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1 Introduction

The Jaynes—Cummings model (JCM) of light-matter interaction despite its sim-
plicity demonstrates a number of interesting phenomena such as collapses and
revivals [1], sub-Poissonian photon statistics {2] and squeezing [3]. Early stu-
dies showed the appearance of the so-called Cummings collapse [4] at coherent
quantum pumping. Eberly et al. [1] have later found a revival of the collapsed
oscillations, in fact an infinite sequence of collapses and revivals with Gaussian
decrease of the revival maxima. The origin of collapses and revivals in the JCM
is connected with the photon number distribution which produces spread in Rabi
frequencies. The Rabi oscillations, initially all in phase, periodically dephase and
rephase which leads to collapses and revivals, respectively.

Barnett and Knight [5] studied numerically collective collapses and revivals
for a group of two-level atoms. The atoms were assumed as initially unexcited
or excited (a maser case). In general, there are two sources of spread in Rabi
frequencies: the photon number distribution (as previously) and the collective
atomic evolution. The origin of the collective collapses and revivals is related
with a non—equidistant spectrum of the eigenfrequencies of the system.

Recently, a new solution to the problem of interaction of a system of N two~
level atoms with a single quantized field mode has been proposed [6]. Strictly
speaking, cooperative spontaneous emission of a small number s of initially ex-
cited atoms in the presence of a large number of N — s unexcited atoms (s < N)
has been considered in terms of the SU (2)-group representation. Our method
consisted in comstruction of the perturbation theory with a small parameter
& = (N-2+ -;-)_1. The results obtained in this way are valid for an arbi-
trary time ¢. In the first~order approximation in ¢, it was found that the atomic
inversion evaluates as follows [6]:

B(t) = 5 cos (202t) + 15 s (s — 1) (1 - cos (421)) , 2= g4 /N - §+% Q)

where g is the atom-field coupling. The time evolution of the system is truly
periodic since the spectrum of the eigenfrequencies is equidistant in the linear
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approximation in ¢,. The second term in (1) appears for s # 1. The collectivity
of the system adds in this approximation only the harmonic Rabi frequency 42
in comparison with the JCM. The above solution is suitable for the description
of the dynamics of the system even for the moderate values of the ratio ;
according to the computer calculations the agreement with the real behaviour is
then particularly good for relatively short times. For the sufficiently small values
of # the dynamics of the system is almost exactly described for all times by the
first term of the above formula.

The time evolution of E(t), calculated within an accuracy of €%, may be
aperiodic if & is not small enough. This is because the eigenfrequencies are
non—commensurate in this approximation. Then, depending on the magnitude
of the ratio 3 beatings between the terms with different frequencies, resulting in
modulation of E(t), appear sooner or later. So, the second—order approximation
of our theory is responsible for the collective spread in Rabi frequencies.

In the present paper we discuss a system of N two-level initially unexcited
atoms interacting in a high-Q cavity with a weak, initially coherent, single-mode
field. We perform our calculations in terms of the SU (2)-group representations.

2 Results

The Hamiltonian for the model in the rotating wave approximation reads

(h=1):

N N
H=Ho+V, Ho=wiata+wd 59, v=g3 (sWa+s9at). (2
i=1 j=1

a(a?) is the photon annihilation (creation) operator. The j-th atom is described
by the pseudospin operators S(,'{I) (k = 3,+, —). Since we consider a small-sample
approximation the coupling coefficient g is the same for all atoms. Moreover, it
is implicit that the transition dipoles are aligned with the mode polarization. In
what follows, we assume exact resonance (the field frequency wy; is then equal
to the transition frequency w) and choose the scale such that wy = w = 1.

Let us recall that the excitation number operator N : N = a+a+zg__1 ng)+
N

3 is an integral of motion. Hence, if the initial state of the system belongs to

the subspace with the fixed eigenvalue N, the time evolution of the system is
restricted to this subspace.
It is convenient to introduce the following basis vectors:

In,m)(o) =|n~-m), ®|m)y, N|n,m)(°) = n|n,m)(°), 0<m<n. (3)
Here, |m); denotes the Fock state of the field, while |n — m), is the state of the
atomic subsystem, symmetrical with respect to the permutations of the atoms.
The dimension of the subspace corresponding to the eigenvalue n of the operator
N is n + 1. The initial condition is m = n.
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In general, the time evolution of the average photon number is calculated
through formula

a(t) = Z P(n)n,n ]eth a+ae_iH‘| n, n){%

n=0
=Y "P(n) > ARAR 9t A8 N A Al) L (4)
n=0 2,4=0 m=0

P(n) = exp(——ﬁo)ﬁ%: is the Poissonian photon number distribution and 7 is the

initial average number of coherent photons. Aﬁ::,? denotes the components of the
eigenvector of the Hamiltonian (2), while A4 , is the eigenvalue corresponding to

this eigenvector: As,':g = O){n,m|n,p), H|n,p) = Apa|n,p). The approximate
forms of the quantities Aﬁ:g and A, 5 have been found by us in [6].
Here, we construct the perturbation theory with a small parameter ¢,:

— n -1
& = (N 2 + —2-) ) (5)
1.e. the initial photon number is assumed to be much less than the total number
of the atoms.

In particular, in the zeroth-order approximation in e, the spectrum of the
eigenfrequencies is equidistant within each subspace with the fixed n and has
the form:

A,,,n=(N—§+%)%A;?%, M)l =n-2p, 0<p<n. (6)
It is worth noting that due to our choice of the form of the parameter ¢, the first—
order corrections to the eigenfrequencies vanish, i.e. /\&,), = 0. In consequence,
the spectrum of the eigenfrequencies remains equidistant in this approximation
as well.

Using the eigenvectors found by us in [6] and the properties of the matrix
elements of the SU (2)-group representations, in the zeroth-order approximation
from (4) we get that the mean photon number evaluates as follows:

1+1§)P(n)cos (th\/_;——g‘)] : (7)

With respect to the assumed condition #ip < N and to ihe properties of the
Poissonian distribution we can abbreviate summation in (7) on n less than N.
Hence, the term under the square root is always positive.

The spread in Rabi frequencies is solely related with the graininess of the
quantized field mode. As in the case of the JCM we deal here with one series of
revivals and in consequence the envelope of the quantum collapse of the mean
photon number remains Gaussian in form in this order of approximation.

The above approximation is valid for the sufficiently small values of EN-Q The
cooperavity of the system changes, in this approximation, the magnitude of the
Rabi frequencies only.

A(t) = ﬁ—zg
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The quasisteady-state values of the mean photon number (7) reached either
at very long times or between collapse and revival is ii(t) = Z¢.
In turn, accurate to ¢,, we find:

Aft) = %{1+§;0P(n) [cos (thﬂ) +
S N ) | I

In this approximation a new collective term oscillating at double Rabi frequency
402 = 49t /N — T appears. However, as previously, its spread depends on the
photon number distribution solely. We now deal with two series of revivals and
both of term are due to the photon statistical mechanism [5,7]. Each series
is Gaussian in form but they have different width. The width of the first series
(292) is obviously twice the width of the second series (4£2). Moreover, both series
contribute to the mean photon number with different weights. The amplitudes
of the second series are seriously diminished by the factor 'BTTV"L:T}T in comparison
with those for the first series. The total collapse, which is a linear superposition
of these two series, is no longer Gaussian in form in this approximation in e.
Both series of 1evivals are observable in Fig.2. The second series of revivals (4£2)
leads to weak enhancement of the oscillation amplitudes between strong revivals
of the first series (242).

In order to include the collective mechanism of revivals we have to make
calculations within an accuracy of €2. For this purpose it is sufficient to take
into account the terms calculated in the zeroth-order approximation for the
eigenvectors and in the second-order approximation for the eigenfrequencies.
Then, obviously, only revivals of the significant first photon statistical series will
be modulated by the collective mechanism. Thus instead of (7) we have

a(t) = {1 + Z P(n) [,—);p—(n'——-—)— cos gt (Apsi,nt1 — Apns1) +

+T£@<1—cosgt\/}\—7_——_§)]}, (9)

where the eigenfrequency 4, , within an accuracy of ¢? reads:

AP)“ = (N - ; + %)% (’\(0) +6nA;(:21)z) ’ (10)
Aé’f)s—(l}g@ [5p(n—p)~(—n——_—l2(f;2—)] , (11)

)\,(,,?,); is given by (6).

The time dependent part of the pure zeroth-order approximation (7) is cer-
tainly implicit in the formula (9). Namely, it is obtainable from the first term
in square brackets of (9), if we put €2 = 0 in (10). Then, in fact, the difference
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Apt1mt1 — Apay1 becomes independent of p and after some simple algebra we
find that this term goes over into cos (2gt /N — 7) as it should be.

In general, it is seen from (10) and (11) that the spectrum of the eigenfre-
quencies is non—equidistant in the second-order approximation in ¢. Since the
eigenfrequencies are now non-commensurate beatings between the terms with
different atomic frequencies, resulting in additional modulation of 7(t), will oc-
cur. This is simply the collective mechanism of the spread in Rabi frequencies.
The above calculated correction contributes to the collective mechanism with the
highest weight and, as mentioned, is responsible for the saddles in the revival
series 242.

In Fig.2 the dynamics of A(t) for N = 15 and no = 4 is presented. The
agreement between the exact numerical solution and our analytical one is ex-
cellent. Both envelopes manifest saddle-like forms of the revival series 242. The

Fig. 1. The envelope of the mean photon number n(t) : N = 15,n0 = 4.
exact {(computer simulation)

ooo0o from (9)

128 periods of oscillations are presented.

main results of this paper are contained in (7)-(9). Our comparative computer
calculations allow us to conclude that (7) describes correctly the time evolution
of A(t) for the extremely small values of the ratio 5¢. In turn, (9) is sufficient to
describe the evolution of the system even for two moderate values of 5}\%

Finally we want to point out that the system under consideration may be
viewed as possessing the approximate dynamical symmetry (in a sence of the
works [8,9]) with SU(2) as the appropriate dynamical symmetry group. In the
case % — 0 this approximate dynamical symmetry becomes an exact one and
the Hamiltonian V from (2) becomes the generator of SU(2) group representa-
tion. Our example shows that the presence of approximate dynamical symmetry
gives the possibilities for qualitative and quantitative description of the system
dynamics.

We would like to thank Prof. V. I. Man’ko for helpful discussions.
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