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On Kerr black hole perfect MHD processes in Doran coordinates
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Doran horizon penetrating coordinates are adopted to study specific perfect MHD pro-

cesses around a Kerr black hole, focusing in particular on the physical relevance of
selected electrodynamical quantities.
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1. Introduction

General Relativity is a non linear theory which couples any physical field to grav-

itation described in terms of the geometry of space-time. This makes the search

of exact or approximate analytical solutions for physical relevant problems an ex-

traordinary task. Nowadays, Numerical Relativity has greatly circumvented such

a problem by using the huge computational power available1 although analytical

solutions still remain fundamental to have important physical insights. The 60s and

the 70s represented an important moment of rediscovery of Einstein’s Theory. At

that time, numerical relativity was almost unknown and Mathematical Physics tech-

niques were widely adopted to find exact or approximate solutions. In particular,

in the field of Black Holes Physics, the understanding of the electrodynamics and

magnetohydrodynamics (MHD) around the recently discovered Kerr rotating black

hole solution2 was central. Due to the aforementioned difficulty associated to the

non-linearity of the equations, approximate techniques of perturbative type were

applied to this aim as, for instance, in the classical work by Ruffini and Wilson3

and the one by Damour4 (RWD) based on the properties of the geodesics in Kerr

background studied by Carter.5 In particular Ruffini and Wilson used a simplified

model to describe possible charge separation processes involving the black hole and

its magnetosphere. Such a studies have been recently revisited6 by using coordi-

nates regular on the horizon found decades later by Doran8 and are here reviewed.

Doran’s work in particular generalizes classical Painlevé-Gullstrand coordinates for

spherical black holes. These coordinates are horizon penetrating and are naturally

associated to regular infalling physical observers. They are usually adopted in Nu-

merical Relativity in union with the excision technique which allows to extend the

computational domain beyond the black hole event horizon, avoiding to impose

problematic boundary conditions for the partial differential equations there. More-

over, Painlevé-Gullstrand type coordinates naturally occur in Analogue Gravity in

relation with acoustic black holes.7 Summarizing, what we discuss here is the revis-

itation of RWD works by using useful coordinates found almost 25 years later. We

will show in particular that these coordinates are the most natural ones to describe

plasma physics by comoving with the fluid itself.

2. The RWD solution

RWD started from the Kerr metric in Boyer-Lindquist coordinates

ds2=−
(

1− 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2

+

[
r2 + a2 +

2Mra2 sin2 θ

Σ

]
sin2 θdφ2, (1)

with Σ = r2 +a2 cos2 θ, ∆ = r2−2Mr+a2, a being the specific angular momentum

and M the black hole mass, while the outer event horizon is located at r+ =

M+
√
M2 − a2 and Boyer-Lindquist coordinates are singular there. In the test field
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approximation (no metric back reaction), neglecting pressure gradients in MHD

equations as well as magnetic force terms and imposing a perfect plasma condition

FµνU
ν = 0, the fluid must follow the geodesics on Kerr background studied by

Carter:

Uµ;νU
ν = 0 . (2)

In particular in their works, RWD consider Uφ = 0 and Ut = −1 at infinity and this

implies that Uθ is a constant of motion. The four-velocity geodesic vector is then:

U t =
Σ(r2 + a2) + 2Mra2 sin2 θ

Σ∆
, Ur = − [−∆Uθ

2 + 2Mr(r2 + a2)]
1
2

Σ

Uθ =
Uθ
Σ
, Uφ =

2MRa

Σ∆
. (3)

Finally, requiring overall neutral stationary and axisymmetric configuration, the

vector potential Aµ is characterized by the Aφ component only. RWD solving the

simplified MHD equations found in such a a first approximation the analytical

solution:

Aφ = A(θ∞) = Aφ(θ, r) (4)

where

θ∞ = θ − Uθ ξ(r) (5)

and

ξ(r) =

∫ ∞
r

dr′√
−(r′2 − 2Mr′ + a2)U2

θ + 2Mr′(r′2 + a2)
. (6)

From these relations, one case easily reconstruct the entire Maxwell tensor Fµν and

obtain the associated four-current Jµ. Great simplification occur by choosing Uθ = 0

because in such a case it results Aφ = F (θ) with F a being an arbitrary function.

Specifically, in RWD works it has been assumed the simple form F (θ) = A0|cos θ|
where quantity A0 is a constant. Concerning Maxwell invariants, for this solution

they have these properties:6

1

2
FµνF

µν = (B2 −E2) ≥ 0 ,
1

4
Fµν

∗Fµν = E ·B = 0 , (7)

so there must exist a frame in which the observer associated to the geodesics four-

velocity measures a magnetic field only, while the electric one vanishes in conse-

quence of the perfect plasma condition. In standard perfect MHD physics, both

charge density and electric field disappear in a locally comoving (and corotating)

plasma frame. This frame is in general not easy to be found analytically,9 but for

the RWD solution however, by using Doran coordinates, we will successfully obtain

it, as now discussed.
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3. Doran coordinates analysis

The transformation from Boyer-Lindquist (BL) coordinates (t, r, θ, φ) to Doran

Painlevé-Gullstrand-like (DPG) ones (T,R,Θ,Φ) is:

T = t−
∫ r

f(r)dr , R = r , Θ = θ ,

Φ = φ−
∫ r a

r2 + a2
f(r)dr , f(r) = −

√
(2Mr)(r2 + a2)

∆
, (8)

so Kerr solution becomes

ds2 = −
(

1− 2Mr

Σ

)
dT 2 + 2

√
2Mr

r2 + a2
dTdr − 2a(2Mr)

Σ
sin2 θdTdΦ

+ sin2 θ

[
r2 + a2 +

a2(2Mr)

Σ
sin2 θ

]
dΦ2 − 2a sin2 θ

√
2Mr

r2 + a2
drdΦ

+
Σ

r2 + a2
dr2 + Σdθ2 . (9)

In the following, due to some of the coordinates’ coincidence, we shall denote R

with r and Θ with θ again. Using the coordinates transformation above, the RWD

vector potential becomes

Aµ =

[
0,−a

√
2Mr

r2 + a2

F (θ)

∆
, 0, F (θ)

]
. (10)

with F (Θ) ≡ F (θ) = A0| cos θ|. Concerning the geodesics, we get

Uµ =

[
−1,−

√
−∆U2

θ + 2Mr(r2 + a2)

∆
+

√
2Mr(r2 + a2)

∆
, Uθ, 0

]
, (11)

which in the case of interest Uθ = 0 case become

Uµ = [−1, 0, 0, 0] (12)

Uµ =

[
1,−

√
(2Mr)(r2 + a2)

Σ
, 0, 0

]
. (13)

The four-velocity Uµ above represents the T = const normal geodesic observer.

Quantity T is the local proper time of observers in free fall along trajectories char-

acterized by constant θ and Φ. The DPG electromagnetic tensor of the Uθ = 0 RWD

solution field has the only non vanishing component, undefined on the equatorial

plane, given by:

FΦθ = AΦ,θ ≡
dF (θ)

dθ
= −A0 sin θ

| cos θ|
cos θ

. (14)
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Defining the orthonormal locally Lorentzian frame e(a)
µ associated to the DPG

normal observer discussed above:

e(0)
µ = [−1, 0, 0, 0] , e(1)

µ =

[√
2Mr

Σ
,

√
Σ

r2 + a2
, 0,−

√
2Mr

Σ
a sin2 θ

]
e(2)

µ =
[
0, 0,
√

Σ, 0
]
, e(3)

µ =
[
0, 0, 0,

√
r2 + a2 sin θ

]
, (15)

one can easily show that the Maxwell tensor in the frame F(a)(b) = e(a)
µe(b)

µFµν
has the only non vanishing component (giving a magnetic field only):

F(3)(4) = −F(4)(3) ≡ B(1) ≡ Br̂ = − A0√
(r2 + a2)Σ

| cos θ|
cos θ

. (16)

Moreover, by computing the charge density JµUµ ≡ J(0) = ρ measured by the same

observer one easily finds that it vanishes everywhere. As anticipated, we have found

the natural frame to describe this perfect MHD problem which is the comoving fluid

one. Moreover by using the fact that we have horizon penetrating coordinates, we

can follow the fields inside the black hole. In particular it is possible to plot the

four current lines for this RWD solution given by the numerical integration of the

differential equations set dxα/dλ = Jα with λ parametrising the curves.6 To note

that while in BL coordinates the current lines whirl infinite times around the event

horizon without entering inside, in DPG coordinates (we remind that these are

naturally associated to comoving observers) the current lines are not whirled and

can be continued regularly in the interior of the black hole. Finally, the use of DPG

coordinates allows one to obtain elegant expressions for studying the energetics of

the RWD solution. Always in the Uθ = 0 case, one can easily compute an important

quasi-local quantity i.e. the electromagnetic energy stored outside the event horizon

through a T = const cut in space-time as measured by the DPG normal observer.

This quantity is given by

Eσ(U) =

∫
σ

T (em)
µν Uµdσν . (17)

Here σ is a bounded hypersurface which contains a portion of spacetime while Uµ

represents the normal observer’s four-velocity. In the relation above,

E = T (em)
µν UµUν ≡ A2

0

8π(r2 + a2)Σ
≡ 8πF ≥ 0 , (18)

is the local electromagnetic energy density obtained from the T
(em)
µν electromag-

netic energy-momentum tensor in DPG coordinates, here proportional to the

first Maxwell invariant. Assuming the outer boundary of σ being the 2-surface

r = R = const, we get the simple relation:

E(r+,R)(U) =
A2

0

2a

[
arctan

R
a
− arctan

r+

a

]
. (19)
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4. Conclusions

We have shown that the adoption of recent modern tools is extremely useful for

revisiting classical studies of the 60s and 70s. We have adopted in particular

the most natural object to describe the physics of Ruffini-Wilson and Damour

works, represented by Kerr black hole Doran horizon penetrating coordinates with

their naturally associated normal observer. We have in particular described plasma

physics from the fluid comoving frame and found great simplification for the electro-

dynamical quantities. The limitation of the analysis here presented however rely on

the Uθ = 0 choice which does not allow to obtain possible charge separation pro-

cesses (charge density is vanishing everywhere in this case in fact), obtained by

Ruffini and Wilson by imposing Uθ(θ) = −Uθ(π − θ) = const instead. In order to

address such a more complicated problem one should require a further generaliza-

tion of Doran’s work for the Uθ 6= 0 case first. This study is not present in the

literature and deserves future studies in order to revisit also the problem of Ruffini

and Wilson charge separation.
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