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Doran horizon penetrating coordinates are adopted to study specific perfect MHD pro-
cesses around a Kerr black hole, focusing in particular on the physical relevance of
selected electrodynamical quantities.
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1. Introduction

General Relativity is a non linear theory which couples any physical field to grav-
itation described in terms of the geometry of space-time. This makes the search
of exact or approximate analytical solutions for physical relevant problems an ex-
traordinary task. Nowadays, Numerical Relativity has greatly circumvented such
a problem by using the huge computational power available! although analytical
solutions still remain fundamental to have important physical insights. The 60s and
the 70s represented an important moment of rediscovery of Einstein’s Theory. At
that time, numerical relativity was almost unknown and Mathematical Physics tech-
niques were widely adopted to find exact or approximate solutions. In particular,
in the field of Black Holes Physics, the understanding of the electrodynamics and
magnetohydrodynamics (MHD) around the recently discovered Kerr rotating black
hole solution? was central. Due to the aforementioned difficulty associated to the
non-linearity of the equations, approximate techniques of perturbative type were
applied to this aim as, for instance, in the classical work by Ruffini and Wilson?
and the one by Damour? (RWD) based on the properties of the geodesics in Kerr
background studied by Carter.® In particular Ruffini and Wilson used a simplified
model to describe possible charge separation processes involving the black hole and
its magnetosphere. Such a studies have been recently revisited® by using coordi-
nates regular on the horizon found decades later by Doran® and are here reviewed.
Doran’s work in particular generalizes classical Painlevé-Gullstrand coordinates for
spherical black holes. These coordinates are horizon penetrating and are naturally
associated to regular infalling physical observers. They are usually adopted in Nu-
merical Relativity in union with the excision technique which allows to extend the
computational domain beyond the black hole event horizon, avoiding to impose
problematic boundary conditions for the partial differential equations there. More-
over, Painlevé-Gullstrand type coordinates naturally occur in Analogue Gravity in
relation with acoustic black holes.” Summarizing, what we discuss here is the revis-
itation of RWD works by using useful coordinates found almost 25 years later. We
will show in particular that these coordinates are the most natural ones to describe
plasma physics by comoving with the fluid itself.

2. The RWD solution
RWD started from the Kerr metric in Boyer-Lindquist coordinates

o2Mr 4aMr sin® 6 by
2_ o 2 2 2
ds“= <1 > ) dt — dtdg + —dr® + Xdf

2Mra? sin® 0
D)
with ¥ = r24+a?cos? 0, A = r2—2Mr+a?, a being the specific angular momentum

and M the black hole mass, while the outer event horizon is located at r; =
M ++/M? — a? and Boyer-Lindquist coordinates are singular there. In the test field

+ [7“2 +a®+ } sin? 0d¢?, (1)
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approximation (no metric back reaction), neglecting pressure gradients in MHD
equations as well as magnetic force terms and imposing a perfect plasma condition
F,,U” = 0, the fluid must follow the geodesics on Kerr background studied by
Carter:

UM;VUV =0. (2)

In particular in their works, RWD consider Uy = 0 and U; = —1 at infinity and this
implies that Uy is a constant of motion. The four-velocity geodesic vector is then:

Y(r? + a?) + 2Mra?sin? 0 [—AU2 4 2M7r(r? + a2))2

t _ T — _
U= YA » U'= by
U, 2M Ra
0 _ 29 ¢ _
Ufz, U SA (3)

Finally, requiring overall neutral stationary and axisymmetric configuration, the
vector potential A, is characterized by the A4 component only. RWD solving the
simplified MHD equations found in such a a first approximation the analytical
solution:

Ay = All) = Ag(0,7) (4)
where
O =0 — Up (1) (5)
and

&(r) /OO ar
r) = .
r \/—(7"2 — 2M7r' + a2)Ug + 2M7r'(r'2 4+ a?)

(6)

From these relations, one case easily reconstruct the entire Maxwell tensor F},,, and
obtain the associated four-current J*. Great simplification occur by choosing Uy = 0
because in such a case it results Ay = F(0) with F a being an arbitrary function.
Specifically, in RWD works it has been assumed the simple form F(f) = Ag|cos 0|
where quantity Ao is a constant. Concerning Maxwell invariants, for this solution
they have these properties:©

1 1
o Fuw 1 = (B> -E* >0, 1 Fw P =E-B =0, (7)

so there must exist a frame in which the observer associated to the geodesics four-
velocity measures a magnetic field only, while the electric one vanishes in conse-
quence of the perfect plasma condition. In standard perfect MHD physics, both
charge density and electric field disappear in a locally comoving (and corotating)
plasma frame. This frame is in general not easy to be found analytically,” but for
the RWD solution however, by using Doran coordinates, we will successfully obtain
it, as now discussed.
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3. Doran coordinates analysis

The transformation from Boyer-Lindquist (BL) coordinates (t,r,6,¢) to Doran
Painlevé-Gullstrand-like (DPG) ones (T, R, ©, ®) is

T:tf/ f(rydr, R=r, 0=20,

p=o [ Sioiwar, fr=-YEEED

so Kerr solution becomes

2M 2Mr 2a(2M
ds®> = — (1= 220 ar? 4 2\ 5y dldr - 202M7) 2T e
by 2+a by
2
+sin%6 {rz +a%+ % 2 9] d®? — 2a sin® 04/ ZZ\f drd®

dr® 4+ %d6* . (9)

L=
r2 + g2

In the following, due to some of the coordinates’ coincidence, we shall denote R
with r and © with 6 again. Using the coordinates transformation above, the RWD
vector potential becomes

[ 2Mr F(0)
AP‘ = O,*GJ T2+a2T,O,F(0) (10)
with F(©) = F(0) = Ap| cos§]|. Concerning the geodesics, we get
—AU? + 2Mr(r2 2 2Mr(r? 2
Uu: _17_\/ 0+ ’I"(’I" +a’)+\/ 7"(7" +a)7U9,0 , (11)
A A
which in the case of interest Uy = 0 case become
U, =[-1,0,0,0] (12)
oM 2 2
g = |1, VA T)E(T +“),0,0] . (13)

The four-velocity U* above represents the T' = const normal geodesic observer.
Quantity T is the local proper time of observers in free fall along trajectories char-
acterized by constant # and ®. The DPG electromagnetic tensor of the Uy = 0 RWD
solution field has the only non vanishing component, undefined on the equatorial
plane, given by:

| cos 9|

cos (14)

dF (0
F<1>0:A<I>,0EW):—AO sin g —-
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Defining the orthonormal locally Lorentzian frame e(®) u associated to the DPG
normal observer discussed above:

2Mr )y 2Mr .
e®, =[-1,0,0,0, eV, = l\/x, A/ m,o, —\/?ast 9]
@, =10,0V5,0] @, =[0,0,0,v/1?+ a?sin0] (15)
one can easily show that the Maxwell tensor in the frame F(,)5) = €@ em)" Fluw

has the only non vanishing component (giving a magnetic field only):

A | cos 4]
(3)(4) (4)(3) (€] (r2 + a2)X cost (16)

Moreover, by computing the charge density J*U, = J(¢) = p measured by the same
observer one easily finds that it vanishes everywhere. As anticipated, we have found
the natural frame to describe this perfect MHD problem which is the comoving fluid
one. Moreover by using the fact that we have horizon penetrating coordinates, we
can follow the fields inside the black hole. In particular it is possible to plot the
four current lines for this RWD solution given by the numerical integration of the
differential equations set dz®/d\ = J* with )\ parametrising the curves.® To note
that while in BL: coordinates the current lines whirl infinite times around the event
horizon without entering inside, in DPG coordinates (we remind that these are
naturally associated to comoving observers) the current lines are not whirled and
can be continued regularly in the interior of the black hole. Finally, the use of DPG
coordinates allows one to obtain elegant expressions for studying the energetics of
the RWD solution. Always in the Uy = 0 case, one can easily compute an important
quasi-local quantity i.e. the electromagnetic energy stored outside the event horizon
through a T' = const cut in space-time as measured by the DPG normal observer.
This quantity is given by

E,(U) = / T Utdo" . (17)

Here o is a bounded hypersurface which contains a portion of spacetime while U*
represents the normal observer’s four-velocity. In the relation above,

A3

E=TEUMU" = ——2 =
H 87(r2 + a?)%

=8rF >0, (18)
is the local electromagnetic energy density obtained from the TP(L,e,m) electromag-
netic energy-momentum tensor in DPG coordinates, here proportional to the
first Maxwell invariant. Assuming the outer boundary of o being the 2-surface
r =R = const, we get the simple relation:

"+

A2 R
Eq, »)U) = ™ arctan e arctan - (19)
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4. Conclusions

We have shown that the adoption of recent modern tools is extremely useful for
revisiting classical studies of the 60s and 70s. We have adopted in particular
the most natural object to describe the physics of Ruffini-Wilson and Damour
works, represented by Kerr black hole Doran horizon penetrating coordinates with
their naturally associated normal observer. We have in particular described plasma
physics from the fluid comoving frame and found great simplification for the electro-
dynamical quantities. The limitation of the analysis here presented however rely on
the Uy = 0 choice which does not allow to obtain possible charge separation pro-
cesses (charge density is vanishing everywhere in this case in fact), obtained by
Ruffini and Wilson by imposing Up(0) = —Uy(m — 0) = const instead. In order to
address such a more complicated problem one should require a further generaliza-
tion of Doran’s work for the Uy # 0 case first. This study is not present in the
literature and deserves future studies in order to revisit also the problem of Ruffini
and Wilson charge separation.
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