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We present the first lattice QCD determination of the A, — A*(1520) vector, axial vector, and tensor
form factors that are relevant for the rare decays A, — A*(1520)¢*¢~. The lattice calculation is performed
in the A*(1520) rest frame with nonzero A, momenta, and is limited to the high-¢? region. An interpolating
field with covariant derivatives is used to obtain good overlap with the A*(1520). The analysis treats the
A*(1520) as a stable particle, which is expected to be a reasonable approximation for this narrow
resonance. A domain-wall action is used for the light and strange quarks, while the b quark is implemented
with an anisotropic clover action with coefficients tuned to produce the correct B, kinetic mass, rest mass,
and hyperfine splitting. We use three different ensembles of lattice gauge-field configurations generated by
the RBC and UKQCD collaborations, and perform extrapolations of the form factors to the continuum limit
and physical pion mass. We give Standard-Model predictions for the A, — A*(1520)¢ "¢~ differential
branching fraction and angular observables in the high-¢* region.
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I. INTRODUCTION

Decays of b-hadrons that proceed through the flavor-
changing neutral current transition b — s£7¢~ play an
important role in searching for physics beyond the Standard
Model [1]. Global analyses of the increasingly precise
experimental data point to lepton-flavor-nonuniversal shifts
in one or more of the Wilson coefficients with respect to
their Standard-Model values [2,3]. These deviations, along
with further hints for violation of lepton-flavor universality
in b — ctv decays, have led to significant activity in
constructing models of new fundamental physics, as
reviewed for example in Ref. [4].

When searching for new physics in weak decays, it is
important to consider multiple decay modes involving
different species of hadrons. Different decay modes may
be sensitive to different combinations of operators in the
effective Hamiltonian, and will also differ in their exper-
imental and theoretical systematic uncertainties. The ben-
efits of A, baryon decays in constraining AB = AS =1
Wilson coefficients have been discussed by several authors
[5-19]. Experimental data are available for the differential
branching fraction and angular observables of A, —
A(—=pr)utu~ [20-23], as well as the branching fraction
of A, — Ay [24]. In Ref. [18], an analysis of b — su™u~

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2021/103(7)/074505(24)

074505-1

Wilson coefficients using all 33 independent angular
observables of A, - A(—pa )utu~ decays [23] and
using A, — A form factors from lattice QCD [25] was
reported. Within the present uncertainties, the results are
consistent both with the anomalies seen in B meson decays
and with the Standard Model [18].

Going beyond the lightest A baryon in the final state,
the LHCb Collaboration has also reported first measure-
ments of A, — pK~¢1¢~ decays, including CP asymme-
tries [26] and the muon-versus-electron ratio R,x- [27].
The A, - pK~utu~ CP asymmetries were measured in
the kinematic region with m,x- < 2350 MeV and q* =
miv, & [0.98,1.1] U [8.0, 11] U [12.5,15] GeV? [26] to
avoid large contributions from the ¢, J/y, and y' reso-
nances; the ratio R,g- was measured for mpg- <
2600 MeV and ¢* € [0.1,6.0] GeV? [27].

The pK -invariant-mass distribution of A, —
pK=¢* ¢~ for g> away from the ¢, J/y, and v’ resonances
is expected to be similar to the distribution with ¢*> on-
resonance. This p K™ -invariant-mass distribution has been
observed in A, — pK~J/w(—¢7¢7) [28]. As can be seen
in Fig. 3 of Ref. [28], a large number of A* baryon
resonances contribute to this decay in overlapping mass
regions. However, one resonance produces a narrow peak
that clearly stands out above the other contributions: the
A*(1520), which has a width of 15.6 + 1.0 MeV [29]
and is the lightest resonance with J¥ = %‘. Thus, it
may be feasible for LHCb to measure the A, —
A*(1520)(—»pK~)¢"¢~ decay rate and angular observ-
ables for ¢* in the nonresonant (rare-decay) region.
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The phenomenology of A, — A*(1520)(—pK~)¢+ ¢~
was discussed in Refs. [17,19], where the expressions for
the complete angular distribution were given (for unpolar-
ized A,), approximate relations among the A, — A*(1520)
form factors based on effective field theories were obtained,
and numerical studies of the differential decay rate and
angular observables were performed using form factors
from a quark model [30]. The prospects for measurements
of A, — A*(1520)(—»pK~)¢t¢~ angular observables
at LHCb were recently studied in Ref. [31]. Earlier work
had also considered the decay mode A, — A*(1520)x
(= pK~)y, primarily as a probe of the photon polarization
in b — sy [10,11]; the formalism for an amplitude analysis
of A, - pK~y was recently discussed also in Ref. [32].
The authors of Ref. [10] pointed out that this mode may be
easier to reconstruct in hadron-collider experiments than
A, = A(—pr)y, since the A has a long lifetime of ¢z ~
7.9 cm [29] and, like the photon, often escapes the inner-
most vertex locator without leaving any trace.

To make predictions for the A, - A*(1520) x
(»pK™)¢t ¢~ decay observables in the Standard Model
and beyond, the A, — A*(1520) form factors correspond-
ing to the matrix elements of the b — s vector, axial vector,
and tensor currents are required. These form factors have
previously been studied in a quark model [30,33]. In the
following, we present the first, exploratory lattice-QCD
determination of the A, — A*(1520) form factors (we
reported preliminary results in Ref. [34]). The lattice
calculation of %* — %‘ form factors is substantially more
challenging than the calculation of " — 3* form factors,
even when neglecting the strong decay of the %‘ baryon in
the analysis, as we do here. Correlation functions for
negative-parity baryons have more statistical noise than
correlation functions for the lightest positive-parity bary-
ons. Furthermore, at nonzero momenta, the irreducible
representations of the lattice symmetry groups mix positive
and negative parities and also mix J =1 and J =3. To
avoid having to deal with this mixing, we perform our
calculation in the A*(1520) rest frame and give the A,
nonzero momentum (since the A, is the ground state, the
mixing with other J¥ values does not cause difficulties in
isolating it). This has the effect that our calculation is
limited to a relatively small kinematic region near g2,,.

This paper is organized as follows. Our definition of the
A, — A*(1520) form factors is presented in Sec. II. The
lattice actions and parameters are given in Sec. IIL
Section IV explains our choices of the baryon interpolating
fields and contains numerical results for the hadron masses.
The three-point functions and our method for extracting
the individual form factors are described in Sec. V. We
perform simple chiral, continuum, and kinematic extrapo-
lations of the form factors as discussed in Sec. VI. We
then use the extrapolated form factors to calculate the
Ay, = A*(1520)u*p~ differential decay rate and angular

observables in the Standard Model, presented in Sec. VII.
Conclusions are given in Sec. VIII. Appendix contains
relations between our form factor definition and other
definitions that have been used in the literature.

II. DEFINITIONS OF THE FORM FACTORS

The A*(1520) is the lightest of the strange baryon
resonances with / =0 and J” :%‘. It has a mass of
1519.5+ 1.0 MeV, a width of 15.6 £1.0 MeV, and
decays mainly into NK, Xz, or Azz [29]. In this work,
we treat the A*(1520) as if it is a stable single-particle
state. We expect this to be a reasonable approximation,
given the relatively small width and given the other sources
of uncertainty in our calculation. In the following, we
denote the A*(1520) as simply A*.

We are interested in the matrix elements (A*(p’,s’) x
STb|Ay(p,s)) for T € {y,r*ys.ic*q,,ic" q,ys} with
q = p — p'. These matrix elements are described by 14
independent form factors that are functions of ¢ only.
Possible definitions of these form factors were given, for
example, in Refs. [17,30,33-36]. Here we use a helicity-
based definition. We first presented such a definition in
Ref. [34]; the choice used here differs from that in Ref. [34]
only by a g>-dependent rescaling to avoid divergences in
the form factors at the endpoint g2, = (m A, = MA )2. We
use the standard relativistic normalization of states,

(Ap(K.1)[Ay(p. 5)) = 6,2E,,(2)5° (k —p), (1)
(A*(K', ) |A*(p',s")) = 8,02Ep- (22)°8 (K = /). (2)

and introduce Dirac and Rarita-Schwinger
satisfying

spinors

Zu(mAbvp’s>ﬁ(mAbvp7s) = mAb +177 (3)

N

Zu/d(m/\* s plv sl)ﬁy(m/\* s p/’ S/)

s

1 2
= _(m/\* +ﬂl) <g;w _§7y7b _%p/&pllz

1

! !
- _ ) 4
. (yupy m’ﬂ)) (4)

We introduce the notation

(A*(p', s")[5TD| Ay (P, 5))
= iy(mp-.p'. 8" )G |u(my, . p. s), (5)

and

Sy = (mA,, + mA*)z - ‘]2- (6)
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The form factors fo, f., f1, f1s 90» 91> 91> 917 ho, By, By, fer, hy,and ks are defined via

my: (my, = mp)p'q”

(5'1[}’”] = fo

2
S+ q

+fy

mae (ma, +mp ) p(g*(p 4 p*) = (m3 —m3.)q")

2
q-5+

+/f1

+fu

my (o 2p*(mp, p* + my- p*)
Py
s s

S_ N

A 2’1/” Zlm /M—i_m*ﬂ s_”
A<p4y,,_ pip" | 20 (ma,p aP) | 5o

S+ mys ) ’ @)

mp- (ma, +mp-) pq*

CA [y —
[F"7s) = —ao7s ~ p

mp- (ma, —mp- ) p*(g*(p# + p*) — (m3, — m3.)q")

— 9475 5t

q*s_

—91Ys
S+

mp (o, 20 (ma, P — mpp)
P - -

2ptp™ | 20" (m, P = mppt) 5 g™

TN
—guys—— <p*7” +
S+

. o), )

my PH(@ (P + p*) = (my, —m3.)g")

gll UV ——h
{10 QD] + s s,

N

—hy o (mp, + my-) (Pl}’” -

A+
—h, 2
s

2p*(mp, ™ + my- p*)

S

i+ (-

2ptpt 2pr(ma p* + ma- pt _
pp+p(/\bp Ap)+sgl>’ )

M A+ Sy M A+

- my PP+ PY) = (my, - m3)g)

GHic™q,ys) = —h.ys

Sy S_
A I _ L ph
(p‘yﬂ _2pt(mp, p" —mpp ))

~ A+
—hyys - (mA,, — my-)
S+

~ mA*
—hyys——(my, —my)
S+

where 6#* = £ (y*y — y*7*). The requirement that physical
matrix elements are nonsingular for ¢> — g2, = (m Ay~
m,+)? imposes certain requirements on the behavior of the
form factors in this limit [17]. More information on this
behavior can be obtained from heavy-quark effective theory
[36] if the strange quark is treated as a heavy quark. For our
definition, we expect all form factors to be finite and nonzero
at ¢ = g2, Relations between our form factors and other
definitions used in the literature are given in Appendix.

III. LATTICE ACTIONS AND PARAMETERS

Our calculation utilizes three different ensembles of
gauge-field configurations generated by the RBC and

(pﬁy,, L2t 2 ma, P = mppt) S+¢”>

N

(10)

N S_ N

|
UKQCD collaborations [37,38]. These ensembles include
the effects of 2 + 1 flavors of sea quarks, implemented with
a domain-wall action [39—41]; the gauge action used is the
Iwasaki action [42]. The main parameters of the ensembles
and valence-quark actions are listed in Table I; see Sec. IV
for the resulting hadron masses. To compute the u, d, and s-
quark propagators, we use the same domain-wall action as
for the sea-quarks, with valence light-quark masses equal to
the sea light-quark masses, and valence strange-quark
masses tuned to the physical values, which are slightly
lower than the sea strange-quark masses. For the b-quark
propagators, we use the anisotropic clover action discussed

in Ref. [43], but with parameters am(Qb), ¢ (h>, cﬁj’; newly
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TABLE L

determined in Ref. [38]. The bottom quark is implemented with the action described in Ref. [43], but with parameters amg), ), cg )

Lattice parameters for the three different ensembles of gauge-field configurations. The values of the lattice spacing, a, were

)

newly tuned by us to obtain the correct B, kinetic mass, rest mass, and hyperfine splitting. The last two columns give the numbers of
exact (ex) and sloppy (sl) samples used for the calculation of the correlation functions with all-mode averaging [44,45].

Label N3 x N, p a [fm] am, 4 am®® am{™ am(Qb) ¢®) C%b% Ny Ny

Co1 243 x 64 2.13 0.1106(3) 0.01 0.04 0.0323 7.3258 3.1918 4.9625 283 9056
C005 243 x 64 2.13 0.1106(3) 0.005 0.04 0.0323 7.3258 3.1918 4.9625 311 9952
F004 323 x 64 2.25 0.0828(3) 0.004 0.03 0.0248 3.2823 2.0600 2.7960 251 8032

tuned by us to obtain the correct B, kinetic mass, rest mass,
and hyperfine splitting.

Our calculation employs all-mode averaging [44,45] to
reduce the cost for the light and strange quark propagators.
On each gauge-configuration, we computed one exact
sample for the relevant correlation functions (discussed
in the following sections), as well as 32 “sloppy” samples
with reduced conjugate-gradient iteration count in the
computation of the light and strange quark propagators.
For the light quarks, we also used deflation based on the
lowest 400 eigenvectors to reduce the cost and improve
the accuracy of the propagators. On a given gauge-field
configuration, the different samples correspond to different
source locations on a four-dimensional grid, with a ran-
domly chosen overall offset.

IV. TWO-POINT FUNCTIONS AND
HADRON MASSES

We now proceed to the discussion of the baryon
interpolating fields. Our lattice calculation uses m, = my
and neglects QED, which means that we have exact isospin
symmetry, and the A, and A*(1520) both have I = 0. The
continuous space-time symmetries on the other hand are
reduced to discrete symmetries by the cubic lattice. At zero
momentum, the relevant symmetry group is 0, the double
cover of the cubic group [46], and we still have the full
parity symmetry. At zero momentum, the continuum J? =
1* and JP = 3* irreps subduce identically to the GY" and
HY/" irreps; the next-higher values of J that appear in these
irreps are J = % and J = % respectively. In this case we can
therefore safely construct the interpolating fields for both
the A, and the A*(1520) using continuum symmetries. At
nonzero momenta, we no longer have parity symmetry,
and the relevant symmetry groups are little groups of 20
[47-49]. An interpolating field that would have J* = %‘ in
the continuum then also couples to JP = %*, and in some
cases even J& = %* [for example, for momentum direction
(0, 1, 1), the only irrep containing J :% also contains
J =1], which would make isolating the A*(1520)
extremely difficult. For this reason, we perform the lattice
calculation in the A*(1520) rest frame, giving nonzero

momentum to the A, instead. Since the A, is the lightest
baryon with quark content udb, any contributions from
mixing with opposite parity and higher J only appear as
excited-state contamination, which will be suppressed
exponentially for large Euclidean time separations.

We take the interpolating field for the A, in position
space to be

1 - Sa~b7,c ~aJb7.c
(On,), = 5" (Crs)ap(daitib; - uiGdshy)

= €(Cys) ypdaiifby,

(11)

where ¢ denotes a smeared quark field. We use gauge-
covariant Gaussian smearing of the form

2 NGauss
~ GG&USS ~ Gauss
( 4NGauss )
where
. 1 - .
Ag(x) = a—Z[U;(X)Q(x +aj) —2q(x)
j=1
+Uj(x—aj)q(x —aj)l, (13)

and the gauge links U are APE smeared (in the case of the
up, down, and strange quarks) or Stout smeared (in the case
of the bottom quark). The values used for the smearing
parameters are given in Table II. We average over “for-
ward” and “backward” two-point functions given by

2.\, fw
clM ™ (p, 1)

= Ze_ip'(y_x)«ozx,,)a(xo +1 Y)m/;(xo, X)),

(14)
2,A.bw
C(aﬂ ' )(pv t)
=D OOy, )o(%0.X) (O, )y (x0 = 1.¥)).  (15)
y
The A, masses obtained from single-exponential fits in the

time region of ground-state dominance are given in the last
column of Table III.
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TABLE IL

Parameters for the smearing of the quark fields in the baryon interpolating fields. A single sweep of

APE smearing [50] with parameter apg is defined as in Eq. (8) of Ref. [51], and we apply N spg such sweeps. The

Stout smearing is defined in Ref. [52].

Up, down, and strange quarks

Bottom quarks

N Gauss O-Gauss/ a N APE QAPE N Gauss GGauss/ a N, Stout PStout
Coarse 30 4.350 25 2.5 10 2.000 10 0.08
Fine 60 5.728 25 2.5 16 2.667 10 0.08

Even at zero momentum, constructing an interpolating
field with a good overlap to the A*(1520) proved to be
nontrivial. In a first, unsuccessful attempt, we tried the form

Id abe 1—]/ ~a=b7jc _ Jazbc
(On)" = € (Cry)op (—2 H) (s - disjig).
14

(16)

which can be projected to the H" irrep by contractin% the
index j (which runs over the spatial directions) with

P = i Ly 17

(3/2)_9 —§Y7- ( )

Even though the resulting interpolating field has the correct

values for all exactly conserved quantum numbers, it is

found to have poor overlap with the A*(1520) and much

greater overlap with higher-mass J© = %‘ states. The

effective mass for the two-point function computed with

OX’}d) on the C0O05 ensemble is shown with the red circles in

Fig. 1, and shows a “false plateau” at higher mass before
the signal is swamped by noise. A previous lattice QCD
study of A*-baryon spectroscopy using interpolating fields
similar to Eq. (16) also did not find a A*(1520)-like state
[53]. The problem is that OE@M) (after projection with
Pg /2)) has an internal structure corresponding to total
quark spin S = 3/2, total quark orbital angular momentum
L = 0, and flavor-SU (3) octet, while quark models suggest
that the A*(1520) dominantly has an L = 1, S = 1/2, and
flavor-SU(3)-singlet structure [54]. To obtain L =1, a
suitable spatial structure of the interpolating field is needed,
which can be achieved using covariant derivatives [55]. For
the main calculations in this work we use the form

abc 1+}’ <agb (N7 =\¢
(00 = e (Cro)ep52) (90
i

— 54iih(V;d)s + s (V;d)555 — de(V i) 5],

'We use the Minkowski-space metric tensor () =
diag(1,—1,—1,—1) and Minkowski-space gamma matrices
throughout this paper, except where indicated with a sub-
script “E.”

which has L =1, § = 1/2, and is a flavor-SU(3) singlet.
The covariant derivatives, which are defined as

V,4) = — [0,(0)a(x + ) - U} (x — a)ax - aj)].

(19)

change the parity, so the projector (1 +y,)/2 is used to
obtain negative overall parity. As we did previously for

Oﬂd), we project the two-point functions

CLl ™ (1) = 100 jalxo + 1.3)(On s (x0. X))

(20)

CLt ™ (1) = S04 jal30. %) (Ox )iyl = 1.¥))

(21)
to the H" irrep with Pg 12)"
covariant derivatives acting on the strange-quark fields
using “integration by parts,” which is possible only at zero
momentum. In this way, the calculation requires propa-
gators with derivative sources only for the light quarks. The
effective mass for C®") computed on the CO05 ensemble

In Eq. (18), we eliminated

1.3
(old)
1.2 Op: +
- = OA*
- = —
L;é 1.1 - - = - }__
=] 1 0 - - = x - 1: T
i F 3
171 1
0.9 T
0.8 T T T
0 5 10 15
t/a

FIG. 1. The effective masses computed for the two-point
functions with the old and new A* interpolating fields, on the
CO005 ensemble. The horizontal lines indicate the time ranges
used and energies obtained from single-exponential fits.
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TABLEIII. Hadron masses obtained from single-exponential fits to the respective two-point functions computed on the three different
ensembles.

Label m, [GeV] myg [GeV] my [GeV] my [GeV] my [GeV] my» [GeV] my, [GeV]
Co1 0.4312(13) 0.5795(19) 1.2647(51) 1.3494(61) 1.3877(61) 1.825(16) 5.793(17)
C005 0.3400(11) 0.5501(19) 1.1649(58) 1.2659(66) 1.3173(60) 1.740(17) 5.726(17)
F004 0.3030(12) 0.5361(24) 1.1197(59) 1.2382(54) 1.303(12) 1.757(15) 5.722(23)

is shown with the green squares in Fig. 1, and shows a
plateau at a significantly lower mass, which we identify (in
the single-hadron/narrow-width approximation) with the
A*(1520) resonance. The A*(1520) masses obtained from
single-exponential fits in the plateau regions for all ensem-
bles are given in the second-to-last column of Table III.

We also computed the pion, kaon, nucleon, Lambda,
and Sigma two-point functions and obtained the masses
given in the same table. For the three ensembles we have,
the mass differences m,- — my — m,, are found to be in the
range from approximately 80 to 150 MeV (physical value:
192 MeV), while mp- —my — mg ranges from approx-
imately —20 to +100 MeV (physical value: 89 MeV).
These results support our identification of the extracted
energy level with the A*(1520) in the narrow-width
approximation. A proper finite-volume scattering analysis
with Liischer’s method [56] is beyond the scope of this
work. Here we just note that the lowest noninteracting
N-K and X-r scattering states in the A" irrep must have
nonzero back-to-back momenta and their energies are well
above m - for our lattice volumes (this is another benefit of
working in the A* rest frame).

For later reference, we also define overlap factors of the
interpolating fields with the baryon states of interest as

(004, 1A (p.5)) = (ZV) + ZZ7)u(mn, . p.s).  (22)
and

. 1+y
(01(0x);IA*(0,5)) = Zp —L2u;(my,0,5).  (23)

As everywhere in this paper, [A*(0, s')) denotes the lowest-
energy 3/2" state. For the A, at nonzero momentum, it is
necessary to have the two separate coefficients Zs\lb) and Zfb)
that may also depend on p, because the spatial-only
smearing of the quark fields breaks hypercubic symmetry
(and because the lattice itself also breaks the Lorentz
symmetry). The spectral decomposition of C?/)(p, ¢)
then reads

CM)(p, 1)

1 I 2 I 2 _
5.0 @0+ ZUP) 1+ HEZ) + 23 e !

+ (excited-state contributions) (24)

with v# = p#/m,, , while the spectral decomposition of
CN)(1) after projection with P(3/5) becomes

j 2.A7 1 j . — M
P‘fé/z>C§k )(t) = —EZi*(l +70) (91]( —51”71()6 at

+ (excited-state contributions). (25)

The excited-state contributions decay exponentially faster
with ¢ than the ground-state contributions shown here.

V. THREE-POINT FUNCTIONS AND
FORM FACTORS

To determine the form factors, we compute forward and
backward three-point functions

3.fw
o™ (p.T1.7)

_ Ze—ip-(y—Z) ((0a);,(x0. X)

y.z

X Jr(xg =1+ 17,¥)(On,)s(x0 = 1,2)),  (26)
Clg.fs'yb‘”) (p.T,t,t—1)
= Ze_ip'(z_y><(0A,,>a(xo +1.2)

y.Z

X Ji(xo + 7,¥)(0x) (%0, X)), (27)

where p is the momentum of the A, I' is the Dirac matrix in
the b — s current Jr, 7 is the source-sink separation, and 7
is the current-insertion time. To match the currents to the
continuum MS scheme, we employ the mostly nonpertur-
bative method described in Refs. [57,58]. Specifically,

we use
_ (59) bb) = —
Jr = pr ZV ZV [st =+ ddISF'YE Vb], (28)

where Zi}”) and Zg’b) are the matching factors of the

temporal components of the s - s and b — b vector
currents, determined nonperturbatively using charge con-
servation, pr are residual matching factors that are numeri-
cally close to 1 and are computed using one-loop lattice
perturbation theory [59], and the term with coefficient d;
removes O(a) discretization errors at tree level. In Eq. (28),
Y denotes the three Euclidean spatial gamma matrices,
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TABLE IV. Matching parameters. We determined the values of

Zﬁ,bb) using the charge-conservation condition from ratios of B,

(s5)

two-point and three-point functions. The values of Z;,™ are taken

from Ref. [38]. The O(a)-improvement coefficients dgb) were

computed at tree level in mean-field-improved perturbation
theory.

Zi/bb) Zi/”) d%b)
Coarse 9.0631(84) 0.71273(26) 0.0728
Fine 4.7449(21) 0.7440(18) 0.0696
= —iy/. The values of Z{\"’, Z\/*), and d iven i
}/E = l}/ € values o vV s an 1 are glVCl’l m

Table IV. For the residual matchlng factors pr of the vector
and axial vector currents, we use the one-loop values given
in Table III of Ref. [60]. These matching factors were
computed for slightly different values of the parameters in
the b-quark action [43] but are not expected to depend
strongly on these parameters. For the residual matching
factors of the tensor currents, one-loop results were not
available and we set them to the tree-level values equal to
unity. Following Ref. [25], we estimate the resulting
systematic uncertainty in the tensor form factors at scale
u=my to be equal to 2 times the maximum value
of |py —1[, |py,, — 1|, which is 0.05316. Note that
the contributions from the operator O; in the weak
Hamiltonian to the A, — A*(1520)7 "¢~ differential decay
rate at high ¢ are relatively small, so the larger systematic
uncertainty in the tensor form factors is unproblematic.

Both the forward and backward three-point functions are
computed using light and strange quark propagators with
sources (Gaussian smeared, with and without derivatives)
located at (xg, x). Given the more complicated interpolat-
ing field for the A* (compared to that for the A in Ref. [25]),
here we apply the sequential-source method for the b-quark
propagators through the weak current, and not through the
A, interpolating field as was done in Ref. [25]. This method
fixes ¢ rather than ¢, but we only computed the three-point
functions for t =27, t=2{ +a, and 1t =2 —a. We
generated data for nine different separations on the coarse
lattices and ten different separations on the fine lattices, as
shown in Table V.

Due to the large mass of the A, large values of p are
needed to appreciably move ¢*> away from g2, as shown

TABLE V. The source-sink separations for which we computed
the three-point functions on the coarse (CO1, C005) and fine
(FOO4) ensembles.

Coarse 4,5,...,12
Fine 5

20 :
1
i
15—\3\
o i
=z ! .
8 10 igp:(07073)27
o !
fwy I
57 :
1
!
O T T II T T

00 05 10 15 20 25 30
p| [GeV]

FIG. 2. The value of the four-momentum transfer squared as a
function of the A, momentum in the A* rest frame. The vertical
dashed line indicates the largest momentum we use in this
calculation.

in Fig. 2. At the same time, discretization errors are
expected to grow with p, and the number of b-quark
sequential propagators that need to be computed is propor-
tional to the number of choices for p. In this first lattice
study of the A, — A* form factors, we therefore used only
two different choices: p = (0,0,2)2% and p = (0,0, 3) 3%
Here, L = N,a are the spatial lattlce extents, which are
approximately 2.7 fm for all three ensembles.

After projection with P (3/5), the spectral decomposition
of the forward three-point function reads

™ (p.T.1. 1)

- 7. ) — iy, — Zyi
0Zn T (gﬁ Y7 37904>

Jl
P

2).0 )—mAz(!—t’)e—EAbt'
b

<L) + 2
+ (excited-state contributions), (29)

while the decomposition of the backward three-point
function is given by the Dirac adjoint. Here, €*[I'] are,
up to small lattice-discretization and finite-volume
effects, the linear combinations of form factors defined
in Egs. (7)—-(10).

To extract the form factors, we utilize two different types
of combinations of correlation functions. The first type
(Sec. VA) allows us to extract the absolute magnitudes
of individual form factors, but not their relative signs.
The second type (Sec. V B) allows us to extract ratios of
different form factors in which the sign information is
preserved.

A. Extracting the squares of individual
form factors

To remove the unwanted overlap factors and cancel the
exponential time dependence for the ground-state contri-
bution, we form the ratios
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jl (3.fw) i / (3.bw) v _ 4\ pmk
R (1. ¢) = TPl C (0. Ty 1.0) (14 #)Co ™ (p. T 11 = 1) PY) ) (30)
9 b m 2,A* 9
Te[Plg), Con (O] TE[(1 + $)CM) (p. 1)
|
T A 48E
e XE(VATVIN i I TP i o
Iy =io*q,, Iy = i0"ysq,, and the traces are over (Ep, +my,)(my, +my-)
the Dirac indices. To isolate the individual helicity form o, . _
factors, we then contract with the timelike, longitudinal, = go + (excited-state contributions), (40)
and transverse polarization vectors 48E,
Ri(p.1) = : s R4 (P 1.1/2)
€= 0. e =(lal.(¢"/a)a). (Ex, = ma,)(ma, = mx)
i) = (0,e;  q), (31) = g% + (excited-state contributions), (41)
36E
and define RA - Ay A
p.t) = K (p,t,t/2
i1 (En, +ma,)*(Ex, —my,)? il )
RE(p.1.7) = gjk€;<40>€z</0>9i’jk"”(l), t, )X, (32) = gi + (excited-state contributions), (42)
; 8E
R (p.1.1) = guey el R (p e )X (33) R (p.1) = — o R (p.1.1/2)
* (En, +mp,) 2 (Ex, —my,)*
RX(p.t.1)=p;p keﬁ‘”gﬁl’”,%fkﬂ"(p, t,1)%, (34) = ¢}, + (excited-state contributions), (43)
48E
o wm (w1 RV(p,t)=— M pTVin t1/2
@f_/(p, f, l’) — ej € _Epjpk + (p ) (EAh + mAb)q4 + (p / )
« e,(f'l)el(,l’l)%jk””(p, LY. (35) = h2 + (excited-state contributions), ~ (44)
e . . TV 36EA;,
Repeated Latin indices are summed only over the spatial ~ R|"(p,t) = — 7 E 5 5
directions, while repeated Greek indices are summed over ( Ay T m/\b) ( Ay T m/\b> (m/\b +mye)
all four spacetime directions. The above quantities are x RV (p,t,1/2)
equal to the squares of the individual form factors times 9 oo o
certain combinations of the hadron masses and energies. = I + (excited-state contributions), (45)
For a given value of ¢, the excited-state contamination will TV( ) 8E,,
be minimal for # = /2. Using this choice and removing R 7 (p.t) =— 3 3 3
E E, — .
the kinematic factors, we evaluate ( A mAh) ( Ay mAh) (mA” +mpe)
. x R (p.1,1/2)
R(‘)/(p, 1) = M > %g(p, t.t/2) = hi, + (excited-state contributions), (46)
(EAb - mAb)(mAb - mA*)
= f% + (excited-state contributions), (36) RTA(p.1) = %ggf& (p.1.1/2)
(EA,, - mA,,)q
RY(p.1) = 48E,, SR (p.1,1/2) = h% + (excited-state contributions),  (47)
(En, +mp,)(mp, +my-)
= f% + (excited-state contributions) (37)  R™(p,t) =-— I0En,
" ’ = (Ep, — mA,,)3(EA,, + mAh)z(mA,, —my.)?
36E TA
Rz(p’t) = — 5 - ;\; 3=%K(p,t, t/2) X@L (p»t, l‘/Z)
(En, = mp, ) (En, + ) = 7% + (excited-state contributions), (48)
= f3 + (excited-state contributions), (38)
RTA(p l‘) _ 8EA1,
LA =
(En, —ma,)*(En, +my,) x RTA(p. 1,1/2)
o 2 . . . -
= f7, + (excited-state contributions), (39) — 2, + (excited-state contributions). (49)
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Since ¢ and r must both be integer multiples of the lattice
spacing, here we imply an average over the two values of ¢
closest to #/2 for odd ¢/ a. The excited-state contributions in
the above quantities will decay exponentially as a function
of the source-sink separation f.

B. Extracting ratios of form factors

To preserve the sign information, we define the follow-
ing linear projections of three-point functions:

sV (p,1,1)

—Te|m WP CEM (. gy 1) a ;’5)}, (50)
Sy (p,-t, /)
=Tr _75M()Pfé/2)c(3fw (p, FA TA > t)(l —;%)}v (51)
where 1 € {0,+, L, L'} and
" = P g
Mf;) = q(,ﬂe(o), (53)

12 . (0 m 12
MS] ) = l€§ >le/5€(0) €mij’ ME)] ) - O? (55)

W) _ g )

M) =-M) + M (56)
(L) _ (1) | a(12)

M) =My M (57)

with the polarization vectors as defined in Eq. (31). As
before, repeated Latin indices are summed only over
the spatial directions. To improve the signals, we use the
average of the forward three-point function and the Dirac
adjoint of the backward three-point function instead of just
CG™)_ We can isolate the form factors, up to common
overlap factors and exponentials, in the following way:

3E\ m

Sy (p.1.1) = S

(Epn, = ma,)(Ep, +ma,)(my, —my-)

x 8y (p,1,1)

= foZx-(Z )mAb + Zg\b) )e_m’\*(t_’/)e_EAbﬂ
+ (excited-state contributions), (58)
3E\ m

SV (p.r.t) = G

(En, = mAb)l/z(EAb + mAb)3/2(mAb + myx)
x SY(p,1,7)

+ (excited-state contributions), (59)

3EA ma
S (p.1,7) = b SY(p.t.7)
- 2(Ep, = mp,)(Ep, +ma,)*
=fl1Z\(Z AN )mAb + Z( : E,,)e —m (=) g=En, ¥
+ (excited-state contrlbutlons), (60)
E\,mn
S, (p.t. 1) = b SY.(p.t.1
Pt = 5 =y, 1y 2 2 P
= fL’Z/\* (ZE\I,,) my, + ZE\Z’;)EAb)e—mA* (l—[’)e_EAb /
+ (excited-state contributions), (61)
Sip.0) = o
(En, +mp,)(Ep, —ma,)(my, + my-)
x SA(p,1,1')
= goZn: (Z( )mA;, + Z( : )e‘”’A*(’_’/>e_E"h’/
+ (excited-state contrlbutlons), (62)
3EA ma
SA (p, t l‘/) — b b
’ (En, = ma, )2 (En, + mp,)" 2 (my, —my-)
x $1(p,t,1)
=9+Zp (Z( )m/\b + ZE\,,)E Jema (t=1) g=En, "
+ (excited-state contributions), (63)
3EA my
SA(p.1,7) = — — S1(p.t.1)
- 2(Ep, = mp, )2 (Ex, +ma,)
=912y (Z( )mA;, + Z( : Ey, )e" (1=1) g=En,"
+ (excited-state contrlbutlons), (64)
E,m
Sh(p.t.t) =- e S (p.1.1)

2(Ey, — mA,,)z(EAh +my,)
2 e (1=
= gJJZA* (Zg\lh) mAb + ZE\},)E/\I,) KON (l ) EAb

+ (excited-state contributions), (65)
3EA ma
STV(p, t t/) — _ b b
" (En, = ma,) P (En, +my, )¢
STV (p.1.7)
=h Z\(Z z\! )mA, + AN )EA,,) —me (1=1) g=En,
+ (excited-state contributions), (66)
3EA ma
STV(p, t, t/) — _ b b
* 2(Ep, —my, ) (Ep, + mAb)z(mAb + my-)

% STV (p.1.1)
— (1) 2) —m (1=1) ,—Ep, t
= hyZx(Zy)mp, + Zy, Ep,)e e "M

+ (excited-state contributions), (67)
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Ex my TA / EAbmAb
S™(p,t,t') = - b Sp. ) = - 2
L <p ) 2(EAb —mAb)(EAb —I—mAb)z(mAb —|—mA*) 2(E‘A;, +mA;,)(EA;, _m/\;,) (mA;, _m/\*)
A
x STV (p, 1,1 x ST (p.1.1)
, ) _7 (1) 2 —mp= (1=1") ,~En,
=hyZy (ZE\I,,)mAb + ZE\ZZEAb)e_”’A*(H)e_EAb’ = huZn (Zy)ma, + Zy Ep, e e
+ (excited-state contributions), (68) + (excited-state contributions). (71)
The excited-state contributions decay exponentially faster
- than the ground-state contributions. The unwanted factors
A, A | 2 (=1 —Ex 1 . .
S (p.1. 1) = (B, + 1) P (En, — )7 STA(p,1¢)  of Zy(Z)mp, + ZEp, e (=0 Fnt will cancel in
Ay A, Ay )T ratios of the above quantities at large times.
= ilJrZA* (Zﬁ\lb)m/\b + Zi\z];)EAb)e_mA* (t_t,)e_EAb 4
) o C. Results for the form factors with
+ (excited-state contributions), (69) relative signs preserved
The 14 form factors with relative sign information
3E. m preserved can now be obtained by extracting the magnitude
ST™A(p,t, 1) = — A 5 of a single reference form factor as in Sec. VA, and
2(Ep, +my, )(Ep, —my,)* (my, —my) multiplying with ratios of the projected three-point func-
x STA(p,1,7) tions S¥(p. 7, 7). We choose f ' to be the reference form
- , factor because the results for the corresponding R, show
=, Zy (ZVmy + ZOE, Yo (=) g Eny g Ll
T LAATEA, TN, Ap T A good plateaus and reasonably small statistical uncertainties
+ (excited-state contributions), (70)  (see the third plot from the left in the top row of Fig. 3). We
again set ¥ = t/2, and define the functions
0.2 0.003 6
v
FV 0.05 oo R, xEE] a9 pv
0.1 — +ssss‘_l_l_§_ﬁ - T 0'.'.H_-_!_I-E
0.001 — I 2 —
0.0 0.00 — 0.000 —rr : 0
T 1 1 1 1 T T T T 7T T 1 1 1
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
N o 0,00 0.10
FA e '
2 LY 2 ~0.05 IEEH
O 0 0.00 —frrr
T 1 1 T L U T L T T T T T 1
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
_ I t/a
0.02 .
prefit M pry T Ery
0.01 — + } N T ._.Tiﬁ 1
000 0057 ~0.02— sessss=xiy
oot 3 0.00 —frr
o T T T T 1 I N T T 1 |
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
4 4
TA TA TA
, | F+sscc._._._!_ri , FJ.""S—.—I—!ﬂ 0.1+ FJ_/."SI._I_I_ﬂ
R R B L B
T T 1 | T T 1 | T T 1 |
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
t/a t/a t/a

FIG. 3. Numerical results for the quantities F ff (p, 1), defined in Eq. (72), as a function of the source-sink separation, for
p =(0,0,3) ZL—” and for the FOO4 ensemble. Also shown is RY,(p, t), which is used to extract the square of the reference form factor f .

1

The horizontal lines indicate the ranges and extracted values of constant fits.

074505-10



A, = A (152065 ¢~ ...

PHYS. REV. D 103, 074505 (2021)

TABLE VL. Values of the form factors extracted from constant fits of F%(p, ) in the plateau regions, for each
ensemble and for the two different A;, momenta.

Form factor Ip|/(2=/L) Co1 C005 F004
fo 2 3.77(18) 3.53(24) 3.36(14)
3 3.38(14) 3.15(20) 3.14(11)
[y 2 0.0773(40) 0.0714(55) 0.0698(36)
3 0.1040(49) 0.0949(71) 0.0965(43)
fL 2 0.002(10) —0.017(13) —0.0204(81)
3 0.048(10) 0.018(14) 0.0225(87)
[ 2 0.04433(73) 0.0434(16) 0.04399(67)
3 0.04051(89) 0.0401(19) 0.04093(81)
9o 2 0.0273(40) 0.0250(50) 0.0224(35)
3 0.0559(47) 0.0508(61) 0.0498(40)
g, 2 3.17(17) 2.95(22) 2.82(13)
3 2.85(13) 2.65(18) 2.63(10)
g, 2 3.12(16) 2.91(21) 2.76(13)
3 2.80(12) 2.61(17) 2.589(95)
gu 2 —0.029(14) —0.052(21) —0.0261(86)
3 —0.025(10) —0.040(14) —0.0275(60)
h, 2 —0.0162(95) —0.034(13) —0.0436(80)
3 0.028(10) —0.000(14) —0.0024(86)
h, 2 0.0440(36) 0.0384(47) 0.0388(32)
3 0.0701(44) 0.0616(59) 0.0640(37)
hy 2 —0.01582(73) ~0.0155(12) —0.01738(47)
3 —0.01495(82) —0.0144(13) —0.01684(55)
}N1+ 2 3.15(16) 2.91(21) 2.78(12)
3 2.82(12) 2.61(17) 2.593(93)
hy 2 3.22(16) 3.01(21) 2.86(13)
3 2.89(12) 2.70(18) 2.68(10)
7y 2 0.098(14) 0.087(22) 0.1183(83)
3 0.091(11) 0.079(16) 0.1067(66)
SX(p,t,1/2) describe the kinematic dependence of each form factor by a
F ff(p, 1= v RY.(p), (72) linear function of the dimensionless variable

SV (p,t.1/2) VY

where RY, (p) denotes the result of a constant fit to R, (p. 7)
in the region of ground-state saturation. The functions
FX(p, t) are equal to the individual helicity form factors up
to excited-state contamination that decays exponentially
with 7. We perform constant fits to 5 (p, ?) in the plateau
regions, requiring good quality of fit and stability under
variations of the starting time. Plots of FJ(p,7) and the
associated fits for one ensemble and one momentum are
shown in Fig. 3. All fit results are listed in Table VI. The
uncertainties were computed using statistical bootstrap.

VI. CHIRAL AND CONTINUUM
EXTRAPOLATIONS OF THE FORM FACTORS

The final step in the analysis of the form factors is to fit
suitable functions describing the dependence on the kin-
ematics, the light-quark mass (or, equivalently, m2), and the
lattice spacing to the results given in Table VI. Given that
we have data for only two different momenta that corre-
spond to values of g near the kinematic endpoint, we

2 2 2
my + my. —q
w(g?)=v-v = —meA v (73)
b

We expect this description to be accurate only in the high-
g* region. To allow for dependence on the light-quark mass
and lattice spacing, we use the model

2_ .2
flg®) =F {1 o T Mahys Dfa2A2]

(4nfr)
2 2
a1 e E T s | pyrgape (w—1)
(4rf,)? ’
(74)

with independent fit parameters F/, A/, C/, D/, Cf, and D/
for each form factor f. Here, we introduced f, = 132 MeV
and A = 300 MeV to make all parameters dimensionless.
In the physical limit m, = m, ;s = 135 MeV, a = 0, the
fit functions reduce to the form

074505-11



STEFAN MEINEL and GUMARO RENDON

PHYS. REV. D 103, 074505 (2021)

TABLE VII. The nominal fit parameters describing the form
factors in the physical limit. The parametrizations, which are
accurate only in the high-g> region, are given by f = F/+
Af(w—1), where w=v-v' = (m} +m3. —q*)/(2mp,my-).
The 28 x 28 covariance matrix is available in the Supplemental
Material [61]. The uncertainties given here are statistical only; see
the main text for a discussion of systematic uncertainties.

f Fr AS
fo 3.54(29) -14.7(3.3)
I+ 0.0432(64) 1.63(19)
fi —0.068(18) 2.49(35)
[ 0.0461(18) —-0.161(27)
9 0.0024(38) 1.58(17)
[ 2.95(25) -12.2(2.9)
' 2.92(24) —11.8(2.8)
[ —0.037(14) 0.09(25)
hy —0.095(19) 2.38(32)
hy 0.0170(43) 1.49(16)
hy —0.0196(13) 0.038(11)
i,+ 2.90(24) -12.0(2.9)
7& 3.01(25) -12.2(2.8)
ilr 0.144(24) —0.74(37)
f(@®) = F/ + Al(w=1), (75)

which only depend on the parameters F/ and A/. The
model (74) can be thought of as expansions of both the
zero-recoil form factors F/ and the slopes A/ in terms of
|

the light-quark mass and the square of the lattice spacing.
The limited number of data points made it necessary to
constrain the size of the coefficients C/, D/, ¢/, and D' to
be not unnaturally large. To this end, we introduced
Gaussian priors for C/, D/, C/, and D’ with central values
equal to 0 and widths equal to 10.

Our results for the physical-limit parameters F/ and A/
are given in Table VII. The full 28 x 28 covariance matrix
of the parameters for all 14 form factors is available as an
ancillary file in the Supplemental Material [61]. The form
factors in the physical limit are plotted in Figs. 4 and 5. The
dashed-dotted, dashed, and dotted curves show the fit
models evaluated at the pion masses and lattice spacings
of the individual datasets CO1, C005, and F004, respec-
tively, where the uncertainty bands are omitted for clarity.
We see that the data are well described by the model. The
results for the parameters C/, D/, C/, and D’ are in fact
consistent with zero within the statistical uncertainties. To
report the values of y>/d.o.f. of the fits, we need to make
a choice for the number of parameters to be subtracted
from the number of data points to obtain the number of
degrees of freedom. If we count F/, A/, C/, and D/ as
parameters that are primarily constrained by the data, then
d.o.f. = 6 — 4 = 2. With this choice, the fits have y*/d.o.f.
in the range from approximately 0.3 to 1.2.

To estimates systematic uncertainties associated with the
chiral and continuum extrapolation, we additionally per-
formed “higher-order” fits using the model

2 2 3
f ( 2) _ Ff 1+ Cf My — m”wPhyS + Hf mz — mn:,phys + Df 2A2 + Ef A+ Gf 3A3
HO\4") = I'yo HO (dxf,) HO (4af,)] HOY¢ HOG HOY?

2

3
- mﬂ,phys & f my

3

f ~f Ma
+ Apo |1 + Cho (4nf )2 + Hyo

using Gaussian priors for the parameters C{IO, Hﬁo, D{IO,
Gﬁo, Cﬁo, I:I{IO, Dﬁo, G{IO with central values equal to 0 and

widths equal to 10. The terms with coefficients E{iO and E{[o
are meant to describe the effects of the incomplete O(a)
improvement of the heavy-light currents using only the d;
correction term in Eq. (28) and with d; evaluated at mean-
field-improved tree level. In Ref. [60], results forthe A, — p
form factors (using the same actions and lattice spacings)
using the incomplete (d; only) and full operator bases for the
O(a) improvement were compared, albeit with all coeffi-
cients evaluated at one loop (the coefficients equivalent to d;
are denoted as c# in Ref. [60]). The results were found to
differ only by less than 0.3%. The one-loop and tree-level
values of d; differ only by approximately 0.02, but we also
expect larger O(a) effects associated with the use of nonzero
A, momentum. We therefore conservatively allow for the
effect of the missing radiative corrections to the O(a)

M, poe s - ~
anf ”)-‘;hy + Dlya®A? + Elgah + Gﬁoa3/\3} (w=1), (76)

improvement to be as large as 5% at the coarse lattice
spacing. This translates to setting the prior widths of the
parameters E{IO and Eﬁo to 0.3.

In the higher-order fits, we also incorporate the system-
atic uncertainties associated with the residual matching
factors pr, as well as scale-setting and isospin-symmetry-
breaking/QED effects. The residual matching factors were
computed at one loop for the vector and axial vector
currents, and the size of the missing higher-order correc-
tions was estimated to be below 0.07% in Ref. [60], a result
of the smallness of the one-loop corrections (this is the
benefit of the “mostly nonperturbative” method). Never-
theless, because we improved the tuning of the b-quark
action parameters here without recomputing the one-loop
corrections to the current matching factors, we allow for
matching uncertainties in the vector and axial vector form
factors as large as 2%. For the tensor form factors, we
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YCO1  $C005 % F004 ————— a=0, my =135MeV
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FIG. 4. Chiral and continuum extrapolations of the vector and axial vector form factors. The solid magenta curves show the form
factors in the physical limit, with inner light magenta bands indicating the 1o statistical uncertainties and outer dark magenta bands
indicating the quadrature sums of statistical and estimated systematic uncertainties. The dashed-dotted, dashed, and dotted curves show
the fit models evaluated at the pion masses and lattice spacings of the individual datasets CO1, C005, and F004, respectively, where the
uncertainty bands are omitted for clarity.
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FIG. 5.

estimate the size of the missing one-loop corrections to
the residual matching factors to be 5.316% at u = my,
as discussed in Sec. V. The neglected effects from m, —
my # 0 and QED in the form factors are estimated to be
approximately 1%. The current-matching and isospin-
breaking/QED uncertainties were included in the higher-
order fits by multiplying each form factor with Gaussian
random distributions of central value 1 and width corre-
sponding to the estimated uncertainty. These distribu-
tions were taken to be correlated within each of the
groups {fo, [y, f1. fit {9094, 90,90} {hy hy by},
{]71 +,7z L h '}, but uncorrelated across different groups.
The scale-setting uncertainties were incorporated by pro-
moting the lattice spacings to fit parameters, constrained to
have the known values and uncertainties.

-----
iy =y

Like Fig. 4, but for the tensor form factors.

In the physical limit, the higher-order fit functions again
reduce to the form as in Eq. (75), with F/ and A’ replaced
by F’ {,O and A{IO. The results for these parameters are given
in Table VIII, and the corresponding covariance matrix
is available in the Supplemental Material [61]. As in
Refs. [25,60], we evaluate the systematic form factor
uncertainty of any observable O through

00 syst — Max (|0HO - O|’ |020.H0 - 620|) s (77)

where O, o6, denote the central value and uncertainty
obtained using the parameter values and covariance matrix
of the nominal fit and Oyg, 6 g denote the central value
and uncertainty obtained using the parameter values and
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TABLE VIII. Form-factor parameters obtained from fits in-
cluding higher-order terms. These parameters are used only to
estimate systematic uncertainties as explained in the main text.
The 28 x 28 covariance matrix is available in the Supplemental
Material [61].

f Flo Ato
fo 3.55(33) ~14.6(3.3)
fe 0.0433(70) 1.64(20)
fL —0.068(19) 2.51(38)
fu 0.0462(27) —0.161(28)
% 0.0024(39) 1.59(18)
9. 2.95(29) ~12.1(2.9)
9. 2.92(28) ~11.7(2.8)
g —0.037(14) 0.09(25)
h, —0.095(20) 2.39(37)
hy 0.0169(47) 1.50(20)
hy —0.0197(19) 0.038(11)
i, 2.90(32) ~11.9(2.9)
i, 3.01(33) ~12.1(2.9)
B 0.145(27) —0.74(37)

covariance matrix of the higher-order fit. The systematic
and statistical uncertainties are then added in quadrature to
obtain the total uncertainties. The total uncertainties of the
form factors themselves are shown with the dark magenta
bands in Figs. 4 and 5. For some of the form factors, the
statistical uncertainties are so large that adding the sys-
tematic uncertainties does not visibly increase the width

o Ga,

d¢> 3- 2107t5mA

= By, Vi Poy/SAL (2 4 g?) 4 Asgo? + 6Am2),
b

of the band. When applying Eq. (77) to the A, —
A*(1520)¢" ¢~ differential branching fraction in the region
g*> > 16 GeV?, we find that the systematic uncertainties in
the form factors contribute an uncertainty ranging from
9.7%—-11.4% in dB/dq*. Because dBB/dq* depends quad-
ratically on the form factors, this corresponds to an
effective form factor systematic uncertainty in the range
from 4.9%-5.7%.

Finally, note that our estimates of systematic uncertain-
ties do not account for errors introduced by performing the
data analysis as if the A*(1520) is a stable hadron. We
expect these errors to be small, given the narrow width of
the A*(1520) and our restriction to the rest frame. A more
rigorous determination of A, — A*(1520) form factors that
treats the A*(1520) as an unstable resonance in coupled-
channel p-K, X-7 scattering may be possible using the
finite-volume formalism of Refs. [62,63], but this is far
beyond the scope of the present work. In the absence of
such an analysis, we also cannot reliably estimate finite-
volume effects in the form factors, although we note that
m,L > 4 for all ensembles used here.

VIL A, — A*(1520)#* £~ OBSERVABLES

To calculate the A, — A*(1520)£"¢~ observables, we
employ the usual operator-product expansion that allows us
to express the decay amplitude in terms of local hadronic
matrix elements [64]. For the differential decay rate in the
Standard Model, we find

where v = /1 —4m2/q?, and the quantities A;, A,, and A, are given by

a= i (-1.12)
i (0.-2.-)

2
+ H2<—1,

(o2 D[]

A —lm (L]
T\ P22

2
+ |H, (—1,

Here, H, and H, are linear combinations of hadronic helicity amplitudes with the appropriate Wilson coefficients:

2
H]:— mb

7@“(612)(1# + Hys) + C(q?) (Hy — Ha),

(78)
1 1\[? 11\
N~ H 01_’_
23)] +m(03)
2 1 1\]? 1 3\
H(1,= —= H(1,--,-2), 79
o (13=3)] i (1-33) )
NP (ol D\
272 2\7272
1 1\]? 1 3\

H, (1., —= 208 I P——— 80
(13m3) [+ ]m(-3-) 0
2 1 1 2

Hy(t —=. —= 81
+‘ 2< ) 2) (81)
(82)
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Hy = Cyo(Hy — Hy). (83)
In terms of the form factors, the helicity amplitudes (in our sign conventions) for the vector, axial-vector, and tensor currents
are equal to
Hv<t,%,%> —Hv(t,—%,—%> :—fo(m/\b ?/’;%)\/Ey (84)
s
HV<1,§,—§) _—Hv<—1,—%é) = (86)
Hv<1,—%,—§> —Hv<—1é%> = AT (87)
H, (t;;) =-H, (t, —;—;) =9 b, T/Z%)\/Sj, (88)
H, (0§ %) -, (o,—%,—;) =g, Zjﬁﬁ, (89)
HA(L%»—%> = _HA<_1’ %é) QLE?’_, (90)
a(1-3-2) =it (11.2) = o1
and
HT<t,%,%>:H7<t,—%,—%>:O, (92)
Hy <o%%) — Hy <0, —%, —%) oy, Ut Zq“;)\/ﬁ, (93)
HT<1,%,—;> HT<—1 —%,D— l—‘/s_;, (94)
HT<1, ;,—3)— ( 1%%) — AT (95)
HT5<L;;> I—H75<f’—;—;> =0, (96)
HT5<0,%,%> :—HT5<0,—%,—%> :L%, (97)
Hn(l,;, D—— T5< 1,—%,%):%“—“;_‘, (98)
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1 3 13 -
HTS <1,—§,—§> __HTS <—1,§,§> ——hl’\/gi. (99)

For the effective Wilson coefficients CSif(¢?) and Ct(g?),
we use the expressions given in Eqgs. (65) and (66) of
Ref. [25]. The Wilson coefficients C; through C,,, the
strong and electromagnetic couplings, and the » and ¢
quark masses are also evaluated as in Ref. [25]. We take

|V Vis| = 0.04120 £+ 0.00056 (100)
from the summer 2018 Standard-Model fit performed by
the UTFit Collaboration [65], and, to obtain dl’)’/dq2 =
75,dl7/dg?, the A, lifetime

7y, = (1471 4 0.009) ps (101)

from [29].

The uncertainties estimated for the Standard-Model
predictions shown below include the form factor statistical
and systematic uncertainties, the perturbative uncertain-
ties, an estimate of quark-hadron duality violations (as in
Ref. [25]), and the parametric uncertainties from Eqs. (100)
and (101).

Our prediction for the differential branching fraction in
the high-g> region is shown in Fig. 6. Here we have set
m, = 0, which, in this kinetic region, is a good approxi-
mation for both electrons and muons. We only show results
above g> = 16 GeV? because our lattice data only reach
down to approximately 16.3 GeV?, and our parametrization
|

a‘r
dg?dcosf,dcosO,.dgp 8z

4 x107°9
dB/dq¢? [GeV ™
3 —
2 —
1 —
0 T T T T
16.0 16.2 16.4 16.6 16.8

¢ [GeV?]

FIG. 6. The A, —» A*(1520)¢ "¢~ differential branching frac-
tion in the high-g? region calculated in the Standard Model using
our form factor results. Note that the factor of B(A* - pK~) is
not included here.

of the ¢> dependence of the form factors is not expected to
be reliable for lower g In this kinematic region, our
numerical results for d3/dg? are approximately a factor of
2 lower than those obtained using the quark-model form
factors of Ref. [30].

In the narrow-width approximation for the A*(1520) and
for m, =0, the A, - A*(1520)(—»pK~)¢+¢~ four-fold
differential decay distribution in the Standard Model has
the form

3
= —[cos? Ox- (L1, cos 0, + Ly, cos> O, + L sin® 0,)

+ sin? @+ (Lye 08 0y + Lo, c08> O, + Loy, sin® 6,)

+ sin? @5« (Lsy, sin? 0, cos? ¢ + Ly, sin” 0, sin ¢ cos ¢p)

+ sin @5~ cos @p- cos Pp(Ls, sin O, + Lsg,. sin 6, cos 0,)

+ 8in O+ cos Op- sin p(Lg, sin O, + Ly, sin B, cos 6,)],

where the angular coefficients L; are functions of g* only
[17]. The expressions for the L; in terms of form factors are
given in Ref. [17], using a slightly different definition of
the form factors that is related to ours as shown in
Appendix A 2. In the following, we use the convention
that we do not include the factor of By = B(A* — pK~)
in the angular coefficients L;, which means that the integral
of Eq. (102) over cos @, cos -, and ¢ is equal to dT"/dq?
for the primary decay A, — A*(1520)¢"¢~. We consider
the CP-averaged, normalized angular observables [17]

L+L;
§ = ithi (103)
d(T+1)/dg

(102)

I
Our predictions for S, Sice> Stsss S2cs S2ces 52550 S3sss S5
and Ss,. are shown in Figs. 7 and 8. Two further com-
binations of interest are the fraction of longitudinally
polarized dileptons

2(Llcc + 2LZCC)

F,=1- 104
L 3dl'/dg? (104)
and the lepton-side forward-backward asymmetry
Ly, +2L,,
Afy = 52, 105
P8 2dr/dg? (105)

these are shown in Fig. 9. In the kinematic region
considered here, our results for all angular observables
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FIG.7. The A, — A*(1520)(— pK~)¢* ¢~ angular observables S, Sic, Siss» Sac» Sace> and S, in the high-¢? region calculated in
the Standard Model using our form factor results.
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FIG. 8. The A, — A*(1520)(— pK~)£*¢~ angular observables S, Ss,, and Ss,, in the high-¢> region calculated in the Standard

Model using our form factor results.

are qualitatively similar to those predicted using quark-
model form factors [30], shown in Refs. [17,19], but there
are substantial numerical differences. For example, the zero

0.5
Fr,

0.4

0.3 -

0.2

0.1 T T T T
16.0 16.2 16.4 16.6 16.8

¢ [GeV?]

crossing in the forward-backward asymmetry is more than
twice as far away from ¢2,, as predicted by the quark
model.

0.3 1
0.2
0.1 4
0.0 1
—0.1 1
T T T T
16.0 16.2 16.4 16.6 16.8
¢* [GeV?]

FIG. 9. The A, - A*(1520)(— pK~)¢"¢~ fraction of longitudinally polarized dileptons and the lepton-side forward-backward

asymmetry in the high-g> region calculated in the Standard Mode

1 using our form factor results.
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VIII. CONCLUSIONS

We have presented the first lattice-QCD calculation of
the form factors describing the A, — A*(1520) matrix
elements of the vector, axial vector, and tensor b — s
currents. Similarly to the lattice calculation of B —
K*(892) form factors in Ref. [66], this exploratory study
treats the A*(1520) as a stable particle. Even in this
approximation, our work required overcoming several
challenges. The simplest choices of three-quark interpolat-
ing fields with / =0 and J” =3~ dominantly couple to
higher-lying states; a previous lattice-QCD study of
A-baryon spectroscopy [53] in fact was unable to identify
the A*(1520) for this reason. Here we solved this problem
by including gauge-covariant spatial derivatives in the
interpolating field, at the expense of having to compute
additional propagators with derivative sources. We also
used all-mode averaging [44.45] to overcome the poor
signal-to-noise ratios in the correlation functions involving
the A*(1520). Traditionally, lattice-QCD calculations of
heavy-to-light form factors have been performed in the rest
frame of the heavy hadron, giving the final-state light
hadron nonzero momentum. However, at nonzero momen-
tum an interpolating field that would have J¥ = %‘ in the
continuum then also couples to J* = %*, and in some cases
even J¥ = I, which would make isolating the A*(1520)
extremely difficult. For this reason, we performed the
lattice calculation in the A*(1520) rest frame, giving
nonzero momentum to the A, instead. While this choice
eliminates the problem of mixing with unwanted lighter
states, it also limits the accessible g range to be very close
to g2, We performed the calculation for two different A,
momenta, |p|~0.935 GeV and |p| = 1.402 GeV, corre-
sponding to g?/ g2 ~ 0.986 and ¢*/q2.x ~ 0.969, respec-
tively. This only allowed linear fits of the ¢*> dependence
(or, equivalently, w dependence), which yield the values of
the form factors at g2, and their slopes. Using three
different ensembles of gauge fields on lattices that all have
approximately the same spatial volume, we performed
extrapolations linear in a®> and m2, with independent
coefficients for the slopes and intersects of the form factors,
to the physical limit.

Looking ahead, lower values of ¢*> could be reached
using the moving-nonrelativistic-QCD action [67] for
the b quark, which enables much higher A, momenta
while keeping discretization errors under control, but
requires a more complicated matching of the currents to
continuum QCD. Furthermore, a more rigorous analysis
of A, — A*(1520) form factors that treats the A*(1520)
as a resonance in coupled-channel p-K, X-z scattering
may be possible using the finite-volume formalism of
Refs. [62,63], but this would still not include A-z-7
three-particle contributions.

Using our form factor results, we have obtained
Standard-Model predictions for the A, — A*(1520)£" ¢~

differential branching fraction and several A, —
A*(1520)(—pK~)¢*¢~ angular observables at high ¢°.
The uncertainty in the differential branching fraction in the
region considered is approximately 20%, while some
angular observables are more precise due to their reduced
dependence on the form factors and benefits from corre-
lations. We find d3/dq’? to be lower by a factor of 2 than
predicted using the quark-model form factors of Ref. [30].
Our results for the angular observables are qualitatively
similar to those computed using the quark-model form
factors [17], but show significant quantitative differences.
We look forward to future experimental results for
Ay = A (1520)¢1 ¢~
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APPENDIX: RELATIONS BETWEEN DIFFERENT
FORM-FACTOR DEFINITIONS

In this appendix we provide the relations between two
other definitions of A, — A*(1520) form factors used in
the literature and our definition.

1. Non-helicity-based definition

This definition is used in Refs. [30,33]. For the vector
and axial vector currents, it has the same structure as the
definition of A, — A%(2625) form factors in Ref. [35]. In
the notation of our Eq. (5), it is given by

Gy = v (Fir# + Fau* 4+ F3u™) + Fug*,  (Al)
GHrys) = vH(Giy* + Govk + G3v¥)ys + Gug*ys, (A2)
GHiotq,) = v (FTy* + Fhor + FLo) + FIg*,  (A3)

Gio" q,rs) = v (Gl " + GLv* + G5 o™)ys + GLg*ys.
(A4)
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Note that only six of the eight tensor form factors in this definition are independent. The relation to our definition is

Mp, M+

Flzzi(fL+fL’)7 (AS)
F, = mg\bm/\* ) 2 2 2 2 A6
2= s [(ma, —mps)s_fo=2mpaq*(fL = fur) = (ma, +mp)(my, —mi. —q°)f 1], (A6)
M, M+
Fy= ng p [=mp-(mp, —mp-)s_fo— 2mA,,mA*q2fJ_ + 2Clz(mAbmA* —s)f v
+ —_
+ mpe(mp, + mA*)(mIZ\,, —m3. + q*)f . (A7)
F4 = fl" (Ag)
M, M+
G =——(9.+tgu) (A9)
S+
2
Gy = TN s g = 2mar g (gs — gur) + (ma — mp)(m2 = m2. — gP)g.] (A10)
2= q2s+s_ Ay A )S+90 AMg gL —gu Ay A* Ay A —47)9+ )
Mp, M
Gs = qzsb P [mp+(ma, + ma-)s, go + 2ma,mp-g>g, — 2g*(my,mp- +s_)g .
+ -
— My« (m/\,, - mA*)(mib - m/Z\ + ‘12)9+]1 (A11)
G4 =4y, (A]Z)
Ma Ma= (M + Mps
FT = - —% 2 U, + ) (hi+hy), (A13)
S_
T mf\bm,\»« 2 2 2
F; = s 2mp-(my, +mp)(hy = hy) + (my, —mi. —q°)h], (A14)
+ p—
LN 2 2 2
F3 = Tes [2(mA,, + mp-)(mp,mpchy — (mp,mp- — s )hyr) = mA*(m/\b —my. +q*)h.], (A15)
+ —
Fi = —(mp, +mp)hy, (Al6)
ma mpas(my, —mp-) - -
Gl =~ xlma, A)(hL—i—hl/), (A17)
S+
2
mA N ~ ~ ~
Gj = S bs [=2mp-(mp, —mp-)(hy —hy) + (mfxb —mi. — q*)h], (A18)
+ —
T _ A, 7 7 2 2 07,
Gs = o5 [2(’”/\,, - mA*)(’nAbmA*hJ_ - (mA*mAb +s_)hy) —my (mA,, —m +q°)h], (A19)
+ —_
Gl =(my, — mp- ). (A20)
|
2. Helicity-based definition used by Descotes-Genon V= S fo (A21)
and Novoa Brunet S+
Reference [17] uses a helicity-based definition that = ON f (A22)
differs from ours only by simple kinematic factors: 0 s_ 0
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f1="5 (A23)
= (A24)
? = n;—f*gm (A25)
=0 (A26)
=" (A27)
f g — —91 (A28)
15 ="%h,. (A29)

=", (A30)
S_
fg =(mp, +my-)hy, (A31)
=" (A32)
S+
s TN (A33)
S+
f}fs = —(m/\b - mA*)ilL" (A34)

Similarly, Ref. [36], which considers A, — A}, contains
another helicity-based definition (for the vector and axial
vector form factors only) that also differs from ours only by
simple kinematic factors.
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