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Abstract

This thesis analyses the assumptions present in security proofs of post-
quantum cryptosystems using Koblitz and Menezes’ critique [62] to
guide the focus points. The classical analysis focusses in particular
on isogeny-based and multivariate polynomial cryptosystems. Firstly,
we present attacks against hardness assumptions on derivative com-
putational problems arising in protocols for isogeny-based undeniable
signature schemes [52, 80]. Secondly, we provide upper bounds on the
solving degree of over-determined systems of n + ℓ multivariate poly-
nomials in n variables as an alternative to the degree of regularity,
which gives a heuristic upper bound. We finish with an analysis of the
resources of a quantum adversary, providing an improved method for
quantum gate approximation that gives shorter sequences by a factor
of 9
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Introduction

This thesis concerns assumptions that are made in assessing the security of post-

quantum cryptosystems.

The field of post-quantum cryptography (PQC) arose as a response to the

threat of quantum computers against legacy cryptosystems such as RSA. Before

delving further into specifics, we quickly make the distinction between classical

and quantum computers. Classical computers, or conventional computers, operate

with binary bits and can be modelled by a probabilistic Turing machine. Quantum

computers, as suggested by the name, operate using the principles of quantum me-

chanics and it is conjectured that some quantum algorithms cannot be efficiently

simulated by a classical computer [72]. Similarly, post-quantum cryptography is

not to be confused with quantum cryptography; the former refers to classical cryp-

tosystems that are believed to be resistant to attacks by quantum computers (in

addition to those from classical computers), while the latter refers to cryptosytems

that employ the laws of quantum mechanics.

Of course, a practical quantum computer, capable of implementing Shor’s al-

gorithm for the parameters used in today’s cryptosystems, does not yet exist,

begging the question: Why should we study post-quantum cryptography if no fea-

sible quantum threat exists? Firstly, it takes time to research, vet and implement

1



new cryptosystems, particularly at scale. Secondly, certain applications, i.e. the

encryption of medical data, require security that lasts for decades. Hence, having

post-quantum cryptosystems already implemented at such a time that large-scale

quantum computers do become a reality ensures robust security against a suite of

attacks.

Post-quantum cryptography is still a relatively young field. Security definitions

are continually evolving and, as attacks against established primitives improve, so

too are security requirements. The framework of reductionist security, originally

introduced by Goldwasser and Micali [43] as provable security, was established in

response to the recognition that, although a cryptographic protocol may be based

on some mathematical primitive, an attack on that protocol is not necessarily

equivalent to solving the primitive. As a result, a hardness assumption made on

the mathematical primitive may not imply security of the protocol. Reductionist

security arguments are made by demonstrating the link between the problem of

attacking a given cryptosystem and an intractable mathematical problem, known

as a reduction. This thesis examines some of the flawed, or invalid, assumptions

still occurring within this framework. Our approach is based on the influential pa-

per of Koblitz and Menezes, Another Look at Provable Security [62]. The authors

identify four primary points for the introduction of error within a security proof:

1. insufficient evidence to support a computational hardness assumption,

2. fallacies or gaps within the proofs,

3. incorrect characterisation of the resources of an adversary, and

4. implicit assumptions within the description of a protocol.
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The focus of this thesis is on the first three points, identifying a concrete ex-

ample of each, covering both classical or quantum perspectives. We have chosen

multivariate polynomial and isogeny-based cryptography as case studies for the

classical subcase. The security of multivariate cryptography is based on the hard-

ness of solving a system of multivariate polynomial equations, but results in this

area are often either asymptotic or based on heuristics. In the case of isogeny-

based cryptography, newer schemes are often assumed to be secure, based on the

hardness of the fundamental computational supersingular isogeny problem, while

in actuality they depend on related computational problems. This can result in

schemes that are assumed to be more secure than they actually are.

For the quantum analysis, we adapt a classical algorithm used for cryptanalysis

against the CGL hash function [23] to the problem of improving resource efficiency.

Organisation of the Thesis

This thesis is organised as follows:

– In Chapter 1, we provide a more formative literature review of reductionist

security proofs and identify the security assumptions that are the focus of

the main body of the thesis.

– Chapter 2 presents a case study in isogeny-based cryptography, which illus-

trates the first of Koblitz and Menezes’ identified issues in security proofs.

We disprove a number of hardness assumptions of variants of the SSCDH

problem [52], motivated by two proposed undeniable isogeny-based signature

protocols [52, 80].

– We present an example of Koblitz and Menezes’ second point, which occurs
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in the space of multivariate public key cryptography, in Chapter 3. We look

at the cost analysis of Gröbner basis attacks against multivariate encryption

schemes and the assumptions implicit in current methods.

– The final chapter of this thesis deals with the characterisation of the resources

of a quantum adversary, in terms of the gate-cost of implementing a quantum

algorithm. In Chapter 4, we give an improved method for general unitary

approximation techniques for a number of commonly used fault-tolerant gate

sets.

These three areas of focus allow this thesis to cover both theoretic and practical

approaches to reductionist security, with results for both classical and quantum

cryptanalysis.

Main contributions

Several of the results in this thesis have been published. The papers are listed

here:

– Simon-Philip Merz, Romy Minko, Christophe Petit. Another look at some

isogeny hardness assumptions. In proceedings of Cryptography Track at

RSA. San Francisco, 2020. https://eprint.iacr.org/2019/950

– Mina Bigdeli, Manuela Dizdarevic, Elisa Gorla, Emmanuela De Negri, Romy

Minko, Sulaminthe Tsakou. Semi-regular sequences and other random sys-

tems of equations. In proceedings of Women in Numbers Europe 3. Rennes,

2020. https://arxiv.org/abs/2011.01032

Our main contributions are specific to isogeny-based cryptography, multivariate-

polynomial cryptography and quantum information. More precisely:
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– We present an attack against the One-sided Modified Supersingular Com-

putational Diffie-Hellman (OMSSCDH) problem and the One-more Modi-

fied Supersingular Computational Diffie-Hellman (1MSSCDH) problem [52].

These give rise to examples of inherited security assumptions, defined in Sec-

tion 1.2. We extend the attack to show that the parameters of the protocols

in [52] and [80] must be increased to achieve the claimed level of security.

– We prove explicit bounds for the solving degree of over-determined systems

of n+ ℓ multivariate polynomials in n variables, denoted r(n+ ℓ, n). These

are proposed as alternatives to the degree of regularity of [3], are based on

fewer assumptions and are not asymptotic. Explicit values of r(n+ ℓ, n) for

2 ≤ n, ℓ ≤ 100 are given in Appendix A.

– We present a novel method for approximating an arbitrary single qubit uni-

tary, which results in shorter approximation sequences by a factor of 9
7
.
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Chapter 1

Post-quantum hardness assumptions

Post-quantum cryptographers must bridge the mathematical theory behind cryp-

tography and the practical concerns of implementation, covering a wide range of

applications (e.g. key encapsulation, signing, encryption). This task almost always

necessitates the use of assumptions regarding computational hardness.

The purpose of this chapter is to give an introduction to the reductionist se-

curity1 framework and to define, in general terms, the assumptions that are the

central focus of this thesis.

Outline The key concepts underlying the reductionist security approach are de-

fined in Section 1.1. This provides the foundation to identify our three cases

of flawed assumptions. In Section 1.2, we define a set of hardness assumptions,

namely, inherited hardness assumptions, often based on weak, or no, proofs. Sec-

tion 1.3 then examines the potential error introduced by flawed assumptions in

security proofs that make claims regarding concrete parameters. These first two
1Also known as provable security. The term ‘reductionist security’ was introduced by Bellare

[6] and made commonplace by Koblitz and Menezes [62].
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sections, and their corresponding chapters in the thesis body, are focussed on

classical cryptanalysis of post-quantum cryptosystems. Quantum cryptanalysis

concerns are addressed in Section 1.4, where we look at the characterisation of

quantum adversaries, motivating this thesis’ focus on the resource cost of quan-

tum computation in Chapter 4.

1.1 Introduction to reductionist security

In order to make statements about the security of a cryptographic protocol, we

need to consider the resources of a potential adversary and what constitutes a

‘broken’ protocol.

Let us begin by defining a computational hardness assumption as in [71]. Let P

be a problem, with instances of size n, determined by some probability distribution.

A hardness assumption is defined by n, the time it takes to solve a problem instance

t and a probability of success p. Concretely, P is considered hard if no instance of

size n can be solved in time less than t with probability greater than p. Therefore,

an (n, t, p)-hardness assumption on P is the assumption that P is hard with respect

to n, t and p.

Typically, within the reductionist security framework, adversaries are treated

as algorithms running in polynomial time.

Definition 1.1.1 (Probabilistic polynomial-time adversary). A polynomial-time

adversary is an algorithm A that terminates after p(|x|) computations, where p is

a polynomial and x ∈ {0, 1}∗.

A probabilistic polynomial-time (PPT) adversary additionally has access to a

source of randomness that can be used polynomially many times in the adversary’s

7



computation.

A protocol is considered broken if an adversary’s attack succeeds with non-

negligible probability. That is, the probability of success should not be more than

some negligible function in the security parameter λ for a scheme to be considered

secure.

Definition 1.1.2 (Negligible function). A function f is negligible if for any posi-

tive constant c, there exists an Nc ∈ N such that for all λ > Nc, f(λ) ≤ 1
λc .

Let us now consider a cryptographic reduction. Suppose that P1 is the prob-

lem of breaking a given cryptosystem and let P2 be an intractable mathematical

problem. Let A be an algorithm for solving P1. If there exists an algorithm B for

solving P2 that takes A as a subroutine, then we say there is a reduction from P2

to P1. If B is a polynomial-time algorithm, treating A as a black box, then an

efficient solution for P1 implies an efficient solution for P2. Simply put, if P2 hard,

the reduction implies the hardness of P1. From this description, it is clear that the

burden of proof may be transferred from the hardness assumption

The protocol defining P1 is secure against a PPT adversary.

to the hardness assumption

A PPT adversary cannot solve P2 with non-negligible probability of success.

It follows that the veracity of the security proof based on the reduction between

P1 and P2 can be judged by the quality of the second assumption. Explicitly, such

a reduction proves that P1 is at least as hard as P2.
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Quality of reductions One measure of the quality of a reduction is tightness.

Suppose that problem P2 reduces to problem P1. Suppose that A takes time at

most T1 to solve problem P1 and succeeds with probability at least p1, then B finds

a solution to problem P2 in time at most T2 and has success probability at least

p2. The reduction from P2 to P1 considered tight if T1 ≈ T2 and p1 ≈ p2. The

ratio T2p2/T1p1 is called the tightness gap and clearly for a tight reduction, this

takes a value close to 1. Chaterjee, Menezes and Sankar [24] have investigated the

problems arising from large tightness gaps in cryptography.

An equally important property is the direction of a reduction. For two problems

to be considered equivalent we require a tight two-way reduction: that is, P1

reduces to P2 and P2 reduces to P1, so the two problems are equivalent. In a

security context, a reduction of this kind implies that that instead of breaking

a protocol directly, cryptanalysts may as well focus on solving the underlying

mathematical problem. If that problem is considered hard, one can say with

confidence that the protocol is secure in the present.

However, one-way reductions, in which an attack on the protocol reduces to

some mathematical problem but not vice versa, still arise in cryptography as we

will see in Chapter 2.

Practice-oriented security Complexity-theoretic approaches to security ex-

press the hardness of a problem as an asymptotic function. While this is certainly

useful to gain an understanding of the complexity of attacking a protocol, arguing

solely based on asymptotics does not provide a complete description of security.

Practice-oriented provable security was introduced by Bellare and Rogoway [6] in

1997 in an effort to align the perspectives of cryptography theoreticians and prac-
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titioners. That is, in order to make meaningful comparisons it became necessary

to quantify explicitly the degree of security that competing schemes would offer.

As Mihir Bellare writes in [6],

To make provable security useful, reductions and security analyses must

be concrete. Theoreticians will say, correctly, that this information

can be obtained by looking at their proofs. But this view obscures the

importance of working on improving the security of reductions.

The exact characterisations of security coming from the practice-oriented method-

ology additionally served to shift the point at which practical concerns are ad-

dressed to far earlier in the protocol design process than the commencement of

implementation.

Errors in reductionist security proofs Reductionist security proofs are not

infallible. Koblitz and Menezes’ published a thorough review of possible issues

within the framework [62], followed a decade later by a comprehensive survey of

papers addressing several of these issues in specific protocols [61]. The structure of

this thesis is heavily informed by Koblitz and Menezes original critique, focussing

on the following three points for the introduction of error in a reductionist security

proof:

1. insufficient evidence to support a computational hardness assumption,

2. fallacies or gaps within the proofs, and

3. incorrect characterisation of the resources of an adversary.
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1.2 Hardness assumptions based on weak evidence

Koblitz and Menezes highlighted an increasing tendency of cryptographers to rely

on hardness assumptions for which there is little or no evidence. These assump-

tions are typically derived from non-standard problems, or variants of standard

intractable problems. These problems are often artificial, constructed from the

protocols they support, rather than naturally arising mathematical problems.

In this section we define a set of assumptions known as ‘inherited hardness

assumptions’, an example of which is the focus of Chapter 2, and discuss the

impact on security proofs.

1.2.1 Inherited hardness assumptions

We define a class of hardness assumptions, which we will call inherited hardness

assumptions, that hinge on the existence of a one-way reduction, for which a

reduction in the reverse direction is not known. Informally, an inherited hardness

assumption arises when the conditions of a standard, or well-studied, mathematical

problem are slightly modified and the resulting ‘child’ problem is assumed to be

as hard to solve as the ‘parent’.

Consider a problem statement P as a set of information S combined with a

challenge C. For instance, if P is the problem of factorising an RSA integer N ∈ Z,

then S = {N} and

C = “Find p, q prime, such that pq = N”.

Definition 1.2.1 (Inherited hardness assumption). Given a problem P = {S, C},

11



P
parent

P ′

child

PA

attack

ideal
reduction

one-way
reduction

one- or two-way
reduction

Figure 1.1: The reductions present in a cryptographic security argument based
on an inherited hardness assumption. The parent problem, P , is a well-known
intractable mathematical problem. The child problem, P ′, is a variant of P with
the same challenge, but different conditions. The attack against the scheme is
represented by PA. Bold lines represent reductions that are present in the security
proof. The dashed line represents the desired reduction, which motivates the
inherited hardness assumption. Note also that the reduction between PA and P ′

could be either one- or two- way.

let P ′ = {S ′, C ′} be a problem with information S ′ ⊂ S and challenge C = C ′.

Suppose that there exists a reduction from P ′ to P , but no reduction in the reverse

direction is known. An inherited hardness assumption states that

Solving P ′ is at least as hard as solving P .

When talking about inherited hardness assumptions in the context of cryptog-

raphy, we consider protocols with security proofs in which

– there is a reduction from an attack on a protocol to some problem P ′, and

– the hardness of P ′ is based on an inherited hardness assumption.

.

Figure 1.1 illustrates the relationships between the three relevant problems. If

the reduction between P ′ and the parent problem P is a one-way reduction, this

causes issues for the security proof of the protocol. That is P ′, and by extension

12



PA, may not be equivalent to solving P . Therefore, hardness of the parent problem

does not imply security of the protocol.

How often do inherited hardness assumptions occur? Given the numerous

applications for cryptography and the specific properties each must have, it is

unsurprising that not every protocol reduces directly to a standard intractable

problem. In fact, at the time of writing, MQDSS [26] is the only multivariate

candidate for signature schemes in the NIST process for standardisation of post-

quantum cryptography that reduces directly to the well-studied MQ-problem2.

Several more examples are given in [61]. Note that while the definition of inherited

hardness assumptions may seem as contrived as the problems it describes, we

purposefully provide a definition distinct from arbitrary one-way reductions in

order to emphasise the close relationship between the parent and child problems.

Additionally, we caution cryptanalysts against immediately dismissing proto-

cols based on non-standard problems since lack of attention may result in later

acceptance-by-default. Without clear, published disproofs of the flawed assump-

tions, those protocols employing them may serve as the foundation for future

protocols. An example of this scenario is considered in Chapter 2.

1.3 Flawed approximations in security proofs

The previous section explored the impact that an incorrect hardness assumption

can have on the validity of a security proof. As a result of this discussion, one

may be tempted to conclude that a rigorously proven polynomial-time equivalence
2See Problem 3.2.1.
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is enough to guarantee the security of a protocol. To understand where other is-

sues may arise, we now focus on the second of Koblitz and Menezes’ error points:

fallacies, or gaps, within security proofs. In particular, we look at problems occur-

ring when complexity-theoretic proofs are translated to proofs of concrete security

parameters, identifying two main vectors of error in security analyses: the use of er-

roneous approximations and reliance on asymptotic analysis. These are motivated

by a case study in multivariate cryptography analysed further in Chapter 3.

1.3.1 The impact of erroneous approximations

Unsurprisingly, computations based on flawed approximations are likely to induce

errors in security analyses. We focus on those approximations that arise in practice-

oriented provable security proofs.

Suppose a complexity statement depends on some parameter κ. Theoreticians

have the freedom to argue in terms of κ, regardless of whether or not κ can be

efficiently computed. Practitioners, on the other hand, obviously need concrete

values. Hence, a problem arises when computing κ is difficult. Consider, for

example, the complexity of the Hassidim-Harrow-Lloyd algorithm for quantum

linear system solving [46], which depends on a value known as the condition number

of a matrix3. For large matrices, it can be difficult to compute the condition

number [31], in which case approximations must be used in order to estimate the

algorithm’s complexity.

A commonly used solution is to substitute κ by an approximation. However,

if this approximation is based on a flawed assumption or an unproven heuristic,
3The condition number κ of a normal matrix M is the ratio of the largest and smallest

eigenvalues of M . A matrix is normal if it commutes with its conjugate transpose.
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the resulting security assessment inherits those flaws. The potential error often

goes unacknowledged, as a heuristic or assumption may work for the first n tested

instances, leading practitioners to believe it is true. However, there is still the

possibility of failure on the n+ 1th instance.

This thesis argues that, while heuristics are useful, approximations should be

proven, although we acknowledge there are often feasibility issues here. This ap-

proach will serve to increase trust in the security of not only specific protocols,

but the entire methodology of practice-oriented reductionist security.

1.3.2 Asymptotics and implementation

Now we turn to the potential divide between asymptotic security and practical

security values. Practice-oriented security proofs enable comparisons between pro-

tocols and precise trade-off analysis between efficiency and security by determining

an explicit quantification of the level of security provided. This approach exposes

an issue in relying on asymptotic arguments: namely, a polynomial-time reduc-

tion between two problems might imply security for arbitrarily large parameters,

but for parameters for which implementation is efficient, the reduction could be

meaningless for security.

We note here that this kind of issue often occurs in conjunction with the pre-

viously raised issue of inaccurate approximations. That is, an approximation may

only be ‘good’ for arbitrarily large parameters. Thus it is important to continue

searching for good approximations that are within the realm of an implementation.

15



1.4 The quantum resources of an adversary

It would be remiss to conclude any discussion of post-quantum cryptography se-

curity without addressing the quantum perspective. Accordingly, we narrow the

focus of Koblitz and Menezes third vector of error to consider the assumptions

that are made regarding the computational resources of a quantum adversary.

The following section begins by defining computational complexity in the quan-

tum setting. For results that are applicable to a number of applications (both in

and out of cryptography), we focus in particular on the resource cost of quantum

computers. Typically, this is measured by the number of quantum gates required

to implement an algorithm. Throughout this section and Chapter 4 we use resource

cost and gate cost interchangeably. The subsequent section discusses methods for

decreasing resource costs in general.

1.4.1 Computational complexity with a quantum adversary

Let us begin by considering a new adversary who is now equipped with the re-

sources of a quantum computer. Owing to the fact that physical realisations of

quantum computers are still in their infancy, we must also consider the physical

resources at the disposal of such an adversary. Where in the classical case we con-

sidered time- and space-complexity, we now also consider query-complexity and

resource-complexity.

A quantum gate describes a transformation of a quantum state in the quantum

circuit model, and can be represented by a unitary matrix4. Gate-complexity mea-

sures the number of single-qubit gates and two-qubit gates used in an algorithm5.
4A matrix M is unitary if MM∗ = I where M∗ denotes the conjugate transpose of M .
5In the quantum circuit model, time-complexity corresponds to the depth of a circuit: that
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In order to make meaningful statements about gate-complexity for algorithms con-

taining n-qubit unitaries, we also require a result from Barenco et al. [5], which

states that any n-qubit unitary can be implemented by a circuit of c-NOT and

single-qubit gates.

What does it mean to be efficient in terms of gate-complexity? It is necessary

that a polynomial-time algorithm can be implemented with a polynomial number

of gates? We introduce another measure of computational complexity, query-

complexity, which is used to define relative efficiency of a quantum adversary. In

the quantum query model, the input to an algorithm is considered as a black box

oracle and the query-complexity is the number of queries to the oracle required for

the algorithm to find a solution. Then, we define gate (time) efficiency as follows:

Definition 1.4.1 (Gate and Time Efficiency, [63]). Let A be a quantum algorithm.

Let Q denote the query-complexity of A. We say that A is gate (time) efficient if

the gate-complexity (time-complexity) of A is p(Q) where p is a polynomial.

We call A a quantum polynomial-time adversary if A terminates after p(|x|)

computations, where p is a polynomial and x ∈ {0, 1}∗. Similarly, we call A

a quantum polynomial-query adversary if A makes p(|x|) queries to the input

oracle, where p is a polynomial and x ∈ {0, 1}∗.

We will focus on improving the resource costs of a quantum adversary.

1.4.2 Quantum gate approximation

A crucial distinction between quantum and classical computing is the possible

vectors for error during computation. Quantum computers, operating on qubits,

is, the longest path in the circuit.
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are susceptible to errors from environmental interference, or even internal errors

caused by qubit-qubit interactions. Fault-tolerant quantum computing covers the

method of computing that allows for a certain threshold of physical error, which

can be corrected either after or throughout the computation. Using a practical

fault-tolerant quantum device imposes restrictions on the single-qubit unitaries

that can be implemented [72], importantly, that only a finite set of unitaries can

be used. Thus, to implement arbitrary single-qubit unitaries we require that this

finite set is a universal set of gates. Informally, this means that any unitary in

SU(2) can be approximated by a finite sequence of gates from the gate set.

A central problem of the field of quantum gate approximation is decreasing the

sequence length for approximating an arbitrary unitary [47]. Clearly, a shorter

sequence corresponds to a lower gate-complexity. The focus of Chapter 4 is on

making improvements in quantum gate approximation for fault-tolerant gate sets.

Importantly, this is protocol-independent, and so applies to existing and future

quantum algorithms. Moreover, the results are applicable to any quantum algo-

rithm, not only to those used in cryptanalysis.
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Chapter 2

Inherited security in isogeny-based

cryptography

Recall that an inherited hardness assumption is present in a situation in which

an attack on a cryptosystem reduces to a mathematical problem that is identical

to a well-studied intractable problem in its challenge (and desired outcome), but

differs in terms of the initial conditions. As a result, this problem is assumed to

have inherited the hardness of the well-known problem. This assumption is usually

made with a proof of a one-way reduction, but often is stated with no proof at all.

To demonstrate the impact of inherited hardness assumptions on the security of

post-quantum cryptosystems, we now look at an example from the isogeny-based

cryptography family: undeniable signature schemes that are extensions of the

Supersingular Isogeny Diffie-Hellman (SIDH) key exchange protocol. Koblitz and

Menezes undertook a similar study of non-standard Discrete Logarithm and Diffie-

Hellman problems [60], showing that in some cases no natural reductions existed.

However, Granger [45] later demonstrated that the presence of an effective index
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calculus could be used to show that two problems have the same complexity, even

in the absence of a reduction between them.

Results in this chapter are included in a paper written with Simon-Philip Merz

and Christophe Petit, included in the Cryptographers’ Track at the RSA Confer-

ence 2019 [69].

Outline and main contributions We begin by recalling some useful mathe-

matical background. The SIDH protocol, the hardness problem it relies on for

security, and A number of variants of this problem are then defined in Section 2.2.

There are two examples of signature schemes relying on these problems. These

are described in Section 2.3 and we discuss the security proofs, proving two false

assumptions, one of which is an inherited hardness assumption. The other as-

sumption comes from the failure to consider the effect of a hash function in the

protocol. The proof of falseness is presented in Section 2.4, with an attack against

the problem variants, which extends to an attack on the signatures schemes, given

in Section 2.5. The chapter ends with a discussion of the impact on the security

of the two schemes.

2.1 Preliminaries

For a thorough background on elliptic curves we refer to Silverman [79]. For an

introduction to isogeny-based cryptography we refer to De Feo [30].

Let Fq be a finite field of characteristic p. In this thesis, we assume p > 3.

Therefore, an elliptic curve E over Fq can be defined by its short Weierstrass form.

Definition 2.1.1 (Weierstrass Equation). An elliptic curve over a finite field Fq
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is defined as

E(Fq) = {(x, y) ∈ F2
q | y2 = x3 + Ax+B} ∪ {OE}

where A,B ∈ Fq such that 4A3 + 27B2 ̸= 0 and OE is the point (X : Y : Z) = (0 :

1 : 0) on the projective curve Y 2Z = X3 + AXZ2 +BZ3.

The set of points on an elliptic curve is an abelian group with the following

group operation:

Definition 2.1.2 (Group operation on the points on an elliptic curve). Let P,Q ∈

E and let L be the line joining P and Q. Let the third point of intersection of L

with E be denoted R. Let L′ be the line joining R and OE and let the third point of

intersection of L′ with E be R′. The group operation ⊕ is defined as P ⊕Q = R′.

The identity element of the group is the point at infinity, OE. The number of

points on an elliptic curve is #E(Fq) = q + 1− t for some integer |t| ≤ 2
√
q.

Definition 2.1.3. The j-invariant of an elliptic curve is

j(E) = 1728
4A3

4A3 + 27B2
.

Two curves E1 and E2 are isomorphic if and only if j(E) = j(E ′).

Definition 2.1.4. Given two elliptic curves E1 and E2 over a finite field Fq, an

isogeny is a surjective group homomorphism ϕ : E1 → E2.

That is, ϕ(OE1) = OE2 . For example, the multiplication by nmap on an elliptic

curve [n] : E → E given by [n](P ) = nP is an isogeny. Two important computa-

tional problems for elliptic curve cryptography that relate to the multiplication by
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n map are the elliptic curve discrete logarithm problem and the extended elliptic

curve discrete logarithm problem:

Problem 2.1.5 (Elliptic Curve Discrete Logarithm Problems). Given P,Q ∈ E,

such that Q = [n]P for some integer n, the elliptic curve discrete logarithm problem

is to find n.

Given a set of points Pi in E and a point R ∈ E such that R =
∑

i[ni]Pi, the

extended elliptic curve discrete logarithm problem is to find the ni.

Let ϕ : E0 → E1 be an isogeny between curves over F̄q and let ϕ∗ be the

function field injection induced by composition with ϕ:

ϕ∗ : F̄q(E1)→ F̄q(E0), ϕ∗(f) = f ◦ ϕ.

The degree of an isogeny is the degree of the finite extension of function fields

F̄q(E0)/ϕ
∗(F̄q(E1)). The degree can also be taken as the degree of the isogeny

when considered as a rational map. Two curves are called ℓ-isogenous if there

exists a non-constant isogeny of degree ℓ between them. The endomorphism ring

End(E) of E is the set of all isogenies from E to E.

An isogeny is called separable if the finite extension F̄q(E0)/ϕ
∗(F̄q(E1)) is sepa-

rable. If ϕ is a separable isogeny, then #ker(ϕ) = deg(ϕ). Since an isogeny defines

a group homomorphism E1 → E2, its kernel is a subgroup of E1.

Theorem 2.1.6 (Proposition III.4.12, [79]). Let S be a finite subgroup of an elliptic

curve E. Then S determines a (separable) isogeny ϕ : E → E ′ with ker(ϕ) = S

and E ′ = E/S.

An isogeny is called cyclic if its kernel is a cyclic group. This will be the case for
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all isogenies considered in this thesis. Given a set of points describing the kernel,

one can compute the isogeny using Vélu’s formulas [84].

Theorem 2.1.7 (Theorem III.6.1, [79]). Given any non-constant isogeny ϕ : E1 →

E2, there exists a unique isogeny ϕ̂, called the dual isogeny, satisfying

ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [deg(ϕ)].

The n-torsion subgroup of a curve E is defined as

E[n] = {P ∈ E(Fq) : [n]P = OE}.

In other words, E[n] is the kernel of the multiplication by n map over the algebraic

closure Fq of Fq. For n ≥ 2 relatively prime to p, the group E[n] is isomorphic to

Z/nZ× Z/nZ.

Definition 2.1.8. An elliptic curve E over a finite field Fq for q = pk is called

supersingular if any of the following hold:

• E[pi] = {O}.

• p | t, where #E(Fq) = q + 1− t for some integer |t| ≤ 2
√
q.

• End(E) is isomorphic to an order in a quaternion algebra.

• j(E) ∈ Fp2.

The equivalence of the above definitions of a supersingular curve is proved

in Theorem V.3.1 of Silverman [79]. A curve that is not supersingular is called

ordinary.

Charles, Goren and Lauter [23] introduced the idea of supersingular isogeny

graphs.
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Definition 2.1.9. For a prime ℓ ̸= p, the ℓ-isogeny graph is the graph whose

vertices are the isomorphism classes of all isogenous curves over the closure F̄q

and whose edges are the ℓ-isogenies between elliptic curves.

Note that since vertices are isomorphism classes, isogenies that differ by com-

position with an isomorphism correspond to the same edge. Vertices can also

be labelled by the j-invariant of any elliptic curve within the corresponding iso-

morphism class. The graph is connected [22, Theorem 4.1], (ℓ + 1)−regular [30,

Proposition 3.5]. A supersingular isogeny graph has approximately ⌊ p
12
⌋ edges [79,

Theorem V.4.1].

2.2 Isogeny hardness assumptions

The Supersingular Computational Diffie-Hellman (SSCDH) problem is fundamen-

tal to the security of SIDH and many isogeny-based cryptosystems and signature

schemes. We start with a description of the SIDH protocol, after which the second

part of this section will motivate and illustrate some derivatives of the SSCDH

problem, which, although seemingly artificial, are used in the security proofs of

isogeny-based signature schemes (namely, [52, 80]). These problems are assumed

to have inherited the hardness of SSCDH and are thus conjectured to be hard.

Throughout this section, let p be a prime of the form ℓeAA ℓ
eB
B ·f±1 where ℓA and

ℓB are small distinct primes, eA and eB are positive integers and f is some small

cofactor. Let E be a supersingular elliptic curve defined over the field K = Fp2

and let {PA, QA} and {PB, QB} be fixed bases of the ℓeAA and ℓeBB torsions of E,

E[ℓeAA ] and E[ℓeBB ], respectively.
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2.2.1 The SIDH protocol

The SIDH protocol was created in 2014 by De Feo, Jao and Plût [51]. The basic

mechanics of this protocol form the basis for the two undeniable signature schemes

that are cryptanalysed in Section 2.5.

The SIDH key exchange between two users, Alice and Bob, is described by the

following protocol.

SIDH Key Exchange Protocol [51]

Alice Bob

mA, nA
$←− Z/ℓeAA mB, nB

$←− Z/ℓeBB

EA ← E/⟨[mA]PA + [nA]QA⟩ EB ← E/⟨[mB]PB + [nB]QB⟩

ker(ϕA)← ⟨[mA]PA + [nA]QA⟩ ker(ϕB)← ⟨[mB]PB + [nB]QB⟩

P ′
A, Q

′
A ← ϕA(PB), ϕA(QB) P ′

B, Q
′
B ← ϕB(PA), ϕB(QA)

P ′
A,Q′

A−−−−−−−−→
P ′
B ,Q′

B←−−−−−−−−

ker(ϕ′
A)← ⟨[mA]P

′
B + [nA]Q

′
B⟩ ker(ϕ′

B)← ⟨[mB]P
′
A + [nB]Q

′
A⟩

EAB ← EB/ ker(ϕ
′
A) EBA ← EA/ ker(ϕ

′
B)
∼= EAB

sk← j(EAB) sk← j(EBA) = j(EAB)

Alice selects integersmA, nA ∈ {0, . . . , ℓeAA −1}, not both divisible by ℓA defining

the cyclic subgroup A := ⟨[mA]PA + [nA]QA⟩ of E[ℓeAA ], as her secret key. These

parameters define the secret isogeny ϕA : E → E/A. Alice’s public key is the

curve EA := E/A together with the images ϕA(PB), ϕA(QB) of the public basis

{PB, QB} under her secret isogeny ϕA : E → E/A. Analogously, Bob chooses his

secret key mB, nB ∈ {0, . . . , ℓeBB − 1}, not both divisible by ℓB, defining the cyclic
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subgroup B := ⟨[mB]PB + [nB]QB⟩ ⊂ E[ℓeBB ], and isogeny ϕB : E → E/B, and his

public key is the tuple (EB, ϕB(PA), ϕB(QA)).

Upon receipt of Bob’s public key, Alice computes an isogeny ϕ′
A : EB → EAB

with kernel ⟨[mA]ϕB(PA) + [nA]ϕB(QA)⟩ ⊂ E/B[ℓeAA ]. Bob proceeds analogously,

computing the isogeny ϕ′
B : EA → EAB with kernel ⟨[mB]ϕA(PB)+[nB]ϕA(QB)⟩ ⊂

E/A[ℓeBB ]. Theorem 2.2.1 shows that the curves computed by Alice and Bob in this

manner are isomorphic. Then, since curves belonging to the same isomorphism

class have the same the j-invariant, Alice and Bob are able to compute a shared

secret: j(EAB).

Theorem 2.2.1. Using the above notation for the SIDH protocol,

EAB := E/⟨[mA]PA + [nA]QA, [mB]PB + [nB]QB⟩ ∼= EA/ ker(ϕ
′
B)
∼= EB/ ker(ϕ

′
A).

Proof. We first show that EAB
∼= EB/ ker(ϕ

′
A). Observe that

ϕB(A) = ϕB(⟨[mA]PA + [nA]QA⟩) = ⟨[mA]ϕB(PA) + [nA]ϕB(QA)⟩

and so

EB/ ker(ϕ
′
A) = (E/B) /ϕB(A).

Note that ϕB(A) is isomorphic to A by the First Isomorphism Theorem and the

fact that the degree of ϕB is coprime to the order of A. Similarly, the subgroups

B and A have coprime order. Hence, they are disjoint and so ⟨B,A⟩ := B + A is

a well-defined subgroup of E of order ℓeBB ℓeAA . It follows that

(E/B) /ϕB(A) ∼= E/⟨B,A⟩.
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Trivially, ⟨B,A⟩ = ⟨A,B⟩ and so EAB
∼= EB/ ker(ϕ

′
A).

Showing that EA/ ker(ϕ
′
B)
∼= EAB is analogous.

EA = E/A

E EAB = E/⟨A,B⟩

EB = E/B

ϕ′
B

ϕB(PA)
ϕB(QA)

ϕA

ϕB ϕ′
A

ϕA(PB)
ϕA(QB)

Figure 2.1: The commutative diagram of the SIDH key exchange. Items in blue
are known only to Alice and items and in red are known only to Bob.

The hardness of the following problem underlies the security of the SIDH pro-

tocol.

Problem 2.2.2 (Supersingular Computational Diffie-Hellman (SSCDH) Problem,

[51]). Let mA, nA be chosen at random from {0, . . . , ℓeAA − 1} not both divisible by

ℓA. Let mB, nB be randomly chosen from {0, . . . , ℓeBB − 1} not both divisible by ℓB.

Furthermore, let ϕA : E → EA and ϕB : E → EB denote the isogenies with kernel

⟨[mA]PA + [nA]QA⟩ and ⟨[mB]PB + [nB]QB⟩ respectively.

Given the curves EA, EB and the points ϕA(PB), ϕA(QB), ϕB(PA) and ϕB(QA),

find the j-invariant of

EAB = E/⟨[mA]PA + [nA]QA, [mB]PB + [nB]QB⟩.

The hardness of SSCDH is assumed from the presumed hardness of the Com-

putational Supersingular Isogeny (CSSI) problem [51], which is rephrased here as

the following assumption:
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Assumption 2.2.3 (Computational Supersingular Isogeny (CSSI) Assumption). Let

E and EA be isogenous supersingular curves with isogeny ϕA : E → EA, such that

ker(ϕA) = ⟨[mA]P + [nA]Q⟩ for some mA, nA chosen uniformly at random from

Z/ℓeAA Z, not both divisible by ℓA. Given E,EA and two points ϕA(P ), ϕA(Q), it is

infeasible for a polynomial-time adversary to find a generator for ker(ϕA).

Clearly, an adversary able to solve the CSSI problem would be able to solve

SSCDH. This is an example of a one-way reduction. A decisional variant of SSCDH

is also defined in [51].

Problem 2.2.4 (Supersingular Decision Diffie-Hellman (SSDDH) Problem). Let

E,mA, nA,mB, nB, ϕA, ϕB, EA, EB, PA, QA, PB, QB be as in the SSCDH problem.

Given a curve E ′ sampled with probability 1
2

from

EAB = E/⟨[mA]PA + [nA]QA, [mB]PB + [nB]QB⟩

and

EC = E/⟨[m′
A]PA + [n′

A]QA, [m
′
B]PB + [n′

B]QB⟩,

where m′
A, n

′
A are selected at random from {0, . . . , ℓeAA −1} and m′

B, n
′
B are selected

at random from {0, . . . , ℓeBB − 1}, determine whether E ′ = EAB or E ′ = EC up to

isomorphism.

2.2.2 Variants of the SSCDH problem

The following problems are somewhat natural variants of the SSCDH and SSDDH

problems underlying the security of SIDH. The notation used for those problems

is fixed throughout this section.
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The SSCDH problem imagines a scenario in which Alice and Bob are both

honest participants in the protocol and a third-party adversary, Eve, is attempting

to gain the shared secret without knowledge of any secrets. Suppose instead that

Eve has compromised Bob somehow, and is given partial access to his secret but

still receives no secret information from Alice, nor any of her auxiliary points. This

scenario gives rise to the following problem:

Problem 2.2.5 (Modified SSCDH (MSSCDH) Problem [52]). Given E,EA, EB

and ker(ϕB), determine EAB up to isomorphism, i.e. j(EAB).

Note that knowledge of ker(ϕB) is equivalent to knowledge of ϕB. However,

since Eve lacks any information regarding the auxiliary points in the image of ϕA,

she is unable to compute the final edge in the commutative diagram. The following

problem states the decisional variant of MSSCDH.

Problem 2.2.6 (Modified SSDDH (MSSDDH) Problem [52]). Given E,EA, EB

and a challenge curve EC and ker(ϕB), determine whether EAB = EC.

Suppose now that Eve has access to an oracle with the ability to solve MSSCDH

for any input curve and isogeny kernel, save a small number of exceptions. Then,

to find EAB Eve can solve the following problem, illustrated in Figure 2.2:

Problem 2.2.7 (One-sided Modified SSCDH (OMSSCDH) Problem [52]). For

fixed E,EA, EB, given an oracle to solve MSSCDH for EA, EB′, ker(ϕB′) with EB′

not isomorphic to EB and ℓeBB -isogenous to E, solve MSSCDH for EA, EB and

ker(ϕB).

We will see that the OMSSCDH problem arises naturally in the security analy-

sis of undeniable signatures proposed in [52]. The authors also define a decisional

variant of this problem.
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E

EA EB EB′

EAB

EAB′

ϕB′

ϕBϕA

ϕ′
B

ϕ′
B′

ϕ′
A

ϕ′′
A

Figure 2.2: The commutative diagram for OMSSCDH. The oracle provides EAB′

for any EB′ and ϕB′ , while EAB is the solution curve to OMSSCDH for EA, EB

and ker(ϕB).

Problem 2.2.8 (One-sided Modified SSDDH (OMSSDDH) Problem [52]). For

fixed EA, EB and EC, given an oracle to solve MSSCDH for EA, EB′, ker(ϕB′)

with EB′ not isomorphic to EB and ℓeBB -isogenous to E, solve MSSDDH for EA,

EB, EC and ker(ϕB).

Suppose, once more, that Eve has access to an oracle, which solves MSSCDH

for any input, but that she only has a fixed number of queries available to her.

While this scenario may seem more artificial, it is present in the following problem,

which is used in the construction of undeniable blind signatures [80]:

Problem 2.2.9 (One-More SSCDH (1MSSCDH) Problem [80]). Let E be some

base curve of the form as in the SIDH protocol and let mA, nA be secret integers

in {0, . . . , ℓeAA − 1}.

Let a signing oracle respond with EAB
∼= EB/⟨[mA]PB + [nA]QB⟩ upon receipt of a

curve EB isogenous to E and points PB, QB spanning EB[ℓ
eB
B ].

The 1MSSCDH problem is to produce at least q+1 distinct pairs of curves (EBi
, EABi

),

where EBi
are ℓeBB -isogenous to E, PBi

and QBi
span EBi

[ℓeBB ] and EABi
is isomor-
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SSCDH

MSSCDH

OMSSCDH 1MSSCDH

Figure 2.3: Hierarchy of isogeny problems.

phic to EBi
/⟨[mA]PBi

+ [nA]QBi
⟩ for 1 ≤ i ≤ q + 1, after q queries to the signing

oracle.

This problem is slightly weaker than OMSSCDH, as it gives the adversary the

freedom to choose the additional MSSCDH instance which needs to be solved.

Figure 2.3 shows the parent-child relationship between SSCDH and its variants.

2.3 Isogeny-based undeniable signature schemes

The significance of the SSCDH variants defined in Section 2.2.2 may not be im-

mediately obvious. This section motivates the study of these problems by placing

them in the context of two isogeny-based undeniable signature schemes.

Undeniable signature schemes were introduced by Chaum and van Antwer-

pen [25], differing from traditional signature schemes in that verification of a sig-

nature cannot be completed without cooperation from the signer. Undeniability

refers to the fact that a signer cannot use the disavowal protocol to deny a valid

signature. A signer is also unable to convince the verifier that an invalid signature

is valid. Following the notation of [66] an undeniable signature scheme is denoted

by Σ where
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Σ = {KeyGen, Sign, Check, Sim, πcon, πdis}.

KeyGen is the PPT (probabalistic polynomial time) key generation algorithm,

which outputs (vk, sk) - a verification and signing key, respectively. Sign is

the PPT signing algorithm, taking a message m and sk as input to generate

a signature σ. Check is a deterministic validity checking algorithm, such that

Check((vk,m,σ),sk) returns 1 if (m,σ) is a valid message-pair and 0 if not. Sim

is a PPT algorithm outputting a simulated signature σ′ on input of vk and m.

Finally, πcon and πdis are confirmation and disavowal protocols, respectively, with

which the signer can prove the validity (or invalidity) of a signature to the verifier.

These are zero-knowledge interactive protocols.

The security definitions of unforgeability and invisibility, both of which must

be met for such signature schemes to be considered secure, give rise to the OMSS-

CDH and 1MSSCDH problems. The security games defining these properties are

described in Section 2.3.1.

This section describes two isogeny-based signature schemes: firstly, the Jao-

Soukharev protocol [52] (Section 2.3.2) and, secondly, the Srinath-Chandrasekaran

protocol [80] (Section 2.3.4), which extends [52] to include the additional property

of blindness. This description includes an appraisal of the security proofs given by

the respective authors and identifies the hardness assumptions being made; these

will be shown to be false in later sections.
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2.3.1 Unforgeability and invisibility

A signature scheme must be shown to satisfy the unforgeability and invisibility

properties in order to be considered secure. These properties are defined by the

following security games, following the descriptions in [29, 25, 66].

Unforgeability is the notion that an adversary cannot compute a valid message-

signature pair with non-negligible probability.

1. The challenger generates a key pair, giving the verification key to the adver-

sary.

2. The adversary is given access to a signing oracle and makes queries adaptively

with messages mi, for i = 1, 2, . . . , k, for some k, receiving corresponding

signatures σi.

(a) The adversary additionally has access to a confirmation/disavowal or-

acle for the protocol, which they can query adaptively with message-

signature pairs throughout step 2.

3. The adversary outputs a pair (m,σ).

The adversary wins the game (i.e. successfully forges a signature) if (m,σ) is

a valid message-signature pair and m ̸= mi for any i = 1, 2, . . . k. A signature

scheme is unforgeable if any PPT adversary wins with only negligible probability.

Invisibility requires that an adversary cannot distinguish between a valid sig-

nature and a simulated signature with non-negligible probability.

1. The challenger generates a key pair, giving the verification key to the adver-

sary.
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2. The adversary is given access to a signing oracle and makes queries adaptively

with messages mi, for i = 1, 2, . . . , k, for some k, receiving corresponding

signatures σi.

(a) The adversary additionally has access to a confirmation/disavowal or-

acle for the protocol, which they can query adaptively with message-

signature pairs throughout step 2.

3. The adversary sends a new message mj to the challenger.

4. The challenger computes a random bit b. If b = 1, the challenger computes

σ = Sign(mj, sk). If b = 0 the challenger computes σ = Sim(mj, vk). The

challenger sends σ to the adversary.

5. The adversary is able to query the signing oracle again, with access to the

confirmation/disavowal oracles. They cannot submit (mj, σ) to either oracle.

6. The adversary outputs a bit b∗.

The adversary wins the game if b∗ = b. An undeniable signature scheme is

invisible if |Pr(b = b∗)−1/2 | is negligible.

2.3.2 The Jao-Soukharev protocol

The first undeniable signature scheme considered in this chapter was proposed by

Jao and Soukharev in 2014 [52]. The Jao-Soukharev protocol, as it is referred to

herein, was the second quantum-resistant undeniable signature scheme to exist in

the literature, and the first using isogenies.

A set up for the protocol differs slightly from SIDH. Let p be a prime of the

form ℓeAA ℓ
eB
B ℓeCC · f ± 1, where ℓA, ℓB, ℓC are primes and f is a small cofactor. In
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practice, f is usually taken to be 1. Let E be a supersingular curve over Fp2 and

let {PA, QA}, {PB, QB} and {PC , QC} be bases of the ℓeAA , ℓ
eB
B and ℓeCC torsions of

E, E[ℓeAA ], E[ℓeBB ] and E[ℓeCC ], respectively. The public parameters of the scheme

are p, E and the three torsion bases, together with a cryptographic hash function

H : {0, 1}∗ → Z/ℓeBB .

The signer generates random integers mA, nA ∈ Z/ℓeAA Z and computes the

isogeny ϕA : E → EA = E/⟨[mA]PA + [nA]QA⟩, defined as in Problem 2.2.2. The

public key consists of the curve EA together with the points {ϕA(PC), ϕA(QC)}

and the integers mA, nA constitute the private key. Note that this is equivalent to

taking ϕA as the private key.

Signing To sign a message M, the signer computes the hash h = H(M) of the

message and the isogenies

ϕB : E → EB = E/⟨PB + [h]QB⟩

ϕAB : EA → EAB = EA/⟨ϕA(PB + [h]QB)⟩

ϕBA : EB → EAB = EB/⟨ϕB([mA]PA + [nA]QA)⟩.

The signer then outputs EAB and the set of two auxiliary points,

{ϕBA(ϕB(PC)), ϕBA(ϕB(QC))},

as the signature σ.

Confirmation and disavowal Given a signature σ = (Eσ, P,Q), the first step

in the confirmation and disavowal protocols is for the signer to select mC , nC ∈
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Figure 2.4: The commutative isogeny diagram for signing in the Jao-Soukharev
Protocol.

Z/ℓeCC Z and compute the four curves: EC = E/⟨[mC ]PC + [nC ]QC⟩ and EAC =

EA/⟨ϕA([mC ]PC + [nC ]QC)⟩ with their blinded pairs EBC = EB/⟨ϕB([mC ]PC +

[nC ]QC)⟩ and EABC = EBC/⟨ϕB([mA]PA + [nA]QA)⟩. The signer outputs these

curves and ker(ϕCB) as the commitment, where ϕCB is the isogeny from EC to

EBC . In addition to the auxiliary points of the signature, this commitment gives

the verifier enough information to compute EABC and EσC = Eσ/⟨[mC ]P+[nC ]Q⟩,

to check whether EσC
∼= EABC .

The confirmation and disavowal protocols are not affected by our attacks, so

we do not go in to further detail here. The interested reader can find an in-depth

description, as well as proof of zero-knowledge, in [52].

2.3.3 Analysing the security proof of Jao-Soukharev

In [52] the claim is made that forging a signature for this construction is equivalent

to solving OMSSCDH. The authors themselves note that OMSSCDH is not well

studied. Nevertheless, they argue that the hardness of MSSCDH justifies the

hardness of OMSSCDH, captured by the following assumption:

Assumption 2.3.1. Based on the intractability of the MSSCDH problem, the OMSS-

CDH problem is intractable for a polynomial-time adversary.
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This is a case of an inherited hardness assumption. The information given for

the MSSCDH problem is S := {E,EA, EB, ker(ϕB)} and the information given

for the OMSSCDH problem is S ′ := {E,EA, EB, ker(ϕB),MSSCDH oracle}, so

certainly S ⊂ S ′. Both problems have the same challenge: C = Find j(EAB).

The hardness of OMSSCDH is examined in Section 2.4. Here we scrutinise the

related, protocol-specific assumption:

Assumption 2.3.2. Unforgeability and invisibility in the Jao-Soukharev protocol

are equivalent to OMSSCDH.

In the Jao-Soukharev protocol, the adversary knows EA and can compute EBi

and ker(ϕBi
), corresponding to message Mi, from the public hash function H. A

signing oracle takes the message Mi as input, and responds with

σ = (EABi
, ϕBiA(ϕBi

(PC)), ϕBiA(ϕBi
(QC))

as the signature.

Crucially, an adversary wishing to forge a signature can only query the sign-

ing oracle with messages, Mi, while the curves EBi
are computed from message

hashes, rather than the messages themselves. Equivalence of unforgeability and

invisibility to OMSSCDH would only be true if an adversary had the ability to

submit arbitrary curves to the signing oracle. In essence, an adversary would need

the ability to compute the message that corresponds to a specific curve. This is

equivalent to the adversary inverting the hash function, H.
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Since it is assumed in the construction of the protocol that H is cryptographi-

cally secure, we conclude that breaking the unforgeability and invisibility proper-

ties for the Jao-Soukharev protocol is not equivalent to solving OMSSCDH.1

2.3.4 The Srinath-Chandrasekaran protocol

Srinath and Chandrasekaran [80] extend the Jao-Soukharev construction to an

undeniable blind signature scheme, introducing a third actor, the requestor, to the

scheme. It is a four-prime variant of the original scheme and adds to the public

parameters the points {PD, QD}, a basis for E[ℓeDD ].

Let p to be of the form ℓeAA ℓ
eB
B ℓeCC ℓeDD · f ± 1, where ℓA, ℓB, ℓC and ℓD are primes

and f is a small cofactor. Let E be a supersingular curve over Fp2 and let {PA, QA},

{PB, QB}, {PC , QC} and {PD, QD} be bases for the ℓeAA , ℓ
eB
B , ℓeCC and ℓeDD torsions

E, E[ℓeAA ], E[ℓeBB ], E[ℓeCC ] and E[ℓeDD ], respectively. The public parameters of the

scheme are p, E, the four torsion bases and a cryptographic hash function H :

{0, 1}∗ → Z/ℓeBB Z.

As in the Jao-Soukharev protocol, the signer generates random integers mA, nA

from Z/ℓeAA Z and computes the isogeny ϕA : E → EA = E/⟨[mA]PA + [nA]QA⟩.

The signer’s public key consists of the tuple (EA, ϕA(PC), ϕA(QC)) and the private

key is (mA, nA) or, equivalently, ϕA.

The signing protocol proceeds in this order: 1. blind, 2. sign, 3. unblind. A

requestor chooses a message, which is blinded and sent to the signer. The signer

signs the blinded message and returns a blinded signature to the requestor. The

requestor then unblinds the received tuple, resulting in the actual signature for
1Observe that the requirement that H is a cryptographic hash function is an example of the

fourth point of potential error identified by Koblitz and Menezes: implicit assumptions within
the description of a protocol.
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the message.

Blinding For a message M , the requestor computes computes the hash h =

H(M) of the message and computes the curve EB = E/⟨PB + [h]QB⟩ and the

isogeny ϕB : E → EB. The requestor then blinds the message curve by taking a

random integer 0 < d < ℓeDD to compute EBD = EB/⟨ϕB(PD) + [d]ϕB(QD)⟩, with

the corresponding isogeny ϕBD : EB → EBD and a basis {P ′
D, Q

′
D} for the ℓeDD

torsion of EBD, EBD[ℓ
eD
D ]. The requestor additionally computes the points

P ′
i = ϕBD(ϕB(Pi)), Q

′
i = ϕBD(ϕB(Qi)), i = A,C

and sends these, along with the blinded curve EBD, to the signer.

Signing Signing functions in much the same way as for the Jao-Soukharev pro-

tocol, albeit shifted through ϕBD. Upon receipt of the blinded curve and auxiliary

points, the signer computes the curve EBDA = EBD/⟨[ma]P
′
A + [nA]Q

′
A⟩, the cor-

responding isogeny ϕBDA : EBD → EBDA and the points ϕBDA(P
′
C), ϕBDA(Q

′
C),

ϕBDA(P
′
D) and ϕBDA(Q

′
D). The curve and auxilliary points are returned to the

requestor for unblinding.

Unblinding In preparation for unblinding, the requestor computes a point R ∈

E[ℓeDD ] such thatR /∈ ker(ϕBD). They then solve the extended elliptic curve discrete

logarithm problem to find m′
D, n

′
D ∈ Z/ℓeDD Z such that

[m′
D]P

′
D + [n′

D]Q
′
D = ϕBD(R).
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Figure 2.5: The isogeny diagram for signing in the Srinath-Chandrasekaran Pro-
tocol.

Unblinding the curve EBDA requires the requestor to compute the curve EAB =

EBDA/⟨[m′
D]ϕBDA(P

′
D) + [n′

D]ϕBDA(Q
′
D)⟩ and the isogeny ϕBAD : EBDA → EAB.

The unblinded signature is the tuple σ = (EAB, P,Q) where P = ϕBAD(ϕBDA(P
′
C))

and Q = ϕBAD(ϕBDA(P
′
C)).

Confirmation and disavowal The confirmation and disavowal protocols for

the Srinath-Chandrasekaran protocol are identical to those in the Jao-Soukharev

protocol.

2.3.5 Analysing the security proof of Srinath-Chandrasekaran

The security proof for the Srinath-Chandrasekaran protocol, with respect to the

properties of unforgeability and invisibility, unsurprisingly bears strong similarity

with that of Jao-Soukharev. In particular, the authors adopt Assumption 2.3.1

without further proof. Their protocol-specific security assumption is:

Assumption 2.3.3. Unforgeability and invisibility in the Srinath- Chandrasekaran
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protocol are equivalent to 1MSSCDH.

In the next section, we show that 1MSSCDH can be reduced to an instance of

OMSSCDH.

Remark 2.3.4. The blindness property is not included in Assumption 2.3.3. In

consideration of unforgeability and invisibility we imagine the adversary as playing

the role of a malicious requestor. That is, the adversary has the freedom to choose

messages, and thus we do not consider blindness. We will discuss the impact on

blindness in Section 2.6.2.

In the Srinath-Chandrasekaran protocol, the adversary knows EA and can

compute EBi
and ker(ϕBi

), corresponding to message Mi, from the public hash

function H. A signing oracle takes the message Mi as input, and responds with

σ = (EABi
, ϕBiA(ϕBi

(PC)), ϕBiA(ϕBi
(QC)) as the signature. Notice that these sig-

natures are equivalent to Jao-Soukharev signatures.

In [80] the claim is made that forging a signature for this construction is equiv-

alent to solving 1MSSCDH. However, as in the case of the Jao-Soukharev protocol,

the authors did not account for the hash function. Hence, we similarly conclude

that breaking unforgeability and invisibility in the Srinath-Chandrasekaran proto-

col is not equivalent to solving 1MSSCDH or OMSSCDH.

2.4 Attack on SSCDH variants

The variants of the SSCDH problems defined in Section 2.2.2 arise in the security

proofs of [52, 80]. Due to the presumed hardness of SSCDH, these problems

are conjectured by the authors to be computationally infeasible. This section

introduces new attacks on both the OMSSCDH and 1MSSCDH problems which
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give a polynomial-time adversary a non-negligible advantage. We assume that the

adversary has access to an MSSCDH oracle, as defined here:

Definition 2.4.1 (MSSCDH Oracle). For fixed curves E and EA, let O be an

oracle that solves MSSCDH for EA, EB′, ker(ϕB′) for any curve EB′ that is ℓeBB -

isogenous to E.

Note an adversary cannot query the oracle with curves isomorphic to a given

target curve, EB.

Theorem 2.4.2. A solution to the OMSSCDH problem (Problem 2.2.7) can be

guessed with probability 1
(ℓB+1)ℓB

after a single query to the MSSCDH oracle.

Proof. Let EA, EB and ker(ϕB) be the parameters of the OMSSCDH problem. Let

EB′ ̸= EB be a curve ℓ2B-isogenous to EB and ℓeBB -isogenous to E. Recall that ϕB is

separable and so can be written as the composition of eB isogenies, each of degree

ℓB. Finding EB′ from EB amounts to inverting the last ℓB-isogeny step of ϕB, then

applying another ℓB-isogeny. Thus, with knowledge of ker(ϕB) the adversary can

compute ker(ϕB′) and EB′ .

Then, querying the oracle on EA, EB′ , ker(ϕB′) produces EAB′ . Since any curve

in the isomorphism class of EAB is ℓ2B-isogenous to EAB′ as depicted in Figure 2.6,

it follows that the adversary can guess the isomorphism class of EAB correctly with

probability 1
(ℓB+1)ℓB

.

Remark 2.4.3. Even without prior knowledge of ϕB, an adversary can guess an

appropriate EB′ with probability ℓB−1
(ℓB+1)ℓB

.

In practice the prime ℓB is chosen to be small (usually 2 or 3) and thus Theo-

rem 2.4.2 breaks the OMSSCDH problem completely.
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E ◦ ◦ EB

EB′

EA ◦ ◦ EAB

EAB′

Figure 2.6: Isogeny diagram showing that a query to the OMSSCDH oracle on
an ℓ2B-isogenous curve EB′ yields an elliptic curve close to target curve. The blue
arrow from EB′ to EAB′ represents the output of the oracle.

Without the condition on the degree of the isogeny between the curves sub-

mitted to the MSSCDH oracle and the base curve, the attack’s success probability

can be improved. We define the Free Degree OMSSCDH problem, which describes

this situation.

Problem 2.4.4 (Free Degree OMSSCDH Problem). For fixed EA, EB, given an

oracle to solve MSSCDH for EA, EB′, ker(ϕB′) with EB′ not isomorphic to EB,

solve MSSCDH for EA, EB and ker(ϕB).

An adversary can always solve Problem 2.4.4 after two queries to the oracle as

described in the proof of the following corollary to Theorem 2.4.2.

Corollary 2.4.5. A solution to the Free Degree OMSSCDH problem (Problem 2.4.4)

can be found with two queries to the MSSCDH oracle.

Proof. Let EA, EB and ker(ϕB) be the parameters of the Free Degree OMSSCDH

problem. Using the method outlined in the proof of Theorem 2.4.2, the adversary

computes two curves EB1 and EB2 , EB1 ≇ EB2 , that are ℓB-isogenous to EB. The

adversary queries the oracle to solve MSSCDH for EA, EBi
and ker(ϕBi

) for i = 1, 2,

receiving EABi
in response. The curves EABi

are ℓB-isogenous to the target EAB
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as shown in Figure 2.7. Each of EAB1 and EAB2 have ℓB + 1 isomorphism classes

to which they are ℓB-isogenous. The intersection of the two sets of isomorphism

classes contains only one element, namely, the isomorphism class of EAB.

E ◦ ◦ EB1 EB EB2

EA ◦ ◦ EAB1 EAB EAB2

Figure 2.7: Isogeny diagram of the attack on the Free Degree OMSSCDH problem.
The blue diagonal arrows (EB1 to EAB1 , and EB2 to EAB2) represent the output
of the MSSCDH oracle, which sends ℓB-isogenous curves of EB to ℓB-isogenous
curves of target curve EAB.

Clearly, the attack described in Theorem 2.4.2 can be generalised to OMSS-

DDH, the decisional variant of OMSSCDH, yielding the following theorem.

Theorem 2.4.6. A solution to the OMSSDDH problem (Problem 2.2.8) can be

guessed with probability 1
(ℓB+1)ℓB

after a single query to the MSSCDH oracle.

Proof. Given EA, EB and E ′ as in Problem 2.2.8, the adversary can apply the

attack of Theorem 2.4.2 to EA and EB to obtain the the isomorphism class of

EAB. The adversary then checks whether E ′ ∼= EAB.

Furthermore, a solution to the OMSSCDH problem implies a solution to the

1MSSCDH problem which yields the following theorem.

Theorem 2.4.7. A solution to the 1MSSCDH problem (Problem 2.2.9) can be

guessed with probability 1
(ℓB+1)ℓB

after a single query to the MSSCDH oracle.

Proof. Let E,EA be the parameters of the 1MSSCDH problem. Let EB1 be a curve

ℓeBB -isogenous to E. Theorem 2.4.2 solves the OMSSCDH problem for EA, EB1 and
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kerEB1 after a single query to the oracle. Let EB2 be the curve ℓ2B-isogenous to

EB1 found in the attack, with corresponding oracle response EAB2 . Let EAB1 be

the solution to the OMSSCDH problem, guessed correctly with success probability

1
(ℓB+1)ℓB

. The adversary then has tuples (EB1 , EAB1) and (EB2 , EAB2) and so solves

the 1MSSCDH problem with q = 1 queries to the oracle.

2.5 Attack on undeniable isogeny signature schemes

Both signature schemes schemes assume that forging a signature is equivalent to

breaking OMSSCDH. However, as shown in Section 2.3.3 and Section 2.3.5, we

see that the inclusion of a cryptographic hash function in the protocol precludes

equivalence to the SSCDH variant. As a consequence the attack of Section 2.4 dis-

proves the hardness assumption in [52] and [80], but does not break either protocol.

While this is sufficient to disprove the validity of the inherited assumption that

variants of hard problems are also hard, and in particular disproves the OMSSCDH

hardness assumption, we now justify the practical impact of the attack.

This section extends the attack on OMSSCDH, introducing a ‘hybrid’ version,

which involves finding ‘near-collisions’ in the hash function as well as using a

signing oracle. We apply the attack to the Jao-Soukharev protocol in detail first,

then discuss the differences in application to Srinath-Chandrasekaran, although

for the most part the attack proceeds identically.

For the purposes of the succeeding discussion, let H : {0, 1}∗ → Z/ℓeBB Z be

the public hash function used in both signature schemes. Let λ be a security

parameter. The hash function determines a coefficient of a point in the E[ℓeBB ]

torsion group and can therefore be treated as a function to a group of cardinality
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22λ for classical security levels and 23λ for quantum security levels [17]. Let 2L

denote the cardinality of this group in the image of ϕB.

2.5.1 Attack on Jao-Soukharev protocol

Once again, we recall that the adversary knows EA and can compute EBi
and

ker(ϕBi
), corresponding to message Mi, from the public hash function H. The

adversary additionally has access to a signing oracle subject to the following defi-

nition.

Definition 2.5.1. A signing oracle takes the message Mi as input, and responds

with

σ = (EABi
, ϕBiA(ϕBi

(PC)), ϕBiA(ϕBi
(QC))

as the signature.

Algorithm 1 summarises the hybrid attack against the Jao-Soukharev signature

scheme.

Input : Jao-Soukharev public parameters and a message M ∈ {0, 1}∗

Output: σ, a valid Jao-Soukharev signature for M

1 Build a near-collision on H with respect to the ℓB-adic metric, M ′;

2 Submit M ′ to the signing oracle to obtain the signature

σ′ =
(
EAB′ , P1 := ϕB′A(ϕB′(PC)), P2 := ϕB′A(ϕB′(QC))

)
;

3 Guess the ℓ2kB -isogeny ψ : EAB′ → EAB;

4 Find s such that sℓkB ≡ 1 mod ℓeCC ;

5 Compute the auxilary points of the signature as {[s] · ψ(P1), [s] · ψ(P2)};
6 Output σ = (EAB, [s] · ψ(P1), [s] · ψ(P2));
Algorithm 1: Algorithm to compute a Jao-Soukharev signature for a message

M
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In detail, the attack proceeds as follows: Let M be the message upon which the

adversary wishes to forge a signature, with corresponding message curve EB. The

adversary finds M ′, a near collision with M on H, such that the difference between

H(M) and H(M ′) is divisible by a large power of ℓB, say a power of size roughly

2L1 , for L1 < L. The adversary submits M ′ to the oracle, receiving the signature

σ′ =
(
EAB′ , P1 := ϕB′A(ϕB′(PC)), P2 := ϕB′A(ϕB′(QC))

)
in response. The curve

EAB′ is ℓ2kB -isogenous to the target curve EAB, where ℓkB ≈ 2L2 for L2 = L − L1

(see Lemma 2.5.2 below for proof).

The attacker must then guess the ℓ2kB isogeny ψ : EAB′ → EAB. The probability

of correctly identifying ψ in a single guess is 1

(ℓB+1)ℓ2k−1
B

. Let ψ = ψB ◦ ψ̂B′ , the

composition of two degree ℓkB isogenies. Informally, ψ̂B′ corresponds to k backwards

steps on the isogeny path from EAB′ and ψB corresponds to k forward steps to

EAB.2 This is illustrated in Figure 2.8. Letting ϕAB′ = ϕeB′ ◦ ϕeB′−1 ◦ · · · ◦ ϕ1, it

is clear that ψ̂B′ = ϕ̂eB′−k ◦ · · · ◦ ϕ̂eB′ . Applying ψ to P1 and Q1 therefore appends

a factor of ℓkB to the auxiliary signature points. The adversary computes s, where

sℓkB ≡ 1 mod ℓeCc . The signature σ = (EAB, [s] · ψ(P1), [s] · ψ(P2)) is then a valid

signature for M .

EA EAB′

EAB

ϕ1 ϕ2

ψB′ , deg(ψB′) = ℓkB

ψB, deg(ψB) = ℓkB

ϕeB′

ϕeB

Figure 2.8: Isogeny paths between EA, EAB and EAB′ in the attack on the Jao-
Soukharev protocol.

2A step corresponds to an ℓB-isogeny.
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The following lemma allows the adversary to proceed despite the scheme’s loss

of malleability due to the hash function.

Lemma 2.5.2. Let E be a supersingular elliptic curve, let ℓ be a prime, let e be

an integer, and let {P,Q} be a basis for E[ℓe]. Let n,m < ℓe be positive integers

congruent modulo ℓk for some integer k < e. Then the ℓ-isogeny paths from E to

EA = E/⟨P + [n]Q⟩ and EB = E/⟨P + [m]Q⟩ are equal up to the k-th step.

Proof. Let m = n+ αℓk, for some α > 0. Let ϕA : E → EA be a separable, cyclic

isogeny of deg(ϕA) = ℓe and ker(ϕA) = ⟨P + [n]Q⟩. We can express ϕA as the

composition of e ℓ-isogenies such that ϕA = ϕA
1 ◦ · · · ◦ ϕA

e . Likewise, ϕB : E → EB

can be expressed as ϕB = ϕB
1 ◦ · · · ◦ ϕB

e . The single ℓ-isogenies correspond to the

single steps in the ℓ-isogeny graph. We will show that ϕA
i = ϕB

i for 1 ≤ i ≤ k.

For i = 1, . . . , e, let ϕA
i : Ei−1 → Ei be an isogeny with kernel ⟨ℓe−iSA

i−1⟩, where

E0 = E, SA
0 = P + [n]Q and SA

i−1 = ϕA
i−1(S

A
i−2). Define the ϕB

i similarly, with B

substituted for A and m for n. By [27], these are ℓ-isogenies and ϕA
1 ◦ · · · ◦ϕA

e = ϕA

up to composition with an automorphism on EA (similarly for ϕB). We also have

the recursion

ℓe−iSA
i−1 = ℓe−iϕA

i−1(S
A
i−2) = ϕA

i−1 ◦ · · · ◦ ϕA
1 (ℓ

e−iSA
0 )
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with the analogous result for ℓe−iSB
i−1. For 1 ≤ i ≤ k, we have e− i+ k ≥ e and so

ℓe−iSB
0 = ℓe−i(P + [m]Q)

= ℓe−i(P + [n]Q) + ℓe−i+k[α]Q

= ℓe−i(P + [n]Q)

= ℓe−iSA
0

using that isogenies are group homomorphisms and Q ∈ E[ℓe]. It follows that

ϕA
i = ϕB

i for 1 ≤ i ≤ k.

With this result in mind, the validity of the signature output by Algorithm 1

is proven in the following theorem.

Theorem 2.5.3 (Correctness). Let s, ψ, P1 and P2 be defined as in Algorithm 1.

Let σ be the signature (EAB, [s]·ψ(P1), [s]·ψ(P2)) output by Algorithm 1. Assuming

that EAB is guessed correctly, σ is a valid signature.

Proof. Since ψ maps points on EAB′ to points on EAB, the points ψ(P1), ψ(P2)

both lie on the target curve. Moreover, as ψ(P1) = ψ(ϕB′A(ϕB′(PC))), the point

lies in the ℓeCC torsion of EAB, EAB[ℓ
eC
C ]. The same holds for ψ(P2). Although these

points would already pass the validation process for the signature scheme, they

can be easily distinguished from the honestly generated points by computing Weil

pairings. This is due to the factor ℓkB. Multiplication by the factor [s] ensures that

forged and honest signatures cannot be distinguished as described in the following.

Recall that ψ = ψB ◦ ψ̂B′ and P1 = ϕB′A(ϕB′(PC)). Since the order of PC is

coprime to deg(ϕB′A) and deg(ϕB′), and the isogeny diagram is commutative, we

can write P1 = ϕAB′(ϕA(PC)).
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By expanding ϕAB′ we obtain

ψ̂B′ ◦ ϕAB′ = ϕ̂eB′−k ◦ · · · ◦ ϕ̂eB′ ◦ ϕeB′ ◦ · · · ◦ ϕeB′−k ◦ · · · ◦ ϕeB−k ◦ · · · ◦ ϕ1

= [ℓkB] ◦ ϕeB′−k−1 ◦ · · · ◦ ϕ1.

Since s is the multiplicative inverse of ℓkB modulo ℓeCC , we have

[s] · ψ(P1) = ϕAB(ϕA(PC)) ∈ EAB[ℓ
eC
C ].

Analogously, we have [s] · ψ(P2) = ϕAB(ϕA(QC)) ∈ EAB[ℓ
eC
C ].

Let P = ϕBA(ϕB(PC)) ∈ EAB[ℓ
eC
C ] and Q = ϕBA(ϕB(QC)) ∈ EAB[ℓ

eC
C ]. These

are the points we expect in an honest signature. In both the confirmation and

disavowal protocols of the Jao-Soukharev scheme, the verifier uses the auxiliary

points to compute an isogeny from EAB to a curve Eσ = EAB/⟨[mC · s]ψ(P1) +

[nC · s]ψ(P2)⟩, where mC , nC ∈ Z/ℓeCC Z are integers chosen by the signer. This

curve is checked against EABC = EAB/⟨[mC ]P + [nC ]Q⟩ to determine the validity

of σ. The two points obtained in Algorithm 1 span the subgroup EAB[ℓ
eC
C ], and

we have EAB as the correct signature curve, so it follows that Eσ = EABC up to

isomorphism and thus the signature is accepted as valid.

Clearly, this attack breaks the unforgeability property of the scheme with a

single call to the signing oracle. Moreover, this implies that the scheme also

fails to satisfy invisibility, since any adversary with the ability to forge signatures

with non-negligible probability can simply check whether the challenge signature

obtained in the invisibility game matches a potential forgery, as follows.
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Theorem 2.5.4 (Invisibility). Let E, EA, {PA, QA}, {PB, QB} and {PC , QC} be

the public parameters of a Jao-Soukharev signature protocol. Let M be a message

with corresponding message curve EB. Given b sampled uniformly from {0, 1}, let

σ′ = (E ′, P ′, Q′) be a challenge signature as in the invisibility game, where

σ′ =


Sign(M ) if b = 1

Sim(M ) if b = 0

An adversary can determine b∗ such that b∗ = b with a single query to the signing

oracle.

Proof. The adversary applies Algorithm 1 to the message M , to receive σA =

(EAB, P,Q). By Theorem 2.5.3, this is a valid signature for M . The adversary

then checks whether EAB
∼= E ′ by computing j(EAB) and j(E ′) and returns b∗ = 1

if the statement holds, or b∗ = 0 otherwise.

2.5.2 Attack on Srinath-Chandrasekaran protocol

In the Srinath-Chandrasekaran protocol, the adversary knows EA and can compute

EBi
and ker(ϕBi

), corresponding to message Mi, from the public hash function H.

Additionally, the adversary has access to a signing oracle, subject to the following

conditions, as defined in [80].

Definition 2.5.5 (Signing Oracle [80]). Given a curve E over Fp2 with #E =

(ℓeAA ℓ
eB
B ℓeCC ℓeDD f)2 and points P,Q ∈ E of order ℓeAA , the signing oracle outputs

E ′ = E/⟨[mA]P + [nA]Q⟩
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where mA, nA are the Srinath-Chandrasekaran private key.

The scenario created by the unforgeability and invisibility games treats the ad-

versary as a malicious requestor. Suppose the target message is M , corresponding

to the message curve EB. Since the signature curve EAB resulting from the Srinath-

Chandrasekaran protocol is isomorphic to that returned by the Jao-Soukharev pro-

tocol for the same message and signer, the scheme is vulnerable to the attack in

Section 2.5.1. As in the Jao-Soukharev case, both unforgeability and invisibility

can be broken.

Note that the auxiliary points gain a factor of ℓeDD as a result of the unblinding

(which amounts to applying an isogeny and its dual). As noted by the authors

in [80], as this factor is coprime to ℓeCC , verification remains unaffected.

2.6 Impact on security

2.6.1 Parameter

Let us analyse the cost of Algorithm 1 in terms of the security parameter, λ. Note

that this cost analysis applies to the security of both the Jao-Soukharev protocol

and the Srinath-Chandrasekaran protocol.

To summarise Section 2.5, the attack proceeds by computing a near-collision

on the public hash function H and guessing an ℓ2kB -isogeny between an honest

signature produced by the oracle for one message to the target forgery curve.

Recall that H is a function to a group of size 2L, where L = 2λ for classical

security levels and L = 3λ for quantum security levels.

A direct approach for an adversary would be to find a collision onH, then apply
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the attack in Algorithm 1. This is infeasible, asH is chosen to be cryptographically

secure. The cost of finding a collision in L bits is O(2L/2) = O(2λ), for a classical

adversary. We similarly see the quantum cost of a direct attack is O(2L/3) = O(2λ).

Lemma 2.6.1. Algorithm 1 costs O(24λ/5) for a classical adversary and O(26λ/7)

for a quantum adversary.

Proof. Finding a near-collision of L1 bits on H classically has cost O(2L1/2). In

Step 3 of Algorithm 1 the adversary guesses the correct isogeny and curve EAB

with probability approximately 2−2L2 = 2−2(L−L1). Taking L1 = 4L/5 the attack

then has a total classical cost of O(22L/5), as opposed to the expected O(2L/2).

Under the assumption that it is possible to find near-collisions of the hash

function with lower complexity using a quantum computer3 [17], the first step of

the attack has cost O(2L1/3). Taking L1 = 6L/7, the total cost of the attack for a

quantum adversary is lowered to O(22L/7), as opposed to the expected O(2L/3).

The classical cost for this attack is O(24λ/5), with the hash function output

length equal to 2λ. With the assumption above, the quantum cost for this attack

is O(26λ/7).

Let λ be the desired level of security and let λ′ be the parameter defining the

length of the hash function. Then, in order to achieve the security level λ, we need

4λ′

5
= λ (2.1)

for classical security and
6λ′

7
= λ (2.2)

3Bernstein [8] argues that quantum collision search is practically inferior to classical collision
search algorithms due to expensive memory access and quantum memory.
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for quantum security. Hence, the size of the protocol parameters should be in-

creased by 25% to achieve the same classical security level (17% for quantum

security).

2.6.2 Blindness

Here we briefly discuss why the blindness property of the Srinath-Chandrasekaran

protocol is unaffected by our attack. First, we define blindness via the following

security game [29, 25, 66]:

1. The adversary generates a key pair (sk, vk).

2. The adversary chooses two messages, m0 and m1, and sends them to the

challenger.

3. The challenger computes a random bit b and reorders the messages as (mb,m1−b).

4. The challenger blinds the messages and sends them to the adversary.

5. The adversary signs the blinded messages, generating the signatures σblind
b

and σblind
1−b , which are returned to the challenger.

6. The challenger applies an unblinding algorithm to σblind
b and σblind

1−b and reveals

the unblinded signatures, σb and σ1−b, to the adversary.

7. The adversary outputs a bit b′.

The adversary wins if b′ = b. A signatures scheme is blind if |Pr(b = b′)−1/2 |

is negligible.

The most obvious difference, in comparison to unforgeability and invisibility,

is that in this game the adversary does not have access to an oracle. In fact,

the blindness game corresponds to neither the OMSSCDH nor the 1MSSCDH

problems. Hence, the attacks of Section 2.4 and Section 2.5 are not applicable.
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2.6.3 Adversarial restrictions

In order to test the boundaries of the attack model, we now look at the efficacy of

our attacks under certain restrictions to the adversary.

Restricted oracle Let us first explicitly define the oracle in Problem 2.2.7

(OMSSCDH).

Definition 2.6.2 (Unrestricted oracle). For fixed curves EA, EB, given EB′ and

ker(ϕB′), such that

• EB′ is ℓeBB -isogenous to E, and

• EB′ not isomorphic to EB,

the oracle O returns EAB′, a solution to MSSCDH for EA, EB′ and ker(ϕB′).

The attack against OMSSCDH (Section 2.4) requires the adversary to query

the oracle with an EB′ that is additionally ℓ2B-isogenous to EB. We now consider a

situation in which we are unable to choose curves this ‘close’ to the target message

curve. That is, we place a third restriction on the oracle.

Definition 2.6.3 (Restricted Oracle). For fixed curves EA, EB and a positive

integer k < 2eB given EB′ and ker(ϕB′), such that

• EB′ is ℓeBB -isogenous to E,

• EB′ not isomorphic to EB, and

• EB′ is ℓk′B -isogenous to EB, where k < k′ < 2eB,

the oracle Ok returns EAB′, a solution to MSSCDH for EA, EB′ and ker(ϕB′).

Assume that k′ is even. The adversary proceeds as in the proof of Theo-

rem 2.4.2. With knowledge of ker(ϕB), finding EB′ from EB amounts to inverting
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the last k′/2 ℓB-isogeny steps of ϕB, then applying another ℓk
′/2

B -isogeny. The

probability of guessing EAB correctly is then 1

(ℓB+1)ℓk
′−1

B

. This is analogous to the

situation at Step 3 in Algorithm 1. Clearly, for large k′ this probability becomes

negligible.

Restricted message We now consider changing the role of the adversary in

our security analysis of the Srinath-Chandrasekaran protocol. In Section 2.5 we

treated the adversary as a malicious requestor. Suppose now that the adversary is

attempting to impersonate the signer, but is not privy to the message to be signed.

That is, the adversary intercepts the blinded curve sent by the requestor to the

signer and wants to forge a signature. In this situation, the adversary knows E

and EBD, and seeks to compute EABD. Figure 2.9 illustrates a comparison of the

two attack scenarios.

E EA E EA

EB EAB EB EAB

EBD EABD EBD EABD

ϕA

ϕB

ϕA

ϕB

ϕBD ϕBD

ϕABD

ϕ̂BD

ϕABD

ϕ̂BD

Figure 2.9: Comparison of attack scenarios against the Srinath-Chandrasekaran
protocol. Items in blue are known to the attacker, while items in red are known
only to the signer. The left-most diagram shows the ‘malicious requestor’ scenario
and the right-most diagram illustrates the ‘restricted message’ scenario.

In order to apply Algorithm 1, the adversary would need to determine either the
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message, thus breaking blindness, or ker(ϕ′
BD), where ϕ′

BD : E → EBD. The latter

would allow the adversary to find an appropriate near-collision on H. However,

under the CSSI assumption this problem is infeasible. Hence an attacker cannot

forge a signature for M under these restrictions. We note that the ability to forge

signatures on chosen messages (as described in Section 2.5) is enough to break the

scheme, even if the restricted message attack is not possible.

2.7 Conclusion

The objective of this chapter was to illustrate a real-world example of Koblitz

and Menezes’ first point of error in reductionist security proofs. Specifically, we

looked at hardness assumptions positing that variants of intractable problems are

necessarily as difficult as the original problems, themselves. We have disproved

such hardness assumptions on the OMSSCDH and 1MSSCDH problems, and their

decisional variants. We have moreover addressed the incorrect assumptions in the

security proofs of two undeniable signature schemes (namely, that unforgeability

and invisibility are equivalent to solving OMSSCDH and 1MSSCDH, respectively)

and then outlined an attack against these schemes. The protocols of [52, 80] il-

lustrate that if insufficient scrutiny is given to problem variants, then the flawed

hardness assumption may propagate into extensions of the protocol in which it

is initially used. The resulting impact on security requires an increase in param-

eter size by 25%, assuming a classical adversary, or 17%, assuming a quantum

adversary. We note that this does not represent a devastating attack, but that the

security claims must nonetheless be updated to reflect this new attack. A question

for future work is whether another attack exists against the blindness property of
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[80].
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Chapter 3

Practical security of multivariate

quadratic cryptography

Practitioners of post-quantum cryptography need to compute explicit parameters

for achieving a desired level of security, or conversely, determine the level of secu-

rity that is provided by a given parameter set. However, translating complexity-

theoretic security results to precise values may require approximations, if certain

parameters are difficult to compute exactly. This chapter looks at the errors which

may be induced by such approximations through the lens of multivariate public

key cryptosystems (MPKCs). In particular, we look at the complexity analysis

of direct attacks on multivariate cryptosystems using algorithms for computing

Gröbner bases.

The best known approach for solving a zero-dimensional multivariate system

of equations F = 0 is to find a Gröbner basis of the ideal generated by the polyno-

mials in F [12, 19]. This approach is applicable to any multivariate cryptosystem

and is therefore considered the ‘direct attack’, as it does not take advantage of
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any additional structure in the system. This attack is generally an improvement

on exhaustive search of the solution space [33], which has size qn for a field with q

elements and for polynomials in n variables. Hence, the complexity of computing

a Gröbner basis of the public key of a multivariate cryptosystem or a multivariate

digital signature algorithm gives an upper bound on the security of that system.

Consequently, finding tight upper bounds on the complexity of Gröbner basis al-

gorithms is an important area of research.

The first algorithm for computing Gröbner bases was introduced by Buch-

berger [18] in 1965. Subsequently, several more system-solver algorithms have

been proposed, including [9, 37, 54, 67]. The system solvers fall into two cate-

gories [19]: Buchberger’s Algorithm and variations thereof; and algorithms based

on instances of Gaussian eliminations, an idea introduced by Lazard in [67]. The

latter category is the focus of this chapter. These algorithms use matrices that

correspond to systems of polynomials. The complexity of these algorithms is de-

pendent on the size of the matrices involved in the computation, which depends on

the degree d and the number of variables in the corresponding polynomials. This d

is not always known in advance, so heuristics have been developed to approximate

the cost of these algorithms.

The purpose of this chapter is to examine the veracity of a heuristic bound that

is based on work by Bardet, Faugère and Salvy [3] and to provide better estimates

of the complexity of Gröbner basis system solvers. Bardet, Faugère and Salvy

introduced the concept of the degree of regularity, which is commonly used in the

cryptography community to estimate the security of multivariate cryptosystems

and digital signature schemes. However, this chapter provides evidence that the

degree of regularity is not a valid upper bound for all systems.
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Results in the chapter appear in a paper written with Elisa Gorla, Emmanuela

De Negri, Manuela Dizdarevic, Mina Bigdeli and Sulaminthe Tsakou for Women

in Numbers Europe 3 2020 at the University of Rennes [11].

Outline and main contributions We begin by covering some relevant defini-

tions from commutative algebra. This is followed by a review of the literature with

regard to Gröbner bases and semi-regular sequences in Section 3.2, then a summary

of current methods for approximating the solving degree of a multivariate system

of polynomials in Section 3.3. The most common method is to take the degree of

regularity, defined by Bardet, Faugère and Salvy [3]. We identify two assumptions

made in this method that can potentially impact the security analysis of multi-

variate cryptosystems: namely, that the degree of regularity is an upper bound for

the solving degree and that the similarity in asymptotic behaviour is sufficient for

security analyses. Counterexamples disproving the first of these assumptions are

given in Section 3.4. These are significant in that the difference between solving

degree and degree of regularity is greater than 1. We then present an alternative

upper bound, which is based on a proven upper bound on the solving degree (the

Castelnuovo-Mumford regularity). The bound applies to over-determined systems

of semi-regular multivariate systems (which correspond to encryption protocols).

Section 3.5 gives explicit formulas for systems of n+ ℓ polynomials in n variables,

for small values of ℓ, which are not covered by the asymptotic formulas of Bardet

and Chyzak. Subsequently, we discuss how to apply these results to systems arising

in cryptography.
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3.1 Preliminaries

For a thorough mathematical background in commutative algebra we refer to

[34]. For the following, and the entirety of this chapter, let K be a field and

let R = K[x1, . . . , xn] be the polynomial ring over K in n variables. Let F =

{f1, . . . , fm} ⊆ R and let I = ⟨f1, . . . , fm⟩ be the ideal generated by the polyno-

mials in F .

An algebraic subset of Kn, with respect to a subset S ⊆ R is the set of common

zeroes of all polynomials f ∈ S.

Definition 3.1.1 (Zariski topology). The Zariski topology on an algebraic subset

X is defined by taking the closed sets to be the algebraic subsets of X.

The general linear group of n× n matrices over a field K, denoted GLn(K), is

an example of a set with the Zariski topology [19].

Definition 3.1.2 (Discrete topology). The discrete topology on a space X is de-

fined by taking all subsets to be open sets.

Over a finite field the Zariski topology is the discrete topology. This is because

every algebraic subset is the complement to another algebraic subset and so is

both open and closed.

A polynomial ideal I is a complete intersection, if it is generated by its codi-

mension number of polynomials. In our notaion, this implies m = n. An al-

most complete intersection is generated by the codimension +1 elements; that is,

m = n+ 1.

For any set S ⊆ R, let Sd denote the set of polynomials of degree d.
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Definition 3.1.3. Let I ⊆ R be a homogeneous ideal. We say that I is Artinian

if there exists a d ≥ 0 s.t. Id = Rd.

Let ≻ be a monomial ordering. For a polynomial f ∈ R, the intial term of f ,

in(f), is the greatest term of f with respect to ≻. The initial ideal of a polynomial

ideal I is the ideal generated by the initial terms of all polynomials f ∈ I. We can

now define the Gröbner basis of a polynomial ideal I.

Definition 3.1.4 (Gröbner Basis, [18]). Let I be a polynomial ideal. The polyno-

mials {g1, . . . , gt} ∈ I are a Gröbner basis for I if the initial ideal of I, in(I), is

generated by the leading terms of the gi. Letting in(f) denote the leading term of

the polynomial f with respect to some monomial ordering, G = {g1, . . . , gm} is a

Gröbner basis for I if in(I) = ⟨in(g1), . . . , in(gm)⟩.

A reduced Gröbner basis, G contains only monic polynomials and for all gi ∈ G

it holds that for all i in(gi) does not divide any term of gj, j ̸= i.

Finally, we define the Hilbert series of R/I.

Definition 3.1.5. Let I ⊆ R be a homogeneous ideal. The Hilbert function of R/I

is the function

HR/I : N −→ N

d 7−→ dimK(R/I)d.

The Hilbert series of R/I is the formal power series

HSR/I(z) =
∑
d≥0

HR/I(d)z
d.
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3.2 Gröbner Bases and semi-regular sequences

In general, MPKCs are constructed from a central map F ⊆ R, belonging to the

class of systems of multivariate polynomials over a finite field K that are relatively

easy to invert. The central map is then hidden by secret affine maps S and T via

the composition T ◦ F ◦ S. This composition is published as the public map, P .

The private key of such an MPKC is sk := {F ,S, T }.

The security of an MPKC rests on the difficulty of solving systems of multivari-

ate polynomial equations over finite fields. These systems are usually chosen to

be quadratic, although exceptions exist [32]. The problem of solving multivariate

quadratic (MQ) polynomial equations is formalised in the following statement.

Problem 3.2.1 (The MQ-Problem). Given a system of m multivariate quadratic

polynomials in n variables,

P := {p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)},

with coefficients in Fq, find a vector x̂ = (x1, . . . , xn) such that p1(x̂) = · · · =

pm(x̂) = 0.

The MQ-problem is known to be NP-hard for systems in which the coefficients

of the constituent polynomials are sampled uniformly at random from finite K [42].

Since in practice multivariate cryptosystems are equipped with a backdoor to fa-

cilitate decryption by a trusted user, these systems certainly do not satisfy this

definition of random. Moreover, this additional structure means the systems may

be more easily solved. Nevertheless, analysing the behaviour of sets of random

polynomials provides insight into the ‘general’ security of multivariate cryptosys-
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tems. Hence, before discussing direct attacks against Problem 3.2.1, we must first

rigorously define what is meant by random, or generic, sequences of polynomials.

3.2.1 Generic and semi-regular Sequences

The systems of polynomials arising in cryptography are designed to appear ‘ran-

dom’, in the sense that the coefficients appear to be chosen uniformly at random

from the coefficient field. To formalise the concept of ‘randomness’ as defined

above, we adapt the following definition of ‘genericity’ from algebraic geometry.

Definition 3.2.2 ([65]). A property is generic or holds generically if there exists

a nonempty Zariski-open set where the property holds.

Let us apply this to systems of polynomials. First we associate any polynomial

with the vector of its coefficients. Then the set of homogeneous polynomials of

degree d can be regarded as a projective space and, similarly, the set of polynomials

of degree ≤ d can be treated as an affine space. Hence, we have the following

definition for generic homogeneous polynomials.

Definition 3.2.3. A generic homogeneous polynomial of degree d is a homoge-

neous polynomial of degree d, which belongs to a nonempty Zariski-open set in the

projective space of all homogeneous polynomials of degree d.

Similarly, a generic polynomial of degree ≤ d is a polynomial of degree ≤ d,

which belongs to a nonempty Zariski-open set in the affine space of all polynomials

of degree ≤ d.

We define a generic sequence of polynomials as a sequence F = {f1, . . . , fm} ⊆

R, such that fi is a generic polynomial, for all i.
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Since we will be considering ideals generated by systems of polynomials, we

also define a genericity property for ideals, following [19]. Let U be a Zariski open

subset in GLn(K), where K is an infinite field1. Each element u ∈ U represents

a change in coordinates. We say that an ideal I is in generic coordinates if the

initial ideal in(I) is unchanged by all u ∈ U . Explicitly, this means in(uI) = in(I)

for all u ∈ U . A simpler, sufficient condition states: if I is generated by generic

polynomials, then I is in generic coordinates.

Remark 3.2.4. Recall that every set of polynomials is a Zariski-open set if the

coefficient field is finite. Hence, for genericity to be meaningful, the coefficient

field must be an infinite field. Obviously, this affects our ability to apply results

to cryptography, since MPKCs are typically defined over finite fields. We address

this irregularity in Section 3.5.

Semi-regular sequences were first introduced by Pardue.

Definition 3.2.5 (Semi-regular sequence [73]). Let R = K[x1, . . . , xn] and assume

that K is an infinite field. If A = R/I, where I is a homogeneous ideal, and

f ∈ Rd, then f is semi-regular on A if for every e ≥ d, the map Ae−d → Ae given

by multiplication by f is of maximal rank. A sequence of homogeneous polynomials

f1, . . . , fm is a semi-regular sequence if each fi is semi-regular on A/⟨f1, . . . , fi−1⟩,

1 ≤ i ≤ m.

The following conjecture suggests a connection between generic sequences of

polynomials and semi-regular sequences of polynomials.

Conjecture 3.2.6 (Conjecture B, [73]). If K is an infinite field and R = K[x1, . . . , xn],

and d1, . . . , dr are non-negative integers, then a generic sequence of polynomials of
1For existence of U and further properties of generic initial ideals, see §15.9 of [34].
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degrees d1, . . . , dr is semi-regular.

Semi-regular sequences are interesting because their Hilbert series is known.

Pardue proved that Conjecture 3.2.6 is equivalent to Fröberg’s Conjecture [41],

which suggests an expression for the Hilbert series of an ideal generated by generic

polynomials and is known to be true for many ideals.

Let h(z) =
∑

d≥0 hdz
d ∈ Z[z] be a formal power series with integer coefficients.

We denote by [h(z)] the formal power series obtained by truncating h(z) at the

first non-positive coefficient, that is

[h(z)] =
D∑

d=0

hdz
d,

where D = sup{d ≥ 0 | h0, . . . , hd > 0}. The following proposition gives an

explicit formula for the Hilbert series of a semi-regular sequence of m homogeneous

polynomials in n variables. The proposition also gives an equivalent condition for

semi-regularity, which is simpler to verify than Definition 3.2.5.

Proposition 3.2.7 ([73], Proposition 1). Let f1, . . . , fm ∈ R be homogeneous

polynomials of degrees d1, . . . , dm. Then f1, . . . , fm is a semi-regular sequence on

R if and only if

HSR/⟨f1,...,fℓ⟩(z) =

[∏ℓ
i=1(1− zdi)
(1− z)n

]
for 1 ≤ ℓ ≤ m.

Semi-regular sequences were first considered in the context of multivariate cryp-

tography by Bardet, Faugère, and Salvy in [3]. The definition of semi-regular se-

quences used in [3] differs from the one given by Pardue, notably by taking K to

be an arbitrary field. Thus, the definition is applicable to systems arising in mul-
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tivariate cryptography. To avoid ambiguity, the term cryptographic semi-regular

sequence will be associated with the definition of Bardet, Faugère and Salvy [3]

below:

Definition 3.2.8. A sequence of homogeneous polynomials f1, . . . , fm ∈ R is a

cryptographic semi-regular sequence if and only if

HSR/⟨f1,...,fm⟩(z) =

[∏m
i=1(1− zdi)
(1− z)n

]
.

Clearly, any semi-regular sequence is a cryptographic semi-regular sequence.

3.2.2 Gröbner bases

This section describes how a Gröbner basis can be used to solve a system of

polynomial equations.

The Macaulay bound was shown by Lazard [67, Theorem 2] to be an upper

bound for the degrees of the polynomials in a Gröbner basis of I, generated by a

homogeneous system F that has finitely many solutions over the algebraic closure

of K.

Definition 3.2.9. Suppose n ≤ m and d1 ≤ · · · ≤ dm. The Macaulay bound is

m∑
i=1

(di − 1) + 1.

Under the assumption that K is an infinite field, and that I is a radical ideal,

the Shape Lemma [64] gives the general form of the reduced Gröbner basis of

I with respect to the lexicographic ordering. Namely, the reduced lexicographic
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Gröbner basis of I is of the form

{gn(xn), xn−1 − gn−1(xn), . . . , x1 − g1(xn)}, (3.1)

where g1, . . . , gn are univariate polynomials in xn and deg(g1), . . . , deg(gn−1) <

deg(gn). However, in cryptography, systems are usually defined over finite fields

and the condition that F generates a radical ideal does not always hold. Caminata

and Gorla [19, Theorem 2.6] use the Elimination Theorem [28, Theorem 2] to prove

that the reduced Gröbner basis of I can be used to solve the system F = 0, even

when these conditions are not satisfied. The Gröbner basis obtained has a similar

form to Equation (3.1). Crucially, it contains a univariate polynomial. Thus, at

least one variable can be eliminated and the system is simplified.

The most efficient ordering for computing a Gröbner basis is the degree reverse

lexicographic (DRL) ordering. Faugère, Gianni, Lazard and Mora [39] developed

an algorithm for transforming a Gröbner basis with respect to one ordering to a

Gröbner basis for the same ideal with respect to another ordering. In particular,

it is faster to compute a DRL Gröbner basis and convert it to a lexicographic

one with this algorithm, than to directly compute a lexicographic Gröbner basis.

Throughout this chapter, results on complexity are given with respect to the DRL

ordering.

3.3 Estimating the solving degree

The complexity of Gröbner basis algorithms that employ Gaussian elimination is

primarily determined by a quantity known as the solving degree.
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Definition 3.3.1. The solving degree of F , dsolve(F), is the degree d at which a

Gröbner basis algorithm returns a DRL Gröbner basis of I.

The solving degree dictates the size of the matrices occurring in the algorithm.

This section begins by describing the family of Gröbner basis algorithms we are

interested in, and showing the dependence of the complexity on the solving de-

gree. Unfortunately, computing the solving degree is costly in practice and hence

cryptographers work with approximations and bounds. Since the algorithm cost is

bounded by an increasing function of the solving degree, finding an upper bound

for the solving degree corresponds to bounding the complexity of the Gröbner ba-

sis algorithm. This, in turn, gives an estimate of the complexity of computing the

solutions of the system F .

Remark 3.3.2. To say that solving the system F = 0 is at least as hard as solving

some other system F ′ = 0, one requires that dsolve(F ′) ≤ dsolve(F). Using an

upper bound to estimate the hardness of solving F = 0 is a case of Koblitz and

Menezes’ first type of error. That is not to say, however, that efforts to find an

upper bound for the solving degree are therefore irrelevant to cryptography. In

fact, as highlighted by Koblitz and Menezes, and demonstrated throughout this

thesis, proven results in cryptography are often difficult to obtain. Results of this

kind, then, albeit not ideal, are still useful in telling cryptographers something

about the systems they work with. We must still endeavour to make these results

as strong as possible.

Bounding the solving degree is not a new focus of study, and cryptanalysts

commonly use the results of [3], [38] to assess the security of multivariate cryp-

tosystems. This section will end by recapitulating proposed upper bounds on the
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solving degree in literature:

1. the Castelnuovo-Mumford regularity (Section 3.3.2), and

2. the degree of regularity (Section 3.3.3).

Throughout, let F = {f1, . . . , fm} ⊆ R and fix the DRL order on R. Let F top

denote the system of equations comprising the homogeneous parts of highest degree

of the polynomials in F . Let Fh ⊆ R[t] denote the system of equations obtained by

homogeonising the polynomials in F with the variable t. Additionally, let dsolve(F)

denote the solving degree of F and dreg(F) denote the degree of regularity of F .

Example 3.3.3. Let p = x1x
2
2 + x1x2x3 + x1. Then ptop = x1x

2
2 + x1x2x3 and

ph = x1x
2
2 + x1x2x3 + x1t

2.

3.3.1 Complexity of a class of algorithms for computing

Gröbner bases

We consider algorithms for computing Gröbner bases that use Gaussian elimination

on Macaulay matrices of increasing degree.

Let Mon(R) denote the set of all monomials in R. For d ≥ 1, the Macaulay

matrix Md(F) of a polynomial system F = {f1, . . . , fm} is a matrix with entries

in K with:

– Columns indexed by all elements of Mon(R) of degree ≤ d, in decreasing

order from left to right, and

– Rows indexed by the polynomials mifj, where fj ∈ F , mi ∈ Mon(R), and

deg mifj ≤ d.

Therefore, the (k, l)-th entry of the matrix is the coefficient of the monomial

indexed by l in the polynomial which is indexed by k.
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Concretely, we consider the following (summarised) algorithm to compute the

reduced Gröbner basis of I:

1. Start in degree d = max{d1, . . . , dm} where di is the degree of fi.

2. Perform Gaussian elimination on Md(F) to compute its reduced row echelon

form (RREF). Since the rows of Md(F) correspond to the polynomials mifj,

Gaussian elimination corresponds to taking linear combinations of these poly-

nomials. Hence, every row in the RREF corresponds to a polynomial in the

ideal generated by F .2

3. For each row3, check the following condition:

(a) If computing the RREF produces a row which corresponds to a poly-

nomial f which has leading term strictly smaller than that of mifj

and deg(f) < d, then one appends to the matrix a new row uf for all

u ∈ Mon(R) such that deg(uf) ≤ d.

4. Perform Gaussian elimination on the resulting matrix and repeat Step 3 until

no further degree reductions are produced.

5. Check whether a Gröbner basis of I has been found. If yes, the algorithm

terminates, otherwise d is increased by 1 and the process is repeated.

The complexity of such an algorithm is dominated by the complexity of com-

puting the reduced row echelon form of the Macaulay matrices involved. This

depends on the size to which the Macaulay matrices grow, which is determined by

d. The maximum degree of the polynomials involved in the computation of the

reduced DRL Gröbner basis of I is known as the solving degree.
2In order to track each row carefully, we use a variant of Gaussian elimination which does not

permute rows.
3Suppose the kth row of Md(F) corresponds to the polynomial mifj . Then the kth row in

the RREF corresponds to a polynomial of the form [mifj+ a linear combination of other rows
of Md(F)].
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The complexity of finding a Gröbner basis using Macaulay matrices and Gaus-

sian elimination is bounded by a known function of the solving degree [3]:

Proposition 3.3.4. The number of operations required to compute a Gröbner basis

for F , an over-determined system of m polynomials in n variables, is

O

(
md

(
n+ d− 1

d

)ω)
,

where d is the solving degree of the system and 2 ≤ ω < 2.39 [3] is the linear

algebra constant.

The algorithm as described will compute a Gröbner basis for I. It does not,

however, give a method for verifying whether the final matrix output corresponds

to a Gröbner basis. One stopping criterion is that the principal syzygies4 corre-

sponding to the output basis reduce to 0. However, this has its own obstruction.

Suppose one wishes to verify the output after d iterations. The stopping criterion

can be verified by Gaussian elimination, however, this will be of a matrix in degree

d′, where d < d′ < 2d− 1.

Another possible stopping criterion is to identify an a priori bound on the

solving degree. Concretely, if the solving degree of a system F is at most D, then

the Gröbner basis algorithm can stop at degree D. This motivates the need to

find good bounds for the solving degree.

3.3.2 Castelnuovo-Mumford regularity

The first approximation of the solving degree of a system of polynomials F is an

invariant from commutative algebra: the Castelnuovo-Mumford regularity. Let
4Also known as S-polynomials, see [53].
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I ⊆ R be a homogeneous ideal where F comprises a minimal set of generators of

I.

Definition 3.3.5 ([21]). The Castelnuovo-Mumford regularity of I, regR(I), is

defined as

regR(I) = sup{j − i : βR
i,j(I) ̸= 0},

where the βi,j are the graded Betti numbers of I in the graded minimal free res-

olution of I. If F = {f1, . . . , fm} is a sequence of homogeneous polynomials, let

regR(F) denote the regularity of the ideal I = ⟨F⟩.

When the ring R is clear from context the notation reg(I) is used. Caminata

and Gorla proved the following useful result in 2017.

Theorem 3.3.6 (Castelnuovo-Mumford bound on the solving degree [19]). Let

F = {f1, . . . , fm} be such that Fh is in generic coordinates. Then

dsolve(F) ≤ reg(Fh).

Remark 3.3.7. Suppose F is a homogeneous cryptographic semi-regular sequence.

The Castelnuovo-Mumford regularity of the ideal I generated by F is the least

degree d ≥ 0 for which Id = Rd [19]. This motivates a link between the Hilbert

series of a sequence and the Castelnuovo-Mumford regularity.

The following lemma allows us to bound the degree of the elements of the DRL

Gröbner basis of I. Note that this bound does not require I to be in generic

coordinates.
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Lemma 3.3.8. Let F be cryptographic semi-regular sequence, generating the ideal

I. Then,

degmax(I) ≤ reg(I).

Proof. By Theorem 7 of [19], degmax(I) ≤ dsolve(F). Applying Theorem 3.3.6 then

gives the desired result.

Although the Castelnuovo-Mumford regularity is a proven upper bound on the

solving degree of a system, in practice it is difficult to compute. Cryptographers

largely use the degree of regularity instead.

3.3.3 The degree of regularity

The concept of degree of regularity of a system of equations was introduced by

Bardet, Faugère and Salvy in [4] and in Bardet’s PhD thesis [1].

Definition 3.3.9 (Degree of Regularity (Definition 4, [4])). Let F be a system

of polynomial equations and assume that (F top)d = Rd for d ≫ 0. The degree of

regularity of F is

dreg(F) = min{d ≥ 0 | (F top)d = Rd}.

If (F top)d ̸= Rd for all d ≥ 0, we let dreg(F) =∞.

Crucial to Definition 3.3.9 being useful is the fact that Itopd = Rd for some d,

that is, Itopd should be Artinian (Definition 3.1.3).

Remark 3.3.10. The ideal I ⊆ R is Artinian if and only ifHSR/I(z) is a polynomial.

Observe that for d ≥ 0, Id = Rd ⇐⇒ dimK(R/I)d′ = 0 for d′ ≥ d ⇐⇒ HSR/I(z)

is a polynomial. As a consequence, any cryptographic semi-regular sequence with

m ≥ n generates an Artinian ideal.
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The degree of regularity is widely used as a heuristic upper bound for the

solving degree of systems of equations arising in multivariate cryptography [10,

83, 87]. In [4], inhomogeneous cryptographic semi-regular sequences are defined

as sequences F such that F top is a cryptographic semi-regular sequence, according

to Definition 3.2.8. Let Itop = ⟨F top⟩. If Itopd = Rd for d ≥ 0, then dreg(F) =

reg(F top) [19]. The bound follows from the following assumption.

Assumption 3.3.11. Let F be an inhomogeneous cryptographic semi-regular se-

quence of polynomials. Then, reg(F top) ≥ reg(F).

Clearly, if Assumption 3.3.11 holds, then the degree of regularity is an upper

bound for the solving degree of F . Bardet and Chyzak give asymptotic formulas

for the degree of regularity for over-determined systems in [2].

3.4 Validity of the degree of regularity bound

There are several known examples in the literature that show that the degree of

regularity is not a strict upper bound for the solving degree [19]. However, the

difference between both degrees in these cases has been at most 1. The examples

in this section demonstrate that the difference between the solving degree and the

degree of regularity can be greater than 1.

3.4.1 Method for computing step degree and degree of reg-

ularity

The solving degree and degree of regularity of the examples in Section 3.4.2 were

computed using the computer algebra system Magma [15].
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Computing the solving degree Magma does not directly compute the solving

degree, so the maximum step degree is used as a substitute. Concretely, the maxi-

mum step degree is the largest step degree output in the Magma implementation of

the F4 Gröbner basis algorithm. Since the implementation is not publicly avail-

able, equality between the two degrees remains a working assumption. Having

corresponded with representatives of Magma at the University of Sydney to deter-

mine the veracity of this conjecture, we received confirmation that the maximum

step degree was a valid substitute for solving degree, as it is defined herein. How-

ever, without access to the implementation, in particular, the stopping criterion,

we have not been able to verify this independently.

Computing the degree of regularity The degree of regularity was computed

by calling Regularity(GradedModule(Ftop)), where Ftop is the Magma instantia-

tion of F top as defined in Section 3.3.3.

3.4.2 Greater differences between solving degree and degree

of regularity

The following examples are of multivariate polynomial systems which yield a solv-

ing degree that is both greater than the degree of regularity for the system, and

with a difference greater than 1. They are inspired by examples from [7].

Example 3.4.1. Let R = F7[x, y, z] and let fx = x7− x, fy = y7− y, fz = z7− z be

the field equations. Consider the equations

f1 = x5 + y5 + z5 − 1, f2 = x3 + y3 + z2 − 1, f3 = y6 − 1, f4 = z6 − 1.
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Consider the systems of equations

F =

{
3∏

j=1

fij

∣∣∣∣∣ 1 ≤ i1 ≤ i2 ≤ i3 ≤ 4

}
∪ {fx, fy, fz}.

Using Magma the solving degree and degree of regularity are computed as

dsolve(F) = 24 > 15 = dreg(F).

Example 3.4.2. Let R = F7[x, y, z] and let fx = x7− x, fy = y7− y, fz = z7− z be

the field equations. Consider the equations

f1 = x5 + y5 + z5 − 1, f2 = x3 + y3 + z2 − 1, f3 = fx, f4 = fy, f6 = fz.

Consider the systems of equations

F =

{ ∏
1≤i≤j≤6

fifj

}
∪ {fx, fy, fz}.

Using Magma the solving degree and degree of regularity are computed as

dsolve(F) = 21 > 13 = dreg(F).

Relevance to cryptography Since the degree of regularity is used to assess the

security of cryptographic systems, it would be very helpful to find counterexamples

that arise naturally in cryptography. It should be clear immediately that the two

examples provided in Section 3.4.2 are too small to make effective cryptosystems.

Moreover, they were not intentionally constructed with a well-defined ‘trapdoor’,
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as would be the case for a multivariate cryptosystem.

It is unclear whether there are certain properties of a system of polynomials

that will lead to a larger difference between solving degree and degree of regularity.

Hence, finding counterexamples is an exercise in trial-and-error and the parameter

sizes used in cryptography make computing the solving degree of most instances

infeasible. That is not to say the examples provided are without consequence:

clearly, it is not inconceivable that a multivariate cryptosystem will or does exist,

for which the degree of regularity is not an upper bound on the solving degree.

For this reason, we argue that it is preferable to use a proven bound to make

complexity (and, thereby, security) arguments.

3.5 Upper bounds on the solving degree for over-

determined systems

Since there exist examples of polynomial systems for which the degree of regularity

is not a valid upper bound for the solving degree, the focus turns to the Castelnuvo-

Mumford regularity. Caminata and Gorla proved that this gives a proven upper

bound for the solving degree [19].

If m > n, asymptotic formulas for the degree of regularity of a cryptographic

semi-regular sequence are given in [3, 4]. We have discussed the limitations of re-

lying on asymptotic formulas when determining concrete security values in Chap-

ter 1. The focus on this section is therefore to find an explicit formula for upper

bounds on the solving degree of certain over-determined systems.

Let F = {f1, . . . , fm} ⊆ R be a system of multivariate polynomial equations.
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We first restrict to polynomial systems where m−n is small: explicitly, systems of

equations wherem = n+1, systems of quadratic equations where n+2 ≤ m ≤ n+5

and systems of cubic equations for m = n+ 2. We note that there are no current

multivariate cryptosystems with such small values for m − n. However, we also

show that the upper bounds on solving degrees for these systems can be extended

to larger systems, that is, where m > n+ 5.

Section 3.5.1 contains explicit formulas for bounds on the solving degree of F

when the polynomials are homogeneous. To motivate the application to systems

arising in cryptography, systems over both infinite and finite fields are consid-

ered. These results are then applied to systems of inhomogeneous polynomials in

Section 3.5.2, again covering infinite and finite fields.

Throughout, let dsolve(F) denote the solving degree of F , degmax(I) denote the

maximum degree of the polynomials in the DRL Gröbner basis of I and dreg(F)

denote the degree of regularity of F .

3.5.1 Homogeneous cryptographic semi-regular sequences

Let F = {f1, . . . , fm} ⊆ R be a system of homogeneous multivariate polynomial

equations in n variables and let di = deg(fi).

3.5.1.1 Case 1: m = n+ 1

Suppose m = n+1 and, without loss of generality, let d1 ≤ · · · ≤ dn+1 and take F

defined over an infinite field. Recall that this is necessary for the polynomials in F

to be generic. Assuming Pardue’s conjecture, such a sequence is also a semi-regular

sequence.
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The following result of Migliore and Mirò-Roig [70] applies to systems of generic

polynomials that generate the ideal I, when I is an almost complete intersection.

Lemma 3.5.1 ([70], Lemma 2.5). The maximal socle degree of R/I is

⌊
1

2

((
n+1∑
i=1

di

)
− n− 1

)⌋
,

where the maximal socle degree refers to the degree of the last non-zero component

of the minimal resolution of R/I.

Assume F is a system of generic polynomials. Then ⟨f1, . . . , fn⟩ is a com-

plete intersection, as the polynomials are defined in n variables. Suppose that

deg(fn+1) ≥
(

n∑
i=1

di

)
− n. Then fn+1 ∈ ⟨f1, . . . , fn⟩ and so I is a complete in-

tersection. Hence, without loss of generality, we take deg(fn+1) <

(
n∑

i=1

di

)
− n.

Then I is an almost complete intersection and so Lemma 3.5.1 applies. Note that

in this case the socle degree coincides with the Castelnuovo-Mumford regularity.

The following theorem uses these results to bound the solving degree.

Theorem 3.5.2. Let K be an infinite field and let F = {f1, . . . , fn+1} consist of

n+1 generic homogeneous polynomials of degrees di = deg(fi) in n variables. Let

d1 ≤ d2 ≤ · · · ≤ dn+1. Assume without loss of generality that dn+1 < d1 + · · · +

dn − n. Then F is a cryptographic semi-regular sequence and

dsolve(F) ≤
⌊
d1 + · · ·+ dn+1 − n− 1

2

⌋
+ 1.

Proof. The Hilbert series of F is known, by results from Watanabe [86] (in particu-

lar Theorem 3.8) and satisfies Definition 3.2.8 [70, §2]. Hence, F is a cryptographic

semi-regular sequence.
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Since dn+1 < d1 + · · · + dn − n, I is an almost complete intersection. By

Lemma 3.5.1,

reg(I) =

⌊
d1 + · · ·+ dn+1 − n− 1

2

⌋
+ 1.

Moreover I is in generic coordinates, as it is generated by generic polynomials.

Therefore, applying Theorem 3.3.6 yields the bound for the solving degree of F .

Remark 3.5.3. Since dn+1 < d1+ · · ·+dn−n, reg(I) < d1+ · · ·+dn−n+1, which

is, of course, the Macaulay bound (Definition 3.2.9). Therefore, the bound on the

solving degree resulting from Theorem 3.5.2 is better than the Macaulay bound.

Corollary 3.5.4. Let K be an infinite field and let F = {f1, . . . , fn+1} consist of

n+1 generic homogeneous quadratic polynomials in n variables. Then deg(fi) = 2

for all i = 1, . . . , n+ 1 and

dsolve(F) ≤
⌊
n+ 1

2

⌋
+ 1

Corollary 3.5.5. Let K be an infinite field and let F = {f1, . . . , fn+1} consist of

n+1 generic homogeneous cubic polynomials in n variables. Then deg(fi) = 3 for

all i = 1, . . . , n+ 1 and

dsolve(F) ≤ n+ 2.

To apply these results to systems arising in multivariate cryptography, we as-

sume F is a cryptographic semi-regular sequence as in Definition 3.2.8. The prob-

ability of this assumption holding is discussed in Section 3.6.1. If F generates an

ideal in generic coordinates then the same bound on the solving degree holds.

Theorem 3.5.6. Let K be a finite field and let F = {f1, . . . , fn+1} be a homoge-
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neous cryptographic semi-regular sequence of polynomials of degrees di = deg(fi)

in n variables. Let I = ⟨F⟩ and suppose I is in generic coordinates. Let d1 ≤ d2 ≤

· · · ≤ dn+1. Assume without loss of generality that dn+1 < d1 + · · ·+ dn − n.

Then

dsolve(F) ≤
⌊
d1 + · · ·+ dn+1 − n− 1

2

⌋
+ 1.

Additionally, by Theorem 3.5.6 and Lemma 3.3.8, for m = n+1, the degree of

the elements of the DRL Gröbner basis of I, are bounded as:

degmax(I) ≤
⌊
d1 + · · ·+ dn+1 − n− 1

2

⌋
+ 1.

Moreover, for systems of all quadratic or all cubic polynomials, Theorem 3.5.6

yields the following bounds on the solving degree.

Corollary 3.5.7. Let K be a finite field and let F = {f1, . . . , fn+1} be a homo-

geneous cryptographic semi-regular sequence of n + 1 quadratic polynomials in n

variables. Suppose I = ⟨F⟩ is in generic coordinates. Then deg(fi) = 2 for all

i = 1, . . . , n+ 1 and

dsolve(F) ≤
⌊
n+ 1

2

⌋
+ 1

Corollary 3.5.8. Let K be a finite field and let F = {f1, . . . , fn+1} be a homoge-

neous cryptographic semi-regular sequence of n+1 cubic polynomials in n variables.

Let I = ⟨F⟩, and suppose I is in generic coordinates. Then deg(fi) = 3 for all

i = 1, . . . , n+ 1 and

dsolve(F) ≤ n+ 2.

83



3.5.1.2 Case 2: n+ 2 ≤ m ≤ n+ 5, di = 2 for all i = 1, . . . ,m

Let n+2 ≤ m ≤ n+5 and assume that F is a cryptographic semi-regular sequence

of homogeneous quadratic equations. By Definition 3.2.8 and Definition 3.1.3, and

since m > n, there exists a d such that Id = Rd. The Castelnuovo-Mumford

regularity of I is the least such degree. Consequently, reg(I) is the least degree d

for which the coefficient of zd in the power series (1−z2)m/(1−z)n is non-positive.

We hence also refer to this value as the index of regularity. Expanding the Hilbert

series for n,m = n+ ℓ gives

(1− z2)m

(1− z)n
= (1− z)ℓ(1 + z)m

=

(
1−

(
ℓ

1

)
z + · · ·+

(
ℓ

ℓ

)
(−1)ℓzℓ

)(
1 +

(
m

1

)
z + · · ·+

(
m

m

)
zm
)

=
m+ℓ∑
k=0

αkz
k,

where αk, the coefficient of zk, is

αk =
k∑

j=0

(−1)j
(
ℓ

j

)(
m

k − j

)
. (3.2)

The smallest k for which αk is non-positive will give reg(I). However, this k is not

easily read from Equation (3.2). Note that for k ≥ ℓ,
(
ℓ
k

)
= 0 and so by expanding

and simplifying the binomial coefficients

αk =
ℓ∑

j=0

(
(−1)j

(
ℓ

j

)(
m

k − j

))
=

m!

k!(2ℓ+ n− k)!
f(ℓ, k),
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where

f(ℓ, k) = ℓ!
ℓ∑

j=0

(
(−1)j

(
2ℓ+ n− k
ℓ− j

)(
k

j

))
. (3.3)

Clearly, αk ≤ 0 ⇐⇒ f(ℓ, k) ≤ 0. Hence, finding reg(I) is reduced to finding

minimal k such that f(ℓ, k) ≤ 0. Expanding Equation (3.3) and finding zeroes for

r = 2, 3, 4, 5 gives the following theorem.

Theorem 3.5.9. Let F = {f1, . . . , fm} be a cryptographic semi-regular sequence

of homogeneous polynomials of degree 2 in n variables. Let I = ⟨F⟩ and let

r(m,n) =



⌈
(4 + n−

√
4 + n)/2

⌉
if m = n+ 2,

⌈
(6 + n−

√
16 + 3n)/2

⌉
if m = n+ 3,⌈

(8 + n−
√
20 + 3n+

√
2
√
128 + 39n+ 3n2)/2

⌉
if m = n+ 4,⌈

(10 + n−
√

40 + 5n+
√
2
√
288 + 75n+ 5n2)/2

⌉
if m = n+ 5.

Then

degmax(I) ≤ r(m,n).

If in addition we assume that I is in generic coordinates, then

dsolve(F) ≤ r(m,n).

Proof. We have that the Castelnuovo-Mumford regularity of I is reg(I) = r(m,n).
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Let ℓ = 2, 3, 4, 5 in Equation (3.3), yielding the following functions:

f(2, k) =4k2 − 4(4 + n)k + n2 + 7n+ 12,

f(3, k) =− 8k3 + 12(6 + n)k2 − 2(92 + 33n+ 3n2)k + n3 + 15n2 + 74n+ 120,

f(4, k) =16k4 − 32(8 + n)k3 + 8(172 + 45n+ 3n2)k2

− 8(352 + 148n+ 21n2 + n3)k

+ n4 + 26n3 + 251n2 + 1066n+ 1680

and f(5, k) =− 32k5 + 80(10 + n)k4 − 80(92 + 19n+ n2)k3

− 2(27024 + 12450n+ 2175n2 + 170n3 + 5n4)k

+ 40(760 + 246n+ 27n2 + n3)k2

+ n5 + 40n4 + 635n3 + 5000n2 + 19524n+ 30240.

Considering f(ℓ, k) as a function of k, we solve for kℓ, the point at which f(ℓ, k)

first becomes non-positive5. We find

k2 = (4 + n−
√
4 + n)/2

k3 = (6 + n−
√
16 + 3n)/2

k4 = (8 + n−
√

20 + 3n+
√
2
√
128 + 39n+ 3n2)/2

and k5 =
1

2

(
10 + n−

√
40 + 5n+

√
2
√
288 + 75n+ 5n2

)
.

Recall that the index must be an integer, so taking k = ⌈kℓ⌉ gives the first

non-positive αk for a particular ℓ.6

5The zeroes of the functions f(ℓ, k) were computed using Mathematica [88].
6For each ℓ, it was checked that ⌈kℓ⌉ is not larger than that next largest zero of f(ℓ, k), so

this αk is indeed non-positive.
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If I is in generic coordinates, applying Theorem 3.3.6 bounds the solving degree.

The bound on degrees degmax follows from Lemma 3.3.8.

3.5.1.3 Case 3: m = n+ 1, di = 3 for all i = 1, . . . ,m

Let m = n + 1 and assume that F is a cryptographic semi-regular sequence of

cubic equations. Analogous to Theorem 3.5.9, examining the Hilbert series for

m,n, yields the following theorem.

Theorem 3.5.10. Let F = {f1, . . . , fn+1} be a cryptographic semi-regular se-

quence of homogeneous polynomials of degree 3 in n variables. Let I = ⟨F⟩, then

degmax(I) ≤ n+ 2.

If in addition we assume that I is in generic coordinates, then

dsolve(F) ≤ n+ 2.

Proof. Consider the Hilbert series for m = n+ 1, di = 3 for all i = 1, . . . ,m,

(1− z3)n+1

(1− z)n
= (1− z)(1 + z + z2)n+1

= (1− z)
2n+2∑
k=0

(
n+ 1

k

)
2

zk

= 1 +
2n+3∑
i=1

((
n+ 1

k

)
2

−
(
n+ 1

k − 1

)
2

)
zk,

where
(
n
k

)
p

is the polynomial coefficient7 of zk in the polynomial (1+z+ · · ·+zp)n.

7
(
n
k

)
p

is also referred to as the extended binomial coefficient.
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Many of the known binomial coefficient identities can be extended to polynomial

coefficients [36]. In particular, symmetry, where

(
n

k

)
p

=

(
n

pn− k

)
p

, n ≥ 0. (3.4)

For p = 2, these are known as the trinomial coefficients. For fixed n, the

trinomial coefficients
(
n
k

)
2

increase for 0 ≤ k ≤ n due to the recurrence relation(
n
k

)
2
=
(
n−1
k−1

)
2
+
(
n−1
k

)
2
+
(
n−1
k+1

)
2
. The central trinomial coefficient,

(
n
n

)
2

for fixed n,

is the largest coefficient. The sequence of central trinomial coefficients was studied

in depth by Euler [35], so we do not belabour the details here.

The coefficient of zk is

αk =

(
n+ 1

k

)
2

−
(
n+ 1

k − 1

)
2

. (3.5)

Since the trinomial coefficients increase with increasing k (up to n), αk is positive

for all 0 ≤ k ≤ n+ 1. Now, consider k = n+ 2. Then,

αn+2 =

(
n+ 1

n+ 2

)
2

−
(
n+ 1

n+ 1

)
2

=

(
n+ 1

n

)
2

−
(
n+ 1

n+ 1

)
2

by Equation (3.4)

= −αn+1 < 0.

The bound on degrees degmax follows from Lemma 3.3.8. If I is in generic coordi-

nates, applying Theorem 3.3.6 bounds the solving degree.
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3.5.1.4 Case 4: Greater values of m

Suppose F is a homogeneous cryptographic semi-regular sequence of equations.

Then, Theorem 3.5.9 and Theorem 3.5.10 can be used to obtain an upper bound

for the solving degree of F for greater values of m.

Corollary 3.5.11. Let F = {f1, . . . , fm} be a cryptographic semi-regular sequence

of homogeneous polynomials of degree d = 2, 3 in n variables. Assume that m ≥

n+ 5 if d = 2 and that m ≥ n+ 1 if d = 3. Let I = ⟨F⟩ and let

r(n, d) =


⌈
(10 + n−

√
40 + 5n+

√
2
√
288 + 75n+ 5n2)/2

⌉
if d = 2,

n+ 2 if d = 3.

Then

degmax(I) ≤ r(n, d).

If in addition we assume that I is in generic coordinates, then

dsolve(F) ≤ r(n, d).

Proof. For d = 2, m ≥ n + 5. Note that I contains an ideal J generated by a

cryptographic semi-regular sequence consisting of n + 5 homogeneous quadratic

polynomials (for instance, take the first n+ 5 polynomials in F as generators).

For d = 3, m ≥ n+ 1. Again, observe that I contains an ideal J generated by

a cryptographic semi-regular sequence consisting of n+ 1 homogeneous quadratic

polynomials (for instance, take the first n+ 1 polynomials in F as generators).

Note that J is Artinian as m ≥ n. Then, reg(I) ≤ reg(J) [19]. Theorem 3.5.9

and Theorem 3.5.10 provide values for reg(J) for d = 2 and d = 3, respectively.
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The bound on degrees degmax follows from Lemma 3.3.8. If I is in generic

coordinates, applying Theorem 3.3.6 bounds the solving degree.

3.5.2 Inhomogeneous cryptographic semi-regular sequences

Let F = {f1, . . . , fm} ⊆ R be a system of inhomogeneous multivariate polynomial

equations in n variables and let di = deg(fi). We expect this type of sequence to

arise more often from MPKCs.

Consider Ih, the homogenised ideal of F , which is generated by Fh. We have

the following definition for inhomogeneous cryptographic semi-regular sequences

of equations.

Definition 3.5.12. An inhomogeneous system of polynomials F = {f1, . . . , fm} ⊆

R is a cryptographic semi-regular sequence if Fh = {fh
1 , . . . , f

h
m} ⊆ S = R[t] is a

cryptographic semi-regular sequence.

Definition 3.5.12 allows us to apply the results on homogeneous systems from

Section 3.5.1 to systems of inhomogeneous polynomials.

3.5.2.1 Case 1: m = n+ 1

Let m = n + 1 and suppose F is a semi-regular sequence of generic polynomials.

Then the homogenisation Fh is a semi-regular sequence of n+1 generic polynomials

in n+ 1 variables. The next theorem now follows from Theorem 3.5.2.

Theorem 3.5.13. Let K be an infinite field and let F = {f1, . . . , fm} ⊆ R be

a sequence of generic inhomogeneous polynomials of degrees di = deg(fi), with

m ∈ {n + 1, n + 2}. If m = n + 2, assume without loss of generality that dn+2 <

90



d1 + · · ·+ dn+1 − n− 1. Then F is a cryptographic semi-regular sequence and

dsolve(F) ≤

 d1 + · · ·+ dn+1 − n if m = n+ 1,⌊
d1+···+dn+2−n−2

2

⌋
+ 1 if m = n+ 2.

Proof. If m = n+ 1, then Fh is a sequence of n+ 1 generic homogeneous polyno-

mials in n+1 variables, hence it is a regular sequence. The result follows from the

Macaulay bound. If m = n+2, applying Theorem 3.5.2 to Fh bounds the solving

degree of F .

Corollary 3.5.14. Let K be an infinite field and let F = {f1, . . . , fn+1} consist of

n+1 generic inhomogeneous quadratic polynomials in n variables. Then deg(fi) =

2 for all i = 1, . . . ,m and

dsolve(F) ≤

 n+ 2 if m = n+ 1,⌊
n
2

⌋
+ 2 if m = n+ 2,

Corollary 3.5.15. Let K be an infinite field and let F = {f1, . . . , fn+1} consist of

n + 1 generic inhomogeneous cubic polynomials in n variables. Then deg(fi) = 3

for all i = 1, . . . ,m and

dsolve(F) ≤

 2n+ 3 if m = n+ 1,

n+ 3 if m = n+ 2.

For systems arising in multivariate cryptography, we assume F is a crypto-

graphic semi-regular sequence as in Definition 3.5.12 and that Fh generates an

ideal in generic coordinates. Then, the same bound on the solving degree holds.
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Theorem 3.5.16. Let K be a finite field and let F = {f1, . . . , fm} ⊆ R be a

cryptographic semi-regular sequence of inhomogeneous polynomials of degrees di =

deg(fi), with m ∈ {n+ 1, n+ 2}. Let I = ⟨F⟩. If m = n+ 2, assume without loss

of generality that dn+2 ≤ d1 + · · ·+ dn+1 − n− 1. Let

r(n, d1, . . . , dm) =

 d1 + · · ·+ dn+1 − n if m = n+ 1,⌊
d1+···+dn+2−n−2

2

⌋
+ 1 if m = n+ 2.

Then

degmax(I) ≤ r(n, d1, . . . , dm).

If Ih = ⟨Fh⟩ is in generic coordinates, then

dsolve(F) ≤ r(n, d1, . . . , dm).

Corollary 3.5.17. Let K be a finite field and let F = {f1, . . . , fn+1} be a crypto-

graphic semi-regular sequence of inhomogeneous quadratic polynomials in n vari-

ables. Suppose Ih is in generic coordinates. Then deg(fi) = 2 for all i = 1, . . . ,m

and

r(n, 2, . . . , 2) =

 n+ 2 if m = n+ 1,⌊
n
2

⌋
+ 2 if m = n+ 2,

Corollary 3.5.18. Let K be a finite field and let F = {f1, . . . , fn+1} cryptographic

semi-regular sequence of inhomogeneous cubic polynomials in n variables. Suppose
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Ih is in generic coordinates. Then deg(fi) = 3 for all i = 1, . . . ,m and

r(n, 3, . . . , 3) =

 2n+ 3 if m = n+ 1,

n+ 3 if m = n+ 2.

3.5.2.2 Case 2: m ≥ n+ 3, di = 2 for all i = 1, . . . ,m

Let m ≥ n + 3 and assume that F is a cryptographic semi-regular sequence of

quadratic equations. Using the same techniques as in the previous subsection, the

next theorem follows from Theorem 3.5.9 and Corollary 3.5.11.

Theorem 3.5.19. Let F = {f1, . . . , fm} be a cryptographic semi-regular sequence

of inhomogeneous polynomials of degree 2 in n variables. Let I = ⟨F⟩ and let

r(m,n) =



⌈
(5 + n−

√
5 + n)/2

⌉
if m = n+ 3,

⌈
(7 + n−

√
19 + 3n)/2

⌉
if m = n+ 4,⌈

(9 + n−
√

23 + 3n+
√
2
√
170 + 45n+ 3n2)/2

⌉
if m = n+ 5,⌈

(11 + n−
√

45 + 5n+
√
2
√
368 + 85n+ 5n2)/2

⌉
if m ≥ n+ 6.

then

degmax(I) ≤ r(m,n).

If Ih = ⟨Fh⟩ is in generic coordinates, then

dsolve(F) ≤ r(m,n).
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3.5.2.3 Case 3: m ≥ n+ 2, di = 3 for all i = 1, . . . ,m

Let m ≥ n + 2 and assume that F is a cryptographic semi-regular sequence of

cubic equations. Using the same techniques as in the previous two subsections,

the next theorem follows from Theorem 3.5.10 and Corollary 3.5.11.

Theorem 3.5.20. Let m ≥ n + 2 and let F = {f1, . . . , fm} be a cryptographic

semi-regular sequence of inhomogeneous polynomials of degree 3 in n variables. Let

I = ⟨F⟩, then

degmax(I) ≤ n+ 3.

If Ih = ⟨Fh⟩ is in generic coordinates, then

dsolve(F) ≤ n+ 3.

3.6 Impact and limitations

3.6.1 Genericity assumptions in proofs

There are two major assumptions made in the proofs of Section 3.5 regarding

sequences of polynomials over finite fields:

1. F generates an ideal in generic coordinates.

and

2. F is a cryptographic semi-regular sequence.

Generic coordinates MPKCs are usually defined over finite fields, whereas the

definition of generic coordinates is given for systems over an infinite field. However,
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applying a generic change of coordinates to the ideal generated by F , over a large

enough extension field of K, will put I in generic coordinates [19]. Furthermore,

Caminata and Gorla proved that if F contains the field equations then the ideal

I = ⟨F⟩ will be in generic coordinates [19, Theorem 3.26]. The same result holds

when we consider the homogenised system determined by F . Specifically, the ideal

⟨Fh⟩ is in generic coordinates if F contains the field equations.

For cryptanalysis it is often common practice to include the field equations for

security analysis. Therefore, the first assumption would not affect applicability

of the results contained in this chapter to these cryptographic systems. We note,

however, that over large fields including the field equations can make Gröbner

basis computation infeasible.

Cryptographic semi-regular sequences The assumption that the sequences

of polynomials arising in cryptography are cryptographic semi-regular is not new

to this thesis and is in fact used by Bardet, Faugère and Salvy [3]. Hence, this

assumption has no real impact in terms of comparing the two methods of approx-

imation.

We will now discuss the existence of cryptographic semi-regular sequences.

To begin with, recall that any semi-regular sequence is a cryptographic semi-

regular sequence. Pardue’s conjecture implies that most systems of polynomial

equations with coefficients that are chosen at random from an infinite field are

semi-regular. The same conjecture is made for ‘large enough’ finite fields. With

greater relevance for cryptography, Hodges, Molina and Schlather show that the

proportion of sequences of homogeneous polynomials with coefficients in F2 of

degree d ≥ 2 that are semi-regular tends to 1 as the number of variables tends
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to infinity [49, Theorem 6.4]. It remains for future work to prove these results in

finite fields other than F2.

3.6.2 Large values of ℓ

The method we use to find an exact formula for the index of regularity r(n+ ℓ, n),

requires a solution to the function f(ℓ, k), which is a degree ℓ polynomial in k.

We do not determine a general equation for r(n + ℓ, n) for ℓ ≥ 6, primarily due

to our use of Mathematica to compute the zeroes of f(ℓ, k). Nonetheless, we have

shown that it is still possible to find an explicit bound on the index of regularity

by looking at ideals contained in the ideal generated by F . The resulting bounds

are unfortunately not tight, as illustrated by Figure 3.1. However, we note that

for arbitrarily large values of n the bounds of [3] can be used.

For the purposes of achieving a more accurate approximation of the solving

degree of cryptographic semi-regular systems of m = n+ ℓ homogeneous quadratic

polynomials, we have therefore computed the exact values of r(n + ℓ, n) for 2 ≤

ℓ, n ≤ 500. These are available at: http://bit.ly/wine-3. This thesis includes

the values for 2 ≤ n, ℓ ≤ 100 in Appendix A.

3.6.3 Impact on complexity

We now look at the effect that dreg < dsolve has on bounding the complexity of

computing a Gröbner basis algorithm. To illustrate our analysis, we consider

parameters with existing multivariate cryptosystems in mind: the Simple Matrix

(or ABC) encryption System [82] and HFERP [50]. Recall that for a system F

of m polynomials in n variables, the number of operations required to compute a
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Figure 3.1: The index of regularity r(m,n), where, in order from bottom to top,
m = n+ ℓ, for n = 10 (green), n = 50 (blue), n = 100 (red) and n = 500 (black).
The dashed lines represent the bound on r(m,n) from Theorem 3.5.19 for each
value of n.

Gröbner basis is bounded above by

O

(
mdsolve

(
n+ dsolve − 1

dsolve

)ω)
,

where 2 ≤ ω < 2.39 [3] is the linear algebra constant. For the remainder of this

section we set ω = 2 to consider a powerful adversary. We will represent the exact

cost symbolically by C.

We call Cd := md
(
n+d−1

d

)ω
the cost parameter for F , a system of m polyno-
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mials in n variables, with solving degree dsolve = d. By inspection and from the

literature we know that Cd increases as d increases. Figure 3.2 illustrates this

relationship for (m,n) associated with HFERP ((95,63) and (226,164)) and the

Simple Matrix Encryption system (128,64). We include the additional parameter

set (m = 107, n = 103) to illustrate the change in cost for a small offset m − n,

matching the scenarios considered in Section 3.5.

Figure 3.2: The cost parameter Cd for finding a Gröbner basis of a system, F , of
m multivariate polynomials in n variables, for 2 < d < 100.

Let us assume that F is a system of polynomials for which the degree of reg-

ularity is not an upper bound for the solving degree. Then, clearly Cdreg ≤ Cd.

98



Although we can surmise from Figure 3.2 that Cd grows dramatically with respect

to increasing d, we consider a simple model to clarify this impact. Define the

cost differential as ∆d,d′ := |Cd − Cd′ | and the cost ratio as Rd,d′ :=
Cd

Cd′
. We are

interested in the change in ∆d,d′ and Rd,d′ as |d− d′| varies.

We model dsolve as a function dreg +α, where α ∈ Z is an offset parameter. For

ease of notation, let ∆α = ∆d+α,d and Rα = Rd+α,d. The change in ∆α and Rα

with increasing α is shown in Figure 3.3. For this model, we have fixed a dreg for

each of the parameter sets used in Figure 3.2.

The examples in Section 3.4 and in literature correspond to this model with

small α. Here, we can see from Figure 3.3 that the cost difference and ratio can

still be large. For instance, consider α = 2. The cost difference and cost ratio for

the four different parameter sets are given in Table 3.1.

m n d ∆2 R2

95 63 10 98.8 11.0
128 64 50 233.6 4.6
226 140 12 140.4 14.2
107 103 10 114.9 13.5

Table 3.1: The cost difference and cost ratio (bits) when dsolve = dreg + 2 for
different parameter sets (m,n, d).

Though we have considered a simple model, it demonstrates the impact even a

small difference between the solving degree and the degree of regularity can have.

What does this mean for the security of multivariate cryptosystems? Assume

there exists a cryptosystem represented by F , for which dsolve(F) > dreg(F). We

must remain cognisant of the fact that Cdsolve is an asymptotic representation of

the actual cost, C. Hence, even though we know Cdreg ≤ Cdsolve we are not able to

say concretely how Cdreg compares to C. We suggest that the introduction of even
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Figure 3.3: The change in cost difference ∆α and cost ratio Rα for systems of
multivariate polynomials where the solving degree is modelled as an affine function
of the degree of regularity: dsolve = dreg +α. The lines correspond to the following
parameter sets (m,n, d): blue (dotted) - (95,63,10), green (dashed) - (128,64,50),
red (dash dot) - (226,140,12) and black (solid) - (107,103,10).
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this small degree of uncertainty means a proven bound is preferable.

3.7 Conclusions

The objective of this chapter was to provide an alternative to the degree of regu-

larity for bounding the solving degree of systems of polynomials equations, partic-

ularly those in the field of multivariate cryptography. We have again shown that

the use of degree of regularity as an upper bound is based on a flawed assumption.

While other counterexamples exist in the literature, those presented here display

differences between the two degrees that are greater than one. We argue that

larger differences have significant impact on the total cost of the algorithm. An

interesting question for future research is

Does there exist M(n,m) such that |dsolve − dreg| ≤ M(n,m) for all

cryptographic semi-regular sequences of m polynomials in n variables?

As an alternative to the degree of regularity, this thesis recommends the Castelnuovo-

Mumford regularity, proven to be an upper bound for the solving degree. We have

given explicit formulas for these bounds, for a small set of over-determined sys-

tems. We have additionally explicitly computed the index of regularity for systems

with parameters expected in practical implementations. These results address the

secondary issue that results on the degree of regularity are largely asymptotic. It

was also acknowledged that making security statements based on an upper bound

for the solving degree is another case of Koblitz and Menezes’ first type of error,

although with present knowledge, somewhat unavoidable.

This chapter concludes the classical cryptanalysis focus of this thesis.
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Chapter 4

Resource costs of quantum

computation

Pursuant to the inceptive motivation for post-quantum cryptography as a field

of research, understanding the complexity of quantum attacks is fundamental to

security analysis. Security arguments employing a quantum adversary may follow

the same complexity-theoretic principles as in the classical cases we have seen in

earlier chapters, and consider time-, space-, and resource-complexity measures.

However, without a complete understanding of which problems are solvable by

a polynomial-time quantum algorithm there will remain an implicit issue in any

quantum security argument. Namely, a protocol can be deemed secure against

known quantum algorithms. For instance, within multivariate cryptography the

best known quantum attack is to simply apply Grover’s algorithm to speed up an

exhaustive search attack. Adopting parameters that make this approach infeasible

does not, unfortunately, constitute proven quantum security of the protocol, as

there may be another as-yet-undiscovered quantum algorithm possible. This is
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captured in Koblitz and Menezes’ third point of error in security proofs: incorrect

characterisation of the resources of an adversary.

This chapter focusses on the resource costs of quantum computation, as results

in this area can apply to a broad range of known - and as-yet unknown - quantum

attacks. In particular, we look at improving the resource costs of fault-tolerant

quantum computation through better quantum gate synthesis. We will show that

the total gate count for approximating single-qubit unitaries can be reduced to 7
9

of the previously known best count.

The results contained in this chapter are based on continuing work with Vadym

Kliuchnikov, Kristin Lauter, Adam Paetznick, and Christophe Petit.

Outline and main contributions The rest of this chapter is organised as

follows. We begin with mathematical background in Section 4.1 and then, in

Section 4.2, we introduce the main concept of quantum gate synthesis and review

the literature, before briefly discussing connections between gate synthesis and

cryptography. In Section 4.3 we define three unitary approximation problems:

diagonal unitary approximation, projective rotation approximation and general

unitary approximation. These problems have been the subject of research for

some time, with many results pertaining to specific gate sets [76, 58, 13, 14, 59,

56]. For each problem, we show that the accuracy constraint in an approximation

can be reduced to a constraint on a single complex number. The set of feasible

solutions is represented geometrically as a region in R2.

The key result in this chapter is a new method for solving the general unitary

approximation problem, which exploits the connection between unitary approxi-

mation and LPS graphs (See Section 4.2). Explicitly, we adapt the path-finding
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algorithm of Pinto and Petit [75] to the quantum setting, requiring only two di-

agonal approximations and one ‘efficient’ general approximation. The sequence

lengths obtained using our method improve on the standard Euler decomposition,

which requires three diagonal approximations, by roughly one-third. We acknowl-

edge that Stier [81] has concurrently and independently produced a similar result

considering Clifford+T basis, specifically.

A complete method for solving these problems is outlined in Section 4.5, re-

stricting the scope to considering arbitrary gate sets that are represented by quater-

nion algebras. For the sake of completeness, Section 4.4 includes a process for

constructing quaternion gate sets, as defined in [56]. To summarise, a gate set is

defined by a complex field L, its maximal totally real subfield K and a fixed set of

elements in K. A solution to an approximation problem involves finding a matrix

M =
(

m1 −m∗
2

m2 m∗
1

)
with entries in the integer ring of L. The approach to finding

M can be summarised in two steps: point enumeration in a region defined by

the approximation problem to find m1, followed by solving a relative norm equa-

tion to recover m2. We work through three pedagogical examples: the V basis

(Section 4.5.1), the Clifford+T basis (Section 4.5.2), and the Clifford+
√

T basis

(Section 4.5.3). A worked example for the V basis is given in Section 4.5.1.2.

4.1 Preliminaries

Here we will recall some useful definitions and lemmas from quantum information.

For a thorough background, we refer to [72].

A quantum bit, or qubit, can exist in the state |0⟩, |1⟩, or a linear combination

of those states, α|0⟩+α|1⟩, where α, β ∈ C and |α|2 + |β|2 = 1. We are here using
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the standard Dirac notation for quantum states, |·⟩. In other words, the state of a

qubit is represented by an element in a two-dimensional complex vector space. In

vector notation, the quantum state α|0⟩+ β|1⟩ is written

 α

β

.
The values α, β are called the probability amplitudes of the state. In this thesis we

deal primarily with single qubits, however, we note that the vector representation

can be generalised to multi-qubit systems. That is, the state of a system of n

qubits can be represented by a vector in a 2n-dimensional complex vector space.

The computational basis for this space is the set of states {|k⟩} for k = 0, . . . , 2n−1.

In the quantum circuit model, quantum algorithms are expressed as sequences

of operations, or gates, each of which can be represented by a matrix. Let M be

a square matrix, with conjugate tranpose M∗. We call M Hermitian if M = M∗,

normal if MM∗ =M∗M , and unitary if MM∗ = I. Since the norm of a quantum

state, considered as a vector, must be 1, quantum gates correspond only to unitary

matrices. Some commonly used gates are the Pauli gates, the Hadamard gate and

the controlled-NOT gate. We use the notation I,X, Y, Z for Pauli matrices:

I =

 1 0

0 1

, X =

 0 1

1 0

, Y =

 0 −i

i 0

, Z =

 1 0

0 −1

.
The Pauli matrices are Hermitian and self-inverse. We additionally have the

identities:
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Y Z = iX, XY = iZ, ZX = iY.

The Hadamard gate is represented by the matrix

1√
2

 1 1

1 −1


and the controlled-NOT, or c−NOT, gate is represented by the matrix



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


.

Whereas the Pauli and Hadamard gates act on a single qubit, the c-NOT gate

operates on two qubits: a control qubit and a target qubit. The effect of the

operation is the identity if the control qubit is in the state |0⟩ and a bit-flip if the

control qubit is in the state |1⟩.

Denote the special unitary group, that is the group of all 2×2 unitary matrices

with determinant equal to 1, by SU(2). Single-qubit gates are represented by

matrices in SU(2). An arbitrary unitary in SU(2) can be written as:

U =

u −v∗
v u∗

 for u, v ∈ C such that |u|2 + |v|2 = 1

and we can write u = α exp(iϕ) and v = iβ exp(iθ) with α, β ∈ [0, 1] and ϕ, θ ∈ R.
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Hence, the unitary U can be expressed as:

U = αeiϕZ + βiXeiθZ for ϕ, θ ∈ R, α, β ∈ [0, 1] such that α2 + β2 = 1 (4.1)

A third parameterisation is obtained from the Euler angle decomposition. To

see this we first require the following useful properties of matrix norms and matrix

exponentials.

Let ∥·∥ be a matrix norm. We say that ∥·∥ is submultiplicative if ∥AB∥ ≤

∥A∥∥B∥. We call ∥·∥ unitarily invariant if, for any unitary U and matrix A,

∥UA∥ = ∥A∥ = ∥AU∥, providing the matrix multiplication is possible. For the

rest of this chapter, we use ∥A∥ to represent the spectral norm of A, ∥A∥ = maxk σk

where σk are the singular values of A, and ∥A∥2 to represent the Frobenius norm

of A, which is defined as the square root of the sum of the squares of the elements

of A. Both norms are submultiplicative and unitarily invariant. The two norms

are related as follows:

Lemma 4.1.1. Let U, V be 2× 2 unitary matrices with det(U) = det(V ) = 1 then

∥U ± V ∥
√
2 = ∥U ± V ∥2.

Proof. Let W = UV †, with eigenvalues e±iϕ, so det(W ) = 1. Then ∥W ± I∥ =∥∥(U ± V ) · V †
∥∥ = ∥U ± V ∥, where the final inequality holds since the spectral

norm is unitarily invariant. Similarly, ∥W ± I∥2 = ∥U ± V ∥2. We then compute

∥W ± I∥ =
√

2± 2 cos(ϕ) and ∥W ± I∥2 =
√

2 · (2± 2 cos(ϕ)) to finish the proof.

Remark 4.1.2. For U, V , 2 × 2 unitary matrices with determinant equal to 1,

minφ∥U − eiφV ∥ is obtained when φ ∈ {0, π}.
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The next two lemmas are crucial for the Euler angle decomposition represen-

tation of a unitary matrix.

Lemma 4.1.3. For any invertible n× n matrix A and any n× n complex-valued

matrix B, it is the case that AeBA−1 = eABA−1.

Proof. First observe that for any square matrix
∥∥Bk

∥∥ ≤ ∥B∥k, since the spectral

norm is submultiplicative. Hence, the series
∑∞

k=0

∥Bk∥
k!

converges, and so by

absolute convergence the series
∑∞

k=0
Bk

k!
also converges. So the matrix exponential

eB is well defined.

Then it is straightforward to see that

AeBA−1 = A

(
I +

B

2
+
B2

6
+ · · ·

)
A−1

= I +
ABA−1

2
+
ABA−1ABA−1

6
+ · · · =

∞∑
k=0

(ABA−1)k

k!
= eABA−1

.

Lemma 4.1.4. eiϕZX = Xe−iϕZ.

Proof. Note that X−1 = X. Then, by the previous lemma and since XZX = −Z,

we have XeiϕZX = eiϕXZX = e−iϕZ .

The Euler decomposition guarantees that any single-qubit unitary can be de-

composed into Rz- and Rx-rotations.

Definition 4.1.5 (Euler angle decomposition). Let U = αeiϕZ+βiXeiθZ ∈ SU(2)

be a unitary, with α, ϕ, β, θ ∈ R. The Euler angle decomposition of U is obtained

by solving for real numbers ϕ1, ϕ2, θX such that

U = eiϕ1ZeiθXXeiϕ2Z = cos(θX)e
i(ϕ1+ϕ2)Z + sin(θX)iXe

i(ϕ2−ϕ1)Z . (4.2)
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The second equality in the Euler angle decomposition follows immediately from

Lemma 4.1.4.

As Definition 4.1.5 suggests, general unitary approximation will require a com-

bination of approximations. Consequently, we make use of the chain rule:

Lemma 4.1.6 (Chain rule for spectral norm). Let U1, U2, V1, V2 be 2 × 2 unitary

matrices, then

∥U1U2 − V1V2∥ ≤ ∥U1 − V1∥+ ∥U2 − V2∥.

Proof. By the triangle inequality, ∥U1U2 − V1V2∥ ≤ ∥U1U2 − U1V2∥+∥U1V2 − V1V2∥.

Then, by submultiplicativity of the spectral norm,

∥U1U2 − U1V2∥+ ∥U1V2 − V1V2∥ ≤ ∥U1∥∥U2 − V2∥+ ∥U1 − V1∥∥V2∥

= ∥U2 − V2∥+ ∥U1 − V1∥.

4.2 Introduction to quantum gate synthesis

In this section we review the relevant literature for quantum information and

quantum synthesis, then look at the connections between gate approximations

and path finding algorithms.

4.2.1 Quantum gate approximation

By [5], any n-qubit unitary can be implemented by a circuit of elementary gates,

comprising C-NOT gates and single-qubit gates. Fault-tolerant quantum comput-
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ers require that these single-qubit gates belong to a finite set. In order to retain

full functionality, this set is required to have a special property: universality.

Definition 4.2.1 (Universal set of gates). A set of unitaries G is called universal

if it generates a dense covering in SU(2).

That is, any unitary U ∈ SU(2) can be approximated by a finite sequence of

gates from a universal set to any degree of accuracy. Quantum gate approximation

is the problem of finding a unitary V in the span of a given universal set of

gates, which approximates a target unitary U to some chosen degree of accuracy,

ε. The distance between two unitaries is computed by evaluating some norm of

U −V . Typically, this is the spectral norm, which we use throughout this chapter.

Quantum gate synthesis is then the problem of decomposing V into a sequence of

basis gates from the gate set.

The cost of a quantum approximation is quantified by the gate complexity, or

gate cost.

Definition 4.2.2 (Gate cost). Let G = {g1, . . . , gn} be a universal set of gates.

Let wG : ⟨G⟩ → R+ be the weight function associated with G, and let wi := wG(gi).

Given a sequence of gates s from G,

s = gi0 · · · gik , i0, . . . , ik ∈ {1, . . . , n}

the gate cost of s is given by

wG(s) =
k∑

j=0

w(gij).
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The gate cost of approximating U to within ε is then taken as the minimum

gate cost of all possible approximating sequences.

Note that select gates, such as the Pauli or Clifford gates, are considered cheap

to implement and so are given zero weight. Typically, expensive gates will be

given a weight of 1, so that the gate cost of an approximation corresponds to the

length of the sequence. Consequently, minimizing the length of an approximating

sequence is a problem integral to the subject of gate synthesis.

A fundamental and general result is the Solovay-Kitaev theorem:

Theorem 4.2.3 (Solovay-Kitaev, [55]). Let G be a finite set of gates in SU(2)

containing its own inverses, such that ⟨G⟩ is dense in SU(2). Let ε > 0 be given.

Then, for any U ∈ SU(2), there exists a constant c and a sequence of gates g1 · · · gℓ

from G such that

∥g1 · · · gℓ − U∥ < ε,

where ℓ ∈ O(logc(1/ε)).

Essentially, any unitary can be approximated by a short sequence of gates

from a universal set. Significant progress has been made since Solovay-Kitaev for

specific gate sets associated with fault-tolerant quantum computers. Bourgain and

Gamburd [16] showed that universal gate sets of unitaries with algebraic entries

give approximating sequences with lengths O(log(1/ε)). This result was quickly

applied to find efficient constructive algorithms for the Clifford+T gate set [57, 78]

and, later, the V basis [13]. Research has since focussed on finding approximation

methods to obtain close to optimal values t, such that the expected sequence length

is t log(1/ε). For approximations of diagonal unitaries, this optimal t is known to

be 3 [77].
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4.2.2 Connections to path-finding algorithms

In this section we explain the connection between the Charles, Goren and Lauter

hash construction [23], built from LPS graphs, to unitary synthesis problems. We

first recall some definitions and results about cryptographic hash functions.

A hash function h : {0, 1}∗ → {0, 1}m is a function which takes bitstrings of

arbitrary length as inputs, and outputs bitstrings of fixed length. A hash function

is required to be preimage resistant ; that is, given a value y ∈ {0, 1}m in the image

of h, it must be computationally infeasible to find a bitstring x which hashes to

that value. This is formalised in Problem 4.2.4.

Problem 4.2.4 (Preimage Finding Problem). Given a hash function h and a value

y ∈ Im(h), find x such that h(x) = y.

There are several constructions of hash functions built on Cayley graphs. Given

a group G with generating set S = {s0, . . . , sk}, the corresponding Cayley graph

has vertices associated with elements g in G and directed edges (g, h) if and only

if gh−1 ∈ S. Writing a message m = m1m2 . . .mN with mi ∈ {0, . . . , k}, the

hash function is defined by H(m) = sm1sm2 . . . smN
. For such constructions, called

Cayley hash functions, Problem 4.2.4 can be reformulated as the group theoretic

problem below.

Problem 4.2.5 (Constructive Membership Problem). Let G be a group with gen-

erating set S = {s1, . . . , sk}. Given an element g ∈ G, find a sequence m1, . . . ,mN

such that g =
∏

i smi
for some N ∈ N.

Recall that the unitary synthesis problem is the search for a circuit, or sequence,

of unitaries from a specified gate set that is equal to some target unitary. This is

clearly similar to Problem 4.2.5.
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In [23], Charles, Goren and Lauter (CGL) proposed a Cayley hash function

based on LPS graphs. LPS graphs were introduced by Lubotsky, Phillips and

Sarnak in [68]. Let p, ℓ be distinct primes congruent to 1 mod 4, where
(

ℓ
p

)
= 1.

Let Fp denote the finite field with p elements and let ι such that ι2 = −1 mod p.

An LPS graphXp,ℓ is the Cayley graph with G = PSL(2,Fp), the projective special

linear group of 2× 2 matrices over Fp, and generating set

S =
{(

a+ιb c+ιd
−c+ιd a−ιb

)
: a2 + b2 + c2 + d2 = ℓ

}
, a > 0 and b, c, d even.

We can write g ∈ G as
(

a+ιb c+ιd
−c+ιd a−ιb

)
with a, b, c, d ∈ Fp and define the norm function

n(g) = a2+b2+c2+d2. The preimage problem for the CGL hash function amounts

to path finding on an LPS graph. Since these are Cayley graphs, the preimage

problem is equivalent to Problem 4.2.5.

Petit, Lauter and Quisquater [74] proposed an algorithm for finding short paths

in LPS graphs in which a matrix from the group G is decomposed into the product

of four diagonal matrices with square determinant and graph generators, up to

multiplication by a unit. This decomposition is reminiscent of the Euler decom-

position for unitary synthesis, in which the target unitary is decomposed into the

product of Rz-rotations.1 Pinto and Petit [75] later improved upon the algorithm

in [74], by decomposing the target matrix into the product of two diagonal matri-

ces and a third non-diagonal, easily-factorisable matrix, resulting in path lengths

of 7 logℓ(p). In Section 4.3 we translate the algorithm to the setting of general

unitary approximation.

We summarise Pinto and Petit’s method here.
1Notably, Rz-rotations can be expressed as diagonal matrices: Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
.
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– Let M ∈ PSL(2,Fp) be the target for factorisation. The matrix M is ‘lifted’

to a matrix M ′ ∈ GL(Z[i]), such that the corresponding entries of each

matrix are congruent modulo p.

– M ′ is factorised over GL(Z[i]), subject to conditions on the magnitude of

the determinant.

– Each factor is mapped back to PSL(2,Fp).

The similarities and differences between the cryptographic and quantum set-

tings are summarised in Table 4.1. The length of a sequence indicates the cost of

approximating the target unitary in the context of gate synthesis. For the CGL

hash function, the sequence length will equal the length of the corresponding path

in the LPS graph, and is similarly used as measure of performance for path-finding

algorithms. The length of a sequence is determined by taking the norm of the tar-

get matrix. In [75], the desired distance between M and M ′ is O(p−1) with respect

to some well-defined p-adic norm. For matrices over C, we can use some complex

matrix norm, for instance the spectral norm, with ε as the measure of accuracy.

‘Lifting’ is similar to approximation in the sense that we look for a ‘close’ ma-

trix, with respect to some norm, which we can factorise2. Of course, in the LPS

hash setting p is fixed, whereas for quantum approximation ε is chosen. Note,

however, that the other properties of cryptographic hash functions - collision re-

sistance and second preimage resistance - do not have natural quantum analogues.

Likewise, fallback circuits (in which measurements are used to aid approximation)

and unitary mixing (taking a probabilistic combination of unitaries) do not have

cryptographic counterparts.
2We acknowledge that this is not a perfect analogy, but the similarities motivate our use of

techniques similar to those used by Pinto and Petit.
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Path-finding/Hash functions Quantum Synthesis
Matrices over Fp Matrices over C

Lifting: G to GL2(Z[i]) Approximation: SU(2) to gate set
Accuracy: p−1 Accuracy: ε

Fixed p Chosen ε
ℓN , lifted determinant ℓN , scaled determinant
Collision resistance –

2nd preimage resistance –
– Fallback

Table 4.1: Summary of the similarities and differences between path-finding for
classical LPS hashes and quantum synthesis.

4.3 Approximation problems

In this section we introduce three approximation problems. For the remainder of

this chapter, any arbitrary gate set G is assumed to be universal.

Recall that our main goal in this chapter is find an improved solution to the

general unitary approximation problem.

Problem 4.3.1 (General qubit unitary approximation). Given:

• target unitary U ∈ SU(2),

• gate set G, a finite set of 2× 2 unitary matrices with determinant one

• accuracy ε, a positive real number

Find a sequence g1, . . . , gn of elements of G and real number φ such that the fol-

lowing inequality holds: ∥∥U − eiφg1 . . . gn∥∥ ≤ ε

Of particular interest is the case where U is a diagonal unitary, namely U = eiθZ

for real θ (see Problem 4.3.2, below). Indeed, the state-of-the-art method for solv-

ing the general unitary approximation problem is to use Euler angle decomposition

(Definition 4.1.5) to reduce the problem to three diagonal unitary approximation
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problems.

In this section, we first introduce two problems for approximating diagonal

unitaries, the second of which uses the fallback protocol introduced in [14]. We give

reductions of both problems to the search for elements in two-dimensional regions.

We then demonstrate how the general unitary approximation problem is reduced

to two diagonal approximations and a search for elements in a one-dimensional

region, improving on the traditional Euler angle decomposition approach.

4.3.1 Diagonal unitary approximation

Since an arbitrary unitary can be expressed, up to a global phase, as the product

of Rz and Rx rotations, the problem of diagonal unitary approximation is of sig-

nificance to the general unitary approximation problem. In this section we recall

some of the known results regarding the diagonal approximation problem.

Problem 4.3.2 (Diagonal unitary approximation). Given:

• target angle θ, a real number,

• gate set G, a finite set of 2× 2 unitary matrices with determinant one,

• accuracy ε, a positive real number,

Find a sequence g1, . . . , gn of elements of G and a real number φ such that the

following inequality holds:

∥∥eiθZ − eiφg1 . . . gn∥∥ ≤ ε

Observe that Problem 4.3.2 is a special case of the general unitary approxima-

tion problem, where the target unitary is always diagonal. The diagonal unitary
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approximation problem is easier to solve because it imposes the following condition

on the top left entry of V = g1 . . . gn.

Proposition 4.3.3 (Diagonal approximation condition). The unitary

V = g1, . . . , gn =

 u −v∗

v u∗

.
is a solution to the diagonal approximation problem for target angle θ, gate set G

and accuracy ε if and only if

∣∣Re (ue−iθ
)∣∣ ≥ 1− ε2/2.

Proof. Suppose 0 ≤ θ ≤ π. Recall that by Lemma 4.1.1 we have ∥U − V ∥
√
2 =

∥U − V ∥2. Expanding ∥U − V ∥2, gives

∥∥eiθZ − V ∥∥22 = ∣∣u− eiθ∣∣2+∣∣u∗ − e−iθ
∣∣2+|v|2+|v∗|2 = 2+2

(
|u|2 + |v|2

)
−4Re

(
ue−iθ

)
.

Hence, we conclude that
∥∥eiθZ − V ∥∥2 = 2

√
1− Re(ue−iθ). Therefore

∥∥eiθZ − V ∥∥ ≤
ε is true if and only if

(
2
√

1− Re(ue−iθ)
)
/
√
2 ≤ ε ⇐⇒ 1− Re

(
ue−iθ

)
≤ ε2/2

⇐⇒ Re(ue−iθ) ≥ 1− ε2/2.

Applying the same analysis to θ+π changes the condition on top-left entry u of

V to Re(ue−i(θ+π)) ≥ 1−ε2/2 , which can be written as −Re(ue−iθ) ≥ 1−ε2/2.

Figure 4.1 illustrates the constraint on the top-left element of the approximat-
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ing unitary defined by Proposition 4.3.3.

Figure 4.1: Geometric interpretation of constraints on complex number u appear-
ing in Proposition 4.3.3. The region with red boundary contains complex numbers
u that satisfy constraints Re

(
ue−iθ

)
≥ r and |u| ≤ 1, where r = 1− ε2/2.

4.3.2 Diagonal approximation with projective measurement

Bocharov, Roetteler and Svore’s fallback protocol [14] uses measurement to ap-

proximate diagonal unitaries more efficiently. The protocol comprises two steps:

a projective rotation step and a fallback step.

Let V be a 2× 2 unitary matrix with determinant one defined as

V =

 u −v∗

v u∗

.
The key observation made by the authors of [14] is that the circuit in Figure 4.2

applies eiArg(u)Z to the state |ψ⟩ when the measurement outcome on the top qubit

is zero. The probability of this outcome is |u|2. When the measurement outcome

is one, the circuit applies Y eiArg(v)Z to the state |ψ⟩, up to a global phase. The
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probability of this measurement outcome is |v|2.

Z|0⟩

|ψ⟩ V

Figure 4.2: The circuit from [14] that implements a projective rotation, V on
input |ψ⟩ when the measurement outcome on the top qubit is zero.

How can this circuit be used for unitary approximation? Let U = eiθZ be a

diagonal unitary operator that we want to approximate. The fallback protocol has

two steps, which are repeated until success occurs:

1. Projective rotation: We apply the circuit in Figure 4.2 with V = eiθ
′Z , θ′ ≈ θ,

an approximation of U within chosen accuracy ε.

2. Fallback: The second step of the protocol depends on the measurement out-

come. If the measurement outcome is zero we are done, and otherwise we

apply Y followed by a fallback circuit, B. This is essentially the same circuit

as in Figure 4.2, but with an updated V to account for the acquired error.

If p is the probability of measuring zero in the first step, the expected cost of

the algorithm is the cost of the first step plus 1 − p times the cost of the second

step. After a pre-determined maximum number of failures, the final circuit is

implemented with probability of success equal to 1. For a more detailed description

of the fallback protocol we refer the reader to [14].

The fallback protocol motivates the following approximation problem for diag-

onal unitaries.
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Problem 4.3.4 (Projective rotation approximation). Given:

• target angle θ, a real number,

• success probability p, a positive real number between 0 and 1,

• gate set G, a finite set of 2× 2 unitary matrices with determinant one

• accuracy ε, a positive real number

Find a sequence g1, . . . , gn of elements in G and a real number φ such that for

U = g1 . . . gn the circuit given on Figure 4.2 has the following two properties:

• the probability of measuring zero in computational basis is at least p,

• when the measurement outcome is zero, the circuit implements rotation eiθ′Z

such that
∥∥eiθZ − eiφeiθ′Z∥∥ ≤ ε.

Much like the case of the diagonal approximation problem, solutions to Prob-

lem 4.3.4 are characterised by constraints on u, the top-left entry of the circuit

unitary V . The above discussion of the fallback protocol shows that the probabil-

ity of measuring zero depends on |u|, so the first property required for solutions

to Problem 4.3.4 immediately implies a constraint on |u|. The proposition below

shows that the second property additionally imposes a constraint on u.

Proposition 4.3.5 (Projective rotation condition). Let δ be such that

[θ − δ, θ + δ] =
{
θ′ : cos(θ − θ′) ≥ 1− ε2/2

}
,

for real θ. Then the unitary

V = g1, . . . , gn =

 u −v∗

v u∗

.
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is a solution to the fallback approximation problem (Problem 4.3.4) if and only if

u lies in the sector defined by Arg(u) ∈ [θ + φ − δ, θ + φ + δ] and |u| ≥ r =
√
p,

where φ = 0 or φ = π. For a geometric interpretation of these constraints see

Figure 4.3.

Proof. The probability of measuring zero in the fallback circuit in Figure 4.2 with

V is at least p, which implies |u|2 ≥ p.

Let Arg(u) = θ′, such that θ′ belongs to interval [θ − δ, θ + δ]. Then eiθ
′Z is

the rotation performed by the fallback circuit in Figure 4.2 with φ = 0 when the

measurement outcome is zero. By unitary invariance of the spectral norm we have

∥∥∥eiθ′Z − eiθZ∥∥∥ =
∥∥∥ei(θ′−θ)Z − I

∥∥∥ = max
(∣∣∣ei(θ′−θ) − 1

∣∣∣, ∣∣∣e−i(θ′−θ) − 1
∣∣∣).

Then
∥∥eiθ′Z − eiθZ∥∥ ≤ ε ⇐⇒

√
2− 2 cos(θ′ − θ) ≤ ε ⇐⇒ θ′ ∈ [θ − δ, θ + δ].

Now, take Arg(u) := θ′′ ∈ [θ + π − δ, θ + π + δ], and let eiθ′′Z be the rotation

performed by the fallback circuit in Figure 4.2 when the measurement outcome is

zero. In this case the relevant spectral norm is

∥∥∥eiθ′′Z − eiπeiθZ∥∥∥ =
√

2 + 2 cos(θ′′ − θ) =
√
2− 2 cos((θ′′ − π)− θ).

Since θ′′−π ∈ [θ − δ, θ + δ], this implies that
∥∥eiθ′′Z − eiπeiθZ∥∥ ≤ ε as required.

Figure 4.3 illustrates the geometric representation of the constraint on the top-

left element of the approximating unitary defined by Proposition 4.3.5. These

constraints are less strict than those of Proposition 4.3.3, albeit with a probability

of failure.

The approximation method outlined in [14] constructs a solution to Prob-
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Figure 4.3: Geometric interpretation of constraint on complex number u appearing
in Proposition 4.3.5. The region with red boundary contains complex numbers
u that satisfy constraints Arg(u) ∈ [θ − δ, θ + δ] and |u| ≥ √p, where p is the
probability of a zero measurement outcome and δ = arccos(1− ε2/2).

lem 4.3.4 by first representing the target phase factor eiθ by a cyclotomic rational

of the form z∗/z, then searching for a real-valued modifier to achieve the desired

success probability p. The above reduction of the fallback approximation problem

is new and differs from [14]. The constraints on u, illustrated in Figure 4.2 address

the accuracy and success probability conditions simultaneously. The geometric

description of these constraints is itself novel, although follows naturally given the

representation of the diagonal approximation problem.

4.3.3 General unitary approximation

We now return to the general unitary approximation problem (Problem 4.3.1),

where we want to approximate an arbitrary unitary U = αeiϕZ + βiXeiθZ .

We propose a new approximation approach using the following observation.
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Let ϕ′, θ′ be arbitrary angles, and let U ′ := αeiϕ
′Z + βiXeiθ

′Z . The unitary U ′ is

identical to U in parameters α and β, but not necessarily in parameters ϕ and θ.

We say that U ′ is magnitude equivalent to U . Similarly, we call a unitary U ′′ that is

identical to U in parameters ϕ and θ phase equivalent to U . Let ϕ1 :=
(ϕ−ϕ′)−(θ−θ′)

2

and ϕ2 =
(ϕ−ϕ′)+(θ−θ′)

2
. Then, by Definition 4.1.5, we have

eiϕ1ZU ′eiϕ2Z = αei(ϕ1+ϕ2+ϕ′)Z + βiXei(ϕ2−ϕ1+θ′)Z = αeiϕZ + βiXeiθZ = U.

The Euler decomposition method for approximation reduces Problem 4.3.1 to three

diagonal unitary approximation problems. Our strategy is to first construct one

unitary U ′ of the form above which we can approximate to within accuracy ε/3,

and then to approximate both diagonal unitaries eiϕ1Z and eiϕ2Z as in the previous

subsections. This results in a circuit that is 7
9

the length of the solution resulting

directly from Euler decomposition. We prove this result in Section 4.6.

To construct U ′, we use the following proposition, which determines the ap-

proximate synthesis of any unitary by imposing the condition that the norm of its

upper left element lies in a given interval.

Proposition 4.3.6 (Magnitude condition for general unitary approximation). Let

α, ε be a real numbers in the interval [0, 1] and let U ′ = αeiϕ
′Z +

√
1− α2iXeiθ

′Z

for arbitrary real numbers θ′, ϕ′. Let Iα,ε be the interval of all solutions α′ to the

inequality

|α′ − α|2 +
∣∣∣√1− (α′)2 −

√
1− α2

∣∣∣2 ≤ ε2.
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Let Wε be the special unitary

Wε = g1 . . . gn =

 u −v∗

v u∗


where |u| ∈ Iα,ε, u = |u|eiϕ′ and v = |v|eiθ′. Then

∥U ′ −Wε∥ ≤ ε.

Proof. Recall that for any matrix A its Frobenius norm ∥A∥2 is equal to the square

root of the sum of the absolute values squared of it entries. Next observe that as

U ′ and Wε are phase equivalent,

∥U ′ −Wε∥22 = 2||u| − α|2 + 2
∣∣∣|v| − √1− α2

∣∣∣2.
Recall that |v| =

√
1− |u|2. Since |u| lies in Iα,ε, we have that ∥U ′ −Wε∥22 ≤ 2ε2.

According to Lemma 4.1.1, for 2×2 unitary matrices ∥U ′ −Wε∥ = ∥U ′ −Wε∥2/
√
2

and therefore ∥U ′ −Wε∥ ≤ ε.

In practice we construct U ′ by first finding u with |u| ∈ Iα,ε/3 then solving

u = |u|eiϕ′ for ϕ′ (and similarly for θ′). The above proposition motivates a complete

solution to the general unitary approximation problem.

Proposition 4.3.7 (General unitary approximation). Given real numbers α, ε ∈

[0, 1], let U = αeiϕZ + iX
√
1− α2eiθZ. Let Wε/3 be the special unitary defined by

u = |u|eiϕ′ and v = |v|eiθ′, where |u| ∈ Iα,ε/3.

Let ϕ1 = (ϕ− ϕ′)/2− (θ− θ′)/2, let ϕ2 = (ϕ− ϕ′)/2+ (θ− θ′)/2. For k = 1, 2,

let Vk = g
(k)
1 . . . g

(k)
nk be a solution to the diagonal approximation problem for angle
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ϕk and accuracy ε/3.

Then V1Wε/3V2 = g
(1)
1 · · · g

(1)
n1 g1 · · · gng

(2)
1 · · · g

(2)
n2 is a solution to the general ap-

proximation problem for target unitary U with accuracy ε.

Proof. Let U ′ = αeiϕ
′Z+iX

√
1− α2eiθ

′Z . By Proposition 4.3.6, we have
∥∥U ′ −Wε/3

∥∥ ≤
ε/3. By Proposition 4.3.3 the following condition is ensured:

∥∥eiϕkZ − Vk
∥∥ ≤ ε/3 for k = 1, 2.

Using the chain inequality ∥U1U2 − V1V2∥ ≤ ∥U1 − V1∥+∥U2 − V2∥ for the spectral

norm (see Lemma 4.1.6) we establish the required bound:

∥∥U − V1Wε/3V2
∥∥ ≤ ∥∥eiϕ1Z − V1

∥∥+ ∥∥U ′ −Wε/3

∥∥+ ∥∥eiϕ2Z − V2
∥∥ ≤ ε.

Figure 4.4 illustrates the geometric interpretation of the constraint on the top-

left element of the approximating unitary defined by Proposition 4.3.6 and Propo-

sition 4.3.7.

4.3.4 Geometric comparisons for diagonal approximation

Proposition 4.3.7 establishes that to solve the general unitary approximation prob-

lem, we require two diagonal unitary approximations and one magnitude approx-

imation. Either Proposition 4.3.3 or Proposition 4.3.5 can be chosen to obtain

the diagonal approximations. Recall that both approaches place a constraint on a

single complex number u, the top-left element of the approximating unitary, which
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Figure 4.4: Geometric interpretation of the constraint on complex num-
ber u appearing in Proposition 4.3.6. Solutions to inequality |α′ − α|2 +∣∣∣√1− (α′)2 −

√
1− α2

∣∣∣2 ≤ (ε/3)2 for given α ∈ [0, 1] and ε > 0 are shown in
red on the vertical axis. These correspond to complex numbers u by |u| = α′.

defines a feasible region in the complex plane. Here, we compare the areas of the

regions defined by each problem.

Note that the segment in Figure 4.1 spans points with angular coordinates

[θ−δ, θ+δ] for δ = arccos(1−ε2/2). Letting x = 1−ε2/2, so θ = 2δ = 2arccos(x),

and equating areas, we obtain

θ − sin(θ) = θ(1− p) ⇐⇒ p = sin(θ)/θ

⇐⇒ p = x
√
1− x2/ arccos (x).

Observe that since x ∈ [0, 1], we see that for p satisfying this equality, we have

p ≤ x. Hence, provided that the probability of success p satisfies p ≤ 1 − ε2/2,

the projective approximation corresponds to a feasible region with greater area

and hence a greater number of candidates for u. However this is a probabilistic

procedure. Note that, in order to guarantee termination of the fall-back protocol,
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eventually a circuit with p = 1 should be implemented. In practice this would

amount to the standard diagonal approximation.

4.4 General solution to approximation problems

This section outlines a general method for solving approximate gate synthesis

problems, and describes the properties required by gate sets to which this method

applies. Throughout, we make reference to the V, Clifford+T and Clifford+
√

T

gate sets, which will be looked at in detail in Section 4.5.

4.4.1 Gate sets

We consider quaternion gate sets as defined by Kliuchnikov, Bocharov, Roetteler

and Yard in [56]. Informally, these are gate sets which are described by totally

definite quaternion algebras.

Let K be a totally real number field and take totally positive elements a, b ∈ K.

Define L to be the extension L := K(
√
−a) and let i ∈ L be such that i2 = −a.

There are 2d embeddings from L into C, where d = [K : Q]. Fix σ1, . . . , σd as any

d embeddings from L that are pairwise distinct when restricted to K.

A quaternion algebra (−a,−b
K

) := Q over the field K is an algebra of the form

K +Ki +Kj +Kk where i2 = −a, j2 = −b and ij = −ji = k. A totally definite

quaternion algebra has a, b > 0. An element in Q is written q = q0+q1i+q2j+q3k,

q0, q1, q2, q3 ∈ K, with conjugate q̄ = q0 − q1i− q2j− q3k. The reduced norm of q

is nrd(q) = qq̄.

Let M2(L) be the set of 2×2 matrices with elements in L. Define the K-linear
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map κ : Q→M2(L) by

κ(1) = I, κ(i) =
√
−aZ, κ(j) = −

√
−bY, κ(k) =

√
−abX, (4.3)

where X, Y, Z are the Pauli matrices. Notice that κ defines an isomorphism of

quaternion algebras, with κ(k) = κ(i)κ(j). Concretely, we have a correspondence

between elements in Q and matrices in M2(L) of the form

M =
(

q0+q1
√
−a −q2

√
b+q3

√
−ab

q2
√
b+q3

√
−ab q0−q1

√
−a

)
,

where the corresponding quaternion is q := q0+q1i+q2j+q3k, such that κ(q) =M .

Observe that det(M) = nrd(q) = q0− aq21 − bq22 + abq23. The set of matrices of this

form corresponds to SU(2) via the map

σ′(M) =
1√

σ1(det(M))
· σ1(M), (4.4)

where σ1 is the natural extension over matrices of the embedding from L into C.

Let S be a set of elements from K. Consider the gate set to be those matrices

with determinant in S.

For the V, Clifford+T and Clifford+
√

T bases, the corresponding fields and

integer rings are given in Table 4.2. Note that for these gate sets, the corresponding

OK and OL are principal ideal domains.
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Table 4.2: Number field correspondences for the V, Clifford+T and Clifford+
√
T

gate sets.

Gate set K L OK OL

V basis Q Q(i) Z Z[i]
Clifford+T Q(

√
2) Q(ζ8) Z[

√
2] Z[ζ8]

Clifford+
√
T Q(ζ16 + ζ−1

16 ) Q(ζ16) Z[ζ16 + ζ−1
16 ] Z[ζ16]

4.4.2 Quaternion order

For a given gate set, K and L, there exists O, an order of M2(L), containing

the preimages of the gate set unitaries under σ′. We note here that while this

order does not need to be maximal, maximal orders have several properties which

allow for efficient factorisation of elements [56]. For a thorough background on

quaternion orders, we direct the reader to [85].

The order O is constructed as follows. The gate set elements are mapped to

matrices in M2(L). Let LK be the OK-lattice obtained by taking an OK linear

combination of the elements of the ring generated by these matrices. Then, O can

be taken as any order containing this lattice. Note that, due to the multiplicative

properties of the determinant, elements in O with determinant equal to ℓN for

some N ∈ Z∗, ℓ ∈ ⟨S⟩ will correspond to gate set elements. Moreover, N is the

length of a sequence of basis elements that produces the corresponding gate set

element. However, two distinct elements in O could correspond to the same gate

set element, each with a distinct N value3. We look for minimal N , as this will

correspond to the shortest possible basis sequence. This will be the N for which

the entries of M ∈ O with det(M) = ℓN are integral and not all divisible by ℓ.

Such a minimal N always exists and since the approximation method outlined here
3See Example 4.5.2.
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iterates over increasing N , the sequence obtained will be optimal.

Remark 4.4.1. In addition, we look for orders O in which gates that are considered

‘low-cost’ in the gate set behave as units. This forces the determinant of matrices

corresponding to low-cost gates to be 1, ensuring that N is a count of ‘expensive’

gates in a sequence. In essence, this makes the determinant a useful cost measure

for approximation.

The definitions forO and ℓ that we will use for the V, Clifford+T and Clifford+
√

T

bases are given in the Table 4.3.

Table 4.3: Maximal orders for V, Clifford+T and Clifford+
√
T gate sets.

Gate set ℓ O
V basis 5 OK · I +OK · iX +OK · iY +OK · iZ

Clifford+T 2 +
√
2 OK · I +OK · I+iX√

2
+OK · I+iY√

2
+OK · I+iZ+iX+iY

2

Clifford+
√
T 2 + 2 cos( π

16
) OK · I +OK · I+iX√

2
+OK · I+iY√

2
+OK · I+iZ+iX+iY

2

4.4.3 Solving approximation problems

For fixed N ∈ N, finding a solution to any approximation problem over a gate set

involves finding a matrix

M =
(

m1 −m∗
2

m2 m∗
1

)
∈ O,

with additional constraints on m1 depending on the approximation problem, such

that det(M) = ℓN . Our approach to finding M can be summarised in two steps:

1. point enumeration in a target region to find m1 (Section 4.4.3.2), followed

by

2. solving a relative norm equation to recover m2 (Section 4.4.3.3).
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From each pair (m1,m2) we deduce the matrix M =
(

m1 −m∗
2

m2 m∗
1

)
. The unitary

σ′(M) is factorised over the desired gate set to obtain a solution to the approxima-

tion problem. If no solution exists for the given N , set N := N +1 and repeat the

process. Thus, iterating over N will give a solution corresponding to the shortest

gate sequence.

For the diagonal and fallback approximation problems we look for elements

M =
(

m1 −m∗
2

m2 m∗
1

)
of O, such that

σ1(m1)/
√
σ1(ℓN) ∈ Rapprox ⊂ D1,

where Rapprox is the region defined by the problem, as shown in Section 4.3. For

the general unitary approximation problem, m1 is required to satisfy

σ1(m1m
∗
1)/σ1(ℓ

N) ∈ Iapprox ⊂ [0, 1],

where Iapprox is the real interval defined by the parameters of the problem. We

observe that for the relative norm equation

m2m
∗
2 = ℓN −m1m

∗
1

to have a solution, it is necessary that, for all k, σk(ℓN −m1m
∗
1) > 0. This means

we only need to consider those candidates m1 that satisfy either

σk(m1)/
√
σk(ℓN) ∈ D1 or, equivalently, σk(m1m

∗
1)/σk(ℓ

N) ∈ [0, 1]

for all k > 1.
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4.4.3.1 Restrictions on the order

Define the map h from L to Q by

h(a0 + ia1) = a0 + a1i.

Clearly, κ(h(m)) sends an element from L to the diagonal matrix (m 0
0 m∗ ) ∈M2(L).

Define the set of elements corresponding to diagonal matrices in O as MO :=

{m ∈ L : κ(h(m)) ∈ O}. The subsets of L containing candidates for m1 and m2

are respectively defined as

• Mdiag = {m1 : ∃m2 ∈ L s.t. κ(h(m1)) + h(m2)j) ∈ O}, and

• Moff−diag = {m2 : ∃m1 s.t. κ(h(m1) + h(m2)j) ∈ O}.

Given a candidate m1 ∈ Mdiag, the valid associated candidates for m2 are

restricted to the smaller set Mm1
off−diag = {m2 : κ(h(m1) + h(m2)j) ∈ O}.

We will consider orders of the form O =
4∑

i=1

OKωi, with

ω1 = I, ω2 =
I + iX√

2
, ω3 =

I + iY√
2

, ω4 = ω3ω2 =
I + iX + iY + iZ

2
. (4.5)

as for the Clifford+T and Clifford+
√

T gate sets. In these cases, we have

MO = OK + 1+i√
2
OK ⊆ OL and also that Mdiag,Moff−diag are fractional MO ideals.

We additionally will restrict to the case that Mdiag,Moff−diag are principal ideals.

4.4.3.2 Finding m1: an enumeration problem

Finding candidates m1 ∈ L satisfying the conditions of an approximation problem

can be reduced to an integer point enumeration problem. Observe that enumerat-
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ing m1 from Mdiag is equivalent to enumerating a0, a1 ∈ K from the set

LO = {(a0, a1) : ∃a2, a3 ∈ K s.t. a0I + a1
√
−aZ − a2

√
−bY + a3

√
−abX ∈ O}.

We make use of the following lemma to find a Z-basis for Mdiag.

Lemma 4.4.2. LO is a full rank OK-lattice in K2.

Proof. SinceO is closed under addition and scalar multiplication over OK , so is LO.

Consider an OK-linearly independent generating set G of LO and let g1, . . . , gr be

the subset of these that are K-linearly independent. Then r ≤ 2. We have I ∈ O,

so (1, 0) ∈ LO. Suppose for a contradiction that LO contains no elements of the

form (a0, a1), a1 ̸= 0 in LO. Let {ωi}i=1,...,4 be a basis for O, with corresponding

elements in LO denoted by (ωi,0, ωi,1). By assumption, ωi,1 = 0 for i = 1, 2, 3, 4.

We can write each basis element in the form ωi,0I−ωi,2

√
−bY +ωi,3

√
−abX. Then,

by simple linear algebra over K, we can see that at least two of the basis elements

must be K-linearly dependent. Hence, we have a contradiction and so r = 2. So

LO spans K2 as a K vector space and clearly rank(LO) = 2d.

Hence, we can conclude that there exists a Z-basis for LO and so also for Mdiag,

which we denote {yi}, for i = 0, . . . , 2d− 1.

Recall that under the restriction that Mdiag is a principal fractional ideal, we

have

Mdiag =
1

ξ
MO, ξ ∈ L. (4.6)

Remark 4.4.3. We observe that MO ⊆ 1
ξ
MO =⇒ ξ ∈ MO. To see this, note that

I ∈ O and if MO ⊆ 1
ξ
MO then ξx ∈MO,∀x ∈MO.
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Case 1: Diagonal Approximation For diagonal approximation the first nor-

malised embedding ofm1, σ1(m1)/σ1(ℓ
N), falls in a two dimensional region, Rapprox.

Define the 2d× 2d matrix ΣO with rows:

Σ
(2j)
O = (Re(σj(y0)), . . . ,Re(σj(y2d−1)))

Σ
(2j+1)
O = (Im(σj(y0)), . . . , Im(σj(y2d−1)) .

So ΣO is the matrix with entries corresponding to the real and imaginary

components of the images of the li under each of the σds. Let Λ be the diagonal

matrix with
(√

σ1(ℓN),
√
σ1(ℓN) . . . ,

√
σd(ℓN),

√
σd(ℓN)

)
on the diagonal. Then

the operation Λ−1ΣOz first embeds z into the Euclidean space corresponding to

Mdiag, then normalises the result with respect to the norm ℓN . Finding m1 is now

an integer point enumeration problem:

Problem 4.4.4. Find z ∈ Z2d such that Λ−1ΣOz ∈ Rapprox ×Dd−1
1 .

Each solution z = (z0, . . . , z2d−1) yields a candidate for m1 by setting m1 =

z0y0 + · · ·+ z2d−1y2d−1.

Case 2: General Approximation For general unitary approximation the first

normalised embedding of m1, σ1(m1m
∗
1)/σ1(ℓ

N), belongs to the interval Iapprox and

the remaining d− 1 embeddings satisfy σk(m1m
∗
1)/σk(ℓ

N) ∈ [0, 1].

We are looking for values n = m1m
∗
1 satisfying the above conditions, such

that m1 ∈ Mdiag. Consider the set {n : ∃m1 ∈ Mdiag such that m1m
∗
1 = n} and

let Mnorm be the set generated multiplicatively by the above set. From Equation

(4.6), we see that

Mnorm ⊆
1

ξξ∗
OK ,
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a fractional OK ideal. For this reason we can enumerate points n̂ = ξξ∗n ∈ OK .

Let k0, . . . , kd−1 be an integral basis for K and define Σ′ as the d× d matrix with

rows:

Σ′
j = (σj(k0), . . . , σj(kd−1)) .

Define Λ′ as the diagonal normalisation matrix with
(
σ1(ξξ

∗) · σ1(ℓN), . . . , σd(ξξ∗) · σd(ℓN)
)

on the diagonal. Finding n̂ is now an integer point enumeration problem in a par-

allelotope.

Problem 4.4.5. Find z ∈ Zd such that Λ′−1Σ′z ∈ Iapprox × [0, 1]d−1.

Each solution z = (z0, . . . , zd−1) yields a candidate for n̂ by setting n̂ = z0k0 +

· · ·+ zd−1kd−1. Recovery of m1 requires a solution to the norm equation

m̂1m̂1
∗ = n̂, m̂1 ∈MO.

Finally the candidate m1 is defined as m1 = m̂1/ξ.

4.4.3.3 Finding m2: solving a norm equation

Given m1, finding a candidate for m2 amounts to solving a norm equation,

m2m
∗
2 = ℓN −m1m

∗
1, m2 ∈Mm1

off−diag, (4.7)

with the added constraint ensuring that the pair (m1,m2) corresponds to a matrix

in the order O. In the following discussion, we show that a solution for m2 can

be recovered from a related norm equation, in which we solve for elements in MO.
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Recall the assumption that Moff−diag is a principal fractional ideal, with

Moff−diag =
1

ξ′
MO, ξ′ ∈ L.

For any two m2,m
′
2 ∈ M

m1
diag we have κ(h(m2)j − h(m′

2)j) ∈ O. Therefore, we

can write Mm1
off−diag = m2+M

0
off−diag, where M0

off−diag is the principal fractional MO

ideal {m′
2 : κ(h(m

′
2)j) ∈ O}. We will take M0

off−diag =
1
χ
MO, χ ∈ L.

The norm equation in Equation (4.7) can now be reformulated to look for a

solution in MO.

Problem 4.4.6. Given ẑ/ξ′ ∈Moff−diag,m1 ∈Mdiag, find z ∈MO such that

(
ẑ

ξ′
+
z

χ

)(
ẑ

ξ′
+
z

χ

)∗

= ℓN −m1m
∗
1.

A solution z yields a candidate for m2 by setting m2 = ẑ/ξ′ + z/χ. Since

m1 = m̂1/ξ for some m1 ∈ MO, if ξ = ξ′ and χ = 1, then Problem 4.4.6 is

simplified to:

Problem 4.4.7. Find z ∈MO such that (ẑ+ξz)(ẑ+ξz)∗ = ξξ∗ℓN−m̂1m̂1
∗, where

ẑ, m̂1 ∈MO.

Remark 4.4.8. By applying the variable substitution z′ = ẑ + ξz, we see that

Problem 4.4.6 is equivalent to solving

z′(z′)∗ = r ∈ OK , z′ ∈ ẑ + ξMO, (4.8)

where r = ξξ∗ℓN − m̂1m̂1
∗. In other words, z′ must lie in the same coset in

MO/ξMO as ẑ. Fieker, Jurk and Pohst [40] give an algorithm for solving general
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relative norm equations. A method for solving relative norm equations pertaining

to quaternion gate sets (over number fields with fixed degree) is given in [56], which

runs in polynomial time for the number fields associated with the V, Clifford+T

and Clifford+
√

T bases. We conjecture that the condition on the coset makes this

a more difficult problem to solve for general number fields. However, there may

be fields with possessing useful properties, for which this problem can be solved in

polynomial time. We conjecture that this is again the case for the V, Clifford+T

and Clifford+
√

T bases.

To summarise, the definitions for ξ, ξ′ and χ corresponding to the V, Clifford+T

and Clifford+
√

T bases are given in the Table 4.4. Note that the order O we use

for the V basis is actually of a different form than that of the Clifford+T and

Clifford+
√

T bases, as we will see in the next section.

Table 4.4: Fractional ideal representatives for V, Clifford+T and Clifford+
√
T

gate sets.

Gate set ξ ξ′ χ MO

V basis 1 1 1 OL

Clifford+T
√
2
√
2 1 OL

Clifford+
√
T
√
2
√
2 1 OK + 1+i√

2
OK
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4.5 Solutions for commonly used gate sets

4.5.1 V Basis

The V basis consists of the following six matrices:

V±Z =
1√
ℓ

1± 2i 0

0 1∓ 2i

 ,

V±Y =
1√
ℓ

 1 ∓2

±2 1

 ,

V±X =
1√
ℓ

 1 ±2i

±2i 1

 ,

where ℓ = 5. Let K = Q and let L = Q(i) = {a0 + ia1 : a0, a1 ∈ Q}, where

i2 = −1. Let OK = Z and OL = Z[i] = {a0 + ia1 : a0, a1 ∈ Z} be the rings of

integers ofK and L respectively. Any element t = a0+ia1 ∈ OL can be written as a

2-dimensional vector over OK , namely (a0, a1). There are two distinct embeddings

from L into C related by complex conjugation. Denote by σ the embedding such

that σ(i) = i.

Let M2(L) be the algebra of all 2× 2 matrices with entries in L, and let O be

an order in M2(L) that contains all the V basis elements scaled by
√
ℓ. Concretely,

we set

O := Z · I + Z · iX + Z · iY + Z · iZ. (4.9)

We extend σ over O in a natural way, namely for M ∈ O we define σ(M) as

the matrix whose elements are the images of the elements of M under σ. As
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observed in [13, 56], elements of O with determinant ℓN correspond to unitaries

that can be expressed as a product of N matrices from the V gate set via the map

σ′(M) = 1√
ℓN
σ(M).

Example 4.5.1. Let V = VZ · VX = 1
5

(
1+2i 2i−4
2i+4 1−2i

)
. Then, MV =

(
1+2i 2i−4
2i+4 1−2i

)
=

I + 2 · iX − 4 · iY + 2 · iZ ∈ O and σ′(MV ) = V. Since det (MV ) = 52, we have

N = 2 as expected, as V is the product of two V basis matrices. Note that the

sequence VZVX cannot be simplified (over the V basis) so N is minimal.

Example 4.5.2. Let V = VZVXV−XVY V−Z = 1√
3125

(
25 30−40i

−30−40i 25

)
. Then,

MV =
(

25 30−40i
−30−40i 25

)
= 25 · I − 40 · iX + 30 · iY ∈ O

and σ′(MV ) = V. Then det (MV ) = 3125 = 55 so V can be expressed as the product

of five V basis elements. However, M ′
V =

(
5 6−8i

−6−8i 5

)
= 5 · I − 8 · iX +6 · iY ∈ O,

is also such that σ′(M ′
V ) = V. Here, det (M ′

V ) = 125 = 53, giving N = 3. Since

VPV−P = V−PVP = I, for P ∈ {X, Y, Z}, the sequence VZVXV−XVY V−Z simplifies

to VZVY V−Z , so V can in fact be expressed as a product of three V basis elements.

The sequence cannot be simplified further, by checking all combinations of VP1VP2

for P1, P2 ∈ {±X,±Y,±Z}, so this N is minimal.

4.5.1.1 Solving approximation problems

Finding a solution to any approximation problem over the V basis involves find-

ing a matrix M =
(

m1 −m∗
2

m2 m∗
1

)
with additional constraints on m1 depending on

the approximation problem, such that det(M) = ℓN . The following procedure is

described for fixed N.

For the diagonal (Problem 4.3.2) and projective (Problem 4.3.4) approximation
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problems, M is such that σ1(m1)/
√
σ1(ℓN) ∈ Rapprox, where Rapprox is a specific

region of C depending on the problem. Namely, we consider Rapprox as one of the

regions defined in Proposition 4.3.3 and Proposition 4.3.5. For general unitary

approximation (Problem 4.3.1) with our new decomposition, M must be such that

σ1(m1m
∗
1)/σ1(ℓ

N) ∈ Iapprox, where Iapprox ⊂ [0, 1] where Iapprox is an interval of R

as defined in Proposition 4.3.6. Formally, we solve the following point enumeration

problems.

Problem 4.5.3 (2D point enumeration (V basis)). Let Rapprox be a 2D region cor-

responding to a particular approximation problem and fix N ∈ N.

Find all (a0, a1) ∈ Z2 such that
1√
ℓN

(a0, a1) ∈ Rapprox.

Problem 4.5.4 (1D point enumeration (V basis)). Let Iapprox ⊂ [0, 1] be a real

interval corresponding to a particular approximation problem and fix N ∈ N.

Find all n ∈ Z such that
n

ℓN
∈ Iapprox.

In the first case we set m1 = a0+ ia1 for every solution (a0, a1). In the second case

we first solve the norm equation n = a20 + a21, and for every solution we obtain a

candidate value m1 = a0 + ia1.

To satisfy the determinant condition, solving the approximation problems re-

quires that we keep only those m1 for which the following problem is solvable.

Problem 4.5.5 (Norm equation (V basis)). Given m1 ∈ Z[i] and integer N , find

m2 ∈ Z[i] such that

m2m
∗
2 = ℓN −m1m

∗
1 ∈ Z.
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For every pair of solutions (m1,m2) we then deduce a matrix M =
(

m1 −m∗
2

m2 m∗
1

)
.

Since m2 is a solution to Problem 4.5.5 we have det(M) = ℓN and the matrix

σ′(M) = 1√
ℓN
σ1(M) = 1√

ℓN

(
m1 −m∗

2
m2 m∗

1

)
is unitary.

In summary, given a target unitary and associated region or interval, the fol-

lowing procedure finds an approximation over the V basis. For a fixed value of N ,

an element m1 ∈ Z[i] is obtained by solving an integer point enumeration prob-

lem defined by the target region. Together with N , m1 defines a norm equation,

which is solved to obtain an element m2 ∈ Z[i]. If no solution to either problem

is found, the value of N is increased. The point enumeration and norm equation

steps are repeated for each value of N until a valid pair (m1,m2) is obtained. Each

pair defines a matrix M ∈ O as above with determinant ℓN . Then, the unitary

σ′(M) is factorised over the V basis using an existing exact synthesis algorithm

(for example, [59]) to obtain a solution to the approximation problem.

4.5.1.2 Example: Diagonal approximation of ei
π
4
Z

Let θ = π
4

and suppose we want to approximate U = eiθZ =
(

eiπ/4 0
0 e−iπ/4

)
using

the V basis within accuracy ε = 0.05. In other words, we look for V , a product

of unitaries from the V basis, which satisfies ∥U − V ∥ ≤ ε. Writing V as
(
u −v∗

v u∗

)
,

with u, v ∈ C, we obtain the following:

∣∣Re(ue−iθ)
∣∣ ≥ 1− ε2/2 =⇒ ∥U − V ∥ ≤ ε. (4.10)

The constraint on u is represented geometrically by the region in Figure 4.5.

Since V is a product of V basis matrices, there exists N ∈ N such that V =

1√
5N

(
u′ −(v′)∗

v′ (u′)∗

)
, with u′, v′ ∈ Z[i]. It follows that u = u′/

√
5N and v = v′/

√
5N .
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Figure 4.5: Geometric interpretation of constraint on complex number u in
Equation (4.10). The region with the red boundary contains candidate points
(a, b) ∈ Z2, such that u = a+ ib and

∣∣Re(ue−iθ)
∣∣ ≥ 1− (0.05)2/2.

Hence, we scale the region in Figure 4.5 by
√
5N and look for integer points (a, b) ∈

Z2, each corresponding to a candidate u′ = a+ ib. We initialise N := 1, and iterate

over N until a solution is found.

We find that there are no integer solutions for N = 1, 2, 3, 4. At N = 5, there

are four candidates for u′, namely {38+41i, 39+40i, 40+39i, 41+38i}, shown in

Figure 4.6. Since V is unitary, we require det(V ) = uu∗+ vv∗ = 1 or, equivalently,

u′(u′)∗ + v′(v′)∗ = 55 = 3125. So we must have 0 ≤ v′(v′)∗ = 3125− u′(u′)∗. Then,

u′ = 38 + 41i =⇒ u′(u′)∗ = 382 + 412 = 3125 (4.11)

u′ = 39 + 40i =⇒ u′(u′)∗ = 392 + 402 = 3121 (4.12)

u′ = 40 + 39i =⇒ u′(u′)∗ = 3121 (4.13)

u′ = 41 + 38i =⇒ u′(u′)∗ = 3125. (4.14)
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Figure 4.6: Geometric interpretation of the constraint on complex number u′,
such that V = 1√

55

(
u′ −(v′)∗

v′ (u′)∗

)
approximates ei

π
4
Z to accuracy ε = 0.05. The

region with the red boundary contains four candidate complex numbers satisfying∣∣Re(u′e−iθ)
∣∣ ≥ √55(1− ε2/2).

Let v′ = c+ id, so

v′(v′)∗ = c2 + d2 = 55 − (a2 + b2). (4.15)

For Equations (4.11) and (4.14), we have v′(v′)∗ = 0 so v = 0 is the only solution.

Equations (4.12) and (4.13) yield v′(v′)∗ = 4, so c2 + d2 = 4 = 22 then either

c = ±2, d = 0 or c = 0, d = ±2. The two corresponding values for v′ are ±2

and ±2i. In general, Equation (4.15) admits a solution for v ∈ Z[i] if and only if
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all terms pk in the prime factorisation of 55 − (a2 + b2), with p ≡ 3 mod 4, have

even exponent k. Each candidate pair (u′, v′) defines an approximation unitary

V = 1√
3125

(
u′ −(v′)∗

v′ (u′)∗

)
, which is factorised over the V basis. These factorisations

are given in Table 4.5.

u′ v′ V basis factorisation
41 + 38i 0 (V−Z)

5

38 + 41i 0 iZ · (V+Z)
5

39 + 40i 2i eiπ · V−XV−Y V+XV+Y V−X

2 eiπ · V+Y V−XV−Y V+XV+Y

−2i eiπ · V+XV+Y V−XV−Y V+X

−2 eiπ · V−Y V+XV+Y V−XV−Y

40 + 39i 2i −iZ · V−Y V−XV+Y V+XV−Y

2 −iZ · V+XV−Y V−XV+Y V+X

−2i −iZ · V+Y V+XV−Y V−XV+Y

−2 −iZ · V−XV+Y V+XV−Y V−X

Table 4.5: V basis factorisations of unitaries V := 1√
55

(
u′ −(v′)∗

v′ (u′)∗

)
, satisfying∥∥eiπ4Z − V ∥∥ ≤ ε = 0.05.

4.5.2 Clifford + T basis

4.5.2.1 Gate set

The single-qubit Clifford group is defined as the set of unitaries that preserve the

Pauli matrices under conjugation. That is, C is in the single-qubit Clifford group

if and only if for any Pauli matrix P , the matrix C∗PC is also a Pauli matrix.

We recall that the S, H and T gates are defined as follows:
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S = e−iπ/4Z =

e−iπ/4 0

0 eiπ/4

 , H =
1√
2

1 1

1 −1

 ,

T = e−iπ/8Z =

e−iπ/8 0

0 eiπ/8

 .

The single-qubit Clifford group is generated by the H and S gates, and the

Clifford+T group is generated by the single-qubit Clifford group and the T gate.

Observe that T 2 = S, so the Clifford+T group is generated by H and T . We also

recall the matrices Tx, Ty defining rotations by π
4

about the x and y axes, namely

Tx :=

 cos(π
8
) −i sin(π

8
)

−i sin(π
8
) cos(π

8
)

 =
1√
ℓ

(
I +

I − iX√
2

)
,

Ty :=

cos(π
8
) − sin(π

8
)

sin(π
8
) cos(π

8
)

 =
1√
ℓ

(
I +

I − iY√
2

)

where ℓ = 2+
√
2. Note that T similarly defines the rotation of π

4
about the z axis

and we can write T = 1√
ℓ

(
I + I−iZ√

2

)
. We can obtain Tx and Ty from T , and vice

versa, by conjugation with single-qubit Clifford unitaries. Synthesis via a circuit of

Tx, Ty, T and Hadamard gates therefore corresponds to synthesis in the Clifford+T

basis, up to a global phase.

In evaluating the cost of approximate synthesis with Clifford+T gates, we

assume that Clifford gates are low cost, and only count T gates, or equivalently

the total number of Tx, Ty and T matrices.
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4.5.2.2 Quaternion order

Let K = Q(
√
2) and let L = Q(ζ8), where ζ8 = e2πi/8. The ring of integers of L is

OL = Z[ζ8] =
{
a0 + a1ζ8 + a2ζ

2
8 + a3ζ

3
8 : ak ∈ Z

}
= Z[
√
2] +

1 + i√
2
· Z[
√
2].

The ring of integers of K is the real subring OK = Z[
√
2] = {b0 + b1

√
2 : b0, b1 ∈

Z} ⊂ OL. We can identify any element m in OL with a 4-dimensional vector

m = (a0, a1, a2, a3) ∈ Z4 using the integral basis above. There are four distinct

embeddings from L into C, related to one another by complex conjugation and
√
2-conjugation. We fix two embeddings σ1, σ2 such that

(Reσ1(m), Imσ1(m),Reσ2(m), Imσ2(m))T = ΣmT

where

Σ :=



1 1/
√
2 0 −1/

√
2

0 1/
√
2 1 1/

√
2

1 −1/
√
2 0 1/

√
2

0 −1/
√
2 1 −1/

√
2


.

Let n = mm∗ and write n = b0 + b1
√
2, b0, b1 ∈ Z. We can identify n with the

2-dimensional vector n = (b, b1) or with (σ1(n), σ2(n))
T =

(
1

√
2

1 −
√
2

)
nT through

the above embeddings. We choose one embedding arbitrarily, say σ1, to embed

elements into Euclidean space. Note that both σ1 and σ2 are necessary to express

the solvability constraints imposed by the norm equation for elements in L.

Let M2(L) be the algebra of 2 × 2 matrices with entries in L, and let O be a

maximal order in M2(L) which contains Tx, Ty and T . Concretely, we set O =
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∑4
i=1OK · ωi in what follows, where

ω1 = I, ω2 =
I + iX√

2
, ω3 =

I + iY√
2

, ω4 = ω3ω2 =
I + iX + iY + iZ

2
.

The embeddings σ1, σ2 extend over O in a natural way. Elements of O corre-

spond to 2 × 2 unitaries via the map σ′(M) = 1√
σ1(det(M))

σ1(M). Elements of O

with determinant equal to 1 correspond to Clifford gates, and elements of O with

determinant ℓN correspond to unitaries that can be expressed as a product of N

gates Tx, Ty and T [44].

4.5.2.3 Solving approximation problems

Finding a solution to any approximation problem (as defined in Section 4.3) over

the Clifford+T gate set involves finding a matrix

M =
(

m1 −m∗
2

m2 m∗
1

)
= X1ω1 +X2ω2 +X3ω3 +X4ω4, (4.16)

or equivalently finding Xi ∈ OK , with additional constraints on m1 depending on

the approximation problem, such that det(M) = ℓN . Recall that these matrices

will correspond to unitaries which are products of gates from the Clifford+T basis.

Let us first examine the sets Mdiag and Moff−diag, in which we will look for

elements m1 and m2, respectively. From Equation (4.16) we have

Mdiag =

{
X1 +

X2 +X3√
2

+
X4

2
+
X4

2
i : Xi ∈ OK

}
=

1√
2
OK +

(
1 + i

2

)
OK

=
1√
2
OL.

147



Let MO denote the elements of L corresponding to diagonal elements of O.

That is elements m1 such that
(

m1 0
0 m∗

1

)
∈ O. By Equation (4.16), we can see

MO = OL.

Similarly, we have

Moff−diag =

{√
2X1 −X3

2
+

√
2X2 +X3

2
i : Xi ∈ OK

}

=
1√
2
OK +

(
1 + i

2

)
OK

=
1√
2
OL.

For fixed m1, Moff−diag is restricted to the subset

Mm1
off−diag =

{
m2 ∈Moff−diag :

(
m1 −m∗

2
m2 m∗

1

)
∈ O

}
.

Noticing that iY , (iY )−1 ∈ O, we see that m2 ∈M0
off−diag ⇐⇒ m2 ∈MO.

Since for all m1 ∈ Mdiag,m2 ∈ Moff−diag there exist m̂1, m̂2 ∈ OL, such that

m1 = m̂1√
2

and m2 = m̂2√
2

we can scale the conditions on σ1(m̂1) and σ1(m̂1m̂1
∗)

accordingly. Concretely, we have

σ1(m̂1)/
√
σ1(2ℓN) ∈ Rapprox or σ2(m̂1m̂1

∗)/σ2(2ℓ
N) ∈ Iapprox,

depending on the approximation problem, and

σ2(m̂1)/
√
σ2(2ℓN) ∈ D1 or, equivalently, σ2(m̂1m̂1

∗)/σ2(2ℓ
N) ∈ [0, 1].
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In the following sections, the point enumeration and norm equation steps are

described for fixed N. For every pair of solutions (m1,m2) we deduce a matrix

M =
(

m1 −m∗
2

m2 m∗
1

)
. The unitary σ′(M) is factorised over the Clifford+T basis to

obtain a solution to the approximation problem.

4.5.2.4 Finding m1: an enumeration problem

We write m̂1 = a0 + a1ζ8 + a2ζ
2
8 + a3ζ

3
8 and n̂ = m̂1m̂1

∗ = b0 + b1
√
2, with all

coefficients in Z. Let Σ be as defined in Section 4.5.2.2 and let Σ′ =
(

1
√
2

1 −
√
2

)
.

The operation Σ (respectively Σ′) embeds m̂1 (respectively n̂) into the Euclidean

space of the approximation regions. In order to satisfy the constraints imposed by

both the approximation regions and the norm equation, we define normalisation

matrices Λ and Λ′ for Σ and Σ′, respectively. Let Λ and Λ′ be the diagonal ma-

trices with
(√

σ1(2ℓN),
√
σ1(2ℓN),

√
σ2(2ℓN),

√
σ2(2ℓN)

)
and

(
σ1(2ℓ

N), σ2(2ℓ
N)
)

on their respective diagonals. Candidate values for m̂1 are obtained by solving the

point enumeration problems below.

Problem 4.5.6 (2D point enumeration (Clifford+T basis)). Let Rapprox be a two-

dimensional region corresponding to a particular approximation problem. Find

(a0, a1, a2, a3) ∈ Z4 such that Λ−1Σ · (a0, a1, a2, a3)T ∈ Rapprox ×D1.

Problem 4.5.7 (1D point enumeration (Clifford+T basis)). Let Iapprox ⊂ [0, 1] be a

real interval corresponding to a particular approximation problem. Find (b0, b1) ∈

Z2 such that Λ′−1Σ′ · (b0, b1)T ∈ Iapprox × [0, 1].

In the first case, we immediately recover a candidate value for m̂1. In the

second case, we recover a candidate value for n̂, then solve the norm equation
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m̂1m̂1
∗ = n̂ and for every solution we obtain a candidate value m̂1. Finally, we set

m1 =
m̂1√
2
.

4.5.2.5 Finding m2: solving a norm equation

Given a candidate value for m1, we proceed to solve a norm equation problem,

restricting m2 to Mm1
off−diag:

Problem 4.5.8. Given m1 ∈ 1√
2
OL and integer N , find m2 ∈Mm1

off−diag such that

m2m
∗
2 = ℓN −m1m

∗
1 ∈

1

2
OK .

Fixing an arbitrary m ∈ Mm1
off−diag, we have Mm1

off−diag = m + OL. Since

Moff−diag =Mdiag =
1√
2
OL, Problem 4.5.8 can then be reformulated as

Problem 4.5.9. Given m̂1 ∈ Z[ζ8], integer N , and m ∈
√
2Mm1

off−diag find m̂2 ∈

m+
√
2Z[ζ8] such that

m̂2m̂2
∗ = 2ℓN − m̂1m̂1

∗ ∈ Z[
√
2].

Solving Problem 4.5.9 for m̂2 then yields a solution to Problem 4.5.8: m2 =

m̂2/
√
2.
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4.5.3 Clifford+
√
T basis

4.5.3.1 Gate set

Let ℓ = 2 + 2 cos(π
8
) = 2 + (ζ16 + ζ−1

16 ), where ζ16 = e2πi/16. Let also θ = 2 cos(π
8
),

β = θ3 + 3θ and µ = θ2 − 3. We recall that the
√
T gate is defined as follows:

√
T =

 e−iπ/16 0

0 eiπ/16

 .

The
√
T gate defines a rotation about the z axis by π

8
. The Clifford+

√
T group is

generated by the single-qubit Clifford group and the
√
T gate. Note that we will

use the notation T 1/2 interchangeably with
√
T in the following discussion. We

also recall the matrices T 1/2
x , T

1/2
y defining rotations by π

8
about the x and y axes,

namely

T 1/2
x =

 cos( π
16
) −i sin( π

16
)

−i sin( π
16
) cos( π

16
),

 =
1√
ℓ

(
I +

θ(I − iµX)

2

)

T 1/2
y =

cos( π
16
) − sin( π

16
)

sin( π
16
) cos( π

16
)

 =
1√
ℓ

(
I +

θ(I − iµY )

2

)
.

We can additionally write
√
T = 1√

ℓ

(
I + θ(I−iZ)

2

)
. Observe that

√
T

2
= T and(

T
1/2
a

)2
= Ta with a = x, y, as suggested by the notation. We can obtain the

unitaries Tk/2
x and Tk/2

y from T k/2, for k = 1, 2, 3, and vice versa, by conjugation

with single-qubit Clifford unitaries. Here T 3/2
a =

(
T

1/2
a

)3
. Synthesis via a circuit

of unitaries in {T k/2,Tk/2
a : a = x, y k = 1, 2, 3} and the Hadamard gate therefore

corresponds to synthesis in the Clifford +
√
T basis, up to a global phase.
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4.5.3.2 Quaternion order

Let K be the totally real number field K = Q(ζ16 + ζ−1
16 ), and let L be the field

L = Q(ζ16). The ring of integers of L is

OL = Z[ζ16] =

{
7∑

k=0

akζ
k
16 : ak ∈ Z

}
= Z

[
2 cos

(π
8

)]
+ ζ16Z

[
2 cos

(π
8

)]

and the ring of integers of K is the real subring

OK = Z
[
2 cos

(π
8

)]
=

{
b0 + b1 · 2 cos

(π
8

)
+ b2
√
2 + b3 · 2 cos

(
3π

8

)
: bk ∈ Z

}
⊂ OL.

We can identify any elementm inOL with an 8-dimensional vector m = (a0, a1, . . . , a7) ∈

Z8 using the integral basis above. There are 8 distinct embeddings from L into C,

which can be grouped into pairs depending on their images when restricted to K.

We fix four such embeddings σ1, σ2, σ3, σ4 such that ΣmT is equal to

(Reσ1(m), Imσ1(m),Reσ2(m), Imσ2(m),Reσ3(m), Imσ3(m),Reσ4(m), Imσ4(m))T
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where

Σ :=



1 cos(π
8
) 1√

2
cos(3π

8
) 0 − cos(3π

8
) − 1√

2
− cos(π

8
)

0 cos(3π
8
) 1√

2
cos(π

8
) 1 cos(π

8
) 1√

2
cos(3π

8
)

1 cos(3π
8
) − 1√

2
− cos(π

8
) 0 cos(π

8
) 1√
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0 cos(π
8
) 1√
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− cos(3π
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− cos(3π
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cos(π
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)

1 − cos(π
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− cos(3π
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0 cos(3π
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cos(π
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) −1 cos(π
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2
cos(3π
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

.

Let n = mm∗ and write n = b0+b1 ·2 cos(π8 )+b2
√
2+b3 ·2 cos(3π8 ).We can identify n

with the 4-dimensional vector n = (b0, b1, b2, b3), or with (σ1(n), σ2(n), σ3(n), σ4(n))
T =

Σ′nT where

Σ′ :=



1 2 cos(π
8
)

√
2 2 cos(3π

8
)

1 −2 cos(3π
8
) −
√
2 −2 cos(π

8
)

1 −2 cos(3π
8
)
√
2 2 cos(π

8
)

1 −2 cos(π
8
)
√
2 −2 cos(3π

8
)


through the above embeddings. As for the Clifford+T basis, we choose a embed-

ding arbitrarily, for example σ1, to embed elements into Euclidean space.

Let M2(L) be the algebra of all 2 × 2 matrices with entries in L. Let O

be a maximal order in M2(L) which contains T 1/2
x , T 1/2

y and T 1/2, namely O =∑4
i=1OK · ωi, where

ω1 = I, ω2 =
I + iX√

2
, ω3 =

I + iY√
2

, ω4 = ω3ω2 =
I + iX + iY + iZ

2
.
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The embeddings σ1, σ2, σ3, σ4 extend over O in a natural way. Elements of O

correspond to 2× 2 unitaries via the map σ′(M) = 1√
σ1(det(M))

σ1(M). Elements of

O with determinant ℓN correspond to unitaries that can be expressed as a product

of N gates Tk/2
x , Tk/2

y and Tk/2 with k = 1, 2, 3 [44]), hence in the Clifford +
√
T

gates.

4.5.3.3 Solving approximation problems

Finding a solution to any approximation problem over the Clifford+
√
T gate set

involves finding a matrix

M =
(

m1 −m∗
2

m2 m∗
1

)
= X1ω1 +X2ω2 +X3ω3 +X4ω4 ∈ O, (4.17)

or equivalently finding Xi ∈ OK , with additional constraints on m1 depending on

the approximation problem, such that det(M) = ℓN . The unitary σ′(M) will be

factorised over the Clifford+
√

T basis.

Let us first examine the sets Mdiag and Moff−diag, in which we will look for

elements m1 and m2, respectively. From Equation (4.17) we have

Mdiag =

{
X1 +

X2 +X3√
2

+
X4

2
+
X4

2
i : Xi ∈ OK

}
=

1√
2
OK +

1 + i

2
OK .

As before, let MO denote the set of elements m1 ∈ L such that
(

m1 0
0 m∗

1

)
∈ O.

From Equation (4.17), we have MO = OK + 1+i√
2
OK and so clearly Mdiag =

1√
2
MO.

Similarly, we have Moff−diag =
1√
2
MO. Note that OL ⊊MO, since ζ16 is in OL but

not in MO.
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Again, since for all m1 ∈ Mdiag,m2 ∈ Moff−diag there exist m̂1, m̂2 ∈ OL, such

that m1 =
m̂1√
2

and m2 =
m̂2√
2

we can scale the conditions on σ1(m̂1) and σ1(m̂1m̂1
∗)

accordingly. Concretely, we have

σ1(m̂1)/
√
σ1(2ℓN) ∈ Rapprox or σ2(m̂1m̂1

∗)/σ2(2ℓ
N) ∈ Iapprox,

depending on the approximation problem, and, for k = 2, 3, 4,

σk(m̂1)/
√
σk(2ℓN) ∈ D1 or, equivalently, σk(m̂1m̂1

∗)/σk(2ℓ
N) ∈ [0, 1].

In the following sections, the point enumeration and norm equation steps are

described for fixed N.

4.5.3.4 Finding m1: an enumeration problem

Writing any m1 = a0+a1i with a0, a1 ∈ K, we see that Mdiag can be considered as

a full rank OK lattice in K2. We therefore have a Z-basis, {y0, . . . , y7}, for Mdiag

and can write any element m1 ∈Mdiag as m1 =
7∑

i=0

aiyi, ai ∈ Z.

Since Mdiag = 1√
2
OK + 1+i

2
OK , we also have n := m1m

∗
1 ∈ 1

2
OK . Since m1 ∈

1√
2
MO, there exists m̂1 ∈MO such that m1 =

m̂1√
2

and furthermore, m̂1m̂1
∗ = 2n :=

n̂ ∈ OK . We write n̂ = b0 + b1 · 2 cos(π8 ) + b2
√
2 + b3 · 2 cos(3π8 ) with all coefficients

in Z. Let ΣO be defined as the matrix with rows:

Σ
(2j)
O = (Re(σj(y0)), . . . ,Re(σj(y7))

Σ
(2j+1)
O = (Im(σj(y0)), . . . , Im(σj(y7)),

for 1 ≤ j ≤ 7, where the σj are defined in Section 4.5.3.2. Additionally, take Σ′ as
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defined in Section 4.5.3.2, and define normalization matrices Λ and Λ′ as the di-

agonal matrices with the entries
(√

σ1(ℓN),
√
σ1(ℓN), . . . ,

√
σ4(ℓN),

√
σ4(ℓN)

)
and

(σ1(2ℓ
N), (σ2(2ℓ

N), (σ3(2ℓ
N), σ4(2ℓ

N)) on the main diagonal, respectively. Hence

the operations Λ−1ΣO and Λ′−1Σ′ first embed an elementm1 or n̂ into the Euclidean

space of our approximation regions, then normalises it to satisfy the constraints.

Candidate values for m1 are then obtained by solving point enumeration problems

below.

Problem 4.5.10 (2D point enumeration (Clifford+
√
T basis)). Let Rapprox be a 2D

region corresponding to a particular approximation problem.

Find (a0, a1, a2, a3, a4, a5, a6, a7) ∈ Z8 such that

Λ−1ΣO · (a0, a1, a2, a3, a4, a5, a6, a7)T ∈ Rapprox ×D1 ×D1 ×D1.

Problem 4.5.11 (1D point enumeration (Clifford+
√
T basis)). Let Iapprox ⊂ [0, 1]

be a real interval corresponding to a particular approximation problem. Find

(a′0, a
′
1, a

′
2, a

′
3) ∈ Z4 such that

Λ′−1

Σ′ · (b0, b1, b2, b3)T ∈ Iapprox × [0, 1]× [0, 1]× [0, 1].

In the first case, we immediately recover a candidate value form1. In the second

case, we recover a candidate value for n̂, solve the norm equation m̂1m̂1
∗ = n̂ and

for every solution m̂1 we obtain a candidate value m1 by setting m1 =
m̂1√
2
.
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4.5.3.5 Finding m2: solving a norm equation

Given a candidate value for m1, we proceed to solve a norm equation problem (or

determine there is no solution), restricting m2 to Mm1
off−diag:

Problem 4.5.12. Given m1 ∈ 1√
2
MO and integer N , find m2 ∈Mm1

off−diag such that

m2m
∗
2 = ℓN −m1m

∗
1 ∈

1

2
OK .

Fixing an arbitrary m ∈ Mm1
off−diag, we have Mm1

off−diag = m+MO, since for any

two m,m′ ∈Mm1
off−diag we have m−m′ ∈M0

off−diag =MO. Since Moff−diag =Mdiag =

1√
2
MO, Problem 4.5.12 can then be reformulated as

Problem 4.5.13. Given m̂1 ∈ MO, integer N , and m/
√
2 ∈ Mm1

off−diag find m̂2 ∈

m+
√
2MO such that

m̂2m̂2
∗ = 2ℓN − m̂1m̂1

∗ ∈ OK .

Solving Problem 4.5.13 for m̂2 then yields a solution to Problem 4.5.12: m2 =

m̂2/
√
2.

4.6 Impact on resource cost

The following lemma proves that the new approach for solving the general unitary

synthesis established in Section 4.3.3 results in shorter sequences for approxima-

tion, under a reasonable heuristic regarding diagonal approximations.

Lemma 4.6.1. Solutions to Problem 4.3.1 that satisfy the conditions of Proposi-

tion 4.3.7 yield sequence lengths of O(7 logℓ(
1
ε
)).
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Proof. Recall that Proposition 4.3.7 establishes that a solution to Problem 4.3.1

involves two diagonal unitary approximations and a ‘magnitude approximation’.

As outlined in Section 4.4, each of these steps amounts to point enumeration

in a feasible region, followed by solving a norm equation. For the magnitude

approximation, we can a priori bound the size of the norm for which we accept

candidates for u to ≈ 1
ε
. Then, since the norm is equivalent to ℓN by design, we

have N ≈ logℓ(
1
ε
). For the diagonal approximations, it is known that sequence

lengths of 3 logℓ(
1
ε
) [78] are optimal. Hence, the total sequence length for the

general unitary approximation is 7 logℓ(
1
ε
).

In comparison to the Euler decomposition method, which requires three di-

agonal approximations resulting in total length of 9 logℓ(
1
ε
) [78], our magnitude

approximation method achieves shorter sequences.

We have assumed in Lemma 4.6.1 that the same accuracy is chosen for the

diagonal and magnitude approximations. In practice, it is of course possible to

choose different levels of accuracy and thus model the sequence length as

SL := 6 logℓ(1/ε1) + logℓ(1/ε2),

where ε1 is the accuracy for diagonal approximation and ε2 is the accuracy for

magnitude approximation. Recall that the total accuracy of the approximation is

given by ε = 2ε1+ ε2. Rewriting ε2 as ε− 2ε1, we have SL = logℓ(1/(ε
6
1(ε− 2ε1))).

Hence, to minimise sequence lengths we then look to maximise y = ε61ε− 2ε71, for

0 < ε1 < ε ≤ 1. The maximum occurs when ε1 = 3ε
7

(and so ε2 = ε
7
). Put in

terms of the approximations, this would mean that the magnitude approximation

is completed to a closer degree of accuracy than the two diagonal approximations.
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4.7 Conclusions

With this chapter, we sought to better establish the computational resources of

a quantum adversary, thus addressing the third of Koblitz and Menezes’ points

of error. Our approach was inspired by the protocol-independent criterion for

security assumptions from [43].

Specifically, we showed that the resource costs of approximating a general uni-

tary can be improved by a factor of 7
9
, using a new method of approximation.

Sequence lengths linear in log(1
ε
) are expected, and have been seen before in lit-

erature. Nevertheless, reducing the constant factor represents progress towards

optimal sequence lengths. We see that our result will have greatest impact on algo-

rithms that already require several hundreds of unitaries to implement. Moreover,

we argue that our new approach, which borrows from path-finding algorithms, is

itself a worthwhile contribution.

We note also that while these results are directly applicable to the approxima-

tion of single-qubit unitaries, there already exist algorithms for the decomposition

of multi-qubit unitaries into circuits of single-qubit unitaries. Hence, our results

are applicable to these cases as well. It remains for future research to make further

improvements in the multi-qubit landscape.
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Summary and conclusions

This thesis has examined three points in reductionist security proofs that are sus-

ceptible to errors induced by flawed assumptions, guided by the work of Koblitz

and Menezes [62]. We firstly introduced two classes of assumptions arising in clas-

sical cryptanalysis, the relevance of which was demonstrated through examples in

real-world cryptography (isogeny-based and multivariate-based), and closed by ad-

dressing the resource costs of quantum cryptanalysis. By highlighting these three

areas, this thesis presents a holistic overview of the many approaches to cryptog-

raphy security analysis. The results contained herein both pertain to the security

of specific protocols, in terms of changing parameters, and provide evidence for

the importance of studying cryptographic security assumptions, in general.

In Chapter 2, this thesis demonstrated that the security assurances derived

from the difficulty of well-studied, intractable mathematical problems cannot nec-

essarily be transferred to problem variants when only one-way reductions are

proven. Specifically, we disproved the hardness assumptions on the OMSSCDH

and 1MSSCDH problems, and provided attacks against two undeniable isogeny

signature schemes that employed them.

That is not to say that a two-way reduction is sufficient to guarantee a faultless

security analysis due to issues that can occur when complexity-theoretic results are
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translated to practical values for implementation. The example of Gröbner basis

finding algorithms in Chapter 3 supports the argument that if approximations

are necessary they are better based on proven results rather than heuristics. We

have provided explicit formulas for proven bounds on the solving degree of over-

determined systems, as an alternative to the degree of regularity.

Finally, this thesis provides an improved understanding of the resource costs

that would affect a quantum adversary. In Chapter 4, we have shown that the

cost of fault-tolerantly approximating single-qubit unitaries is less than previously

possible. The improvement is a factor of 7
9
. This is a sufficiently general result so

can be applied to as-yet undiscovered algorithms.

There are a few open problems pertaining to this work:

1. Are there possible attacks against the Decisional Supersingular Product

problem [52, 80]? This problem is used by Srinath and Chandrasekaran

to prove the blindness property and by Jao and Soukharev to argue zero-

knowledge of their confirmation and disavowal protocols.

2. Does there exist M(n,m) such that |dsolve − dreg| ≤ M(n,m) for all crypto-

graphic semi-regular sequences of m polynomials in n variables? What is a

lower bound for the solving degree?

3. What properties (if any) of number fields make solving relative norm equa-

tions with restrictions on coset membership computationally feasible?

4. What effect do the mixing strategies of Campbell [20] and Hastings [48] have

on sequence lengths when used in conjunction with our method for solving

the general unitary approximation problem?

The work contained in this thesis serves to caution that continued scrutiny is

needed to ensure that only good assumptions are used in post-quantum security
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analyses. Our contention is that confidence in reductionist security proofs can only

be established through the use of these good assumptions and that our understand-

ing of what this means needs to be continually assessed and updated. We have

argued that proven results, even if only applicable to a smaller set of protocols, are

preferable to unproven (or, more pertinently, disproven) results and that cryptan-

alysts should remain cognisant of all aspects of quantum cost to give a realistic

appraisal of security. In conclusion, although assumptions are an inevitable and

important part of post-quantum security analyses, the field must remain vigilant

of the vectors of error that can exist and work to eliminate them.
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Appendix A

Index of regularity for

over-determined systems

This appendix lists the index of regularity r(n + ℓ, n) of the ideal generated by a

cryptographic semi-regular system of n + ℓ homogeneous quadratic equations in

n variables. The formula for the kth coefficient in the Hilbert series expansion for

a cryptographic semi-regular system of n + ℓ homogeneous quadratic equations

in n variables was calculated iteratively, until the first k was reached for which

the coefficient is negative. This gives the value of r(n + ℓ, n), as discussed in

Section 3.5.1. The value of r(n+ ℓ, n) bounds the solving degree of cryptographic

semi-regular systems of n + ℓ homogeneous polynomials in n variables or n + ℓ

inhomogeneous polynomials in n − 1 variables (under the assumption that the

system is in generic coordinates, as discussed in Section 3.2).
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Table A.1: r(n+ ℓ, n) for 2 ≤ ℓ ≤ 100, 2 ≤ n ≤ 26
ℓ/n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
2 2 3 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 10 10 10 11 11 12 12 13
3 2 2 3 3 4 4 4 5 5 5 6 6 7 7 7 8 8 9 9 10 10 10 11 11 12
4 2 2 3 3 3 4 4 4 5 5 5 6 6 7 7 7 8 8 8 9 9 10 10 10 11
5 2 2 3 3 3 3 4 4 4 5 5 5 6 6 7 7 7 8 8 8 9 9 9 10 10
6 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10
7 2 2 2 3 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9
8 2 2 2 3 3 3 3 4 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9
9 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 7 7 7 8 8 8 9
10 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 7 7 7 8 8 8
11 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 8 8
12 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 7 7 7 7 8
13 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7
14 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7
15 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7
16 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 7 7
17 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 7 7
18 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 7
19 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 7
20 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6
21 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6
22 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6
23 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6
24 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6
25 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 6 6
26 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6
27 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6
28 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 6
29 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 6
30 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5
31 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5
32 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5
33 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5
34 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5
35 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5
36 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5
37 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5
38 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5
39 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5
40 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5
41 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5
42 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5
43 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5
44 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5
45 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5
46 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5
47 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5
48 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5
49 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5
50 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
51 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
52 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
53 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
54 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
55 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
56 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
57 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4
58 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4
59 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4
60 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4
61 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4
62 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4
63 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4
64 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4
65 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4
66 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4
67 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4
68 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4
69 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4
70 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4
71 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4
72 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4
73 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4
74 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4
75 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4
76 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4
77 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4
78 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4
79 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4
80 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4
81 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4
82 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4
83 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4
84 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4
85 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4
86 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4
87 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4
88 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4
89 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4
90 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4
91 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4
92 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4
93 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4
94 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4
95 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4
96 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4
97 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4
98 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4
99 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4
100 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
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Table A.2: r(n+ ℓ, n) for 2 ≤ ℓ ≤ 100, 27 ≤ n ≤ 51
ℓ/n 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
2 25 25 26 26 27 27 28 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36
3 23 23 24 24 25 25 26 26 26 27 27 28 28 29 29 30 30 31 31 31 32 32 33 33 34
4 22 22 22 23 23 24 24 25 25 25 26 26 27 27 28 28 28 29 29 30 30 31 31 31 32
5 20 21 21 22 22 22 23 23 24 24 25 25 25 26 26 27 27 27 28 28 29 29 30 30 30
6 20 20 20 21 21 21 22 22 23 23 23 24 24 25 25 26 26 26 27 27 28 28 28 29 29
7 19 19 19 20 20 21 21 21 22 22 23 23 23 24 24 25 25 25 26 26 27 27 27 28 28
8 18 18 19 19 19 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26 26 26 27 27
9 17 18 18 18 19 19 20 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26 26 26
10 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26
11 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 22 22 22 23 23 23 24 24 24 25
12 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24
13 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 24
14 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23
15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22
16 14 15 15 15 16 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22
17 14 14 15 15 15 16 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22
18 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 19 20 20 20 21 21
19 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 21
20 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20
21 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20
22 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20
23 12 13 13 13 14 14 14 14 15 15 15 15 16 16 16 17 17 17 17 18 18 18 19 19 19
24 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18 19 19
25 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18 19
26 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18
27 12 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18 18
28 11 12 12 12 12 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18
29 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18
30 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17
31 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 17 17 17
32 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17
33 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17
34 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16
35 10 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16
36 10 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16
37 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16
38 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16
39 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 14 15 15 15 15
40 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15
41 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15
42 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 14 15 15
43 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15
44 9 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14 14 14 14 15
45 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 14
46 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14
47 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14
48 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14
49 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14 14
50 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14
51 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14
52 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14
53 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13
54 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13
55 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13
56 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13
57 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13
58 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13
59 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13
60 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 13
61 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13
62 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12
63 8 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12
64 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12
65 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12
66 8 8 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12
67 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12
68 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12
69 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12
70 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12
71 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11 12
72 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12
73 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11
74 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11
75 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11
76 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11
77 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
78 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
79 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
80 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
81 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
82 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
83 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11
84 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11
85 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 11
86 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11
87 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11
88 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10
89 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10
90 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10
91 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10
92 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10
93 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10
94 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10
95 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10
96 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10
97 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10
98 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10
99 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10
100 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10
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Table A.3: r(n+ ℓ, n) for 2 ≤ ℓ ≤ 100, 52 ≤ n ≤ 76
ℓ/n 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
2 25 25 26 26 27 27 28 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36
3 23 23 24 24 25 25 26 26 26 27 27 28 28 29 29 30 30 31 31 31 32 32 33 33 34
4 22 22 22 23 23 24 24 25 25 25 26 26 27 27 28 28 28 29 29 30 30 31 31 31 32
5 20 21 21 22 22 22 23 23 24 24 25 25 25 26 26 27 27 27 28 28 29 29 30 30 30
6 20 20 20 21 21 21 22 22 23 23 23 24 24 25 25 26 26 26 27 27 28 28 28 29 29
7 19 19 19 20 20 21 21 21 22 22 23 23 23 24 24 25 25 25 26 26 27 27 27 28 28
8 18 18 19 19 19 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26 26 26 27 27
9 17 18 18 18 19 19 20 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26 26 26
10 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26
11 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 22 22 22 23 23 23 24 24 24 25
12 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24
13 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 24
14 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23
15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22
16 14 15 15 15 16 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22
17 14 14 15 15 15 16 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22
18 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 19 20 20 20 21 21
19 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 21
20 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20
21 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20
22 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20
23 12 13 13 13 14 14 14 14 15 15 15 15 16 16 16 17 17 17 17 18 18 18 19 19 19
24 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18 19 19
25 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18 19
26 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18
27 12 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18 18
28 11 12 12 12 12 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18
29 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18
30 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17
31 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 17 17 17
32 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17
33 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17
34 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16
35 10 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16
36 10 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16
37 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16
38 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16
39 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 14 15 15 15 15
40 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15
41 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15
42 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 14 15 15
43 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15
44 9 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14 14 14 14 15
45 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 14
46 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14
47 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14
48 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14
49 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14 14
50 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14
51 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14
52 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14
53 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13
54 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13
55 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13
56 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13
57 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13
58 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13
59 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13
60 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 13
61 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13
62 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12
63 8 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12
64 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12
65 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12
66 8 8 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12
67 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12
68 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12
69 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12
70 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12
71 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11 12
72 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12
73 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11
74 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11
75 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11
76 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11
77 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
78 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
79 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
80 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
81 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
82 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
83 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11
84 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11
85 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 11
86 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11
87 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11
88 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10
89 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10
90 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10
91 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10
92 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10
93 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10
94 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10
95 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10
96 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10
97 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10
98 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10
99 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10
100 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10
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Table A.4: r(n+ ℓ, n) for 2 ≤ ℓ ≤ 100, 77 ≤ n ≤ 100
ℓ/n 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
2 36 37 37 38 38 39 39 40 40 41 41 42 42 43 43 44 44 45 45 45 46 46 47 47
3 34 35 35 35 36 36 37 37 38 38 39 39 40 40 40 41 41 42 42 43 43 44 44 45
4 32 33 33 34 34 35 35 35 36 36 37 37 38 38 38 39 39 40 40 41 41 42 42 42
5 31 31 32 32 33 33 33 34 34 35 35 36 36 36 37 37 38 38 39 39 39 40 40 41
6 30 30 30 31 31 32 32 32 33 33 34 34 35 35 35 36 36 37 37 37 38 38 39 39
7 28 29 29 30 30 30 31 31 32 32 33 33 33 34 34 35 35 35 36 36 37 37 37 38
8 28 28 28 29 29 29 30 30 31 31 31 32 32 33 33 33 34 34 35 35 35 36 36 37
9 27 27 27 28 28 29 29 29 30 30 30 31 31 32 32 32 33 33 34 34 34 35 35 36
10 26 26 27 27 27 28 28 28 29 29 30 30 30 31 31 32 32 32 33 33 33 34 34 35
11 25 26 26 26 27 27 27 28 28 28 29 29 30 30 30 31 31 31 32 32 33 33 33 34
12 25 25 25 26 26 26 27 27 27 28 28 28 29 29 30 30 30 31 31 31 32 32 33 33
13 24 24 25 25 25 26 26 26 27 27 27 28 28 29 29 29 30 30 30 31 31 31 32 32
14 23 24 24 24 25 25 25 26 26 26 27 27 28 28 28 29 29 29 30 30 30 31 31 31
15 23 23 23 24 24 25 25 25 26 26 26 27 27 27 28 28 28 29 29 29 30 30 30 31
16 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28 28 29 29 29 30 30
17 22 22 23 23 23 23 24 24 24 25 25 25 26 26 26 27 27 28 28 28 29 29 29 30
18 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28 28 29 29
19 21 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 26 27 27 27 28 28 28
20 21 21 21 22 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28
21 20 21 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28
22 20 20 20 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 25 26 26 26 27 27
23 20 20 20 20 21 21 21 22 22 22 23 23 23 23 24 24 24 25 25 25 26 26 26 27
24 19 20 20 20 20 21 21 21 22 22 22 23 23 23 23 24 24 24 25 25 25 26 26 26
25 19 19 20 20 20 20 21 21 21 22 22 22 22 23 23 23 24 24 24 25 25 25 26 26
26 19 19 19 19 20 20 20 21 21 21 22 22 22 22 23 23 23 24 24 24 25 25 25 25
27 18 19 19 19 19 20 20 20 21 21 21 22 22 22 22 23 23 23 24 24 24 24 25 25
28 18 18 19 19 19 19 20 20 20 21 21 21 21 22 22 22 23 23 23 24 24 24 24 25
29 18 18 18 19 19 19 19 20 20 20 21 21 21 21 22 22 22 23 23 23 24 24 24 24
30 18 18 18 18 19 19 19 19 20 20 20 21 21 21 21 22 22 22 23 23 23 23 24 24
31 17 18 18 18 18 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23 23 23 23 24
32 17 17 18 18 18 18 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23 23 23 23
33 17 17 17 18 18 18 18 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23 23 23
34 17 17 17 17 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23 23
35 16 17 17 17 17 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23
36 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 22 22 22 22
37 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 22 22 22
38 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 22 22
39 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 21 21 21 21 22
40 16 16 16 16 17 17 17 17 17 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21
41 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21
42 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21
43 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21
44 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20
45 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20
46 15 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20
47 14 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19 19 19 19 20 20
48 14 15 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 18 19 19 19 19 20
49 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20
50 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19
51 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19 19 19
52 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19
53 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19 19
54 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19
55 13 14 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18 18 18 18
56 13 13 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18
57 13 13 14 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 17 18 18 18
58 13 13 13 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18 18
59 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18
60 13 13 13 13 14 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18
61 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18
62 13 13 13 13 13 14 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 17
63 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17 17 17 17
64 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17
65 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17 17 17
66 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17
67 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17 17
68 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17
69 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17
70 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16
71 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16
72 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16
73 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16
74 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16
75 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16
76 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16
77 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 15 16
78 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16
79 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 15
80 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15
81 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15
82 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15
83 11 11 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15
84 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 14 15 15 15
85 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15
86 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 14 15 15
87 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15
88 11 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 15
89 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15
90 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14
91 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 14
92 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14
93 10 11 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14
94 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14
95 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14
96 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14
97 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14
98 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 12 13 13 13 13 13 14 14 14
99 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14
100 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14

175


	Introduction
	Organisation of the Thesis
	Main contributions

	Post-quantum hardness assumptions
	Introduction to reductionist security
	Hardness assumptions based on weak evidence
	Inherited hardness assumptions

	Flawed approximations in security proofs
	The impact of erroneous approximations
	Asymptotics and implementation

	The quantum resources of an adversary
	Computational complexity with a quantum adversary
	Quantum gate approximation


	Inherited security in isogeny-based cryptography
	Preliminaries
	Isogeny hardness assumptions
	The SIDH protocol
	Variants of the SSCDH problem

	Isogeny-based undeniable signature schemes
	Unforgeability and invisibility
	The Jao-Soukharev protocol
	Analysing the security proof of Jao-Soukharev
	The Srinath-Chandrasekaran protocol
	Analysing the security proof of Srinath-Chandrasekaran

	Attack on SSCDH variants
	Attack on undeniable isogeny signature schemes
	Attack on Jao-Soukharev protocol
	Attack on Srinath-Chandrasekaran protocol

	Impact on security
	Parameter
	Blindness
	Adversarial restrictions

	Conclusion

	Practical security of multivariate quadratic cryptography
	Preliminaries
	Gröbner Bases and semi-regular sequences
	Generic and semi-regular Sequences
	Gröbner bases

	Estimating the solving degree
	Complexity of a class of algorithms for computing Gröbner bases
	Castelnuovo-Mumford regularity
	The degree of regularity

	Validity of the degree of regularity bound
	Method for computing step degree and degree of regularity
	Greater differences between solving degree and degree of regularity

	Upper bounds on the solving degree for over-determined systems
	Homogeneous cryptographic semi-regular sequences
	Inhomogeneous cryptographic semi-regular sequences

	Impact and limitations
	Genericity assumptions in proofs
	Large values of ell
	Impact on complexity

	Conclusions

	Resource costs of quantum computation
	Preliminaries
	Introduction to quantum gate synthesis
	Quantum gate approximation
	Connections to path-finding algorithms

	Approximation problems
	Diagonal unitary approximation
	Diagonal approximation with projective measurement
	General unitary approximation
	Geometric comparisons for diagonal approximation

	General solution to approximation problems
	Gate sets
	Quaternion order
	Solving approximation problems

	Solutions for commonly used gate sets
	V Basis
	Clifford + T basis
	Clifford+Sqrt(T) basis

	Impact on resource cost
	Conclusions

	Summary and conclusions
	Bibliography
	Index of regularity for over-determined systems

