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Abstract

Bell’s inequality provides a remarkable way to test the consistency between quantum mechanics
and classic local realistic theory. However, experimental demonstrations of the loophole-free Bell
test are challenging and only recently have been demonstrated with bipartite systems. A central
obstacle for the photonic system is that the sampling efficiency, including the collection and
detection efficiencies, must be above a certain threshold. We here generalize two-particle
Eberhard’s inequality to the n-particle systems and derive a Bell-type inequality for multi-particle
systems, which significantly relaxes this threshold. Furthermore, an experimental proposal to
achieve a multi-partite Bell test without the fair sampling assumption is presented for the case of
three particles. For any given value of the sampling efficiency, we give the optimal configurations
for actual implementation, the optimal state, the maximum background noise that the system can
tolerate, and the lowest fidelity of the quantum state. We believe our work can serve as a recipe for
experimentalists planning to violate local realism using a multi-partite quantum state without the
sampling loophole.

1. Introduction

In 1935, Einstein, Podolsky, and Rosen argued that quantum mechanics is incomplete when assuming that
physical systems satisfy locality and realism [1]. They started their discussion by noting that quantum
mechanics predicts perfect correlations between the outcomes of measurements on two distant entangled
particles. If one particle of an entangled pair is measured and has a definite outcome, the other particle will
be instantly projected onto a well-defined state independent of their spatial separation.

In 1964, Bell proved that the predictions of quantum theory are incompatible with the local realistic
theory [2]. If assuming that no physical influences can be faster than the speed of light and that the
properties of physical systems are elements of reality, the correlations in measurement outcomes from two
distant observers must necessarily obey an inequality. This result showed that there is an upper limit for the
observed correlations predicted by local realistic theory. However, quantum mechanics predicts a violation
of this limit with certain measurements on entangled particles [3, 4].

Since the first experimental Bell test [5], violations of Bell’s inequalities have been observed in a variety
of physical systems such as photons [6—11], atoms [12—14], and superconducting qubits [15]. However, due
to technological constraints, these experimental tests of Bell’s inequality required extra assumptions, and
therefore left open loopholes. Performing a loophole-free Bell test faces two main challenges: excluding any
possible communication between the observers and guaranteeing efficient measurements [16].

The locality loophole is open if the measurement of one side could be communicated to the other side
and hence influence the measurement results remotely. Space-like separation of each local measurement
closes the locality loophole. This was firstly explored by Aspect et al [6] by employing rapid switching of the
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measurement settings. Weihes et al [7] later improved this with fast random switching. However, these two
experiments left open the fair sampling loophole due to inefficient single-photon detection. In 2001, the fair
sampling loophole was closed for the first time using entangled ions [17]. The freedom-of-choice loophole
refers to the fact that the setting choices are not ‘free or random’ [18]. This requires that there is no
interdependence between the choice of measurement settings and the properties of the system being
measured. Because this is difficult to achieve with current experimental techniques, a reasonable
assumption is introduced: the hidden variables describing the properties of a system are created with the
particles to be measured. Thus, this loophole is closed if the settings are generated independently at the
measurement stations and space-like separated from the creation of the particles. In 2010, Scheidl et al [19]
performed an experiment that violates Bell’s inequality while simultaneously closing the freedom-of-choice
loophole and the locality loophole, but the fair sampling loophole is open. How to close all loopholes in a
single experiment has always been a challenging topic. Until 2015, the first experimental test of Bell’s
inequality without the above three loopholes was performed based on electron spins of separated
nitrogen-vacancy (NV) centers [20]. Independently, three Bell experiments also successfully closed these
loopholes. Two of which employed entangled photon pairs [21, 22], and one employed entangled atoms
connected with single photons [23].

In the process of performing a loophole-free Bell test, Eberhard’s inequality [24], which was proposed
by Eberhard in 1993, plays an important role. Since Eberhard’s inequality explicitly includes undetected
events, its violation implies that the fair-sampling loophole is closed. In addition, Eberhard’s inequality is
an experiment-friendly inequality for testing local realism without the detection loophole, which has been
employed in the landmark experiments in realizing the loophole-free Bell test [9, 21]. It is experiment
friendly because it requires a lower threshold efficiency and a rather easy-to-generate non-maximally
entangled state for achieving the inequality violation. Therefore, the motivation of this work is to: generalize
two-particle Eberhard’s inequality to the multi-particle case and see if we can still obtain the similar
experimental friendliness as in the two-particle case, i.e., lower threshold efficiency and easy to generate
quantum state. Note that there have been some interesting works on sampling efficiency [25-32]. Larsson
and Semitecolos extended the two-particle CH inequality to the n-particle systems [25], and Massar and
Pironio studied the upper bound of detection efficiency that can be achieved by the local hidden variable
model [26]. These are very relevant studies to our present work. Interestingly, although we use a different
approach compared to references [25, 26], we obtain the same bounds for sampling efficiency.

2. Eberhard’s inequality for two-particle system

Firstly, let us briefly review the two-particle model constructed by Eberhard [24], which contains a source
and two observers, Alice and Bob, as shown in figure 1. Each observer can choose two different settings for
the measurements, A;, By for Alice, A,, B, for Bob. For each measurement, Eberhard considers three
possible outcomes: ‘0’ and ‘e’ indicate two recorded outcomes, and ‘u’ indicates that no particle is detected.

Since the two observers cannot signal to each other in a Bell test, Alice (Bob) is unaware of the input to
Bob (Alice). Thus the no-signaling relationships satisfy,

N(alA)) = ) NlablAiAy) = ) N(ablABy), (1a)
be{o,u,e} be{o,u,e}

N(alB) = > N(ab|BiA)) = »_ N(ab|BBy), (1b)
be{o,u,e} be{o,u,e}

N(blAy) = ) NlablA1A;) = ) N(ab|BiAy), (1c)
ac{o,u,e} ac{o,u,e}

N(b|By) = > N(ablA;B,) = »  N(ab|BBy), (1d)
ac{o,u,e} ac{o,u,e}

which represent that a measurement result at one party is independent of the measurement input at the
other party. N(ab|AB,) denote the number of pairs with the outcome a for Alice and b for Bob when
measured in settings A, and B, where a,b € {o, u, e}.

In Eberhard’s original work [24], he proposed the concept of ‘conjugate events’: events between different
settings that satisfy the no-signaling relationships are ‘conjugate events’. Eberhard assumes that classical
sample is purely formed by ‘conjugate events’, and then selects and removes subsets of sample according to
the measurement results to obtain the inequality.

With the representation of figure 2, the derivation process of the two-particle Eberhard’s inequality is as
follows: first, all the N(00]A;A;) events are selected falling into the box marked in red in the setting (A;A,),
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Figure 1. Two-particle experimental schematic. A source produces entangled particle pairs, and two observers, Alice and Bob,
perform independent measurements. {A;, B;} denote the settings selected by the ith observer, i € {1,2}. For each measurement,
there are three possible outcomes: ‘0’ and ‘e’ for the two recorded outcomes, and ‘u” if no particle is detected.
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Figure 2. Four boxes located in four quadrants correspond to four combinations of settings, each of which contains nine small
boxes corresponding to nine types of events. (a) The box marked in red in the setting (A; A,) indicates that all sample events fall
into this box. The boxes marked in green indicate that the conjugates of sample events in the setting (A;B,) fall into these boxes.
The boxes marked in blue and yellow indicate that the conjugates of sample events in the setting (B, A,) and setting (B, B,) fall
into these boxes, respectively. The boxes marked with a * indicate that none of the sample events or their conjugates fall into these
boxes. (b) The boxes marked with a ® in setting (B, A,) indicate that the conjugates of sample falling into these boxes were
removed. The boxes marked with a x in setting (B, B,) indicate that when the conjugates in the boxes marked with a ® are
removed, none of the events in the remaining sample has a conjugate falling into these boxes. (c) The boxes marked with a & in
setting (A, B,) indicate that the conjugates of sample falling into these boxes were removed. The boxes marked with a + in setting
(B, B,) indicate that when the conjugates in the boxes marked with a @ are removed, none of the events in the remaining sample
has a conjugate falling into these boxes.

their conjugates in other settings fall into the corresponding boxes as shown in figure 2(a). Then, the sample
is restricted by removing the conjugate events that fall into one of the boxes marked with a ® in the setting
(B1A;) as shown in figure 2(b). The number of events removed is smaller than or equal to the total number
Zbe (e} N(0b|A,B,) of events of all categories contained in those two boxes. Therefore the restricted sample
contains N(00|A1A;) — >, (e} N(ob|A;B,) events or more; finally, the sample is further restricted by
removing the conjugate events falling into the boxes marked with a @ in the setting (A;B,). Using the same
arguments as in the previous procedure, the number of remaining events must be more than or equal to
N(oo|A1Ay) — Zhe{u,e} N(ob|A|B,) — Zae{w} N(ao|B,A,); as shown in figure 2(c), the remaining sample
events have conjugates that fall into the only remaining box (00) in the setting (B;B,), i.e., the number of
remaining events is smaller than or equal to the total number N(oo|B;B;) of events of all categories
contained in this box. These processes can be expressed as

N(00|A1A;) = Y N(oblAiB,) — > Ni(ao|BiAz) < N(00|BiBy). (2)
be{u,e} ac{u,e}

Introducing the parameter J, equation (2) can be rewritten into the form of equation (13) in
reference [24]:

J= > N(ao|BiA;) + > N(ob|A;By) + N(oo|B;B,) — N(00|A1A;) > 0. (3)

ac{ue} be{u,e}

When ] > 0, the experimental results are consistent with local realistic theory. On the contrary, when J < 0,
the results are incompatible with local realistic theory, but can be achieved with entangled states.
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Figure 3. Three-particle experimental schematic. A source that distributes three entangled particles to the observers, and three
observers who perform independent measurements. Each observer can choose two different settings, {A;, B;}. For each
measurement, there are three possible outputs: ‘0’, ‘u’, and ‘¢’

3. Eberhard’s inequalities for multi-particle systems

Following Eberhard’s work, we first derive inequality for the three-particle using the logic of Eberhard and
then generalize it to the n-particle case.

3.1. Eberhard’s inequality for three-particle system

Three observers, Alice, Bob, and Charlie, satisty the local realistic theory. They respectively receive entangled
particles from the three-particle source and then measure their particles independently. Each observer can
choose two different settings for the measurements as shown in figure 3. These settings have eight
combinations: (A1A2A3), (A1A2B3), (AleA3), (BIA2A3), (A]BzBa), (BlAzBa), (BleAa), and (B]BzB3).
Because each measurement has three possible outcomes, there are twenty-seven possible events in each
combination of settings.

To derive the three-particle Eberhard’s inequality, we select all the N(000|A;A,A3) events as the initial
sample, and their conjugates in other settings fall into the corresponding boxes as shown in figure 4(a).
First, we restrict the sample by removing the conjugate events that fall into one of the boxes marked with
the green ball in the setting (A;A,B3) as shown in figure 4(b). The number of events subtracted is smaller
than or equal to the total number ) (e} N(ooc|A1A,Bs) of events of the categories contained in those two
boxes. Therefore the restricted sample contains N(000|A1A,A3) — 3 . (e} N(ooc|A;A,Bs) events or more.
Then we restrict the sample again by removing the conjugate events falling into the boxes marked with the
blue ball in the setting (A;B,A3) as shown in figure 4(c). Using the same argument as the previous process,
the restricted sample contains N(000|A;A,A3) — Zce{u,e} N(ooc|A1A;Bs) — Zbe{w} N(obo|A|B,As) events
or more. Finally, we further restrict the sample by removing the conjugate events that fall into the box
marked with the cyan ball in the setting (B;A,A3) as shown in figure 4(d). The remaining sample contains
N(o00|A1ALA3) — Zce{w} N(ooc|A1AyBs) — Zbe{w} N(obo|A|BA5) — Zue{u,e} N(aoo|B1A,As) events or
more. As analyzed in the caption of figure 4, none of the events in the remaining sample has a conjugate
that falls in a box marked with green, blue, or cyan balls. Therefore, all events belonging to the remaining
sample must have conjugates in the setting (B; B, B3) falling into the only remaining box (000), which means
that the number of remaining events is smaller than or equal to the total number N(00o|B; B,B3) of events
of all categories contained in the box (000). Thus the no-signaling conditions can be satisfied only if the
sampling events and their conjugates satisfy,

N(000|A1A2A3) — Y N(ooc|A1A;Bs) — > Ni(obo|A1ByAs) — > Ni(aoo|B1AAs)

ce{ue} be{u,e} ac{ue}

< N(000|B,B,B;). (4)

Note that the conjugates of the sample events for the three-particle are more complex than the
two-particle, and the conjugate events of the sample are conjugate to each other. As shown in figure 4(a),
the conjugates of the sample events may fall into the boxes marked in green in the setting (A;A;B3), or they
may fall into the boxes marked in magenta in the setting (A; B,B3). However, for the events in the boxes
marked in green, their conjugates also fall into the boxes marked in magenta. Therefore, when we remove
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Figure 4. Eight cubes located in the eight quadrants correspond to eight combinations of settings, each of which contains
twenty-seven small boxes corresponding to twenty-seven types of events. (a) The box marked in red in the setting (A;A,A;)
indicates that all sample events only fall into this box. The boxes marked in green indicate that the conjugates of sample events in
the setting (A;A,Bs) fall into these boxes. Similarly, the conjugate events fall into the following boxes in other settings: the boxes
in the setting (A; B,A;) marked in blue, the boxes in the setting (B;A,A;) marked in cyan, the boxes in the setting (A, B,Bs)
marked in magenta, the boxes in the setting (B, B,A;) marked in yellow, the boxes in the setting (B;A,B;) marked in purple, and
the boxes in the setting (B, B,B;) marked in pink. The remaining unmarked boxes indicate that none of the sample events or their
conjugates fall into these boxes. (b) We restrict the sample by removing the conjugate events that fall into the boxes (oou) and
(ooe) in the setting (A;A,B;). After this, none of the events in the restricted sample has a conjugate falling into a box where the
outputs of B; are u or e in the setting (A;A,Bs). According to the no-signaling relationships, none of the events in the restricted
sample has a conjugate that falls into the box marked with the green ball in the settings (A;A,Bs), (A;B,B3), (B1A;B;) and
(B1B,B5). (c) We restrict the sample again by removing the conjugate events that fall into the boxes (ouo0) and (oeo) in the setting
(A1 B,A3). Using the same argument as in the (b), none of the events in the restricted sample has a conjugate that falls into a box
marked with the blue ball in the settings (A, B,A3), (B1B,A3), (A1B,Bs), and (B, B,B3). (d) We further restrict the sample by
removing the conjugate events that fall into the box (100) and (eoo) in the setting (B;A,A5). Similarly, none of the events in the
remaining sample has a conjugate that falls into a box marked with the cyan ball in the settings (B,A,Aj3), (B B,A3), (B1A;Bs),
and (B; B,B3). (e) The conjugates distribution of the remaining and removed events in the settings (A1A,A3), (A1A2Bs),
(A1B,A3), and (A;B,B;) when the output of A; is ‘0’. It can be seen that some of the conjugate events that fall into the boxes in
the setting (A; B,B;) are removed twice.

sample events whose conjugate events fall into the boxes marked with the green and blue balls, as shown in
figure 4(e), some of the events in the setting (A; B, B3) were equivalently removed twice. From figure 4(d),
we find that settings (B1A,B;) and (B;B,A3) also have the same situation. To ensure that the sample events
are not over-restricted, the number of these conjugate events that are removed multiple times should be
added to the inequality. Therefore, equation (4) should be rewritten as

N(000|A1A2A3) — Y N(ooc|A1A;Bs) — > N(obo|A1ByAs) — > Ni(aoo|B1AAs)
ce{u,e} be{u,e} ac{u,e}

+ A < N(o00|B;B,Bs), (5)

where A represents the number of the conjugate events that are multi-removed.

Through the previous analysis, we know that the conjugates of the remaining events in setting (B, B,B3)
all fall into the box (000). Next, we analyze the conjugates of the removed events in the setting (B,B,Bs).
Figures 5(d) and (e) show that none of the events in the removed sample has a conjugate that falls into the
box (000), and the conjugates in the boxes (0oc), (0bo), and (aoo) are removed only once, where
a, b, ¢ € {u, e}. Therefore, the conjugate events that are removed multiple times cannot fall into these boxes,
and their number must be more than or equal to

N(000|A1A243) = > N(aoo|BiB,Bs) — > Ni(obo|B\B,Bs) — > N(ooc|B,B,Bs)
ac{u,e} be{ue} ce{u,e}

— N(000|BleB3), (6)
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Figure5. (a) Conjugates distribution of the remaining events and removed events in setting (B, B,B;). The conjugates of the
remaining events all fall into the only remaining box marked in pink. On the contrary, the conjugates of the removed events fall
into the boxes marked with green, blue, and cyan balls. Different colored balls in the same box indicate that the conjugates falling
into this box correspond to different removed events. (b) The conjugates falling into the boxes (uuu), (uue), (ueu), (uee), (euu),
(eue), (eeu), and (eee) correspond to three different removed events, respectively. (c) The conjugates falling into the boxes (ouu),
(oue), (oeu), (oee), (uou), (uoe), (eou), (eoe), (uuo), (ueo), (euo), and (eeo) correspond to two different removed events,
respectively. (d) Only one type of the removed events has conjugates falling into the boxes (oou), (0oe), (ouo), (0eo), (100), and
(e00)). (e) None of the removed events has a conjugate that falls into the box (000).

that is,

A > N(00o|A1A2A3) — > N(aoo|BiByBs) — Y N(obo|BiB,Bs) — > N(ooc|B1B;Bs3)

ac{u,e} be{ue} ce{u,e}

—N(OOO‘BleB:;). (7)
Substituting equation (7) into equation (5),

2N(000|A1A2A3) — Z N(ooc|A1A;B5) — Z N(obo|ABA3) — Z N(aoo|B1AzA3)

ce{u,e} be{u,e} ac{u,e}
— ) N(aoo|B\B,Bs) — > N(obo|BiB,Bs) — > Nf(ooc|B;B,Bs)
ac{u,e} be{ue} ce{u,e}
< 2N(000|B;B,B3). (8)

It should be noted that the generalization of the three-particle Eberhard’s inequality is not unique, but
equation (8) is a better way to obtain a lower efficiency threshold. In appendix A, we present another
three-particle inequality different from equation (8), which has a higher threshold efficiency.

3.2. Eberhard’s inequalities for n-particle systems
Consider a system composed of n observers that are labeled with the index set I, = {1,2,...,n}. For the ith
observer, two different measurement settings {A;, B;} can be selected, and each measurement has three

Co o0

possible outcomes, ‘0’, ‘i, ‘€’. Let us denote A” = Il;c; A; for the arbitrary subset 7 C I,,. Moreover, we also
denote T as the complementary set of 7, and || as the size of the subset 7.

Theorem 1. For an n-particle system, if we select all the N(0"|A") events as the classical sample and then
remove their conjugates according to the measurement results. These sample events and their conjugates satisfy
the following inequalities,

(n— DN(0"|A") =~ Y N(o"xl™|a"B¥)

K xe{ue}
n—2 7|
= n=1=17DY YD  N("uMel|BB'B") — (n — 1)N(0"|B") <0, (9)
|7|=1 T |u|=0 v
where, k C I, || =1, v C 7.

Proof. According to the no-signaling relationships,

N(o"[A") < N(o"|a") + 3 N(o"IxFa"A%) = N(o"|A"B") + Y N(o"Ix|a"B").  (10)

xe{u,e} xe{u,e}
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Since we only select all the N(0"|Al") events as the sample, other events in setting (A™") do not contribute to
the number of sample events, so

Z N(o‘”‘x"%HA”AF‘) =0. (11)

xe{u,e}
Using equations (11) and (10) is rewritten as,

N(o"|A") = N(0"|A"B™) + > N(o"x™|A"BF). (12)

xe{u,e}

Similarly, according to no-signaling relationships, the sampling events and their conjugate events satisfy the
following relationships:

N(o"|Al") = Z N(ol*!x/"| A% BF), (13a)
xe{u,e}
— — n ‘%‘ — —
>3 NeFATET = Y 17> Y Y NG e | BB BT). (13b)
K xe{ue} [7|=1 T |ul=0 v

Substituting equations (13a) and (13b) into equation (9),
(n—1DN("|A") = >~ Y~ N(o"x*|a"B%)
|R|=1,F xe{u.e}

[l

n—2
=Y (n=1—=7D) > > N(oulle BB BY)

[7|=1 T |u|=0 v
n
— (n—1)N(o"|B") = — Z ZN(u‘“‘eWB“B@) <0. (14)
[v|=0 v

Since the counts of events cannot be negative, equation (14) is true. Thus, if the no-signaling conditions are
satisfied, we prove that the sample events and their conjugates always satisfy equation (14).

4. Applications of multi-particle Eberhard’s inequalities

Denote the sampling efficiency as 7, which is independent of the input. The joint probability under such
inefficiency, denoted as P,), is related to the ideal probability by

Py(abc|ai Brys) = 1 Plabelar Bo73), (15a)
Py (abulay Byy3) = 1°(1 — n)P(abloy 5y), (15b)
Py (auclon Bry3) = n*(1 — n)P(aclarys), (15¢)
P, (ubclar Byy3) = °(1 — n)P(ab] B273), (15d)
Py (uuulai Brys) = (1= n)’, (15¢)

where, a,b,c € {o,e}, o, 8,7 € {A, B}. Since 1) represents the probability that particles emitted by the
entangled source are detected, the coefficients in equation (15) represent the probability of various events
occurring under inefficiency relative to the ideal situation. If Alice, Bob, and Charlie all successfully detect
particles, which happens with probability 7. If one of them fails, which happens with probability

7*(1 — 1). When none of the measurements succeeds, which happens with probability (1 — 7)°.

4.1. Applications of three-particle Eberhard’s inequality to the Bell test
Introducing the parameter /i<, three-particle Eberhard’s inequality can be rewritten as
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]idea] = Z N(aoo‘B1A2A3)—|— Z N(ObO|AleA3)+ Z N(OOC‘AIAZB3)

ac{u,e} be{u,e} ce{u,e}
+ ) N(aoo|BiB,Bs) + > N(obo|BiB,Bs) + > N(ooc|B;B,Bs)
ac{u,e} be{u,e} ce{u,e}
+ 2N(000|B1B,B3) — 2N(000|A1A,A3) > 0. (16)

Given an initial state 1), and a value for 7, predictions for the number of events involved in equation (16)
can be computed (we restrict measurements to be projective within the x—y plane of the Bloch-sphere. See
appendix B for a discussion of the general direction involving the z-axis),

3
N(ooola1 By7y3) = N%w*[l + o(a)]I+ 7(B) ]I + pu(y3)]e, (17a)
3
N(ooe|a, Bry3) = N%M[I + o(a)I+ 7B — p(y3)], (17b)
772(1 - 77) T
N(oou|a £,73) =Nf¢ I+ o(a)]I + 7(82)], (17¢)
3
N(oeo|a1 B2y3) = N%W[I + o(a)]lI = 7B + p(y3) 1), (17d)
772(1 - 77) +
N(ouo|a3,73) =Nf¢ I+ oo + p(y3)]e, (17e)
3
N(eoo|a13,7y3) = N%W[I — o ()T + 7(B) T + p(y3) 14, (17f)
772(1 - 77) T
N(uoo|a 5y3) = wa I+ 7(B)]I + p(y3)1, (17g)
where, a, 5,7 € {A, B},
0 eZiln=An 0 0 0 0 0 0
e 2ilea—Ap) 0 0 0 0 0 0 0
0 0 0 e2il=An 0 0 0 0
- 0 0 e 2ile=A1) 0 0 0 0 0
olon) = 0 0 0 0 0 e2ilar=4y) 0 o |’
0 0 0 0 e~ 2lca—AD) 0 0 0
0 0 0 0 0 0 0 eZilcn—4n)
0 0 0 0 0 0 —2ilaa=Ap) 0
(18a)
0 0 2iba—42) 0 0 0 0 0
0 0 0 e?ilha—42) 0 0 0 0
e A(B—A2) 0 0 0 0 0 0 0
(8 = 0 e 2imA) 0 0 0 0 0 0
2 0 0 0 0 0 0 e?i(B2—A2) 0 ’
0 0 0 0 0 0 0 e2i(fa—42)
0 0 0 0 e A=A 0 0 0
0 0 0 0 0 e A4B—4) 0 0
(18b)
0 0 0 0 A3 =43) 0 0 0
0 0 0 0 0 2 =43) 0 0
0 0 0 0 0 0 2 =43) 0
B 0 0 0 0 0 0 0 2003 =43)
#OB) = | -2itrs-a) 0 0 0 0 0 0 0
0 e 2n—43) 0 0 0 0 0 0
0 0 e 2ln—43) 0 0 0 0 0
0 0 0 e A3 —43) 0 0 0 0
(18¢)
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Table 1. Ciritical conditions for achieving a Bell test without detection loophole in the
three-particle system. § = B; — A, = B, — A, = B; — A;.

n(%) (%) F%)  JIN r 0(deg) w(deg) o (deg)
100 4.0356 75.59 —0.2421 0.1133 —54.20 -11.59 116.34
95 2.5142 82.49 —0.1508 0.1055 —55.09 -11.02 105.65
920 1.4599 88.41 —0.0876 0.1334 —54.69 -8.44 96.41
85 0.7619 93.17 —0.0457 0.1934 —53.04 -3.66 88.58
80 0.3377 96.60 —0.0203 0.2860 —50.02 3.56 82.35
75 0.1150 98.71 —0.0069 0.4118 —45.38 13.57 78.08
70 0.0242 99.70 —0.0015 0.5710 —38.60 26.97 76.26
65 0.0016 99.98 —0.0001 0.7649 —28.30 45.49 77.72
60 0.0000 100 0.0000 0.9933 —4.69 83.01 87.71

Substituting equations (17a)—(17g) into equation (16),
]ideal — wTBw) (19)

is obtained. 5 is the combination of the projection operators of all events in the equation (16). To achieve a
violation, we need a negative value for J ideal That js possible only if the operator B has no less than one
negative eigenvalue. We compute B numerically for any given value of the efficiency 7, and then find that if
and only if the sampling efficiency is greater than %, there are negative eigenvalues. In table 1, we give the
critical conditions to achieve a Bell test without the detection loophole in the three-particle system.

The above computation is under the ideal case where the statistical counting is not affected by the
background noise of detection. Considering the influence of the background noise on the actual
experiment, equation (19) must be corrected to take into account deviations from that ideal case. Assume
that the background noise is independent of settings. Then the events N(uo00|BjA,A3) + N(eoo|BiAyA3),
N(ouo|A1B,A3) + N(oeo|AB,A3), N(oou|A1A;Bs) + N(ooe|A1A;Bs), N(uoo|ByB,B;) + N(eoo|BiB;B3),
N(ouo|B;B,B3) + N(oeo|B1B,Bs), and N(ooe|B;B,Bs) + N(ooc|B; B,B3) need to add background counts N(.
In principle, the events of type ‘000’ also introduce additional background counts in settings (A;A,A3) and
(B1B,Bs). However, since we assume that the background noise is independent of settings, the effect of these
two items on equation (19) cancels each other out. After correction for background noise, equation (19)
can be rewritten as,

Jz = J'%! 4 6NC. (20)

The maximum amount of background noise that can be tolerated corresponds to that value of  that makes
the last negative eigenvalue of B turn from negative to positive. For ) < 2, all eigenvalues of B are positive.
For 1) > 2, there are negative eigenvalues of B3 for small values of ¢, increasing from 0 to 0.04 as 7 increases
from % to 1. The eigenvector corresponding to the negative eigenvalue has the following form in the circular
polarization basis,

1 iw —iw i¢
Vg = NG (=(3 = r)(e“|LLL) + e “|RRR)) + (1 + r)e'’(|LLR) + |LRL) + [RLL))

+ (1 + r)e "’(|LRR) + |RLR) + |RRL))), (21)

where L and R denote left-hand and right-hand circular polarization. The eigenvector t;; can be converted
from the circular basis to the standard basis,

= ! HHH HVV VHV VVH 22
Yy = = (|HHH) + |[HVV) + [VHV) + [VVH)), (22)
where H and V denote horizontal and vertical polarization. Furthermore, the following relationship needs
to be satisfied: A = A, = A3 = —¢p = —w/3.

On the other hand, the infidelity of quantum states is also one of the important factors that determine
the success of the Bell test. Here we consider the infidelity of quantum states caused by the white noise, the
lowest fidelity of the quantum state that can be tolerated corresponds to the value of F, which also makes
the last negative eigenvalue of B turn from negative to positive. For the three-particle system, F decreases
from 1 to 75.59% when the sampling efficiency increases from % to 1. Referring to the current experimental
conditions [33], we give the threshold of fidelity under the corresponding experimental conditions in
figure 6.
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Figure 6. Under the current experimental conditions (the system detection efficiency is 98%, the dark count is 1000 per second),
alower bound on the quantum state fidelity must be satisfied to achieve a violation of the three-particle inequality.

4.2. Threshold efficiency for n-particle Eberhard’s inequalities violations
For all events in equation (9), we can replace the measurement counts with quantum probabilities,

N(o"|A™) = Nn"P(0"|AM), (23a)
> N(o"xF|A"B") = N(0"'|A") — N(0"|A"B)
xe{u,e}
= Nn" 'P(0""'|A") — Nn"P(0"|A"B"), (23b)
7l l
DS N BB = NY T Y > (1 — ) P(olle™ BT BT), (23¢)
T |u[=0 v T |vj|=0 v

N(o"|B") = Nu/"P(o"|B™), (23d)

where N is the total number of events in an experimental period. Substituting equations (23a)—(23d) into
equation (9),

D=1 PO" AT

n< - - @4
(1= DP("|AR) + 32 PloAB) — 2, n = 1~ DS S 3, (52) " PloleBBY) — (n — 1)P(or[3h)
is obtained, in which,
P(o"|A") < min  P(o"'|A%), (25a)
KClIy,|K|=n—1
P(0"|A"B") < P(0" '|A"), (25b)
n—2 |7 1—p ] ) )
S o-1- L Y Y () ez o (250
[7=1 T =0 v !
(n— 1)P(0"[B™) > 0. (25d)
Because of symmetry, we assume thatall -, ., P(0""!|A") are equal. The lowest bound in
equation (24) would be obtained when equations (25a)—(25d) are all equality. We then would have
< . 26
A — (26)
Because Eberhard’s inequalities state what correlations or probabilities are to be expected from a local
realistic model, if 1) < 5., it is impossible to obtain a violation. 7> 5", implies that quantum correlation

cannot be explained by local realistic theory. We note that some works [25, 26] obtained the same bound
using different approaches. We believe that further research work on this threshold would be interesting,
but this is beyond the goal of our current work.

5. Summary

We have generalized two-particle Eberhard’s inequality to the n-particle systems and found that similar
experimental friendliness as in the two-particle case can still be obtained in the three-particle case.

10
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Therefore, an experimental proposal to achieve a Bell test without the fair sampling assumption has been
presented for the case of three particles. We have also analyzed the influence of the background noise and
the quantum state infidelity on the actual experiment. For any given value of the sampling efficiency, we
have given the optimal configurations for actual implementation, the optimal state, the maximum
background noise that the system can tolerate, and the lowest fidelity of the target state. In addition, we
have also demonstrated that it is impossible to yield a violation of the n-particle Eberhard’s inequalities if
the sampling efficiencies are smaller than or equal to 3-"~.

Finally, let us discuss possible applications of multi-particle Eberahard’s inequalities. As we all know,
conference key agreement is the task of distributing a secret key among N parties. Often, the security of
multi-partite device-independent (DI) protocols, such as DI conference-key agreement, relies on the
violation of a multi-partite Bell inequality [34—36]. Fortunately, we have shown that the three-particle
Eberhard’s inequality is still experimental friendliness, so we believe our work can serve as a recipe for
researchers working on DI conference-key agreement.
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Appendix A. Another possible inequality

Multi-particle Eberhard’s inequality is likely to be written in a simpler form than equation (9). For the
three-particle, another possible inequality can be written as

N(000|A1A2A5) — Z N(aoo|B1AA3) — Z N(obo|ABA3) — Z N(ooc|A1A,B5)
ac{u,e} be{u,e} ce{u,e}
— N(000|B;B;B3) < 0. (A.1)
Although the form of this inequality seems simpler, the required efficiency threshold for inequality violation

is higher. Next, we prove this result in detail. For all events in the above inequality, the number of events can
be written as:

N(000|A1A2A3) = N1’ P(000|A1A,A3), (A.2a)

> N(aoo|B1A;As) = N> P(00|AzA5) — N1’ P(000| BiA As), (A.2b)
ac{u,e}

Z N(obo|AB,As) = N1*P(00|A1As) — N1’ P(000|A B, A3), (A.2¢)
be{ue}

Z N(ooc|A1A;Bs) = N1 P(00|A1A,) — N1y P(000|A1A,Bs), (A.2d)
ce{ue}

N(000|B,B,B3) = N1’P(000|B,B,Bs). (A.2e)

Substituting equations (A.2a)—(A.2e) into equation (A.1),

< P(OO‘AzAa) + P(00|A1A3) + P(OO‘AlAz)
s P(000|A1A2A3) + P(000|ByAyA3) + P(000|AByA3) + P(000|A A;Bs) — P(000|B1B,B3)’

(A.3)

is obtained, in which,

11
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P(000|A1A2A3) < P(00]AsA3), (A.4a)
P(000|B1A2A3) < P(00|AzA3), (A.4Db)
P(000|A1B2A3) < P(00|A1A3), (A.4c)
P(000|A1A2B3) < P(00|A1A,), (A.4d)
P(000|B1B,B3) > 0. (A.4e)

The lowest bound would be obtained when we have equality in equations (A.4a)—(A.4e), and when
P(00|A2A3) = P(00]A1A3) = P(00]|AA;), we then would have

n < 3P(oolAzAs) _ 3 (A.5)
4P(00‘A2A3) 4

This threshold is higher than our result. Therefore, equation (8) is better when we consider the sampling
threshold.

Appendix B. Measurements in the x—z plane of the Bloch sphere

Here, we discuss the case where the measurements are projected in the x—z plane of the Bloch-sphere, i.e.,
measurements in the form of {I1(¢), 1 — II(p)} with TI(¢) defined by

— cos’ () cos(p) sin(¢)
e )_<C05(§0)sin(g0) sin?(¢) ) (2.1)

Since each measurement produces one of three possible outcomes, o, e, or u, Alice, Bob, and Charlie’s joint
probability are given by
P(ﬂ, b, C‘ab ﬂb 73) = Tr[p(Pa\al @ Pb\ﬁz ® Pch3)]) (22)

where, a, b, c € {0,u,e}, o, 8,7 € {A, B}. Pyjq,» Pyjg,> and P, can be written as

Pu\al - 5u,0H(a1)77 + 5“,6(1 - H(al))n + 5a,u(1 - 77)) (233)
Pyig, = 0p,0l1(B2)1 + 0pe(1 — TL(B2))n + (1 — 1), (2.3b)
Py = 0col1(73)1 + Oce(1 — TI(3))0 + dcu(1 —1). (2.3¢)

Given an initial state 1), and a value for 7, predictions for the number of events involved in
equation (16) can be computed,

N'(000|a13y3) = N%silﬁ[l + o' (a)] T+ 7' (BT + ' (93)]19, (2.4a)
N'(0oe|a1 B5y3) = N%SW[I + o' ()T + 7' (B — i/ (93)]4, (2.4b)
N'(oou|a1y7s) = N@W[I + o' (@) + 7' (B2)]eh, (2.4¢)
N'(0eole Bry3) = N%SWU + o' (a)]l = 7' (B + 1 (33)14, (2.4d)
N'(ouo|anBrys) = N@W[I + o' (@) + ' (v)]1¢, (2.4e)
N'(eoolen Bry3) = N%SWU — o' (@) + 7' (BT + 1 (3)]4), (2.4f)
N'(uoo|a18,73) = N@W[I + 7' (BT + ' (73)]9h, (2.4¢)

12
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Table B1. Measurements in different planes of the Bloch
sphere. = B, — A, =B, — A, = B; — A,
0 =B, — A} =B, — A, = B, — A}.
x—y plane x—z plane
n(%) 0O(deg)  JIN 0 (deg)  JIN
100 —5420 —0.2421 —54.17 —0.2421
95 5509 —0.1509 —55.07 —0.1509
90 —54.69 —0.0876 —54.66 —0.0876
85 —53.04 —0.0457 —53.01  —0.0457
80 —50.02  —0.0203 —50.00 —0.0203
75 —4538  —0.0069 —4536  —0.0069
70 —38.60 —0.0014 —38.58 —0.0015
65 —2830 —0.0001 —28.34  —0.0001
60 —4.69 —0.0000 —0.00 —0.0000
where,
cos 2a sin 20 0 0 0 0 0 0
sin 2cr;  — €os 2qy 0 0 0 0 0 0
0 0 cos 2a sin 20 0 0 0 0
o' (o) = 0 0 sin 2c¢;  — cos 20 0 . 0 0 0 )
0 0 0 0 cos 20 sin 2ay 0 0
0 0 0 0 sin 2c,;  — cos 2qy 0 0
0 0 0 0 0 0 cos2cvy sin2aoy
0 0 0 0 0 0 sin 2ce;  — cos 2qy
(2.5a)
cos 23, 0 sin 23, 0 0 0 0 0
0 cos 23, 0 sin 23, 0 0 0 0
sin 23, 0 —cos 2/, 0 0 0 0 0
() = 0 sin 23, 0 —cos 2/, 0 0 0 0
0 0 0 0 cos 23, 0 sin 23, 0 ’
0 0 0 0 0 cos 23, 0 sin 23,
0 0 0 0 sin 23, 0 — cos 23, 0
0 0 0 0 0 sin 23, 0 — cos 23,
(2.5b)
cos 273 0 0 0 sin 273 0 0 0
0 cos 273 0 0 0 sin 273 0 0
0 0 cos 27 0 0 0 sin 273 0
, 0 0 0 cos 273 0 0 0 sin 273
Wiy =| .
sin 23 0 0 0 — COs 273 0 0 0
0 sin 273 0 0 0 — €OS 273 0 0
0 0 sin 273 0 0 0 — €0s 273 0
0 0 0 sin 273 0 0 0 — oS 273
(2.5¢)

Substituting equations (2.4a)—(2.5¢) into equation (16), J' = 118’ 1 is obtained. We compute B’
numerically for any given value of the efficiency 7, and then find that the threshold of efficiency and the
violation of inequality coincided with the results in the x—y plane, as shown in table B1.
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