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1 I n t r o d u c t i o n  

The 3aynes-Cummings model (JCM) of light-matter interaction despite its sim- 
plicity demonstrates a number of interesting phenomena such as collapses and 
revivals [1], sub-Poissonian photon statistics [2] and squeezing [3]. Early stu- 
dies showed the appearance of the so-called Cummings collapse [4] at coherent 
quantum pumping. Eberly et al. [1] have later found a revival of the collapsed 
oscillations, in fact an infinite sequence of collapses and revivals with Gaussian 
decrease of the revival maxima. The origin of collapses and revivals in the 3CM 
is connected with the photon number distribution which produces spread in Rabi 
frequencies. The Rabi oscillations, initially all in phase, periodically dephase and 
rephase which leads to collapses and revivals, respectively. 

Barnett and Knight [5] studied numerically collective collapses and revivals 
for a group of two-level atoms. The atoms were assumed as initially unexcited 
or excited (a maser case). In general, there are two sources of spread in Rabi 
frequencies: the photon number distribution (as previously) and the collective 
atomic evolution. The origin of the collective collapses and revivals is related 
with a non-equidistant spectrum of the eigenfrequencies of the system. 

Recently, a new solution to the problem of interaction of a system of N two- 
level atoms with a single quantized field mode has been proposed [6]. Strictly 
speaking, cooperative spontaneous emission of a small number s of initially ex- 
cited atoms in the presence of a large number of N - s  unexcited atoms (8 << N) 
has been considered in terms of the SU (2)-group representation. Our method 
consisted in construction of the perturbation theory with a small parameter 
e, = ( N - ~  + ½)-1. The results obtained in this way are valid for an arbi- 
trary time ~. In the first-order approximation in e, it was found that the atomic 
inversion evaluates as follows [6]: 

s e, ~/ S 1 
E(t) = ~ cos(212t) -t- ~-~ s(s - 1) (1 - cos(4f2t)) ,~2 = g _ _ g -  ~ ÷ ~ , (1) 

where g is the atom-field coupling. The time evolution of the system is truly 
periodic since the spectrum of the eigenfrequencies is equidistant in the linear 
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approximation in e,. The second term in (1) appears for s # 1. The collectivity 
of the system adds in this approximation only the harmonic Rabi frequency 412 
in comparison with the 3CM. The above solution is suitable for the description 
of the dynamics of the system even for the moderate values of the ratio ~;  
according to the computer calculations the agreement with the real behaviour is 
then particularly good for relatively short times. For the sufficiently small values 
of ~ the dynamics of the system is almost exactly described for all times by the 
first term of the above fornmla. 

The time evolution of E(f), calculated within an accuracy of e~, may be 
J is not small enough. This is because the eigenfrequencies are aperiodic if 

non-commensurate in this approximation. Then, depending on the magnitude 
of the ratio -~ beatings between the terms with different frequencies, resulting in 
modulation of E(i), appear sooner ox later. So, the second-order approximation 
of our theory is responsible for the collective spread in lZabi frequencies. 

In the present paper we discuss a system of N two-level initially unexcited 
atoms interacting in a high-Q cavity with a weak, initially coherent, single-mode 
field. We perform our calculations in terms of the SU (2)-group representations. 

2 R e s u l t s  

The Hamiltonian for the model in the rotating wave approximation reads 
(h = 1): 

/v N 
a - H0 + v ,  H0 =  !a÷a ÷ S ? ' ,  V -- g + (2) 

j=t  j=t  

a(a  +) is the photon annihilation (creation) operator. The j - th  atom is described 

by the pseudospin operators S~ ) (k = 3, +, - ) .  Since we consider a small-sample 
approximation the coupling coefficient g is the same for all atoms. Moreover, it 
is implicit that the transition dipoles are aligned with the mode polarization. In 
what follows, we assume exact resonance (the field frequency Wl is then equM 
to the transition frequency w) and choose the scale such that w! = w = 1. 

Let us recall that the excitation number operator N : / V  = a + a+  ~-~7=t $3 (j)+ 
N • -V is an integral of motion. Hence, if the initial state of the system belongs to 

the subspace with the fixed eigenvalue /V, the time evolution of the system is 
restricted to this subspace. 

It is convenient to introduce the following basis vectors: 

I~,ra)(°)=l.--ra>a~lm)l, ~ln, m)(°)=~l~,m>(°), 0 ~ m ~ n .  (3) 

Here, Ira)] denotes the Fock stage of the field, while In - m)= is the state of the 
atomic subsystem, symmetrical with respect to the permutations of the atoms. 
The dimension of the subspace corresponding to the eigenvalue n of the operator 
fi? is n + 1. The initial condition is ra = n. 
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In general, the time evolution of the average photon number is calculated 
through formula 

~(~.) = Z .v(~)co)<~, ,.,, le~Ht a+a e-m~ I ~, ~>Co) 
~----0 

- ~ PC n) ~ A(~)AC'~)e i ' ' ( A ' ' ' ' - A ' ' ' ' ) ~ ,  ~q ~ mA('~)A (~) ,~p  ,~q • C 4) 
n=O p,q----O m--O 

P(n) = e x p ( - f i 0 ) ~  is the Poissonian photon number distribution and no is the 

initial average number of coherent photons. A ('~) denotes the components of the r a p  

eigenvector of the Hamiltonian (2), while Ap,n is the eigenvalue corresponding to 

this eigenvector: A~  ) = (0)( n, m I n , p ) ,  Hi n,p) = Ap,,~[ n,p). The approximate 

forms of the quantities A(~ ) and Ap,,~ have been found by us in [6]. 
Here, we construct the perturbation theory with a small parameter e,~: 

en = ( N - ~ +  , (5) 

i.e. the initial photon number is assumed to be much less than the total number 
o f  the atoms. 

In particular, in the zeroth-order approximation in en the spectrum of the 
eigenfrequencies is equidistant within each subspace with the fixed n and has 
the form: 

n 1 
A~,~ = ( N  - ~ + ~)½~(0)~,~, ~(0~ = n - 2p ,  0 _< p _< n . (6)  

It is worth noting that due to our choice of the form of the parameter e,~ the first- 
order corrections to the eigenfrequencies vanish, i.e. A (1) = 0. In consequence, ]01n 

the spectrum of the eigenfrequencies remains equidistant in this approximation 
as well. 

Using the eigenvectors found by us in [6] and the properties of the matrix 
elements of the SU (2)-group representations, in the zeroth-order approximation 
from (4) we get that the mean photon number evaluates as follows: 

"n,=0 

With respect to the assumed condition fi0 ~ N and to the properties of the 
Poissonian distribution we can abbreviate summation in (7) on n less than N. 
Hence, the term under the square root is always positive. 

The spread in Rabi frequencies is solely related with the graininess of the 
quantized field mode. As in the case of the 3CM we deal here with one series of 
revivals and in consequence the envelope of the quantum collapse of the mean 
photon number remains Gaussian in form in this order of approximation. 

The above approximation is valid for the sufficiently small values of -~. The 
cooperavity of the system changes, in this approximation, the magnitude of the 
Rabi frequencies only. 
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The quasisteady-state values of the mean photon number (7) reached either 
at very long times or between collapse and revival is f~(~) = ~ .  

In turn, accurate to en, we find: 

+ 8 (/~-- ~) 1 - c o s  4g~ . (8 / 

In this approximation a new collective term oscillating at double Rabi frequency 
4/2 = 4 g t v / N -  -~ appears. However, as previously, its spread depends on the 
photon number distribution solely. We now deal with two series of revivals and 
both of term are due to the photon statistical mechanism [5,7]. Each series 
is Gaussian in form but they have different width. The width of the first series 
(2~) is obviously twice the width of the second series (4~). Moreover, both series 
contribute to the mean photon number with different weights. The amplitudes 
of the second series are seriously diminished by the factor ~ in comparison 

with those for the first series. The total collapse, which is a linear superposition 
of these two series, is no longer Gaussian in form in this approximation in e. 
Both series of revivals are observable in Fig.2. The second series of revivals (4~) 
leads to weak enhancement of the oscillation amplitudes between strong revivals 
of the first series (2£2). 

In order to include the collective mechanism of revivals we have to make 
calculations within an accuracy of e:. For this purpos e it is sufficient to take 
into account the terms calculated in the zeroth-order approximation for the 
eigenvectors and in the second-order approximation for the eigenfrequencies. 
Then, obviously, only revivals of the significant first photon statistical series will 
be modulated by the collective mechanism. Thus instead of (7) we have 

[ ,~(~) = I + ~ ]  P(,~) 2 ~ p ! ( n _  p) ! cos g~ ( a . + ~ , . + ~  - A. ,~+~)  + 
'n=O 

+ s (.~- ~) ~ - cos 9 t  , (9) 

where the eigenfrequency At,= within an accuracy of e 2 reads: 

I .  ½ {A(o ) . 2 - ( ~ . )  '~ 
Av;" = (N 2 + 2) k P ' "  

- +~., ,~. . ]  (Io) 

A(~)=,,,. (~ ~:')[5.(~- . ) .  ( .  - 1 ) ( . -  2 ) ] 2  , (11) 

)~(0,) is given by (6). 
The time dependent part of the pure zeroth-order approximation (7) is cer- 

tainly implicit in the formula (9). Namely, it is obtainable from the first term 
2 0 in (10). Then, in fact, the difference in square brackets of (9), if we put e,, = 
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Ap+l,,~+l - Av,,,+l becomes independent of p and after some simple algebra we 
find that this term goes over into cos (2 g ~ ~ as it should be. 

In general, it is seen from (10) and (11) that the spectrum of the eigenfre- 
quencies is non-equidistant in the second-order approximation in e. Since the 
eigenfrequencies are now non-commensurate beatings between the terms with 
different atomic frequencies, resulting in additional modulation of fi(t), will oc- 
cur. This is simply the collective mechanism of the spread in Rabi frequencies. 
The above calculated correction contributes to the collective mechanism with the 
highest weight and, as mentioned, is responsible for the saddles in the revival 

series 2~. 

In Fig.2 the dynamics of fi(t) for N = 15 and no -- 4 is presented. The 
agreement between the exact numerical solution and our analytical one is ex- 
cellent. Both envelopes manifest saddle-like forms of the revival series 2~. The 

/ 
"% . °  • ° • 

Fig. 1. The envelope of the mean photon number n(t) : N = 15,n0 : 4. 
exact (computer simulation) 

oooo from (9) 
128 periods of oscillations are presented. 

main results of this paper are contained in (7)-(9). Our comparative computer 
calculations allow us to conclude that (7) describes correctly the time evolution 
of fi($) for the extremely small values of the ratio ~ . . I n  turn, (9) is sufficient to 

~ o  describe the evolution of the system even for two moderate values of "N-" 

Finally we want to point out that the system under consideration may be 
viewed as possessing the approximate dynamical symmetry (in a sence of the 
works [8,9]) with SU(2) as the appropriate dynamical symmetry group. In the 
case -~ ---* 0 this approximate dynamical symmetry becomes an exact one and 
the Hamiltonian V from (2) becomes the generator of SU(2) group representa- 
tion. Our example shows that the presence of approximate dynamical symmetry 
gives the possibilities for qualitative and quantitative description of the system 
dynamics. 

We would like to thank Prof. V. I. Man'ko for helpful discussions. 
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