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1. Introduction

Symmetry plays a fundamental role in the theory of critical phenomena. The common
case is that of criticality induced by the spontaneous breaking of a global symmetry,
which also controls the universality class the statistical system falls into. Less understood
has been the effect that additional local symmetries of the Hamiltonian may induce.
The basic case study has been provided by the lattice RPY~! model which, besides a
global O(N) symmetry, displays invariance under local spin reversal, thus realizing the
head-tail symmetry characteristic of liquid crystals [1]. While in three dimensions the
RPN=! ferromagnet has a first order transition [2], the two-dimensional case has offered
several reasons of interest. In principle this case could provide important insight through
the exact methods of lattice integrability [3, 4] and conformal field theory [5, 6], but
the model traditionally remained inaccessible to them. It has then been the object of
many numerical studies, which however found difficult to reach conclusions, especially
due to the very large correlation length in the low temperature region of main interest.
It was proposed that, in absence of spontaneous breaking of continuous symmetries
[7], finite temperature criticality may be produced by a topological transition of the
Berezinskii-Kosterlitz—Thouless (BKT) type [8] mediated by disclination defects [9, 10].
While the transition should definitely occur for RP! ~ O(2), its existence for N > 2 has
been debated in numerical studies [11-19]. The most likely alternative to a topological
transition is that criticality is limited to zero temperature, and numerical investigations
tried to establish if the local symmetry affects the universality class [20-26].

In [27] we determined for the first time the exact fixed point equations of the RPV 1
model in two dimensions. This was achieved in the framework of scale invariant scatter-
ing theory [28] (see [29] for a review) which in recent years provided new information
[30—-37] on difficult problems of two-dimensional criticality, including quenched disorder.
The space of solutions of the RPN~ fixed point equations, containing both ferromag-
netic and antiferromagnetic fixed points, was investigated in [27, 38, 39] for continuous
positive values of N and revealed the following properties:

(a) the space of solutions corresponds to an order parameter with My = {N(N +1) — 1
components;

(b) quasi-long-range order is limited to N =2, and there is no evidence of a topological
transition above this value;

https://doi.org/10.1088 /1742-5468 /acc8c9 2


https://doi.org/10.1088/1742-5468/acc8c9

On the RPY~! and CPY~! universality classes

c) for N <N, =2. . the space of solutions contains several branches of fixe
for N < N, =2.24421. th f soluti tai 1 b h f fixed
points which can be relevant for gases of intersecting loops;

(d) for N > N, there is only one scattering solution;

(e) the scattering solution of the previous point describes a zero temperature fixed
point in the O(My) universality class, with central charge My — 1.

After our papers, the RP? model was numerically investigated in [40, 41] using
the tensor network renormalization (TNR) method, which has access to the central
charge and the degeneracies in the spectrum of scaling dimensions. The conclusions
of these studies are consistent with our exact results up, apparently, to one finding of
[40]. More precisely, while seeing signatures of a crossover at finite temperature, both
studies concluded for the absence of a true topological transition, in agreement with our
point b. The authors of [40] also investigated the zero temperature behavior and saw
criticality with the most relevant operator possessing five components, in agreement
with our point a. For the central charge of the RP? antiferromagnet at T'=0 they
found a value consistent with 4, in agreement with our point e. For the ferromagnet at
T =0, however, they found central charge 2. They suggested that this latter fixed point
could correspond to an extra scattering solution pointed out in [27, 38] and existing
only for N =3. Meanwhile, however, we had shown in [39] that this solution is only an
alternative realization of the scattering matrix of point d. It would then appear that
the exact fixed point equations are missing the ferromagnetic fixed point. Here we will
argue that this is not the case and that the above points a-e should be complemented
with the following point

(f) the scattering solution of point d also describes a zero temperature fixed point in
the RPN~! universality class, with central charge N — 1.

The fact that a single critical scattering solution can correspond to different universality
classes is not new and had been illustrated in [31] for the Potts model. In the present
case it is related to the features of asymptotic freedom.

In [39] we determined the exact fixed point equations of the CPY~! model, which
provides the basic lattice realization of a continuous local symmetry. For their space of
solutions we found properties that can again be stated as in points a—e above, provided
we define new values My = N? — 1 and N, = 2, and in point b we substitute N =2 with
N = /3. Here we will argue that also in this case these findings should be complemented
by point f, which now will refer to the C PN~! universality class with central charge
2(N —1).

The paper is organized as follows. In the next section, we recall some generalities
about symmetry, central charge and scattering. The RPY~! and C PY~! models are then
discussed in sections 3 and 4, respectively, while section 5 contains some final remarks.

2. Symmetry, central charge and scattering

A universality class of critical behavior is identified by a renormalization group fixed
point with its specific field content. This field content, through the associated operator
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product expansion (OPE), implements the internal symmetry of the fixed point Hamilto-
nian. The field with lowest scaling dimension—i.e. the most relevant field, in the renor-
malization group sense—carrying a representation of the internal symmetry is the order
parameter field s(z), while the most relevant field (excluding the identity) invariant
under the symmetry transformations is the energy density field £(x). Adding to the
fixed point Hamiltonian the contribution of € moves the system away from the critical
temperature T.. The scaling dimensions Xy and X, of the order parameter and energy
density fields determine the canonical critical exponents (see e.g. [42]).

Symmetry alone does not identify a fixed point. For example, a system with a given
symmetry can also exhibit a tricritical point, which possesses an additional relevant
symmetry-invariant field €', and a field content larger than that of the critical point. In
two dimensions a main parameter which grows with the size of the space of fields is the
central charge c of a fixed point. A basic illustration is obtained recalling that at critical
points of statistical systems scale invariance is promoted to conformal invariance [6],
whose simplest realizations are the minimal models [5] with central charge

6
c=l———  p=34,... 1
PO M)

and scalar primary fields with scaling dimensions

[(p+1)m—pn]>—1
2p(p+1)

X = , m=1,2,....p—1, n=1,2,...,p. (2)

The central charge grows with p, and then with the number of primary fields?*, each
of which possesses infinitely many ‘descendants’ with scaling dimensions exceeding by
integers that of the primary. The critical point of the Ising model corresponds to p =3,
while more generally the above minimal models describe multicriticality of order (p — 1)
in Zo-symmetric systems.

In general, on the other hand, the central charge does not identify a universality class,
since it does not uniquely specify the field content. The simplest illustration is provided
by the minimal model with p =5, which describes both the tetracritical Zs-symmetric
point and the critical three-state Potts model, which has permutational symmetry Ss.
While the Zs-symmetric tetracritical point possesses all the primary dimensions (2)
with multiplicity one [5], the Potts critical point only possesses a subset of them, with
a field-dependent multiplicity [44, 45]. In particular, X; = X995 and X, = X33 for Z,,
while X = Xy 3 and X, = Xy, for Potts; in the latter case X33 has multiplicity two, as
required for the S3 order parameter.

When looking for fixed points of the renormalization group in the scattering
framework [28, 29], one of the Euclidean dimensions of the statistical system is taken
as imaginary time and conformal invariance is implemented in the basis of the massless

4 The role of the central charge in establishing a hierarchy of fixed points is illustrated by the c-theorem [43].
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particle excitations. It is crucial that in two dimensions conformal symmetry has infin-
itely many generators [6], which provide infinitely many quantities that have to be
conserved in a scattering process. As a result, the initial and final states are kinemat-
ically identical (complete elasticity) and the scattering problem greatly simplifies. An
additional simplification is that scale invariance leads to two-particle amplitudes which
do not depend on the center of mass energy, the only relativistic invariant in (1+1)-
dimensional scattering. All this results in a particularly simple form of the crossing and
unitarity equations which constrain any relativistic scattering theory [46]. We call these
equations the fixed point equations since, by construction, their solutions correspond
to fixed points of the renormalization group. Since no approximation is involved in the
derivation, the equations are exact.

Within the scattering framework, the information about the universality class comes
from internal symmetry, which determines the particle content and the allowed pro-
cesses. Since we recalled how symmetry alone does not identify a fixed point, it follows
that in general the fixed point equations do not possess a single solution, but rather a
space of solutions containing the different fixed points with the given symmetry. This
space of solutions will contain critical and multicritical points, as well as the fixed points
corresponding to ferromagnetic and antiferromagnetic interactions. In particular, there
may be solutions for which some of the scattering amplitudes vanish, making possible
fixed points with a symmetry larger than that common to the whole space of solutions.
These features have been illustrated in [31] for the g-state Potts model and in [34] for
the O(N) model, and are reviewed in [29].

Another possibility, more subtle to identify, is that a single scattering solution
describes different universality classes. An explicit example is provided by the g-state
Potts model [47] with g € [0,4] which can be considered as a continuous variable and
parametrized as /q = 2cos(m/p). The ferromagnetic model possesses, besides the fun-
damental critical line, a tricritical line with central charge (1) [48]. On the other hand,
the antiferromagnetic model on the square lattice possesses a critical line®> with central
charge ¢ =2(p—3)/p [50]. When the scale invariant scattering solutions are obtained
implementing the permutational symmetry S, characteristic of the Potts model, these
two critical lines correspond to the same solution [31]. The mechanism allowing this is
conveniently illustrated considering the amplitude of the symmetry invariant scattering
channel, which quite generally can be written as [28, 29]

S = efZiwAn, (3)

where A, is the conformal dimension of the chiral field which creates the particles at
criticality. Its value is A, = X3,/2=142/p along the ferromagnetic tricritical line,
and A, = 2/p along the square lattice antiferromagnetic critical line [31]. Since the two
values differ by an integer, they give the same amplitude (3).

In the following we will see the relevance of these considerations for the RPY~! and
C PN~ models, whose spaces of critical scattering solutions were obtained in [27, 38, 39)].

% This antiferromagnetic line corresponds to nonnegative temperature only up to ¢=3 [49].
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Figure 1. Scattering amplitudes entering (6). Time runs upwards.

3. RPN~! model

3.1. Scale invariant scattering

The RPYN~! lattice model is defined by the Hamiltonian

Hpps—r=—J Y (si-s;)’, (4)
(6,3)

where s; = ($14,524,--.,5n,i) 1S @ N-component unit vector located at site i. The inter-
action is ferromagnetic for J >0 and antiferromagnetic for J <0. The Hamiltonian
differs from that of the O(N) vector model for the square in the r.h.s., which makes (4)
invariant also under local inversions s; — —s; (head-tail symmetry). It follows that s;
effectively takes values on the unit hypersphere with antipodal points identified, namely
the RPY~! manifold. This is taken into account by the order parameter variable [1]

Qab,i = S4,iSb;i — %6(11)- (5)
The derivation of the RPY~! fixed points equations within the scattering framework
has been performed in detail in [27, 38]; here we simply recall the main steps and results.
In the continuum limit, the order parameter field is the traceless symmetric tensor
Qaup(x). At criticality the massless particle excitations transform under the symmetries
as the order parameter, and are labeled by a double index ab, with a and b going from
1 to N. The scattering processes for these particles are shown in figure 1, where each
terminal corresponds to an index and each line connects equal indices. The scattering
matrix for particles ab and cd in the initial state and particles ef and gh in the final
state is expressed in terms of the amplitudes Si,...,51; as

https://doi.org/10.1088/1742-5468 /acc8c9 6
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ef.gh _ (2 2 (2 (2) (2) (2
Sab,cd - Sl 5(ab),(cd) 5(ef),(gh) + 82 5((1,()),(6]”) 5((:d),(gh) + S3 5(ab),(gh) 5((:d),(ef)
(4) 4) (4)
+ 5401y gy (caes) T 55 Oav) e tedign) T 56 Oaty(ed ey iom)

) (2) (2) (2)
+57 [5ab5ef'5<cd>,<gh) + 50d59h5<ab>,<ef>] + 5 [‘5ab59h5<cd),<ef> + 5Cd5e-f‘5(ab>7<gh>}

3) 3) 3) 3)
+5 [5“65(cd)7(ef),(gh) +0cdd(ab) (e1).(gh) T OcsO(cd) (ab).(gh) T 59’L5(cd)7(ef)7(ab)}
2
+ SlO 5ab50d5ef5gh + Sll |:5ab50d5(2€f)7(gh) + 5ef5gh5((az)7(cd):| ) (6)

where we introduced the notations

5((21)))7(051) = (0acObd + Gaadee) /2, (7)

581)7)7(011)7@” = (6af5bd5ce + 6ad5bf(sce + 50,65bd56f + 5ad6beécf
+ 6af5l)c(5de + 6a06bf6de + 50,65b66df + 6a05b65df)/87 (8)

5((:2))(cd)7(8f)(gh) = (8ah0bf0cgOde + OafObh0cgOde + Oagh fOcndde + OafOngOcndde

+ 5ah5b656,95df + 5@,651717,5096(# + 5@96b€50h5df + 5@66b95(:h6df

+ 5ah5l)féce5dg + 5af5bhdce5dg + 6ahébe5cf5dg + 5ae(5bhécf5dg

+ 5agébféce(sdh + 5af5bgdceddh + 6ag6bedcf5dh + 5a65bg50f5dh)/4 (9)
to take into account the different possible connections of the particle indices for a given

process in figure 1. Crossing symmetry allows the following parametrizations of the
amplitudes

S1 =85 = pe?, (10)
Sy = S5 = ps, (11)
Sy=5; = p4ei9, (12)
S5 = S5 = ps, (13)
S; = S5 = pr, (14)
Sg =57, = pge'?, (15)
Sg = Sy = py, (16)

https://doi.org/10.1088 /1742-5468/acc8c9 7
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Sl() = STO = P10- (17)

The fact that the field Q. (x) that creates the particles is traceless is taken into account
defining 7 = ) aa and requiring

S|(ab)T) = So|(ab)T), So==+1 (18)

for any particle state |(ab)) = |ab) + |ba). This means that the trace mode T is a
decoupled particle that can be discarded; the sign factor S, takes into account that
the trace mode can decouple as a free boson or a free fermion. The decoupling condi-
tion provides the relations

So+Sg+NS; —S5)=514+Sg+ NS11 =853+ Sg+ NS =
4(S4+ S5+ S6) + NSy = S7+ Ss + S11 + NS1p =0, (19)

which are used to express the amplitudes S;>7 in terms of S;<s, namely

1 4
pr = —N(p2—50)+m(2p4cosg+p5)ﬂ (20)
1 4
PR COSTY = -y coso + m(2p4c0s9+p5), (21)
ing = 1o & (22)
pgSINY = <7151,
4
P9 = —N(2p4 cosl + ps), (23)
1 12
P10 = N2 <2p1 cos¢ + pa — Sp — N(zm cost + P5)>- (24)

With this information, the requirement of unitarity of the scattering matrix yields the
RPY~! fixed point equations in the form [27]

1= pi+ p3 + 493, (25)

0= 2p1pacos ¢ +4pj, (26)

2
0= Myp? +2p3 cos2¢ +2p1pacosd + 4 (1 — N +N) p1pscos(¢p —0)

2 32 2
+4 (1 — N) p1pscos(d+0) + mpicos20+4 <1 -~ +N> P15 COS

8 8 4
+8(1+ﬁ>p4p5cosﬁ+4<1—l—ﬁ)pi+4(1+m>Pg, (27)

https://doi.org/10.1088 /1742-5468 /acc8c9 8
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Table 1. Inequivalent analytic solutions of equations (25)—(30). In the expression
202 —344/2(22—4)(222—1)

of B2y, z € [—\%%] is a free parameter, and a4 (z) =z

2(622+1)
Solution N p1 P2 cos on 05 cosf
Aly (—o0,00) 0 +1 — 0 0
A2, [-3,2] 1 0 +3v2—My O 0 -
A3 -3,2 V1-—p3 [—1,1] 0 0 0 —
Bl 9 1—pj [_1 1] __2m ‘ ’ 1-p5  pp(l=p3) _ n( ) 1—pj
V14302 ’ V14302 PN 15305 14343 SEMP2)\) 1533

B2, 2 V1+22p—p2 as(z) z \ o = N

\/1+2mp2*p§

8 4
0 = 2paps + 2p1pscos(¢p+60) — —pi +2 (1 — N) A cos26

N
+2 3—§—|—N cos@—£2 (28)
8 2 4 5

0 =2pspycost + 2_N+N py+2 1_N P €08 26 + 2p; ps cos ¢

+2 1—é cosf + Q—i—I—N 2 (29)

N P4Ps5 N Ps;
0 = 2p1pycos(¢ — 0) + 2papscosd + 2p3, (30)
where
1

MN:§N(N—|—1)—1 (31)

coincides with the number of independent components of the order parameter vari-
able (5).

The solutions of the fixed point equations (25)—(30) were determined in [27, 38], in
part analytically and in part numerically. The numerical solutions consist of branches of
fixed points extending for N < 2.24421. [38], and will not be rediscussed in the present
paper, whose main focus is on N > 3. The analytic solutions are listed in table 1. The
table does not include a solution defined only at N =3 and called B3 in [38], which was
eventually shown in [39] to yield the same scattering matrix (6) produced by solution
Al at N =3.

An important feature of equations (25)—(30) is that for ps = ps; =0 they reduce
to the fixed point equations of the O(M) vector model with M = My given by (31).
This implies that the space of solutions of the RPN ~! fixed point equations contains the
O(My) space of solutions as a subspace. The solutions A1-A3 of table 1 indeed coincide
with the three solutions of the vector model [29, 34]. In particular, A2 corresponds to
the solution that in the vector model describes the dilute and dense critical branches of

https://doi.org/10.1088 /1742-5468 /acc8c9 9
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the gas of nonintersecting loops [4, 42, 51]. Solution A3, on the other hand, possesses
p2 as a free parameter and describes the line of fixed points which in the O(2) model
accounts for the BKT phase. It appears at N =2 as it should in view of the known
correspondence RP! ~ O(2), and at N = —3 due to M_3 = My = 2. Also solutions B1
and B2 of table 1 are defined at N =2 and contain a free parameter; they correspond
to different realizations of the BKT phase in the RPY~! space of parameters.

32. N>3

We are finally left with A1, which is the only solution existing for N > 3. This means,
in particular, that for N > 3 there are no lines of fixed points at fixed NV, and then no
BKT-like topological transitions yielding quasi-long-range order [27]. The possibility of
such a transition driven by disclination defects has been debated in numerical studies
for long time [11-19], and the most recent ones applying the TNR method to the RP?
model [40, 41] confirm our result about its absence.

Solution A1_ corresponds to M y free fermions®, with central charge My /2, and is
not expected to play a role for the Hamiltonian (4). We then focus on solution Al,,
which completes the O(My) subspace of solutions allowed by the RPY~! fixed point
equations. In the O(My) vector model this solution corresponds to the zero temperature
critical point at My > 2 [29, 34]. As we observed in [27, 38], this means that the RPY !
model with N > 2 allows for a zero temperature critical point with the O(My) central
charge My — 1. Evidence of the realization of this critical point in the square lattice RP?
antiferromagnet has recently been given in [40] through the determination of the central
charge. In three dimensions, where continuous symmetries can break spontaneously,
finite temperature criticality in the O(M;3=5) universality class has been identified
numerically for the RP? antiferromagnet on the cubic lattice [52], while the transition
is first order for the ferromagnet [2].

Solution A1l, corresponds to M y noninteracting bosons, and always admits the
trivial realization with central charge ¢ = My. Also this trivial realization possesses
O(My) symmetry, but the large distance behavior is ruled by the O(My) realization
with minimal central charge ¢ = My — 1. The latter realization is provided by the non-
linear sigma model in which the vector formed by the M y bosonic fields is constrained to
have unit modulus (see e.g. [42, 53]). Away from criticality, the free and the sigma model
realizations have the same particle basis but, of course, different scattering matrices,
since in the latter case the constraint introduces interaction. The O(M) sigma model is
integrable and its exactly known off-critical scattering matrix [54] can be used to obtain
the central charge M — 1 through the thermodynamic Bethe ansatz or the form factor
approach (see [55, 56] for M =3). However, when the critical limit of the sigma model
scattering matrix is taken sending to infinity the center of mass energy, solution Al,
with M = My is recovered. This is how the ‘asymptotic freedom’ of two-dimensional
sigma models manifests itself in the scattering framework; in particular, the critical
scattering amplitudes do not retain memory of the constraint which reduces the central

6 The form of crossing and unitarity equation is such that, given a solution, another solution is obtained reversing the sign of all
amplitudes. We also recall that the central charge is 1/2 for a free fermion and 1 for a free boson [6].

https://doi.org/10.1088 /1742-5468 /acc8c9 10
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charge and makes it coincide with the dimensionality of the sigma model target manifold
[29, 34].

Extending these considerations we can recognize an additional point. When moving
away from criticality, the parameters ps and p;, which vanish in the O(My)-symmetric
scattering theory (at and away from criticality), will more generally develop nonzero
values. In this case we will have a scattering theory with a different symmetry, but
still having A1, as critical limit". The value c¢=2 measured in [40] for the central
charge of the T = 0RP? ferromagnet is evidence that solution Al, is also the critical
limit of a sigma model with a target manifold of dimension smaller than that of the
O(My) manifold. This should be the RP¥~! manifold with dimension N —1, thus
setting to ¢ = N — 1 the central charge of the ferromagnetic fixed point. While this is
also the central charge of the O(N) model, the RPY~! and O(N) sigma models have
different operator content and represent different universality classes. We already saw
that the RPY~! order parameter field is the N x N traceless symmetric tensor Q,(z),
while the O(N) order parameter field is the vector s(x). The local character of the
Zy head-tail symmetry of the RPY~! model causes the vanishing of the correlation
functions (---s(z)---), meaning that the RPY~! space of fields does not contain the
vector field. This was confirmed by the numerical results of [40] for RP?, which found
Ms =5 components for the fundamental field. The energy density field should also differ
in the two cases, since () appears as the most relevant symmetry-invariant field in the
OPE of the order parameter field with itself. One consequence is that the scaling limit
of the off-critical RPY~! ferromagnet may be nonintegrable, at variance with O(N).

The numerical results of [40] for the RP? central charges are consistent with the
conclusion that the RPY~! and O(My) sigma models (both having solution Al, as
critical scattering limit) describe the RPY~! ferromagnet and square lattice antiferro-
magnet, respectively. The reason why ferromagnet and antiferromagnet fall into dif-
ferent universality classes is expected to be the same shown in [57] for the three-state
Potts model. In the antiferromagnetic case nearest neighbors want to take different
values, and the lattice structure matters. The order parameter variable in the square
lattice antiferromagnet is defined with an extra sign factor which distinguishes even
and odd sublattices (‘staggering’). The fields of the continuum then inherit an extra
parity related to sublattice exchange. The order parameter has odd parity and cannot
produce odd fields in the OPE with itself which determines the energy density field. As
a consequence, the field theory of the antiferromagnet cannot contain three-particle ver-
tices that are instead allowed for the ferromagnet®. The two field theories are different
and the absence of three-particle vertices in the antiferromagnet allows the symmetry
enhancement displayed by a subspace of the scattering solutions: S3 — U(1) for Potts
31, 57], RPN~! — O(My) for the Hamiltonian® (4).

7 This point was not sufficiently explored in (27, 38], where the main effort was absorbed by the derivation of the exact equations
and the determination of all the scattering solutions.

8 In their most general form, both Potts and RPY~! Landau-Ginzburg Hamiltonians allow cubic terms which make the transition
first order at mean field level [1, 47].

9 The symmetry enhancement was proposed in three dimensions in [52] within a ¢* description of the RP? model. In two dimensions
all powers of ¢ are relevant and normally one needs to deal with exponential fields and their symmetries, as in [57, 58] for the Potts
model.
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4. CPN-1 model

The C PN~ lattice model is defined by the Hamiltonian

Hepvr =—JY |si -85, (32)
(i.3)
where s; = (s1,...,5n,;) is now a complex N-component vector at site j satisfying s; -
s; = 1. The Hamiltonian is invariant under global U(N) transformations (s; — Us;, U €
U(N)) and site-dependent U (1) transformations (s; — €' s;, a; € R); these symmetries
are represented through the tensorial order parameter variable

1

Qa,b,i = Sa,,isai - Néab- (33)

The implementation of scale invariant scattering for the C PY~! model closely paral-
lels that seen in the previous section for RPY~! and has been performed in [39], to which
we refer the reader for the details; here we recall the main points. In the continuum
limit the order parameter field Qq(z) is now a traceless Hermitian tensor. At criticality
the massless particle excitations are labeled by a double index ab, with a,b=1,..., N,
and a state containing a particle ab transforms under the U(N) symmetry as

jab) — |a'b’) =Y " Uar Uy ylab), (34)
a,b

so that the role of the two indices is distinguished by charge conjugation. This is why,
while we still have the 11 amplitudes of figure 1 parametrized as in (10)—(17), the
number of possible connections between the terminals is reduced with respect to the
RPY-! case, and the scattering matrix takes the form

el 9% = 100,000 n01.g + 5260600, f0c.g0an + S5 00,0 hOe.ca. g
+ 54 (04,a0p,£0c,g0¢.1 + 0b.c0a,c0a.10£.g) + S5 (0b,c0a,90d, fOc.h + 6a,d0b,h0c,c0¢ g)
+ 56 (80,600,104, £0c.g + Ob.£0a.g0c.c0d.1) + S7 (dap0e, f0c.g0d,n + Oc.d0g.1h0a,c0p f)
+ S5 (0c,a0e. 0,906, + 0ap0g.n0c.c0d,f) + So [0, f (8a,adb,n0cg + Ob.c0a.g0d,n) (35)
+ 0c.d (00,100,901 + 0a,c06,107.9) Oab (0d,fOc.g0e,h + Oc,c0dn,g)
+ 8.1 (80,400, fOc.c + Ob.c0a.e0a.f) | + S1000,60¢,d0e, 0g 1
+ 511 (8a,60¢,00¢,10 £.g + Oc. £g.10a.a0.c) -

The decoupling condition of the trace mode 7 =) aa,
S|Tab) = So|Tab), Sy= =1, (36)
now yields relations which are used to express S;>7 in terms of S;<g through

pr =~ (So—p2+ 2 (2pscosf+ ps)), (37)
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pscost) =+ (—picosd + 3 (2pscosf + ps)) (38)
pgsinyg = ypising, (39)
po = —= (2pscos+ ps), (40)

p10 =77 (2p1c08 + po — Sy — % (2pscosb + ps) ) . (41)

Unitarity then yields the fixed point equations in the form
1= pi+p3+2pi, (42)
0=2p1pacos ¢ +2pj, (43)
0= (N?=1)p; +2pjcos2¢ +2p1pacosp +4 (N — 57) p1 (pacos(6 — ¢) + ps cos @)

— 2 p1pacos(0+¢) + %pZCOSQG +2(1+ %) P4 (ps+ 2p5cosh)

+2(1+ %) o, (44)

0 =2p1p5cosd + 2papycost — %picos% + (N — %) P — %p4p5 cosf

+ (N — %) J (45)
0=2p1pscos(0+ @)+ 2paps — %pﬁ cos 260 — %pi +2(N - %) P45 cosf — %pg, (46)
0 =2p1pscos(0 — @)+ 2papycost. (47)

The solutions of these equations were determined in [39], in part analytically and in
part numerically. The numerical solutions consist of branches of fixed points extending
for N <2 and are expected to be relevant for criticality in gases of intersecting loops,
examples of which have been discussed in [59]. The solutions that we determined ana-
lytically are listed in table 2. The table does not include solutions defined only for N =2
or N =3 which were shown in [39] to yield the same scattering matrix (35) as solution
Al evaluated at those values of N.

It must now be observed that when ps = p; =0 equations (25)—(30) reduce to the
fixed point equations of the O(N? — 1) model, and that N? —1 is the number of inde-
pendent real components of the order parameter variable (33). This means that the
space of solutions of the fixed point equations of the C PV ~! model contains a subspace
for which the symmetry is enhanced to O(N?—1). The solutions A1-A3 of table 2
all have p; = p; =0 and indeed correspond to the three solutions of the O(M) model
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Table 2. Inequivalent analytic solutions of the C' PV ~! fixed point equations (42)—

(47).
Solutions N p1 02 cos P4 05 cosf
Aly R 0 +1 - 0 0 —
A2 [—v/3,V/3] 1 0 +3v3— N2 0 0 -
A3. +/3 V1-p3 [—1,1] 0 0 0 -

29, 34] with M = N? — 1; the fact that N> — 1 =2 when N = ++/3 explains the domain
of definition of solutions A2 and A3. These conclusions are also consistent with the fact
that CP! corresponds to the Riemann sphere, and then to O(3).

For N > 2 the fixed point equations possess only solution A1l. Taking into account
that the fermionic realization Al_ should not be not relevant for the Hamiltonian (32),
we are only left with the free bosonic solution A1, , to be associated with zero temperat-
ure criticality. Since the theoretical considerations of the previous section for the RPN 1
model can be entirely transposed to the present case, we are led to conclude that solu-
tion A1, describes, besides the O(IN? — 1) fixed point with central charge ¢ = N? — 2, an
additional nontrivial fixed point. This will be the fixed point of the CPY~! sigma model,
with central charge equal to the dimension of the C' P’ ~! manifold, namely ¢ = 2(N — 1).
While the scattering amplitudes of the O(N? — 1) and CPY~! sigma models have the
same critical limit A1, they will differ away from criticality for N > 2, since for C P!
the parameters ps and ps will develop nonvanishing values!”.

Also the arguments of the previous section about the difference between the RPN !
ferromagnet and antiferromagnet extend to the present case. As a consequence the
expectation is that as the temperature goes to zero the Hamiltonian (32) realizes the
CPN~! universality class in the ferromagnetic case, and the O(IN? — 1) universality class
in the case of the square lattice antiferromagnet. In this respect it must be noted that
in three dimensions, where the continuous symmetry can break spontaneously, a finite
temperature critical point in the O(8) universality class has been observed in numerical
simulations of the antiferromagnetic CP? model [62].

5. Conclusion

In this paper we disentangled subtleties hidden in the space of solutions of the exact
fixed point equations of the two-dimensional RPY~! and CPY~! models that we
had determined in [27, 38, 39] using scale invariant scattering theory. In particular,
we explained why the unique relevant solution Al, of critical RPY~! scattering for
N > 3 actually corresponds to two different universality classes with the same number
My = 3N (N +1) —1 of order parameter components. These are the O(My) universal-
ity class with central charge My — 1, and the RPY~! universality class with central
charge N — 1. While the scattering amplitudes for the two universality classes will differ

10 In particular, the CPN~! sigma model is not expected to be exactly solvable away from criticality [60, 61]. The exception is
N =2, given that CP! ~ O(3).
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away from criticality, they have the same critical limit A1, due to the asymptotic free-
dom of two-dimensional nonlinear sigma models. When the temperature goes to zero,
the RPN~! lattice Hamiltonian (4) realizes the RPY~! universality class for ferromag-
netic interaction, and the O(My) universality class for antiferromagnetic interaction on
bipartite lattices. The symmetry enhancement in the antiferromagnetic case is due to a
suppression of three-particle vertices analogous to that shown in [57] for the three-state
Potts model.

We also discussed how a similar pattern is expected in the C PY~! model (32), with
the unique scattering solution for N > 2 corresponding to the critical limit of both the
O(N? —1) universality class with central charge N? —2 and the CP"~! universality
class with central charge 2(/N —1).

The fact that a single scale invariant scattering solution may correspond to different
renormalization group fixed points was already known for the g-state Potts model [31].
In the RPN~! and CPY~! models the mechanism is made even more subtle by the fact
that it simultaneously accounts for symmetry enhancement in the antiferromagnetic
case for generic values of N.
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