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We present the first lattice QCD determination of the Λb → Λ�ð1520Þ vector, axial vector, and tensor
form factors that are relevant for the rare decays Λb → Λ�ð1520Þlþl−. The lattice calculation is performed
in theΛ�ð1520Þ rest framewith nonzero Λb momenta, and is limited to the high-q2 region. An interpolating
field with covariant derivatives is used to obtain good overlap with the Λ�ð1520Þ. The analysis treats the
Λ�ð1520Þ as a stable particle, which is expected to be a reasonable approximation for this narrow
resonance. A domain-wall action is used for the light and strange quarks, while the b quark is implemented
with an anisotropic clover action with coefficients tuned to produce the correct Bs kinetic mass, rest mass,
and hyperfine splitting. We use three different ensembles of lattice gauge-field configurations generated by
the RBC and UKQCD collaborations, and perform extrapolations of the form factors to the continuum limit
and physical pion mass. We give Standard-Model predictions for the Λb → Λ�ð1520Þlþl− differential
branching fraction and angular observables in the high-q2 region.

DOI: 10.1103/PhysRevD.103.074505

I. INTRODUCTION

Decays of b-hadrons that proceed through the flavor-
changing neutral current transition b → slþl− play an
important role in searching for physics beyond the Standard
Model [1]. Global analyses of the increasingly precise
experimental data point to lepton-flavor-nonuniversal shifts
in one or more of the Wilson coefficients with respect to
their Standard-Model values [2,3]. These deviations, along
with further hints for violation of lepton-flavor universality
in b → cτν̄ decays, have led to significant activity in
constructing models of new fundamental physics, as
reviewed for example in Ref. [4].
When searching for new physics in weak decays, it is

important to consider multiple decay modes involving
different species of hadrons. Different decay modes may
be sensitive to different combinations of operators in the
effective Hamiltonian, and will also differ in their exper-
imental and theoretical systematic uncertainties. The ben-
efits of Λb baryon decays in constraining ΔB ¼ ΔS ¼ 1
Wilson coefficients have been discussed by several authors
[5–19]. Experimental data are available for the differential
branching fraction and angular observables of Λb →
Λð→pπ−Þμþμ− [20–23], as well as the branching fraction
of Λb → Λγ [24]. In Ref. [18], an analysis of b → sμþμ−

Wilson coefficients using all 33 independent angular
observables of Λb → Λð→pπ−Þμþμ− decays [23] and
using Λb → Λ form factors from lattice QCD [25] was
reported. Within the present uncertainties, the results are
consistent both with the anomalies seen in B meson decays
and with the Standard Model [18].
Going beyond the lightest Λ baryon in the final state,

the LHCb Collaboration has also reported first measure-
ments of Λb → pK−lþl− decays, including CP asymme-
tries [26] and the muon-versus-electron ratio RpK− [27].
The Λb → pK−μþμ− CP asymmetries were measured in
the kinematic region with mpK− < 2350 MeV and q2 ¼
m2

lþl− ∉ ½0.98; 1.1� ∪ ½8.0; 11� ∪ ½12.5; 15� GeV2 [26] to
avoid large contributions from the ϕ, J=ψ , and ψ 0 reso-
nances; the ratio RpK− was measured for mpK− <
2600 MeV and q2 ∈ ½0.1; 6.0� GeV2 [27].
The pK−-invariant-mass distribution of Λb →

pK−lþl− for q2 away from the ϕ, J=ψ , and ψ 0 resonances
is expected to be similar to the distribution with q2 on-
resonance. This pK−-invariant-mass distribution has been
observed in Λb → pK−J=ψð→lþl−Þ [28]. As can be seen
in Fig. 3 of Ref. [28], a large number of Λ� baryon
resonances contribute to this decay in overlapping mass
regions. However, one resonance produces a narrow peak
that clearly stands out above the other contributions: the
Λ�ð1520Þ, which has a width of 15.6� 1.0 MeV [29]
and is the lightest resonance with JP ¼ 3

2
−. Thus, it

may be feasible for LHCb to measure the Λb →
Λ�ð1520Þð→pK−Þlþl− decay rate and angular observ-
ables for q2 in the nonresonant (rare-decay) region.
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The phenomenology of Λb → Λ�ð1520Þð→pK−Þlþl−

was discussed in Refs. [17,19], where the expressions for
the complete angular distribution were given (for unpolar-
ized Λb), approximate relations among the Λb → Λ�ð1520Þ
form factors based on effective field theories were obtained,
and numerical studies of the differential decay rate and
angular observables were performed using form factors
from a quark model [30]. The prospects for measurements
of Λb → Λ�ð1520Þð→pK−Þlþl− angular observables
at LHCb were recently studied in Ref. [31]. Earlier work
had also considered the decay mode Λb → Λ�ð1520Þ×
ð→pK−Þγ, primarily as a probe of the photon polarization
in b → sγ [10,11]; the formalism for an amplitude analysis
of Λb → pK−γ was recently discussed also in Ref. [32].
The authors of Ref. [10] pointed out that this mode may be
easier to reconstruct in hadron-collider experiments than
Λb → Λð→pπ−Þγ, since the Λ has a long lifetime of cτ ≈
7.9 cm [29] and, like the photon, often escapes the inner-
most vertex locator without leaving any trace.
To make predictions for the Λb → Λ�ð1520Þ×

ð→pK−Þlþl− decay observables in the Standard Model
and beyond, the Λb → Λ�ð1520Þ form factors correspond-
ing to the matrix elements of the b → s vector, axial vector,
and tensor currents are required. These form factors have
previously been studied in a quark model [30,33]. In the
following, we present the first, exploratory lattice-QCD
determination of the Λb → Λ�ð1520Þ form factors (we
reported preliminary results in Ref. [34]). The lattice
calculation of 1

2
þ → 3

2
− form factors is substantially more

challenging than the calculation of 1
2
þ → 1

2
þ form factors,

even when neglecting the strong decay of the 3
2
− baryon in

the analysis, as we do here. Correlation functions for
negative-parity baryons have more statistical noise than
correlation functions for the lightest positive-parity bary-
ons. Furthermore, at nonzero momenta, the irreducible
representations of the lattice symmetry groups mix positive
and negative parities and also mix J ¼ 1

2
and J ¼ 3

2
. To

avoid having to deal with this mixing, we perform our
calculation in the Λ�ð1520Þ rest frame and give the Λb
nonzero momentum (since the Λb is the ground state, the
mixing with other JP values does not cause difficulties in
isolating it). This has the effect that our calculation is
limited to a relatively small kinematic region near q2max.
This paper is organized as follows. Our definition of the

Λb → Λ�ð1520Þ form factors is presented in Sec. II. The
lattice actions and parameters are given in Sec. III.
Section IVexplains our choices of the baryon interpolating
fields and contains numerical results for the hadron masses.
The three-point functions and our method for extracting
the individual form factors are described in Sec. V. We
perform simple chiral, continuum, and kinematic extrapo-
lations of the form factors as discussed in Sec. VI. We
then use the extrapolated form factors to calculate the
Λb → Λ�ð1520Þμþμ− differential decay rate and angular

observables in the Standard Model, presented in Sec. VII.
Conclusions are given in Sec. VIII. Appendix contains
relations between our form factor definition and other
definitions that have been used in the literature.

II. DEFINITIONS OF THE FORM FACTORS

The Λ�ð1520Þ is the lightest of the strange baryon
resonances with I ¼ 0 and JP ¼ 3

2
−. It has a mass of

1519.5� 1.0 MeV, a width of 15.6� 1.0 MeV, and
decays mainly into NK̄, Σπ, or Λππ [29]. In this work,
we treat the Λ�ð1520Þ as if it is a stable single-particle
state. We expect this to be a reasonable approximation,
given the relatively small width and given the other sources
of uncertainty in our calculation. In the following, we
denote the Λ�ð1520Þ as simply Λ�.
We are interested in the matrix elements hΛ�ðp0; s0Þ ×

js̄ΓbjΛbðp; sÞi for Γ ∈ fγμ; γμγ5; iσμνqν; iσμνqνγ5g with
q ¼ p − p0. These matrix elements are described by 14
independent form factors that are functions of q2 only.
Possible definitions of these form factors were given, for
example, in Refs. [17,30,33–36]. Here we use a helicity-
based definition. We first presented such a definition in
Ref. [34]; the choice used here differs from that in Ref. [34]
only by a q2-dependent rescaling to avoid divergences in
the form factors at the endpoint q2max ¼ ðmΛb

−mΛ� Þ2. We
use the standard relativistic normalization of states,

hΛbðk; rÞjΛbðp; sÞi ¼ δrs2EΛb
ð2πÞ3δ3ðk − pÞ; ð1Þ

hΛ�ðk0; r0ÞjΛ�ðp0; s0Þi ¼ δr0s02EΛ�ð2πÞ3δ3ðk0 − p0Þ; ð2Þ

and introduce Dirac and Rarita-Schwinger spinors
satisfying

X
s

uðmΛb
;p; sÞūðmΛb

;p; sÞ ¼ mΛb
þ p; ð3Þ

X
s0
uμðmΛ� ;p0; s0ÞūνðmΛ� ;p0; s0Þ

¼ −ðmΛ� þ p0Þ
�
gμν −

1

3
γμγν −

2

3m2
Λ�
p0
μp0

ν

−
1

3mΛ�
ðγμp0

ν − γνp0
μÞ
�
: ð4Þ

We introduce the notation

hΛ�ðp0; s0Þjs̄ΓbjΛbðp; sÞi
¼ ūλðmΛ� ;p0; s0ÞGλ½Γ�uðmΛb

;p; sÞ; ð5Þ

and

s� ¼ ðmΛb
�mΛ�Þ2 − q2: ð6Þ
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The form factors f0, fþ, f⊥, f⊥0 , g0, gþ, g⊥, g⊥0 , hþ, h⊥, h⊥0 , h̃þ, h̃⊥, and h̃⊥0 are defined via

Gλ½γμ� ¼ f0
mΛ�

sþ

ðmΛb
−mΛ�Þpλqμ

q2

þ fþ
mΛ�

s−

ðmΛb
þmΛ�Þpλðq2ðpμ þ p0μÞ − ðm2

Λb
−m2

Λ� ÞqμÞ
q2sþ

þ f⊥
mΛ�

s−

�
pλγμ −

2pλðmΛb
p0μ þmΛ�pμÞ
sþ

�

þ f⊥0
mΛ�

s−

�
pλγμ −

2pλp0μ

mΛ�
þ 2pλðmΛb

p0μ þmΛ�pμÞ
sþ

þ s−gλμ

mΛ�

�
; ð7Þ

Gλ½γμγ5� ¼ −g0γ5
mΛ�

s−

ðmΛb
þmΛ� Þpλqμ

q2

− gþγ5
mΛ�

sþ

ðmΛb
−mΛ� Þpλðq2ðpμ þ p0μÞ − ðm2

Λb
−m2

Λ�ÞqμÞ
q2s−

− g⊥γ5
mΛ�

sþ

�
pλγμ −

2pλðmΛb
p0μ −mΛ�pμÞ
s−

�

− g⊥0γ5
mΛ�

sþ

�
pλγμ þ 2pλp0μ

mΛ�
þ 2pλðmΛb

p0μ −mΛ�pμÞ
s−

−
sþgλμ

mΛ�

�
; ð8Þ

Gλ½iσμνqν� ¼ −hþ
mΛ�

s−

pλðq2ðpμ þ p0μÞ − ðm2
Λb

−m2
Λ� ÞqμÞ

sþ

− h⊥
mΛ�

s−
ðmΛb

þmΛ�Þ
�
pλγμ −

2pλðmΛb
p0μ þmΛ�pμÞ
sþ

�

− h⊥0
mΛ�

s−
ðmΛb

þmΛ� Þ
�
pλγμ −

2pλp0μ

mΛ�
þ 2pλðmΛb

p0μ þmΛ�pμÞ
sþ

þ s−gλμ

mΛ�

�
; ð9Þ

Gλ½iσμνqνγ5� ¼ −h̃þγ5
mΛ�

sþ

pλðq2ðpμ þ p0μÞ − ðm2
Λb

−m2
Λ�ÞqμÞ

s−

− h̃⊥γ5
mΛ�

sþ
ðmΛb

−mΛ� Þ
�
pλγμ −

2pλðmΛb
p0μ −mΛ�pμÞ
s−

�

− h̃⊥0γ5
mΛ�

sþ
ðmΛb

−mΛ�Þ
�
pλγμ þ 2pλp0μ

mΛ�
þ 2pλðmΛb

p0μ −mΛ�pμÞ
s−

−
sþgλμ

mΛ�

�
; ð10Þ

where σμν ¼ i
2
ðγμγν − γνγμÞ. The requirement that physical

matrix elements are nonsingular for q2 → q2max ¼ ðmΛb
−

mΛ�Þ2 imposes certain requirements on the behavior of the
form factors in this limit [17]. More information on this
behavior can be obtained from heavy-quark effective theory
[36] if the strange quark is treated as a heavy quark. For our
definition, we expect all form factors to be finite and nonzero
at q2 ¼ q2max. Relations between our form factors and other
definitions used in the literature are given in Appendix.

III. LATTICE ACTIONS AND PARAMETERS

Our calculation utilizes three different ensembles of
gauge-field configurations generated by the RBC and

UKQCD collaborations [37,38]. These ensembles include
the effects of 2þ 1 flavors of sea quarks, implemented with
a domain-wall action [39–41]; the gauge action used is the
Iwasaki action [42]. The main parameters of the ensembles
and valence-quark actions are listed in Table I; see Sec. IV
for the resulting hadron masses. To compute the u, d, and s-
quark propagators, we use the same domain-wall action as
for the sea-quarks, with valence light-quark masses equal to
the sea light-quark masses, and valence strange-quark
masses tuned to the physical values, which are slightly
lower than the sea strange-quark masses. For the b-quark
propagators, we use the anisotropic clover action discussed

in Ref. [43], but with parameters amðbÞ
Q , ζðbÞ, cðbÞE;B newly
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tuned by us to obtain the correct Bs kinetic mass, rest mass,
and hyperfine splitting.
Our calculation employs all-mode averaging [44,45] to

reduce the cost for the light and strange quark propagators.
On each gauge-configuration, we computed one exact
sample for the relevant correlation functions (discussed
in the following sections), as well as 32 “sloppy” samples
with reduced conjugate-gradient iteration count in the
computation of the light and strange quark propagators.
For the light quarks, we also used deflation based on the
lowest 400 eigenvectors to reduce the cost and improve
the accuracy of the propagators. On a given gauge-field
configuration, the different samples correspond to different
source locations on a four-dimensional grid, with a ran-
domly chosen overall offset.

IV. TWO-POINT FUNCTIONS AND
HADRON MASSES

We now proceed to the discussion of the baryon
interpolating fields. Our lattice calculation uses mu ¼ md
and neglects QED, which means that we have exact isospin
symmetry, and the Λb and Λ�ð1520Þ both have I ¼ 0. The
continuous space-time symmetries on the other hand are
reduced to discrete symmetries by the cubic lattice. At zero
momentum, the relevant symmetry group is 2O, the double
cover of the cubic group [46], and we still have the full
parity symmetry. At zero momentum, the continuum JP ¼
1
2
� and JP ¼ 3

2
� irreps subduce identically to the Gg=u

1 and
Hg=u irreps; the next-higher values of J that appear in these
irreps are J ¼ 7

2
and J ¼ 5

2
, respectively. In this case we can

therefore safely construct the interpolating fields for both
the Λb and the Λ�ð1520Þ using continuum symmetries. At
nonzero momenta, we no longer have parity symmetry,
and the relevant symmetry groups are little groups of 2O
[47–49]. An interpolating field that would have JP ¼ 3

2
− in

the continuum then also couples to JP ¼ 3
2
þ, and in some

cases even JP ¼ 1
2
þ [for example, for momentum direction

(0, 1, 1), the only irrep containing J ¼ 3
2
also contains

J ¼ 1
2
], which would make isolating the Λ�ð1520Þ

extremely difficult. For this reason, we perform the lattice
calculation in the Λ�ð1520Þ rest frame, giving nonzero

momentum to the Λb instead. Since the Λb is the lightest
baryon with quark content udb, any contributions from
mixing with opposite parity and higher J only appear as
excited-state contamination, which will be suppressed
exponentially for large Euclidean time separations.
We take the interpolating field for the Λb in position

space to be

ðOΛb
Þγ ¼

1

2
ϵabcðCγ5Þαβðd̃aαũbβb̃cγ − ũaαd̃

b
βb̃

c
γÞ

¼ ϵabcðCγ5Þαβd̃aαũbβb̃cγ ; ð11Þ

where q̃ denotes a smeared quark field. We use gauge-
covariant Gaussian smearing of the form

q̃ ¼
�
1þ σ2Gauss

4NGauss
Δ̃
�

NGauss

q; ð12Þ

where

Δ̃qðxÞ ¼ 1

a2
X3
j¼1

½ŨjðxÞqðxþ aĵÞ − 2qðxÞ

þ Ũ†
jðx − aĵÞqðx − aĵÞ�; ð13Þ

and the gauge links Ũ are APE smeared (in the case of the
up, down, and strange quarks) or Stout smeared (in the case
of the bottom quark). The values used for the smearing
parameters are given in Table II. We average over “for-
ward” and “backward” two-point functions given by

Cð2;Λb;fwÞ
αβ ðp; tÞ
¼

X
y

e−ip·ðy−xÞhðOΛb
Þαðx0 þ t; yÞðOΛb

Þβðx0;xÞi; ð14Þ

Cð2;Λb;bwÞ
αβ ðp; tÞ
¼

X
y

e−ip·ðx−yÞhðOΛb
Þαðx0;xÞðOΛb

Þβðx0 − t; yÞi: ð15Þ

The Λb masses obtained from single-exponential fits in the
time region of ground-state dominance are given in the last
column of Table III.

TABLE I. Lattice parameters for the three different ensembles of gauge-field configurations. The values of the lattice spacing, a, were

determined in Ref. [38]. The bottom quark is implemented with the action described in Ref. [43], but with parameters amðbÞ
Q , ζðbÞ, cðbÞE;B

newly tuned by us to obtain the correct Bs kinetic mass, rest mass, and hyperfine splitting. The last two columns give the numbers of
exact (ex) and sloppy (sl) samples used for the calculation of the correlation functions with all-mode averaging [44,45].

Label N3
s × Nt β a [fm] amu;d amðseaÞ

s amðvalÞ
s amðbÞ

Q
ζðbÞ cðbÞE;B

Nex Nsl

C01 243 × 64 2.13 0.1106(3) 0.01 0.04 0.0323 7.3258 3.1918 4.9625 283 9056
C005 243 × 64 2.13 0.1106(3) 0.005 0.04 0.0323 7.3258 3.1918 4.9625 311 9952
F004 323 × 64 2.25 0.0828(3) 0.004 0.03 0.0248 3.2823 2.0600 2.7960 251 8032
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Even at zero momentum, constructing an interpolating
field with a good overlap to the Λ�ð1520Þ proved to be
nontrivial. In a first, unsuccessful attempt, we tried the form

ðOΛ� ÞðoldÞjγ ¼ ϵabcðCγjÞαβ
�
1 − γ0
2

�
γδ

ðũaαs̃bβd̃cδ − d̃aαs̃bβũ
c
δÞ;

ð16Þ

which can be projected to the Hu irrep by contracting the
index j (which runs over the spatial directions) with1

Pkj
ð3=2Þ ¼ gkj −

1

3
γkγj: ð17Þ

Even though the resulting interpolating field has the correct
values for all exactly conserved quantum numbers, it is
found to have poor overlap with the Λ�ð1520Þ and much
greater overlap with higher-mass JP ¼ 3

2
− states. The

effective mass for the two-point function computed with

OðoldÞ
Λ� on the C005 ensemble is shown with the red circles in

Fig. 1, and shows a “false plateau” at higher mass before
the signal is swamped by noise. A previous lattice QCD
study of Λ�-baryon spectroscopy using interpolating fields
similar to Eq. (16) also did not find a Λ�ð1520Þ-like state

[53]. The problem is that OðoldÞ
Λ� (after projection with

Pkj
ð3=2Þ) has an internal structure corresponding to total

quark spin S ¼ 3=2, total quark orbital angular momentum
L ¼ 0, and flavor-SUð3Þ octet, while quark models suggest
that the Λ�ð1520Þ dominantly has an L ¼ 1, S ¼ 1=2, and
flavor-SUð3Þ-singlet structure [54]. To obtain L ¼ 1, a
suitable spatial structure of the interpolating field is needed,
which can be achieved using covariant derivatives [55]. For
the main calculations in this work we use the form

ðOΛ� Þjγ ¼ ϵabcðCγ5Þαβ
�
1þ γ0

2

�
γδ

½s̃aαd̃bβð∇̃jũÞcδ

− s̃aαũbβð∇̃jd̃Þcδ þ ũaαð∇̃jd̃Þbβ s̃cδ − d̃aαð∇̃jũÞbβ s̃cδ�;
ð18Þ

which has L ¼ 1, S ¼ 1=2, and is a flavor-SUð3Þ singlet.
The covariant derivatives, which are defined as

∇̃jq̃ðxÞ ¼
1

2a
½ŨjðxÞq̃ðxþ aĵÞ − Ũ†

jðx − aĵÞq̃ðx − aĵÞ�;
ð19Þ

change the parity, so the projector ð1þ γ0Þ=2 is used to
obtain negative overall parity. As we did previously for

OðoldÞ
Λ� , we project the two-point functions

Cð2;Λ�;fwÞ
jkαβ ðtÞ ¼

X
y

hðOΛ� Þjαðx0 þ t; yÞðOΛ� Þkβðx0;xÞi;

ð20Þ

Cð2;Λ�;bwÞ
jkαβ ðtÞ ¼

X
y

hðOΛ� Þjαðx0;xÞðOΛ� Þkβðx0 − t; yÞi

ð21Þ

to the Hu irrep with Pkj
ð3=2Þ. In Eq. (18), we eliminated

covariant derivatives acting on the strange-quark fields
using “integration by parts,” which is possible only at zero
momentum. In this way, the calculation requires propa-
gators with derivative sources only for the light quarks. The
effective mass for Cð2;Λ�Þ computed on the C005 ensemble

FIG. 1. The effective masses computed for the two-point
functions with the old and new Λ� interpolating fields, on the
C005 ensemble. The horizontal lines indicate the time ranges
used and energies obtained from single-exponential fits.

TABLE II. Parameters for the smearing of the quark fields in the baryon interpolating fields. A single sweep of
APE smearing [50] with parameter αAPE is defined as in Eq. (8) of Ref. [51], and we apply NAPE such sweeps. The
Stout smearing is defined in Ref. [52].

Up, down, and strange quarks Bottom quarks

NGauss σGauss=a NAPE αAPE NGauss σGauss=a NStout ρStout

Coarse 30 4.350 25 2.5 10 2.000 10 0.08
Fine 60 5.728 25 2.5 16 2.667 10 0.08

1We use the Minkowski-space metric tensor ðgμνÞ ¼
diagð1;−1;−1;−1Þ and Minkowski-space gamma matrices
throughout this paper, except where indicated with a sub-
script “E.”
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is shown with the green squares in Fig. 1, and shows a
plateau at a significantly lower mass, which we identify (in
the single-hadron/narrow-width approximation) with the
Λ�ð1520Þ resonance. The Λ�ð1520Þ masses obtained from
single-exponential fits in the plateau regions for all ensem-
bles are given in the second-to-last column of Table III.
We also computed the pion, kaon, nucleon, Lambda,

and Sigma two-point functions and obtained the masses
given in the same table. For the three ensembles we have,
the mass differences mΛ� −mΣ −mπ are found to be in the
range from approximately 80 to 150 MeV (physical value:
192 MeV), while mΛ� −mN −mK ranges from approx-
imately −20 to þ100 MeV (physical value: 89 MeV).
These results support our identification of the extracted
energy level with the Λ�ð1520Þ in the narrow-width
approximation. A proper finite-volume scattering analysis
with Lüscher’s method [56] is beyond the scope of this
work. Here we just note that the lowest noninteracting
N-K and Σ-π scattering states in the Hu irrep must have
nonzero back-to-back momenta and their energies are well
abovemΛ� for our lattice volumes (this is another benefit of
working in the Λ� rest frame).
For later reference, we also define overlap factors of the

interpolating fields with the baryon states of interest as

h0jOΛb
jΛbðp; sÞi ¼ ðZð1Þ

Λb
þ Zð2Þ

Λb
γ0ÞuðmΛb

;p; sÞ; ð22Þ

and

h0jðOΛ� ÞjjΛ�ð0; s0Þi ¼ ZΛ�
1þ γ0

2
ujðmΛ� ; 0; s0Þ: ð23Þ

As everywhere in this paper, jΛ�ð0; s0Þi denotes the lowest-
energy 3=2− state. For the Λb at nonzero momentum, it is

necessary to have the two separate coefficients Zð1Þ
Λb

and Zð2Þ
Λb

that may also depend on p, because the spatial-only
smearing of the quark fields breaks hypercubic symmetry
(and because the lattice itself also breaks the Lorentz
symmetry). The spectral decomposition of Cð2;ΛbÞðp; tÞ
then reads

Cð2;ΛbÞðp; tÞ

¼ 1

2v0
ðZð1Þ

Λb
þ Zð2Þ

Λb
γ0Þð1þ =vÞðZð1Þ

Λb
þ Zð2Þ

Λb
γ0Þe−EΛb t

þ ðexcited-state contributionsÞ ð24Þ

with vμ ¼ pμ=mΛb
, while the spectral decomposition of

Cð2;Λ�ÞðtÞ after projection with Pð3=2Þ becomes

Pjl
ð3=2ÞC

ð2;Λ�Þ
lk ðtÞ ¼ −

1

2
Z2
Λ�ð1þ γ0Þ

�
gjk −

1

3
γjγk

�
e−mΛ� t

þ ðexcited-state contributionsÞ: ð25Þ

The excited-state contributions decay exponentially faster
with t than the ground-state contributions shown here.

V. THREE-POINT FUNCTIONS AND
FORM FACTORS

To determine the form factors, we compute forward and
backward three-point functions

Cð3;fwÞ
jγδ ðp;Γ; t; t0Þ
¼

X
y;z

e−ip·ðy−zÞhðOΛ� Þjγðx0;xÞ

× JΓðx0 − tþ t0; yÞðOΛb
Þδðx0 − t; zÞi; ð26Þ

Cð3;bwÞ
jδγ ðp;Γ; t; t − t0Þ
¼

X
y;z

e−ip·ðz−yÞhðOΛb
Þδðx0 þ t; zÞ

× J†Γðx0 þ t0; yÞðOΛ� Þjγðx0;xÞi; ð27Þ

where p is the momentum of theΛb, Γ is the Dirac matrix in
the b → s current JΓ, t is the source-sink separation, and t0
is the current-insertion time. To match the currents to the
continuum MS scheme, we employ the mostly nonpertur-
bative method described in Refs. [57,58]. Specifically,
we use

JΓ ¼ ρΓ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðssÞ
V ZðbbÞ

V

q
½s̄Γbþ ad1s̄ΓγE · ∇b�; ð28Þ

where ZðssÞ
V and ZðbbÞ

V are the matching factors of the
temporal components of the s → s and b → b vector
currents, determined nonperturbatively using charge con-
servation, ρΓ are residual matching factors that are numeri-
cally close to 1 and are computed using one-loop lattice
perturbation theory [59], and the term with coefficient d1
removesOðaÞ discretization errors at tree level. In Eq. (28),
γE denotes the three Euclidean spatial gamma matrices,

TABLE III. Hadron masses obtained from single-exponential fits to the respective two-point functions computed on the three different
ensembles.

Label mπ [GeV] mK [GeV] mN [GeV] mΛ [GeV] mΣ [GeV] mΛ� [GeV] mΛb
[GeV]

C01 0.4312(13) 0.5795(19) 1.2647(51) 1.3494(61) 1.3877(61) 1.825(16) 5.793(17)
C005 0.3400(11) 0.5501(19) 1.1649(58) 1.2659(66) 1.3173(60) 1.740(17) 5.726(17)
F004 0.3030(12) 0.5361(24) 1.1197(59) 1.2382(54) 1.303(12) 1.757(15) 5.722(23)
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γjE ¼ −iγj. The values of ZðssÞ
V , ZðbbÞ

V , and d1 are given in
Table IV. For the residual matching factors ρΓ of the vector
and axial vector currents, we use the one-loop values given
in Table III of Ref. [60]. These matching factors were
computed for slightly different values of the parameters in
the b-quark action [43] but are not expected to depend
strongly on these parameters. For the residual matching
factors of the tensor currents, one-loop results were not
available and we set them to the tree-level values equal to
unity. Following Ref. [25], we estimate the resulting
systematic uncertainty in the tensor form factors at scale
μ ¼ mb to be equal to 2 times the maximum value
of jργμ − 1j, jργμγ5 − 1j, which is 0.05316. Note that
the contributions from the operator O7 in the weak
Hamiltonian to the Λb → Λ�ð1520Þlþl− differential decay
rate at high q2 are relatively small, so the larger systematic
uncertainty in the tensor form factors is unproblematic.
Both the forward and backward three-point functions are

computed using light and strange quark propagators with
sources (Gaussian smeared, with and without derivatives)
located at ðx0;xÞ. Given the more complicated interpolat-
ing field for theΛ� (compared to that for theΛ in Ref. [25]),
here we apply the sequential-source method for the b-quark
propagators through the weak current, and not through the
Λb interpolating field as was done in Ref. [25]. This method
fixes t0 rather than t, but we only computed the three-point
functions for t ¼ 2t0, t ¼ 2t0 þ a, and t ¼ 2t0 − a. We
generated data for nine different separations on the coarse
lattices and ten different separations on the fine lattices, as
shown in Table V.
Due to the large mass of the Λb, large values of p are

needed to appreciably move q2 away from q2max, as shown

in Fig. 2. At the same time, discretization errors are
expected to grow with p, and the number of b-quark
sequential propagators that need to be computed is propor-
tional to the number of choices for p. In this first lattice
study of the Λb → Λ� form factors, we therefore used only
two different choices: p ¼ ð0; 0; 2Þ 2πL and p ¼ ð0; 0; 3Þ 2πL .
Here, L ¼ Nsa are the spatial lattice extents, which are
approximately 2.7 fm for all three ensembles.
After projection with Pð3=2Þ, the spectral decomposition

of the forward three-point function reads

Pjl
ð3=2ÞC

ð3;fwÞ
l ðp;Γ; t; t0Þ

¼ −
1

v0
ZΛ�

1þ γ0
2

�
gjλ −

1

3
γjγλ −

1

3
γjg0λ

�

×Gλ½Γ� 1þ =v
2

ðZð1Þ
Λb

þ Zð2Þ
Λb
γ0Þe−mΛ� ðt−t0Þe−EΛb t

0

þ ðexcited-state contributionsÞ; ð29Þ

while the decomposition of the backward three-point
function is given by the Dirac adjoint. Here, Gλ½Γ� are,
up to small lattice-discretization and finite-volume
effects, the linear combinations of form factors defined
in Eqs. (7)–(10).
To extract the form factors, we utilize two different types

of combinations of correlation functions. The first type
(Sec. VA) allows us to extract the absolute magnitudes
of individual form factors, but not their relative signs.
The second type (Sec. V B) allows us to extract ratios of
different form factors in which the sign information is
preserved.

A. Extracting the squares of individual
form factors

To remove the unwanted overlap factors and cancel the
exponential time dependence for the ground-state contri-
bution, we form the ratios

FIG. 2. The value of the four-momentum transfer squared as a
function of the Λb momentum in the Λ� rest frame. The vertical
dashed line indicates the largest momentum we use in this
calculation.

TABLE IV. Matching parameters. We determined the values of

ZðbbÞ
V using the charge-conservation condition from ratios of Bs

two-point and three-point functions. The values of ZðssÞ
V are taken

from Ref. [38]. The OðaÞ-improvement coefficients dðbÞ1 were
computed at tree level in mean-field-improved perturbation
theory.

ZðbbÞ
V ZðssÞ

V dðbÞ1

Coarse 9.0631(84) 0.71273(26) 0.0728
Fine 4.7449(21) 0.7440(18) 0.0696

TABLE V. The source-sink separations for which we computed
the three-point functions on the coarse (C01, C005) and fine
(F004) ensembles.

t=a

Coarse 4; 5;…; 12
Fine 5; 6;…; 14
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ℛjkμνðp; t; t0ÞX ¼
Tr½Pjl

ð3=2ÞC
ð3;fwÞ
l ðp;Γμ

X; t; t
0Þð1þ =vÞCð3;bwÞ

m ðp;Γν
X; t; t − t0ÞPmk

ð3=2Þ�
Tr½Plm

ð3=2ÞC
ð2;Λ�Þ
lm ðtÞ�Tr½ð1þ =vÞCð2;ΛbÞðp; tÞ�

; ð30Þ

where X ∈ fV; A; TV; TAg and Γμ
V ¼ γμ, Γμ

A ¼ γμγ5,
Γμ
TV ¼ iσμνqν, Γμ

TA ¼ iσμνγ5qν, and the traces are over
the Dirac indices. To isolate the individual helicity form
factors, we then contract with the timelike, longitudinal,
and transverse polarization vectors

ϵð0Þ ¼ ðq0;qÞ; ϵðþÞ ¼ ðjqj; ðq0=jqjÞqÞ;
ϵð⊥;jÞ ¼ ð0; ej × qÞ; ð31Þ

and define

ℛX
0 ðp; t; t0Þ ¼ gjkϵ

ð0Þ
μ ϵð0Þν ℛjkμνðp; t; t0ÞX; ð32Þ

ℛXþðp; t; t0Þ ¼ gjkϵ
ðþÞ
μ ϵðþÞ

ν ℛjkμνðp; t; t0ÞX; ð33Þ

ℛX⊥ðp; t; t0Þ ¼ pjpkϵ
ð⊥;lÞ
μ ϵð⊥;lÞ

ν ℛjkμνðp; t; t0ÞX; ð34Þ

ℛX⊥0 ðp; t; t0Þ ¼
�
ϵð⊥;mÞ
j ϵð⊥;mÞ

k −
1

2
pjpk

�

× ϵð⊥;lÞ
μ ϵð⊥;lÞ

ν ℛjkμνðp; t; t0ÞX: ð35Þ

Repeated Latin indices are summed only over the spatial
directions, while repeated Greek indices are summed over
all four spacetime directions. The above quantities are
equal to the squares of the individual form factors times
certain combinations of the hadron masses and energies.
For a given value of t, the excited-state contamination will
be minimal for t0 ¼ t=2. Using this choice and removing
the kinematic factors, we evaluate

RV
0 ðp; tÞ ¼

48EΛb

ðEΛb
−mΛb

ÞðmΛb
−mΛ�Þ2ℛ

V
0 ðp; t; t=2Þ

¼ f20 þ ðexcited-state contributionsÞ; ð36Þ

RVþðp; tÞ ¼
48EΛb

ðEΛb
þmΛb

ÞðmΛb
þmΛ�Þ2ℛ

Vþðp; t; t=2Þ

¼ f2þ þ ðexcited-state contributionsÞ; ð37Þ

RV⊥ðp; tÞ ¼ −
36EΛb

ðEΛb
−mΛb

Þ2ðEΛb
þmΛb

Þ3 ℛ
V⊥ðp; t; t=2Þ

¼ f2⊥ þ ðexcited-state contributionsÞ; ð38Þ

RV⊥0 ðp; tÞ ¼ −
8EΛb

ðEΛb
−mΛb

Þ2ðEΛb
þmΛb

Þ3 ℛ
V⊥0 ðp; t; t=2Þ

¼ f2⊥0 þ ðexcited-state contributionsÞ; ð39Þ

RA
0 ðp; tÞ ¼

48EΛb

ðEΛb
þmΛb

ÞðmΛb
þmΛ� Þ2ℛ

A
0 ðp; t; t=2Þ

¼ g20 þ ðexcited-state contributionsÞ; ð40Þ

RAþðp; tÞ ¼
48EΛb

ðEΛb
−mΛb

ÞðmΛb
−mΛ� Þ2ℛ

Aþðp; t; t=2Þ

¼ g2þ þ ðexcited-state contributionsÞ; ð41Þ

RA⊥ðp; tÞ ¼ −
36EΛb

ðEΛb
þmΛb

Þ2ðEΛb
−mΛb

Þ3 ℛ
A⊥ðp; t; t=2Þ

¼ g2⊥ þ ðexcited-state contributionsÞ; ð42Þ

RA⊥0 ðp; tÞ ¼ −
8EΛb

ðEΛb
þmΛb

Þ2ðEΛb
−mΛb

Þ3 ℛ
A⊥0 ðp; t; t=2Þ

¼ g2⊥0 þ ðexcited-state contributionsÞ; ð43Þ

RTVþ ðp; tÞ ¼ 48EΛb

ðEΛb
þmΛb

Þq4 ℛ
TVþ ðp; t; t=2Þ

¼ h2þ þ ðexcited-state contributionsÞ; ð44Þ

RTV⊥ ðp; tÞ ¼ −
36EΛb

ðEΛb
þmΛb

Þ3ðEΛb
−mΛb

Þ2ðmΛb
þmΛ�Þ2

×ℛTV⊥ ðp; t; t=2Þ
¼ h2⊥ þ ðexcited-state contributionsÞ; ð45Þ

RTV⊥0 ðp; tÞ ¼ −
8EΛb

ðEΛb
þmΛb

Þ3ðEΛb
−mΛb

Þ2ðmΛb
þmΛ�Þ2

×ℛTV⊥0 ðp; t; t=2Þ
¼ h2⊥0 þ ðexcited-state contributionsÞ; ð46Þ

RTAþ ðp; tÞ ¼ 48EΛb

ðEΛb
−mΛb

Þq4ℛ
TAþ ðp; t; t=2Þ

¼ h̃2þ þ ðexcited-state contributionsÞ; ð47Þ

RTA⊥ ðp; tÞ ¼ −
36EΛb

ðEΛb
−mΛb

Þ3ðEΛb
þmΛb

Þ2ðmΛb
−mΛ� Þ2

×ℛTA⊥ ðp; t; t=2Þ
¼ h̃2⊥ þ ðexcited-state contributionsÞ; ð48Þ

RTA⊥0 ðp; tÞ ¼ −
8EΛb

ðEΛb
−mΛb

Þ3ðEΛb
þmΛb

Þ2ðmΛb
−mΛ� Þ2

×ℛTA⊥0 ðp; t; t=2Þ
¼ h̃2⊥0 þ ðexcited-state contributionsÞ: ð49Þ
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Since t0 and t must both be integer multiples of the lattice
spacing, here we imply an average over the two values of t0
closest to t=2 for odd t=a. The excited-state contributions in
the above quantities will decay exponentially as a function
of the source-sink separation t.

B. Extracting ratios of form factors

To preserve the sign information, we define the follow-
ing linear projections of three-point functions:

SV;TV
λ ðp; t; t0Þ

¼ Tr

�
MðλÞ

μj P
jl
ð3=2ÞC

ð3;fwÞ
l ðp;Γμ

V;TV; t; t
0Þ ð1þ =vÞ

2

�
; ð50Þ

SA;TA
λ ðp; t; t0Þ

¼ Tr

�
γ5M

ðλÞ
μj P

jl
ð3=2ÞC

ð3;fwÞ
l ðp;Γμ

A;TA; t; t
0Þ ð1þ =vÞ

2

�
; ð51Þ

where λ ∈ f0;þ;⊥;⊥0g and

Mð0Þ
μj ¼ ϵð0Þμ ϵð0Þj ; ð52Þ

MðþÞ
μj ¼ ϵðþÞ

μ ϵð0Þj ; ð53Þ

Mð⊥1Þ
μj ¼

X3
i¼1

ϵð⊥;iÞ
μ ϵð⊥;iÞ

j ; ð54Þ

Mð⊥2Þ
ij ¼ iϵð0Þl γlγ5ϵ

ð0Þmϵmij; Mð⊥2Þ
0j ¼ 0; ð55Þ

Mð⊥Þ
μj ¼ −Mð⊥1Þ

μj þMð⊥2Þ
μj ; ð56Þ

Mð⊥0Þ
μj ¼ Mð⊥1Þ

μj þMð⊥2Þ
μj ; ð57Þ

with the polarization vectors as defined in Eq. (31). As
before, repeated Latin indices are summed only over
the spatial directions. To improve the signals, we use the
average of the forward three-point function and the Dirac
adjoint of the backward three-point function instead of just
Cð3;fwÞ. We can isolate the form factors, up to common
overlap factors and exponentials, in the following way:

SV0 ðp; t; t0Þ ¼
3EΛb

mΛb

ðEΛb
−mΛb

ÞðEΛb
þmΛb

ÞðmΛb
−mΛ�Þ

×SV
0 ðp; t; t0Þ

¼ f0ZΛ� ðZð1Þ
Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð58Þ

SVþðp; t; t0Þ ¼
3EΛb

mΛb

ðEΛb
−mΛb

Þ1=2ðEΛb
þmΛb

Þ3=2ðmΛb
þmΛ� Þ

×SVþðp; t; t0Þ
¼ fþZΛ� ðZð1Þ

Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð59Þ

SV⊥ðp; t; t0Þ ¼
3EΛb

mΛb

2ðEΛb
−mΛb

ÞðEΛb
þmΛb

Þ2S
V⊥ðp; t; t0Þ

¼ f⊥ZΛ� ðZð1Þ
Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð60Þ

SV⊥0 ðp; t; t0Þ ¼ EΛb
mΛb

2ðEΛb
−mΛb

ÞðEΛb
þmΛb

Þ2 S
V⊥0 ðp; t; t0Þ

¼ f⊥0ZΛ� ðZð1Þ
Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð61Þ

SA0 ðp; t; t0Þ ¼
3EΛb

mΛb

ðEΛb
þmΛb

ÞðEΛb
−mΛb

ÞðmΛb
þmΛ� Þ

× SA
0 ðp; t; t0Þ

¼ g0ZΛ� ðZð1Þ
Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð62Þ

SAþðp; t; t0Þ ¼
3EΛb

mΛb

ðEΛb
−mΛb

Þ3=2ðEΛb
þmΛb

Þ1=2ðmΛb
−mΛ�Þ

×SAþðp; t; t0Þ
¼ gþZΛ� ðZð1Þ

Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð63Þ

SA⊥ðp; t; t0Þ ¼ −
3EΛb

mΛb

2ðEΛb
−mΛb

Þ2ðEΛb
þmΛb

ÞS
A⊥ðp; t; t0Þ

¼ g⊥ZΛ� ðZð1Þ
Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð64Þ

SA⊥0 ðp; t; t0Þ ¼ −
EΛb

mΛb

2ðEΛb
−mΛb

Þ2ðEΛb
þmΛb

ÞS
A⊥0 ðp; t; t0Þ

¼ g⊥0ZΛ� ðZð1Þ
Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð65Þ

STVþ ðp; t; t0Þ ¼ −
3EΛb

mΛb

ðEΛb
−mΛb

Þ1=2ðEΛb
þmΛb

Þ3=2q2
STVþ ðp; t; t0Þ

¼ hþZΛ� ðZð1Þ
Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð66Þ

STV⊥ ðp; t; t0Þ ¼ −
3EΛb

mΛb

2ðEΛb
−mΛb

ÞðEΛb
þmΛb

Þ2ðmΛb
þmΛ� Þ

×STV⊥ ðp; t; t0Þ
¼ h⊥ZΛ� ðZð1Þ

Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð67Þ
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STV⊥0 ðp; t; t0Þ ¼ −
EΛb

mΛb

2ðEΛb
−mΛb

ÞðEΛb
þmΛb

Þ2ðmΛb
þmΛ� Þ

×STV⊥0 ðp; t; t0Þ
¼ h⊥0ZΛ� ðZð1Þ

Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð68Þ

STAþ ðp; t; t0Þ ¼ 3EΛb
mΛb

ðEΛb
þmΛb

Þ1=2ðEΛb
−mΛb

Þ3=2q2S
TAþ ðp; t; t0Þ

¼ h̃þZΛ�ðZð1Þ
Λb
mΛb

þZð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-statecontributionsÞ; ð69Þ

STA⊥ ðp; t; t0Þ ¼ −
3EΛb

mΛb

2ðEΛb
þmΛb

ÞðEΛb
−mΛb

Þ2ðmΛb
−mΛ�Þ

×STA⊥ ðp; t; t0Þ
¼ h̃⊥ZΛ� ðZð1Þ

Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ; ð70Þ

STA⊥0 ðp; t; t0Þ ¼ −
EΛb

mΛb

2ðEΛb
þmΛb

ÞðEΛb
−mΛb

Þ2ðmΛb
−mΛ� Þ

×STA⊥0 ðp; t; t0Þ
¼ h̃⊥0ZΛ� ðZð1Þ

Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0

þ ðexcited-state contributionsÞ: ð71Þ
The excited-state contributions decay exponentially faster
than the ground-state contributions. The unwanted factors

of ZΛ� ðZð1Þ
Λb
mΛb

þ Zð2Þ
Λb
EΛb

Þe−mΛ� ðt−t0Þe−EΛb t
0
will cancel in

ratios of the above quantities at large times.

C. Results for the form factors with
relative signs preserved

The 14 form factors with relative sign information
preserved can now be obtained by extracting the magnitude
of a single reference form factor as in Sec. VA, and
multiplying with ratios of the projected three-point func-
tions SXλ ðp; t; t0Þ. We choose f⊥0 to be the reference form
factor because the results for the corresponding RV⊥0 show
good plateaus and reasonably small statistical uncertainties
(see the third plot from the left in the top row of Fig. 3). We
again set t0 ¼ t=2, and define the functions

FIG. 3. Numerical results for the quantities FX
λ ðp; tÞ, defined in Eq. (72), as a function of the source-sink separation, for

p ¼ ð0; 0; 3Þ 2πL and for the F004 ensemble. Also shown is RV⊥0 ðp; tÞ, which is used to extract the square of the reference form factor f⊥0.
The horizontal lines indicate the ranges and extracted values of constant fits.
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FX
λ ðp; tÞ ¼

SXλ ðp; t; t=2Þ
SV⊥0 ðp; t; t=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RV⊥0 ðpÞ

q
; ð72Þ

where RV⊥0 ðpÞ denotes the result of a constant fit to RV⊥0 ðp; tÞ
in the region of ground-state saturation. The functions
FX
λ ðp; tÞ are equal to the individual helicity form factors up

to excited-state contamination that decays exponentially
with t. We perform constant fits to FX

λ ðp; tÞ in the plateau
regions, requiring good quality of fit and stability under
variations of the starting time. Plots of FX

λ ðp; tÞ and the
associated fits for one ensemble and one momentum are
shown in Fig. 3. All fit results are listed in Table VI. The
uncertainties were computed using statistical bootstrap.

VI. CHIRAL AND CONTINUUM
EXTRAPOLATIONS OF THE FORM FACTORS

The final step in the analysis of the form factors is to fit
suitable functions describing the dependence on the kin-
ematics, the light-quark mass (or, equivalently,m2

π), and the
lattice spacing to the results given in Table VI. Given that
we have data for only two different momenta that corre-
spond to values of q2 near the kinematic endpoint, we

describe the kinematic dependence of each form factor by a
linear function of the dimensionless variable

wðq2Þ ¼ v · v0 ¼ m2
Λb

þm2
Λ� − q2

2mΛb
mΛ�

: ð73Þ

We expect this description to be accurate only in the high-
q2 region. To allow for dependence on the light-quark mass
and lattice spacing, we use the model

fðq2Þ ¼ Ff

�
1þ Cf

m2
π −m2

π;phys

ð4πfπÞ2
þDfa2Λ2

�

þ Af

�
1þ C̃f

m2
π −m2

π;phys

ð4πfπÞ2
þ D̃fa2Λ2

�
ðw − 1Þ;

ð74Þ

with independent fit parameters Ff, Af,Cf,Df, C̃f, and D̃f

for each form factor f. Here, we introduced fπ ¼ 132 MeV
and Λ ¼ 300 MeV to make all parameters dimensionless.
In the physical limit mπ ¼ mπ;phys ¼ 135 MeV, a ¼ 0, the
fit functions reduce to the form

TABLE VI. Values of the form factors extracted from constant fits of FX
λ ðp; tÞ in the plateau regions, for each

ensemble and for the two different Λb momenta.

Form factor jpj=ð2π=LÞ C01 C005 F004

f0 2 3.77(18) 3.53(24) 3.36(14)
3 3.38(14) 3.15(20) 3.14(11)

fþ 2 0.0773(40) 0.0714(55) 0.0698(36)
3 0.1040(49) 0.0949(71) 0.0965(43)

f⊥ 2 0.002(10) −0.017ð13Þ −0.0204ð81Þ
3 0.048(10) 0.018(14) 0.0225(87)

f⊥0 2 0.04433(73) 0.0434(16) 0.04399(67)
3 0.04051(89) 0.0401(19) 0.04093(81)

g0 2 0.0273(40) 0.0250(50) 0.0224(35)
3 0.0559(47) 0.0508(61) 0.0498(40)

gþ 2 3.17(17) 2.95(22) 2.82(13)
3 2.85(13) 2.65(18) 2.63(10)

g⊥ 2 3.12(16) 2.91(21) 2.76(13)
3 2.80(12) 2.61(17) 2.589(95)

g⊥0 2 −0.029ð14Þ −0.052ð21Þ −0.0261ð86Þ
3 −0.025ð10Þ −0.040ð14Þ −0.0275ð60Þ

hþ 2 −0.0162ð95Þ −0.034ð13Þ −0.0436ð80Þ
3 0.028(10) −0.000ð14Þ −0.0024ð86Þ

h⊥ 2 0.0440(36) 0.0384(47) 0.0388(32)
3 0.0701(44) 0.0616(59) 0.0640(37)

h⊥0 2 −0.01582ð73Þ −0.0155ð12Þ −0.01738ð47Þ
3 −0.01495ð82Þ −0.0144ð13Þ −0.01684ð55Þ

h̃þ 2 3.15(16) 2.91(21) 2.78(12)
3 2.82(12) 2.61(17) 2.593(93)

h̃⊥ 2 3.22(16) 3.01(21) 2.86(13)
3 2.89(12) 2.70(18) 2.68(10)

h̃⊥0 2 0.098(14) 0.087(22) 0.1183(83)
3 0.091(11) 0.079(16) 0.1067(66)
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fðq2Þ ¼ Ff þ Afðw − 1Þ; ð75Þ

which only depend on the parameters Ff and Af. The
model (74) can be thought of as expansions of both the
zero-recoil form factors Ff and the slopes Af in terms of

the light-quark mass and the square of the lattice spacing.
The limited number of data points made it necessary to
constrain the size of the coefficients Cf, Df, C̃f, and D̃f to
be not unnaturally large. To this end, we introduced
Gaussian priors for Cf, Df, C̃f, and D̃f with central values
equal to 0 and widths equal to 10.
Our results for the physical-limit parameters Ff and Af

are given in Table VII. The full 28 × 28 covariance matrix
of the parameters for all 14 form factors is available as an
ancillary file in the Supplemental Material [61]. The form
factors in the physical limit are plotted in Figs. 4 and 5. The
dashed-dotted, dashed, and dotted curves show the fit
models evaluated at the pion masses and lattice spacings
of the individual datasets C01, C005, and F004, respec-
tively, where the uncertainty bands are omitted for clarity.
We see that the data are well described by the model. The
results for the parameters Cf, Df, C̃f, and D̃f are in fact
consistent with zero within the statistical uncertainties. To
report the values of χ2=d:o:f: of the fits, we need to make
a choice for the number of parameters to be subtracted
from the number of data points to obtain the number of
degrees of freedom. If we count Ff, Af, Cf, and Df as
parameters that are primarily constrained by the data, then
d:o:f: ¼ 6 − 4 ¼ 2. With this choice, the fits have χ2=d:o:f:
in the range from approximately 0.3 to 1.2.
To estimates systematic uncertainties associated with the

chiral and continuum extrapolation, we additionally per-
formed “higher-order” fits using the model

fHOðq2Þ ¼ Ff
HO

�
1þ Cf

HO

m2
π −m2

π;phys

ð4πfπÞ2
þHf

HO

m3
π −m3

π;phys

ð4πfπÞ3
þDf

HOa
2Λ2 þ Ef

HOaΛþ Gf
HOa

3Λ3

�

þ Af
HO

�
1þ C̃f

HO

m2
π −m2

π;phys

ð4πfπÞ2
þ H̃f

HO

m3
π −m3

π;phys

ð4πfπÞ3
þ D̃f

HOa
2Λ2 þ Ẽf

HOaΛþ G̃f
HOa

3Λ3

�
ðw − 1Þ; ð76Þ

using Gaussian priors for the parameters Cf
HO, H

f
HO, D

f
HO,

Gf
HO, C̃

f
HO, H̃

f
HO, D̃

f
HO, G̃

f
HO with central values equal to 0 and

widths equal to 10. The terms with coefficientsEf
HO and Ẽf

HO
are meant to describe the effects of the incomplete OðaÞ
improvement of the heavy-light currents using only the d1
correction term in Eq. (28) and with d1 evaluated at mean-
field-improved tree level. In Ref. [60], results for theΛb → p
form factors (using the same actions and lattice spacings)
using the incomplete (d1 only) and full operator bases for the
OðaÞ improvement were compared, albeit with all coeffi-
cients evaluated at one loop (the coefficients equivalent to d1
are denoted as cRΓ in Ref. [60]). The results were found to
differ only by less than 0.3%. The one-loop and tree-level
values of d1 differ only by approximately 0.02, but we also
expect largerOðaÞ effects associated with the use of nonzero
Λb momentum. We therefore conservatively allow for the
effect of the missing radiative corrections to the OðaÞ

improvement to be as large as 5% at the coarse lattice
spacing. This translates to setting the prior widths of the
parameters Ef

HO and Ẽf
HO to 0.3.

In the higher-order fits, we also incorporate the system-
atic uncertainties associated with the residual matching
factors ρΓ, as well as scale-setting and isospin-symmetry-
breaking/QED effects. The residual matching factors were
computed at one loop for the vector and axial vector
currents, and the size of the missing higher-order correc-
tions was estimated to be below 0.07% in Ref. [60], a result
of the smallness of the one-loop corrections (this is the
benefit of the “mostly nonperturbative” method). Never-
theless, because we improved the tuning of the b-quark
action parameters here without recomputing the one-loop
corrections to the current matching factors, we allow for
matching uncertainties in the vector and axial vector form
factors as large as 2%. For the tensor form factors, we

TABLE VII. The nominal fit parameters describing the form
factors in the physical limit. The parametrizations, which are
accurate only in the high-q2 region, are given by f ¼ Ffþ
Afðw − 1Þ, where w ¼ v · v0 ¼ ðm2

Λb
þm2

Λ� − q2Þ=ð2mΛb
mΛ� Þ.

The 28 × 28 covariance matrix is available in the Supplemental
Material [61]. The uncertainties given here are statistical only; see
the main text for a discussion of systematic uncertainties.

f Ff Af

f0 3.54(29) −14.7ð3.3Þ
fþ 0.0432(64) 1.63(19)
f⊥ −0.068ð18Þ 2.49(35)
f⊥0 0.0461(18) −0.161ð27Þ
g0 0.0024(38) 1.58(17)
gþ 2.95(25) −12.2ð2.9Þ
g⊥ 2.92(24) −11.8ð2.8Þ
g⊥0 −0.037ð14Þ 0.09(25)
hþ −0.095ð19Þ 2.38(32)
h⊥ 0.0170(43) 1.49(16)
h⊥0 −0.0196ð13Þ 0.038(11)
h̃þ 2.90(24) −12.0ð2.9Þ
h̃⊥ 3.01(25) −12.2ð2.8Þ
h̃⊥0 0.144(24) −0.74ð37Þ
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FIG. 4. Chiral and continuum extrapolations of the vector and axial vector form factors. The solid magenta curves show the form
factors in the physical limit, with inner light magenta bands indicating the 1σ statistical uncertainties and outer dark magenta bands
indicating the quadrature sums of statistical and estimated systematic uncertainties. The dashed-dotted, dashed, and dotted curves show
the fit models evaluated at the pion masses and lattice spacings of the individual datasets C01, C005, and F004, respectively, where the
uncertainty bands are omitted for clarity.
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estimate the size of the missing one-loop corrections to
the residual matching factors to be 5.316% at μ ¼ mb
as discussed in Sec. V. The neglected effects from mu −
md ≠ 0 and QED in the form factors are estimated to be
approximately 1%. The current-matching and isospin-
breaking/QED uncertainties were included in the higher-
order fits by multiplying each form factor with Gaussian
random distributions of central value 1 and width corre-
sponding to the estimated uncertainty. These distribu-
tions were taken to be correlated within each of the
groups ff0; fþ; f⊥; f⊥0g, fg0; gþ; g⊥; g⊥0g, fhþ; h⊥; h⊥0 g,
fh̃þ;h̃⊥;h̃⊥0 g, but uncorrelated across different groups.
The scale-setting uncertainties were incorporated by pro-
moting the lattice spacings to fit parameters, constrained to
have the known values and uncertainties.

In the physical limit, the higher-order fit functions again
reduce to the form as in Eq. (75), with Ff and Af replaced
by Ff

HO and Af
HO. The results for these parameters are given

in Table VIII, and the corresponding covariance matrix
is available in the Supplemental Material [61]. As in
Refs. [25,60], we evaluate the systematic form factor
uncertainty of any observable O through

σO;syst ¼ max
�
jOHO −Oj;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jσ2O;HO − σ2Oj

q �
; ð77Þ

where O, σO denote the central value and uncertainty
obtained using the parameter values and covariance matrix
of the nominal fit and OHO, σ2O;HO denote the central value
and uncertainty obtained using the parameter values and

FIG. 5. Like Fig. 4, but for the tensor form factors.
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covariance matrix of the higher-order fit. The systematic
and statistical uncertainties are then added in quadrature to
obtain the total uncertainties. The total uncertainties of the
form factors themselves are shown with the dark magenta
bands in Figs. 4 and 5. For some of the form factors, the
statistical uncertainties are so large that adding the sys-
tematic uncertainties does not visibly increase the width

of the band. When applying Eq. (77) to the Λb →
Λ�ð1520Þlþl− differential branching fraction in the region
q2 ≥ 16 GeV2, we find that the systematic uncertainties in
the form factors contribute an uncertainty ranging from
9.7%–11.4% in dB=dq2. Because dB=dq2 depends quad-
ratically on the form factors, this corresponds to an
effective form factor systematic uncertainty in the range
from 4.9%–5.7%.
Finally, note that our estimates of systematic uncertain-

ties do not account for errors introduced by performing the
data analysis as if the Λ�ð1520Þ is a stable hadron. We
expect these errors to be small, given the narrow width of
the Λ�ð1520Þ and our restriction to the rest frame. A more
rigorous determination ofΛb → Λ�ð1520Þ form factors that
treats the Λ�ð1520Þ as an unstable resonance in coupled-
channel p-K, Σ-π scattering may be possible using the
finite-volume formalism of Refs. [62,63], but this is far
beyond the scope of the present work. In the absence of
such an analysis, we also cannot reliably estimate finite-
volume effects in the form factors, although we note that
mπL > 4 for all ensembles used here.

VII. Λb → Λ�ð1520Þl+l− OBSERVABLES

To calculate the Λb → Λ�ð1520Þlþl− observables, we
employ the usual operator-product expansion that allows us
to express the decay amplitude in terms of local hadronic
matrix elements [64]. For the differential decay rate in the
Standard Model, we find

dΓ
dq2

¼ G2
Fα

2
em

3 · 210π5m3
Λb

jVtbV�
tsj2υ ffiffiffiffiffiffiffiffiffiffi

sþs−
p ½A1ð2m2

l þ q2Þ þ A2q2υ2 þ 6Atm2
l�; ð78Þ

where υ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l=q
2

q
, and the quantities A1, A2, and At are given by

A1 ¼
				H1

�
−1;

1

2
;
3

2

�				
2

þ
				H1

�
−1;−

1

2
;
1

2

�				
2

þ
				H1

�
0;
1

2
;
1

2

�				
2

þ
				H1

�
0;−

1

2
;−

1

2

�				
2

þ
				H1

�
1;
1

2
;−

1

2

�				
2

þ
				H1

�
1;−

1

2
;−

3

2

�				
2

; ð79Þ

A2 ¼
				H2

�
−1;

1

2
;
3

2

�				
2

þ
				H2

�
−1;−

1

2
;
1

2

�				
2

þ
				H2

�
0;
1

2
;
1

2

�				
2

þ
				H2

�
0;−

1

2
;−

1

2

�				
2

þ
				H2

�
1;
1

2
;−

1

2

�				
2

þ
				H2

�
1;−

1

2
;−

3

2

�				
2

; ð80Þ

At ¼
				H2

�
t;
1

2
;
1

2

�				
2

þ
				H2

�
t;−

1

2
;−

1

2

�				
2

: ð81Þ

Here, H1 and H2 are linear combinations of hadronic helicity amplitudes with the appropriate Wilson coefficients:

H1 ¼ −
2mb

q2
Ceff
7 ðq2ÞðHT þHT5Þ þ Ceff

9 ðq2ÞðHV −HAÞ; ð82Þ

TABLE VIII. Form-factor parameters obtained from fits in-
cluding higher-order terms. These parameters are used only to
estimate systematic uncertainties as explained in the main text.
The 28 × 28 covariance matrix is available in the Supplemental
Material [61].

f Ff
HO Af

HO

f0 3.55(33) −14.6ð3.3Þ
fþ 0.0433(70) 1.64(20)
f⊥ −0.068ð19Þ 2.51(38)
f⊥0 0.0462(27) −0.161ð28Þ
g0 0.0024(39) 1.59(18)
gþ 2.95(29) −12.1ð2.9Þ
g⊥ 2.92(28) −11.7ð2.8Þ
g⊥0 −0.037ð14Þ 0.09(25)
hþ −0.095ð20Þ 2.39(37)
h⊥ 0.0169(47) 1.50(20)
h⊥0 −0.0197ð19Þ 0.038(11)
h̃þ 2.90(32) −11.9ð2.9Þ
h̃⊥ 3.01(33) −12.1ð2.9Þ
h̃⊥0 0.145(27) −0.74ð37Þ
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H2 ¼ C10ðHV −HAÞ: ð83Þ

In terms of the form factors, the helicity amplitudes (in our sign conventions) for the vector, axial-vector, and tensor currents
are equal to

HV

�
t;
1

2
;
1

2

�
¼ HV

�
t;−

1

2
;−

1

2

�
¼ −f0

ðmΛb
−mΛ� Þ ffiffiffiffiffi

s−
p

ffiffiffiffiffiffiffi
6q2

p ; ð84Þ

HV

�
0;
1

2
;
1

2

�
¼ HV

�
0;−

1

2
;−

1

2

�
¼ −fþ

ðmΛb
þmΛ� Þ ffiffiffiffiffi

sþ
p

ffiffiffiffiffiffiffi
6q2

p ; ð85Þ

HV

�
1;
1

2
;−

1

2

�
¼ −HV

�
−1;−

1

2
;
1

2

�
¼ −f⊥

ffiffiffiffiffi
sþ

p
ffiffiffi
3

p ; ð86Þ

HV

�
1;−

1

2
;−

3

2

�
¼ HV

�
−1;

1

2
;
3

2

�
¼ f⊥0

ffiffiffiffiffi
sþ

p
; ð87Þ

HA

�
t;
1

2
;
1

2

�
¼ −HA

�
t;−

1

2
;−

1

2

�
¼ g0

ðmΛb
þmΛ� Þ ffiffiffiffiffi

sþ
p

ffiffiffiffiffiffiffi
6q2

p ; ð88Þ

HA

�
0;
1

2
;
1

2

�
¼ −HA

�
0;−

1

2
;−

1

2

�
¼ gþ

ðmΛb
−m�

ΛÞ
ffiffiffiffiffi
s−

p
ffiffiffiffiffiffiffi
6q2

p ; ð89Þ

HA

�
1;
1

2
;−

1

2

�
¼ −HA

�
−1;−

1

2
;
1

2

�
¼ −g⊥

ffiffiffiffiffi
s−

p
ffiffiffi
3

p ; ð90Þ

HA

�
1;−

1

2
;−

3

2

�
¼ −HA

�
−1;

1

2
;
3

2

�
¼ −g⊥0

ffiffiffiffiffi
s−

p
; ð91Þ

and

HT

�
t;
1

2
;
1

2

�
¼ HT

�
t;−

1

2
;−

1

2

�
¼ 0; ð92Þ

HT

�
0;
1

2
;
1

2

�
¼ HT

�
0;−

1

2
;−

1

2

�
¼ −hþ

ðmΛb
þmΛ� Þ ffiffiffiffiffi

sþ
p

ffiffiffiffiffiffiffi
6q2

p ; ð93Þ

HT

�
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1

2
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1

2

�
¼ HT

�
−1;−
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2
;
1

2

�
¼ −h⊥

ffiffiffiffiffi
sþ

p
ffiffiffi
3

p ; ð94Þ

HT

�
1;−

1
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3
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�
¼ HT
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−1;

1
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ffiffiffiffiffi
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; ð95Þ

HT5

�
t;
1

2
;
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¼ −HT5
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t;−
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;−
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�
¼ 0; ð96Þ
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p
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p ; ð97Þ

HT5
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1
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1
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¼ −HT5

�
−1;−
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2

�
¼ −h̃⊥
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s−

p
ffiffiffi
3

p ; ð98Þ
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HT5

�
1;−

1
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3

2

�
¼−HT5

�
−1;

1

2
;
3

2

�
¼−h̃⊥0

ffiffiffiffiffi
s−

p
: ð99Þ

For the effective Wilson coefficients Ceff
7 ðq2Þ and Ceff

9 ðq2Þ,
we use the expressions given in Eqs. (65) and (66) of
Ref. [25]. The Wilson coefficients C1 through C10, the
strong and electromagnetic couplings, and the b and c
quark masses are also evaluated as in Ref. [25]. We take

jVtbV�
tsj ¼ 0.04120� 0.00056 ð100Þ

from the summer 2018 Standard-Model fit performed by
the UTFit Collaboration [65], and, to obtain dB=dq2 ¼
τΛb

dΓ=dq2, the Λb lifetime

τΛb
¼ ð1.471� 0.009Þ ps ð101Þ

from [29].
The uncertainties estimated for the Standard-Model

predictions shown below include the form factor statistical
and systematic uncertainties, the perturbative uncertain-
ties, an estimate of quark-hadron duality violations (as in
Ref. [25]), and the parametric uncertainties from Eqs. (100)
and (101).
Our prediction for the differential branching fraction in

the high-q2 region is shown in Fig. 6. Here we have set
ml ¼ 0, which, in this kinetic region, is a good approxi-
mation for both electrons and muons. We only show results
above q2 ¼ 16 GeV2 because our lattice data only reach
down to approximately 16.3 GeV2, and our parametrization

of the q2 dependence of the form factors is not expected to
be reliable for lower q2. In this kinematic region, our
numerical results for dB=dq2 are approximately a factor of
2 lower than those obtained using the quark-model form
factors of Ref. [30].
In the narrow-width approximation for the Λ�ð1520Þ and

for ml ¼ 0, the Λb → Λ�ð1520Þð→pK−Þlþl− four-fold
differential decay distribution in the Standard Model has
the form

d4Γ
dq2d cos θld cos θΛ�dϕ

¼ 3

8π
½cos2 θΛ� ðL1c cos θl þ L1cc cos2 θl þ L1ss sin2 θlÞ

þ sin2 θΛ�ðL2c cos θl þ L2cc cos2 θl þ L2ss sin2 θlÞ
þ sin2 θΛ�ðL3ss sin2 θl cos2 ϕþ L4ss sin2 θl sinϕ cosϕÞ
þ sin θΛ� cos θΛ� cosϕðL5s sin θl þ L5sc sin θl cos θlÞ
þ sin θΛ� cos θΛ� sinϕðL6s sin θl þ L6sc sin θl cos θlÞ�; ð102Þ

where the angular coefficients Li are functions of q2 only
[17]. The expressions for the Li in terms of form factors are
given in Ref. [17], using a slightly different definition of
the form factors that is related to ours as shown in
Appendix A 2. In the following, we use the convention
that we do not include the factor of BΛ� ¼ BðΛ� → pK−Þ
in the angular coefficients Li, which means that the integral
of Eq. (102) over cos θl, cos θΛ� , and ϕ is equal to dΓ=dq2
for the primary decay Λb → Λ�ð1520Þlþl−. We consider
the CP-averaged, normalized angular observables [17]

Si ¼
Li þ L̄i

dðΓþ Γ̄Þ=dq2 : ð103Þ

Our predictions for S1c, S1cc, S1ss, S2c, S2cc, S2ss, S3ss, S5s,
and S5sc are shown in Figs. 7 and 8. Two further com-
binations of interest are the fraction of longitudinally
polarized dileptons

FL ¼ 1 −
2ðL1cc þ 2L2ccÞ

3dΓ=dq2
ð104Þ

and the lepton-side forward-backward asymmetry

Al
FB ¼ L1c þ 2L2c

2dΓ=dq2
; ð105Þ

these are shown in Fig. 9. In the kinematic region
considered here, our results for all angular observables

FIG. 6. The Λb → Λ�ð1520Þlþl− differential branching frac-
tion in the high-q2 region calculated in the Standard Model using
our form factor results. Note that the factor of BðΛ� → pK−Þ is
not included here.
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FIG. 7. The Λb → Λ�ð1520Þð→ pK−Þlþl− angular observables S1c, S1cc, S1ss, S2c, S2cc, and S2ss in the high-q2 region calculated in
the Standard Model using our form factor results.
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are qualitatively similar to those predicted using quark-
model form factors [30], shown in Refs. [17,19], but there
are substantial numerical differences. For example, the zero

crossing in the forward-backward asymmetry is more than
twice as far away from q2max as predicted by the quark
model.

FIG. 8. The Λb → Λ�ð1520Þð→ pK−Þlþl− angular observables S3ss, S5s, and S5sc in the high-q2 region calculated in the Standard
Model using our form factor results.

FIG. 9. The Λb → Λ�ð1520Þð→ pK−Þlþl− fraction of longitudinally polarized dileptons and the lepton-side forward-backward
asymmetry in the high-q2 region calculated in the Standard Model using our form factor results.
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VIII. CONCLUSIONS

We have presented the first lattice-QCD calculation of
the form factors describing the Λb → Λ�ð1520Þ matrix
elements of the vector, axial vector, and tensor b → s
currents. Similarly to the lattice calculation of B →
K�ð892Þ form factors in Ref. [66], this exploratory study
treats the Λ�ð1520Þ as a stable particle. Even in this
approximation, our work required overcoming several
challenges. The simplest choices of three-quark interpolat-
ing fields with I ¼ 0 and JP ¼ 3

2
− dominantly couple to

higher-lying states; a previous lattice-QCD study of
Λ-baryon spectroscopy [53] in fact was unable to identify
the Λ�ð1520Þ for this reason. Here we solved this problem
by including gauge-covariant spatial derivatives in the
interpolating field, at the expense of having to compute
additional propagators with derivative sources. We also
used all-mode averaging [44,45] to overcome the poor
signal-to-noise ratios in the correlation functions involving
the Λ�ð1520Þ. Traditionally, lattice-QCD calculations of
heavy-to-light form factors have been performed in the rest
frame of the heavy hadron, giving the final-state light
hadron nonzero momentum. However, at nonzero momen-
tum an interpolating field that would have JP ¼ 3

2
− in the

continuum then also couples to JP ¼ 3
2
þ, and in some cases

even JP ¼ 1
2
þ, which would make isolating the Λ�ð1520Þ

extremely difficult. For this reason, we performed the
lattice calculation in the Λ�ð1520Þ rest frame, giving
nonzero momentum to the Λb instead. While this choice
eliminates the problem of mixing with unwanted lighter
states, it also limits the accessible q2 range to be very close
to q2max. We performed the calculation for two different Λb
momenta, jpj ≈ 0.935 GeV and jpj ≈ 1.402 GeV, corre-
sponding to q2=q2max ≈ 0.986 and q2=q2max ≈ 0.969, respec-
tively. This only allowed linear fits of the q2 dependence
(or, equivalently, w dependence), which yield the values of
the form factors at q2max and their slopes. Using three
different ensembles of gauge fields on lattices that all have
approximately the same spatial volume, we performed
extrapolations linear in a2 and m2

π , with independent
coefficients for the slopes and intersects of the form factors,
to the physical limit.
Looking ahead, lower values of q2 could be reached

using the moving-nonrelativistic-QCD action [67] for
the b quark, which enables much higher Λb momenta
while keeping discretization errors under control, but
requires a more complicated matching of the currents to
continuum QCD. Furthermore, a more rigorous analysis
of Λb → Λ�ð1520Þ form factors that treats the Λ�ð1520Þ
as a resonance in coupled-channel p-K, Σ-π scattering
may be possible using the finite-volume formalism of
Refs. [62,63], but this would still not include Λ-π-π
three-particle contributions.
Using our form factor results, we have obtained

Standard-Model predictions for the Λb → Λ�ð1520Þlþl−

differential branching fraction and several Λb →
Λ�ð1520Þð→pK−Þlþl− angular observables at high q2.
The uncertainty in the differential branching fraction in the
region considered is approximately 20%, while some
angular observables are more precise due to their reduced
dependence on the form factors and benefits from corre-
lations. We find dB=dq2 to be lower by a factor of 2 than
predicted using the quark-model form factors of Ref. [30].
Our results for the angular observables are qualitatively
similar to those computed using the quark-model form
factors [17], but show significant quantitative differences.
We look forward to future experimental results for
Λb → Λ�ð1520Þlþl−.
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APPENDIX: RELATIONS BETWEEN DIFFERENT
FORM-FACTOR DEFINITIONS

In this appendix we provide the relations between two
other definitions of Λb → Λ�ð1520Þ form factors used in
the literature and our definition.

1. Non-helicity-based definition

This definition is used in Refs. [30,33]. For the vector
and axial vector currents, it has the same structure as the
definition of Λb → Λ�

cð2625Þ form factors in Ref. [35]. In
the notation of our Eq. (5), it is given by

Gλ½γμ� ¼ vλðF1γ
μ þ F2vμ þ F3v0μÞ þ F4gλμ; ðA1Þ

Gλ½γμγ5� ¼ vλðG1γ
μ þ G2vμ þ G3v0μÞγ5 þ G4gλμγ5; ðA2Þ

Gλ½iσμνqν� ¼ vλðFT
1 γ

μ þ FT
2v

μ þ FT
3v

0μÞ þ FT
4 g

λμ; ðA3Þ

Gλ½iσμνqνγ5� ¼ vλðGT
1 γ

μ þGT
2v

μ þGT
3v

0μÞγ5 þ GT
4 g

λμγ5:

ðA4Þ

STEFAN MEINEL and GUMARO RENDON PHYS. REV. D 103, 074505 (2021)

074505-20



Note that only six of the eight tensor form factors in this definition are independent. The relation to our definition is

F1 ¼
mΛb

mΛ�

s−
ðf⊥ þ f⊥0 Þ; ðA5Þ

F2 ¼
m2

Λb
mΛ�

q2sþs−
½ðmΛb

−mΛ�Þs−f0 − 2mΛ�q2ðf⊥ − f⊥0 Þ − ðmΛb
þmΛ�Þðm2

Λb
−m2

Λ� − q2Þfþ�; ðA6Þ

F3 ¼
mΛb

mΛ�

q2sþs−
½−mΛ�ðmΛb

−mΛ� Þs−f0 − 2mΛb
mΛ�q2f⊥ þ 2q2ðmΛb

mΛ� − sþÞf⊥0

þmΛ� ðmΛb
þmΛ� Þðm2

Λb
−m2

Λ� þ q2Þfþ�; ðA7Þ

F4 ¼ f⊥0 ; ðA8Þ

G1 ¼
mΛb

mΛ�

sþ
ðg⊥ þ g⊥0 Þ; ðA9Þ

G2 ¼
m2

Λb
mΛ�

q2sþs−
½−ðmΛb

þmΛ� Þsþg0 − 2mΛ�q2ðg⊥ − g⊥0 Þ þ ðmΛb
−mΛ� Þðm2

Λb
−m2

Λ� − q2Þgþ�; ðA10Þ

G3 ¼
mΛb

mΛ�

q2sþs−
½mΛ�ðmΛb

þmΛ� Þsþg0 þ 2mΛb
mΛ�q2g⊥ − 2q2ðmΛb

mΛ� þ s−Þg⊥0

−mΛ� ðmΛb
−mΛ�Þðm2

Λb
−m2

Λ� þ q2Þgþ�; ðA11Þ

G4 ¼ g⊥0 ; ðA12Þ

FT
1 ¼ −

mΛb
mΛ� ðmΛb

þmΛ�Þ
s−

ðh⊥ þ h⊥0 Þ; ðA13Þ

FT
2 ¼ m2

Λb
mΛ�

sþs−
½2mΛ� ðmΛb

þmΛ� Þðh⊥ − h⊥0 Þ þ ðm2
Λb

−m2
Λ� − q2Þhþ�; ðA14Þ

FT
3 ¼ mΛb

mΛ�

sþs−
½2ðmΛb

þmΛ� ÞðmΛb
mΛ�h⊥ − ðmΛb

mΛ� − sþÞh⊥0 Þ −mΛ� ðm2
Λb

−m2
Λ� þ q2Þhþ�; ðA15Þ

FT
4 ¼ −ðmΛb

þmΛ� Þh⊥0 ; ðA16Þ

GT
1 ¼ mΛb

mΛ� ðmΛb
−mΛ� Þ

sþ
ðh̃⊥ þ h̃⊥0 Þ; ðA17Þ

GT
2 ¼ m2

Λb
mΛ�

sþs−
½−2mΛ� ðmΛb

−mΛ� Þðh̃⊥ − h̃⊥0 Þ þ ðm2
Λb

−m2
Λ� − q2Þh̃þ�; ðA18Þ

GT
3 ¼ mΛb

mΛ�

sþs−
½2ðmΛb

−mΛ�ÞðmΛb
mΛ� h̃⊥ − ðmΛ�mΛb

þ s−Þh̃⊥0 Þ −mΛ� ðm2
Λb

−m2
Λ� þ q2Þh̃þ�; ðA19Þ

GT
4 ¼ðmΛb

−mΛ� Þh̃⊥0 : ðA20Þ

2. Helicity-based definition used by Descotes-Genon
and Novoa Brunet

Reference [17] uses a helicity-based definition that
differs from ours only by simple kinematic factors:

fVt ¼ mΛ�

sþ
f0; ðA21Þ

fV0 ¼ mΛ�

s−
fþ; ðA22Þ
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fV⊥ ¼ mΛ�

s−
f⊥; ðA23Þ

fVg ¼ f⊥0 ; ðA24Þ

fAt ¼ mΛ�

s−
g0; ðA25Þ

fA0 ¼ mΛ�

sþ
gþ; ðA26Þ

fA⊥ ¼ mΛ�

sþ
g⊥; ðA27Þ

fAg ¼ −g⊥0 ; ðA28Þ

fT0 ¼ mΛ�

s−
hþ; ðA29Þ

fT⊥ ¼ mΛ�

s−
h⊥; ðA30Þ

fTg ¼ðmΛb
þmΛ� Þh⊥0 ; ðA31Þ

fT50 ¼ mΛ�

sþ
h̃þ; ðA32Þ

fT5⊥ ¼ mΛ�

sþ
h̃⊥; ðA33Þ

fT5g ¼ −ðmΛb
−mΛ�Þh̃⊥0 : ðA34Þ

Similarly, Ref. [36], which considers Λb → Λ�
c, contains

another helicity-based definition (for the vector and axial
vector form factors only) that also differs from ours only by
simple kinematic factors.
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