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Abstract

This thesis analyses the assumptions present in security proofs of post-
quantum cryptosystems using Koblitz and Menezes’ critique [62] to
guide the focus points. The classical analysis focusses in particular
on isogeny-based and multivariate polynomial cryptosystems. Firstly,
we present attacks against hardness assumptions on derivative com-
putational problems arising in protocols for isogeny-based undeniable
signature schemes [52, [80]. Secondly, we provide upper bounds on the
solving degree of over-determined systems of n + ¢ multivariate poly-
nomials in n variables as an alternative to the degree of regularity,
which gives a heuristic upper bound. We finish with an analysis of the
resources of a quantum adversary, providing an improved method for
quantum gate approximation that gives shorter sequences by a factor
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Introduction

This thesis concerns assumptions that are made in assessing the security of post-
quantum cryptosystems.

The field of post-quantum cryptography (PQC) arose as a response to the
threat of quantum computers against legacy cryptosystems such as RSA. Before
delving further into specifics, we quickly make the distinction between classical
and quantum computers. Classical computers, or conventional computers, operate
with binary bits and can be modelled by a probabilistic Turing machine. Quantum
computers, as suggested by the name, operate using the principles of quantum me-
chanics and it is conjectured that some quantum algorithms cannot be efficiently
simulated by a classical computer [72|. Similarly, post-quantum cryptography is
not to be confused with quantum cryptography; the former refers to classical cryp-
tosystems that are believed to be resistant to attacks by quantum computers (in
addition to those from classical computers), while the latter refers to cryptosytems
that employ the laws of quantum mechanics.

Of course, a practical quantum computer, capable of implementing Shor’s al-
gorithm for the parameters used in today’s cryptosystems, does not yet exist,
begging the question: Why should we study post-quantum cryptography if no fea-

sible quantum threat exists? Firstly, it takes time to research, vet and implement



new cryptosystems, particularly at scale. Secondly, certain applications, i.e. the
encryption of medical data, require security that lasts for decades. Hence, having
post-quantum cryptosystems already implemented at such a time that large-scale
quantum computers do become a reality ensures robust security against a suite of
attacks.

Post-quantum cryptography is still a relatively young field. Security definitions
are continually evolving and, as attacks against established primitives improve, so
too are security requirements. The framework of reductionist security, originally
introduced by Goldwasser and Micali [43] as provable security, was established in
response to the recognition that, although a cryptographic protocol may be based
on some mathematical primitive, an attack on that protocol is not necessarily
equivalent to solving the primitive. As a result, a hardness assumption made on
the mathematical primitive may not imply security of the protocol. Reductionist
security arguments are made by demonstrating the link between the problem of
attacking a given cryptosystem and an intractable mathematical problem, known
as a reduction. This thesis examines some of the flawed, or invalid, assumptions
still occurring within this framework. Our approach is based on the influential pa-
per of Koblitz and Menezes, Another Look at Provable Security [62]. The authors

identify four primary points for the introduction of error within a security proof:

1. insufficient evidence to support a computational hardness assumption,
2. fallacies or gaps within the proofs,
3. incorrect characterisation of the resources of an adversary, and

4. implicit assumptions within the description of a protocol.



The focus of this thesis is on the first three points, identifying a concrete ex-
ample of each, covering both classical or quantum perspectives. We have chosen
multivariate polynomial and isogeny-based cryptography as case studies for the
classical subcase. The security of multivariate cryptography is based on the hard-
ness of solving a system of multivariate polynomial equations, but results in this
area are often either asymptotic or based on heuristics. In the case of isogeny-
based cryptography, newer schemes are often assumed to be secure, based on the
hardness of the fundamental computational supersingular isogeny problem, while
in actuality they depend on related computational problems. This can result in
schemes that are assumed to be more secure than they actually are.

For the quantum analysis, we adapt a classical algorithm used for cryptanalysis

against the CGL hash function [23] to the problem of improving resource efficiency.

Organisation of the Thesis

This thesis is organised as follows:

— In [Chapter 1] we provide a more formative literature review of reductionist
security proofs and identify the security assumptions that are the focus of
the main body of the thesis.

- presents a case study in isogeny-based cryptography, which illus-
trates the first of Koblitz and Menezes’ identified issues in security proofs.
We disprove a number of hardness assumptions of variants of the SSCDH
problem [52], motivated by two proposed undeniable isogeny-based signature
protocols 52, [80].

— We present an example of Koblitz and Menezes’ second point, which occurs



in the space of multivariate public key cryptography, in [Chapter 3] We look

at the cost analysis of Grobner basis attacks against multivariate encryption
schemes and the assumptions implicit in current methods.

— The final chapter of this thesis deals with the characterisation of the resources
of a quantum adversary, in terms of the gate-cost of implementing a quantum
algorithm. In [Chapter 4] we give an improved method for general unitary
approximation techniques for a number of commonly used fault-tolerant gate
sets.

These three areas of focus allow this thesis to cover both theoretic and practical

approaches to reductionist security, with results for both classical and quantum

cryptanalysis.

Main contributions

Several of the results in this thesis have been published. The papers are listed
here:

— Simon-Philip Merz, Romy Minko, Christophe Petit. Another look at some
1sogeny hardness assumptions. In proceedings of Cryptography Track at
RSA. San Francisco, 2020. https://eprint.iacr.org/2019/950

— Mina Bigdeli, Manuela Dizdarevic, Elisa Gorla, Emmanuela De Negri, Romy
Minko, Sulaminthe Tsakou. Semi-regular sequences and other random sys-
tems of equations. In proceedings of Women in Numbers Europe 3. Rennes,

2020. https://arxiv.org/abs/2011.01032

Our main contributions are specific to isogeny-based cryptography, multivariate-

polynomial cryptography and quantum information. More precisely:


https://eprint.iacr.org/2019/950
https://arxiv.org/abs/2011.01032

— We present an attack against the One-sided Modified Supersingular Com-
putational Diffie-Hellman (OMSSCDH) problem and the One-more Modi-
fied Supersingular Computational Diffie-Hellman (1IMSSCDH) problem [52].
These give rise to examples of inherited security assumptions, defined in
[tion 1.2 We extend the attack to show that the parameters of the protocols
in [52] and [80] must be increased to achieve the claimed level of security.

— We prove explicit bounds for the solving degree of over-determined systems
of n 4+ ¢ multivariate polynomials in n variables, denoted r(n + ¢,n). These
are proposed as alternatives to the degree of regularity of [3|, are based on
fewer assumptions and are not asymptotic. Explicit values of r(n + ¢,n) for
2 <n,¢ <100 are given in [Appendix Al

— We present a novel method for approximating an arbitrary single qubit uni-

tary, which results in shorter approximation sequences by a factor of %.



Chapter 1

Post-quantum hardness assumptions

Post-quantum cryptographers must bridge the mathematical theory behind cryp-
tography and the practical concerns of implementation, covering a wide range of
applications (e.g. key encapsulation, signing, encryption). This task almost always
necessitates the use of assumptions regarding computational hardness.

The purpose of this chapter is to give an introduction to the reductionist se-
curityE] framework and to define, in general terms, the assumptions that are the

central focus of this thesis.

Outline The key concepts underlying the reductionist security approach are de-
fined in [Section 1.1 This provides the foundation to identify our three cases
of flawed assumptions. In [Section 1.2] we define a set of hardness assumptions,
namely, inherited hardness assumptions, often based on weak, or no, proofs.
then examines the potential error introduced by flawed assumptions in

security proofs that make claims regarding concrete parameters. These first two

I Also known as provable security. The term ‘reductionist security’ was introduced by Bellare
[6] and made commonplace by Koblitz and Menezes [62].



sections, and their corresponding chapters in the thesis body, are focussed on
classical cryptanalysis of post-quantum cryptosystems. Quantum cryptanalysis
concerns are addressed in [Section 1.4] where we look at the characterisation of

quantum adversaries, motivating this thesis’ focus on the resource cost of quan-

tum computation in [Chapter 4]

1.1 Introduction to reductionist security

In order to make statements about the security of a cryptographic protocol, we
need to consider the resources of a potential adversary and what constitutes a
‘broken’ protocol.

Let us begin by defining a computational hardness assumption as in |71]. Let P
be a problem, with instances of size n, determined by some probability distribution.
A hardness assumption is defined by n, the time it takes to solve a problem instance
t and a probability of success p. Concretely, P is considered hard if no instance of
size n can be solved in time less than ¢ with probability greater than p. Therefore,
an (n,t, p)-hardness assumption on P is the assumption that P is hard with respect
to n,t and p.

Typically, within the reductionist security framework, adversaries are treated

as algorithms running in polynomial time.

Definition 1.1.1 (Probabilistic polynomial-time adversary). A polynomial-time
adversary is an algorithm A that terminates after p(|z|) computations, where p is
a polynomial and x € {0,1}*.

A probabilistic polynomial-time (PPT) adversary additionally has access to a

source of randomness that can be used polynomially many times in the adversary’s

7



computation.

A protocol is considered broken if an adversary’s attack succeeds with non-
negligible probability. That is, the probability of success should not be more than
some negligible function in the security parameter A for a scheme to be considered

secure.

Definition 1.1.2 (Negligible function). A function f is negligible if for any posi-

tive constant c, there exists an N. € N such that for all X\ > N., f(\) < /\i

Let us now consider a cryptographic reduction. Suppose that P; is the prob-
lem of breaking a given cryptosystem and let P, be an intractable mathematical
problem. Let A be an algorithm for solving P;. If there exists an algorithm B for
solving P, that takes A as a subroutine, then we say there is a reduction from P,
to P;. If B is a polynomial-time algorithm, treating A as a black box, then an
efficient solution for P; implies an efficient solution for P,. Simply put, if P, hard,
the reduction implies the hardness of P;. From this description, it is clear that the

burden of proof may be transferred from the hardness assumption
The protocol defining Py is secure against a PPT adversary.
to the hardness assumption
A PPT adversary cannot solve Py with non-negligible probability of success.

It follows that the veracity of the security proof based on the reduction between
P, and P, can be judged by the quality of the second assumption. Explicitly, such

a reduction proves that P; is at least as hard as P,.



Quality of reductions One measure of the quality of a reduction is tightness.
Suppose that problem P, reduces to problem P;. Suppose that A takes time at
most T} to solve problem P; and succeeds with probability at least p;, then B finds
a solution to problem P in time at most 75 and has success probability at least
p2. The reduction from P, to P; considered tight if T} ~ T5 and p; = py. The
ratio Topo/T1p; is called the tightness gap and clearly for a tight reduction, this
takes a value close to 1. Chaterjee, Menezes and Sankar [24] have investigated the
problems arising from large tightness gaps in cryptography.

An equally important property is the direction of a reduction. For two problems
to be considered equivalent we require a tight two-way reduction: that is, P,
reduces to P, and P, reduces to P;, so the two problems are equivalent. In a
security context, a reduction of this kind implies that that instead of breaking
a protocol directly, cryptanalysts may as well focus on solving the underlying
mathematical problem. If that problem is considered hard, one can say with
confidence that the protocol is secure in the present.

However, one-way reductions, in which an attack on the protocol reduces to

some mathematical problem but not wvice versa, still arise in cryptography as we

will see in [Chapter 2|

Practice-oriented security Complexity-theoretic approaches to security ex-
press the hardness of a problem as an asymptotic function. While this is certainly
useful to gain an understanding of the complexity of attacking a protocol, arguing
solely based on asymptotics does not provide a complete description of security.
Practice-oriented provable security was introduced by Bellare and Rogoway [6] in

1997 in an effort to align the perspectives of cryptography theoreticians and prac-



titioners. That is, in order to make meaningful comparisons it became necessary
to quantify explicitly the degree of security that competing schemes would offer.

As Mihir Bellare writes in [6],

To make provable security useful, reductions and security analyses must
be concrete. Theoreticians will say, correctly, that this information
can be obtained by looking at their proofs. But this view obscures the

importance of working on improving the security of reductions.

The exact characterisations of security coming from the practice-oriented method-
ology additionally served to shift the point at which practical concerns are ad-
dressed to far earlier in the protocol design process than the commencement of

implementation.

Errors in reductionist security proofs Reductionist security proofs are not
infallible. Koblitz and Menezes’ published a thorough review of possible issues
within the framework [62], followed a decade later by a comprehensive survey of
papers addressing several of these issues in specific protocols [61]. The structure of
this thesis is heavily informed by Koblitz and Menezes original critique, focussing
on the following three points for the introduction of error in a reductionist security
proof:

1. insufficient evidence to support a computational hardness assumption,

2. fallacies or gaps within the proofs, and

3. incorrect characterisation of the resources of an adversary.

10



1.2 Hardness assumptions based on weak evidence

Koblitz and Menezes highlighted an increasing tendency of cryptographers to rely
on hardness assumptions for which there is little or no evidence. These assump-
tions are typically derived from non-standard problems, or variants of standard
intractable problems. These problems are often artificial, constructed from the
protocols they support, rather than naturally arising mathematical problems.

In this section we define a set of assumptions known as ‘inherited hardness
assumptions’, an example of which is the focus of [Chapter 2] and discuss the

impact on security proofs.

1.2.1 Inherited hardness assumptions

We define a class of hardness assumptions, which we will call inherited hardness
assumptions, that hinge on the existence of a one-way reduction, for which a
reduction in the reverse direction is not known. Informally, an inherited hardness
assumption arises when the conditions of a standard, or well-studied, mathematical
problem are slightly modified and the resulting ‘child’ problem is assumed to be
as hard to solve as the ‘parent’.

Consider a problem statement P as a set of information & combined with a
challenge C. For instance, if P is the problem of factorising an RSA integer N € Z,
then S = {N} and

C = “Find p, q prime, such that pg = N”.

Definition 1.2.1 (Inherited hardness assumption). Given a problem P = {S,C},

11



one-way
P reduction | P’

parent child
ideal ™. one- or two-way
reduction “>._ reduction
NP -
Py
attack

Figure 1.1: The reductions present in a cryptographic security argument based
on an inherited hardness assumption. The parent problem, P, is a well-known
intractable mathematical problem. The child problem, P’, is a variant of P with
the same challenge, but different conditions. The attack against the scheme is
represented by P4. Bold lines represent reductions that are present in the security
proof. The dashed line represents the desired reduction, which motivates the
inherited hardness assumption. Note also that the reduction between P4 and P’
could be either one- or two- way.

let P' = {&',C'} be a problem with information &' C S and challenge C = C'.
Suppose that there exists a reduction from P’ to P, but no reduction in the reverse

direction is known. An inherited hardness assumption states that

Solving P’ is at least as hard as solving P.

When talking about inherited hardness assumptions in the context of cryptog-

raphy, we consider protocols with security proofs in which

— there is a reduction from an attack on a protocol to some problem P’, and

— the hardness of P’ is based on an inherited hardness assumption.

illustrates the relationships between the three relevant problems. If
the reduction between P’ and the parent problem P is a one-way reduction, this

causes issues for the security proof of the protocol. That is P’, and by extension

12



P4, may not be equivalent to solving P. Therefore, hardness of the parent problem

does not imply security of the protocol.

How often do inherited hardness assumptions occur? Given the numerous
applications for cryptography and the specific properties each must have, it is
unsurprising that not every protocol reduces directly to a standard intractable
problem. In fact, at the time of writing, MQDSS [26] is the only multivariate
candidate for signature schemes in the NIST process for standardisation of post-
quantum cryptography that reduces directly to the well-studied M Q—problemﬂ.
Several more examples are given in [61]. Note that while the definition of inherited
hardness assumptions may seem as contrived as the problems it describes, we
purposefully provide a definition distinct from arbitrary one-way reductions in
order to emphasise the close relationship between the parent and child problems.

Additionally, we caution cryptanalysts against immediately dismissing proto-
cols based on non-standard problems since lack of attention may result in later
acceptance-by-default. Without clear, published disproofs of the flawed assump-
tions, those protocols employing them may serve as the foundation for future

protocols. An example of this scenario is considered in [Chapter 2|

1.3 Flawed approximations in security proofs

The previous section explored the impact that an incorrect hardness assumption
can have on the validity of a security proof. As a result of this discussion, one

may be tempted to conclude that a rigorously proven polynomial-time equivalence

2See |Problem 3.2.1

13



is enough to guarantee the security of a protocol. To understand where other is-
sues may arise, we now focus on the second of Koblitz and Menezes’ error points:
fallacies, or gaps, within security proofs. In particular, we look at problems occur-
ring when complexity-theoretic proofs are translated to proofs of concrete security
parameters, identifying two main vectors of error in security analyses: the use of er-
roneous approximations and reliance on asymptotic analysis. These are motivated

by a case study in multivariate cryptography analysed further in

1.3.1 The impact of erroneous approximations

Unsurprisingly, computations based on flawed approximations are likely to induce
errors in security analyses. We focus on those approximations that arise in practice-
oriented provable security proofs.

Suppose a complexity statement depends on some parameter x. Theoreticians
have the freedom to argue in terms of k, regardless of whether or not x can be
efficiently computed. Practitioners, on the other hand, obviously need concrete
values. Hence, a problem arises when computing x is difficult. Consider, for
example, the complexity of the Hassidim-Harrow-Lloyd algorithm for quantum
linear system solving [46], which depends on a value known as the condition number
of a matrixf’] For large matrices, it can be difficult to compute the condition
number [31], in which case approximations must be used in order to estimate the
algorithm’s complexity.

A commonly used solution is to substitute x by an approximation. However,

if this approximation is based on a flawed assumption or an unproven heuristic,

3The condition number & of a normal matrix M is the ratio of the largest and smallest
eigenvalues of M. A matrix is normal if it commutes with its conjugate transpose.

14



the resulting security assessment inherits those flaws. The potential error often
goes unacknowledged, as a heuristic or assumption may work for the first n tested
instances, leading practitioners to believe it is true. However, there is still the
possibility of failure on the n + 1" instance.

This thesis argues that, while heuristics are useful, approximations should be
proven, although we acknowledge there are often feasibility issues here. This ap-
proach will serve to increase trust in the security of not only specific protocols,

but the entire methodology of practice-oriented reductionist security.

1.3.2 Asymptotics and implementation

Now we turn to the potential divide between asymptotic security and practical
security values. Practice-oriented security proofs enable comparisons between pro-
tocols and precise trade-off analysis between efficiency and security by determining
an explicit quantification of the level of security provided. This approach exposes
an issue in relying on asymptotic arguments: namely, a polynomial-time reduc-
tion between two problems might imply security for arbitrarily large parameters,
but for parameters for which implementation is efficient, the reduction could be
meaningless for security.

We note here that this kind of issue often occurs in conjunction with the pre-
viously raised issue of inaccurate approximations. That is, an approximation may
only be ‘good’ for arbitrarily large parameters. Thus it is important to continue

searching for good approximations that are within the realm of an implementation.

15



1.4 The quantum resources of an adversary

It would be remiss to conclude any discussion of post-quantum cryptography se-
curity without addressing the quantum perspective. Accordingly, we narrow the
focus of Koblitz and Menezes third vector of error to consider the assumptions
that are made regarding the computational resources of a quantum adversary.
The following section begins by defining computational complexity in the quan-
tum setting. For results that are applicable to a number of applications (both in
and out of cryptography), we focus in particular on the resource cost of quantum
computers. Typically, this is measured by the number of quantum gates required
to implement an algorithm. Throughout this section and [Chapter 4] we use resource
cost and gate cost interchangeably. The subsequent section discusses methods for

decreasing resource costs in general.

1.4.1 Computational complexity with a quantum adversary

Let us begin by considering a new adversary who is now equipped with the re-
sources of a quantum computer. Owing to the fact that physical realisations of
quantum computers are still in their infancy, we must also consider the physical
resources at the disposal of such an adversary. Where in the classical case we con-
sidered time- and space-complexity, we now also consider query-complexity and
resource-complexity.

A quantum gate describes a transformation of a quantum state in the quantum
circuit model, and can be represented by a unitary matrixf] Gate-complexity mea-

sures the number of single-qubit gates and two-qubit gates used in an algorithmP]

4A matrix M is unitary if MM* = I where M* denotes the conjugate transpose of M.
5In the quantum circuit model, time-complexity corresponds to the depth of a circuit: that
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In order to make meaningful statements about gate-complexity for algorithms con-
taining n-qubit unitaries, we also require a result from Barenco et al. [5|, which
states that any n-qubit unitary can be implemented by a circuit of ¢-NOT and
single-qubit gates.

What does it mean to be efficient in terms of gate-complexity? It is necessary
that a polynomial-time algorithm can be implemented with a polynomial number
of gates? We introduce another measure of computational complexity, query-
complexity, which is used to define relative efficiency of a quantum adversary. In
the quantum query model, the input to an algorithm is considered as a black box
oracle and the query-complexity is the number of queries to the oracle required for

the algorithm to find a solution. Then, we define gate (time) efficiency as follows:

Definition 1.4.1 (Gate and Time Efficiency, [63]). Let A be a quantum algorithm.
Let Q) denote the query-complexity of A. We say that A is gate (time) efficient if

the gate-complexity (time-complexity) of A is p(Q) where p is a polynomial.

We call A a quantum polynomial-time adversary if A terminates after p(|x|)
computations, where p is a polynomial and = € {0,1}*. Similarly, we call A
a quantum polynomial-query adversary if 4 makes p(|x|) queries to the input
oracle, where p is a polynomial and = € {0, 1}*.

We will focus on improving the resource costs of a quantum adversary.

1.4.2 Quantum gate approximation

A crucial distinction between quantum and classical computing is the possible

vectors for error during computation. Quantum computers, operating on qubits,

is, the longest path in the circuit.
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are susceptible to errors from environmental interference, or even internal errors
caused by qubit-qubit interactions. Fault-tolerant quantum computing covers the
method of computing that allows for a certain threshold of physical error, which
can be corrected either after or throughout the computation. Using a practical
fault-tolerant quantum device imposes restrictions on the single-qubit unitaries
that can be implemented [72], importantly, that only a finite set of unitaries can
be used. Thus, to implement arbitrary single-qubit unitaries we require that this
finite set is a universal set of gates. Informally, this means that any unitary in
SU(2) can be approximated by a finite sequence of gates from the gate set.

A central problem of the field of quantum gate approximation is decreasing the
sequence length for approximating an arbitrary unitary [47]. Clearly, a shorter
sequence corresponds to a lower gate-complexity. The focus of is on
making improvements in quantum gate approximation for fault-tolerant gate sets.
Importantly, this is protocol-independent, and so applies to existing and future
quantum algorithms. Moreover, the results are applicable to any quantum algo-

rithm, not only to those used in cryptanalysis.
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Chapter 2

Inherited security in isogeny-based

cryptography

Recall that an inherited hardness assumption is present in a situation in which
an attack on a cryptosystem reduces to a mathematical problem that is identical
to a well-studied intractable problem in its challenge (and desired outcome), but
differs in terms of the initial conditions. As a result, this problem is assumed to
have inherited the hardness of the well-known problem. This assumption is usually
made with a proof of a one-way reduction, but often is stated with no proof at all.

To demonstrate the impact of inherited hardness assumptions on the security of
post-quantum cryptosystems, we now look at an example from the isogeny-based
cryptography family: undeniable signature schemes that are extensions of the
Supersingular Isogeny Diffie-Hellman (SIDH) key exchange protocol. Koblitz and
Menezes undertook a similar study of non-standard Discrete Logarithm and Diffie-
Hellman problems [60], showing that in some cases no natural reductions existed.

However, Granger [45] later demonstrated that the presence of an effective index
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calculus could be used to show that two problems have the same complexity, even

in the absence of a reduction between them.

Results in this chapter are included in a paper written with Simon-Philip Merz
and Christophe Petit, included in the Cryptographers’ Track at the RSA Confer-

ence 2019 [69).

Outline and main contributions We begin by recalling some useful mathe-
matical background. The SIDH protocol, the hardness problem it relies on for
security, and A number of variants of this problem are then defined in [Section 2.2}
There are two examples of signature schemes relying on these problems. These
are described in and we discuss the security proofs, proving two false
assumptions, one of which is an inherited hardness assumption. The other as-
sumption comes from the failure to consider the effect of a hash function in the
protocol. The proof of falseness is presented in [Section 2.4 with an attack against
the problem variants, which extends to an attack on the signatures schemes, given
in The chapter ends with a discussion of the impact on the security

of the two schemes.

2.1 Preliminaries

For a thorough background on elliptic curves we refer to Silverman [79]. For an
introduction to isogeny-based cryptography we refer to De Feo [30].
Let F, be a finite field of characteristic p. In this thesis, we assume p > 3.

Therefore, an elliptic curve £ over F can be defined by its short Weierstrass form.

Definition 2.1.1 (Weierstrass Equation). An elliptic curve over a finite field IF,,

20



1s defined as
E(F,) ={(z,y) €Fy|y* = 2"+ Av + B} U{Op}

where A, B € F, such that 4A* 4+ 27B* # 0 and Of is the point (X :Y : Z) = (0 :
1:0) on the projective curve Y?Z = X3 + AXZ* + BZ3.

The set of points on an elliptic curve is an abelian group with the following

group operation:

Definition 2.1.2 (Group operation on the points on an elliptic curve). Let P,Q €
E and let L be the line joining P and Q). Let the third point of intersection of L
with E be denoted R. Let L' be the line joining R and Og and let the third point of

intersection of L' with E be R'. The group operation ® is defined as P ® () = R'.

The identity element of the group is the point at infinity, Og. The number of

points on an elliptic curve is #E(F,) = ¢ + 1 — ¢ for some integer [t| < 2,/q.

Definition 2.1.3. The j-invariant of an elliptic curve is

4A3

() = 1728—
JE) =1T28 5 o

Two curves E; and Ej are isomorphic if and only if j(E) = j(E').
Definition 2.1.4. Given two elliptic curves Ey and Ey over a finite field F,, an
1sogeny is a surjective group homomorphism ¢ : Ey — Fs.

That is, ¢(Og,) = OF,. For example, the multiplication by n map on an elliptic
curve [n] : E — E given by [n](P) = nP is an isogeny. Two important computa-

tional problems for elliptic curve cryptography that relate to the multiplication by
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n map are the elliptic curve discrete logarithm problem and the extended elliptic

curve discrete logarithm problem:

Problem 2.1.5 (Elliptic Curve Discrete Logarithm Problems). Given P,Q € E,
such that Q = [n]P for some integer n, the elliptic curve discrete logarithm problem
s to find n.

Given a set of points P, in E and a point R € E such that R =) _.[n;|P;, the

extended elliptic curve discrete logarithm problem is to find the n;.

Let ¢ : Ey — E; be an isogeny between curves over F, and let ¢* be the

function field injection induced by composition with ¢:

¢* : IFq(El) — IF‘11(E10)> ¢*<f) = f o ¢

The degree of an isogeny is the degree of the finite extension of function fields
F,(Eo)/¢*(F,(E1)). The degree can also be taken as the degree of the isogeny
when considered as a rational map. Two curves are called (-isogenous if there
exists a non-constant isogeny of degree ¢ between them. The endomorphism ring
End(E) of FE is the set of all isogenies from E to E.

An isogeny is called separable if the finite extension F,(Ep)/¢*(F,(E;)) is sepa-
rable. If ¢ is a separable isogeny, then # ker(¢) = deg(¢). Since an isogeny defines

a group homomorphism F; — Ej, its kernel is a subgroup of Fj.

Theorem 2.1.6 (Proposition I11.4.12, |79]). Let S be a finite subgroup of an elliptic
curve E. Then S determines a (separable) isogeny ¢ : E — E' with ker(¢) = S
and E' = E/S.

An isogeny is called cyclic if its kernel is a cyclic group. This will be the case for
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all isogenies considered in this thesis. Given a set of points describing the kernel,

one can compute the isogeny using Vélu's formulas [84].

Theorem 2.1.7 (Theorem I11.6.1, [79]). Given any non-constant isogeny ¢ : Ey —

E5, there exists a unique isogeny 95, called the dual isogeny, satisfying

$0p=0po¢=[deg(¢).
The n-torsion subgroup of a curve E is defined as
E[n] ={P € E(F,) : [n]P = Og}.

In other words, E[n] is the kernel of the multiplication by n map over the algebraic
closure E of F,. For n > 2 relatively prime to p, the group E[n| is isomorphic to

Z/nZ x Z/nZ.

Definition 2.1.8. An elliptic curve E over a finite field F, for ¢ = p* is called
supersingular if any of the following hold:

o Ep'l ={0O}.
p|t, where #E(F,) = ¢+ 1 —1t for some integer |t| < 2,/7.

End(FE) is isomorphic to an order in a quaternion algebra.

J(E) € Fp.

The equivalence of the above definitions of a supersingular curve is proved
in Theorem V.3.1 of Silverman [79]. A curve that is not supersingular is called
ordinary.

Charles, Goren and Lauter [23] introduced the idea of supersingular isogeny

graphs.
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Definition 2.1.9. For a prime { # p, the (-isogeny graph is the graph whose
vertices are the isomorphism classes of all isogenous curves over the closure F,

and whose edges are the (-isogenies between elliptic curves.

Note that since vertices are isomorphism classes, isogenies that differ by com-
position with an isomorphism correspond to the same edge. Vertices can also
be labelled by the j-invariant of any elliptic curve within the corresponding iso-
morphism class. The graph is connected [22, Theorem 4.1|, (¢ 4+ 1)—regular |30,
Proposition 3.5]. A supersingular isogeny graph has approximately | | edges [79,
Theorem V.4.1].

2.2 Isogeny hardness assumptions

The Supersingular Computational Diffie-Hellman (SSCDH) problem is fundamen-
tal to the security of SIDH and many isogeny-based cryptosystems and signature
schemes. We start with a description of the SIDH protocol, after which the second
part of this section will motivate and illustrate some derivatives of the SSCDH
problem, which, although seemingly artificial, are used in the security proofs of
isogeny-based signature schemes (namely, |52 80]). These problems are assumed
to have inherited the hardness of SSCDH and are thus conjectured to be hard.
Throughout this section, let p be a prime of the form ¢5¢%7 - f +1 where ¢4 and
(p are small distinct primes, e4 and ep are positive integers and f is some small
cofactor. Let E be a supersingular elliptic curve defined over the field K = F.
and let {P4,Q4} and {Pg,Qp} be fixed bases of the ¢§* and (% torsions of E,

E[5}] and E[¢5}], respectively.
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2.2.1 The SIDH protocol

The SIDH protocol was created in 2014 by De Feo, Jao and Plat [51]. The basic

mechanics of this protocol form the basis for the two undeniable signature schemes

that are cryptanalysed in [Section 2.5]
The SIDH key exchange between two users, Alice and Bob, is described by the

following protocol.

SIDH Key Exchange Protocol [51]

Alice
ma,na & /0

Ea < E/{malPa + [n4]Qa)
ker(¢a) ¢ ([ma]Pa+ [n4]Qa)

P, Qs < ¢a(Pp),0a(QB)

Bob
mp,np <& L/IE

Ep « E/{Imp]Pp + [n5]Q5)
ker(¢p) < ((mp|Ps + [n5)Qp)

Py, Qp < ¢(Pa),¢5(Qa)

P.Qy
Pg.Qp
ker(¢'z) < ((mp) Py + [n5]Q'4)

Epg + EA/ker(gf)/B) > FaB

ker(¢'y) + ([ma]Pg + [n4)Q'5)
Eap + EB/ker((ﬁ/A)

sk < j(EAB) sk %j(EBA) = j(E'AB)

Alice selects integers ma, na € {0, ..., 05" —1}, not both divisible by ¢4 defining
the cyclic subgroup A := ([ma|Pa + [na]Qa) of E[(5'], as her secret key. These
parameters define the secret isogeny ¢4 : E — FE/A. Alice’s public key is the
curve Fy = E/A together with the images ¢4(Pg), pa(Qp) of the public basis
{Pg,@Qp} under her secret isogeny ¢ : E — E/A. Analogously, Bob chooses his

secret key mp,ng € {0,...,¢7 — 1}, not both divisible by ¢, defining the cyclic
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subgroup B := ([mgp|Pp + [np|Qp) C E[(%’], and isogeny ¢p : E — FE/B, and his
public key is the tuple (Eg, ¢p(Pa), ¢p(Q4)).

Upon receipt of Bob’s public key, Alice computes an isogeny ¢y : Ep — Eap
with kernel ([mal¢p(Pa) + [nalos(Qa)) C E/B[(5']. Bob proceeds analogously,

computing the isogeny ¢/; : E4 — Eap with kernel ([mg|o(Pg)+ [nploa(@p)) C

E/A[¢(??]. [Theorem 2.2.1|shows that the curves computed by Alice and Bob in this

manner are isomorphic. Then, since curves belonging to the same isomorphism
class have the same the j-invariant, Alice and Bob are able to compute a shared

secret: j(Eap).

Theorem 2.2.1. Using the above notation for the SIDH protocol,

Eap = E/([ma]lPa+ [na]lQa,[mp|Pp + [np5|Qp) = Ea/ker(¢) = Ep/ker(¢y).

Proof. We first show that Eap = Ep/ker(¢/,). Observe that

oB(A) = ¢p({[ma|Pa + [na]Qa)) = ([ma]dp(Pa) + [n4]op(Q4))

and so

Ep/ker(¢y) = (E/B) /¢5(A).

Note that ¢p(A) is isomorphic to A by the First Isomorphism Theorem and the
fact that the degree of ¢p is coprime to the order of A. Similarly, the subgroups
B and A have coprime order. Hence, they are disjoint and so (B, A) :== B+ A is

a well-defined subgroup of F of order (77 ¢5*. It follows that

(E/B)/¢5(A) = E/(B, A).
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Trivially, (B, A) = (A, B) and so Eap = Eg/ker(¢/,).

Showing that F4/ker(¢;) = E4p is analogous. O

E4 = E/A

/ |

)1 16
A(QB): I¢§ EAB - E/<A’ B>
\ i\if ¢’A
—E/B

Figure 2.1: The commutative diagram of the SIDH key exchange. Items in blue
are known only to Alice and items and in red are known only to Bob.

The hardness of the following problem underlies the security of the SIDH pro-

tocol.

Problem 2.2.2 (Supersingular Computational Diffie-Hellman (SSCDH) Problem,
[51]). Let ma,na be chosen at random from {0,..., (5" — 1} not both divisible by
ly. Let mp,np be randomly chosen from {0, ..., {77 — 1} not both divisible by (.
Furthermore, let o4 : B — E4 and ¢ : E — Ep denote the isogenies with kernel
([malPa + [na]Qa) and {({mp]Ps + [ng]Qp) respectively.

Given the curves E 4, Ep and the points ¢ 4(Pg), ¢A(@B), ¢5(Pa) and ¢p(Q4),

find the j-invariant of

Eap = E/{[ma]Pa+ [na]Qa, [mp]Pp + [np]Qs)-

The hardness of SSCDH is assumed from the presumed hardness of the Com-
putational Supersingular Isogeny (CSSI) problem [51|, which is rephrased here as

the following assumption:



Assumption 2.2.3 (Computational Supersingular Isogeny (CSSI) Assumption). Let
E and E 4 be isogenous supersingular curves with isogeny ¢4 : & — E 4, such that
ker(ga) = ([ma]P + [na]Q) for some my,ny chosen uniformly at random from
Z ] 7, not both divisible by £4. Given E, E4 and two points ¢4(P), $4(Q), it is

infeasible for a polynomial-time adversary to find a generator for ker(¢,).

Clearly, an adversary able to solve the CSSI problem would be able to solve
SSCDH. This is an example of a one-way reduction. A decisional variant of SSCDH

is also defined in [51].

Problem 2.2.4 (Supersingular Decision Diffie-Hellman (SSDDH) Problem). Let
E ma,na,mp,np, pa, ¢, Ea, Ep, Pa,Qa, Pp,Qp be as in the SSCDH problem.

Given a curve E' sampled with probability % from

Eap = E/([ma]Pa+ [na]Qa, [mp]Pp + [n5|Qp)

and

Eo = E/{Im]Pa + [n4]Qa, [mp]Ps + [n5]QB),

where m'y, n'y are selected at random from {0, ..., (5" —1} and m'g, n'y are selected
at random from {0, ..., 0% — 1}, determine whether E' = Eap or E' = E¢ up to

1somorphism.

2.2.2 Variants of the SSCDH problem

The following problems are somewhat natural variants of the SSCDH and SSDDH
problems underlying the security of SIDH. The notation used for those problems

is fixed throughout this section.
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The SSCDH problem imagines a scenario in which Alice and Bob are both
honest participants in the protocol and a third-party adversary, Eve, is attempting
to gain the shared secret without knowledge of any secrets. Suppose instead that
Eve has compromised Bob somehow, and is given partial access to his secret but
still receives no secret information from Alice, nor any of her auxiliary points. This

scenario gives rise to the following problem:

Problem 2.2.5 (Modified SSCDH (MSSCDH) Problem [52|). Given E,E4, Ep

and ker(¢p), determine Eap up to isomorphism, i.e. j(Eap).

Note that knowledge of ker(¢p) is equivalent to knowledge of ¢5. However,
since Eve lacks any information regarding the auxiliary points in the image of ¢4,
she is unable to compute the final edge in the commutative diagram. The following

problem states the decisional variant of MSSCDH.

Problem 2.2.6 (Modified SSDDH (MSSDDH) Problem [52|). Given E,E4, Ep

and a challenge curve Ec and ker(¢p), determine whether Eap = Ec.

Suppose now that Eve has access to an oracle with the ability to solve MSSCDH
for any input curve and isogeny kernel, save a small number of exceptions. Then,

to find E g Eve can solve the following problem, illustrated in [Figure 2.2

Problem 2.2.7 (One-sided Modified SSCDH (OMSSCDH) Problem [52]). For
fixzed E, E4, Ep, given an oracle to solve MSSCDH for E4, Ep/, ker(¢p/) with Ep

not isomorphic to Ep and (% -isogenous to E, solve MSSCDH for Ea, Ep and

ker(qu) .

We will see that the OMSSCDH problem arises naturally in the security analy-
sis of undeniable signatures proposed in [52]. The authors also define a decisional

variant of this problem.
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E

¢B’
oA ¢B
EA EB EB’
& A
E
33/ AB 4)/,4

Eap

Figure 2.2: The commutative diagram for OMSSCDH. The oracle provides E4p/
for any Fp and ¢p/, while E4p is the solution curve to OMSSCDH for E4, Eg
and ker(¢p).

Problem 2.2.8 (One-sided Modified SSDDH (OMSSDDH) Problem [52]). For
fixzed By, Ep and E¢, given an oracle to solve MSSCDH for Ea, Ep/, ker(¢p)
with Ep: not isomorphic to Eg and (% -isogenous to E, solve MSSDDH for Ea,

Egp, Ec and ker(¢p).

Suppose, once more, that Eve has access to an oracle, which solves MSSCDH
for any input, but that she only has a fixed number of queries available to her.
While this scenario may seem more artificial, it is present in the following problem,

which is used in the construction of undeniable blind signatures [80]:

Problem 2.2.9 (One-More SSCDH (1IMSSCDH) Problem [80]). Let E be some
base curve of the form as in the SIDH protocol and let ma,na be secret integers
in {0,..., 05" —1}.

Let a signing oracle respond with Eap = Eg/{[ma]Pp+ [na]lQp) upon receipt of a
curve Eg isogenous to E and points Pg, Qp spanning Ep[(i}].

The 1MSSCDH problem is to produce at least g+1 distinct pairs of curves (Eg,, Eag,),

where Ep, are (5 -isogenous to E, Pp, and Qp, span Ep,[(%] and E4p, is isomor-
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SSCDH]

MSSCDH

Figure 2.3: Hierarchy of isogeny problems.

phic to Ep,[{[ma]Pp, + [na|Qp,) for 1 <i < q+1, after q queries to the signing

oracle.

This problem is slightly weaker than OMSSCDH, as it gives the adversary the
freedom to choose the additional MSSCDH instance which needs to be solved.

shows the parent-child relationship between SSCDH and its variants.

2.3 Isogeny-based undeniable signature schemes

The significance of the SSCDH variants defined in may not be im-
mediately obvious. This section motivates the study of these problems by placing
them in the context of two isogeny-based undeniable signature schemes.
Undeniable signature schemes were introduced by Chaum and van Antwer-
pen |25], differing from traditional signature schemes in that verification of a sig-
nature cannot be completed without cooperation from the signer. Undeniability
refers to the fact that a signer cannot use the disavowal protocol to deny a valid
signature. A signer is also unable to convince the verifier that an invalid signature
is valid. Following the notation of [66] an undeniable signature scheme is denoted

by ¥ where
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Y, = {KeyGen, Sign, Check, Sim, T on, Tais}-

KeyGen is the PPT (probabalistic polynomial time) key generation algorithm,
which outputs (vk, sk) - a verification and signing key, respectively. Sign is
the PPT signing algorithm, taking a message m and sk as input to generate
a signature o. Check is a deterministic validity checking algorithm, such that
Check((vk,m,0),sk) returns 1 if (m, o) is a valid message-pair and 0 if not. Sim
is a PPT algorithm outputting a simulated signature ¢’ on input of vk and m.
Finally, 7., and 7y are confirmation and disavowal protocols, respectively, with
which the signer can prove the validity (or invalidity) of a signature to the verifier.
These are zero-knowledge interactive protocols.

The security definitions of unforgeability and invisibility, both of which must
be met for such signature schemes to be considered secure, give rise to the OMSS-
CDH and 1MSSCDH problems. The security games defining these properties are
described in [Section 2.3.1]

This section describes two isogeny-based signature schemes: firstly, the Jao-

Soukharev protocol [52] (Section 2.3.2)) and, secondly, the Srinath-Chandrasekaran

protocol [80] (Section 2.3.4)), which extends [52] to include the additional property

of blindness. This description includes an appraisal of the security proofs given by
the respective authors and identifies the hardness assumptions being made; these

will be shown to be false in later sections.
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2.3.1 Unforgeability and invisibility

A signature scheme must be shown to satisfy the unforgeability and invisibility
properties in order to be considered secure. These properties are defined by the

following security games, following the descriptions in |29} 25| 66].

Unforgeability is the notion that an adversary cannot compute a valid message-
signature pair with non-negligible probability.

1. The challenger generates a key pair, giving the verification key to the adver-
sary.

2. The adversary is given access to a signing oracle and makes queries adaptively
with messages m;, for © = 1,2,...,k, for some k, receiving corresponding
signatures ;.

(a) The adversary additionally has access to a confirmation/disavowal or-
acle for the protocol, which they can query adaptively with message-
signature pairs throughout step 2.
3. The adversary outputs a pair (m, o).
The adversary wins the game (i.e. successfully forges a signature) if (m, o) is
a valid message-signature pair and m # m,; for any ¢ = 1,2,...k. A signature

scheme is unforgeable if any PPT adversary wins with only negligible probability.

Invisibility requires that an adversary cannot distinguish between a valid sig-
nature and a simulated signature with non-negligible probability.
1. The challenger generates a key pair, giving the verification key to the adver-

sary.
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6.

The adversary is given access to a signing oracle and makes queries adaptively
with messages m;, for © = 1,2,... k, for some k, receiving corresponding
signatures o;.

(a) The adversary additionally has access to a confirmation/disavowal or-
acle for the protocol, which they can query adaptively with message-
signature pairs throughout step 2.

The adversary sends a new message m; to the challenger.

The challenger computes a random bit b. If b = 1, the challenger computes
o = Sign(m;, sk). If b = 0 the challenger computes ¢ = Sim(m;,vk). The
challenger sends o to the adversary.

The adversary is able to query the signing oracle again, with access to the
confirmation/disavowal oracles. They cannot submit (m;, o) to either oracle.

The adversary outputs a bit b*.

The adversary wins the game if b* = b. An undeniable signature scheme is

invisible if |Pr(b = 0*)—1/2 | is negligible.

2.3.2 The Jao-Soukharev protocol

The first undeniable signature scheme considered in this chapter was proposed by

Jao and Soukharev in 2014 [52|. The Jao-Soukharev protocol, as it is referred to

herein, was the second quantum-resistant undeniable signature scheme to exist in

the literature, and the first using isogenies.

A set up for the protocol differs slightly from SIDH. Let p be a prime of the

form (0705 - f £ 1, where £4,0p, (o are primes and f is a small cofactor. In
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practice, f is usually taken to be 1. Let E be a supersingular curve over F,. and
let {P4,Qa}, {P5, @5} and {Pr, Qc} be bases of the (5, (77 and (¥ torsions of
E, E[5}], E0}7] and E[(], respectively. The public parameters of the scheme
are p, I/ and the three torsion bases, together with a cryptographic hash function
H: {01} = Z/t77.

The signer generates random integers my,ns € Z/{5*7Z and computes the

isogeny ¢4 : E — Eq = E/(Ima]Pa + [na]@4), defined as in [Problem 2.2.2| The

public key consists of the curve E4 together with the points {¢pa(Pc), ¢a(Qc)}
and the integers m 4, n4 constitute the private key. Note that this is equivalent to

taking ¢4 as the private key.

Signing To sign a message M, the signer computes the hash h = H(M) of the

message and the isogenies

¢B . E—)EB:E/<PB+[h]QB>
dap: Ea— Eap = Ea/(0a(Pp + [h|QB))

¢pa: Ep = Eap = Ep/(¢p([malPa+ [na]Qa))-

The signer then outputs E4p and the set of two auxiliary points,

{¢Ba(05(F0)), ¢Ba(0B(Q0C))}

as the signature o.

Confirmation and disavowal Given a signature o = (E,, P, @), the first step

in the confirmation and disavowal protocols is for the signer to select m¢,ng €
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EBLEAB

Figure 2.4: The commutative isogeny diagram for signing in the Jao-Soukharev
Protocol.

ZJlEZ and compute the four curves: Eqx = E/(Imc]Pe + [nc]Qc) and Exc =
Ea/{¢a([mc]Pe + [nc]Qc)) with their blinded pairs Fpc = Egp/{é¢p(Imc]|Pe +
nc]@Qc)) and Eapc = Epc/{pp([ma]Pa + [na]Qa)). The signer outputs these
curves and ker(¢cp) as the commitment, where ¢op is the isogeny from E¢o to
Egc. In addition to the auxiliary points of the signature, this commitment gives
the verifier enough information to compute E4pc and E,¢c = E,/{[mc]P+[nc]@),
to check whether E,o & Epc.

The confirmation and disavowal protocols are not affected by our attacks, so
we do not go in to further detail here. The interested reader can find an in-depth

description, as well as proof of zero-knowledge, in [52].

2.3.3 Analysing the security proof of Jao-Soukharev

In [52] the claim is made that forging a signature for this construction is equivalent
to solving OMSSCDH. The authors themselves note that OMSSCDH is not well
studied. Nevertheless, they argue that the hardness of MSSCDH justifies the

hardness of OMSSCDH, captured by the following assumption:

Assumption 2.3.1. Based on the intractability of the MSSCDH problem, the OMSS-

CDH problem is intractable for a polynomial-time adversary.
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This is a case of an inherited hardness assumption. The information given for
the MSSCDH problem is § := {F, Ex, Ep,ker(¢p)} and the information given
for the OMSSCDH problem is &' := {FE, E4, Ep, ker(¢p), MSSCDH oracle}, so
certainly § C &’. Both problems have the same challenge: C = Find j(Eap).

The hardness of OMSSCDH is examined in Here we scrutinise the

related, protocol-specific assumption:

Assumption 2.3.2. Unforgeability and invisibility in the Jao-Soukharev protocol
are equivalent to OMSSCDH.

In the Jao-Soukharev protocol, the adversary knows E4 and can compute Ep,
and ker(¢p,), corresponding to message M;, from the public hash function H. A

signing oracle takes the message M; as input, and responds with

0 = (EABN ¢BiA<¢B¢(PC>>7 ¢BiA(¢Bi(QC))

as the signature.

Crucially, an adversary wishing to forge a signature can only query the sign-
ing oracle with messages, M;, while the curves Ep, are computed from message
hashes, rather than the messages themselves. Equivalence of unforgeability and
invisibility to OMSSCDH would only be true if an adversary had the ability to
submit arbitrary curves to the signing oracle. In essence, an adversary would need
the ability to compute the message that corresponds to a specific curve. This is

equivalent to the adversary inverting the hash function, H.
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Since it is assumed in the construction of the protocol that H is cryptographi-
cally secure, we conclude that breaking the unforgeability and invisibility proper-

ties for the Jao-Soukharev protocol is not equivalent to solving OMSSCDH[f]

2.3.4 The Srinath-Chandrasekaran protocol

Srinath and Chandrasekaran [80] extend the Jao-Soukharev construction to an
undeniable blind signature scheme, introducing a third actor, the requestor, to the
scheme. It is a four-prime variant of the original scheme and adds to the public
parameters the points {Pp, @p}, a basis for E[(7)].

Let p to be of the form (07507 - f £ 1, where (4, g, {c and {p are primes
and f is a small cofactor. Let E be a supersingular curve over F2 and let { P, Qa},
{Pp,Qs}, {Pc,Qc} and {Pp,Qp} be bases for the (5, (57, (¢ and (7} torsions
E, E[t}], E[t7], E[6F] and E[(77], respectively. The public parameters of the
scheme are p, F/, the four torsion bases and a cryptographic hash function H :
{0,1} — Z /U7 L.

As in the Jao-Soukharev protocol, the signer generates random integers m 4, n4
from Z/(5}7Z and computes the isogeny ¢4 : E — Ey = E/{[ma|Pa + [na]Qa).
The signer’s public key consists of the tuple (Ea, p4(Pc), p4(Qc)) and the private
key is (ma,na) or, equivalently, ¢ 4.

The signing protocol proceeds in this order: 1. blind, 2. sign, 3. unblind. A
requestor chooses a message, which is blinded and sent to the signer. The signer
signs the blinded message and returns a blinded signature to the requestor. The

requestor then unblinds the received tuple, resulting in the actual signature for

LObserve that the requirement that H is a cryptographic hash function is an example of the
fourth point of potential error identified by Koblitz and Menezes: implicit assumptions within
the description of a protocol.

38



the message.

Blinding For a message M, the requestor computes computes the hash h =
H(M) of the message and computes the curve Egz = E/(Pg + [h]@Qp) and the
isogeny ¢p : FF — Ep. The requestor then blinds the message curve by taking a
random integer 0 < d < {7 to compute Egp = Ep/{¢5(Pp) + [d]¢s(@p)), with
the corresponding isogeny ¢pp : Ep — Epp and a basis {P},,Q,} for the (7

torsion of Epp, Egp[l}y’]. The requestor additionally computes the points

Pi/ = ¢BD(¢B(P1'))7 Q; = ¢BD(¢B(Qi))> L= A? C

and sends these, along with the blinded curve Egp, to the signer.

Signing Signing functions in much the same way as for the Jao-Soukharev pro-
tocol, albeit shifted through ¢zp. Upon receipt of the blinded curve and auxiliary
points, the signer computes the curve Eppa = Epp/{[ma| Py + [na]@'4), the cor-
responding isogeny ¢ppa : Egp — FEppa and the points ¢ppa(PL), ¢spa(Qr),
¢ppa(Pp) and ¢ppa(Qp). The curve and auxilliary points are returned to the

requestor for unblinding.

Unblinding In preparation for unblinding, the requestor computes a point R €
E[l7?] such that R ¢ ker(¢pp). They then solve the extended elliptic curve discrete

logarithm problem to find m/,, n}, € Z/¢7P7Z such that

[mp) Pp, + [np]Qp = ¢Bp(R).
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Figure 2.5: The isogeny diagram for signing in the Srinath-Chandrasekaran Pro-
tocol.

Unblinding the curve Egp4 requires the requestor to compute the curve E p =
EBDA/<[7TLID]¢BDA(PID) + [n’D]gbBDA(Q’D» and the isogeny QbBAD . EBDA — EAB'
The unblinded signature is the tuple ¢ = (Eap, P, Q) where P = ¢pap(¢ppa(PL))

and Q = ¢pap(Pspa(Fh)).

Confirmation and disavowal The confirmation and disavowal protocols for
the Srinath-Chandrasekaran protocol are identical to those in the Jao-Soukharev

protocol.

2.3.5 Analysing the security proof of Srinath-Chandrasekaran

The security proof for the Srinath-Chandrasekaran protocol, with respect to the

properties of unforgeability and invisibility, unsurprisingly bears strong similarity

with that of Jao-Soukharev. In particular, the authors adopt [Assumption 2.3.1]

without further proof. Their protocol-specific security assumption is:

Assumption 2.3.3. Unforgeability and invisibility in the Srinath- Chandrasekaran
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protocol are equivalent to 1IMSSCDH.

In the next section, we show that IMSSCDH can be reduced to an instance of

OMSSCDH.

Remark 2.3.4. The blindness property is not included in [Assumption 2.3.3| In

consideration of unforgeability and invisibility we imagine the adversary as playing
the role of a malicious requestor. That is, the adversary has the freedom to choose
messages, and thus we do not consider blindness. We will discuss the impact on

blindness in [Section 2.6.2]

In the Srinath-Chandrasekaran protocol, the adversary knows E,4 and can
compute Fp, and ker(¢p,), corresponding to message M;, from the public hash
function H. A signing oracle takes the message M, as input, and responds with
0 = (Eap,, ¢5,a(05,(Pc)), dp,4(05,(Qc)) as the signature. Notice that these sig-
natures are equivalent to Jao-Soukharev signatures.

In [80] the claim is made that forging a signature for this construction is equiv-
alent to solving IMSSCDH. However, as in the case of the Jao-Soukharev protocol,
the authors did not account for the hash function. Hence, we similarly conclude
that breaking unforgeability and invisibility in the Srinath-Chandrasekaran proto-
col is not equivalent to solving IMSSCDH or OMSSCDH.

2.4 Attack on SSCDH variants

The variants of the SSCDH problems defined in arise in the security
proofs of [52, 80]. Due to the presumed hardness of SSCDH, these problems

are conjectured by the authors to be computationally infeasible. This section

introduces new attacks on both the OMSSCDH and 1MSSCDH problems which
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give a polynomial-time adversary a non-negligible advantage. We assume that the

adversary has access to an MSSCDH oracle, as defined here:

Definition 2.4.1 (MSSCDH Oracle). For fized curves E and Ey, let O be an
oracle that solves MSSCDH for E4, Ep, ker(¢p/) for any curve Ep: that is (57 -

1sogenous to F.

Note an adversary cannot query the oracle with curves isomorphic to a given

target curve, Fp.

Theorem 2.4.2. A solution to the OMSSCDH problem (Problem 2.2.7) can be

guessed with probability i after a single query to the MSSCDH oracle.

1
{p+1)lp

Proof. Let E4, Eg and ker(¢p) be the parameters of the OMSSCDH problem. Let
Eg # Eg be a curve (%-isogenous to Ep and (P-isogenous to E. Recall that ¢p is
separable and so can be written as the composition of eg isogenies, each of degree
(p. Finding Ep from Ep amounts to inverting the last ¢-isogeny step of ¢, then
applying another ¢p-isogeny. Thus, with knowledge of ker(¢p) the adversary can
compute ker(¢p/) and Fp.

Then, querying the oracle on Ey4, Ep/, ker(¢p) produces E4p/. Since any curve
in the isomorphism class of E4p is KQB—isogenous to Fap as depicted in Figure 7
it follows that the adversary can guess the isomorphism class of F4p correctly with

probability ( O]

1
£B+1)‘€B '

Remark 2.4.3. Even without prior knowledge of ¢p, an adversary can guess an

appropriate Fpg with probability —(zﬁiz)leB'

In practice the prime (g is chosen to be small (usually 2 or 3) and thus
breaks the OMSSCDH problem completely.
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Figure 2.6: Isogeny diagram showing that a query to the OMSSCDH oracle on
an (%-isogenous curve Ep/ yields an elliptic curve close to target curve. The blue
arrow from Fp to E,p represents the output of the oracle.

Without the condition on the degree of the isogeny between the curves sub-
mitted to the MSSCDH oracle and the base curve, the attack’s success probability
can be improved. We define the Free Degree OMSSCDH problem, which describes

this situation.

Problem 2.4.4 (Free Degree OMSSCDH Problem). For fized E4, Eg, given an
oracle to solve MSSCDH for E4, Ep, ker(¢p/) with Ep not isomorphic to Eg,
solve MSSCDH for E4, Eg and ker(¢p).

An adversary can always solve [Problem 2.4.4] after two queries to the oracle as

described in the proof of the following corollary to [Theorem 2.4.2]

Corollary 2.4.5. A solution to the Free Degree OMSSCDH problem (Problem 2././
can be found with two queries to the MSSCDH oracle.

Proof. Let E4, Ep and ker(¢p) be the parameters of the Free Degree OMSSCDH

problem. Using the method outlined in the proof of [Theorem 2.4.2] the adversary

computes two curves Ep, and Ep,, Eg, 2 Ep,, that are {g-isogenous to Fz. The
adversary queries the oracle to solve MSSCDH for E4, Fg, and ker(¢p,) fori = 1,2,

receiving E4p, in response. The curves F4p, are {p-isogenous to the target Eup
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as shown in Figure 2.7] Each of Esp, and Esp, have {5 + 1 isomorphism classes
to which they are ¢/p-isogenous. The intersection of the two sets of isomorphism

classes contains only one element, namely, the isomorphism class of E4p. O

E—o yo— Bp, — Fg— Ep,

N\ NN N

Ey—oy0o— Eap — FEap — Fap,

Figure 2.7: Isogeny diagram of the attack on the Free Degree OMSSCDH problem.
The blue diagonal arrows (Ep, to Eap,, and Eg, to Esp,) represent the output
of the MSSCDH oracle, which sends ¢g-isogenous curves of Ep to {g-isogenous
curves of target curve Ep.

Clearly, the attack described in [Theorem 2.4.2| can be generalised to OMSS-

DDH, the decisional variant of OMSSCDH, yielding the following theorem.

Theorem 2.4.6. A solution to the OMSSDDH problem (Problem 2.2.8) can be

guessed with probability (

m after a single query to the MSSCDH oracle.

Proof. Given E4, Eg and E’ as in [Problem 2.2.8] the adversary can apply the

attack of [Theorem 2.4.2l to £, and Ep to obtain the the isomorphism class of

E4p. The adversary then checks whether E' = E 5. O

Furthermore, a solution to the OMSSCDH problem implies a solution to the
IMSSCDH problem which yields the following theorem.

Theorem 2.4.7. A solution to the IMSSCDH problem (Problem 2.2.9) can be

guessed with probability (

—€B+11)€B after a single query to the MSSCDH oracle.

Proof. Let E, E4 be the parameters of the IMSSCDH problem. Let Eg, be a curve

(P -isogenous to E. [Theorem 2.4.2|solves the OMSSCDH problem for E4, Ep, and
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ker Ep, after a single query to the oracle. Let Ep, be the curve (%-isogenous to
Ep, found in the attack, with corresponding oracle response Ep,. Let Eap, be
the solution to the OMSSCDH problem, guessed correctly with success probability
m. The adversary then has tuples (Ep,, Fap,) and (Ep,, Eap,) and so solves

the IMSSCDH problem with ¢ = 1 queries to the oracle. O

2.5 Attack on undeniable isogeny signature schemes

Both signature schemes schemes assume that forging a signature is equivalent to

breaking OMSSCDH. However, as shown in [Section 2.3.3| and [Section 2.3.5| we

see that the inclusion of a cryptographic hash function in the protocol precludes
equivalence to the SSCDH variant. As a consequence the attack of dis-
proves the hardness assumption in 52| and [80], but does not break either protocol.
While this is sufficient to disprove the validity of the inherited assumption that
variants of hard problems are also hard, and in particular disproves the OMSSCDH
hardness assumption, we now justify the practical impact of the attack.

This section extends the attack on OMSSCDH, introducing a ‘hybrid’ version,
which involves finding ‘near-collisions’ in the hash function as well as using a
signing oracle. We apply the attack to the Jao-Soukharev protocol in detail first,
then discuss the differences in application to Srinath-Chandrasekaran, although
for the most part the attack proceeds identically.

For the purposes of the succeeding discussion, let H : {0,1}* — Z/{FZ be
the public hash function used in both signature schemes. Let A be a security
parameter. The hash function determines a coefficient of a point in the E[(7]

torsion group and can therefore be treated as a function to a group of cardinality
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22% for classical security levels and 23* for quantum security levels [17]. Let 2F

denote the cardinality of this group in the image of ¢p.

2.5.1 Attack on Jao-Soukharev protocol

Once again, we recall that the adversary knows E, and can compute Ep, and
ker(¢p,), corresponding to message M;, from the public hash function H. The
adversary additionally has access to a signing oracle subject to the following defi-

nition.

Definition 2.5.1. A signing oracle takes the message M; as input, and responds
with

o = (EAB“ QbBiA(QbBi(PC))’ ¢BZA(¢B7(QC))
as the signature.

summarises the hybrid attack against the Jao-Soukharev signature

scheme.

Input : Jao-Soukharev public parameters and a message M € {0,1}*

Output: o, a valid Jao-Soukharev signature for M

1 Build a near-collision on H with respect to the ¢p-adic metric, M’;
2 Submit M’ to the signing oracle to obtain the signature
o' = (Eap, P1 = ¢pa(op (Po)), Po = ¢pa(dp(Qc)));
3 Guess the (¥-isogeny ¢ : Eap — Eap;
4 Find s such that sf% =1 mod £;
5 Compute the auxilary points of the signature as {[s] - ¥(Py), [s] - ¥(P,)};

6 Output 0 = (Eap, [s] - ¥(P1), [s] - ¥ (F2));
Algorithm 1: Algorithm to compute a Jao-Soukharev signature for a message

M
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In detail, the attack proceeds as follows: Let M be the message upon which the
adversary wishes to forge a signature, with corresponding message curve Ez. The
adversary finds M’, a near collision with M on H, such that the difference between
H(M) and H(M') is divisible by a large power of {5, say a power of size roughly
251 for L; < L. The adversary submits M’ to the oracle, receiving the signature
o = (EAB/, P = ¢palop(Po)), Py := gbB/A(gbB/(QC))) in response. The curve
Eap is (2*-isogenous to the target curve E,p, where €% ~ 252 for Ly = L — L,
(see below for proof).

The attacker must then guess the £2¢ isogeny ¢ : Eap — Ep. The probability
of correctly identifying ¢ in a single guess is m Let v = 9Ypo ﬁB/, the
composition of two degree ¢% isogenies. Informally, 1& p corresponds to k backwards
steps on the isogeny path from E,p and g corresponds to k forward steps to
EAB.H This is illustrated in Figure Letting ¢ap = de,, © ¢ep—10 -0 @y, it
is clear that QﬂB/ = ngSeB,_k 0---0 ggeB,. Applying ¢ to P; and Q)1 therefore appends
a factor of /% to the auxiliary signature points. The adversary computes s, where
st =1 mod (5. The signature 0 = (Eap,[s] - ¥(P1),[s] - ¢¥(P,)) is then a valid

signature for M.

Y, deg(vpr) =
o1 Po

Eye \ — Eup
Pes
¥, deg(yp) = O3

b
\ Eap

Figure 2.8: Isogeny paths between E4, Exp and Fap in the attack on the Jao-
Soukharev protocol.

2A step corresponds to an £pg-isogeny.
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The following lemma allows the adversary to proceed despite the scheme’s loss

of malleability due to the hash function.

Lemma 2.5.2. Let E be a supersingular elliptic curve, let £ be a prime, let e be
an integer, and let {P,Q} be a basis for E[(¢]. Let n,m < (¢ be positive integers
congruent modulo (% for some integer k < e. Then the (-isogeny paths from E to

Ey=E/(P+[n]Q) and Ep = E/(P + [m|Q) are equal up to the k-th step.

Proof. Let m = n + o/*, for some o > 0. Let ¢4 : E — E4 be a separable, cyclic
isogeny of deg(¢a) = ¢¢ and ker(¢4) = (P + [n]Q). We can express ¢4 as the
composition of e f-isogenies such that ¢4 = ¢fl o --- 0 ¢?. Likewise, ¢p : E — Ep
can be expressed as ¢p = ¢P o --- 0 ¢P. The single l-isogenies correspond to the

single steps in the (-isogeny graph. We will show that ¢ = ¢ for 1 <i < k.

Fori=1,...,e, let ¢ : E;_; — E; be an isogeny with kernel (¢°=/S# ) where
Ey=E, S = P+ [n]Q and S, = ¢ ,(S#,). Define the ¢? similarly, with B
substituted for A and m for n. By [27], these are f-isogenies and ¢fto---0¢? = ¢4
up to composition with an automorphism on F4 (similarly for ¢5). We also have

the recursion

Ee_iS{il = Ee_iqbf—l(sf—ﬂ = 92524—1 ©---0 ¢i4<£e_i564)
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with the analogous result for Ee*"SiB_l. For 1 <1 <k, we have e —i+k > e and so

(ISP = 7 (P + [m]Q)
= (TP + [n]Q) + £~ [a]Q
= (7P + [n]Q)

= (=i

using that isogenies are group homomorphisms and @ € E[¢¢]. It follows that

o = ¢P for 1 <i <k. 0

With this result in mind, the validity of the signature output by

is proven in the following theorem.

Theorem 2.5.3 (Correctness). Let s,1, Py and Py be defined as in|[Algorithm 1)
Let o be the signature (Eag, [s]-(Py), [s]-1(P2)) output by|Algorithm 1. Assuming

that Eap is guessed correctly, o is a valid signature.

Proof. Since 1) maps points on E4p to points on E4p, the points ¥(P;), ¥ (Fs)
both lie on the target curve. Moreover, as (P;) = ¥ (¢p a(¢p(Pc))), the point
lies in the (¢¢ torsion of E4p, Eap[l]. The same holds for ¢(F,). Although these
points would already pass the validation process for the signature scheme, they
can be easily distinguished from the honestly generated points by computing Weil
pairings. This is due to the factor £%. Multiplication by the factor [s] ensures that
forged and honest signatures cannot be distinguished as described in the following.

Recall that ) = ¢p o &B/ and P, = ¢pa(¢p (Pc)). Since the order of Po is
coprime to deg(¢p 1) and deg(¢p:), and the isogeny diagram is commutative, we

can write Py = ¢ap (0a(Po)).
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By expanding ¢ 45 we obtain

wB’OQSAB':gbeB/—ko'”OgbeB/O¢€B/o"'o¢831—ko'”o¢63—kou'o¢1

= (3] © bep—k-10- -0 b1.

Since s is the multiplicative inverse of % modulo (¢, we have
[s] - (P1) = ¢ap(¢a(Fe)) € Easlle].

Analogously, we have [s] - ¢Y(P2) = ¢pap(¢a(Qc)) € Eapll].

Let P = ¢pa(¢p(Pc)) € Eapll] and Q = ¢pa(¢p(Qc)) € Eap[l]. These
are the points we expect in an honest signature. In both the confirmation and
disavowal protocols of the Jao-Soukharev scheme, the verifier uses the auxiliary
points to compute an isogeny from F4p to a curve E, = E p/{([mc - s|(Py) +
[ne - s](Pe)), where me,ne € Z/UEZ are integers chosen by the signer. This
curve is checked against Fapc = Eap/(Imc|P + [nc|@) to determine the validity
of 0. The two points obtained in span the subgroup E4p[(], and
we have E,p as the correct signature curve, so it follows that F, = Espc up to

isomorphism and thus the signature is accepted as valid. O

Clearly, this attack breaks the unforgeability property of the scheme with a
single call to the signing oracle. Moreover, this implies that the scheme also
fails to satisfy invisibility, since any adversary with the ability to forge signatures
with non-negligible probability can simply check whether the challenge signature

obtained in the invisibility game matches a potential forgery, as follows.
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Theorem 2.5.4 (Invisibility). Let E, E4, {Pa,Qa}, {Pg,Qp} and {Pc,Qc} be
the public parameters of a Jao-Soukharev signature protocol. Let M be a message
with corresponding message curve Eg. Given b sampled uniformly from {0,1}, let

o' =(E',P',Q’) be a challenge signature as in the invisibility game, where

Sign(M)ifb=1
Sim(M) ifb=0

An adversary can determine b* such that b* = b with a single query to the signing

oracle.

Proof. The adversary applies to the message M, to receive o4 =
(Eap, P,Q). By [Theorem 2.5.3| this is a valid signature for M. The adversary

then checks whether F4p = E’' by computing j(E4p) and j(E’) and returns b* = 1

if the statement holds, or b* = 0 otherwise. n

2.5.2 Attack on Srinath-Chandrasekaran protocol

In the Srinath-Chandrasekaran protocol, the adversary knows 4 and can compute
Ep, and ker(¢p,), corresponding to message M;, from the public hash function H.
Additionally, the adversary has access to a signing oracle, subject to the following

conditions, as defined in [80].

Definition 2.5.5 (Signing Oracle [80]). Given a curve E over F,. with #E =

(LR L2 ) and points P,Q € E of order (5", the signing oracle outputs

E' = E/{(Im4]P + [n4]Q)
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where ma,na are the Srinath-Chandrasekaran private key.

The scenario created by the unforgeability and invisibility games treats the ad-
versary as a malicious requestor. Suppose the target message is M, corresponding
to the message curve Fg. Since the signature curve F 4 resulting from the Srinath-
Chandrasekaran protocol is isomorphic to that returned by the Jao-Soukharev pro-
tocol for the same message and signer, the scheme is vulnerable to the attack in
[Section 2.5.1] As in the Jao-Soukharev case, both unforgeability and invisibility
can be broken.

Note that the auxiliary points gain a factor of /7 as a result of the unblinding
(which amounts to applying an isogeny and its dual). As noted by the authors

in [80], as this factor is coprime to (77, verification remains unaffected.

2.6 Impact on security

2.6.1 Parameter

Let us analyse the cost of in terms of the security parameter, . Note
that this cost analysis applies to the security of both the Jao-Soukharev protocol
and the Srinath-Chandrasekaran protocol.

To summarise the attack proceeds by computing a near-collision
on the public hash function H and guessing an f2*-isogeny between an honest
signature produced by the oracle for one message to the target forgery curve.
Recall that H is a function to a group of size 2, where L = 2\ for classical
security levels and L = 3\ for quantum security levels.

A direct approach for an adversary would be to find a collision on H, then apply
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the attack in[Algorithm 1] This is infeasible, as H is chosen to be cryptographically
secure. The cost of finding a collision in L bits is O(2/2) = O(2*), for a classical

adversary. We similarly see the quantum cost of a direct attack is O(25/%) = O(2*).

Lemma 2.6.1. |Algorithm 1| costs O(2*°) for a classical adversary and O(252/7)

for a quantum adversary.

Proof. Finding a near-collision of L; bits on H classically has cost O(2%1/2). In
Step 3 of the adversary guesses the correct isogeny and curve Eap
with probability approximately 272F2 = 272(;=11)  Taking L, = 4L/5 the attack
then has a total classical cost of O(22/%), as opposed to the expected O(25/2).
Under the assumption that it is possible to find near-collisions of the hash
function with lower complexity using a quantum computelﬂ [17], the first step of
the attack has cost O(2%1/3). Taking L; = 6L/7, the total cost of the attack for a
quantum adversary is lowered to O(22/7), as opposed to the expected O(25/3).
The classical cost for this attack is O(2*/°), with the hash function output
length equal to 2A. With the assumption above, the quantum cost for this attack
is O(20V7). O

Let A be the desired level of security and let X\ be the parameter defining the

length of the hash function. Then, in order to achieve the security level A\, we need

4N

= 2.1
5 21)
for classical security and
LA (2.2)
7 '

3Bernstein [8] argues that quantum collision search is practically inferior to classical collision
search algorithms due to expensive memory access and quantum memory.
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for quantum security. Hence, the size of the protocol parameters should be in-
creased by 25% to achieve the same classical security level (17% for quantum

security).

2.6.2 Blindness

Here we briefly discuss why the blindness property of the Srinath-Chandrasekaran
protocol is unaffected by our attack. First, we define blindness via the following
security game |29, 25, 66]:

1. The adversary generates a key pair (sk, vk).

2. The adversary chooses two messages, my and mq, and sends them to the

challenger.
3. The challenger computes a random bit b and reorders the messages as (mp, m1_4).
4. The challenger blinds the messages and sends them to the adversary.

5. The adversary signs the blinded messages, generating the signatures op"?

and ¢4 which are returned to the challenger.

6. The challenger applies an unblinding algorithm to o2/*¢ and o%¢ and reveals
the unblinded signatures, o, and o,_;, to the adversary.

7. The adversary outputs a bit b'.

The adversary wins if ' = b. A signatures scheme is blind if |Pr(b=0)—1/2 |

is negligible.

The most obvious difference, in comparison to unforgeability and invisibility,
is that in this game the adversary does not have access to an oracle. In fact,

the blindness game corresponds to neither the OMSSCDH nor the IMSSCDH

problems. Hence, the attacks of [Section 2.4] and [Section 2.5| are not applicable.
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2.6.3 Adversarial restrictions

In order to test the boundaries of the attack model, we now look at the efficacy of

our attacks under certain restrictions to the adversary.

Restricted oracle Let us first explicitly define the oracle in [Problem 2.2.7]

(OMSSCDH).

Definition 2.6.2 (Unrestricted oracle). For fized curves E4, Eg, given Ep and
ker(¢p:), such that

o Ep is (5 -isogenous to E, and

e Ep not isomorphic to Ep,

the oracle O returns Eap:, a solution to MSSCDH for Ea, Eg and ker(¢p/).

The attack against OMSSCDH ([Section 2.4) requires the adversary to query
the oracle with an Ep that is additionally £%-isogenous to Ez. We now consider a
situation in which we are unable to choose curves this ‘close’ to the target message

curve. That is, we place a third restriction on the oracle.

Definition 2.6.3 (Restricted Oracle). For fized curves E4, Ep and a positive
integer k < 2ep given Ep and ker(¢p), such that

o Ep is (77 -isogenous to E,

e Fp not isomorphic to Eg, and

o Fp is E’g -isogenous to Eg, where k < k' < 2ep,

the oracle Oy returns Eapr, a solution to MSSCDH for E4, Ep and ker(¢p/).

Assume that &’ is even. The adversary proceeds as in the proof of
rem 2.4.2l With knowledge of ker(¢g), finding Ep from Ep amounts to inverting
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the last k'/2 ¢p-isogeny steps of ¢p, then applying another fg/ 2-isogeny. The

——L . This is analogous to the

(EB"Fl)ZB

situation at Step 3 in [Algorithm 1 Clearly, for large k&’ this probability becomes

probability of guessing F4p correctly is then

negligible.

Restricted message We now consider changing the role of the adversary in
our security analysis of the Srinath-Chandrasekaran protocol. In we
treated the adversary as a malicious requestor. Suppose now that the adversary is
attempting to impersonate the signer, but is not privy to the message to be signed.
That is, the adversary intercepts the blinded curve sent by the requestor to the
signer and wants to forge a signature. In this situation, the adversary knows F
and Egp, and seeks to compute Eapp. illustrates a comparison of the

two attack scenarios.

EO%E A E—— p A
B B
Ep E.p Ep Eap
$BD éBD $BD $BD
E\BZD%EABD EED%EABD

Figure 2.9: Comparison of attack scenarios against the Srinath-Chandrasekaran
protocol. Items in blue are known to the attacker, while items in red are known
only to the signer. The left-most diagram shows the ‘malicious requestor’ scenario
and the right-most diagram illustrates the ‘restricted message’ scenario.

In order to apply [Algorithm 1] the adversary would need to determine either the
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message, thus breaking blindness, or ker(¢’z ), where ¢z, : E — Epp. The latter
would allow the adversary to find an appropriate near-collision on H. However,
under the CSSI assumption this problem is infeasible. Hence an attacker cannot
forge a signature for M under these restrictions. We note that the ability to forge
signatures on chosen messages (as described in is enough to break the

scheme, even if the restricted message attack is not possible.

2.7 Conclusion

The objective of this chapter was to illustrate a real-world example of Koblitz
and Menezes’ first point of error in reductionist security proofs. Specifically, we
looked at hardness assumptions positing that variants of intractable problems are
necessarily as difficult as the original problems, themselves. We have disproved
such hardness assumptions on the OMSSCDH and 1MSSCDH problems, and their
decisional variants. We have moreover addressed the incorrect assumptions in the
security proofs of two undeniable signature schemes (namely, that unforgeability
and invisibility are equivalent to solving OMSSCDH and 1IMSSCDH, respectively)
and then outlined an attack against these schemes. The protocols of [52, 80| il-
lustrate that if insufficient scrutiny is given to problem variants, then the flawed
hardness assumption may propagate into extensions of the protocol in which it
is initially used. The resulting impact on security requires an increase in param-
eter size by 25%, assuming a classical adversary, or 17%, assuming a quantum
adversary. We note that this does not represent a devastating attack, but that the
security claims must nonetheless be updated to reflect this new attack. A question

for future work is whether another attack exists against the blindness property of
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Chapter 3

Practical security of multivariate

quadratic cryptography

Practitioners of post-quantum cryptography need to compute explicit parameters
for achieving a desired level of security, or conversely, determine the level of secu-
rity that is provided by a given parameter set. However, translating complexity-
theoretic security results to precise values may require approximations, if certain
parameters are difficult to compute exactly. This chapter looks at the errors which
may be induced by such approximations through the lens of multivariate public
key cryptosystems (MPKCs). In particular, we look at the complexity analysis
of direct attacks on multivariate cryptosystems using algorithms for computing
Grobner bases.

The best known approach for solving a zero-dimensional multivariate system
of equations F = 0 is to find a Grébner basis of the ideal generated by the polyno-
mials in F |12} |19]. This approach is applicable to any multivariate cryptosystem

and is therefore considered the ‘direct attack’, as it does not take advantage of
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any additional structure in the system. This attack is generally an improvement
on exhaustive search of the solution space 33|, which has size ¢" for a field with ¢
elements and for polynomials in n variables. Hence, the complexity of computing
a Grobner basis of the public key of a multivariate cryptosystem or a multivariate
digital signature algorithm gives an upper bound on the security of that system.
Consequently, finding tight upper bounds on the complexity of Grobner basis al-
gorithms is an important area of research.

The first algorithm for computing Grobner bases was introduced by Buch-
berger |18] in 1965. Subsequently, several more system-solver algorithms have
been proposed, including [9, [37, |54, 67]. The system solvers fall into two cate-
gories [19]: Buchberger’s Algorithm and variations thereof; and algorithms based
on instances of Gaussian eliminations, an idea introduced by Lazard in [67]. The
latter category is the focus of this chapter. These algorithms use matrices that
correspond to systems of polynomials. The complexity of these algorithms is de-
pendent on the size of the matrices involved in the computation, which depends on
the degree d and the number of variables in the corresponding polynomials. This d
is not always known in advance, so heuristics have been developed to approximate
the cost of these algorithms.

The purpose of this chapter is to examine the veracity of a heuristic bound that
is based on work by Bardet, Faugére and Salvy [3]| and to provide better estimates
of the complexity of Grobner basis system solvers. Bardet, Faugére and Salvy
introduced the concept of the degree of regularity, which is commonly used in the
cryptography community to estimate the security of multivariate cryptosystems
and digital signature schemes. However, this chapter provides evidence that the

degree of regularity is not a valid upper bound for all systems.
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Results in the chapter appear in a paper written with Elisa Gorla, Emmanuela
De Negri, Manuela Dizdarevic, Mina Bigdeli and Sulaminthe Tsakou for Women

in Numbers Europe 3 2020 at the University of Rennes [11].

Outline and main contributions We begin by covering some relevant defini-
tions from commutative algebra. This is followed by a review of the literature with
regard to Grobner bases and semi-regular sequences in [Section 3.2 then a summary
of current methods for approximating the solving degree of a multivariate system
of polynomials in [Section 3.3, The most common method is to take the degree of
regularity, defined by Bardet, Faugére and Salvy [3|. We identify two assumptions
made in this method that can potentially impact the security analysis of multi-
variate cryptosystems: namely, that the degree of regularity is an upper bound for
the solving degree and that the similarity in asymptotic behaviour is sufficient for
security analyses. Counterexamples disproving the first of these assumptions are
given in [Section 3.4l These are significant in that the difference between solving
degree and degree of regularity is greater than 1. We then present an alternative
upper bound, which is based on a proven upper bound on the solving degree (the
Castelnuovo-Mumford regularity). The bound applies to over-determined systems
of semi-regular multivariate systems (which correspond to encryption protocols).
gives explicit formulas for systems of n + ¢ polynomials in n variables,
for small values of ¢, which are not covered by the asymptotic formulas of Bardet
and Chyzak. Subsequently, we discuss how to apply these results to systems arising

in cryptography.
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3.1 Preliminaries

For a thorough mathematical background in commutative algebra we refer to
[34]. For the following, and the entirety of this chapter, let K be a field and
let R = Klzy,...,x,| be the polynomial ring over K in n variables. Let F =
{fi,---,fm} C Rand let I = (f1,..., fm) be the ideal generated by the polyno-
mials in F.

An algebraic subset of K™, with respect to a subset S C R is the set of common

zeroes of all polynomials f € S.

Definition 3.1.1 (Zariski topology). The Zariski topology on an algebraic subset

X is defined by taking the closed sets to be the algebraic subsets of X.

The general linear group of n X n matrices over a field K, denoted G L, (K), is

an example of a set with the Zariski topology [19].

Definition 3.1.2 (Discrete topology). The discrete topology on a space X is de-

fined by taking all subsets to be open sets.

Over a finite field the Zariski topology is the discrete topology. This is because
every algebraic subset is the complement to another algebraic subset and so is
both open and closed.

A polynomial ideal I is a complete intersection, if it is generated by its codi-
mension number of polynomials. In our notaion, this implies m = n. An al-
most complete intersection is generated by the codimension +1 elements; that is,
m=n-+1.

For any set S C R, let S; denote the set of polynomials of degree d.
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Definition 3.1.3. Let I C R be a homogeneous ideal. We say that I is Artinian

if there exists a d > 0 s.t. Iy = Ry.

Let > be a monomial ordering. For a polynomial f € R, the intial term of f,
in(f), is the greatest term of f with respect to >. The initial ideal of a polynomial
ideal I is the ideal generated by the initial terms of all polynomials f € I. We can

now define the Grobner basis of a polynomial ideal .

Definition 3.1.4 (Grobner Basis, [18|). Let I be a polynomial ideal. The polyno-
mials {g1,...,9:} € I are a Grobner basis for I if the initial ideal of I, in(I), is
generated by the leading terms of the g;. Letting in(f) denote the leading term of
the polynomial f with respect to some monomial ordering, G = {g1,...,9m} 1S a
Grébner basis for I if in(I) = (in(g1), ..., in(gm))-

A reduced Grébner basis, G contains only monic polynomials and for all g; € G

it holds that for all i in(g;) does not divide any term of g;,j # i.
Finally, we define the Hilbert series of R/I.

Definition 3.1.5. Let I C R be a homogeneous ideal. The Hilbert function of R/I

1s the function

HR/[IN — N

The Hilbert series of R/1 is the formal power series

HSR/](Z) = Z HR/[<d)Zd.

d>0
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3.2 Grobner Bases and semi-regular sequences

In general, MPKCs are constructed from a central map F C R, belonging to the
class of systems of multivariate polynomials over a finite field K that are relatively
easy to invert. The central map is then hidden by secret affine maps S and 7 via
the composition 7 o F o S. This composition is published as the public map, P.
The private key of such an MPKC is sk := {F,S,T}.

The security of an MPKC rests on the difficulty of solving systems of multivari-
ate polynomial equations over finite fields. These systems are usually chosen to
be quadratic, although exceptions exist [32]. The problem of solving multivariate

quadratic (MQ) polynomial equations is formalised in the following statement.

Problem 3.2.1 (The M@Q-Problem). Given a system of m multivariate quadratic

polynomials in n variables,

7) = {pl(xlv cee 7‘1:11)7 ce 7pm('r17 s 7'1:71)};

with coefficients in F,, find a vector & = (x1,...,x,) such that p1(2) = --- =

pm(Z) = 0.

The M @Q-problem is known to be NP-hard for systems in which the coefficients
of the constituent polynomials are sampled uniformly at random from finite K [42].
Since in practice multivariate cryptosystems are equipped with a backdoor to fa-
cilitate decryption by a trusted user, these systems certainly do not satisfy this
definition of random. Moreover, this additional structure means the systems may
be more easily solved. Nevertheless, analysing the behaviour of sets of random

polynomials provides insight into the ‘general’ security of multivariate cryptosys-
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tems. Hence, before discussing direct attacks against |[Problem 3.2.1| we must first

rigorously define what is meant by random, or generic, sequences of polynomials.

3.2.1 Generic and semi-regular Sequences

The systems of polynomials arising in cryptography are designed to appear ‘ran-
dom’, in the sense that the coefficients appear to be chosen uniformly at random
from the coefficient field. To formalise the concept of ‘randomness’ as defined

above, we adapt the following definition of ‘genericity’ from algebraic geometry.

Definition 3.2.2 (|65]). A property is generic or holds generically if there exists

a nonempty Zariski-open set where the property holds.

Let us apply this to systems of polynomials. First we associate any polynomial
with the vector of its coefficients. Then the set of homogeneous polynomials of
degree d can be regarded as a projective space and, similarly, the set of polynomials
of degree < d can be treated as an affine space. Hence, we have the following

definition for generic homogeneous polynomials.

Definition 3.2.3. A generic homogeneous polynomial of degree d is a homoge-
neous polynomial of degree d, which belongs to a nonempty Zariski-open set in the

projective space of all homogeneous polynomials of degree d.

Similarly, a generic polynomial of degree < d is a polynomial of degree < d,
which belongs to a nonempty Zariski-open set in the affine space of all polynomaials

of degree < d.

We define a generic sequence of polynomials as a sequence F = {f1,..., fm} C

R, such that f; is a generic polynomial, for all 7.
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Since we will be considering ideals generated by systems of polynomials, we
also define a genericity property for ideals, following [19]. Let U be a Zariski open
subset in GL,(K), where K is an infinite ﬁeldﬂ. Each element u € U represents
a change in coordinates. We say that an ideal [ is in generic coordinates if the
initial ideal in(7) is unchanged by all v € U. Explicitly, this means in(ul) = in(I)
for all u € U. A simpler, sufficient condition states: if I is generated by generic

polynomials, then [ is in generic coordinates.

Remark 3.2.4. Recall that every set of polynomials is a Zariski-open set if the
coefficient field is finite. Hence, for genericity to be meaningful, the coefficient
field must be an infinite field. Obviously, this affects our ability to apply results

to cryptography, since MPKCs are typically defined over finite fields. We address
this irregularity in [Section 3.5

Semi-regular sequences were first introduced by Pardue.

Definition 3.2.5 (Semi-regular sequence [73|). Let R = K|z1,...,x,] and assume
that K is an infinite field. If A = R/I, where I is a homogeneous ideal, and
f € Ry, then f is semi-regular on A if for every e > d, the map A._q — A. given
by multiplication by f is of maximal rank. A sequence of homogeneous polynomials
fi,- o, fm is a semi-reqular sequence if each f; is semi-regular on A/{f1,..., fi-1),

1< <m.

The following conjecture suggests a connection between generic sequences of

polynomials and semi-regular sequences of polynomials.

Conjecture 3.2.6 (Conjecture B, |73]). If K is an infinite field and R = K|x, ..., x,],

and dy,...,d, are non-negative integers, then a generic sequence of polynomials of

IFor existence of U and further properties of generic initial ideals, see §15.9 of [34].
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degrees dy, . .., d, is semi-reqular.

Semi-regular sequences are interesting because their Hilbert series is known.

Pardue proved that [Conjecture 3.2.6| is equivalent to Froberg’s Conjecture [41],

which suggests an expression for the Hilbert series of an ideal generated by generic
polynomials and is known to be true for many ideals.

Let h(z) = 4o haz? € Z[2] be a formal power series with integer coefficients.
We denote by [h(z)] the formal power series obtained by truncating h(z) at the

first non-positive coefficient, that is

[h(2)] = > ha2",

where D = sup{d > 0 | hg,...,hq > 0}. The following proposition gives an
explicit formula for the Hilbert series of a semi-regular sequence of m homogeneous

polynomials in n variables. The proposition also gives an equivalent condition for

semi-regularity, which is simpler to verify than [Definition 3.2.5|

Proposition 3.2.7 (|73|, Proposition 1). Let fi,...,fm € R be homogeneous
polynomials of degrees dy,...,d,,. Then fi,..., fn is a semi-reqular sequence on
R if and only if

=)
HSpyipy,...10(2) = [ (1—2)m ]

for1 <{<m.
Semi-regular sequences were first considered in the context of multivariate cryp-
tography by Bardet, Faugére, and Salvy in [3]. The definition of semi-regular se-

quences used in [3| differs from the one given by Pardue, notably by taking K to

be an arbitrary field. Thus, the definition is applicable to systems arising in mul-
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tivariate cryptography. To avoid ambiguity, the term cryptographic semi-regular
sequence will be associated with the definition of Bardet, Faugére and Salvy |3]

below:

Definition 3.2.8. A sequence of homogeneous polynomials fi,...,fm € R is a

cryptographic semi-reqular sequence if and only if

HSRy(fr,f) (2) = {M] '

(1—=2)"

Clearly, any semi-regular sequence is a cryptographic semi-regular sequence.

3.2.2 Grobner bases

This section describes how a Grobner basis can be used to solve a system of
polynomial equations.

The Macaulay bound was shown by Lazard [67, Theorem 2| to be an upper
bound for the degrees of the polynomials in a Grébner basis of I, generated by a
homogeneous system F that has finitely many solutions over the algebraic closure

of K.

Definition 3.2.9. Suppose n < m and d; < --- <d,,. The Macaulay bound is

=1

Under the assumption that K is an infinite field, and that [ is a radical ideal,
the Shape Lemma [64] gives the general form of the reduced Grobner basis of

I with respect to the lexicographic ordering. Namely, the reduced lexicographic
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Grobner basis of I is of the form

{gn<xn)7xn—1 _gn—l(xn)"'wxl _gl(mn)}7 (31)

where ¢,..., g, are univariate polynomials in x, and deg(g;), ..., deg(g,—1) <
deg(g,). However, in cryptography, systems are usually defined over finite fields
and the condition that F generates a radical ideal does not always hold. Caminata
and Gorla [19, Theorem 2.6] use the Elimination Theorem |28, Theorem 2| to prove
that the reduced Grobner basis of I can be used to solve the system F = 0, even
when these conditions are not satisfied. The Grobner basis obtained has a similar
form to Equation . Crucially, it contains a univariate polynomial. Thus, at
least one variable can be eliminated and the system is simplified.

The most efficient ordering for computing a Grébner basis is the degree reverse
lexicographic (DRL) ordering. Faugére, Gianni, Lazard and Mora [39] developed
an algorithm for transforming a Grobner basis with respect to one ordering to a
Grobner basis for the same ideal with respect to another ordering. In particular,
it is faster to compute a DRL Grobner basis and convert it to a lexicographic
one with this algorithm, than to directly compute a lexicographic Grébner basis.
Throughout this chapter, results on complexity are given with respect to the DRL

ordering.

3.3 Estimating the solving degree

The complexity of Grobner basis algorithms that employ Gaussian elimination is

primarily determined by a quantity known as the solving degree.
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Definition 3.3.1. The solving degree of F, dsowe(F), is the degree d at which a

Gréobner basis algorithm returns a DRL Grébner basis of 1.

The solving degree dictates the size of the matrices occurring in the algorithm.
This section begins by describing the family of Grobner basis algorithms we are
interested in, and showing the dependence of the complexity on the solving de-
gree. Unfortunately, computing the solving degree is costly in practice and hence
cryptographers work with approximations and bounds. Since the algorithm cost is
bounded by an increasing function of the solving degree, finding an upper bound
for the solving degree corresponds to bounding the complexity of the Grobner ba-
sis algorithm. This, in turn, gives an estimate of the complexity of computing the

solutions of the system F.

Remark 3.3.2. To say that solving the system F = 0 is at least as hard as solving
some other system F' = 0, one requires that dsove(F') < dsoe(F). Using an
upper bound to estimate the hardness of solving F = 0 is a case of Koblitz and
Menezes’ first type of error. That is not to say, however, that efforts to find an
upper bound for the solving degree are therefore irrelevant to cryptography. In
fact, as highlighted by Koblitz and Menezes, and demonstrated throughout this
thesis, proven results in cryptography are often difficult to obtain. Results of this
kind, then, albeit not ideal, are still useful in telling cryptographers something
about the systems they work with. We must still endeavour to make these results

as strong as possible.

Bounding the solving degree is not a new focus of study, and cryptanalysts
commonly use the results of [3], [38] to assess the security of multivariate cryp-

tosystems. This section will end by recapitulating proposed upper bounds on the
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solving degree in literature:

1. the Castelnuovo-Mumford regularity (Section 3.3.2)), and

2. the degree of regularity (Section 3.3.3).
Throughout, let F = {f1,..., f} C R and fix the DRL order on R. Let F*P

denote the system of equations comprising the homogeneous parts of highest degree
of the polynomials in F. Let F"* C R|[t] denote the system of equations obtained by
homogeonising the polynomials in F with the variable ¢. Additionally, let dgo1ve(F)

denote the solving degree of F and d,e.(F) denote the degree of regularity of F.

Example 3.3.3. Let p = 123 + x120923 + z1. Then p'? = 1122 + 12973 and

Pl = x122 + 112003 + 1112

3.3.1 Complexity of a class of algorithms for computing

Grobner bases

We consider algorithms for computing Grébner bases that use Gaussian elimination
on Macaulay matrices of increasing degree.

Let Mon(R) denote the set of all monomials in R. For d > 1, the Macaulay
matrix My(F) of a polynomial system F = {fi,..., fmm} is a matrix with entries
in K with:

— Columns indexed by all elements of Mon(R) of degree < d, in decreasing

order from left to right, and

— Rows indexed by the polynomials m; f;, where f; € F, m; € Mon(R), and

deg m;f; < d.
Therefore, the (k,[)-th entry of the matrix is the coefficient of the monomial

indexed by [ in the polynomial which is indexed by k.
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Concretely, we consider the following (summarised) algorithm to compute the

reduced Grobner basis of I:

1.
2.

Start in degree d = max{dy,...,d,,} where d; is the degree of f;.

Perform Gaussian elimination on M,(F) to compute its reduced row echelon
form (RREF). Since the rows of My(F) correspond to the polynomials m; f;,
Gaussian elimination corresponds to taking linear combinations of these poly-
nomials. Hence, every row in the RREF corresponds to a polynomial in the
ideal generated by FJ]

For each rowf’, check the following condition:

(a) If computing the RREF produces a row which corresponds to a poly-
nomial f which has leading term strictly smaller than that of m,f;
and deg(f) < d, then one appends to the matrix a new row uf for all
u € Mon(R) such that deg(uf) < d.

Perform Gaussian elimination on the resulting matrix and repeat Step 3 until
no further degree reductions are produced.
Check whether a Grobner basis of I has been found. If yes, the algorithm

terminates, otherwise d is increased by 1 and the process is repeated.

The complexity of such an algorithm is dominated by the complexity of com-

puting the reduced row echelon form of the Macaulay matrices involved. This

depends on the size to which the Macaulay matrices grow, which is determined by

d. The maximum degree of the polynomials involved in the computation of the

reduced DRL Grobner basis of I is known as the solving degree.

2In order to track each row carefully, we use a variant of Gaussian elimination which does not
permute rows.

3Suppose the kth row of My(F) corresponds to the polynomial m;f;. Then the kth row in
the RREF corresponds to a polynomial of the form [m; f;+ a linear combination of other rows
of My(F)].
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The complexity of finding a Grobner basis using Macaulay matrices and Gaus-

sian elimination is bounded by a known function of the solving degree [3|:

Proposition 3.3.4. The number of operations required to compute a Grobner basis

for F, an over-determined system of m polynomials in n variables, is

o(w("3))

where d is the solving degree of the system and 2 < w < 2.39 [3] is the linear

algebra constant.

The algorithm as described will compute a Grobner basis for I. It does not,
however, give a method for verifying whether the final matrix output corresponds
to a Grobner basis. One stopping criterion is that the principal syzygieq!| corre-
sponding to the output basis reduce to 0. However, this has its own obstruction.
Suppose one wishes to verify the output after d iterations. The stopping criterion
can be verified by Gaussian elimination, however, this will be of a matrix in degree
d', where d < d' < 2d — 1.

Another possible stopping criterion is to identify an a priori bound on the
solving degree. Concretely, if the solving degree of a system F is at most D, then
the Grobner basis algorithm can stop at degree D. This motivates the need to

find good bounds for the solving degree.

3.3.2 Castelnuovo-Mumford regularity

The first approximation of the solving degree of a system of polynomials F is an

invariant from commutative algebra: the Castelnuovo-Mumford regularity. Let

4Also known as S-polynomials, see [53].
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I C R be a homogeneous ideal where F comprises a minimal set of generators of

1.

Definition 3.3.5 (|21]). The Castelnuovo-Mumford regqularity of I, regp(I), is
defined as

regp(l) =sup{j —i: B(I) #0},

where the 5; ; are the graded Betti numbers of I in the graded minimal free res-
olution of I. If F = {f1,..., fm} is a sequence of homogeneous polynomials, let

regp(F) denote the reqularity of the ideal I = (F).

When the ring R is clear from context the notation reg(/) is used. Caminata

and Gorla proved the following useful result in 2017.

Theorem 3.3.6 (Castelnuovo-Mumford bound on the solving degree [19]). Let

F={f1,..., fm} be such that F" is in generic coordinates. Then
dsolve(f) < reg(fh),

Remark 3.3.7. Suppose F is a homogeneous cryptographic semi-regular sequence.
The Castelnuovo-Mumford regularity of the ideal I generated by F is the least
degree d > 0 for which I; = R, |19]. This motivates a link between the Hilbert

series of a sequence and the Castelnuovo-Mumford regularity.

The following lemma allows us to bound the degree of the elements of the DRL
Grobner basis of I. Note that this bound does not require I to be in generic

coordinates.
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Lemma 3.3.8. Let F be cryptographic semi-regular sequence, generating the ideal

1. Then,

deg (1) < reg(l).

Proof. By Theorem 7 of |19], deg,..(I) < dsowve(F). Applying [Theorem 3.3.6|then

gives the desired result. O

Although the Castelnuovo-Mumford regularity is a proven upper bound on the
solving degree of a system, in practice it is difficult to compute. Cryptographers

largely use the degree of regularity instead.

3.3.3 The degree of regularity

The concept of degree of regularity of a system of equations was introduced by

Bardet, Faugeére and Salvy in [4] and in Bardet’s PhD thesis [1].

Definition 3.3.9 (Degree of Regularity (Definition 4, [4])). Let F be a system
of polynomial equations and assume that (F*P)y = Ry for d > 0. The degree of
reqularity of F is

dreg(F) = min{d > 0 | (F*P)s = R4}

If (F*P)y # Ry for all d > 0, we let dyeg(F) = 00.

Crucial to [Definition 3.3.9) being useful is the fact that ;"> = Ry for some d,

that is, )’ should be Artinian (Definition 3.1.3).

Remark 3.3.10. The ideal I C R is Artinian if and only if HSg/;(2) is a polynomial.
Observe that ford > 0, Iy = Ry <= dimg(R/I)y =0ford > d <= HSg/(2)
is a polynomial. As a consequence, any cryptographic semi-regular sequence with

m > n generates an Artinian ideal.
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The degree of regularity is widely used as a heuristic upper bound for the
solving degree of systems of equations arising in multivariate cryptography |10,
83, [87]. In [4], inhomogeneous cryptographic semi-regular sequences are defined
as sequences F such that F*°P is a cryptographic semi-regular sequence, according
to Definition [3.2.8) Let [P = (F®P). If I} = Ry for d > 0, then dyg(F) =

reg(F*P) |19]. The bound follows from the following assumption.

Assumption 3.3.11. Let F be an inhomogeneous cryptographic semi-regular se-

quence of polynomials. Then, reg(F*P) > reg(F).

Clearly, if [Assumption 3.3.11| holds, then the degree of regularity is an upper

bound for the solving degree of F. Bardet and Chyzak give asymptotic formulas

for the degree of regularity for over-determined systems in [2].

3.4 Validity of the degree of regularity bound

There are several known examples in the literature that show that the degree of
regularity is not a strict upper bound for the solving degree [19]. However, the
difference between both degrees in these cases has been at most 1. The examples
in this section demonstrate that the difference between the solving degree and the

degree of regularity can be greater than 1.

3.4.1 Method for computing step degree and degree of reg-

ularity

The solving degree and degree of regularity of the examples in [Section 3.4.2| were

computed using the computer algebra system Magma [15].

76



Computing the solving degree Magma does not directly compute the solving
degree, so the mazimum step degree is used as a substitute. Concretely, the maxi-
mum step degree is the largest step degree output in the Magma implementation of
the F4 Grébner basis algorithm. Since the implementation is not publicly avail-
able, equality between the two degrees remains a working assumption. Having
corresponded with representatives of Magma at the University of Sydney to deter-
mine the veracity of this conjecture, we received confirmation that the maximum
step degree was a valid substitute for solving degree, as it is defined herein. How-
ever, without access to the implementation, in particular, the stopping criterion,

we have not been able to verify this independently.

Computing the degree of regularity The degree of regularity was computed

by calling Regularity(GradedModule (F*°P))  where F*°P is the Magma instantia-

tion of F'P as defined in [Section 3.3.3

3.4.2 Greater differences between solving degree and degree

of regularity

The following examples are of multivariate polynomial systems which yield a solv-
ing degree that is both greater than the degree of regularity for the system, and

with a difference greater than 1. They are inspired by examples from [7].

Ezample 3.4.1. Let R = F7[z,y,2] and let f, =2" —z, f,=y" —vy, f. =27 — 2 be

the field equations. Consider the equations

h=+0"+2" =1, =2+’ +2° -1, fs=9"—1, fu=2"-1
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Consider the systems of equations

3
F= {Hf,,.
j=1

1<i; <ip<izg< 4} UA{fas [y, [21-

Using Magma the solving degree and degree of regularity are computed as
dsolve(F) = 24 > 15 = dyeg(F).

Ezample 3.4.2. Let R = F7[z,y,2] and let f, =2" —z, f,=y" —vy, f. =27 — 2 be

the field equations. Consider the equations
h=2+y"+2° =1, =2+’ +2° =1, fs=fo, fu= 1y, fo=F-

Consider the systems of equations

F = { H fzfj} U{f:vaf?ﬁfz}‘

1<i<;j<6

Using Magma the solving degree and degree of regularity are computed as
dsolve(f> =21>13= dreg(f>‘

Relevance to cryptography Since the degree of regularity is used to assess the
security of cryptographic systems, it would be very helpful to find counterexamples

that arise naturally in cryptography. It should be clear immediately that the two

examples provided in are too small to make effective cryptosystems.

Moreover, they were not intentionally constructed with a well-defined ‘trapdoor’,
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as would be the case for a multivariate cryptosystem.

It is unclear whether there are certain properties of a system of polynomials
that will lead to a larger difference between solving degree and degree of regularity.
Hence, finding counterexamples is an exercise in trial-and-error and the parameter
sizes used in cryptography make computing the solving degree of most instances
infeasible. That is not to say the examples provided are without consequence:
clearly, it is not inconceivable that a multivariate cryptosystem will or does exist,
for which the degree of regularity is not an upper bound on the solving degree.
For this reason, we argue that it is preferable to use a proven bound to make

complexity (and, thereby, security) arguments.

3.5 Upper bounds on the solving degree for over-
determined systems

Since there exist examples of polynomial systems for which the degree of regularity
is not a valid upper bound for the solving degree, the focus turns to the Castelnuvo-
Mumford regularity. Caminata and Gorla proved that this gives a proven upper
bound for the solving degree [19].

If m > n, asymptotic formulas for the degree of regularity of a cryptographic
semi-regular sequence are given in |3, 4]. We have discussed the limitations of re-
lying on asymptotic formulas when determining concrete security values in
[ter 1 The focus on this section is therefore to find an explicit formula for upper
bounds on the solving degree of certain over-determined systems.

Let F ={f1,..., fm} € R be a system of multivariate polynomial equations.
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We first restrict to polynomial systems where m —n is small: explicitly, systems of
equations where m = n+1, systems of quadratic equations where n+2 < m < n+5
and systems of cubic equations for m = n + 2. We note that there are no current
multivariate cryptosystems with such small values for m — n. However, we also
show that the upper bounds on solving degrees for these systems can be extended
to larger systems, that is, where m > n + 5.

contains explicit formulas for bounds on the solving degree of F
when the polynomials are homogeneous. To motivate the application to systems
arising in cryptography, systems over both infinite and finite fields are consid-
ered. These results are then applied to systems of inhomogeneous polynomials in
again covering infinite and finite fields.

Throughout, let dsove(F) denote the solving degree of F, deg,,..(I) denote the
maximum degree of the polynomials in the DRL Grobner basis of I and dyeg(F)

denote the degree of regularity of F.

3.5.1 Homogeneous cryptographic semi-regular sequences
Let F = {f1,..., fm} € R be a system of homogeneous multivariate polynomial
equations in n variables and let d; = deg(f;).

3.5.1.1 Casel: m=n+1

Suppose m = n+ 1 and, without loss of generality, let d; < --- < d, 1 and take F
defined over an infinite field. Recall that this is necessary for the polynomials in F
to be generic. Assuming Pardue’s conjecture, such a sequence is also a semi-regular

sequemnce.
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The following result of Migliore and Miro-Roig |70] applies to systems of generic

polynomials that generate the ideal I, when I is an almost complete intersection.

Lemma 3.5.1 (|70], Lemma 2.5). The mazimal socle degree of R/I is

3 (5) )]

where the maximal socle degree refers to the degree of the last non-zero component

of the minimal resolution of R/I.

Assume F is a system of generic polynomials. Then (fi,..., f,) is a com-

plete intersection, as the polynomials are defined in n variables. Suppose that
deg(fuir1) > (Z di) —n. Then f,41 € (f1,..., fn) and so I is a complete in-
i=1

n
tersection. Hence, without loss of generality, we take deg(f,+1) < <Z di) —n.
i=1
Then I is an almost complete intersection and so applies. Note that
in this case the socle degree coincides with the Castelnuovo-Mumford regularity.

The following theorem uses these results to bound the solving degree.

Theorem 3.5.2. Let K be an infinite field and let F = {f1,..., foy1} consist of

n+ 1 generic homogeneous polynomials of degrees d; = deg(f;) in n variables. Let
diy < dy < --- < dpy1. Assume without loss of generality that d,y1 < di + -+ +

d, —n. Then F is a cryptographic semi-reqular sequence and

dsolve(f')é \‘d1+-..+dn+1—n_1J +1

2

Proof. The Hilbert series of F is known, by results from Watanabe 86| (in particu-

lar Theorem 3.8) and satisfies [Definition 3.2.8||70, §2|. Hence, F is a cryptographic

semi-regular sequence.
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Since d,,11 < dy + --- 4+ d, —n, I is an almost complete intersection. By

emma J3.9.1}

_ —1
reg<1) _ \‘dl + +dn+1 n J +1

2

Moreover [ is in generic coordinates, as it is generated by generic polynomials.

Therefore, applyingTheorem 3.3.6|yields the bound for the solving degree of 7. [J

Remark 3.5.3. Since d,,y1 < dy+---+d,—n, reg(l) <dy+---+d, —n+1, which

is, of course, the Macaulay bound (Definition 3.2.9). Therefore, the bound on the

solving degree resulting from [[heorem 3.5.2|is better than the Macaulay bound.

Corollary 3.5.4. Let K be an infinite field and let F = {fi1,..., fos1} consist of
n+1 generic homogeneous quadratic polynomials in n variables. Then deg(f;) = 2

foralli=1,...,n+1 and
1
dsolve(-/—:) S \‘n—;— J +1

Corollary 3.5.5. Let K be an infinite field and let F = {f1,..., fas1} consist of
n+1 generic homogeneous cubic polynomials in n variables. Then deg(f;) = 3 for
alli=1,....n+1 and

dsolve(Jr> S n + 2.

To apply these results to systems arising in multivariate cryptography, we as-

sume F is a cryptographic semi-regular sequence as in [Definition 3.2.8, The prob-

ability of this assumption holding is discussed in [Section 3.6.1} If F generates an

ideal in generic coordinates then the same bound on the solving degree holds.

Theorem 3.5.6. Let K be a finite field and let F = {f1,..., far1} be a homoge-
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neous cryptographic semi-reqular sequence of polynomials of degrees d; = deg(f;)

inn variables. Let I = (F) and suppose I is in generic coordinates. Let di < dy <

<o < dpy1. Assume without loss of generality that d, 1 < dy + -+ d,, — n.
Then

di++dpr—n—1
dsolve<f>s{1+ +2+1 n J—i—l.

Additionally, by [Theorem 3.5.6| and [Lemma 3.3.8| for m = n + 1, the degree of

the elements of the DRL Grobner basis of I, are bounded as:

degma (1) < Vl S > ek 1J +1.

2

Moreover, for systems of all quadratic or all cubic polynomials, [Theorem 3.5.6|

yields the following bounds on the solving degree.

Corollary 3.5.7. Let K be a finite field and let F = {f1,..., fas1} be a homo-
geneous cryptographic semi-reqular sequence of n + 1 quadratic polynomials in n
variables. Suppose I = (F) is in generic coordinates. Then deg(f;) = 2 for all
i=1,....,n+1 and

dsolve(f) S \‘n—;lJ + 1

Corollary 3.5.8. Let K be a finite field and let F = {f1,..., far1} be a homoge-
neous cryptographic semi-reqular sequence of n+1 cubic polynomials in n variables.
Let I = (F), and suppose I is in generic coordinates. Then deg(f;) = 3 for all
t1=1,....,n+1 and

dsolve(«F) S n 4+ 2.
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3.5.1.2 Case2: n+2<m<n+5d;=2forallt=1,...,m

Let n4+2 < m < n+5 and assume that F is a cryptographic semi-regular sequence

of homogeneous quadratic equations. By |Definition 3.2.8| and |Definition 3.1.3, and

since m > n, there exists a d such that I, = R;. The Castelnuovo-Mumford
regularity of I is the least such degree. Consequently, reg(/) is the least degree d
for which the coefficient of 2% in the power series (1 —2%)™/(1— z)™ is non-positive.
We hence also refer to this value as the index of reqularity. Expanding the Hilbert

series for n,m = n + ¢ gives

w = (1-2)1+2)™

= (= (@) (e (e (D) ())

m—+L

= E akzk,
k=0

where ay, the coefficient of 2, is

, = zk:(—l)j <f) (k”_”‘j) (3.2)

=0

The smallest k for which «y is non-positive will give reg(I). However, this k is not
easily read from Equation . Note that for k > ¢, (i) = (0 and so by expanding

and simplifying the binomial coefficients

= (0 ()(7)

=0
m)

TR0+ - k:)!f(g’ £);
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where

R (R s 10 N

Clearly, ap, < 0 <= f({,k) < 0. Hence, finding reg(I) is reduced to finding
minimal & such that f(¢, k) < 0. Expanding Equation and finding zeroes for

r=2,3,4,5 gives the following theorem.

Theorem 3.5.9. Let F = {f1,..., fm} be a cryptographic semi-reqular sequence

of homogeneous polynomials of degree 2 in n variables. Let I = (F) and let

;

[(4+n—+V4+n)/2] ifm=n+2,

[(64+n— 16+ 3n)/2| ifm=n+3,
r(m,n) =

{(8+n—\/20+3n+\/§\/128+39n+3n2)/ﬂ ifm=n+4,

j(lO—i—n—\/40+5n+\/§\/288+75n+5n2)/2—‘ ifm=n-+5.
Then

degya (1) < 7(m;n).

If in addition we assume that I is in generic coordinates, then

dsolve(f) S T(ma Tl)

Proof. We have that the Castelnuovo-Mumford regularity of [ is reg(I) = r(m,n).
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Let ¢ =2,3,4,5 in Equation |(3.3)] yielding the following functions:

f(2,k) =4k* —4(4 + n)k +n® + Tn + 12,
f(3,k) = — 8k* 4+ 12(6 + n)k* — 2(92 + 33n + 3n*)k + n® + 15n% + T4n + 120,
f(4, k) =16k — 32(8 4+ n)k® 4 8(172 4 45n + 3n*) k>
— 8(352 4 148n + 21n* + n*)k
+ n* 4 26n* + 251n + 10661 + 1680
and f(5,k) = — 32k° + 80(10 + n)k* — 80(92 + 19n + n?)k*
— 2(27024 + 12450n + 217502 + 170n° + 5n*)k
+ 40(760 + 246n + 27n* + n®)k>

+n® 4+ 40n* + 6350 + 50000 + 19524n + 30240.

Considering f(¢, k) as a function of k, we solve for ky, the point at which f(¢, k)

first becomes non—positiveﬂ We find

ko =(4+n—+vV4d+n)/2
ks = (6 +n — VI6 1 3n)/2

ky=(84n— \/20+3n+\/§\/128+39n+3n2)/2

1
and ks = - (10—|—n— \/40+5n+\/§\/288+75n+5n2).

Recall that the index must be an integer, so taking k = [k;| gives the first

non-positive oy, for a particular £

>The zeroes of the functions f(¢, k) were computed using Mathematica [88].

6For each ¢, it was checked that [k,] is not larger than that next largest zero of f(¢,k), so
this 4, is indeed non-positive.
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If I is in generic coordinates, applying[l’heorem 3.3.6{bounds the solving degree.

The bound on degrees deg, .. follows from [Lemma 3.3.8 O

3.5.1.3 Case3: m=n+1,dj=3foralli=1,....m

Let m = n 4+ 1 and assume that F is a cryptographic semi-regular sequence of

cubic equations. Analogous to [Theorem 3.5.9, examining the Hilbert series for

m, n, yields the following theorem.

Theorem 3.5.10. Let F = {f1,..., fasr1} be a cryptographic semi-reqular se-

quence of homogeneous polynomials of degree 3 in n variables. Let I = (F), then
deg () <n+2.

If in addition we assume that I is in generic coordinates, then
dsove(F) < m + 2.

Proof. Consider the Hilbert series for m =n+1,d; =3 foralli =1,...,m,

(1 _ Z3)n+1

i =(1—=2)14z+29)"

:(1—2«)%2—32 ("Zl)zz’“

k=0
2n+3
n+1 n+1 &
:1 —_—
+ZZI(< k >2 (k’_l)2>27

where ( k)p is the polynomial coefﬁcien of 2¥ in the polynomial (1+z+---+27)".

7(:);; is also referred to as the extended binomial coefficient.

87



Many of the known binomial coefficient identities can be extended to polynomial

coefficients [36]. In particular, symmetry, where

(Z)p::(pn7_k>; n > 0. (3.4)

For p = 2, these are known as the trinomial coefficients. For fixed n, the
trinomial coefficients (2)2 increase for 0 < k£ < n due to the recurrence relation
(2)2 = (2:1)2 + (";1)2 + (23)2 The central trinomial coefficient, (2)2 for fixed n,
is the largest coefficient. The sequence of central trinomial coefficients was studied

in depth by Euler [35], so we do not belabour the details here.

The coefficient of z* is

n+ 1) (n + 1)
A = — . (35)
( k 2 k-1 2
Since the trinomial coefficients increase with increasing k (up to n), ay is positive

for all 0 < k <n+ 1. Now, consider £k = n + 2. Then,

n+1 n+1
Qpto = —
2o \n+2), \n+1),

1 1
= (“+ ) - ("+ ) by Equation [[34]
2 2

n n+1

= —0py1 < 0.

The bound on degrees deg,,,. follows from |[Lemma 3.3.8| If I is in generic coordi-

nates, applying [['heorem 3.3.6| bounds the solving degree. O
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3.5.1.4 Case 4: Greater values of m

Suppose F is a homogeneous cryptographic semi-regular sequence of equations.

Then, [T'heorem 3.5.9| and [T'heorem 3.5.10| can be used to obtain an upper bound

for the solving degree of F for greater values of m.

Corollary 3.5.11. Let F = {f1,..., fm} be a cryptographic semi-reqular sequence
of homogeneous polynomials of degree d = 2,3 in n variables. Assume that m >

n+5ifd=2 and that m>n+1ifd=3. Let I = (F) and let

{(10 +n— 40+ 51 + V2288 + Ton + 5n2)/2-‘ ifd=2,
n+ 2 if d = 3.

r(n,d) =

Then
deg,ax (1) < 7(n,d).

If in addition we assume that I is in generic coordinates, then

dsolve(f) S T(?’L, d)

Proof. For d = 2, m > n + 5. Note that I contains an ideal J generated by a
cryptographic semi-regular sequence consisting of n + 5 homogeneous quadratic
polynomials (for instance, take the first n + 5 polynomials in F as generators).
For d =3, m > n+ 1. Again, observe that I contains an ideal J generated by
a cryptographic semi-regular sequence consisting of n + 1 homogeneous quadratic

polynomials (for instance, take the first n + 1 polynomials in F as generators).

Note that J is Artinian as m > n. Then, reg(l) < reg(J) [19]. [Theorem 3.5.9|

and [Theorem 3.5.10| provide values for reg(.J) for d = 2 and d = 3, respectively.
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The bound on degrees deg, .. follows from [Lemma 3.3.8| If I is in generic

coordinates, applying [['heorem 3.3.6 bounds the solving degree. O

3.5.2 Inhomogeneous cryptographic semi-regular sequences

Let F ={f1,...,fm} C R be a system of inhomogeneous multivariate polynomial
equations in n variables and let d; = deg(f;). We expect this type of sequence to
arise more often from MPKCs.

Consider 1", the homogenised ideal of F, which is generated by F*. We have
the following definition for inhomogeneous cryptographic semi-regular sequences

of equations.

Definition 3.5.12. An inhomogeneous system of polynomials F = {f1,..., fm} C
R is a cryptographic semi-reqular sequence if F" = {fl ..., fh} C S = R[t] is a

cryptographic semi-reqular sequence.

Definition [3.5.12] allows us to apply the results on homogeneous systems from

to systems of inhomogeneous polynomials.

3.5.2.1 Casel: m=n+1

Let m = n + 1 and suppose F is a semi-regular sequence of generic polynomials.

Then the homogenisation F" is a semi-regular sequence of n+1 generic polynomials

in n + 1 variables. The next theorem now follows from [Theorem 3.5.2|

Theorem 3.5.13. Let K be an infinite field and let F = {f1,..., fm} C R be
a sequence of generic inhomogeneous polynomials of degrees d; = deg(f;), with

m e {n+1,n+2}. If m=n+2, assume without loss of generality that d,.o <
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di+---+dy1 —n—1. Then F is a cryptographic semi-reqular sequence and

di+---+dy1—n ifm=n-+1,
dsolve<f>< ' o

- {WJle if m=mn+2.

Proof. If m = n + 1, then F" is a sequence of n + 1 generic homogeneous polyno-

mials in n + 1 variables, hence it is a regular sequence. The result follows from the

Macaulay bound. If m = n + 2, applying [Theorem 3.5.2to F"* bounds the solving

degree of F. O

Corollary 3.5.14. Let K be an infinite field and let F = {f1,..., fuy1} consist of
n+1 generic inhomogeneous quadratic polynomials in n variables. Then deg(f;) =
2 foralli=1,...,m and

n+2 ifm=n+1,
dsolve(]:) S

2] +2 ifm=n+2,

Corollary 3.5.15. Let K be an infinite field and let F = {f1,..., fas1} consist of
n+ 1 generic inhomogeneous cubic polynomials in n variables. Then deg(f;) =3
forallt=1,...,m and

2n+3 ifm=n+1,
dsolve(f) S

n+3 ifm=n+2.

For systems arising in multivariate cryptography, we assume JF is a crypto-

graphic semi-regular sequence as in [Definition 3.5.12| and that F” generates an

ideal in generic coordinates. Then, the same bound on the solving degree holds.
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Theorem 3.5.16. Let K be a finite field and let F = {f1,...,fm} € R be a
cryptographic semi-reqular sequence of inhomogeneous polynomials of degrees d; =
deg(f;), withm € {n+1,n+2}. Let I = (F). If m = n+ 2, assume without loss
of generality that dy,o < dy+---+dp 1 —n—1. Let

i+ -+dp1—n ifm=n+1,
r(n,dy, ..., dpy) = ! i

dittdpyo—n—2 - o
[T E
Then

deg () < 7(n,dy,...,dp).

If I" = (F") is in generic coordinates, then
dsorve(F) < 1(n,dy, ..., dp).

Corollary 3.5.17. Let K be a finite field and let F = {f1,..., fur1} be a crypto-
graphic semi-reqular sequence of inhomogeneous quadratic polynomials in n vari-
ables. Suppose I" is in generic coordinates. Then deg(f;) =2 for alli=1,...,m

and

n+ 2 ifm=n+1,
r(n,2,...,2) =
2] +2 ifm=n+2,

Corollary 3.5.18. Let K be a finite field and let F = {f1, ..., fux1} cryptographic

semi-reqular sequence of inhomogeneous cubic polynomaials in n variables. Suppose
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I" is in generic coordinates. Then deg(f;) =3 for alli=1,...,m and

2n+3 ifm=n+1,

n+3 ifm=n+2.

3.5.2.2 Case2: m>n+3,di=2foralli=1,....m

Let m > n + 3 and assume that F is a cryptographic semi-regular sequence of

quadratic equations. Using the same techniques as in the previous subsection, the

next theorem follows from [Theorem 3.5.9 and [Corollary 3.5.11]

Theorem 3.5.19. Let F = {fi1,..., fm} be a cryptographic semi-reqular sequence

of inhomogeneous polynomials of degree 2 in n variables. Let I = (F) and let

¢

[(5+n—+5+n)/2] if m=n+3,
[(7T+n— 19+ 3n)/2] if m=mn+4,

r(m,n)

[(9+n— \/23+3n+\/§\/170+45n+3n2)/2} ifm=n+5,

[(11 + 1 — /45 + 5n + v/2/368 + 85n + 5n2)/2] if m>n+6.
\

then

If I" = (F") is in generic coordinates, then

dsolve(-F) S r(m, TL)

93



3.5.23 Case3: m>n+2,di=3foralli=1,....m

Let m > n + 2 and assume that F is a cryptographic semi-regular sequence of

cubic equations. Using the same techniques as in the previous two subsections,

the next theorem follows from [I'heorem 3.5.10] and |[Corollary 3.5.11}

Theorem 3.5.20. Let m > n+ 2 and let F = {f1,..., fm} be a cryptographic
semi-reqular sequence of inhomogeneous polynomials of degree 3 in n variables. Let
I =(F), then

deg (/) <n+3.

If I" = (F") is in generic coordinates, then

dsolve(f> S n -+ 3.

3.6 Impact and limitations

3.6.1 Genericity assumptions in proofs

There are two major assumptions made in the proofs of regarding

sequences of polynomials over finite fields:

1. F generates an ideal in generic coordinates.
and

2. F is a cryptographic semi-regular sequence.

Generic coordinates MPKCs are usually defined over finite fields, whereas the

definition of generic coordinates is given for systems over an infinite field. However,
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applying a generic change of coordinates to the ideal generated by JF, over a large
enough extension field of K, will put I in generic coordinates [19]. Furthermore,
Caminata and Gorla proved that if F contains the field equations then the ideal
I = (F) will be in generic coordinates |19, Theorem 3.26]. The same result holds
when we consider the homogenised system determined by F. Specifically, the ideal
(F™) is in generic coordinates if F contains the field equations.

For cryptanalysis it is often common practice to include the field equations for
security analysis. Therefore, the first assumption would not affect applicability
of the results contained in this chapter to these cryptographic systems. We note,
however, that over large fields including the field equations can make Grobner

basis computation infeasible.

Cryptographic semi-regular sequences The assumption that the sequences
of polynomials arising in cryptography are cryptographic semi-regular is not new
to this thesis and is in fact used by Bardet, Faugeére and Salvy [3]. Hence, this
assumption has no real impact in terms of comparing the two methods of approx-
imation.

We will now discuss the existence of cryptographic semi-regular sequences.
To begin with, recall that any semi-regular sequence is a cryptographic semi-
regular sequence. Pardue’s conjecture implies that most systems of polynomial
equations with coefficients that are chosen at random from an infinite field are
semi-regular. The same conjecture is made for ‘large enough’ finite fields. With
greater relevance for cryptography, Hodges, Molina and Schlather show that the
proportion of sequences of homogeneous polynomials with coefficients in Fy of

degree d > 2 that are semi-regular tends to 1 as the number of variables tends
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to infinity [49, Theorem 6.4|. It remains for future work to prove these results in

finite fields other than Fs.

3.6.2 Large values of /

The method we use to find an exact formula for the index of regularity r(n + ¢, n),
requires a solution to the function f(¢, k), which is a degree ¢ polynomial in k.
We do not determine a general equation for r(n + ¢,n) for ¢ > 6, primarily due
to our use of Mathematica to compute the zeroes of f(¢, k). Nonetheless, we have
shown that it is still possible to find an explicit bound on the index of regularity
by looking at ideals contained in the ideal generated by F. The resulting bounds
are unfortunately not tight, as illustrated by [Figure 3.1 However, we note that
for arbitrarily large values of n the bounds of |3| can be used.

For the purposes of achieving a more accurate approximation of the solving
degree of cryptographic semi-regular systems of m = n+ ¢ homogeneous quadratic
polynomials, we have therefore computed the exact values of r(n + ¢,n) for 2 <

¢,;n < 500. These are available at: http://bit.ly/wine-3. This thesis includes

the values for 2 < n,¢ < 100 in [Appendix A]

3.6.3 Impact on complexity

We now look at the effect that dyes < dsoive has on bounding the complexity of
computing a Grobner basis algorithm. To illustrate our analysis, we consider
parameters with existing multivariate cryptosystems in mind: the Simple Matrix
(or ABC) encryption System [82] and HFERP [50]. Recall that for a system F

of m polynomials in n variables, the number of operations required to compute a
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Figure 3.1: The index of regularity r(m,n), where, in order from bottom to top,
m =n+ /¢, for n =10 (green), n = 50 (blue), n = 100 (red) and n = 500 (black).
The dashed lines represent the bound on r(m,n) from [Theorem 3.5.19| for each
value of n.

Grobner basis is bounded above by

+ d olve ™ 1 “
@ (mdsolve (n ! > ) )
dsolve
where 2 < w < 2.39 [3] is the linear algebra constant. For the remainder of this
section we set w = 2 to consider a powerful adversary. We will represent the exact

cost symbolically by C.

We call Cy := md(”J’j_l)w the cost parameter for F, a system of m polyno-
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mials in n variables, with solving degree dg,ve = d. By inspection and from the
literature we know that C, increases as d increases. illustrates this
relationship for (m,n) associated with HFERP ((95,63) and (226,164)) and the
Simple Matrix Encryption system (128,64). We include the additional parameter
set (m = 107,n = 103) to illustrate the change in cost for a small offset m — n,

matching the scenarios considered in [Section 3.5

— m =107, n= 103 -
""" =95 n =63 -
——= =128 n =104 ="

004 —o g = 2260 = 140 L~

300

200

Cost parameter, C'; (bits)

100

T T T T
] 20 1 G0 50 100
Degree, d

Figure 3.2: The cost parameter C, for finding a Grobner basis of a system, F, of
m multivariate polynomials in n variables, for 2 < d < 100.

Let us assume that F is a system of polynomials for which the degree of reg-

ularity is not an upper bound for the solving degree. Then, clearly Cqy,, < Cjy.
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Although we can surmise from that C; grows dramatically with respect
to increasing d, we consider a simple model to clarify this impact. Define the
cost differential as Ay y := |Cy — Cy| and the cost ratio as Ry 4 := g—;. We are
interested in the change in Ay y and Ry 4 as |d — d'| varies.

We model dgoive as a function dyeg + o, where o € Z is an offset parameter. For
ease of notation, let A, = Agiqq and Ry = Rita,q. The change in A, and R,
with increasing « is shown in [Figure 3.3| For this model, we have fixed a d,cs for
each of the parameter sets used in [Figure 3.2

The examples in and in literature correspond to this model with
small a. Here, we can see from that the cost difference and ratio can

still be large. For instance, consider e = 2. The cost difference and cost ratio for

the four different parameter sets are given in [Table 3.1]

m n d Ay Ry
95 | 63 | 10| 98.8 11.0
128 | 64 | 50 | 233.6 4.6
226 | 140 | 12 | 140.4 14.2
107 | 103 | 10 | 114.9 13.5

Table 3.1: The cost difference and cost ratio (bits) when dsye = dyeg + 2 for
different parameter sets (m,n, d).

Though we have considered a simple model, it demonstrates the impact even a
small difference between the solving degree and the degree of regularity can have.
What does this mean for the security of multivariate cryptosystems? Assume
there exists a cryptosystem represented by F, for which dsve(F) > dreg(F). We

must remain cognisant of the fact that C; is an asymptotic representation of

solve

< (4. .. we are not able to

reg — solve

the actual cost, C. Hence, even though we know Cj

say concretely how Cy,,, compares to C. We suggest that the introduction of even
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Figure 3.3: The change in cost difference A, and cost ratio R, for systems of
multivariate polynomials where the solving degree is modelled as an affine function
of the degree of regularity: dsve = dreg + . The lines correspond to the following
parameter sets (m,n,d): blue (dotted) - (95,63,10), green (dashed) - (128,64,50),
red (dash dot) - (226,140,12) and black (solid) - (107,103,10).
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this small degree of uncertainty means a proven bound is preferable.

3.7 Conclusions

The objective of this chapter was to provide an alternative to the degree of regu-
larity for bounding the solving degree of systems of polynomials equations, partic-
ularly those in the field of multivariate cryptography. We have again shown that
the use of degree of regularity as an upper bound is based on a flawed assumption.
While other counterexamples exist in the literature, those presented here display
differences between the two degrees that are greater than one. We argue that
larger differences have significant impact on the total cost of the algorithm. An

interesting question for future research is

Does there exist M(n,m) such that |dsve — dreg| < M(n,m) for all

cryptographic semi-regular sequences of m polynomials in n variables?

As an alternative to the degree of regularity, this thesis recommends the Castelnuovo-
Mumford regularity, proven to be an upper bound for the solving degree. We have
given explicit formulas for these bounds, for a small set of over-determined sys-
tems. We have additionally explicitly computed the index of regularity for systems
with parameters expected in practical implementations. These results address the
secondary issue that results on the degree of regularity are largely asymptotic. It
was also acknowledged that making security statements based on an upper bound
for the solving degree is another case of Koblitz and Menezes’ first type of error,
although with present knowledge, somewhat unavoidable.

This chapter concludes the classical cryptanalysis focus of this thesis.
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Chapter 4

Resource costs of quantum

computation

Pursuant to the inceptive motivation for post-quantum cryptography as a field
of research, understanding the complexity of quantum attacks is fundamental to
security analysis. Security arguments employing a quantum adversary may follow
the same complexity-theoretic principles as in the classical cases we have seen in
earlier chapters, and consider time-, space-, and resource-complexity measures.
However, without a complete understanding of which problems are solvable by
a polynomial-time quantum algorithm there will remain an implicit issue in any
quantum security argument. Namely, a protocol can be deemed secure against
known quantum algorithms. For instance, within multivariate cryptography the
best known quantum attack is to simply apply Grover’s algorithm to speed up an
exhaustive search attack. Adopting parameters that make this approach infeasible
does not, unfortunately, constitute proven quantum security of the protocol, as

there may be another as-yet-undiscovered quantum algorithm possible. This is
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captured in Koblitz and Menezes’ third point of error in security proofs: incorrect
characterisation of the resources of an adversary.

This chapter focusses on the resource costs of quantum computation, as results
in this area can apply to a broad range of known - and as-yet unknown - quantum
attacks. In particular, we look at improving the resource costs of fault-tolerant
quantum computation through better quantum gate synthesis. We will show that
the total gate count for approximating single-qubit unitaries can be reduced to g

of the previously known best count.

The results contained in this chapter are based on continuing work with Vadym

Kliuchnikov, Kristin Lauter, Adam Paetznick, and Christophe Petit.

Outline and main contributions The rest of this chapter is organised as
follows. We begin with mathematical background in and then, in
Section 4.2, we introduce the main concept of quantum gate synthesis and review
the literature, before briefly discussing connections between gate synthesis and
cryptography. In we define three unitary approximation problems:
diagonal unitary approximation, projective rotation approximation and general
unitary approximation. These problems have been the subject of research for
some time, with many results pertaining to specific gate sets 76|, |58 (13} {14} 59,
56]. For each problem, we show that the accuracy constraint in an approximation
can be reduced to a constraint on a single complex number. The set of feasible
solutions is represented geometrically as a region in R2.

The key result in this chapter is a new method for solving the general unitary

approximation problem, which exploits the connection between unitary approxi-

mation and LPS graphs (See [Section 4.2)). Explicitly, we adapt the path-finding
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algorithm of Pinto and Petit |75] to the quantum setting, requiring only two di-
agonal approximations and one ‘efficient’ general approximation. The sequence
lengths obtained using our method improve on the standard Euler decomposition,
which requires three diagonal approximations, by roughly one-third. We acknowl-
edge that Stier [81] has concurrently and independently produced a similar result
considering Clifford+T basis, specifically.

A complete method for solving these problems is outlined in [Section 4.5 re-
stricting the scope to considering arbitrary gate sets that are represented by quater-
nion algebras. For the sake of completeness, includes a process for
constructing quaternion gate sets, as defined in [56]. To summarise, a gate set is
defined by a complex field L, its maximal totally real subfield K and a fixed set of
elements in K. A solution to an approximation problem involves finding a matrix
M = (2; ;2?) with entries in the integer ring of L. The approach to finding
M can be summarised in two steps: point enumeration in a region defined by

the approximation problem to find m;, followed by solving a relative norm equa-

tion to recover my. We work through three pedagogical examples: the V basis

(Section 4.5.1)), the Clifford+T basis (Section 4.5.2), and the Clifford4++/T basis
(Section 4.5.3|). A worked example for the V basis is given in [Section 4.5.1.2]

4.1 Preliminaries

Here we will recall some useful definitions and lemmas from quantum information.
For a thorough background, we refer to [72].
A quantum bit, or qubit, can exist in the state |0), |1), or a linear combination

of those states, a|0) + «|1), where o, f € C and |a|* 4 |8]|* = 1. We are here using
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the standard Dirac notation for quantum states, |-). In other words, the state of a
qubit is represented by an element in a two-dimensional complex vector space. In

vector notation, the quantum state «|0) + 3|1) is written

The values «, 8 are called the probability amplitudes of the state. In this thesis we
deal primarily with single qubits, however, we note that the vector representation
can be generalised to multi-qubit systems. That is, the state of a system of n
qubits can be represented by a vector in a 2"-dimensional complex vector space.
The computational basis for this space is the set of states {|k)} for k =0,...,2"—1.

In the quantum circuit model, quantum algorithms are expressed as sequences
of operations, or gates, each of which can be represented by a matrix. Let M be
a square matrix, with conjugate tranpose M*. We call M Hermitian if M = M*,
normal if MM* = M*M , and unitary if M M* = I. Since the norm of a quantum
state, considered as a vector, must be 1, quantum gates correspond only to unitary
matrices. Some commonly used gates are the Pauli gates, the Hadamard gate and

the controlled-NOT gate. We use the notation I, X, Y, Z for Pauli matrices:

The Pauli matrices are Hermitian and self-inverse. We additionally have the

identities:
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YZ=iX, XY =iZ ZX=4iY.

The Hadamard gate is represented by the matrix

and the controlled-NOT, or ¢c—NOT, gate is represented by the matrix

—_
o o O
@)

o o O
)

Whereas the Pauli and Hadamard gates act on a single qubit, the ¢-NOT gate
operates on two qubits: a control qubit and a target qubit. The effect of the
operation is the identity if the control qubit is in the state |0) and a bit-flip if the
control qubit is in the state |1).

Denote the special unitary group, that is the group of all 2 x 2 unitary matrices
with determinant equal to 1, by SU(2). Single-qubit gates are represented by

matrices in SU(2). An arbitrary unitary in SU(2) can be written as:

U= for u,v € C such that |ul> 4 [v|* = 1

and we can write u = aexp(i¢) and v = i exp(if) with «, 8 € [0,1] and ¢,0 € R.
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Hence, the unitary U can be expressed as:
U = ae®” 4+ BiXe"? for ¢,0 € R, a, B € [0, 1] such that o + 5% =1 (4.1)

A third parameterisation is obtained from the Euler angle decomposition. To
see this we first require the following useful properties of matrix norms and matrix
exponentials.

Let ||-|| be a matrix norm. We say that ||| is submultiplicative if ||AB|| <
|A|[||B|l. We call ||-|| unitarily invariant if, for any unitary U and matrix A,
\UA| = ||A]| = ||AU]||, providing the matrix multiplication is possible. For the
rest of this chapter, we use || A|| to represent the spectral norm of A, || A|| = maxy oy
where oy, are the singular values of A, and ||Al|s to represent the Frobenius norm
of A, which is defined as the square root of the sum of the squares of the elements
of A. Both norms are submultiplicative and unitarily invariant. The two norms

are related as follows:

Lemma 4.1.1. Let U,V be 2 x 2 unitary matrices with det(U) = det(V') =1 then
IU£VIV2=|U£V]>.

Proof. Let W = UVT, with eigenvalues e so det(W) = 1. Then ||W £ || =
|(U£V)- V|| = ||U+ V]|, where the final inequality holds since the spectral
norm is unitarily invariant. Similarly, |W £ I||; = ||U £ V||o. We then compute

W £ 1| = /2% 2cos(¢) and [|[W £ || = \/2 - (2 £ 2cos(¢)) to finish the proof.
[

Remark 4.1.2. For U,V, 2 x 2 unitary matrices with determinant equal to 1,

min, ||U — ¢*V|| is obtained when ¢ € {0, 7}.
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The next two lemmas are crucial for the Euler angle decomposition represen-

tation of a unitary matrix.

Lemma 4.1.3. For any invertible n x n matrix A and any n X n complez-valued

matriz B, it is the case that AeBA™! = eABA™

Proof. First observe that for any square matrix || B*|| < ||B||¥, since the spectral

2]

norm is submultiplicative. Hence, the series > -, “=r converges, and so by
absolute convergence the series >~ % also converges. So the matrix exponential

e is well defined.

Then it is straightforward to see that

2
AeBA_le(]—FE—FB;—}—-..)A—l
2 6
ABA™'  ABA'ABA! 0 (ABAfl)k amat

:I e — - =
+ 5 + 6 + A e

Lemma 4.1.4. €2 X = Xe %72,

Proof. Note that X! = X. Then, by the previous lemma and since XZX = —Z,

we have XeZ X = 0X2X = =197 O
The Euler decomposition guarantees that any single-qubit unitary can be de-

composed into R.- and R,-rotations.

Definition 4.1.5 (Euler angle decomposition). Let U = ae™®? 4 3iX % € SU(2)
be a unitary, with o, ¢, 3,0 € R. The Fuler angle decomposition of U is obtained

by solving for real numbers ¢y, @9, 0x such that

U = e91Ze0xX 1022 — o5(0y)e!91792)Z 4 gin(hy)iX (P2 9)7Z, (4.2)
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The second equality in the Euler angle decomposition follows immediately from

[Lemma 4.1.4.

As [Definition 4.1.5| suggests, general unitary approximation will require a com-

bination of approximations. Consequently, we make use of the chain rule:

Lemma 4.1.6 (Chain rule for spectral norm). Let Uy, Us, Vi,V be 2 X 2 unitary

matrices, then

[U1U2 = ViVal| < [[UL = Vi + U2 = V2.
Proof. By the triangle inequality, ||U;Us — Vi Va|| < [|U3 Uy — Uy Va||+||U1 Vo — ViVA].

Then, by submultiplicativity of the spectral norm,

[U1U; = UrVa| + |U1 Va2 = ViVa|| < |[UL[[[[Uz = Val| 4 || UL = VA[[[ V2]

= U2 = Vall + [U2 = W]

4.2 Introduction to quantum gate synthesis

In this section we review the relevant literature for quantum information and
quantum synthesis, then look at the connections between gate approximations

and path finding algorithms.

4.2.1 Quantum gate approximation

By [5], any n-qubit unitary can be implemented by a circuit of elementary gates,

comprising C-NOT gates and single-qubit gates. Fault-tolerant quantum comput-
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ers require that these single-qubit gates belong to a finite set. In order to retain

full functionality, this set is required to have a special property: universality.

Definition 4.2.1 (Universal set of gates). A set of unitaries G is called universal

if it generates a dense covering in SU(2).

That is, any unitary U € SU(2) can be approximated by a finite sequence of
gates from a universal set to any degree of accuracy. Quantum gate approximation
is the problem of finding a unitary V in the span of a given universal set of
gates, which approximates a target unitary U to some chosen degree of accuracy,
¢. The distance between two unitaries is computed by evaluating some norm of
U — V. Typically, this is the spectral norm, which we use throughout this chapter.
Quantum gate synthesis is then the problem of decomposing V' into a sequence of
basis gates from the gate set.

The cost of a quantum approximation is quantified by the gate complexity, or

gate cost.

Definition 4.2.2 (Gate cost). Let G = {g1,...,9n} be a universal set of gates.
Let wg : (G) — RT be the weight function associated with G, and let w; :== wg(g;).

Given a sequence of gates s from G,

S:gio"'gim io,...,ikE{l,...,n}

the gate cost of s is given by
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The gate cost of approximating U to within ¢ is then taken as the minimum
gate cost of all possible approximating sequences.

Note that select gates, such as the Pauli or Clifford gates, are considered cheap
to implement and so are given zero weight. Typically, expensive gates will be
given a weight of 1, so that the gate cost of an approximation corresponds to the
length of the sequence. Consequently, minimizing the length of an approximating
sequence is a problem integral to the subject of gate synthesis.

A fundamental and general result is the Solovay-Kitaev theorem:

Theorem 4.2.3 (Solovay-Kitaev, [55]). Let G be a finite set of gates in SU(2)
containing its own inverses, such that (G) is dense in SU(2). Let ¢ > 0 be given.
Then, for any U € SU(2), there exists a constant ¢ and a sequence of gates gy - - gg

from G such that

lgr---ge = Ull <e,
where ¢ € O(log®(1/¢)).

Essentially, any unitary can be approximated by a short sequence of gates
from a universal set. Significant progress has been made since Solovay-Kitaev for
specific gate sets associated with fault-tolerant quantum computers. Bourgain and
Gamburd [16] showed that universal gate sets of unitaries with algebraic entries
give approximating sequences with lengths O(log(1/¢)). This result was quickly
applied to find efficient constructive algorithms for the Clifford+T gate set |57, [7§]
and, later, the V basis [13]. Research has since focussed on finding approximation
methods to obtain close to optimal values ¢, such that the expected sequence length

is tlog(1/e). For approximations of diagonal unitaries, this optimal ¢ is known to

be 3 [77]-
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4.2.2 Connections to path-finding algorithms

In this section we explain the connection between the Charles, Goren and Lauter
hash construction [23], built from LPS graphs, to unitary synthesis problems. We
first recall some definitions and results about cryptographic hash functions.

A hash function h : {0,1}* — {0,1}™ is a function which takes bitstrings of
arbitrary length as inputs, and outputs bitstrings of fixed length. A hash function
is required to be preimage resistant; that is, given a value y € {0, 1}™ in the image

of h, it must be computationally infeasible to find a bitstring z which hashes to

that value. This is formalised in [Problem 4.2.4l

Problem 4.2.4 (Preimage Finding Problem). Given a hash function h and a value
y € Im(h), find x such that h(x) =y.

There are several constructions of hash functions built on Cayley graphs. Given
a group G with generating set S = {so, ..., sk}, the corresponding Cayley graph
has vertices associated with elements g in G and directed edges (g, h) if and only
if gh=! € S. Writing a message m = mimsy...my with m; € {0,...,k}, the

hash function is defined by H(m) = Sy, Smy - - - Smy - For such constructions, called

Cayley hash functions, [Problem 4.2.4] can be reformulated as the group theoretic

problem below.

Problem 4.2.5 (Constructive Membership Problem). Let G be a group with gen-
erating set S = {s1,...,s,}. Given an element g € G, find a sequence my, ..., my

such that g =[], s, for some N € N.

Recall that the unitary synthesis problem is the search for a circuit, or sequence,

of unitaries from a specified gate set that is equal to some target unitary. This is

clearly similar to [Problem 4.2.5]
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In [23], Charles, Goren and Lauter (CGL) proposed a Cayley hash function
based on LPS graphs. LPS graphs were introduced by Lubotsky, Phillips and
Sarnak in [68]. Let p, ¢ be distinct primes congruent to 1 mod 4, where (ﬁ) = 1.
Let F, denote the finite field with p elements and let ¢ such that :* = —1 mod p.
An LPS graph X, is the Cayley graph with G = PSL(2,F,), the projective special
linear group of 2 x 2 matrices over F,, and generating set

S={(sfbctd)y @+ + P +d> =0}, a>0andb,cdeven.

a+ib ct+ud

o a_Lb) with a, b, ¢, d € F, and define the norm function

We can write g € G as (
n(g) = a®>+b?+c?+d?. The preimage problem for the CGL hash function amounts

to path finding on an LPS graph. Since these are Cayley graphs, the preimage

problem is equivalent to [Problem 4.2.5]

Petit, Lauter and Quisquater |74] proposed an algorithm for finding short paths
in LPS graphs in which a matrix from the group G is decomposed into the product
of four diagonal matrices with square determinant and graph generators, up to
multiplication by a unit. This decomposition is reminiscent of the Euler decom-
position for unitary synthesis, in which the target unitary is decomposed into the
product of Rz—rotations.m Pinto and Petit |75 later improved upon the algorithm
in [74], by decomposing the target matrix into the product of two diagonal matri-
ces and a third non-diagonal, easily-factorisable matrix, resulting in path lengths
of Tlog,(p). In we translate the algorithm to the setting of general
unitary approximation.

We summarise Pinto and Petit’s method here.

!Notably, R.-rotations can be expressed as diagonal matrices: R, (6) = (e—w/z 9 ) .
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— Let M € PSL(2,F,) be the target for factorisation. The matrix M is ‘lifted’
to a matrix M’ € GL(Z]i]), such that the corresponding entries of each
matrix are congruent modulo p.

— M’ is factorised over GL(Z[i]), subject to conditions on the magnitude of
the determinant.

— Each factor is mapped back to PSL(2,F,).

The similarities and differences between the cryptographic and quantum set-
tings are summarised in [Table 4.1} The length of a sequence indicates the cost of
approximating the target unitary in the context of gate synthesis. For the CGL
hash function, the sequence length will equal the length of the corresponding path
in the LPS graph, and is similarly used as measure of performance for path-finding
algorithms. The length of a sequence is determined by taking the norm of the tar-
get matrix. In [75], the desired distance between M and M’ is O(p~!) with respect
to some well-defined p-adic norm. For matrices over C, we can use some complex
matrix norm, for instance the spectral norm, with € as the measure of accuracy.
‘Lifting’ is similar to approximation in the sense that we look for a ‘close’ ma-
trix, with respect to some norm, which we can factorisdﬂ. Of course, in the LPS
hash setting p is fixed, whereas for quantum approximation ¢ is chosen. Note,
however, that the other properties of cryptographic hash functions - collision re-
sistance and second preimage resistance - do not have natural quantum analogues.
Likewise, fallback circuits (in which measurements are used to aid approximation)
and unitary mixing (taking a probabilistic combination of unitaries) do not have

cryptographic counterparts.

2We acknowledge that this is not a perfect analogy, but the similarities motivate our use of
techniques similar to those used by Pinto and Petit.
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Path-finding/Hash functions Quantum Synthesis

Matrices over [F), Matrices over C
Lifting: G to GLs(Z]i]) Approximation: SU(2) to gate set
Accuracy: p~! Accuracy: €
Fixed p Chosen ¢
¢N | lifted determinant /N scaled determinant

Collision resistance -
274 preimage resistance -
— Fallback

Table 4.1: Summary of the similarities and differences between path-finding for
classical LPS hashes and quantum synthesis.

4.3 Approximation problems

In this section we introduce three approximation problems. For the remainder of
this chapter, any arbitrary gate set (G is assumed to be universal.
Recall that our main goal in this chapter is find an improved solution to the

general unitary approximation problem.

Problem 4.3.1 (General qubit unitary approximation). Given:

o target unitary U € SU(2),

e gate set G, a finite set of 2 X 2 unitary matrices with determinant one

e accuracy €, a positive real number
Find a sequence g1, ..., g, of elements of G and real number p such that the fol-
lowing inequality holds:

HU— e"“"gl...gnH <e

Of particular interest is the case where U is a diagonal unitary, namely U = ¢??

for real 6 (see [Problem 4.3.2 below). Indeed, the state-of-the-art method for solv-

ing the general unitary approximation problem is to use Euler angle decomposition

(Definition 4.1.5)) to reduce the problem to three diagonal unitary approximation
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problems.

In this section, we first introduce two problems for approximating diagonal
unitaries, the second of which uses the fallback protocol introduced in [14]. We give
reductions of both problems to the search for elements in two-dimensional regions.
We then demonstrate how the general unitary approximation problem is reduced
to two diagonal approximations and a search for elements in a one-dimensional

region, improving on the traditional Euler angle decomposition approach.

4.3.1 Diagonal unitary approximation

Since an arbitrary unitary can be expressed, up to a global phase, as the product
of R, and R, rotations, the problem of diagonal unitary approximation is of sig-
nificance to the general unitary approximation problem. In this section we recall

some of the known results regarding the diagonal approximation problem.

Problem 4.3.2 (Diagonal unitary approximation). Given:

e target angle 0, a real number,

e gate set G, a finite set of 2 X 2 unitary matrices with determinant one,

e accuracy €, a positive real number,
Find a sequence g1, ...,g, of elements of G and a real number ¢ such that the
following inequality holds:

Hewz — ei“"gl .. .gnH <eg

Observe that [Problem 4.3.2]is a special case of the general unitary approxima-

tion problem, where the target unitary is always diagonal. The diagonal unitary

116



approximation problem is easier to solve because it imposes the following condition

on the top left entry of V =gy ... gy.

Proposition 4.3.3 (Diagonal approximation condition). The unitary

V=g, ....090=

s a solution to the diagonal approximation problem for target angle 0, gate set G

and accuracy € if and only if
|Re (ue’w)| >1-—¢&/2.

Proof. Suppose 0 < § < m. Recall that by [Lemma 4.1.1| we have |U — V||v/2 =
|U — V2. Expanding ||[U — V|2, gives

Hez'HZ - V”% — |U o ei9‘2_|_

u* — e_i9‘2+|v]2+]v*|2 = 242 (Jul® + |v]*) —4Re (ue*).

Hence, we conclude that ||¢Z — V||; = 21/1 — Re(ue~). Therefore ||¢? — V|| <

¢ is true if and only if

(2 1-— Re(ue—i9)> /V2<e = 1- Re(ue™) < £%/2

<= Re(ue ™) >1—¢2/2.
Applying the same analysis to #+7 changes the condition on top-left entry u of
V to Re(ue™"0+™) > 1—¢2/2  which can be written as —Re(ue™) > 1—¢2/2. O

illustrates the constraint on the top-left element of the approximat-
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ing unitary defined by [Proposition 4.3.3]

A Im(u)

0] A6 1 Re(u)

I

Figure 4.1: Geometric interpretation of constraints on complex number u appear-
ing in [Proposition 4.3.3 The region with red boundary contains complex numbers
u that satisfy constraints Re(ue ) > r and |u| < 1, where r =1 —¢2/2.

4.3.2 Diagonal approximation with projective measurement

Bocharov, Roetteler and Svore’s fallback protocol [14] uses measurement to ap-
proximate diagonal unitaries more efficiently. The protocol comprises two steps:
a projective rotation step and a fallback step.

Let V be a 2 x 2 unitary matrix with determinant one defined as

The key observation made by the authors of [14] is that the circuit in [Figure 4.2
applies e28(W7 to the state 1)) when the measurement outcome on the top qubit
is zero. The probability of this outcome is |u|?>. When the measurement outcome

is one, the circuit applies Ye28(")Z to the state |[¢), up to a global phase. The
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probability of this measurement outcome is |v|%.

D

10)

V)
Fan)

) 1%

Figure 4.2:  The circuit from [14] that implements a projective rotation, V' on
input |¢)) when the measurement outcome on the top qubit is zero.

How can this circuit be used for unitary approximation? Let U = €% be a
diagonal unitary operator that we want to approximate. The fallback protocol has

two steps, which are repeated until success occurs:

1. Projective rotation: We apply the circuit in [Figure 4.2 with V = €2 ¢’ ~ 0,
an approximation of U within chosen accuracy ¢.

2. Fallback: The second step of the protocol depends on the measurement out-
come. If the measurement outcome is zero we are done, and otherwise we

apply Y followed by a fallback circuit, B. This is essentially the same circuit
as in [Figure 4.2 but with an updated V' to account for the acquired error.

If p is the probability of measuring zero in the first step, the expected cost of
the algorithm is the cost of the first step plus 1 — p times the cost of the second
step. After a pre-determined maximum number of failures, the final circuit is
implemented with probability of success equal to 1. For a more detailed description
of the fallback protocol we refer the reader to |14].

The fallback protocol motivates the following approximation problem for diag-

onal unitaries.
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Problem 4.3.4 (Projective rotation approximation). Given:
e target angle 0, a real number,
e success probability p, a positive real number between 0 and 1,
e gate set G, a finite set of 2 X 2 unitary matrices with determinant one
e accuracy €, a positive real number
Find a sequence gi,...,q, of elements in G and a real number ¢ such that for
U=gi...gn the circuit given on[Figure /.9 has the following two properties:
e the probability of measuring zero in computational basis is at least p,
e when the measurement outcome is zero, the circuit implements rotation e'?

such that Hewz — e“"ewle <e.

Much like the case of the diagonal approximation problem, solutions to
are characterised by constraints on u, the top-left entry of the circuit
unitary V. The above discussion of the fallback protocol shows that the probabil-

ity of measuring zero depends on |u|, so the first property required for solutions

to |[Problem 4.3.4] immediately implies a constraint on |u|. The proposition below

shows that the second property additionally imposes a constraint on w.

Proposition 4.3.5 (Projective rotation condition). Let § be such that

[0—06,0+6)={6:cos(d —0)>1—¢%/2},

for real 8. Then the unitary

120



is a solution to the fallback approximation problem (Problem /.3.4) if and only if

u lies in the sector defined by Arg(u) € [0 +¢ — 0,0 + ¢+ 0] and |u| > r = |/p,

where ¢ = 0 or ¢ = w. For a geometric interpretation of these constraints see

wqure 4.9

Proof. The probability of measuring zero in the fallback circuit in with
V is at least p, which implies |u|* > p.

Let Arg(u) = @', such that ¢ belongs to interval [ — 6,0 + ). Then €% is
the rotation performed by the fallback circuit in with ¢ = 0 when the

measurement outcome is zero. By unitary invariance of the spectral norm we have

iy .
ezHZ_ewZH :‘

el =02 _ IH = max(

i(0=0) _ 1)’ ’64(9’79) _ 1‘)

Then [[¢% — ??|| < e <= /2 —2cos(0 —0) <e < ¢ €[0—0,0+].
Now, take Arg(u) := 0" € [0+ — 0,0 + 7 + d], and let €?"# be the rotation
performed by the fallback circuit in when the measurement outcome is

zero. In this case the relevant spectral norm is

e e”ewzH = /2 +2cos(0” — ) = \/2 — 2cos((0" — ) — 0).

Since 0" —7 € [§ — 6,0 + 4], this implies that ||e?®"# — e™e?|| < ¢ as required. [

illustrates the geometric representation of the constraint on the top-

left element of the approximating unitary defined by [Proposition 4.3.5. These

constraints are less strict than those of [Proposition 4.3.3] albeit with a probability

of failure.

The approximation method outlined in [14] constructs a solution to
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Figure 4.3: Geometric interpretation of constraint on complex number u appearing
in [Proposition 4.3.5 The region with red boundary contains complex numbers
u that satisfy constraints Arg(u) € [0 — 0,0 + 9] and |u| > /p, where p is the
probability of a zero measurement outcome and § = arccos(1 — &2/2).

by first representing the target phase factor ¢ by a cyclotomic rational
of the form 2*/z, then searching for a real-valued modifier to achieve the desired
success probability p. The above reduction of the fallback approximation problem
is new and differs from . The constraints on w, illustrated in address
the accuracy and success probability conditions simultaneously. The geometric
description of these constraints is itself novel, although follows naturally given the

representation of the diagonal approximation problem.

4.3.3 General unitary approximation

We now return to the general unitary approximation problem (Problem 4.3.1)),

where we want to approximate an arbitrary unitary U = ae®? + BiXe2.

We propose a new approximation approach using the following observation.
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Let ¢/, 0 be arbitrary angles, and let U’ := ae'¥'? + BiX e’ ?. The unitary U’ is
identical to U in parameters o and [, but not necessarily in parameters ¢ and 6.
We say that U’ is magnitude equivalent to U. Similarly, we call a unitary U” that is

identical to U in parameters ¢ and 0 phase equivalent to U. Let ¢ := w

and ¢y = w. Then, by |Deﬁnition 4.1.5) we have

€i¢1ZU/e'i¢2Z _ aei(¢1+¢2+¢/)Z + BiXei(¢2*¢1+0/)Z _ Oééi(bZ + 6iX€iQZ —U.

The Euler decomposition method for approximation reduces[Problem 4.3.1|to three
diagonal unitary approximation problems. Our strategy is to first construct one
unitary U’ of the form above which we can approximate to within accuracy ¢/3,
and then to approximate both diagonal unitaries ¢’*1# and e¢*2Z as in the previous
subsections. This results in a circuit that is g the length of the solution resulting
directly from Euler decomposition. We prove this result in [Section 4.6}

To construct U’, we use the following proposition, which determines the ap-
proximate synthesis of any unitary by imposing the condition that the norm of its

upper left element lies in a given interval.

Proposition 4.3.6 (Magnitude condition for general unitary approximation). Let
e be a real numbers in the interval [0,1] and let U' = ae'®? + /1 — a%iXe?'?
for arbitrary real numbers 0',¢'. Let 1, . be the interval of all solutions o to the

mequality

|a'—a|2+‘\/1—(o/)2—\/1—0422§52.
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Let W be the special unitary

Wa:gl---gn:

where |u| € L., u=|ule’ and v = |[v]e?". Then
U =W, <e.

Proof. Recall that for any matrix A its Frobenius norm ||A||; is equal to the square
root of the sum of the absolute values squared of it entries. Next observe that as

U’ and W, are phase equivalent,
U = W3 = 2[Jul — af* +2|]v] = V1 — a2

Recall that |v| = /1 — |u|?. Since |u] lies in I, ., we have that ||U" — W,||3 < 2¢2.

According to|Lemma 4.1.1 for 2 x 2 unitary matrices |U’ — W.|| = |U" — W.||2/V2
and therefore |U" — W,|| < e. O

In practice we construct U’ by first finding u with |u| € I,./3 then solving
u = |u|e’? for ¢’ (and similarly for ). The above proposition motivates a complete

solution to the general unitary approximation problem.

Proposition 4.3.7 (General unitary approximation). Given real numbers o, e €
[0,1], let U = ae®? +iX/1—a2e??. Let W.3 be the special unitary defined by
u = |ule’” and v = |v|e?, where |u| € L,./3.

Let gy = (0 —¢')/2—(0—0')/2, let o= (p—¢')/2+ (0 —)/2. Fork=1,2,

let Vi, = gik) .. .g,&’;) be a solution to the diagonal approzimation problem for angle
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¢ and accuracy €/3.
Then ViWe 3Vy = gil) x ~g7(111)g1 o ~gng£2) x ~g7(L22) s a solution to the general ap-

prozimation problem for target unitary U with accuracy €.

Proof. Let U' = ae''?+iX+/1 — a2e"Z. By|Proposition 4.3.6| we have |U" = W3] <

/3. By [Proposition 4.3.3| the following condition is ensured:

Heid”“z — Vk” <g/3fork=1,2.

Using the chain inequality ||U1Us — ViVa| < ||Uy — Vi ||+ Uz — Va|| for the spectral
norm (see [Lemma 4.1.6|) we establish the required bound:

= ViWesbal] < [ = Vil + 07 = Weps| + % = Vi < =

]

illustrates the geometric interpretation of the constraint on the top-

left element of the approximating unitary defined by [Proposition 4.3.6| and [Propo-|
[sition 4.3.71

4.3.4 Geometric comparisons for diagonal approximation

[Proposition 4.3.7 establishes that to solve the general unitary approximation prob-

lem, we require two diagonal unitary approximations and one magnitude approx-

imation. Either |Proposition 4.3.3| or [Proposition 4.3.5| can be chosen to obtain

the diagonal approximations. Recall that both approaches place a constraint on a

single complex number u, the top-left element of the approximating unitary, which
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0 Lo 1 Re
/N T
Vim@p  Vi-e
/
Figure 4.4: Geometric interpretation of the constraint on complex num-

ber u appearing in [Proposition 4.3.6L  Solutions to inequality |o/ — «|* +
V1—(a/)2=V1—a?? < (¢/3)% for given @ € [0,1] and € > 0 are shown in

red on the vertical axis. These correspond to complex numbers u by |u| = /.

defines a feasible region in the complex plane. Here, we compare the areas of the
regions defined by each problem.

Note that the segment in spans points with angular coordinates
[0—8,0+6] for § = arccos(1—¢?/2). Letting x = 1—¢%/2, so 6 = 26 = 2 arccos(z),

and equating areas, we obtain

6 —sin(f) =0(1 —p) <= p=sin(0)/0

< p=uaVv1—a?/arccos (z).

Observe that since = € [0, 1], we see that for p satisfying this equality, we have
p < z. Hence, provided that the probability of success p satisfies p < 1 —£2/2,
the projective approximation corresponds to a feasible region with greater area
and hence a greater number of candidates for u. However this is a probabilistic

procedure. Note that, in order to guarantee termination of the fall-back protocol,

126



eventually a circuit with p = 1 should be implemented. In practice this would

amount to the standard diagonal approximation.

4.4 General solution to approximation problems

This section outlines a general method for solving approximate gate synthesis
problems, and describes the properties required by gate sets to which this method
applies. Throughout, we make reference to the V, Clifford+T and Clifford++/T

gate sets, which will be looked at in detail in [Section 4.5

4.4.1 Gate sets

We consider quaternion gate sets as defined by Kliuchnikov, Bocharov, Roetteler
and Yard in [56]. Informally, these are gate sets which are described by totally
definite quaternion algebras.

Let K be a totally real number field and take totally positive elements a,b € K.
Define L to be the extension L := K(y/—a) and let i € L be such that i* = —a.
There are 2d embeddings from L into C, where d = [K : Q. Fix 0y,...,04 as any
d embeddings from L that are pairwise distinct when restricted to K.

A quaternion algebra (7‘;’(4’) := () over the field K is an algebra of the form

K + Ki+ Kj+ Kk where i* = —a,j*> = —b and ij = —ji = k. A totally definite
quaternion algebra has a,b > 0. An element in () is written ¢ = g+ q1i+¢2j + g3k,
q0,q1, 92, q3 € K, with conjugate ¢ = qo — 11 — ¢2j — ¢3k. The reduced norm of ¢
is nrd(q) = q¢q.

Let Ms(L) be the set of 2 X 2 matrices with elements in L. Define the K-linear
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map £ : QQ — My(L) by
k(1) =1, k(i)=+v—aZ, &(j)=—-V-bY, k(k)=+vV—abX, (4.3)

where X,Y, Z are the Pauli matrices. Notice that x defines an isomorphism of
quaternion algebras, with (k) = k(i)k(j). Concretely, we have a correspondence
between elements in ) and matrices in Ms(L) of the form
M = < go+a1v—a —q2\/5+q3\/—ab)
a2Vbtgzv/—ab  qo—qiv/—a ’
where the corresponding quaternion is q := qo+¢q1i+¢2j+¢sk, such that k(q) = M.

Observe that det(M) = nrd(q) = qo — aq? — bgs + abgi. The set of matrices of this

form corresponds to SU(2) via the map

O S
o'(M) = e CETETD) 1(M), (4.4)

where o7 is the natural extension over matrices of the embedding from L into C.
Let S be a set of elements from K. Consider the gate set to be those matrices
with determinant in S.

For the V, Clifford+T and Clifford++/T bases, the corresponding fields and
integer rings are given in[Table 4.2] Note that for these gate sets, the corresponding

Ok and Oy, are principal ideal domains.
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Table 4.2: Number field correspondences for the V, Clifford+7" and Clifford++v/T
gate sets.

’ Gate set \ K \ L \ Ok \ Or, ‘
V basis Q Q(7) Z Z[i]

Clifford+T Q(v2) Q(¢s) ZV?) Z[Gs]

Clifford++/'T Q(Ci6 + (i) | QCis) | Z[Gis + Cig) | Z[Cag)

4.4.2 Quaternion order

For a given gate set, K and L, there exists O, an order of Ms(L), containing
the preimages of the gate set unitaries under o’. We note here that while this
order does not need to be maximal, maximal orders have several properties which
allow for efficient factorisation of elements [56]. For a thorough background on
quaternion orders, we direct the reader to [85].

The order O is constructed as follows. The gate set elements are mapped to
matrices in My(L). Let L be the Og-lattice obtained by taking an Oy linear
combination of the elements of the ring generated by these matrices. Then, O can
be taken as any order containing this lattice. Note that, due to the multiplicative
properties of the determinant, elements in O with determinant equal to ¢V for
some N € Z* ¢ € (S) will correspond to gate set elements. Moreover, N is the
length of a sequence of basis elements that produces the corresponding gate set
element. However, two distinct elements in O could correspond to the same gate
set element, each with a distinct N Valuelﬂ. We look for minimal NN, as this will
correspond to the shortest possible basis sequence. This will be the N for which
the entries of M € O with det(M) = ¢V are integral and not all divisible by /.

Such a minimal N always exists and since the approximation method outlined here

3See [Example 4.5.2
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iterates over increasing N, the sequence obtained will be optimal.

Remark 4.4.1. In addition, we look for orders O in which gates that are considered
‘low-cost’ in the gate set behave as units. This forces the determinant of matrices
corresponding to low-cost gates to be 1, ensuring that N is a count of ‘expensive’
gates in a sequence. In essence, this makes the determinant a useful cost measure

for approximation.
The definitions for @ and ¢ that we will use for the V, Clifford+T and Clifford++/T
bases are given in the Table [4.3]

Table 4.3: Maximal orders for V, Clifford+7" and Clifford++/T gate sets.

’ Gate set \ 14 \ (@)

V basis 5 Og -1+ 0k -1 X4+ 0Ok -1Y +0k -2
Clifford+T 24+ V2 | Ox - [+ Ok - "5 + O - THF 4 O - HHEHAHT
Clifford +V'T | 2+ 2cos(f5) | Ox - [ + O - T + O - FHE + O - HHEAHT

4.4.3 Solving approximation problems

For fixed N € N, finding a solution to any approximation problem over a gate set

involves finding a matrix

with additional constraints on m; depending on the approximation problem, such

that det(M) = ¢~. Our approach to finding M can be summarised in two steps:

1. point enumeration in a target region to find my (Section 4.4.3.2)), followed

by

2. solving a relative norm equation to recover my (Section 4.4.3.3)).
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mi —ms3
ma mj

From each pair (my, ms) we deduce the matrix M = ( ) The unitary

o'(M) is factorised over the desired gate set to obtain a solution to the approxima-
tion problem. If no solution exists for the given N, set N := N 4 1 and repeat the
process. Thus, iterating over NV will give a solution corresponding to the shortest
gate sequence.

For the diagonal and fallback approximation problems we look for elements

mo mj

M = <m1 7m§> of O, such that

Ul(ml)/ V Ul(£N> S Rapprox - Dla

where Rapprox is the region defined by the problem, as shown in [Section 4.3 For

the general unitary approximation problem, m; is required to satisfy
a1(mimy) [a1(EY) € Lupprox C [0, 1],

where Iopprox is the real interval defined by the parameters of the problem. We

observe that for the relative norm equation
mom} = (N — mym}

N

to have a solution, it is necessary that, for all k, o (¢" —mym}) > 0. This means

we only need to consider those candidates m, that satisfy either

or(m1)/\/or(¢N) € Dy or, equivalently, oy (mym})/or(£N) € [0, 1]
for all £ > 1.
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4.4.3.1 Restrictions on the order

Define the map h from L to ) by

h(ag + ia1) = ag + aji.

Clearly, (h(m)) sends an element from L to the diagonal matrix (7% ) € My(L).

Define the set of elements corresponding to diagonal matrices in O as Mo =
{m € L : k(h(m)) € O}. The subsets of L containing candidates for m; and my
are respectively defined as

 Mying = {my : Imy € L s.t. k(h(my)) + h(mye)j) € O}, and

o Mog—_giag = {mo : Imy s.t. k(h(my) + h(ms)j) € O}.

Given a candidate m; € Mygiag, the valid associated candidates for mgy are
restricted to the smaller set M ¢! = {my : k(h(m1) + h(my)j) € O}.

off —diag

4
We will consider orders of the form O = ) Ogw;, with
i=1

CI+iX I+ [+iX +iY +iZ

wlzl, Wo = \/§ y W3 = \/5 y Wqg = W3y = 9 . (45)

as for the Clifford+T and Clifford++/T gate sets. In these cases, we have
Mo = O + %OK C Op, and also that Mgjag, Mog—diag are fractional My ideals.
We additionally will restrict to the case that Mgias, Mog—diag are principal ideals.

4.4.3.2 Finding m;: an enumeration problem

Finding candidates m; € L satisfying the conditions of an approximation problem

can be reduced to an integer point enumeration problem. Observe that enumerat-
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ing m; from Mgiae is equivalent to enumerating ag, a; € K from the set
Lo ={(ag,a1) : Jag,a3 € K s.t. agl + a1/ —aZ — azvV—bY + agvV—abX € O}.

We make use of the following lemma to find a Z-basis for Mg;ag.
Lemma 4.4.2. Lo is a full rank Og-lattice in K2.

Proof. Since O is closed under addition and scalar multiplication over Ok, sois Lo.
Consider an Og-linearly independent generating set G of L» and let gy, ..., g, be
the subset of these that are K-linearly independent. Then r < 2. We have I € O,
so (1,0) € Lp. Suppose for a contradiction that Lo contains no elements of the
form (ag,a1),a;1 # 0 in Lo. Let {w;}iz1, 4 be a basis for O, with corresponding
elements in Lo denoted by (w;,w;1). By assumption, w;; = 0 for i = 1,2,3,4.
We can write each basis element in the form w; oI —wi72\/—_bY—|—w,~73\/—_czl)X . Then,
by simple linear algebra over K, we can see that at least two of the basis elements
must be K-linearly dependent. Hence, we have a contradiction and so r = 2. So

Lo spans K2 as a K vector space and clearly rank(Lp) = 2d. O]
Hence, we can conclude that there exists a Z-basis for Lo and so also for Myg;ag,
which we denote {y;}, for i =0,...,2d — 1.

Recall that under the restriction that Mg, is a principal fractional ideal, we

have

1
Mdiag = EM(% g € L. (46)

Remark 4.4.3. We observe that Mo C %M@ = ¢ € Mp. To see this, note that

I €O andif Mp C %M@ then &x € Mo,V € Mp.
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Case 1: Diagonal Approximation For diagonal approximation the first nor-
malised embedding of my, o1 (my) /oy (¢Y), falls in a two dimensional region, Rapprox-

Define the 2d x 2d matrix o with rows:

26”7 = (Re(o;(%)): - - - » Re(0(y24-1)))
E(2j+1)

0 = (Im(o;(y0)), - -, Im(0;(y2a-1)) -
So Y is the matrix with entries corresponding to the real and imaginary

components of the images of the [; under each of the o4s. Let A be the diagonal

matrix with <\/01 (EN), o1 (EN) ...\ oa(eN), \/ad(éN)) on the diagonal. Then

the operation A™'1Xpz first embeds 2 into the Euclidean space corresponding to
M giag, then normalises the result with respect to the norm (N . Finding m, is now

an integer point enumeration problem:
Problem 4.4.4. Find z € 7% such that A"'Y0z € Rapprox X D{ L.

Each solution z = (zp,..., 224—1) yields a candidate for m; by setting m; =

ZoYo + -+ -+ Z2d-1Y2d-1-

Case 2: General Approximation For general unitary approximation the first
normalised embedding of my, o1(mym3)/c1(¢V), belongs to the interval I,,pr0x and
the remaining d — 1 embeddings satisfy oy (mim3)/ox(¢N) € [0, 1].

We are looking for values n = mym] satisfying the above conditions, such
that my; € Mg, Consider the set {n : Im; € Mg, such that mym} = n} and
let Morm be the set generated multiplicatively by the above set. From Equation
(4.6) we see that

1
Mhuorm C @OK;
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a fractional Oy ideal. For this reason we can enumerate points n = £€*n € Og.
Let ko, ..., kq_1 be an integral basis for K and define 3 as the d x d matrix with

TOwWS:

E; = (O'j(lfo), SN 7Uj(kd—1)) .

Define A’ as the diagonal normalisation matrix with (o1 (§6*) - o1 (€V), ..., 04(£€7) - 0a(€Y))
on the diagonal. Finding 7 is now an integer point enumeration problem in a par-

allelotope.
Problem 4.4.5. Find z € Z¢ such that N1z € Lpprox x [0,1]%71

Each solution z = (2o, ..., 24_1) yields a candidate for n by setting n = zpko +

o+ 2q-1kq_1. Recovery of m; requires a solution to the norm equation

Tfll’lﬁl* = ﬁ, my € Mp.

Finally the candidate m; is defined as m; = m, /&.

4.4.3.3 Finding m,: solving a norm equation

Given mq, finding a candidate for my amounts to solving a norm equation,

* N * m
momy =7 —mymy,  my € Mg 4.0, (4.7)

with the added constraint ensuring that the pair (m;, my) corresponds to a matrix
in the order O. In the following discussion, we show that a solution for ms can

be recovered from a related norm equation, in which we solve for elements in M.
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Recall the assumption that Mg _qiag is @ principal fractional ideal, with

Moﬁ—diag - MO: él € L.

L
5/

For any two mg, ms € MY, we have k(h(ma)j — h(my)j) € O. Therefore, we

can write MUg" g, = Mo+ M40y, Where M 5. is the principal fractional Mo
ideal {my : k(h(m})j) € O}. We will take MY g, = %Mo, x € L.

The norm equation in Equation can now be reformulated to look for a

solution in Mp.

Problem 4.4.6. Given 2/ € Mog_diag, M1 € Maiag, find z € Mo such that

z z z 2\ "
4+ ) (=+2) =N —mm].
(5’ x) (5’ x) o

A solution z yields a candidate for my by setting my = 2/¢ + z/x. Since

my = my /€ for some m; € Mp, if £ = ¢ and x = 1, then [Problem 4.4.6| is

simplified to:

Problem 4.4.7. Find z € Mo such that (2+&2)(2+&£2)* = E&0N —miymy*, where

2, my € Mp.

Remark 4.4.8. By applying the variable substitution 2’ = 2 + £z, we see that

[Problem 4.4.6|is equivalent to solving

NV =reOkg, Zez+Mp, (4.8)

where r = £6¢N — my;m;*. In other words, 2/ must lie in the same coset in

Mo /EMo as z. Fieker, Jurk and Pohst [40] give an algorithm for solving general
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relative norm equations. A method for solving relative norm equations pertaining
to quaternion gate sets (over number fields with fixed degree) is given in [56], which
runs in polynomial time for the number fields associated with the V, Clifford+T
and Clifford4++/T bases. We conjecture that the condition on the coset makes this
a more difficult problem to solve for general number fields. However, there may
be fields with possessing useful properties, for which this problem can be solved in
polynomial time. We conjecture that this is again the case for the V, Clifford+T
and Clifford++/T bases.

To summarise, the definitions for £, £’ and y corresponding to the V, Clifford+T
and Clifford4++/T bases are given in the Table . Note that the order O we use
for the V basis is actually of a different form than that of the Clifford4+T and

Clifford++/T bases, as we will see in the next section.

Table 4.4: Fractional ideal representatives for V, Clifford+7" and Clifford++/T
gate sets.

’ Gate set \ £ \ & \ X \ Mo ‘
V basis 1 1 |1 O,
Clifford+T | v2 | V2| 1 Or,

(\]

Chfford+\/T \/§ \/_ 1 OK —+ 1—\;;0[(
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4.5 Solutions for commonly used gate sets

4.5.1 V Basis

The V basis consists of the following six matrices:

Vv 1 [1£2 0
+Z = —~ y
Ve 0 1F 2
1 1 F2
V:EY = = )
Ve +2 1
y 1 (1 +2i
+X — —~ )
Ve +2: 1

where ¢ = 5. Let K = Q and let L = Q(i) = {ag + a1 : ag,a; € Q}, where
i? = —1. Let Ox = Z and O, = Z[i| = {ao + ia; : ag,a; € Z} be the rings of
integers of K and L respectively. Any element t = ag+ia; € O, can be written as a
2-dimensional vector over O, namely (ag, a1). There are two distinct embeddings
from L into C related by complex conjugation. Denote by ¢ the embedding such
that o(i) = 1.

Let Ms(L) be the algebra of all 2 x 2 matrices with entries in L, and let O be
an order in My (L) that contains all the V basis elements scaled by v/. Concretely,

we set

O=2-14+Z - iX+Z-iY+Z - 1Z (4.9)

We extend o over O in a natural way, namely for M € O we define o(M) as

the matrix whose elements are the images of the elements of M under o. As
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observed in |13, 56|, elements of O with determinant ¢V correspond to unitaries
that can be expressed as a product of N matrices from the V gate set via the map

o' (M) = o (M).

Ezample 4.5.1. Let V. = V- Vx = 1 (332 75;). Then, My = (5124 75) =
I+24X —4-iY +2-iZ € O and ¢'(My) = V. Since det (M) = 52, we have
N = 2 as expected, as V is the product of two V basis matrices. Note that the

sequence VzVy cannot be simplified (over the V basis) so N is minimal.

Ezample 4.5.2. Let V = VzVxVoxWV_g = = (_33%0, 55*). Then,

My = (3,0 %58%) =25-1—40-iX +30-iY € O

and o’ (M) = V. Then det (M) = 3125 = 5° so V can be expressed as the product
of five V basis elements. However, M{, = (_{ 4, %3%) =5-1-8-iX +6-iY € O,
is also such that ¢’(M{,) = V. Here, det (M{,) = 125 = 53, giving N = 3. Since
VpV_op =V _pVp =1, for P € {X,Y, Z}, the sequence V;VxV_x Vi V_, simplifies
to VzVyV_z, so V can in fact be expressed as a product of three V basis elements.

The sequence cannot be simplified further, by checking all combinations of Vp, Vp,

for Py, P, € {£X,£Y,£Z}, so this N is minimal.

4.5.1.1 Solving approximation problems

Finding a solution to any approximation problem over the V basis involves find-

mi —ms3
ma mj

ing a matrix M = < ) with additional constraints on m; depending on
the approximation problem, such that det(M) = ¢~. The following procedure is

described for fixed N.

For the diagonal (Problem 4.3.2)) and projective (Problem 4.3.4)) approximation
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problems, M is such that oq(m;)/1/01(¢") € Rapprox; Where Rapoox i a specific

region of C depending on the problem. Namely, we consider R,pprox @s one of the

regions defined in [Proposition 4.3.3| and |Proposition 4.3.5l For general unitary

approximation (Problem 4.3.1]) with our new decomposition, M must be such that

o1(mim3)/o1(0N) € Lipprox, Where Iopprox C [0, 1] where Loy is an interval of R

as defined in [Proposition 4.3.6| Formally, we solve the following point enumeration

problems.

Problem 4.5.3 (2D point enumeration (V basis)). Let Rapprox be a 2D region cor-

responding to a particular approrimation problem and fixr N € N.

1
Find all (ag,a1) € Z* such that —=(ag, a1) € Rapprox-

NS

Problem 4.5.4 (1D point enumeration (V basis)). Let Lipox C [0,1] be a real
interval corresponding to a particular approzimation problem and fix N € N.
. n
Find all n € Z such that N € Lapprox-
In the first case we set m; = ag +iay for every solution (ag,a;). In the second case
we first solve the norm equation n = a2 + a?, and for every solution we obtain a
candidate value m; = ag + 1a;.

To satisfy the determinant condition, solving the approximation problems re-

quires that we keep only those m; for which the following problem is solvable.

Problem 4.5.5 (Norm equation (V basis)). Given my € Z[i| and integer N, find
me € Z[i] such that

mamst = N —mym* € Z.
AU 177y
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For every pair of solutions (mj,ms) we then deduce a matrix M = <Z; _nj? )

Since my is a solution to [Problem 4.5.5( we have det(M) = ¢~ and the matrix

o (M) = \/%01(]\/[) = \/%w (22 ;Z?) is unitary.

In summary, given a target unitary and associated region or interval, the fol-
lowing procedure finds an approximation over the V' basis. For a fixed value of N,
an element my € Zl[i] is obtained by solving an integer point enumeration prob-
lem defined by the target region. Together with N, m; defines a norm equation,
which is solved to obtain an element my € Z[i]. If no solution to either problem
is found, the value of N is increased. The point enumeration and norm equation
steps are repeated for each value of N until a valid pair (m;, ms) is obtained. Each
pair defines a matrix M € O as above with determinant ¢~. Then, the unitary

o'(M) is factorised over the V basis using an existing exact synthesis algorithm

(for example, [59]) to obtain a solution to the approximation problem.

4.5.1.2 Example: Diagonal approximation of ¢'i?

Let 6 = 7 and suppose we want to approximate U = e? = <eig/ ! e_?” /4> using

the V basis within accuracy ¢ = 0.05. In other words, we look for V', a product
of unitaries from the V basis, which satisfies |[U — V|| < e. Writing V as (* %),

u

with u,v € C, we obtain the following:
[Re(ue )| >1-¢*/2 = |U-V| <e. (4.10)

The constraint on w is represented geometrically by the region in |[Figure 4.5|
Since V' is a product of V basis matrices, there exists N € N such that V =

\/%—N (Z: 7(5/);1*>, with «/, v € Z[i]. Tt follows that u = «'/v/5Y and v = v'/V5N.
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A Im(u)
e
0.052
'
0] A /4 1 Re(u)

Figure 4.5: Geometric interpretation of constraint on complex number u in
Equation . The region with the red boundary contains candidate points
(a,b) € Z?, such that u = a +ib and |Re(ue™)| > 1 — (0.05)%/2.

Hence, we scale the region in by v/5N and look for integer points (a,b) €
72, each corresponding to a candidate u’ = a+ib. We initialise NV := 1, and iterate
over N until a solution is found.

We find that there are no integer solutions for N = 1,2,3,4. At N = 5, there
are four candidates for «’, namely {38 + 417, 39 4 40i, 40 + 397,41 4 38i}, shown in
[Figure 4.6] Since V is unitary, we require det(V) = uu* +vv* = 1 or, equivalently,
o' (W)* + ' (v')* = 5° = 3125. So we must have 0 < v'(v')* = 3125 — «/(u’)*. Then,

u' =38 +41i = u'(u)* =38+ 417 = 3125 (4.11)
u' =39+400 = u'(u)* =39%+40% = 3121 (4.12)
u'=40+439% = J/(u)" =3121 (4.13)
u'=41438 = o(u)" =3125. (4.14)
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V55(0.052/2)

(41,38)

Figure 4.6: Geometric interpretation of the constraint on complex number u/,
such that V = \/%—5 (:fj _(Sf;)> approximates e'i? to accuracy ¢ = 0.05. The
region with the red boundary contains four candidate complex numbers satisfying

|Re(uw'e™?)| > V55(1 — £2/2).

Let v' = c+1id, so

V() =+ d* =5 — (@ +bP). (4.15)

For Equations [(4.11) and |(4.14)] we have v/(v")* = 0 so v = 0 is the only solution.

Equations |(4.12)| and [(4.13)| yield v/(v/)* = 4, so ¢ + d* = 4 = 22 then either

¢c =22,d =0o0r c¢c =0,d =242 The two corresponding values for v' are 42
and £2i. In general, Equation |(4.15)[ admits a solution for v € Z[i] if and only if
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all terms p* in the prime factorisation of 5° — (a2 + b?), with p = 3 mod 4, have

even exponent k. Each candidate pair (u/,v") defines an approximation unitary

V = \/ﬁ (Z: 7(1(;,’;1* ), which is factorised over the V basis. These factorisations

are given in Table 4.5

/ /

U v V basis factorisation
41438 | 0 (V_z)°
38+41i | 0 iZ - (Vig)®
394+40: | 21 TV xVoyVixViyVox

e
2 6’:” ViyVoxVyVixViy
=21 | e - VixViyVoxVyVix
—2 6” . V_YV+XV+yV_XV_y
K0439 | 2 | —iZ - VoV xViyVixVy

2 | =i - VixVyV xViyVix
9 | —iZ Vg VixV oy V xViy
=2 | =4 -V xVyVixV yV x

I ()
!

Table 4.5: 'V basis factorisations of unitaries V := \/%5—5 <Z (Q(Zf)?k*>, satisfying
|e'i% = V| <e=0.05.

4.5.2 Clifford + T basis
4.5.2.1 Gate set

The single-qubit Clifford group is defined as the set of unitaries that preserve the
Pauli matrices under conjugation. That is, C is in the single-qubit Clifford group
if and only if for any Pauli matrix P, the matrix C*PC is also a Pauli matrix.

We recall that the S, H and T gates are defined as follows:
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€—i7r/4 0

S = e*irr/4Z _ ’ - i 1 1 |
0 et V2l -1
—im/8
T — efiﬂ'/SZ _ € 0
0 eiﬂ'/S

The single-qubit Clifford group is generated by the H and S gates, and the
Clifford+7T" group is generated by the single-qubit Clifford group and the T gate.
Observe that T? = S, so the Clifford+T group is generated by H and 7. We also

recall the matrices T}, T, defining rotations by 7 about the z and y axes, namely

T — C'OS‘(%) —isin()%) _ 1 (I+I—z’X>’

S

where ¢ = 2++/2. Note that T similarly defines the rotation of 1 about the z axis
and we can write T' = \/lz <I + %) We can obtain 7T, and T} from 7', and vice
versa, by conjugation with single-qubit Clifford unitaries. Synthesis via a circuit of
T,,T,,T and Hadamard gates therefore corresponds to synthesis in the Clifford+71"
basis, up to a global phase.

In evaluating the cost of approximate synthesis with Clifford+7 gates, we
assume that Clifford gates are low cost, and only count T gates, or equivalently

the total number of T, T}, and T" matrices.
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4.5.2.2 Quaternion order

Let K = Q(v/2) and let L = Q((g), where (s = €2™/8. The ring of integers of L is

Op = Z[(] = {ao +ai(g + CL2C82 + ang tag € Z} = Z[\@] + 1\;; Z[\@]

The ring of integers of K is the real subring Ox = Z[v/2] = {by + b1V/2 : by, by €
Z} C Or. We can identify any element m in Oy with a 4-dimensional vector
m = (ag,ay,as,a3) € Z* using the integral basis above. There are four distinct
embeddings from L into C, related to one another by complex conjugation and

ﬂ-conjugation. We fix two embeddings o1, 09 such that

(Reai(m), Im oy (m), Reay(m), Im oy(m))’ = Sm”

where v o s
_— 0 1/v/2 1 1/V2

1 —1/v/2 0 1/V2

0 —1/vV2 1 —1/V2

Let n = mm* and write n = by + b1\/2, by,b; € Z. We can identify n with the
2-dimensional vector i = (b,b;) or with (o1(n),os(n))?’ = (1 f\%) n’ through
the above embeddings. We choose one embedding arbitrarily, say o7, to embed
elements into Euclidean space. Note that both ¢; and oy are necessary to express
the solvability constraints imposed by the norm equation for elements in L.

Let My(L) be the algebra of 2 x 2 matrices with entries in L, and let O be a

maximal order in My(L) which contains T}, T, and T Concretely, we set O =
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S0, Ok - w; in what follows, where

I+:1X I +1Y I +1X +1Y +17
wlzl, Wy = = Wy = W3y = .

= w3 = )
V2 V2 2

The embeddings o1, 05 extend over O in a natural way. Elements of O corre-

spond to 2 x 2 unitaries via the map o'(M) = mal(M). Elements of O
o1 (de

with determinant equal to 1 correspond to Clifford gates, and elements of O with

determinant ¢V correspond to unitaries that can be expressed as a product of N

gates T, T, and T [44].

4.5.2.3 Solving approximation problems

Finding a solution to any approximation problem (as defined in [Section 4.3|) over

the Clifford+7T" gate set involves finding a matrix

M = (Z; ;;?2> = Xjwi + Xows + Xzws + Xqwy, (4.16)
or equivalently finding X; € O, with additional constraints on m; depending on
the approximation problem, such that det(M) = ¢~. Recall that these matrices
will correspond to unitaries which are products of gates from the Clifford+7" basis.

Let us first examine the sets Mgi,s and Mog_diag, in wWhich we will look for

elements my and meg, respectively. From Equation |(4.16)| we have

Xo+Xs Xy Xy,
Miiae = X — 4+ — 4+ —1: X, €0
diag { 1+ \/§ + 5 + 22 € K}

| 14i

. Op+ 0
Vo (2)K
1

~ 0,
N
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Let Mo denote the elements of L corresponding to diagonal elements of O.

That is elements m; such that <”81 n%) € O. By Equation |(4.16)] we can see

Mo = Oy,

Similarly, we have

M off —diag 2 9

1 1+

Ot 0
N (2>K
1

- 0,
V2t

2X, — X 2X, + X
{\/—1 3+\/_ 2+ 3i3XiEOK}

For fixed my, Mog_diag is restricted to the subset
M(:?fl—diag = {mZ € Mofffdiag : <Z; _TZ%Q) S O}

Noticing that iY", (1Y)~" € O, we see that my € M 4., <= ma € Mo.

Since for all m; € Mgiag, Mo € Mog_qiag there exist my, my € Op, such that

m; = % and my = T\;—% we can scale the conditions on o1(m;) and oy (mym;™)

accordingly. Concretely, we have

Ul(ml)/\/ O'1(2€N) c Rapprox or Ug(mlml*>/02(2€N) c Iapproxa

depending on the approximation problem, and

02<ml)/\/ 0'2(2€N) S D1 or, equivalently, Uz(mlml*)/Ug(ZgN) S [0, 1]
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In the following sections, the point enumeration and norm equation steps are
described for fixed N. For every pair of solutions (mj, my) we deduce a matrix

M = (ml 7m§). The unitary o'(M) is factorised over the Clifford4+T" basis to

mg mj

obtain a solution to the approximation problem.

4.5.2.4 Finding m;: an enumeration problem

We write m; = ag + a1(s + a2C82 + agCg and 7 = mymy* = by + b;V/2, with all

coefficients in Z. Let ¥ be as defined in [Section 4.5.2.2| and let ¥/ = (1 7‘/35)

The operation X (respectively ') embeds m; (respectively 7) into the Euclidean

space of the approximation regions. In order to satisfy the constraints imposed by
both the approximation regions and the norm equation, we define normalisation
matrices A and A’ for ¥ and Y, respectively. Let A and A’ be the diagonal ma-
trices with (\/01(2€N), Vo1 20N), /75 (20N, ¢02(25N>) and (0(20V), 5(20M))

on their respective diagonals. Candidate values for m; are obtained by solving the

point enumeration problems below.

Problem 4.5.6 (2D point enumeration (Clifford+7" basis)). Let Rapprox be a two-
dimensional region corresponding to a particular approximation problem. Find

(ao, ai, as, ag) € Z* such that A7'% - (CL(), ay, ag, ag)T S Rapprox x Dj.

Problem 4.5.7 (1D point enumeration (Clifford+7" basis)). Let Lyppox C [0, 1] be a
real interval corresponding to a particular approximation problem. Find (by,by) €

Z? such that N7 - (bo, b1)T € Lopprox X [0, 1].

In the first case, we immediately recover a candidate value for m;. In the

second case, we recover a candidate value for n, then solve the norm equation
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mym," = n and for every solution we obtain a candidate value m;. Finally, we set

my =

sk

4.5.2.5 Finding ms: solving a norm equation

Given a candidate value for my, we proceed to solve a norm equation problem,
4 3 mi .
restricting ms to Mig" g,

Problem 4.5.8. Given m; € \%OL and integer N, find ma € Mg ., such that

1
mom}y = €~ —mym; € §OK.

.. . mi mi — 1
Fixing an arbitrary m € M 4., we have MJ = m + Op. Since

Mog—diag = Maiag = \%OL, |Problem 4.5.8| can then be reformulated as

Problem 4.5.9. Given my € Z[(s], integer N, and m € ﬂM:&Ldmg find my €

m + V/2Z[(s) such that

Mgy = 20N — mymy* € Z[V?2).

Solving [Problem 4.5.9| for ms then yields a solution to [Problem 4.5.8; my =

in/ /2.
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4.5.3 Clifford++/T basis
4.5.3.1 Gate set

Let £ =2+ 2cos(¥) =2+ (Ci6 + (i), where (16 = €*™/16. Let also 6 = 2cos(%),
B =6+30 and pu = 6% — 3. We recall that the /T gate is defined as follows:
e—i7r/16 0

N

0 6i7r/16

The /T gate defines a rotation about the z axis by 5 The Clifford++/T group is
generated by the single-qubit Clifford group and the v/T gate. Note that we will
use the notation 7"/2 interchangeably with /7T in the following discussion. We

1/27 Tyl/2

also recall the matrices T defining rotations by ¢ about the z and y axes,

namely

T cos(f5)  —isin(fg) | _ 1 (I e(f—w)())
—28111(116) cos(l%), Vi 2

Tyl/2 _ cos(75) —sin({5) _ Lﬁ <[ N o1 —2iMY))
sin({5) cos(f—6)

We can additionally write VT = \/LZ (I + G(I;Z)>. Observe that /T > — T and
<Tal/2>2 = T, with a = z,y, as suggested by the notation. We can obtain the
unitaries Ti/ 2 and T’;/ 2 from T2, for k = 1,2, 3, and vice versa, by conjugation
with single-qubit Clifford unitaries. Here T3 /2 = (Ta1 / 2>3. Synthesis via a circuit
of unitaries in {T%/2, T];/z ca=ux,y k=1,2,3}and the Hadamard gate therefore

corresponds to synthesis in the Clifford ++/7 basis, up to a global phase.
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4.5.3.2 Quaternion order

Let K be the totally real number field K = Q((i6 + (¢ ), and let L be the field
L = Q(¢16). The ring of integers of L is

Or = Z[i) = {27: arCls s ay € Z} =7 [QCOS (g)} + Ci6Z [2 oS (g)]

k=0

and the ring of integers of K is the real subring

o= o (3]

3
= {bo+b1-2008 (g) + byV/2 + by - 2 cos (g) 2 by GZ} C Oy.

We can identify any element m in O, with an 8-dimensional vector m = (ag, a1, ..., a7) €
Z8 using the integral basis above. There are 8 distinct embeddings from L into C,
which can be grouped into pairs depending on their images when restricted to K.

We fix four such embeddings o1, 09, 03, 04 such that ¥m? is equal to

(Reai(m),Imoy(m), Reay(m), Im oy(m), Reas(m), Im o3(m), Re a4(m), Im oy (m))”
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where

1 cos(g) \/Li cos(3) 0 —cos(3) -7 —cos(g)
0 cos(3F) \/LE cos(%) 1 cos(g) % cos(37)
1 cos(3) —\% —cos(g) 0  cos(g) \/LE — cos(3)
_— 0  cos(g) \/Li —cos(3) —1 —cos(3) \/LE cos(g)
1 —cos(3) —\% cos(3) 0 —cos(g) \% cos(3r)
0 cos(g) —\/AQ —cos(3) 1 —cos(3) _\/Lﬁ cos(g)
1 —cos(g) \/Li —cos(3) 0 cos(3) _\/Li cos(g)
0 cos(3) _\/Li cos(3) —1  cos(g) _\/Li cos(2F)

Let n = mm* and write n = by+b;-2 COS(%)+b2\/§+b3'2 cos(%”). We can identify n

with the 4-dimensional vector n = (b, by, by, b3), or with (a1 (n), o2(n), o3(n), o4(n))T =

¥'nT where

1 2cos(Z) V2 2cos(¥)

5 1 —2cos(3) —V2 —2cos(g)
) V2 2cos(%)

—2cos(2
1 —2cos(g) V2 —2cos(3D)

N

—_
o

through the above embeddings. As for the Clifford+7T basis, we choose a embed-
ding arbitrarily, for example o1, to embed elements into Euclidean space.

Let Ms(L) be the algebra of all 2 x 2 matrices with entries in L. Let O
be a maximal order in M(L) which contains Tml/Q, T;/Q and T'2 namely O =

4
> i1 Ok - w;, where

I+:X I +1Y I +1X +1Y +172
(A)1:I, Wy = \/§ 3 W3 = Wy = W3y = .

V2 2
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The embeddings oy, 09, 03,04 extend over O in a natural way. Elements of O
correspond to 2 x 2 unitaries via the map o'(M) = mal(]\f ). Elements of
O with determinant /¥ correspond to unitaries that can be expressed as a product
of N gates TH/?, sz and T*? with k = 1,2,3 [44]), hence in the Clifford + /T

gates.

4.5.3.3 Solving approximation problems

Finding a solution to any approximation problem over the Clifford++/T gate set
involves finding a matrix

M = <m1 7m’2ﬂ> = X10J1 + XQ(UQ + X3W3 + X4OJ4 € O, (417)

ma mj
or equivalently finding X; € O, with additional constraints on m; depending on
the approximation problem, such that det(M) = ¢¥. The unitary o’(M) will be
factorised over the Clifford4++/T basis.

Let us first examine the sets Mgi,s and Mog_giag, in wWhich we will look for

elements my and meg, respectively. From Equation |(4.17)| we have

Xo+ X3 Xy Xy,
Miine = X — 2+ 4+ —i:X,€0
diag { 1+ \/§ -+ 5 + 22 S K}
1 141
= —0
\/§ K + 5

Ok.

As before, let Mo denote the set of elements m; € L such that (”81 ﬁ;) e O.

From Equation |(4.17) we have Mo = Ok + %OK and so clearly Mgiag = \%MO.

Similarly, we have Mog_qiag = \%MO. Note that O C Mg, since (y4 is in O, but

not in Mp.
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Again, since for all m; € Mgiag, M2 € Mog_giag there exist my, ms € Oy, such

that m; = % and my = ™2

V2

accordingly. Concretely, we have

we can scale the conditions on oq(m) and oy (mym4*)

01(m1) /v 01(20N) € Rapprox O 02(mimin®)/o2(20Y) € Lipprox,

depending on the approximation problem, and, for & = 2, 3, 4,

or(my)/v/or(2¢N) € Dy or, equivalently, o (nym,*)/ow(2¢Y) € [0, 1].

In the following sections, the point enumeration and norm equation steps are

described for fixed N.

4.5.3.4 Finding m;: an enumeration problem

Writing any m, = ag + a7 with ag, a; € K, we see that Mg, can be considered as
a full rank Oy lattice in K?. We therefore have a Z-basis, {yo, ..., yr}, for Mgiag
and can write any element m; € Mg as m; = 27: a;y;, a; € 7.

Since Mgiag = \%OK + %OK, we also haveljzo = mim] € %OK. Since my €
\/LEM@, there exists my; € Mo such that m; = % and furthermore, m;m;"* = 2n :=
i € Ok. We write i = by + by - 2cos(Z) 4 bav/2 + bz - 2 cos(2) with all coefficients

in Z. Let X be defined as the matrix with rows:

=57 = (Re(o;(y)); .- - Re(o;(y7))

S5 = (tm(o(y)), - - - Im(o;(yr)),

for 1 < j <7, where the o; are defined in [Section 4.5.3.2| Additionally, take >’ as
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defined in [Section 4.5.3.2 and define normalization matrices A and A’ as the di-

agonal matrices with the entries (\/o1(¢N), /o1 (€N), ..., \/ou(tN), \/ou(€N)) and
(01 (20Y), (02(20N), (03(26Y), 54(2¢6Y)) on the main diagonal, respectively. Hence
the operations A~'¥p and A’~1Y first embed an element m; or 7 into the Euclidean
space of our approximation regions, then normalises it to satisfy the constraints.
Candidate values for m; are then obtained by solving point enumeration problems

below.

Problem 4.5.10 (2D point enumeration (Clifford4++/T basis)). Let Rapprox be a 2D
region corresponding to a particular approximation problem.

Find (ag, a1, as, as, ay, as, ag, a7) € Z8 such that
-1 T
A EO : (a07a17a2aa3aa47a57a67a7) € Rapprox X Dl X Dl X D1~

Problem 4.5.11 (1D point enumeration (Clifford4++/T basis)). Let Lpprox C [0, 1]
be a real interval corresponding to a particular approximation problem. Find

(ap, a},ab,aly) € Z* such that

A5 (bg, by, by, b)) € Tupprox X [0,1] x [0,1] x [0, 1].

In the first case, we immediately recover a candidate value for m;. In the second
. . : NP
case, we recover a candidate value for n, solve the norm equation m;m;" = n and

for every solution m; we obtain a candidate value m; by setting m; = %
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4.5.3.5 Finding ms: solving a norm equation

Given a candidate value for m;, we proceed to solve a norm equation problem (or

. . ) L m
determine there is no solution), restricting ms to Mg" diag:

Problem 4.5.12. Given m, € \%MO and integer N, find my € Mg" 4., such that

momy = N — mim;j € §OK.

. . my my _ )
Fixing an arbitrary m € Mgg' 4., we have M3 4. = m + Mo, since for any

! mi ! 0 _ : R R

two m,m’ € ]\/[Off_diag we have m—m’ € Moff_diag = Mop. Since Mog—ding = Mdiag =

\%M@, |Problem 4.5.12| can then be reformulated as

Problem 4.5.13. Given m; € Mo, integer N, and m/\/§ € M;?fl_diag find mq €

m + \/§M@ such that

Momsy* = 20N — mymy* € Ok.

Solving [Problem 4.5.13| for msy then yields a solution to [Problem 4.5.12} moy =

Ma/ V2.

4.6 Impact on resource cost

The following lemma proves that the new approach for solving the general unitary
synthesis established in results in shorter sequences for approxima-

tion, under a reasonable heuristic regarding diagonal approximations.

Lemma 4.6.1. Solutions to [Problem 4.3.1] that satisfy the conditions of [Proposi]
yield sequence lengths of O(Tlog,(1)).
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Proof. Recall that [Proposition 4.3.7| establishes that a solution to [Problem 4.3.1]

involves two diagonal unitary approximations and a ‘magnitude approximation’.
As outlined in [Section 4.4 each of these steps amounts to point enumeration
in a feasible region, followed by solving a norm equation. For the magnitude
approximation, we can a priori bound the size of the norm for which we accept
candidates for u to &~ % Then, since the norm is equivalent to ¢ by design, we
have N =~ loge(%). For the diagonal approximations, it is known that sequence
lengths of 310g€(§) |78] are optimal. Hence, the total sequence length for the

general unitary approximation is 7log,(%). O

In comparison to the Euler decomposition method, which requires three di-
agonal approximations resulting in total length of 910g£(§) [78], our magnitude
approximation method achieves shorter sequences.

We have assumed in that the same accuracy is chosen for the

diagonal and magnitude approximations. In practice, it is of course possible to

choose different levels of accuracy and thus model the sequence length as

SL :=6log,(1/e1) + log,(1/e2),

where €; is the accuracy for diagonal approximation and e, is the accuracy for
magnitude approximation. Recall that the total accuracy of the approximation is
given by € = 2¢1 + 5. Rewriting €5 as € — 2¢1, we have SL = log,(1/(e$(e — 2¢1))).
Hence, to minimise sequence lengths we then look to maximise y = &% — 2¢7, for
0 < ey < & < 1. The maximum occurs when &, = % (and so e, = £). Put in

terms of the approximations, this would mean that the magnitude approximation

is completed to a closer degree of accuracy than the two diagonal approximations.
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4.7 Conclusions

With this chapter, we sought to better establish the computational resources of
a quantum adversary, thus addressing the third of Koblitz and Menezes’ points
of error. Our approach was inspired by the protocol-independent criterion for
security assumptions from [43].

Specifically, we showed that the resource costs of approximating a general uni-

7
9

tary can be improved by a factor of <, using a new method of approximation.
Sequence lengths linear in log(é) are expected, and have been seen before in lit-
erature. Nevertheless, reducing the constant factor represents progress towards
optimal sequence lengths. We see that our result will have greatest impact on algo-
rithms that already require several hundreds of unitaries to implement. Moreover,
we argue that our new approach, which borrows from path-finding algorithms, is
itself a worthwhile contribution.

We note also that while these results are directly applicable to the approxima-
tion of single-qubit unitaries, there already exist algorithms for the decomposition
of multi-qubit unitaries into circuits of single-qubit unitaries. Hence, our results

are applicable to these cases as well. It remains for future research to make further

improvements in the multi-qubit landscape.
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Summary and conclusions

This thesis has examined three points in reductionist security proofs that are sus-
ceptible to errors induced by flawed assumptions, guided by the work of Koblitz
and Menezes |62]. We firstly introduced two classes of assumptions arising in clas-
sical cryptanalysis, the relevance of which was demonstrated through examples in
real-world cryptography (isogeny-based and multivariate-based), and closed by ad-
dressing the resource costs of quantum cryptanalysis. By highlighting these three
areas, this thesis presents a holistic overview of the many approaches to cryptog-
raphy security analysis. The results contained herein both pertain to the security
of specific protocols, in terms of changing parameters, and provide evidence for
the importance of studying cryptographic security assumptions, in general.

In this thesis demonstrated that the security assurances derived
from the difficulty of well-studied, intractable mathematical problems cannot nec-
essarily be transferred to problem variants when only one-way reductions are
proven. Specifically, we disproved the hardness assumptions on the OMSSCDH
and IMSSCDH problems, and provided attacks against two undeniable isogeny
signature schemes that employed them.

That is not to say that a two-way reduction is sufficient to guarantee a faultless

security analysis due to issues that can occur when complexity-theoretic results are
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translated to practical values for implementation. The example of Grébner basis
finding algorithms in supports the argument that if approximations
are necessary they are better based on proven results rather than heuristics. We
have provided explicit formulas for proven bounds on the solving degree of over-
determined systems, as an alternative to the degree of regularity.

Finally, this thesis provides an improved understanding of the resource costs
that would affect a quantum adversary. In [Chapter 4 we have shown that the
cost of fault-tolerantly approximating single-qubit unitaries is less than previously
possible. The improvement is a factor of g. This is a sufficiently general result so
can be applied to as-yet undiscovered algorithms.

There are a few open problems pertaining to this work:

1. Are there possible attacks against the Decisional Supersingular Product
problem [52 80|7 This problem is used by Srinath and Chandrasekaran
to prove the blindness property and by Jao and Soukharev to argue zero-
knowledge of their confirmation and disavowal protocols.

2. Does there exist M(n,m) such that |dsove — dreg] < M (n,m) for all crypto-
graphic semi-regular sequences of m polynomials in n variables? What is a
lower bound for the solving degree?

3. What properties (if any) of number fields make solving relative norm equa-
tions with restrictions on coset membership computationally feasible?

4. What effect do the mixing strategies of Campbell [20] and Hastings [48] have
on sequence lengths when used in conjunction with our method for solving
the general unitary approximation problem?

The work contained in this thesis serves to caution that continued scrutiny is

needed to ensure that only good assumptions are used in post-quantum security
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analyses. Our contention is that confidence in reductionist security proofs can only
be established through the use of these good assumptions and that our understand-
ing of what this means needs to be continually assessed and updated. We have
argued that proven results, even if only applicable to a smaller set of protocols, are
preferable to unproven (or, more pertinently, disproven) results and that cryptan-
alysts should remain cognisant of all aspects of quantum cost to give a realistic
appraisal of security. In conclusion, although assumptions are an inevitable and
important part of post-quantum security analyses, the field must remain vigilant

of the vectors of error that can exist and work to eliminate them.
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Appendix A

Index of regularity for

over-determined systems

This appendix lists the index of regularity r(n + ¢,n) of the ideal generated by a
cryptographic semi-regular system of n 4+ ¢ homogeneous quadratic equations in
n variables. The formula for the k** coefficient in the Hilbert series expansion for
a cryptographic semi-regular system of n 4+ ¢ homogeneous quadratic equations
in n variables was calculated iteratively, until the first £ was reached for which
the coefficient is negative. This gives the value of r(n + ¢,n), as discussed in
. The value of r(n + ¢,n) bounds the solving degree of cryptographic
semi-regular systems of n 4+ ¢ homogeneous polynomials in n variables or n + ¢

inhomogeneous polynomials in n — 1 variables (under the assumption that the

system is in generic coordinates, as discussed in [Section 3.2]).
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2<n<26

Y

for 2 < ¢ <100

Table A.1: r(n+{4,n)

26
13
12

21 23 24 25
11 12
11

20

16 17

15

12 13

11

mm9998887777777666666666655555555555555555555444444444444444444444444444444444444444444444444443

11

10

wg9988877777766666666655555555555555555554444444444444444444444444444444444444444444444333333333

[ XNl ol ol ol ol ol o S lieRlele e e le o o o R InRInRInR InR InR In} Ia} Tn} Tn R o} o R Tn R TnRIaRIaRTaRTa RS S A S ISR SRS RS ARSI S S S A R R R A R D T A o R Ko Ko Noa Nan Nan RanNanNaaaalaalanlanlanlan]

12
11
10

mm99888777766666666555r0555555555555444444444444444444444444444444444444444333333333333333333333333
Hm9988877776666666555555555555555444444444444444444444444444444444443333333333333333333333333333333
wm9888777666666655555555555554444444444444444444444444444444443333333333333333333333333333333333333
mgs887776666665555555555554444444444444444444444444444433333333333333333333333333333333333333333333
mgs877766666555555555554444444444444444444444444433333333333333333333333333333333333333333333333333
0O~ OCOOOWWIOWIOWIFFI I IS IS IS LIIONNNNNNDNNNNNNNNNNNNNNNMNNMNNMNMNMNMNMNMNMNMNMNNMNMNMNMMNMMMMMMNMMNMMMM MM
DO~ OCOOCOMLVVVIFFIFIIFIFIFIFIIFIIFIITIITIIFIINNNNNNNNNNNNNNNNNNNNNNNMNNNNNMNNNNNMNMNMMNMNMNMNMNNNNNMMNMMNMMNMNNNMNMNMNMM MM
O~~~ OCOOOVOOVIFFFFIFIFFFIIIIILILIIILINONNNNNNNNNNNNNNNNNNMNMNMMMNMNMNMNNNNNMNMNMNMNMNNNNNMNMNMMMMMMMNMNMNMNMNMNMNMNMMNMNMNMNMNMNMNMNMMM™M
O~ OCOOBLBIIFIFFIFIFIFIIIIITNNNNNNNNNNINNNNINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNMMNMMNMMNMMNMNMNMMNMM MM
I~ OO0 HFFIFIFIFIFIILIILIILINNNDNNNNNNNNNNNNNNNNNNMNNMNNNNNMNNMNMNMNNMNMNMNNMNNMMNMMNMNMNMNMMNMMNMMNMMNMMNMMNMMMMMANANNNNNNNN
OOV HIFFFIFFIFIIFIIFIIFNNNNNNNNNNNNMNMNNNMNNNNNNMNMNMNMNNNMNNMNMNNMNNMNNMNMNMNMMNMMNMMMMMNMMMMMMMMNANANANNANANANANNNNNNNNNNN
OO IIFFFIFIIIFIFIFNNNNNNNNNNNNNMNMNMNMMMNMNMNMNMNMNMNMNMNMMMMMMMMMMMMMMMMMMMMMMNAANAAAAAAAAAAAANAANAAAAANNNNNANNNNNNANN
OOV FFFFFELIFINNNNNINNNMNMNMNMNNNMMNMMNMMNMMNMMNMMNMMMMMMMMMMNMANANANANANANANAANANAANANANANANAAANAANNNANANNNANANNNN

CWWWBIHIHILILILILILINONNNNNNNNNNMNNMNNMNMNMNMMMMMMMMMMMMMMMHAANAAAAAAAANAAANANANANANANAANAAAAAAAAAAAA A N AN AN

W FFFFIFIFINNMMNMMNMMNMMMMMNMMMMMMMMMMMMMMMMNAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANANNNNN
WIOFHFFFNNMNMMMMMMMMMMMMMMMMMMHANANANANANANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAAAAANAAAANAAAANANNNNN
[N MMMMNMMMMMMMMMMANANANANAANAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANANANANANANNNNNNN
MMM MMMOHAANNANANANANANANANAANANANANANANANANAANAAANANANAAAAANAANAIANANAAAAAIANANAIANAN AN AN
MOMOMMMMANANANNANANANANANANANANANAANAANAAANAANAANAANAANAANANANAANANAANAANAANANANANAANAANAANANAANANANAANAANAANANANANANANANANAANAANANANAANANANANANNNANNNaac
MOMOANANANNANANANANANANANANAANAANAANAAANANAANAANANANANANANAAAANAANAANAANAANNAANAANAANANAANANANANANAANAANANANANANANANANAANANANANANANANANANANANANNANNNac
(anlia ol ol fa o la ot o o ) o ) [t R ) I [ [ R R R I [ o R R I [ [ [ R I I ) R e I I [ ) I R R [ o R R I [ [ I ) I o o

(o [l o) o ot o ! I I ) R R ) I I I R I I [ I R R I S o o R I ) ) ) I R R I o R ) I I S o I ) R I I ) ) ) ) ) ) s
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Table A.2: r(n+{¢,n) for 2 < ¢ <100,27 <n <51

Z/n 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
2 25 25 26 26 27 27 28 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36
3 23 23 24 24 25 25 26 26 26 27 27 28 28 29 29 30 30 31 31 31 32 32 33 33 34
4 22 22 22 23 23 24 24 25 25 25 26 26 27 27 28 28 28 29 29 30 30 31 31 31 32
5 20 21 21 22 22 22 23 23 24 24 25 25 25 26 26 27 27 27 28 28 29 29 30 30 30
6 20 20 20 21 21 21 22 22 23 23 23 24 24 25 25 26 26 26 27 27 28 28 28 29 29
7 19 19 19 20 20 21 21 21 22 22 23 23 23 24 24 25 25 25 26 26 27 27 27 28 28
8 18 18 19 19 19 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26 26 26 27 27
9 17 18 18 18 19 19 20 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26 26 26
10 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26
11 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 22 22 22 23 23 23 24 24 24 25
12 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24
13 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 24
14 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23
15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22
16 14 15 15 15 16 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22
17 14 14 15 15 15 16 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22
18 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 19 20 20 20 21 21
19 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 21
20 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20
21 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20
22 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20
23 12 13 13 13 14 14 14 14 15 15 15 15 16 16 16 17 17 17 17 18 18 18 19 19 19
24 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18 19 19
25 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18 19
26 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18
27 12 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18 18
28 11 12 12 12 12 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18
29 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18
30 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17
31 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 17 17 17
32 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17
33 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17
34 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16
35 10 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16
36 10 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16
37 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16
38 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16
39 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 14 15 15 15 15
40 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15
41 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15
42 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 14 15 15
43 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15
44 9 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14 14 14 14 15
45 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 14
46 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14
47 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14
48 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14
49 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14 14
50 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14
51 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14
52 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14
53 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13
54 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13
55 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13
56 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13
57 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13
58 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13
59 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13
60 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 13
61 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13
62 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12
63 8 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12
64 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12
65 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12
66 8 8 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12
67 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12
68 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12
69 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12
70 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12
71 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11 12
72 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12
73 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11
74 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11
75 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11
76 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11
77 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
78 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
79 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
80 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
81 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
82 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
83 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11
84 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11
85 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 11
86 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11
87 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11
88 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10
89 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10
90 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10
91 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10
92 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10
93 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10
94 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10
95 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10
96 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10
97 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10
98 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10
99 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10
100 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10
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Table A.3: r(n+{¢,n) for 2 < ¢ <100,52 <n < 76

Z/n 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
2 25 25 26 26 27 27 28 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36
3 23 23 24 24 25 25 26 26 26 27 27 28 28 29 29 30 30 31 31 31 32 32 33 33 34
4 22 22 22 23 23 24 24 25 25 25 26 26 27 27 28 28 28 29 29 30 30 31 31 31 32
5 20 21 21 22 22 22 23 23 24 24 25 25 25 26 26 27 27 27 28 28 29 29 30 30 30
6 20 20 20 21 21 21 22 22 23 23 23 24 24 25 25 26 26 26 27 27 28 28 28 29 29
7 19 19 19 20 20 21 21 21 22 22 23 23 23 24 24 25 25 25 26 26 27 27 27 28 28
8 18 18 19 19 19 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26 26 26 27 27
9 17 18 18 18 19 19 20 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26 26 26
10 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 23 23 23 24 24 24 25 25 26
11 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 22 22 22 23 23 23 24 24 24 25
12 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 23 24 24
13 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23 24
14 15 15 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 23
15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22
16 14 15 15 15 16 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22
17 14 14 15 15 15 16 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22
18 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 19 19 19 19 20 20 20 21 21
19 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 21
20 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20
21 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20 20
22 13 13 13 13 14 14 14 15 15 15 15 16 16 16 17 17 17 18 18 18 18 19 19 19 20
23 12 13 13 13 14 14 14 14 15 15 15 15 16 16 16 17 17 17 17 18 18 18 19 19 19
24 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18 19 19
25 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18 19
26 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 18
27 12 12 12 12 13 13 13 13 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18 18
28 11 12 12 12 12 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18
29 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18
30 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17
31 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 17 17 17
32 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17 17
33 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 17
34 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16
35 10 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16
36 10 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16 16
37 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 16 16
38 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15 15 16
39 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 14 15 15 15 15
40 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15
41 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15 15
42 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 14 15 15
43 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14 15 15
44 9 10 10 10 10 10 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14 14 14 14 15
45 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14 14
46 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14 14
47 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14 14 14 14
48 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 14
49 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14 14
50 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14
51 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 14
52 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 14
53 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13
54 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13
55 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13 13
56 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13
57 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13 13
58 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13
59 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13 13
60 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 13
61 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12 13
62 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12
63 8 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12 12
64 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12
65 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12
66 8 8 8 8 8 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12 12
67 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12 12
68 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12 12
69 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 12 12
70 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12 12
71 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11 12
72 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 12
73 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11
74 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11 11
75 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11
76 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11 11
77 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
78 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
79 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11 11
80 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
81 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
82 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11 11
83 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11 11
84 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11 11
85 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 11
86 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 11
87 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 11
88 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10
89 7 7 7 7 7 7 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10
90 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10
91 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 10
92 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10
93 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10
94 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10
95 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10
96 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10 10
97 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10
98 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10
99 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 10 10 10
100 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10
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Table A.4: r(n+¢,n) for 2 < ¢ <100,77 < n < 100

Z/n 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
2 36 37 37 38 38 39 39 40 40 471 41 42 42 43 43 44 44 45 45 45 46 46 47 47
3 34 35 35 35 36 36 37 37 38 38 39 39 40 40 40 41 41 42 42 43 43 44 44 45
4 32 33 33 34 34 35 35 35 36 36 37 37 38 38 38 39 39 40 40 41 41 42 42 42
5 31 31 32 32 33 33 33 34 34 35 35 36 36 36 37 37 38 38 39 39 39 40 40 41
6 30 30 30 31 31 32 32 32 33 33 34 34 35 35 35 36 36 37 37 37 38 38 39 39
7 28 29 29 30 30 30 31 31 32 32 33 33 33 34 34 35 35 35 36 36 37 37 37 38
8 28 28 28 29 29 29 30 30 31 31 31 32 32 33 33 33 34 34 35 35 35 36 36 37
9 27 27 27 28 28 29 29 29 30 30 30 31 31 32 32 32 33 33 34 34 34 35 35 36
10 26 26 27 27 27 28 28 28 29 29 30 30 30 31 31 32 32 32 33 33 33 34 34 35
11 25 26 26 26 27 27 27 28 28 28 29 29 30 30 30 31 31 31 32 32 33 33 33 34
12 25 25 25 26 26 26 27 27 27 28 28 28 29 29 30 30 30 31 31 31 32 32 33 33
13 24 24 25 25 25 26 26 26 27 27 27 28 28 29 29 29 30 30 30 31 31 31 32 32
14 23 24 24 24 25 25 25 26 26 26 27 27 28 28 28 29 29 29 30 30 30 31 31 31
15 23 23 23 24 24 25 25 25 26 26 26 27 27 27 28 28 28 29 29 29 30 30 30 31
16 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28 28 29 29 29 30 30
17 22 22 23 23 23 23 24 24 24 25 25 25 26 26 26 27 27 28 28 28 29 29 29 30
18 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28 28 29 29
19 21 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 26 27 27 27 28 28 28
20 21 21 21 22 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28 28
21 20 21 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 26 26 26 27 27 27 28
22 20 20 20 21 21 21 22 22 22 23 23 23 24 24 24 25 25 25 25 26 26 26 27 27
23 20 20 20 20 21 21 21 22 22 22 23 23 23 23 24 24 24 25 25 25 26 26 26 27
24 19 20 20 20 20 21 21 21 22 22 22 23 23 23 23 24 24 24 25 25 25 26 26 26
25 19 19 20 20 20 20 21 21 21 22 22 22 22 23 23 23 24 24 24 25 25 25 26 26
26 19 19 19 19 20 20 20 21 21 21 22 22 22 22 23 23 23 24 24 24 25 25 25 25
27 18 19 19 19 19 20 20 20 21 21 21 22 22 22 22 23 23 23 24 24 24 24 25 25
28 18 18 19 19 19 19 20 20 20 21 21 21 21 22 22 22 23 23 23 24 24 24 24 25
29 18 18 18 19 19 19 19 20 20 20 21 21 21 21 22 22 22 23 23 23 24 24 24 24
30 18 18 18 18 19 19 19 19 20 20 20 21 21 21 21 22 22 22 23 23 23 23 24 24
31 17 18 18 18 18 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23 23 23 23 24
32 17 17 18 18 18 18 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23 23 23 23
33 17 17 17 18 18 18 18 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23 23 23
34 17 17 17 17 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23 23
35 16 17 17 17 17 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 23
36 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 22 22 22 22
37 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 22 22 22
38 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21 22 22
39 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 21 21 21 21 22
40 16 16 16 16 17 17 17 17 17 18 18 18 19 19 19 19 20 20 20 20 21 21 21 21
41 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21 21
42 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21 21
43 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 21
44 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20
45 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20
46 15 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20 20 20
47 14 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19 19 19 19 20 20
48 14 15 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 18 19 19 19 19 20
49 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19 20
50 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19 19
51 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19 19 19
52 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18 18 18 19 19 19
53 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19 19
54 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18 19
55 13 14 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18 18 18 18
56 13 13 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18 18 18
57 13 13 14 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 17 18 18 18
58 13 13 13 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18 18
59 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18 18
60 13 13 13 13 14 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 18 18
61 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17 17 18
62 13 13 13 13 13 14 14 14 14 14 15 15 15 15 16 16 16 16 16 17 17 17 17 17
63 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17 17 17 17
64 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 17
65 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17 17 17
66 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17
67 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17 17
68 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17
69 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 17
70 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16
71 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16
72 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16
73 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16 16
74 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16
75 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16 16
76 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16 16
7 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 15 16
78 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 16
79 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15 15
80 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15
81 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 15 15 15 15 15
82 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15
83 11 11 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15
84 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 14 15 15 15
85 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15 15
86 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 14 15 15
87 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15 15
88 11 11 11 11 11 11 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 15
89 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 15
90 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14
91 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14 14
92 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14
93 10 11 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 14 14 14 14 14
94 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14
95 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14
96 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14
97 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14
98 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 12 13 13 13 13 13 14 14 14
99 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14

100 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13 13 14 14
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