 % 0.3 % 3.9 %
3.5 – 4.5 5.2 % 0.3 % 5.2 %
4.5 – 6.5 5.7 % 0.6 % 5.7 %
6.5 – 14.5 5.2 % 2.5 % 5.8 %

Table 11: Systematic uncertainties related to the reconstruction efficiency measurement.

8.6 Total systematic uncertainties

Table 12 summarizes the systematic uncertainties described in the previous sections;
the last column is the sum in quadrature of all the contributions.

pT [GeV/c] σSYS
LTRIG

σSYS
Y σSYS

fD
σSYS
εTRIG

σSYS
εREC

σSYS
TOT

1.5 – 2.5 5.8 % 2.3 % 0.8 % 0.08 % 3.9 % 7.4 %
2.5 – 3.5 5.8 % 2.9 % 1.6 % 0.08 % 3.9 % 7.7 %
3.5 – 4.5 5.8 % 2.3 % 2.0 % 0.08 % 5.2 % 8.4 %
4.5 – 6.5 5.8 % 2.6 % 2.5 % 0.08 % 5.7 % 8.9 %
6.5 – 14.5 5.8 % 0.6 % 3.6 % 0.08 % 5.8 % 9.0 %

Table 12: Systematic uncertainties summary and final total values.

9 Differential cross section

We can now put together all the ingredients needed in Equation 1 and evaluate the
measured production cross section for each bin of pT(D0). Figure 26 shows the result
of our measurement and Table 13 summarizes the value obtained in each bin.

We’ve compared our result with the previous CDF published measure [1] in Figure 27.
A direct comparison in the plots is not possible because of the different bin widths
used in the two measurements. Instead of fitting the two slopes, we’ve compared both
of them with a FONLL prediction [3] as shown in Figure 28.
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pT [GeV/c] dσ
dpT

± stat ± sys

1.5 – 2.5 137,413 ± 12,049 (8.8 %) ± 10,169 (7.4 %)
2.5 – 3.5 59,925 ± 3,575 (6.0 %) ± 4,614 (7.7 %)
3.5 – 4.5 29,882 ± 1,752 (5.9 %) ± 2,510 (8.4 %)
4.5 – 6.5 9,906 ± 527 (5.3 %) ± 882 (8.9 %)
6.5 – 14.5 945 ± 57 (6.0 %) ± 85 (9.0 %)

Table 13: Measured D0 production cross section as a function of pT(D0).

10 Conclusions

In this note we’ve presented a study of the production of D0 mesons (through one of
its two-body decay channels, D0 → Kπ) using data collected by the ZEROBIAS and
the MINBIAS triggers. We’ve measured the differential production cross section as a
function of the transverse momentum down to pT = 1.5 GeV/c. This work presents the
first measurement of the differential production cross section of this charmed meson to
very low pT(D0) values at TeV collider energies.

The importance and uniqueness of this measurement has to be highlighted be-
cause even if new-generation accelerators, like the LHC, will be able to probe the same
pT range, their experimental conditions will not reproduce (at least for several decades
from now) Tevatron ones both in terms of initial state (pp̄) and center of mass energy
(
√
s = 1.96 TeV).

Our result is in agreement with the published CDF II measurement [1] in the
overlapping region. This gives us the complete pT spectum of the D0 production from
pT(D0) = 1.5 GeV/c to pT(D0) = 20 GeV/c.
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Figure 16: Signal yields (D0 + D̄0) for each bin of pT(D0) and as a function of pT(D0).
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Figure 17: d0(D0)distribution of MC events for the direct D0 component for

each bin of pT(D0) and for pT(D0) ≥ 1.5 GeV/c.
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Figure 18: d0(D0)distribution of MC events for the direct D0 component for

each bin of pT(D0) and for pT(D0) ≥ 1.5 GeV/c.
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Figure 19: d0(D0)distribution of MC events for the secondary D0 component

for each bin of pT(D0) and for pT(D0) ≥ 1.5 GeV/c.
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Figure 20: d0(D0)distribution of MC events for the secondary D0 component

for each bin of pT(D0) and for pT(D0) ≥ 1.5 GeV/c.
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Figure 21: Visual description of the steps needed to measure the direct fraction of D0.
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Figure 22: D0 direct fraction (fD) fits as a function of pT(D0).
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Figure 23: D0 direct fraction (fD) fits as a function of pT(D0).
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Figure 24: Result of the combined fit of the invariant K−π+ mass plots for

candidates of ZB events that fired (left) or not (right) the MB trigger.

Figure 25: Reconstruction efficiency as a function of pT(D0): linear (left)

and log (right) scale.
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Figure 26: Measured D0 production cross section as a function of pT(D0):

linear (left) and log (right) scale.

Figure 27: Measured (black) and CDF published (blue) D0 production cross

section as a function of pT(D0).
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Figure 28: Measured (left) and CDF published (right) D0 production cross

section as a function of pT(D0) compared to FONLL prediction.
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[4] Niccolò Moggi, Michael Joseph Morello, Manuel Mussini, Giovanni Punzi, Franco
Rimondi and Diego Tonelli, CDF Note 10079.

[5] S. Jindariani et al., CDF Note 7446.

[6] D. Acosta et al., Phys. Rev. D 50, 5518 (1994).

[7] S.Klimenko and J.Konigsberg, CDF Note 6314.

[8] J. Peter Berge, CDF Note 7537.

[9] A. Di Canto, G. Punzi, L. Ristori, M.J. Morello and D. Tonelli, CDF Note 10214.

[10] D. Tonelli, CDF Note 9509.

[11] Jonathan Lewis, private communication.

[12] D. Acosta, S. Klimenko, J. Konigsberg, A. Madorsky, A. Nomerotski, A.
Sukhanov, D. Tsybychev and S.M. Wang, CDF Note 5861.

[13] D. Acosta, R. Field, S. Klimenko, J. Konigsberg, G. Lungu, V. Necula, A. Pronko,
A. Sukhanov, D. Tsybychev and S.M. Wang, CDF Note 6054.

[14] N. Moggi and F. Rimondi, CDF Note 8594.

[15] A. Di Canto, M.J. Morello, G. Punzi, L. Ristori, D. Tonelli, CDF Note 10214.

http://arxiv.org/abs/hep-ex/0307080
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=6177
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=10079
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=7446
http://prd.aps.org/abstract/PRD/v50/i9/p5518_1
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=6314
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=7537
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=10214
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=9509
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=5861
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=6054
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=8594
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=10214

	1 Introduction and motivation
	2 Differential Cross Section
	3 LTRIG - The data samples
	3.1 Zero Bias trigger
	3.2 Minimum Bias trigger
	3.3 Event overlap
	3.4 Good Run List and luminosity
	3.5 Monte Carlo simulation
	3.5.1 D0 K 
	3.5.2 B0,  D0 X


	4 Y - Signal yield
	4.1 Reconstruction
	4.2 D0 K- + shapes
	4.3 0 K+ - shapes
	4.4 Background
	4.4.1 Combinatorial component
	4.4.2 Background from misreconstructed D0 X decays

	4.5 K- + mass fit
	4.6 Selection optimization
	4.7 Yields as a function of pT(D0)

	5 fD(pT) - Direct fraction
	5.1 B meson feed-down
	5.2 Direct shape
	5.3 Secondary shape
	5.4 Direct fraction fit
	5.5 Direct fraction as a function of pT(D0)

	6 TRIG - Trigger efficiency
	6.1 ZB
	6.2 MB

	7 REC(pT) - Reconstruction efficiency
	8 Systematic uncertainties
	8.1 Luminosity
	8.2 Yield
	8.3 Direct fraction
	8.4 Trigger efficiency
	8.5 Reconstruction efficiency
	8.6 Total systematic uncertainties

	9 Differential cross section
	10 Conclusions

