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Shall I compare thee to a summer's day? 

Thou art more lovely and more temperate: 

Rough winds do shake the darling buds of May, 

And summer's lease hath all too short a date: 


Sometime too hot the eye of heaven shines, 

And often is his gold complexion dimm'd, 

A nd every fair from fair sometime declines, 

By chance or nature's changing course untrimm'd: 


But thy eternal summer shall not fade 

Nor lose possession of that fair thou ow'st, 

Nor shall Death brag thou wander'st in his shade, 

When in eternal lines to time thou grow'st: 


So long as men can breathe or eyes can see, 

So long lives this, and this gives life to thee. 


William Shakespeare, Sonett 18 

Fur Barbara 



Abstract 

Starting from a chiral conformal Haag-Kastler net of local observables 
on two-dimensional Minkowski space-time, we construct associated 
pointlike localizable charged fields which intertwine between the su
perselection sectors with finite statistics of the theory. 

This amounts to a proof of the spin-statistics theorem, the PCT 
theorem, the Bisognano-Wichmann identification of modular opera
tors, Haag duality in the vacuum 'sector, and the existence of operator 
product expansions. 

Our method consists of the explicit use of the representation theory 
of the universal covering group of S L(2, R). A central role is played 
by a "conformal cluster theorem" for conformal two-point functions 
in algebraic quantum field theory. 

Generalizing this "conformal cluster theorem" to the n-point func
tions of Haag-Kastler theories, we can finally construct from a chiral 
conformal net of algebras a complete set of conformal n-point func
tions fulfilling the Wightman axioms. 

Zusammenfassung 

Ausgehend von einem chiralen konformen Haag-Kastler-Netz lokaler 
Observablen auf einer zweidimensionalen Minkowski-Raumzeit kon
struieren wir zugehorige punktartig lokalisierbare geladene Felder, die 
die unterschiedlichen Superauswahlsektoren mit endlicher Statistik 
der Theorie miteinander verbinden. 

Mit diesem Ergebnis beweisen wir das Spin-Statistik-Theorem, das 
PCT-Theorem, das Theorem von Bisognano und Wichmann uber die 
Identifikation modularer Operatoren, Haag-DualiHit im Vakuumsek
tor und die Existenz von Operator-Produkt-Entwicklungen. 

Fur die Beweise benutzen wir explizit die Darstellungstheorie der 
universellen Uberlagerungsgruppe von SL(2, R). Zentrale Bedeutung 
hat ein "konformes Cluster-Theorem" fur konforme Zwei-Punkt-Funk
tionen in der algebraischen Quantenfeldtheorie. 

Mit der Verallgemeinerung dieses "konformen Cluster-Theorems" 
auf die n-Punkt-Funktionen von Haag-Kastler-Theorien konnen wir 
schlieBlich aus einem chiralen konformen N etz von Algebren einen 
vollstandigen Satz konformer n-Punkt-Funktionen konstruieren, die 
die Wightman-Axiome erfullen. 
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Introduction 

Und die Fische, sie versch winden! 
Doch zum I(ummer des Gerichts: 
Man zitiert am End den H aifisch 
Doch der Haifisch weij1 von nichts. 

Und er kann sich nicht erinnern 
Und man kann nicht an ihn ran 
Denn ein H a ifis ch ist kein H a ifis ch 
Wenn man's nicht beweisen kann. 

- Bertolt Brecht, Moritat von Mackie Messer 

Quantum field theory is the unification of classical physics, quantum physics, 
and the theory of special relativity. Its most important field of application 
has been in elementary particle physics. Using refined methods of pertur
bation theory and computer-aided numerical calculations, several important 
theoretical predictions have been made in quantum field theory that turned 
out to be in full agreement with experiments at large particle accelerators. 
Hence, quantum field theory has proved to be a successful concept in physics, 
and it is widely expected to continue to produce new results in the future. 
It has to be stated, though, that quantum field theory has not yet found 
an accepted mathematical formulation and theoretical framework that com
bines conceptual consistency with mathematical rigour on the one side and 
applicability to typical experimental situations on the other side. 

In mathematical physics, two main approaches have been developed for 
a general theory of quantized fields: 

Streater and Wightman formalized the long-practiced use of operator
valued distributions 

f f-----4 =cp(f) f dx f( x) cp( x) 

and formulated "Wightn1an axioms" for pointlike localizable quantized fields 
("peT, Spin & Statistics, and All That", [StW]). This framework is known 
as Wightman quantum field theory. 

The second approach is based on ideas of Haag and Kastler [HaK]. The 
basic assumption is that all physical information must already be encoded 
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in the structure of the local observables. Haag and Kastler introduced a 
mathematical structure for the set of observables of a physical system by 
proposing "Haag-Kastler axioms" for nets of C*-algebras 

A: 0 1---+ A(O) 

on bounded regions of Minkowski space-time. This approach is called alge
braic quantum field theory ("Local quantum physics", [Haag]). 

The aim of the studies presented in this dissertation is a better under
standing of the mutual relation of these two mathematical frameworks for a 
general theory of quantized fields. 

For the investigation of general structures in quantum field theory the 
formulation in terms of Haag-Kastler nets of local observables has turned 
out to be well suited: 

The selfadjoint elements of the C*-algebras A(0) represent the observ
abIes that can be measured in the space-time region O. Algebras localized 
in bounded space-time regions are called local, the norm closure of the union 
of all local algebras is called the algebra of quasilocal observables. 

In a causal relativistic theory, measurements in spacelike separated re
gions of space-time must not influence each other, i.e. Einstein causality 
holds. Einstein causality is implemented in algebraic quantum field theory 
by the postulate that algebras with spacelike separated localization region 
commute. This postulate is called locality of the net of algebras. 

A quantum field theory is supposed to be invariant under an appropri
ate group of symmetry transformations of space-time. In the algebraic ap
proach, the symmetry group is represented by automorphisms of the algebra 
of quasilocal observables such that the action of the automorphisms respects 
the local structure of the net. 

Physical states of a system are defined by positive, normed functionals of 
the algebra of quasilocal observables. By the GNS-construction (cf. [BrR]) , 
we can associate to any state a concrete realization of the (abstract) algebra 
of quasilocal observables on a Hilbert space and a cyclic vector in this Hilbert 
space. 

If this cyclic vector is invariant under a positive energy representation of 
the translation group and unique up to a free phase, we call it a vacuum 
vector and the associated state a vacuum state. 

Given a vacuum state on a net of local observables, we have to determine 
the set of physically realizable states in order to completely characterize 
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the physical system. This is done by appropriate selection criteria (cf. [Bor 1, 
DHRl-4, BuF2]). The structure of the set of physically realizable states then 
determines the set of charges appearing in a physical system. The properties 
of the charges in a theory are described by the superselection sectors of a 
theory, i.e. by the equivalence classes of irreducible representations of the 
algebra of quasilocal observables associated with physically realizable states. 

Doplicher, Haag and Roberts [DHRl-4] have shown that, with an ap
propriate selection criterion, important experimentally verified phenomena 
in elementary particle physics like charge addition, anticharge, antiparticles, 
pair creation, pair annihilation, and quantum statistics of particles can be 
derived in this mathematical framework. Confer also [Frel] and [BuF2]. 

The conceptual strength of algebraic quantum field theory is given by 
the fact that all constructions and results can directly be reduced to the 
knowledge of locally observable physical quantities. The weakness of alge
braic quantum field theory is the lack of control on pointlike limits and the 
missing connections to classical field theory in this approach. Therefore, the 
discussion of concrete models in terms of Haag-Kastler nets and the explicit 
construction of algebraic quantum field theories apart from free fields meet 
severe problems and difficulties. 

Consequently, the discussion of concrete models is mostly done in terms of 
pointlike localized fields. In order to be in a precise mathematical framework, 
these fields n1ight be assumed to obey the Wightman axioms [St W]. Wight
man quantum field theory is an axiomatic framework for (charged) pointlike 
localizable quantun1 fields. The fields are given as covariantly transforming 
ten1pered distributions with values in closable unbounded operators on the 
physical Hilbert space. Einstein causality is implemented by appropriate 
commutation relations. The common domain of definition is assumed to be 
dense in the Hilbert space, invariant with respect to the symmetry group, 
and stable under the action of field operators. 

The Wightmanian notion of quantum fields provides us with a strong 
intuition for the solution of problems in concrete models because of its anal
ogy to classical field theory. By canonical quantization, the Hamiltonian and 
Langrangian formalism can formally be transferred from classical physics to 
quantum field theory. In the theories of electro-weak and strong interaction, 
experimentally measurable physical quantities can be calculated by perturba
tion series of Feynman graphs using the concept of pointlike localized fields. 

The disadvantages of Wightman quantum field theory compared with the 
algebraic approach turn out in the analysis of general structures of relativistic 
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quantum physics in a model-independent context: 
To begin with, the "primary objects" in the Wightman approach are 

charge-carrying fields, i.e. non-observable objects. This leads to redundancy 
in description and might cause inconsistencies, which would be difficult to 
control. 

In addition to that, the quantized fields have, in general, to be defined as 
unbounded operators on a dense set of vectors in the physical Hilbert space. 
Hence, "domain problems" cannot be avoided. Even worse, we do not know 
how to associate these severe and yet unsolved mathematical problems to the 
corresponding physical problems. 

We noticed that the two different approaches to a general theory of quan
tized fields have complementary advantages and disadvantages. It is this 
complementarity of Wightman theory and algebraic quantum field theory 
that makes the investigation of the interrelation of both approaches interest
ing and important: 

Given an equivalence of both frameworks, one could switch between the 
"algebraic picture" of Haag and Kastler and the "distribution picture" of 
Streater and Wightman in order to combine the strengths of both approaches 
and to circumvent the weaknesses. 

This motivates the question of whether, how, and under which conditions 
Wightman fields can be constructed from Haag-Kastler nets and vice versa. 
The constructed theory should then describe the same physical system with 
the same physical properties as the original theory. 

Heuristically, Wightman fields are constructed out of Haag-Kastler nets 
by some scaling limit, which, however, is difficult to formulate in an intrinsic 
way (cf. [Buc2]). In a dilation invariant theory scaling is well-defined, and 
in the presence of massless particles the construction of a pointlike field was 
performed in [BuF1]. 

Generally, the interrelation between both concepts is not yet completely 
understood. See [Ba W , BoY] for the present stage and a survey of the de
velopments in this field of research. A detailed list of literature relevant to 
this subject can also be found in [Yng] and [DSW]. 

Several conditions restricting regularity, locality, and type of the pointlike 
localized operator-valued distributions guarantee that an associated net of 
von Neumann algebras can be canonically constructed and that the closures 
of the field operators are affiliated to the associated local von Neumann 
algebras (cf. [DrF, BoY, Wic, Bucl]). The invariants of this field algebra 
under the gauge group that is generated by the set of charges in the theory 
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would then be, in accordance with [DHRI-4], the vacuum representation of 
the Haag-Kastler net of local observables we have been looking for. 

Examining the opposite direction, Fredenhagen and Hertel [FrH, Her] and 
later Rehberg, Wollenberg, Kern and Summer [ReW, Woll, Ker, Sum] found 
necessary but not sufficient criteria for the existence of affiliated Wightman 
fields to a given Haag- Kastler net. 

Wollenberg [WoI2, Wo13] could derive a sufficient criterion for the exis
tence of so-called pre-fields. Pre-fields transform covariantly, but generally do 
not fulfill the Wightman axioms, since invariance and stability of the domain 
of definition and a product structure are not assumed. 

The short summary above outlined some of the problems of the relation 
of algebraic quantum field theory and Wightman fields. In this thesis, we will 
study the possibly simplest situation: Haag-Kastler nets in two-dimensional 
Minkowski space with trivial translations in one light-cone direction ("chi
rality") and covariant under the real Mobius group ("conformal symmetry 
group") which acts on the other lightlike direction. Starting from an algebraic 
formulation of chiral conformal field theory, we will try to find an equivalent 
formulation of this theory in terms of pointlike localized conformal fields. 

Conformal quantum field theory in two dimensions has had its main ap
plication in statistical physics. Confer [BPZ] as the fundamental paper in 
this field and [Gin] as an introduction to that approach. Two-dimensional 
conformal field theory has strong connections to string theory and to other 
two-dimensional physical theories (cf., e.g., [LPS]). In this thesis, we will 
take two-dimensional conform ally covariant quantum field theory as a the
ory of interest in itself with high symmetry on a simple geometry. Structural 
properties found at first to be inherent to conformal field theories have, how
ever, often shown to be properties of more general classes of field theories. 
Hence, we hope that the results in this thesis on chiral conformal quantum 
field theory will help to find similar results on theories with lower symmetries 
and on more complicated geometries. 

Conformal symmetry transformation are, by definition, those transforma
tions that leave the absolute value and the orientation of arbitrary angles in 
space-time unchanged. Hence, the "classical" conformal symmetry group 
in two-dimensional Minkowski space-time is given as the product of two 
groups of orientation-preserving diffeomorphisms on the real numbers (cf., 
e.g., [Sch]). Since the vacuum has to be invariant under (a positive energy 
representation of the group of) symmetry transformations, the conformal 
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symmetry group reduces after quantization to 

G2 = 50(2, 2)/Z2 . 

Introducing light-cone coordinates x+ := x + t and x_ := x - t, one can 
observe that G2 factorizes into Mobius groups: 

G2 = SL(2, R)/Z2 x SL(2, R)/Z2 . 

The factors act independently on the single light-cones: 

ax± + b 
x± ~ ' a, b, c, d E R, ad - bc = 1 . 

cx± + d 

Local conformal quantum fields in two dimensions generally do not trans
form irreducibly under the center of the universal covering group of the con
formal symmetry group. They can, however, be decomposed in non-local 
parts that transform irreducibly under the center. These irreducibly trans
forming non-local parts separate into light-cone fields. The light-cone fields 
form an exchange algebra that obeys braid group statistics (cf. [RSc]). Confer 
as well the solution of the "causality paradox" in [LiiM, ScS, SSV]. 

This line of argument motivates to consider conformal Haag-Kastler nets 
on double cones in two-dimensional Minkowski space-time that separate into 
tensor products of light-cone nets: 

A(J x J) = A(J) 0 A(J), J, J CR. 

Hereby, J x J denotes the double cone in Minkowski space-time determined 
by intervals J and J on the respective light-cones. Locality is implemented 
in the net of light-cone algebras by the postulate that algebras associated 
with disjoint intervals commute. 

These chirallight-cone nets that transform covariantly under the action 
of the Mobius group SL(2, R) are the starting point of the discussion in this 
thesis. In order to provide orientation for the reader of the following chapters, 
we will now present our procedure and the content of the thesis: 

In the vacuum representation pointlike localized fields can be constructed 
(cf. [FrJ]). Their smeared linear combinations are affiliated to the original 
net of local observables and generate it. We do not know at the moment 
whether they satisfy all Wightman axioms, since we have not yet found an 
invariant and stable domain of definition. 
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This idea can be generalized to the charged sectors of a theory in the alge
braic framework (cf. [Jor3]). We construct pointlike localized fields carrying 
arbitrary charge with finite statistics and therefore intertwining between the 
different superselection sectors of the theory. (In conformal field theory, these 
objects are known as "Vertex Operators".) We obtain the unbounded field 
operators as limits of elements of the reduced field bundle (cf. [FRS 1, FRS2]) 
associated with the net of local observables of the theory. 

Our method consists of an explicit use of the representation theory of 
the universal covering group of SL(2, R) combined with a conformal cluster 
theorem in the vacuum sector (cf. [FrJ]) and its generalization to the case of 
arbitrary charge with finite statistics (cf. [Jor3]). 

As a consequence of the existence of charged pointlike localized fields, we 
can prove the spin-statistics theorem 1, the peT theorem for the full theory, 
and the generalization of the Bisognano-Wichmann property (cf. [BiW]) for 
charged sectors. 

The existence of operator product expansions in the Wightman framework 
has been postulated by Wilson [Will. According to Wilson, the product of 
local fields 'Pi ( .) should admit an asymptotic expansion at short distances x 
of the form 

Hereby, 1Pi(') denote appropriate derivatives of local fields and Cijk (·) are 
singular functions with values in C. Especially in two-dimensional conforn1al 
field theory, this assumption has turned out to be very fruitful. The existence 
of a convergent expansion of the product of two fields on the vacuum could 
be derived from conformal covariance: 

'Pi(X) 'Pj(Y) n = L Jdz Bkij(X, y, z) 'Pk(Z) n 
k 

with kernels Bkij that can explicitly be calculated. In the proof of this result, 
however, the existence of the associated local fields has to be postulated 
[Liis, Mac1, SSV]. 

In the Haag-Kastler framework, the existence of an operator product 
expansion might be formulated as the existence of a sufficient number of 

1After the completion of [Jor3], we received a paper by Guido and Longo [GLo] that 
gives an independent proof of the conformal spin-statistics theorem. 
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Wightman fields such that their linear span applied to the vacuum is dense in 
the Hilbert space. Actually, we are able to derive a stronger result: We prove 
an expansion of local observables into field operators with local coefficients 
and show that this expansion converges *-strongly on a dense domain in the 
vacuum Hilbert space. 

Finally, we start again from a chiral conformal Haag-Kastler net of local 
observables and present a canonical construction of n-point functions that 
can be shown to fulfill the Wi"ghtman axioms. We proceed by generalizing 
the conformal cluster theorem (cf. [FrJ]) to higher n-point functions and by 
examining the momentum space limit of the algebraic n-point functions of 
local observables at p = O. 

We are not able to prove that these Wightman fields can be identified 
with the pointlike localized fields constructed above (cf. [FrJ, Jor3]), nor can 
we derive (generalized) H -bounds (cf. [Fr H, BoY]) for the Wightman fields, 
which would be sufficient to prove that the closures of the Wightman field 
operators are affiliated to the net of local observables we have been starting 
from. 
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2 First Steps 

To follow the technical parts in the following chapters of this thesis, the 
reader needs detailed information about our assumptions. Here, we present 
an explicit formulation of the setting from which the calculations and con
siderations in this thesis start. 

In the first section of this chapter, we introduce a formulation of the Haag
Kastler axioms for nets of local algebras that is adapted to the physical 
situation we consider throughout this thesis: chiral conformal nets on the 
one-dimensional light-cone. The assumptions in this section on the set of 
local observables are the basic definition for the whole thesis. 

The reader might also find helpful to (re )read, in the second section of 
this chapter, some (well-known) general remarks on chiral nets which we will 
repeatedly use in the following chapters of this thesis. We point out which 
consequences follow directly from the assumptions, we introduce important 
mathematical structures, and we review results of [FroG] and [BGL] on chiral 
conformal nets. Finally, the proof of additivity of chiral conformal nets (cf. 
[FrJ]) is presented. 

2.1 Assumptions 

Let A = (A(I)hEK o be a family of von Neumann algebras on a separable 
Hilbert space H. x:.,o denotes the set of non-empty bounded open intervals on 
R. A is assumed to satisfy the following Haag-Kastler conditions. 

i) Isotony: 

ii) Locality: 

A(11) c A(12), for 11 n 12 = 0, It, 12 E x:.,o (2.2) 

(A(12), is the commutant of A(12))' 

iii) Conformal Covariance: 

There exists a strongly continuous unitary representation U(.) of the 
Mobius group G = SL(2, R) in H with U( -1) = 1 and 

U{g) A{I) U(g)-1 = A(gl) , l,gl E !Co (2.3) 
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(5L(2, R) 3 9 = (: :) acts on R U {oo} by the mapping 

ax + b 
x~ -- (2.4) 

ex +d 

with the appropriate interpretation for x, gx = 00 ). 

iv) Stability: 

The conformal Hamiltonian H, which generates the restriction of U(·) 
to SO(2), has a non-negative spectrum. 

v) Uniqueness of the Vacuum: 

There is a unique (up to a phase) U-invariant unit vector n E H. 

vi) Cyclicity of the Vacuum: 

H is the smallest closed subspace containing the vacuum n which is 
invariant under U(g) , 9 E SL(2, R), and A E A(/) , 1 E Ko. 2 

Thereby, we have defined a vacuum representation of a chiral conformal Haag
Kastler net of local 0 bservables on R. Following the line of argument in 
the introduction, this Haag-Kastler net can be interpreted as the algebraic 
formulation of a quantized theory of conformal light-cone fields in terms of 
von Neumann algebras of local observables. 

2.2 Generalities on Chiral Nets 

It is convenient to extend the net to intervals 1 on the circle 81 = R U { 00 } 

by setting 

A(/) = U(g) A(g-l I) U(g)-l , g-11 E Ko, 9 E SL(2,R). (2.5) 

The covariance property guarantees that A( I) is well-defined for all intervals 
I of the form 1 = glo, 10 E K o , 9 E SL(2, R), i.e. for all non-empty 
non-dense open intervals on 81 (we denote the set of these intervals by K ). 

2This assumption is seemingly weaker than cyclicity of n with respect to the algebra 
of local observables on R. 
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We first want to note (see [FrJ)) that n is cyclic and separating for all 
A(J), J E K (Reeh-Schlieder property, cf. [ReS, Bor2)). Namely, let us look 
at J = R+ (without restriction of generality). R+ is mapped into itself by 
translations 

xl-+x+a, a>O, (2.6) 

and special conformal transformations 
x 

X 1-+ ., e<O. (2.7) 
-ex + 1 

Both one-parameter groups have a positive generator under the represen
tation U(·). Hence, by the usual Reeh-Schlieder argument, for both one
parameter groups (gt)tER the following relations hold: 

Ho .- A(R+)n 

UU(gt) A(R+) n, (2.8) 
tER 

where the overlined expressions denote the norm closure. So Ho is invariant 
under A(J) for all J E Ko and under translations and special conformal 
transformations, thus under U(SL(2, R)). By assumption vi) we conclude 
Ho = H, i.e. n is cyclic for A(R+) , and, by locality, separating for A(R_) . 
(Cf. [FroG] for a similar argument.) 

In the following paragraph, we review results of [FroG] and [BGL). We 
start with the modular structure. The modular involution J[ and the modu
lar operator tJ.[ are obtained by polar decomposition of the closure S[ of the 
operator defined by the mapping 

Anl-+A*n, AEA(J). (2.9) 

That means, 
J E K. (2.10) 

J[ implements an antiisomorphism between A(J) and A(J)' and tJ.}t, t E R, 
automorphisms of A(J) [Tak1). Borchers has shown [Bor3] that every unitary 
strongly continuous one-parameter group (U(t))tER with a positive generator 
and n as a fixed point which induces endomorphisms of A(J) for t > 0 
satisfies the commutation relations 

(2.11) 
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JI U(a) JI == U( -a). (2.12) 

Applying this to J == R+ and to the one-parameter groups considered above, 
we find that the operators 

Z(s)==~~ u(e7rs 0) sER, (2.13) 
+ 0 e-7rS ' 

commute with U(g) for all 9 E SL(2, R) (in particular, s ~ Z(s) is a one
parameter group). Moreover, 

(2.14) 

where g" is defined as the matrix (~c ~b) if 9 is given as (: :). 

With {) :== (0 1) ESL(2, R) , we have R_ == {) R+. Hence, 
-1 0 

(2.15) 

So, inserting 9 == {) in equation (2.14) we obtain that JR_ coincides with 
J R+. Thus, by locality and by the properties of modular involutions, we 
obtain 

A(R_) c A(R+)' 

JR + A(R+) JR + 

C JR_ A(R_)' JR_ 
A(R_) . (2.16) 

This shows Haag duality for half lines 

(2.17) 

and, by conformal covariance, Haag duality for every J E K: 

A(J')' = A(J) . (2.18) 



23 Generalities on Chiral Nets 

Now we compute 

(e7rS 

( 0 1) . 0) (0 1)
- U -1 0 ~R+ U 0 e-7rS -1 0U 

- ~~_ u (e:' e~.) 

= ~i~ u (e~~' e~') 
== Z(-s). (2.19) 

Here we used essential duality and the fact that the modular operator of 
A(R+)' is ~ii~ . Since Z is a one-parameter group, it must be trivial. There
fore, we obtain 

(2.20) 


Moreover, we show that the antiunitary involution J R + ==: e is a PCT oper
ator which acts on A by 

e A(I) e == A(  I), 1 E K, , (2.21) 

and on U(SL(2, R)) by 
e U(g) e == U(g{j). (2.22) 

The commutation relations of J R + with U(SL(2, R)) have already been de
termined; now choose 1 E K, and 9 E SL(2, R)) such that gl == R+. Thus, 
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- A(-I). (2.23) 

Note that gt9R- = -I follows from gI = R+. 

We now use the results of [FroG] and [BGL], presented above, to give 
the proof that the net is automatically additive (cf. [FrJ]). Consider an open 
covering of I E K : 

(2.24) 

Choose 10 E K such that 10 C I , where 10 denotes the closure of 10. Then 
there is a finite number of intervals I Ql , ... ,IQn which already cover 10 • Ac
cording to the Bisognano-Wichmann result above, ~}~ implements the one
parameter subgroup (gdtER of SL(2, R) which has the boundary points of 
10 as fixed points. There is a sufficiently small interval II E K, II C 10 , 
such that for all t E R the interval gt(I1 ) is contained in one of the intervals 
IQi' i = I, ... , n. The algebra 

All (10) := V ogt(A(Id) C A(Io) (2.25) 
tER 

is invariant under the modular automorphism Ad~}~ Ogt of A(Io) and 
has n as a cyclic vector, hence coincides with A(Io) (cf. [Tak2]). Thus, 
A(Io) is contained in V A(IQ ) if 10 C I. But a conformally covariant net isQ 

continuous from below (cf., e.g., [Jorl]), 

A(I) = V A(Io) , (2.26) 
foCI 

which implies additivity. 
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3 	 From Conformal Nets to Pointlike Neutral 
Fields 

As has been motivated in the introduction, we are interested in the relation 
and the interplay between the different possibilities to formulate chiral con
formal quantum field theory. We start from a chiral conformal Haag-Kastler 
net on two-dimensional Minkowski space-time and present the construction 
of a physically and mathematically equivalent theory in terms of point like 
localized fields. The content of this chapter covers the calculations and re
sults in the vacuum sector of the theory. I.e., it deals with local observables 
and neutral fields without charge. 

We proceed as follows: First we present the conformal cluster theorem, 
a result as interesting in itself as crucial for the rest of this thesis. We then 
construct pointlike localized neutral fields, show their properties, and derive 
the consequences of their existence. Finally, we prove an operator product 
expansion for this field theory. 

3.1 Conformal Cluster Theorem 

In this section, we derive a bound on conformal two-point functions in al
gebraic quantum field theory (see [FrJ]). This bound specifies the decrease 
properties of conformal two-point functions in the algebraic framework to be 
exactly those known from conformal field theories with pointlike localization. 

Conformal Cluster Theorem (see [FrJ]): Let (A(J))/EKo be a confor
mally covariant Haag-Kastler net of local observables on R. Let a, b, c, d E R 
and a < b < c < d. Let A E A( (a, b) ) , B E A( (c, d) ) , n EN, and 

Pk An = Pk A* n = 0, k < n. 	 (3.1 ) 

Pk here denotes the projection on the subrepresentation of U(SL(2, R)) with 
conformal dimension k. The conformal dimension is defined as the scaling 
dimension of the su brepresentation of dilations and uniquely characterizes 
irreducible representations of the conformal symmetry group with positive 
energy up to unitary equivalence. 

We then have 

l(n,BAn)l::; ((b-a)(d-C))n IIAIIIIBII. (3.2)
(c-a)(d-b) 
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Proof: Choose R > O. We consider the following one-parameter sub
group of 5L(2, R): 

• 1---+ X cos ~ + R sin ~ (3.3)
9t . x x • t t .

-R sln2' + cos2' 

Its generator HR is within each subrepresentation of U(SL(2, R)) unitarily 
equivalent to the conformal Hamiltonian H. Therefore, the spectrum of An 
and A* n with respect to HR is. bounded from below by n. Let 0 < to < tl < 
271" such that 

9t o (b) = c (3.4) 

and 
(3.5) 

We now define 

(n, B Z-HR An), Izi > 1, 

F (z) == (n, A zHR B n ) , Iz I < 1 , (3.6) 

(n, A Qgt (B) n ) , z == eit , t ¢ [to, t l ] , 

a function analytic in its domain of definition, and then 

G(z) = (z - zo)n (z-l - zol)n F(z), Zo == ei (to+td/2. (3.7) 

(Confer the idea in [Fre2].) At z == 0 and z == 00 the function G(·) is bounded 
because of the bound on the spectrum of HR and can therefore be analytically 
continued. As an analytic function it reaches its maximum at the boundary 
of its domain of definition, which is the interval [eito, eit!] on the unit circle: 

supIG(z)1 < IIAllllBllleito _ ei (to+tt}/21 2n 

IIAIIIIBI/ 12 sin to - tl/2n . (3.8)
4 

This leads to 

I( n, BAn)1 IF(I)1 
_ IG(I)1 11 - ei(to+tt}/21-2n 

_ IG(I)1 12 sin to -: t ll -2n 

. to + tl 2< sup IG(')112s1n 4 1- n 

< IIAIIIIBlIls~n~12n (3.9)
Slnhl1l..

4 
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Determining to and tl , we obtain 

lim Rto = 2(e - b) (3.10)
R-oo 

and 
lim R tl = 2(d - a) . (3.11 ) 

R-oo 

We now assume a - b e - d and find 

to - tl)2 (a - b) (e d) 
(3.12)( to+tl = (a-e)(b-d) =:r. 

Since the bound on I ( n, BAn) I can only depend on the conformal cross 
ratio r, we can drop the assumption and the theorem is proven. 0 

3.2 Construction of Pointlike Localized Fields 

The idea for the definition of conformal fields is the following (see [FrJ, Jor3]): 
Let A be a local observable, 

AE U A(I), (3.13) 
IeICo 

and Pr the projection onto an irreducible subrepresentation i of U(·). The 
vector Pr A n may then be thought of as t.pr(h) n where t.pr is a conformal 
field of scaling dimension nr E Nand h is an appropriate function on R. The 
relation between A and h, however, is unknown at the moment, up to the 
known transformation properties under S L(2, R) , 

(3.14) 


with 

for 

(ex  a)2nr-2 h 
( 

dx  b ) 
-ex +a 

(3.15) 

9 = (: :) E SL(2, R) . (3.16) 

We may now scale the vector Pr A n by dilations 

(3.17) 
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and find 
(3.18) 

with 
hA(x) := A-I h (I) . (3.19) 

Hence, we formally obtain for A ! 0 

A-n 
,. D(A)PT'An ---t kdxh(x) 'PT(O)n. (3.20) 

In order to obtain a Hilbert space vector in the limit, we smear over the 
group of translations 

(3.21 )T(b) := U (~ ~) 
with some test function f and formally get 

limA-n 
,. J. dbf(b) T(b) D(A) PTAn = J. dx h(x) 'PT(f) n. (3.22)

Al0 R R 

We now interpret the left-hand side as a definition of a conformal field 'PT 
on the vacuum and try to obtain densely defined operators with the correct 
localization by defining 

'P~(f) A' n = A' 'P~(f) n, f E V(J) , A' E A(J)/, J E K. (3.23) 

In the following, we want to make this formal construction meaningful. There 
are two problems to overcome. 

The first one is that the limit on the left-hand side of equation (3.22) 
does not exist in general if A n is replaced by an arbitrary vector in H. This 
corresponds to the possibility that the function h on the right-hand side might 
not be integrable. We will show that, after smearing the operator A with a 
smooth function on SL(2, R) , the limit is well-defined. Such operators, that 
are smeared-out by a COO -function with compact support in S L(2, R), will 
be called regularized. 

The second problem is to show that the smeared field operators 'P~ (f) 
are closable in spite of the non-local nature of the projections PT' This 
problem can be solved using the fact that the modular operators coincide, 
as explained above, with conformal transformations [Bor3]. An independent 
argument without recourse to Borchers' theorem is based on the conformal 
cluster theorem and will be outlined, together with its consequences, at the 
end of this section. 
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Existence of Pointlike Field Vector Limits 
In order to investigate the limit in equation (3.22), we use that PrH can be 
identified with L2(R+,p2nr-l dp), where G = SL(2, R) acts according to 

(3.24) 

(cf. [KRY, GGV]). 
Now let <P E PrH be smeared-out with a test function on S L(2, R) such 

that <P is Coo, i.e. 9 1-+ U(g) <P is an infinite number of times differentiable. 
We will show below that such functions <p(.) are continuous and bounded in 
p. Straightforward calculation then leads to 

(fa db f(b) T(b) D(>..) >.. -nT ~ ) (p) = j(p) ~(>"p) (3.25) 

and 
(3.26) 

for ,\ ! 0, showing the convergence in equation (3.22). 
It remains to be shown that the function <p(.) is continuous and bounded. 

From the above assumption it can be derived that the Hilbert space vector 
<P is in the domain of definition of all powers of the conformal Hamiltonian 
H. Hence, in an expansion of <P into eigenvectors of H, 

<P= I: Ck<Pk, H<Pk=k<Pk,ll<pkll=l, (3.27) 
k~n1' 

the sequence Ck is strongly decreasing. 
Normalized eigenfunctions of H are of the form 

~(n)() L 2n- 1 (2) -p k (3.28)'Yk P = n+k-l p e , > n, 

with the normalized associated Laguerre polynomials L~~k~l' In the ap
pendix, we show 

(3.29) 

with appropriate constants C and D. This directly implies continuity and 
boundedness of the function <1>(.) . 
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We thus obtained for each irreducible subrepresentation T and each vector 
~ E PrH n Coo with the complex number ~(O) -# 0 a multiple of a unitary 
map 

Vr,cp : L2(R+,p2nr-1dp) ---+ PrH (3.30) 

which is defined on the dense set {iIR+ If E V(R)} by 

and intertwines the irreducible representations of G = SL(2, R). In order to 
verify that this construction has non-trivial results, we will show later, how 
a sufficient number of vectors ~ E PrH n Coo with non-vanishing ~(O) -# 0 
can be generated. 

Definition of Pointlike Localized Field Operators 
We now turn to the definition of pointlike localized fields. Choose a regu
larized local observable A E A(Io) , 10 E 1::0 , such that 9 I--t Qg(A) is Coo in 
the strong operator topology. Let T be an irreducible subrepresentation of 
U(·). Then the vector Pr An is Coo. Hence, we may define operator-valued 
distributions <P~,A on V(I), I E 1::, by 

(3.32) 

for 
f E V( I), B' E A(I)' . (3.33) 

We point out that these field operators have a dense domain of definition. 

Properties of the Pointlike Localized Fields 

It is easy to see that the fields transform covariantly, 


(3.34) 

rwhere fJn ) shall be defined in analogy to equation (3.15). 
The main problem consists in proving closability of the operators <P~,A (f) . 

This is equivalent to the existence of densely defined adjoint operators. Let 
us introduce the notation f(·) := e T(') e. Here and in the following, J shall 
denote the complex conjugate of f. We show that the natural candidates 
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<P~,A. (J) are indeed restrictions of the adjoint operators. This amounts to 
the relation 

(B' n, <p;,A(f) G' n ) = (<P~,A.(J) B' n, G' n), B', G' E A(J)' . (3.35) 

Since we have 

fR db f(b) T(b) D(A) AD(A)* T(bt E A(J) (3.36) 

for local observables A E UIEK:o A(J), test functions f E V( J), and suffi
ciently small A > 0 , it is sufficient to show that 

( B' n , P,. An) = (Pi' A * n, B'* n ) , A E A(J), B' E A(J)' . (3.37) 

But this follows from the established relation between modular operators and 
conformal transformations, 

(Pi' A* n, B'* n) = (Pi' JI Cl.}/2 An, J[ Cl.J
1/2B' n) 

(Cl.J1/2B' n, J[ Pi' J[ Cl.}/2 An) 

= (B' n , P,. An) . (3.38) 

Moreover, we find 
(3.39) 

With Proposition 2.5.9 in [BrR] we can then conclude that the unique closure 
of <P;,A (f) is affiliated to A(J) : 

(3.40) 


That means, the von Neumann algebra generated by polar and spectral de
composition of the closed unbounded operators <p;,A(f)** , f E V(J) , is in
cluded in A(J) . 

Affiliation of the closed field operators to von Neumann algebras of local 
observables can also be shown with a more explicit argument (cf. [JorlD: 
Using in this proof the notations <P := <P; A(f) and cp for the closure of <p, it 
suffices to prove for all B' E A(J)' , 

cp B' :> B';:p (3.41 ) 

or, equivalently, for all B' E A( J)' and W E D( cp ) 

B' WE D(cp) (3.42) 
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and 
cp B' 'l! = B' cp 'l! (3.43) 

(cf. [DSW]). 
Let now 'l! E D( cp) and B' E A(J)'. Let ( 'P, D('P ) ) be the graph of 'P , i.e. the 
set of pairs of image and domain vectors of'P. Since ( 'P, D('P) ) c H EB H is by 
definition of cp dense in ( cp, D(cp) ) , we can choose a sequence of appropriate 
vectors 

(3.44) 

such that 

lim B~ n 
n--oo 

lim 'l!n 
n--oo 

(3.45) 

and 
lim 'P 'l! n = cp \l! . 

n--oo 
(3.46) 

With B' \l! n E D( cp) we get 

lim B' \l! n 
n--oo 

= B' \l! (3.47) 

and 

lim cp B' 'l! n lim 'P B' \l! n 
n--oo n--oo 

lim B' 'P \l! n 
n--oo 

B' cp \l! . (3.48) 

Since cp is closed, this implies 

B' \l! E D(cp ) (3.49) 

and 
cp B' 'l! = B' cp \l! . (3.50) 

Hence, affiliation is proven. 
It remains to be shown that for each irreducible subrepresentation T there 

is a non-zero field 'P;,A obtained by this construction. Let gy Y1-1 yo) E 
( 

SL(2, R), y =f=. O. Using the realization of P-rH as L2(R+,p2n-1dp) we find 

(3.51 ) 
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The left-hand side is in y the boundary value of an analytic function in the 
upper half plane. Therefore, it cannot vanish on an open set if P-r An =1= 

O. Hence, an accidental vanishing of P-r An (0) can be avoided by a small 
conformal transformation of A. 

We conclude that the spaces <p! (f) n, r irreducible and f E V( I), are 
dense in H. But the algebra generated by polar and spectral decomposition 
of all <p~(f)** , r irreducible and f E V(/), is invariant under the modular 
automorphisms Adtl.~t , hence coincides with A(I) (cf. [Tak2, Rig]). 

This last result implies that we have full equivalenc~ between the formu
lation of conformal chiral quantum field theory in terms of von Neumann 
algebras of local observables on the one hand and in terms of unbounded 
field operators with pointlike localization on the other hand. One can switch 
between the "algebraic picture", we have been starting from, and the "dis
tribution picture", we have constructed in this section, without loosing in
formation. 

An Alternative Approach 

Here, we sketch an alternative procedure (see [FrJ]) for the construction of 

pointlike localized fields. The existence and properties of conformal fields and 

the results on the structure of conformal Haag-Kastler nets in [FrJ, FroG, 

BGL] can be derived without making explicit use of Borchers' theorem [Bor3]. 

The basic input in this approach will be the conformal cluster theorem. 


Deviating from the approach in the beginning of this section, we now use 
Pn instead of P-r in the definition of the conformal fields. P-r is the projection 
on the irreducible subrepresentation r of U(SL(2, R)), Pn denotes the pro
jection on the (reducible) subrepresentation of U(SL(2,R)) with conformal 
dimension n . 

In analogy to equation (3.32) and with a regularized local observable A E 
A(10) , 10 E JCo , we obtain well-defined conformal fields 

(3.52) 


for 

f E V(/) , B' E A(I)', I E JC. (3.53) 

The next theorem gives the proof of the closability of the so-defined field 
operators. 
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Theorem (see [FrJ]): Let n EN, I E K, f E V(l), B', C' E A(l)' , 
and let A E A(10) , 10 E Ko , be a regularized local observable. We then have 

(B' 0" 'P~,A (f) G' 0,) = ('P~,A.(J) B' 0" C' 0,). (3.54) 

Thereby, we get 

(3.55) 

Hence, 'P~,A (f) is closable because 'P~,A (f)* has a dense domain. 

Proof: The Casimir operator Ca associated with the representation U(·) 
of the Lie group G = SL(2, R) is known to have the following spectral de
composition [Lang] : 

00 

(3.56) 

i=l 

Let Bl and B2 be regularized observables localized in disjoint intervals. As 
Ca is a second order differential operator in G, we obtain a commutation 
relation for Bl and B2 : 

(3.57) 


This argument does not hold for a single projection Pn , since Pn is, in contrast 
to Co, not a local operator. 

Some algebraic transformations lead to 

(B'n''P~,A(f) C'n) 

- lim ( dxf(x) (C'*B'n,T(x)D(:\):\-npnAn)
,\10 JR 

- lim [ dx f(x)
,\10 JR 

(G'*B'n,T(x)D(:\):\-n (IT Ga-i(i, ,I) ) PnAn) 
i=l n(n  1) z(z  1) 

- lim [ dx f(x)
,\10 JR 

(C'*B'n,T(x)D(:\):\-n(l1 Ca-i(i, ,I) )(1
i=ln(n-1) z(z-l) 

n-l 

I:Pd An) 
i=l 

(Because of equation (3.56), the polynomial in Ca has the property to act as 
the identity operator on Pn and as the zero operator on all Pi, i < n. By 



35 Construction of Pointlike Localized Fields 

the conformal cluster theorem the contribution of conformal energies greater 
than or equal n + 1 vanishes in the limit .\ ---+ 0 . ) 

lim f dx f(x) (C'*B'n, T(x) D(.\).\ -n (IT (Ca 1) i(i ~1) 1)) An)
,\!o JR i=l n n - - z z 

CGlim f dxf(x) (T(x)D(.\).\-n (IT - i(i :-.1) ) A*n,B'*C'n)
,\!o JR .i=l n( n  1)  z( z - 1) 

- (£P~,A. (J) B'*n, C'n) (3.58) 

and the theorem is proven. o 

Since in this approach arbitrary multiplicities of irreducible representa
tions in PnH might appear, we have to ensure the existence of a sufficient 
number of orthogonal fields with conformal dimension n EN. Because of the 
cyclicity of the vacuum vector 0. with respect to the set of regularized local 
observables, appropriate operators Ai, i E MeN, can be found to construct 
a dense set of vectors 

(3.59) 

in PnH. Since the conformal two-point function is determined up to a com
plex constant, we know 

(3.60) 

with suitable Cij E C. According to Schmidt's orthogonalization procedure, 
the matrix (Cij )i,j can then be transformed into a diagonal matrix (Cij )i,j . 

Applying this procedure to the observables Ai, i EM, we obtain new reg
ularized local observables Ai, i EM, giving rise to a set of conformal fields 
(£P~,Ai (.) )iEM that are orthogonal as vacuum field vectors £P~,Ai (.) 0. . 

The proof of the remaining properties of the field operators can be trans
ferred immediately from the first approach, which uses Pr in the definition 
of the fields, to the alternative approach, which uses Pn instead of Pr • I.e., 
the field operators £P~,Ai (f) transform covariantly, their closures are affiliated 
to the local observable algebras and the net of local observables can be fully 
reconstructed from the pointlike localizable field operators (cf. [FrJ]). 

Consequences of the Alternative Approach 
Once having shown the existence of conformal fields, one can use it to derive 
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important structures of the original conformal Haag-Kastler net, again and 
in contrast to [FroG, BGL] without making explicit use of Borchers' theorem. 
The mere existence of conformal fields will be enough to establish indepen
dent proofs of the Bisognano-Wichmann identification of modular structures, 
Haag duality, PCT covariance, and the possibility to reconstruct the algebras 
from the fields. 

The Bisognano-Wichmann result can be derived using an idea of [BS-M]: 

Let S+ = J+6~2 be the modular operators of Tomita-Takesaki theory as
signed to the vacuum vector n and the half line algebra A+ := A(R+) (cf. 
[Tak1] and the introduction of the modular structure in chapter 2). Let V(·) 
be the representation of the dilation group. Let n E N and A be an ap
propriate local observable. Let R+ :) J E JC, f E V( J) . In order to find a 
candidate for the PCT operator, we define an appropriate antiunitary oper
ator: 

(3.61 ) 

This is a definition of an operator which commutes PCT-covariantly with 
U(SL(2, R)). Let A E A+ be in the domain of V(i7r) and c.p(.) := c.pn A(·)., 
Positivity of the energy, locality, analyticity properties and dilation covari
ance lead to the following relation (cf. [BS-M]): 

(V(i7r) An, c.p(f) n) (An, V(i7r) c.p(f) n) 
(_l)n (An,c.p(f(-.))n) 

(8 A* n, c.p(f) n) . (3.62) 

This suffices to deri ve 

8 V(i7r) IA+n 
S+ IA+n 
S+ 

1\ 1/2J+~+ , (3.63) 

where the overlined expressions denote the closures of the respective opera
tors. Hence, we get 

and 

(3.64) 


(3.65) 
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The proof for the negative half line needs only trivial modifications. The 
modular conjugation of the half lines is their reflection; the modular auto
morphism group is the dilation group. 

We can now prove Haag duality without any a priori knowledge of PCT 
covariance, just exploiting the identity JR+ = JR_ (cf. the procedure in 
[Bor3]): 
Using the abbreviations A+, A_, J+, J_ as above, we get by straightforward 
calculations 

A~ J_A_J_ 

C J_A~J_ 

J_J+A+J+J_ 

c 
A+ 

A~, (3.66) 

which proves 
(3.67) 

and 
(3.68) 


Conformal covariance and some elementary geometry then imply Haag du
ality. 

Having proved Haag duality, we can then verify that e acts geometrically 
on the net of local observables: 
Let / E K, 9 E SL(2, R) with g(R+) /, and 11 E SL(2, R) such that 
11(R_) = -/. We already got 

e U(g) = U(11) e (3.69) 

and 
(3.70) 

This proves the theorem 

e A(/) e U(11) e A(R+) e U(11)-l 
U(11) A(R_) U(11)-l 

A(-/). (3.71 ) 



38 From Conformal Nets to Pointlike Neutral Fields 

We then easily derive the PCT covariance of the fields 

(3.72) 


with J E K , f E D(J) , A E A(J) , and n EN. 

Haag duality also establishes the equivalence of the "field picture" and 
the "algebra picture" in conformal field theory: 
Haag duality expresses maximality of the local algebras. The net that can 
be constructed from the closures of field operators is by affiliation included 
in the original net of observables. Both nets fulfill Haag duality and must 
therefore be identical. 

Remark on the Construction of Neutral Field Operators: It 
should be pointed out that in both approaches we have constructed pointlike 
localized fields with a covariantly transforming domain of definition. We have 
not found a dense domain of definition that is invariant and stable under the 
action of the field operators. Hence, we do not know how to define products 
of the field operators and cannot prove these pointlike localized neutral fields 
to fulfill the Wightman axioms. 

3.3 Operator Product Expansions 

The existence of a sufficient number of fields such that their linear span 
applied to the vacuum is dense in. the Hilbert space might be an appropriate 
formulation of the existence of an operator product expansion in the Haag
Kastler framework. In this section, a stronger result is presented. We derive 
an expansion (see [FrJ]) with local coefficients, which is covariant with respect 
to the modular *-operation S. Any local observable can be expressed as a 
converging sum of the pointlike localizable field operators constructed above 
with explicitly calculable test functions. 

Theorem (see [FrJ]): Let J E K and A E A(J). Let 'P~(.) de
note the normalized conformal field associated to the subrepresentation T 

of U(SL(2, R)). Then for each irreducible T the two simultaneous conditions 

and 

(3.73) 


(3.74) 
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together fully determine the test function !T,A: 

(3.75) 


where n T denotes the conformal dimension of 7. We used the abbreviation 
f(·) := 87(') 8. 
In particular, the support property of the test function is given by 

supp!T,A C I . (3.76) 

Therefore, we obtain a local expansion 

(3.77) 


which converges *-strongly on A(I)' n, i.e. with respect to the *-strong topol
ogy (cf. [Br R]) that is defined by the semi norms 

A ~ IIA¢II + IIA*¢II, ¢ E A(I)' n. (3.78) 

Proof: The two conditions 

(3.79) 

and 
(3.80) 


together determine the positive and negative energy content of !T,A , respec
tively. We find 

. - { PT A n (p), p > 0,
!T,A(P) = (3.81 ) 

Pf A* n ( - p), P < 0 . 
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Let us introduce 
(3.82) 

and 
(3.83) 

One easily finds 

_ ( ) 
gl P 

_ 
- { 

j- () 2nT-l > 0r,A P P ,p , 

0, P < O. 
(3.84) 

Straightforward calculation leads to 

(A* n" 'Pr(x)* n) 

( 'Pr(!r,A)* n, 'Pr( x)* n ) 

('P7'(!r,A) n, 'Pr(x)* n ) 

(-1 )nT ( 6 'Pr(!r,A( .)) n, 'Pr(x)* n ) 

(_l)nT (6 'Pr(x)*n, 'Pr(!r,A(-·))n) 


( 'Pr ( - X ) n, 'Pr(!r,A ( -. ) ) n ) , (3.85) 


where !r,A denotes the complex conjugate of !r,A. We now find 

0, P>O,
rh(p) (3.86)

{ 1- !r,A(P) p2nT 
- , P < o. 

Hence, we have proved 

fit (p) - !i2(p)
!r,A(P) - pE R. (3.87)

p2nT - 1 

The two formulas for !r,A in equation (3.75) follow directly from this re
sult: The second expression in equation (3.75) is the Fourier transform of the 
right-hand side of equation (3.87). In order to derive the first expression in 
equation (3.75) with the multiple integral, we consider the Fourier transform 

2nT 1of the product of fr,A(P) and p - • Using equation (3.87) one obtains a 
differential equation for !r,A (x) which can be transformed into the integral 
equation given in the theorem. 
The conformal cluster theorem proves the two-point functions 

(3.88) 
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and 
92(X) = (A*!1, 'P,.(x)*!1) (3.89) 

2nto decrease in position space as x- .,. for Ixl --1- 00. In momentum space, 
these distributions are then 2n,. - 2 times continuously differentiable. Hence, 
the Fourier transform 

(3.90) 


of the commutator function 

(!1, ['P,.(x)*,A]!1) (3.91 ) 

can be specified to be of the form 

(3.92) 


with an appropriate analytic function H (p) . 
Therefore, using the Paley-Wiener theorem ([Tre], theorem 29.2), we see that 
the support of j,.,A (x) = iI (x) is included in the support of the commutator 
function. Hence, it is included in I. 
The local expansion in equation (3.77) then follows directly from suPpj,.,A C I 
and the definition of the field operators (cf. (3.32)). 0 

Remark: Since this local expansion is proven for any local operator 
A, we see a posteriori that in the construction of pointlike localized fields 
the regularization of the local operators ~ have been starting from was 
not actually necessary. The properties of j,.,A suffice for any local operator 
A without further regularization to control the pointlike limit in the field 
construction. 
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4 	 From Conformal Nets to Pointlike Charged 
Fields 

Up to this point the calculations and results of this thesis were restricted 
to the vacuum sector of the theory. We have been dealing so far with local 
observables and neutral fields without charge. We now want to consider 
charged fields that relate different superselection sectors of the theory. The 
restriction to the vacuum sector has to be lifted; the reduced field bundle 
formalism (cf. [FRSl, FRS2]) will show to be the appropriate framework for 
a theory including sectors with arbitrary charge and finite statistics. 

Again starting from a chiral conformal Haag-Kastler net of local observ
abIes on two-dimensional Minkowski space-time, we construct in this chapter 
associated charged pointlike localized fields which intertwine between arbi
trary superselection sectors with finite statistics of the theory (see [Jor3]). 
This amounts to a proof of the spin-statistics theorem, the PCT theorem and 
a generalized Bisognano-Wichmann property. 

Wherever possible, we proceed in analogy to the reasoning in the vac
uum case in the last chapter. Sometimes the argumentation used in the 
vacuum sector can easily be transferred to the charged case, sometimes new 
arguments have to be found. 

4.1 Reduced Field Bundle Formalism 

In order to be able to describe charge-carrying objects (i.e. "charged fields") 
intertwining between the superselection sectors with finite statistics of the 
theory, we consider the reduced field bundle Fred = (Fred(I)hEICo associated 
with the net of observables A = (A(I)hEICo (cf. [FRSl, FRS2] for an explicit 
introduction). 

The reduced field bundle Fred is an algebra densely spanned by operators 
F = F(e, A), linear in the local degree of freedom A E A, and with a 
multi-index e. This multi-index refers to the charge carried by F as well 
as to the source sector and the range sector between which F interpolates 
according to the "fusion rules" of the theory. The elements of the reduced 
field bundle act on Hred , a realization of the physical Hilbert space. Hred is the 
direct sum of copies of the vacuum Hilbert space, one for each superselection 
sector with finite statistics, i.e. with non-vanishing statistical phase kp (cf. 
[FRS2]). The direct sum of the representations of the universal covering 
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group of the ~formal group on the single superselection sectors will be 
denoted U(SL(2, R)). 

In the following, we give an outline of the definition of the reduced field 
bundle and present the properties of this construction that will be needed in 
this thesis: 

We choose an representative Doplicher-Haag-Roberts endomorphism POt 
of A (cf. [DHRl-4, FRS1, FRS2]) for every superselection sector [0] with 
finite statistics and define a representation of the observable algebra A on a 
copy HOt := (0, H) of the vacuum Hilbert space H by 

(4.1 ) 


for \l1 E H , A E A, and with 7ro denoting the vacuum representation. For 
given representatives p, POt and P(3 we choose a basis {Te} of the space of local 
intertwiners from p(3 to POtp. We then define the elements of the reduced field 
sector as 

(4.2) 


for \11 E H and A EA. Multi-indices e with source sector [0], range sector 
L8] , and charge [p] will be denoted as field bundle indices of type (0, p, (3) . 
[p] is the superselection sector induced by p. Operators F( e, A) will be said 
to carry charge [p]. Operators of trivial charge coincide with observables. 

It has been shown in [FRS2] that the algebraic relations satisfied by the 
elements of the reduced field bundle are the bounded operator analogue of the 
exchange algebra introduced in [RSc] in the context of conformal quantum 
field theory on the light-cone. We have 

L Rf~~f~ (+/ - ) F(fI, AI) F(f2, A2) (4.3) 
ftoh 

with structure constants R, whenever F(eI' Ad is localized in the right/left 
complement of the localization domain of F( e2, A2 ) (cf. [FRS2]). 

The superselection sectors have a well-known conjugation structure p ~ 
p, which is realized by maps between intertwiner spaces. These maps give rise 
to numerical matrices ("coupling constants") f/, () , and ( (cf. [FRS1, FRS2]). 
Related to this conjugation structure, algebraic structures of the reduced field 
bundle can be established. Additionally to the (ordinary) operator adjoint 
we introduce the linear operator reversal F ~ F and the antilinear charge 
conjugation operation F ~ P. 
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The linear operator reversal is defined in [FRS2] by 

F(~A) := (d[J/da)1/2 L B~ F(e, A) ( 4.4) 
e 

for A E A and multi-indices e of arbitrary type (0:, p, /3). Here, the multi
index e is of the "reversed" type (/3, p, a) and da, d[J denote the respective 
statistical dimensions of [0:] and [/3] (cf. [FRS2]). 

The antilinear charge conjugation operation is given as 

F := CF)* = (F*), F E Fred. (4.5) 

In this thesis we will often make use of a specific property of the elements 
of the reduced field bundle, called "weak locality": 
Let F and G be two local elements of the reduced field bundle, F leading 
from the vacuum sector to a charged sector [p] , G leading back from [p] to 
the vacuum sector. In [FRS2] it has been proved that 

GF (: )(+1-)1 FC , (4.6) 
p 

whenever F is localized in the left/right complement of the localization do
main of G. "Weak locality" is the reminiscent of the Haag-Kastler axiom "lo
cality" in the exchange algebra of the reduced field bundle in low-dimensional 
quantum field theory. 

4.2 Conformal Cluster Theorem in Charged Sectors 

In this section, we present the generalization of the conformal cluster theorem 
from the vacuum sector (cf. chapter 3) to the full theory with charged sectors 
and finite statistics. 

Theorem (see [Jor3]): Let (A{J)heKo be a conformally covariant Haag
Kastler net of local observables on R. Let a, b, c, d E R and a < b < c < d. 
Let F E Fred( (a, b)) and G E Fred( (c, d) ) be elements of the reduced field 
bundle, and choose an appropriate conformal dimension m E R+ such that 

Pk F n = Pk n = 0, k < m . (4.7) 

. Pk here denotes the projection on the subrepresentation of U(SL(2, R)) with 
conformal dimension k. is the charge conjugated operator of F introduced 
above. 
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We then have 

I(O,GFO)I::; ((b-a)(d-C))m IIFIIIIGII. (4.8)
(c-a)(d-b) 

Proof: (Confer the proof of the conformal cluster theorem in the vacuum 
sector. The argumentation has to be generalized to charged sectors, but it 
is possible to follow the line of reasoning known from the vacuum case.) 
Choose R > O. Let us now consider the following one-parameter subgroup 
of 3L(2, R): 

x cos~ + R sin~ 
gt : x f------t x' t t . (4.9)

-Ii sln2" + cos2" 

Its generator HR is within each subrepresentation of U(3L(2, R)) unitarily 
equivalent to the conformal Hamiltonian H. Therefore, the spectrum of 
FO and po, with respect to HR is bounded from below by m. Let -1T < 
to < tt < 1T such that gto ( b) = c and gtl (a) = d. Because of the conformal 
covariance of the reduced field bundle, the function 

(4.10) 


with 
it 

Z = e , -1T < t < 1T, t tt [to, tt] , (4.11 ) 

is well-defined in its domain of definition. We now consider the analytical 
properties of 

(4.12) 


with 
Zo := e i (to+td/ 2 • ( 4.13) 

Using the condition of positive energy and weak locality, N(z) can be contin
ued analytically: We find singularities at z = 0, z = 00 , and on (the copies 

, eit1of) the interval [e ito ]; possibly branch-cuts (with arbitrary position) have 
to be introduced which connect the singularities. Hence, we obtain a Rie
mann surface as a natural domain of definition for the analytical continuation 
of N (.). In order to apply the maximum principle of complex analysis to 
a relatively compact subset of this domain of definition, we consider a com
pactification of the Riemann surface of N (.) at the singularities z 0 and 
z = 00 (see [For, Str, JSi]). In our case, this can be carried out with the 
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Alexandroff-compactification of N (.) with respect to the points at z = aand 
Z = 00. The Alexandroff-compactification [Str] is constructed such that a 
neighbourhood of the point to be added to the Riemann surface is given by 
the union of the additional point and the complement of a compact set of 
the original Riemann surface. 

We proceed with the remark that in neighbourhoods of z = aand z = 00 

the function N ( .) is bounded because of the bound on the spectrum of HR . 
Hence, N(·) can be continued analytically to the compactification (cf. [ForD. 
As an analytic function on the compactified Riemann surface the continuation 
of N (.) reaches its maximum on the boundary of its domain of definition, 
i.e. on (the copies of) the "interval" [e ito , e it1 ] (cf. [StrD. Therefore, we obtain 
the bound: 

supIN(.)1 < IIFIIIIGII leito _ ei(tO+tl)/212m 

1IFIIIIGil 1(2 sin to ~ t ll2m • ( 4.14) 

This leads, as in the vacuum sector, to 

I( n, GF n)1 IM(l)1 
ei(to+td/21-2mIN(1)111 
to +tIl_2mIN(1)112 

4 

< sup IN(.)I 12 to + tIl-2m 
4 

< IIFIIIIGllls~n:k12m. (4.15) 
SIn 4 

The completion of the argument is known from the reasoning in the vacuum 
sector. We determine to and tl in the limit R-+ 00 in terms of a, b, c, d. One 

R-oo 

obtains 
lim Rto = 2(c

R-oo 
b) ( 4.16) 

and 
lim Rtt = 2(d a). ( 4.17) 

Assuming finally a - b = c - d we find 

to - t I ) 2 = (a - b) (c d)
( d) =: T. (4.18)

to + tt (a - c) (b 
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We know that the bound on I( 0, G F 0)1 can only depend on the conformal 
cross ratio r. Hence, we can drop the assumption and the theorem is proven. 
o 

4.3 Construction of Pointlike Localized Charged Fields 

The following idea for the definition of pointlike localizable charged conformal 
fields starting from an algebraic theory of local observables (see [Jor3]) is a 
direct generalization of the idea for the case of neutral fields in the vacuum 
sector. We present the construction in detail, although our procedure and 
the line of argument in the full theory with charged sectors will turn out to 
be to a large extent parallel to the argumentation used in the chapter above 
for the case of the vacuum sector: 

Let A be a local observable, A E A(10), 10 E Ko. Choose a localized 
and transportable irreducible endomorphism p of A (cf. [DHRl-4, FRS2]) 
inducing a charged sector with finite statistics and let e be a field bundle 
multi-index of type (0, p, p). Then F = F(e, A) is a local element of the 
reduced field bundle. Now let m E R+ be an appropriate conformal dimen
sion and Pm be the projection on the subspace of conformal dimension m in 
Bred. We can think of Pm F 0 as a vector of the form <Pm(h) 0 where <pm is a 
conformal field with charge [p] of scaling dimension m and h is an appropri
ate function on R. As in the case of the vacuum sector, the exact relation 
between F and h is ~priori unknown. All we have are the transformation 
properties under SL(2, R) : 

U(9) Pm FO = <Pm(h~m») 0 (4.19) 

with 
(ex _ a)2m-2 h ( dx - b ) (4.20)

-ex+a 

and the covering projection 9 1-+ 9 for 9 = (: :) E SL(2, R). Scaling 

the vector Pm F 0 by dilations D()") we find 

D()..) Pm F 0 = )..m t,pm(h)..) 0 (4.21) 

with h).. (x) = )..-1 h( I)' Hence, we formally obtain for)" 10 

)..-m D()") Pm FO ~ fR dx h(x) <pm (0) O. ( 4.22) 
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We smear over the group of translations T( b) with some test function f and 
obtain in the formal limit a Hilbert space vector in Hp C Hred , i.e. in the copy 
of the vacuum Hilbert space H in the physical Hilbert space H red associated 
with the superselection sector [p] , 

limA-m f dbf(b)T(b)D(A)PmFn== f dxh(x)'Pm(f)n. ( 4.23) 
Ala JR JR 

The left-hand side can now be interpreted as a definition of a conformal 
field 'Pm with charge [p] and scaling dimension m on the vacuum vector n. 
Writing down 

'P~(f) A' n == 7r p(A') 'P~(f) n ( 4.24) 

for 
f E V(I) , A' E A(I') , I E Ko , (4.25 ) 

we obtain operators with a domain of definition that is dense in the vacuum 
Hilbert space H and range in Hp. In this chapter, l' always denotes the 
complement of I with respect to Ko . 

As in the case of neutral fields in the vacuum sector, we have to solve two 
main problems in order to make this formal construction meaningful. 

The first problem is related to the convergence of equation (4.23). If we 
replace the vector F n on the left-hand side of equation (4.23) by an arbitrary 
vector in H red , the limit A10 does not exist in general. Correspondingly, the 
formal integral over h on the right-hand side is not well-defined, if the (a priori 
unknown) function h is not integrable. This convergence problem is solved, in 
analogy to the vacuum sector, by a "regularization" of the operator F. After 
sm~ing the operator F with a smooth function with compact support on 
SL(2, R) , the existence of the limit can be controlled. Such operators from 
the reduced fie.!.i.. bundle, that have been integrated with U(g) and a test 

function on SL(2, R) , will be called regularized in this thesis. 
The second problem is to prove closability of the smeared field opera

tors 'P~(f), in spite of the non-local nature of the projections Pm appearing 
in the definition of the field operators. The closability of the charged con
formal fields will be solved by an argu~nt based on the properties of the 
Casimir operator associated with U(SL(2, R)) and on the generalization of 
the conformal cluster theorem to the charged case. 

Existence of Pointlike Field Vector Limits in Charged Sectors 
PmHp can be identified with copies of L2(R+,p2m-l dp), where SL(2, R) acts 
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according to 

(4.26) 


= lim~ rdx r dq e-ip(x+i~)+iqg-l(x+i~) (a - c(x + is))2m-2 q,(q) 
610 21i" JR JR+ . 

(cf. [KRY, GGY, Lus]). 
This realization can be used to investigate the limit in equation (4.23) . 

We will again proceed in full analogy to the construction of neutral fields in 
the vacuum sector: 

Choose a vector q, E PmHp that has been smeared-out with a test function 

on SL(2, R) such that g t---t U(g) q, is Coo. In the appendix, we have proved in 
the vacuum case that smeared-out functions q,(.) are continuous and bounded 
in p. This argument uses an expansion into normalized associated Laguerre 
polynomials and can be fully transferred to charged sectors. Having proved 
continuity and boundedness, a straightforward calculation leads to 

(l db f(b) T(b) D(>') >. -m <I> ) (p) j(p) <I>(>'p) ( 4.27) 

and 

( 4.28) 

for ,X 1 0, showing the convergence in equation (4.23). We thus obtained 
for each m and each q, E PmHp n Coo with (the tensor product of complex 
numbers) q,(O) =I 0 a multiple of a unitary map 

(4.29) 


which is defined on the dense set {fIR+ If E V(R)} by 

Vm~ : flR+ ~ q,(0) l(fIR+»:= lim,X-m rdbf(b)T(b)D('x)q, (4.30) 
, ..\10 JR 

and intertwines the irreducible representations of SL(2, R) . 
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Definition of Pointlike Localized Charged Field Operators 
We now come to the definition of pointlike localized charged fields. First, 
we define fields with charge [p] mapping the vacuum sector into charged 
sectors. Then, we generalize this construction to charged fields with arbitrary 
superselection sectors as source sector. 

Take a local observable A E A(Io) ,10 E Ko. Choose a localized and trans
portable irreducible endomorphism p of A (cf. [DHRl-4, FRS2]) inducing a 
charged sector with finite statistics and let e be a field bundle multi-index 
of type (0, p, p). Then F = F(e, A) is a local element of the reduced field 
bundle. We want F to be regularized, i.e. we choose F such that 9 1--+ ag(F) 
is COC) in the strong operator topology. Now let m E R+ be an appropriate 
conformal dimension and Pm be the projection on the subspace of conformal 
dimension m in Hred . 

Then the vector Pm Ff2 is COC). Hence, we may define operator-valued 
distributions c.p:n,F on V(I) , I E Ko , with a domain of definition dense in 
the vacuum Hilbert space by 

(4.31 ) 

with 
f E V(I), B' E A(I'). ( 4.32) 

Now, let e be a field bundle multi-index of arbitrary type (a, p, /3). Then 
F = F(e, A) is a local element of the reduced field bundle mapping Ha , 

the copy of H associated with the superselection sector [a], into Hfj, the 
copy of H associated with the superselection sector [/3]. We have seen above 
that in the reduced field bundle the following exchange algebra relations with 
structure constants R hold: 

F(e2' A2) F(el, Ad = L Rf~~f~(+/-) F(/b Ad F(/2, A2), (4.33) 
hoh 

whenever F( eb AI) is localized in the right/left complement of the localiza
tion domain of F( e2, A2 ) • 

Hence, we can define operator-valued distributions 'P:n,F on V(I) , I E Ko , 
with a domain of definition dense in the Hilbert space Ha by 

c.p:n,F(e,A) (I) F(e', B') n := 	L R;?:~(+ / -) F(g', B') c.p:n,F(g,A)(f) n (4.34) 
g'og 

for I E V(I) and field bundle elements F(e',B') E :Fred(I')±, whenever 
they are localized in the right/left complement of I with respect to Ko. (We 
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introduce the notation Fred(I')± for the span of the elements of Fred(I') that 
are localized in just one of generally two complements of I with respect to 
Ko .) 

For reasons of simplicity, we have chosen to consider in this chapter the 
reduced field bundle formalism on the "punctured circle" R with a fixed point 
at 00. As a consequence, the domain of the definition above of unbounded 
field operators with multi-index of arbitrary type, Fred(I')± n, is possibly 
smaller than Fred(I') n , since Fred(I') with a non-connected localization do
main I' typically need not to be spanned by elements that are localized in 
the right or left complement of I. One could either circumvent this com
plication by choosing the fixed point of the circle ("00") at the boundary of 
the considered interval, i.e. one would use conformal covariance and reduce 
the problem to situations with I = R+ and I' = R_. Or one could consider 
the "universal" reduced field bundle formalism on 51 and its more abstract 
adaption to the universal covering R of 51 (cf. [FRS2]), which is essentially 
the original field bundle introduced by [DHRl-4]. 

Properties of the Pointlike Localized Charged Field Operators 
First, it shall be mentioned that the charged fields transform covariantly: 

U(-) / (I) U(-)-1 = 9/ (/~m)) (4.35 ) 9 c.pm,F 9 c.pm,F 9 ' 

with mER, F localized in 10 E Ko and regularized, 9 E G, with the 
covering projection 9 r-+ g, I, gI E Ko , and 1 E D(I). IJm) shall be defined 
in analogy to equation (4.19). 

Next, we prove the closability of the operators c.p~,F(/). We start with the 
case of local operators F with a field bundle multi-index e of type (0, p, p) . 

Theorem (see [Jor3]): Let p he a localized and transportable irre
ducible endomorphism of A (cf. [DHRl-4, FRS2]) inducing a charged sector 
with finite statistics and e a field bundle multi-index of type (0, p, p). Choose 
m E R+, I E Ko , 1 E V(I), B' E A(I') , and G' = F(e, G') E Fred(I')±. 
Let F = F( e, A) be a regularized local element of the reduced field bundle. 

With the linear operator reversal F r-+ F , the antilinear charge conjuga
tion operation F r-+ P , and the statistical phase kp we then have 

( G' n, <p~,F(f) B' n ) (: )(+1-)1 (Glcp!.,p(J)n, B'n) 
p 

( <P~,F. (1) G' n, B' n ) , (4.36) 
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whenever G' is localized in the right/left complement of I. Thereby, we 
conclude as in the vacuum case 

cp~,F(f) t = cp~,F(f)* IFred(I')± n 

CP~,F. (J) . ( 4.37) 

Hence, cp!n F(f) is closable because cp!n F(f)* has a dense domain of definition. , ., 

Proof: (Confer the argumentation in the vacuum sector.) The Casimir 
operator Go associated with the representation U (.) of the uni versal covering 
of the Lie group SL(2, R) has the following spectral decomposition [Lang] : 

iEZ+m 

Go= L i(i-1)Pi . ( 4.38) 
O<i 

Since a conformal rotation by 21r leaves the observable algebra invariant, the 
conformal energies in a superselection sector can only differ by integer!:... The 
Casimir operator Go acts as a second order differential operator on SL(2, R) . 
Hence, it is a local operator in contrast to the single projectors Pi ,i E R+ . 
Some algebraic transformations lead, in a similar manner as in the vacuum 
sector, to 

(G'n, cp~,F(f) B'n) 

_ lim [ dxf(x) (1r p (B')*G'n,T(x)D()..) .. -mpmFn)
AlO JR 

lim [ dx f(x)
AlO JR 

(1r p (B')*G'n, T(x) D()..) )..-m (;Eit Co - i(i . 1) 1)) PmFn) 
O<i<m m(m 1) - z(z 

- lim [ dx f(x) (1rp (B')*G'n, T(x) D()")
AlO fR 

iEz+m C i(i iEZ+m1))

)..-m 

( 
II 0- ~. (1- E Pi)Fn) 

O<i<m m(m 1) - z(z 1) O<i<m 

(Because of equation (4.38), the polynomial in Go has the property to act as 
the identity operator on Pm and as the zero operator on all Pi , i < m. As a 
consequence of the conformal cluster theorem, the contribution of conformal 
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energies greater than or equal m + 1 vanishes in the limit A ---t O. ) 

lim f dx f(x)
,\10 JR 

('Jrp(B')*G'n,T(x)D(A)A-m (iEiim Cc; - i(i ~ ~) ) Fn) 
O<i<m m(m - 1) - z(z - 1) 

lim f dx f(x) (~)(+/-)1
,\10 JR kp 

(T(x)D(A)A-m (iEiim Cc; -i(i ~ ~) ) pn,G'B'n) 
O<i<m m(m - 1) - z(z - 1) 

(: )(+1-)1 (6' 'f'~,F(J)n, B'n) 
p 

('P~,F. (J) G'n, B'n) (4.39) 

with the definition of 'P~ F. and G' localized in the right/left complement of, 
I. 0 

Next, we argue that the closability theorem can be generalized to fields 
with a field bundle multi-index e of arbitrary type (0, p, 13) : 
The reduced field bundle only considers superselection sectors with finite 
statistics. The definition of charged fields of arbitrary type contains a finite 
direct sum of orthogonal closable field bundle operators. Hence, the clos
ability of charged field operators of arbitrary type follows by straightforward 
calculation from the theorem above. We have, however, not yet been able to 
give an explicit expression for the adjoint of field operators with field bundle 
indices of arbitrary type. The necessary calculation turned out to be very 
complicated, since in the general case of operators with a multi-index of arbi
trary type we have got to take into account the full exchange algebra instead 
of just weak locality in the proof of the theorem above for field operators of 
type (0, p, p). 

The closures of the charged field operators are affiliated to the local von 
Neumann algebras of the reduced field bundle. The commutant of the von 
Neun1ann algebra of the reduced field bundle localized in I E Ko is given by 
the algebra of observables in I' represented on the Hilbert space of the full 
theory Bred. Therefore, the proof for neutral fields can be transferred to the 
case of charged fields: 
By the proof of proposition 2.5.9 in [BrR], we obtain for closed field operators 
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'PI localized in I E Ko the relation 

(4.40) 

(Confer the explicit argument in the case of neutral fields in the vacuum sec
tor.) This is equivalent to the claimed affiliation of the closed field operators 
to the local von Neumann algebras (cf. [BrR, DSW]): 

(4.41 ) 

We have to verify the cyclicity of the vacuum vector with respect to the 
constructed set of pointlike localized field operators. That means, we must 
check whether "field vectors" of the form 'P:n,F(f) n span a dense subset of 
Hred . Using the analyticity argument carried out for neutral fields (cf. equa
tion(3.51)), we see that for each PmFn # 0 a non-zero (charged) field can 
be constructed. Thereby, the existence of a sufficient number of charged field 
operators such that their linear span applied to the vacuum vector is dense 
in the Hilbert space Hred is proven. Moreover, elements Fi of the reduced 
field bundle with a field bundle multi-index e of arbitrary type (0, p, /3) can 
be chosen such that the fields 'Pm,F'i are non-zero and, using Schmidt's or
thogonalization procedure, orthogonal as field vectors (cf. the definition in 
equation (4.34)). 

Hence, for every irreducible subrepresentation T of U(SL(2,R)) a non
vanishing charged field 'P~.o , I E Ko , with a dense domain of definition in the 
vacuum sector can be introduced. Analogously, non-vanishing charged fields 
'P~,a, I E Ko , defined on an arbitrary source sector [0] with finite statistics 

can be constructed for every irreducible subrepresentation T of U(SL(2, R)) 
using the exchange algebra in the reduced field bundle formalism and defini
tion (4.34). 

The algebra generated by polar and spectral decomposition of all opera
tors 'P~,o:(f)** for irreducible subrepresentations T of U(SL(2, R)) , arbitrary 
superselection sectors [0] with finite statistics, and f E V(I) is invariant un
der the generalized modular automorphisms Adb.}t introduced above and has 
the vacuum n as a cyclic vector. Hence, it coincides with Fred(I). (Confer 
[Tak2] and the argument in the vacuum sector.) 

Thereby, we have proved the equivalence of the formulation in terms of 
nets of von Neumann algebras of the reduced field bundle and in terms of 
unbounded charged field operators with pointlike localization. Without any 

http:tion(3.51
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loss of information one can switch between the "algebraic picture" and the 
"distribution picture". 

Remark on the Construction of Charged Field Operators: As 
in the vacuum sector, we have constructed pointlike localized fields with a 
covariantly transforming domain of definition starting from a theory of local 
observables. We have not found a common domain of definition that is dense, 
invariant, and stable under the action of the field operators. Hence, we again 
do not know how to construct products of the unbounded field operators and 
cannot prove the pointlike localized charged fields to fulfill the Wightman 
aXIoms. 

4.4 peT, Spin & Statistics, and All That 

The co-existence of the formulation of quantum field theory in terms of nets 
of von Neumann algebras of the reduced field bundle on the one hand and in 
terms of unbounded charged field operators with pointlike localization one the 
other hand can be used to derive important structural results of the theory. 
Here, we derive for all charged sectors with finite statistics of a conformally 
invariant theory in 1 +1 dimensions a generalized Bisognano-Wichmann prop
erty, the PCT theorem, the spin-statistics theorem, and additivity of the nets 
(cf. [Jor3]). 

We start with the proof of the spin-statistics theorem for conformally in
variant quantum field theory in 1 +1 dimensions. We use the line of argument 
of [FRS2]. 

Spin-Statistics Theorem (see [Jor3]): Let [p] be an arbitrary su
perselection sector with finite statistics. The statistical phase kp and the 
spectrum of chiral scaling dimensions mp of conformal fields with charge [p] 
then fulfill the relation 

27T"imp - e27T"imr> - ke - - p' ( 4.42) 

Here, mp denotes a chiral scaling dimension of a (charge conjugated) field 
carrying the conjugated charge [,0] . 

Remark: After the completion of this proof we received a paper by 
Guido and Longo [GLo] that gives an independent proof of the conformal 
spin-statistics theorem. 

Proof: (Confer the proof of the spin-statistics theorem in [FRS2]. That 
proof was "on the premises that on-vacuum pointlike limits yield fields which 
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generate a dense subspace of Hred from the vacuum vector n. We have proved 
that premises in this thesis (cf. [Jor3]) and can therefore follow the line of 
argument in [FRS2].) 
Let F be a regularized element of the reduced field bundle of type (0, p, p) 
localized in disjoint intervals and mER such that Pm F n =1= O. With weak 
locality, we obtain 

( 4.43) 

Here, we used the antilinear charge conjugation operation F ~ F , that has 
been introduced above. 

Conformal two-point functions of pointlike localized quantum fields are 
explicitly known distributions. Considering an appropriate normalization, 
we find 

( 4.44) 

and 
( 4.45) 

Hence, 

(<f'm,F(X) n, <f'm,F(Y) n) = e211"imsign(y-x) (<f'm,p(Y) n, <f'm,p(x) n). (4.46) 

A comparison of the phases in equation (4.43) and equation (4.46) yields 
e211"im = kp . Chiral scaling dimensions mp of arbitrary fields with charge 
[p] 	or [p] differ from m only by integers. Hence, the theorem is proven. 

o 

Next, we derive a generalization of the Bisognano-Wichmann result to 
the reduced field bundle formalism. We have seen that the Tomita-Takesaki 
theory [Tak1, BrR] assigns to every pair of a von Neumann algebra A and a 
cyclic and separating vector \II , a closable, antilinear operator: 

So : A \II ~ A* \II , A EA. 	 ( 4.47) 

S, the closure of So , has a polar decomposition S = J 6 1
/ 

2 and its compo
nents fulfill the following relations: 

J J* , ( 4.48) 
J2 - 1, ( 4.49) 

6-1/ 2 J 6 1/ 2 J , (4.50) 

JAJ - A', (4.51 ) 
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The set of operators 6 it, t E R, generate the group of modular automor
phisms: 

6 it A 6 -it = A . ( 4.52) 

If \II is chosen to be the vacuum vector 0 and A an algebra of local ob
servables in a conform ally covariant Haag-Kastler net in 1 +1 dimensions, 
[FroG, BGL] have identified J as the geometric reflection of the localization 
domain onto its complement on the circle and the modular automorphism 
group as the subgroup of conformal transformations which leaves the local
ization domain invariant. 

On the Hilbert space H red of all charged sectors with finite statistics, we 
consider a generalized modular structure based on the charge conjugation 
operation F 1--+ F instead of the operator adjoint F 1--+ F*. In the following, 

S[= J[ ~[1/2 ( 4.53) 

is defined as the closure of the operator defined by the mapping 

FOI--+FO ( 4.54) 

with F E Fred(I) for I E Ko (cf. [FRS2]). 
In order to find a candidate for a PCT operator on H red , we define an 

appropriate antilinear operator. 

Definition: 
e<Pm,F(X) 0 := (_l)m <Pm,P(-x) 0, ( 4.55) 

for m and x E R, and F E Fred regularized. 

It can easily be seen that e can be extended to an antiunitary operator 
and commutes PCT-covariantly with the representation U(SL(2, R)). In 
order to prove that e acts geometrically on the reduced field bundle and on 
the charged field operators, we first derive the following generalization of the 
Bisognano-Wichmann result to charged sectors with finite statistics. 

Bisognano-Wichmann Theorem (see [Jora]): Let k1
/ 

2 be the oper
ator defined by its eigenvalues k!/2 on the Hilbert spaces Hp associated with 
the superselection sectors [p]. Let V (.) be the dilation subrepresentation of 
U (.), and let e and SI be defined as above. We get as a generalization of 
the result of Bisognano and Wichmann 

(4.56) 
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and 
(4.57) 

Proof: Our line of argument to prove this Bisognano-Wichmann theorem 
is based on an idea of [BS-M]. Since we consider theories with arbitrary 
charge and finite statistics in this thesis, weak locality has to be used instead 
of locality. We proceed in analogy to [FRS2]: 
Let x > 0 and F E Fred(R+). Without restriction of generality, we assume 
F to be regularized such that V (t) F 0 can be continued analytically in t. 
With an appropriate field 

<p(.) := <Pm,F(') ( 4.58) 

and with the antilinear charge conjugation operation for bounded and un
bounded operators we then get the following relations by straightforward 
calculations: 

(V(i7r)FO, <p(x)O) (FO, V(i7r)<p(x)O) 
(_l)m k!/2 (F 0, <p( -x) 0) 

(_l)m k;1/2 (<p( -x) 0, F 0) 

- k;1/2 ( e <p( x) 0, F 0 ) 

k;1/2 (e* F 0, <p(x) 0). ( 4.59) 

We may conclude 

( 4.60) 

This proves the first relation claimed in the theorem, since the domain of 
definition is a core for the operator V( i7r). The relation for R_ can be 
derived by a trivial modification of the proof above. 

As a consequence of the identification of a generalized modular structure 
with objects of well-known geometrical meaning in the Bisognano-Wichmann 
theorem above, we are able to derive PCT covariance in the full theory. 

peT Theorem (see [Jor3]): e acts geometrically on the reduced field 
bundle 

e Fred(R+) e = Fred(R-) (4.61 ) 

and on the charged field operators 

( 4.62) 

0 
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with m and x E R, and F E :Fred regularized. 

Proof: The geometrical action of e on the vacuum realization of the net 
of local observables has already been shown [Bor3]. Confer the independent 
argument in the alternative approach to the construction of field operators 
in this thesis, first presented in [FrJ]. We now consider the full reduced field 
bundle. The generalized modular structure based on the antilinear charge 
conjugation operation F ~ P (cf. [FRS2]) has been identified by [Iso] as the 
"relative modular structure" introduced by Araki (cf. [Ara]). Then, Araki's 
results on relative modular operators (cf. [Ara]) directly imply the geometri
cal action of e = k- 1

/ 
2JR+ = k1

/ 
2 JR_ on the reduced field bundle: 

(4.63) 


The geometrical action of e on the charged field operators then follows by 
straightforward calculation: 

(4.64) 


with m ,x E Rand F E :Fred regularized. Hence, the PCT theorem is proven 
for the full theory. 0 

Remark: The PCT theorem can be obtained more directly. A PCT 
operator can be constructed on the physical Hilbert space Bred in a natural 
manner: 
We already had a PCT operator on the vacuum Hilbert space, and we know 
how the PCT operation should intertwine between the different copies of the 
vacuum Hilbert space. This so-defined PCT operator, too, can be shown 
to act geometrically on the reduced field bundle and on the charged field 
operators. 

Finally, we want to point out that the conformally covariant net of von 
Neumann algebras :Fred ( f) , f E Ko , in the reduced field bundle formalism 
can be proved to be additive. 

Theorem (see [Jor3]): Consider an open covering of f E Ko: 

(4.65) 


with fa E Ko. Then the following equation holds: 

(4.66) 
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where V denotes the generated von Neumann algebra. 

Proof: Additivity of the net of algebras in the reduced field bundle 
formalism with arbitrary charge and finite statistics can be proved exactly 
as in the case of observables in the vacuum sector. Using the Bisognano
Wichmann identification of the generalized modular automorphism group 
with well-known geometrical objects, the argumentation used in section 2.2 
for the vacuum sector can directly be transferred to the reduced field bundle 
net in a theory with arbitrary charge and finite statistics. 
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5 	 From Conformal Nets to Wightman Func
tions 

Starting from a chiral conformal Haag-Kastler net of local observables, point
like localized fields have been constructed in the chapters above. Their 
smeared linear combinations are affiliated to the original net and generate it. 
We do not know at the moment whether these fields satisfy all Wightman 
axioms, since we have not found an invariant domain of definition. 

In this chapter, we construct iIi a canonical manner a complete set of 
pointlike localized correlation functions from the net of von Neumann alge
bras of local observables we have been starting from. We proceed by gen
eralizing the conformal cluster theorem to higher n-point functions and by 
examining the momentum space limit of an appropriate sequence of algebraic 
n-point functions of local observables at p = O. The so-defined set of point
like localized canonically constructed correlation functions can be shown to 
fulfill the conditions for Wightman functions (cf. [St W] and [Jos]). Hence, 
we can construct, starting from local observables, an associated field theory 
with pointlike localization fulfilling the Wightman axioms. 

We are not able to prove that these Wightman fields can be identified 
with the pointlike localized fields constructed in the chapters above [FrJ]. 
Neither do we know how the Haag-Kastler theory we have been starting from 
can be reconstructed from the Wightman theory. The Wightman fields are 
canonically constructed from the original Haag-Kastler net, but possibly the 
field operators cannot be realized in the same Hilbert space as the algebraic 
theory of local observables. 

Such phenomena have been investigated by Borchers and Y ngvason (see 
[Bo Y]). Starting from a Wightman theory, they could not rule out in general 
the possibility that the associated local net has to be defined in an enlarged 
Hi!bert space. 

5.1 Conformal Two-Point Functions 

First, we will determine the general form of (truncated) algebraic two-point 
functions 

(0, BU(x)AO) (5.1 ) 

of local observables A and B in a chiral theory. Throughout this chapter, 
U(.) denotes the representation of the translation group. 
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The Fourier transform F of an algebraic two-point function of a chiral 
local net has support on the positive half line in momentum space. Hence, 
it is (cf., e.g., (JorI]) fully determined by the Fourier transform G of the 
associated commutator function 

(0, [B, U(x)AU(X)-I]O). 	 (5.2) 

Since A and B are local observables, the commutator function has compact 
support and an analytic Fourier transform G(p). The restriction 

F(p) = 0(p) G(p) 	 (5.3) 

of this analytic function to the positive half line is then the Fourier transform 
of (0, B U(x) AO). 

In the conform ally covariant case with 

Pk A 0 = Pk A* 0 0, k < n, n EN, (5.4) 

the conformal cluster theorem implies that the algebraic two-point function 
(0, BU(x)AO) decreases as x- 2n for Ixl-+oo: 

I ( 0, B U (x ) A 0 ) I ~ ex-2n , 	 (5.5) 

c > 0 appropriate (cf. chapter 3 and [FrJ]). Therefore, its Fourier transform 
F(p) is 2n-2 times continuously differentiable and can be written as 

F(p) = 0(p) p2n-1 H(p) 	 (5.6) 

with an appropriate analytic function H(p) . 
Using this result, we are able to present a sequence of canonically scaled 

two-point functions of local observables converging as distributions to the 
two-point function known from conventional conformal field theory (cf. (ChH, 
Reh]): 

limA-2n (0, BU(A-1X)AO)
>-10 

= limA-2n F p _ x 0(Ap) (Ap)2n-1 H(Ap) A dp 
,\10 

_ 	 limF p _ x 0(p) p2n-1 H(Ap) dp 
,\10 

H (0) (x + i c ) - 2n . 	 (5.7) 
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The coefficient of the pointlike two-point function can explicitly be deter
mined. Considering local observables A and B with Pk An = Pk A* n = 
0, k < n, as above and using straightforward calculations known from the 
proof of the operator product expansions in chapter 3, we get a couple of 
relations expressing H(O) as an explicit function of A and B: 

H(O) 

f'x-+p '2~-1 jX dY1 jYl dy; ... jY2n-2 dY2n-1 
Z -00 -00 -00 

(n, [B, U(Y2n-d A U(Y2n_d-1]n) Ip=o 

J~oo dx e-ipx ( n, [B, U (x ) A U (x) -1 ] n ) I 

P2n-1 


p=o 

8 ) 2n-1
~) , -8 JOO dx e-ipx ( n, [B, U (x) AU(x) -1 ] n ) 

(2n 1. ( P -00 

p=o 

= 1 JOO dX(-iX)2n-1 e-iPX(n,[B,U(X)AU(X)-1]n)1
(2n - I)! -00 p=o 

(2n ~ 1)! i: dx ( - i x)2n-1 ( n, [B, U(x ) A U (x )-1 1n ) . (5.8) 

5.2 Conformal Three-Point Functions 

We consider the properties of chiral algebraic three-point functions 

(5.9) 

of local observables Ai , iI, 2, 3. The general form of a (truncated) chiral 
three-point function of local observables is restricted by locality and by the 
condition of positive energy. The Fourier transform of an algebraic three
point function can be shown to be the sum of the restrictions of analytic 
functions to disjoint open wedges in the domain of positive energy: 
By straightforward calculations we get 
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and 

on the respective wedges 

w+ == {(p, q) E R 2 Ip ~ 0, q ~ p} (5.12) 

and 
w_== {(p, q) E R 2 Iq ~ 0, p ~ q} . (5.13) 

Using the Jacoby identity, one can see that the double-commutator functions 
have compact support in position space. Hence, their Fourier transforms 
are analytic functions in momentum space. If F now denotes the Fourier 
transform of (n, Al U(·) A2 U(·) A3 n), we have as a first result 

F(p,q) == 8(p)8(q-p)G+(p,q) + 8(q)8(p-q)G-(p,q) (5.14) 

with appropriate analytic functions G+ and G-. 
In the case of conformal covariance the general form of these algebraic 

three-point functions is even more restricted by the following generalization 
of the conformal cluster theorem [FrJ]: 

Theorem: Let (A(J)hEKo be a conform ally covariant local net on R. 
Let ai, bi E R, i == 1,2,3, and al < bI < a2 < b2 < a3 < b3 . Let Ai E 
A( (ai, bi) ) , ni EN, i == 1,2,3, and 

(5.15) 
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Pk here denotes the projection on the subrepresentation of U(SL(2, R)) with 
conformal dimension k. We then have the following bound: 

(nl+n2-n3)
(al - b1 ) +(a2 - b2 ) 

(5.16)
(a2 - al) + (b2 - bd 

(al - bd + (a3 - b3) l(n1 +n3-n2) 

I(a3 - ad + (b3 - bd 

(a2 - b2) + (a3 - b3) (n2+ n3-n
I) 

II Al1111A21111 A311·(a3 - a2) + (b3 b2)I 

If we additionally assume 

(5.17) 

we get 

I( n, AlA2A3n)1 ~ ri~1+n2-n3)/2 r~~2+n3-nd/2 ri~1+n3-n2)/2 II Al1I11A21111 A311, 
(5.18) 

with the conformal cross ratios 

1,2,3. (5.19) 


Proof: This proof follows, wherever possible, the line of argument of the 
proof in chapter 3 of the conformal cluster theorem for two-point functions 
(cf. [FrJ]). 
Choose R > O. Let us consider the following one-parameter subgroup of 
SL(2, R): 

9t 
. 
. x 
~ xcos~ + Rsin~ 

x . t t 
-"R sln'2 + cos'2 

• (5.20) 

Its generator HR is within each subrepresentation of U(SL(2, R)) unitarily 
equivalent to the conformal Hamiltonian H. Therefore, the spectrum of Ai n 
and Ai n with respect to HR is bounded from below by ni, i = 1,2,3. Let 
o< tij < tt < 21l' such that 

(5.21 ) 


and 
(5.22) 
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(5.23) 

in a domain of definition given by 

(5.24) 


with permutations (il, i2, i3) of (1,2,3). This definition can uniquely be 
extended to certain boundary values with IZjl IZkl, j, k = 1,2,3, j =f. k: 
F shall be continued to this boundary of its domain of definition if 

or equivalently if 

(5.25) 


(5.26) 


using the notation 
ti := -i log Zi, i 1,2,3. (5.27) 

Thereby, boundary points with coinciding absolute values are included in the 
domain of definition. The definition of F is chosen in analogy to the analytic 
continuation of general Wightman functions (cf., e.g., [St W, Jos]) such that 
the edge-of-the-wedge theorem for distributions with several variables [St W] 
proves F to be an analytic function: 
Permuting the local observables Ai, ii, 2, 3, we have six three-point 
functions 

(n, Ail U(Xil - XiJ Ai2 U(Xi2 XiJ Ai3n). (5.28) 

These six functions have by locality identical values on a domain 

(5.29) 

with appropriate CI, C2, C3 E R+. Each single function can be continued 
analytically by the condition of positive energy to one of the six disjoint 
subsets in 

U := R2+iV := {(Zl, Z2) E C 2 
1 Imzl =f. 0 =f. Imz2' Imzl+Imz2 =f. O}. (5.30) 

In this geometrical situation, the edge-of-the-wedge theorem (cf. [St W], the

orem 2.14) proves the assumed analyticity of F. 

With the abbreviation 


Z~· •= ei(tij+tij) /2 Z' J' 1 2 3 'J . , , = , , , (5.31) 



67 Conformal Three-Point Functions 

we then define 


G(ZI, Z2, Z3) (5.32) 


z~.)(ni+nj-nk)/2 ( _ z9.)(ni+nj-nk)/2 
lJ Zi Jt , 

where T(l, 2, 3) denotes the set {(I, 2, 3), (1,3,2), (2,3, I)}. The added poly
nomial in Zi , i = 1, 2, 3, is constructed such that the degree of the leading 
terms are restricted by the assumption on the conformal dimensions of the 
three-point function F. Also, using the binomial formula, it can be con
trolled by straightforward calculations that no half odd integer exponents 
appear after multiplication of the product. Hence, at Zi 0 and Zi = 00, 

i = 1, 2, 3 , the function G is bounded because of the bound on the spectrum 
of HR and can therefore be analytically continued. We can find estimates on 
G by the maximum principle for analytic functions. In order to get the esti
mate needed in this proof, we do not use the maximum principle for several 
complex variables [BoM]. Instead, we present an iteration of the maximum 
principle argument used in the proof of the conformal cluster theorem [FrJ] 
for the single variables Zi, i = 1,2,3, of G(·,·,·) and derive a bound on 
G(l,l,l): 
Applying the line of argument known from the case of the two-point functions 
now to G(·, 1, 1), we get the estimate 

IG(l, 1,1)1 :::; SUPZl IG(zI, 1, 1)1 

(5.33) 


The boundary of the domain of definition of the maximal analytical contin
uation of G(·, 1, 1) is here denoted by 

B.,l,l := {eit It tt [t12' tt2] U [t 13 , tt3] +27rZ} . (5.34) 

Applying this argument to G(zt,., 1), we analogously get the estimate 

1G(ZI, 1, 1 ) 1 :::; supZ2 IG ( Zl, Z2, 1) I 

(5.35) 


with Bz1,.,1 denoting the boundary of the domain of definition of the maxi
mal analytical continuation of G( Zl, ., 1). Applying this argument finally to 
G(Zl, Z2, . ) , we analogously get the estimate 

IG(zI, z2,1)1 < sUPz3 IG(ZI,Z2,Z3)1 
(5.36) 
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with BZ1 ,Z2,. denoting the boundary of the domain of definition of the max
imal analytical continuation of G( Zl, Z2, .). Having iterated this maximum 
principle argument for the single variables Zi, i = 1,2,3, we can combine the 
derived estimates and get 

(5.37) 

Hence, the boundary values of G have to be evaluated on the domain de
scribed by 

(5.38) 

with ti = log Zi, i 1,2,3. We find the supremum with the same calcu
lation as in the proof of the conformal cluster theorem above (cf. [FrJ]): 

IT 
 I it~
e tJ 

(i,j,k)eT(1,2,3) 

t-:-· - tf. 
= II AIIIIIA21111A311 IT 12 sin tJ tJ Ini+nj-nk (5.39) 

(i,j,k)eT(l,2,3) 4 

This leads to another estimate: 

IF(l, 1, 1)1 

IG(l,l,l)1 IT 
(i,j,k)eT(l,2,3) 

< 
(i,j,k)eT(l,2,3) 

Determining fij and tt ' we obtain for i, j = 1,2,3 

(5.41 ) 

and 
lim Rtf. = 2(b·

R-oo tJ ) 
ai) (5.42) 

and the first bound in the theorem is proven. If we now assume 

(5.43) 
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Conformal Three-Point Functions 

we find 

i-:-. - it) 2 (a· - b·) (a· - b·)tJ tJ t t 	 J J i,j = 1,2,3, (5.44)( _ + = ( 	 ) ( ) = Tij ,
iij + iij ai - aj 	 bi - bj 

and the theorem is proven. 

This theorem can be used to get deeper insight in the form of the Fourier 
transforms of algebraic three-point functions. As in the case of the two
point functions, we proceed by transferring the decrease properties of the 
function in position space into regularity properties of the Fourier transform 
in momentum space. 

In conventional conformal field theory, the three-point function with con
formal dimensions ni, i = 1,2,3, is known up to multiplicities as 

2I n ln2 n3(XI,X2,X3) = 	 (Xl - X2 + i£)-(nl +n -n3) 

(X2 - X3 i£)-(n2+n3-nt) 

(Xl - X3 + i£)-(nl +n3-n2) (5.45) 

(cf. [ChH, Reh]). 
Its Fourier transform 

(5.46) 

can be calculated to be a sum of the restrictions of homogeneous polynomials 
Q~ln2n3 and Q;;l n2n3 of degree nI + n2 + n3 - 2 to the disjoint open wedges 
W+ and W_ in the domain of positive energy (cf. [Reh]). The wedges W+ 
and W_ have been introduced above in the present section. 

By the bound in the cluster theorem above, we know that a conform ally 
covariant algebraic three-point function (n, Al U(XI-X2) A2 U(X2-X3) A3n) 

of local observables Ai with minimal conformal dimensions ni , i = 1,2,3, de
creases in position space at least as fast as the associated pointlike three-point 
function Inl n2n 3 (Xl, X2, X3) known from conventional conformal field theory. 
Hence, the Fourier transform FAl A2 A3 (p, q) of this algebraic three-point func
tion has to be at least as regular in momentum space as the Fourier transform 
inl n2 n 3(p, q) of the associated pointlike three-point function known from con
ventional conformal field theory: 
Technically, we use a well-known formula from the theory of Fourier trans
forms, 

8 
F(Pol(X)S) = Pol( 8Y )FS , 	 (5.47) 
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for arbitrary temperate distributions S and polynomials Pol(·) with a (multi
dimensional) variable X in position space and an appropriate associated dif
ferential operator at in momentum space. :F denotes the Fourier transfor
mation from position space to momentum space. 

Let now S be the conformally covariant algebraic three-point function of 
local observables Ai with minimal conformal dimensions ni , i = 1,2,3: 

(5.48) 

and X be a pair of two difference variables out of Xi - X j, 'l, J 1, 2, 3 . 
By the cluster theorem proved above, we can now choose an appropriate 
homogeneous polynomial Pol( X) of degree nl + n2 + n3 - 4 such that the 
product Pol(X) S is still absolutely integrable in position space. Using the 
formula given above, we see that Pol( at ):FS is continuous and bounded 
in momentum space. Furthermore, we have already derived the form of 
the Fourier transform F of an arbitrary (truncated) algebraic three-point 
function in a chiral theory to be 

F(p, q) = 8(p) 8(q - p) G+(p, q) + 8(q) 8(p - q) G-(p, q) (5.49) 

with appropriate analytic functions G+ and G-. Thereby, we see that in 
the case of conformal covariance with minimal conformal dimensions ni, 

iI, 2, 3 , the analytic function G+ (G-) can be expressed as the product of 
an appropriate homogeneous polynomial P+ (P-) of degree nl + n2 + n3 - 2 
restricted to the wedge W+ (W_) and an appropriate analytic function H+ 
( H-). Hence, we have proved that the Fourier transform FAl A2 A3 of the 
algebraic three-point function (f2, Al U(XI - X2) A2 U(X2 - X3) A3 f2) can be 
written as 

(5.50) 

with an appropriate homogeneous function PAlA2A3 (p, q) of degree nl +n2 + 
n3 - 2 and an appropriate continuous and bounded function HAlA2A3 (p, q). 

These results suffice to control the pointlike limit of the considered cor
relation functions. Scaling an algebraic three-point function in a canonical 
manner, we construct a sequence of distributions that converges to the three
point function of conventional conformal field theory: 
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lim..\ -(nl +n2+n3) 

>dO 


2F p - XI-X2 8(p) 8(q) ..\n l +n +n3-2 PAIA2A3(P, q) HAIA2 A3(..\P, ..\q)..\2 dpdq 
q-x 2-x 3 

- (Xl - X2 + i€)-(nl +n2-n3) 

(X2 - X3 + i€)-(n2+n3-nd 

. )-(nl +n3-n2) H (0 0)(Xl X3 + 'l€ AIA2A3 , • (5.51 ) 

The coefficient HAIA2A3 (0, 0) in the pointlike localized three-point func
tion can explicitly be determined, as well: 
We consider local observables Ai with Pk Ai f! = Pk Ai f! = 0, k < ni , i = 
1,2,3, as above. We introduce the abbreviations 

[AI, [A2' A3]](xt, X2, X3) (5.52) 
(f!, [U(XI)-I Al U(xd, [U(X2)-I A2 U(X2), U(X3)-I A3 U(X3)]] f!) 

and 

[[At, A2], A3](XI' X2, X3) (5.53) 
:= (f!, [[ U(Xt}-I Al U(xt), U(X2)-I A2 U(X2)], U(X3)-I A3 U(X3)] f!). 

Straightforward calculations then lead to relations that express the free co
efficient HAIA2A3(0, 0) as explicit functions of Ai, i = 1,2,3 

G~l A2 A3(p, q) I (5.54)Pil A 2 A 3 (p, q) p=O 
q=O 

F X 2-X I-P [At, [A2' A3]](xI, X2, X3)
x3-x 2-q (5.55) 

p=O 
q=O 

or equivalently 

GAl A2A3 (p, q) I (5.56) 
PAIA2A3 (p, q) p=O 

q=O 
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p=O 
q=O 

(5.57) 

Q~ln2n3 and Q;;l n 2n3 have been defined above as the two polynomials ap
pearing in the Fourier transform of the three-point function in conventional 
conformal field theory. 

These relations can easily be transformed by standard analysis into similar 
integral and differential equations. Since this has been presented in detail in 
the case of two-point functions, we do not repeat it here. 

5.3 Conformal n-Point Functions 

Since the notational expenditure increases strongly as we come to the con
struction of higher n-point functions, we concentrate on qualitatively new 
aspects not occurring in the case of two-point functions and three-point func
tions. These qualitatively new aspects in the construction of higher n-point 
functions are related to the fact that in conventional field theory the form of 
higher n-point functions is not fully determined by conformal covariance. In 
conventional conformal field theory conformal covariance restricts the form of 
correlation functions of field operators 'Pi(Xi) , i = 1,2, ... ,n, with conformal 
dimension ni in the following manner (cf. [ChH, Reh]): 

([2, (II 'Pi(Xi)) [2) = ( II (. 1+. t.) f(r~:::, ... ,r~:~:~:=:).
15i5n 15i<j5n X J Xi 1,£ l] 

(5.58) 
Here, f(', ... , .) denotes an appropriate function depending on n-3 algebraicly 
independent conformal cross ratios 

(5.59) 


The exponents Cij must fulfill the consistency conditions 

n

L Cij = 2ni, Cij Cji, 1 :::; i :::; n . (5.60) 
j=l 
#i 
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These conditions do not fully determine the exponents Cij in the case of n 24. 
Hence, in conventional conformal field theory four-point functions and higher 
n-point functions are not fully determined by conformal covariance. 

In the case of conformal two-point functions and conformal three-point 
functions, our strategy to construct pointlike localized correlation functions 
was the following: First, we proved that the algebraic correlation functions 
decrease in position space as fast as the associated correlation functions in 
conventional field theory, which are uniquely determined by conformal co
variance. Then, we transferred this· property by Fourier transformation into 
regularity properties in momentum space. Finally, we were able to prove that 
the limit A~ 0 of canonically scaled algebraic correlation functions converges 
to (a multiple of) the associated pointlike localized correlation functions in 
conventional conformal field theory. 

In the case of four-point functions and higher n-point functions, the sit
uation has changed and we cannot expect to be able to fully determine the 
form of the point like localized limit in this construction, since for n > 4 the 
correlation functions in conventional conventional field theory are not any 
longer uniquely determined by conformal covariance. 

Beginning with the discussion of the general case with n 24, we consider 
algebraic n-point functions 

(5.61 ) 


of local observables Ai with minimal conformal dimensions ni , i = 1, 2, ... , n , 

in a chiral theory with conformal covariance. We want to examine the point
like limit of canonically scaled correlation functions 

(5.62) 

Our procedure in the construction of pointlike localized n-point functions 
for n 2 4 will be the following: We consider all possibilities to form a set of 
exponents Cij fulfilling the consistency conditions 

n

L Cij = 2ni, Cij = Cji, i = 1, 2, 3, ... , n . (5.63) 
j=1 
j#f. 



74 From Conformal Nets to .."'..JL\'.L .. 'L ......LJ. Functions 

For each consistent set of exponents a bound on algebraic n-point functions 
in position space can be proved. Each single bound on algebraic n-point 
functions in position space can be transferred into a regularity property of 
algebraic n-point functions in momentum space. We can use the same tech
niques as in the case of three-point functions. Finally, we will control the 
canonical scaling limit in (5.62) and construct point like localized conformal 
n-point functions. . 

We present the following generalization of the conformal cluster theorem 
proved above (cf. [FrJ]) to algebraic n-point functions of local observables: 

Theorem: Let (A(J)hEKo be a conform ally covariant local net on R. Let 
ai, bi E R, i = 1,2,3, ... ,n, and ai < bi < ai+l < bi+1 for i = 1,2,3, ... ,n-1. 
Let Ai E A( (ai, bi ) ) , ni EN, and 

(5.64) 

Pk here denotes the projection on the subrepresentation of U(SL(2, R)) with 
conformal dimension k. We then have for each set of exponents Cij fulfilling 
the consistency conditions 

n

L Cij = 2ni, Cij = Cji, i = 1,2,3, ... ,n , (5.65) 
J=1 

J#i 


the following bound: 

(5.66) 

If we additionally assume 

(5.67) 

we can introduce conformal cross ratios and get 

(5.68) 
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Proof: If we pay attention to the obvious modifications needed for the 
additional variables, we can use in this proof the assumptions, the notation, 
and the line of argument introduced in the proof of the cluster theorem in 
the case of three-point functions. 
We choose an arbitrary set of exponents Cij fulfilling the consistency condi
tions 

L
n 

Cij = 2ni, Cij = Cji, i = 1,2,3, ... ,n. (5.69) 
J=1 
i:¢i 

Let R > O. We consider the generator HR of the following one-parameter 
subgroup of SL(2, R): 

x cos~ + R sin~ 
9t : x t-----+ x' t t . (5.70)

-R sIn2' + cos2' 

We know that HR is within each subrepresentation of U(SL(2, R)) unitarily 
equivalent to the conformal Hamiltonian H. Therefore, the spectrum of Ai n 
and Ai n with respect to HR is bounded from below by ni, i = 1, 2, ... , n . 
Let 0 < tij < tt; < 27r such that 

and 

(5.71 ) 


(5.72) 


for i, j = 1,2, ... ,n, i < j. We introduce 

(5.73) 

in a domain of definition given by 

(5.74) 


with permutations (p(1),p(2), ... ,p(n)) of (1,2, ... , n). This definition can 
uniquely be extended in analogy to the case of three-point functions to bound
ary points with IZjl = IZkl , j, k = 1,2, ... ,n, j =1= k, if 

(5.75) 
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thereby introducing 

ti := -i log Zi, i = 1,2, ... ,n . (5.76) 

The line of argument presented above in the case of three-point functions 
and developed for general Wightman functions in [StW, Jos] proves that this 
continuation is still an analytic function. We then define 

0 )Ci/2 (Zj 0 )ci/2G(Zl, ..• , Zn:=) F( ZI, ... , Zn ) II (-Zi - Zij J - - Zji J , (5.77) 
l:$i<j:$n Zj Zi 

using the abbreviation 

Z~" .- ei(t;j+tt)/2 Z" J" - 1 2 nlJ .- , , - , , ••• , • (5.78) 

This function is constructed such that with the consistency conditions for Cij 

and with the bound on the spectrum of HR we get the following result in 
analogy to the cluster theorem for three-point functions: At the boundary 
points Zi 0 and Zi = 00 , i = 1, 2, ... , n , the function G is bounded and can 
therefore be analytically continued. As in the case of three-point functions, 
we get with the maximum principle for analytic functions further estimates 
on G: Iterating the well-known maximum principle argument for the single 
variables, one obtains 

(5.79) 


where B denotes the set of boundary points 

(5.80) 

with ti -i log Zi, i = 1,2, ... ,n. The supremum of the boundary values of 
G can be calculated in full analogy to the case of the three-point functions 
and to the proof of the conformal cluster theorem (cf. [FrJ]). We obtain 
straightforward: 

_ + eij
• tiJ -tij

SIn 4 
. (5.81)II - t+.~l:$i<i:$n sIn 4 

This estimate converges in the limit R 10 with 

lim RtiJ" = 2(aj - bi) (5.82)
R-oo 
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and 
lim Rtt = 2(bj - ad (5.83)

R-oo 

for i, j = 1,2, ... ,n to the first bound asserted in the theorem. If we assume 

(5.84) 

we find 

i, j = 1,2, ... ,n, (5.85) 

and get the second bound. Hence, the theorem is proven. o 

For each consistent set of exponents Cij, i, j = 1,2,3, ... , n, we have 
proved a different bound on conformal four-point functions of chiral local 
observables. Hence, we know that the algebraic n-point function 

(5.86) 


decreases in position space at least as fast as the set of associated pointlike n

point functions known from conventional conformal field theory. Therefore, 
the Fourier transform of the algebraic n-point function has to be at least 
as regular in momentum space as the Fourier transforms of the associated 
pointlike n-point functions known from conventional conformal field theory. 

Technically, we follow the line of argument in the case of three-point 
functions and use the formula 

F(Pol(X)S) = Pol (a~)FS (5.87) 

for arbitrary temperate distributions S and polynomials Pol(·) with a (multi
dimensional) variable X in position space and an appropriate associated dif
ferential operator at in momentum space. :F denotes the Fourier transfor
mation from position space to momentum space. 

Now, we choose S to be an algebraic n-point function 

(5.88) 
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of local observables Ai with minimal conformal dimensions ni, i = 1,2, ... ,n, 
and X to be a tuple of n - 1 algebraicly independent difference variables out 
of Xi - Xj, i,j = 1,2, ... ,n. The estimates in the cluster theorem proved 
above imply, that appropriate homogeneous polynomials Pol(X) of degree 

deg(Pol) = (~n;) - 2n + 2 (5.89) 

can be found such that the product Pol(X) S is still absolutely integrable 
in position space. We then see that Pol( a~ )FS is continuous and bounded 
in momentum space. By locality and the condition of positive energy, the 
Fourier transform F of an arbitrary (truncated) algebraic n-point function is 
known to be of the form 

n-l 

F(PI,'" ,Pn-d = G(PI, ... ,Pn-d II 8(pd, (5.90) 
i=l 

where G denotes a sum of restrictions of appropriate analytic functions to 
subsets of momentum space (cf. the case of three-point functions in the sec
tion above). One can now proceed in analogy to the argumentation in the 
case of three-point functions: In a situation with conformal covariance and 
minimal conformal dimensions ni, i = 1, 2, ... , n, the function G can be 
expressed as the product of an appropriate homogeneous polynomial P of 
degree 

(5.91 ) 

and an appropriate function H , where H denotes another sum of restrictions 
of analytic functions to subsets of momentum space. Hence, we have proved 
that the Fourier transform of the algebraic n-point function 

(fl, (!t U( -x;) A; U(X;)) fl) (5.92) 

can be written as 
n-l 

F(p!, ... ,Pn-d = P(Pb ... ,Pn-d H(Pl, ... ,Pn-d IT 8(pd (5.93) 
i=l 

with an appropriate homogeneous function P of degree 

deg(P) = (~n;) -n+ 1 (5.94) 
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and an appropriate continuous and bounded function H . 
U sing this result, we can now show in full analogy to the procedure in 

the last section that by canonically scaling an algebraic n-point function 
we construct a sequence of distributions that converges to an appropriate 
pointlike localized n-point function of conventional conformal field theory: 

(5.95) 

Again, fe, ... ,·) denotes an appropriate function depending on n - 3 alge
braicly independent conformal cross ratios 

VB (XV xs) (Xt - Xu) ( )
:= . 5.96Ttu (xv - Xt) (xs - xu) 

The exponents Cij must fulfill the consistency conditions 

2: 
n 

Cij 2ni, Cij = Cji, 1 SiS n, (5.97) 
j=l 
j"¢i 

which do not fully determine the exponents. Hence, the general form of the 
pointlike localized conformal correlation functions constructed from algebraic 
quanturn field theory has been determined to be exactly the general form of 
the n-point functions known from conventional conformal field theory. In 
both approaches conformal covariance does not fully determine the form of 
n-point functions for n > 4. 

5.4 Wightman Axioms and Reconstruction Theorem 

The most common axiomatic system for pointlike localized quantum fields is 
the formulation of Wightman axioms given in [St W] and [Jos]. (If braid group 
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statistics has to be considered and the Bose-Fermi alternative does not hold 
in general, the classical formulation of [StW] and [Jos] has to be modified for 
the charged case by introducing the axiom of weak locality instead of locality 
[FRSl, FRS2].) 

The construction of point like localized correlation functions in the last 
sections uses sequences of algebraic correlation functions of local observ
abIes. The algebraic correlation functions obviously fulfill positive definite
ness, conformal covariance, locality, and the spectrum condition. Hence, if 
the sequences converge, the set of pointlike limits of algebraic correlation 
functions fulfills the Wightman axioms (see [St W]) by construction. By the 
reconstruction theorem in [StW] and [Jos], the existence of Wightman fields 
associated with the Wightman functions is guaranteed and this Wightman 
field theory is unique up to unitary equivalence. 

We do not know at the moment whether the Wightman fields can be 
identified with the pointlike localized field operators constructed in chapter 3 
(cf. [FrJD from the Haag-Kastler theory. We do not know either whether the 
Wightman fields are affiliated to the associated von Neumann algebras of 
local observables and how the Haag-Kastler net we have been starting fronl 
can be reconstructed from the Wightman fields. Possibly, the Wightman 
fields cannot even be realized in the same Hilbert space as the Haag-Kastler 
net of local observables. 

We do know, however, that the Wightman theory associated with the 
Haag-Kastler theory is non-trivial: The two-point functions of this Wight
man fields are, by construction, identical with the two-point functions of the 
pointlike localized field operators constructed in chapter 3 (cf. [FrJD. And 
we have already proved that those pointlike field vectors can be chosen to 
be non-vanishing and that the vacuum vector is cyclic for a set of all field 
operators localized in an arbitrary interval. 

It shall be pointed out again that those pointlike fields constructed in the 
chapters above could not be proved to fulfill the Wightman axioms, since we 
were not able to find a domain of definition that is stable under the action 
of the field operators. 

To summarize this chapter, we state that starting from a chiral conformal 
Haag-Kastler theory we have found a canonical construction of non-trivial 
Wightman fields. The reconstruction of the original net of von Neumann 
algebras of local observables from the Wightman fields could not explicitly 
be presented, since we do not know whether the Wightman fields can be 
realized in the same Hilbert space as the Haag-Kastler net. 
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Actually, Borchers and Y ngvason [BoY] have investigated similar situa
tions and have shown that such problems can occur in quantum field theory. 
In [BoY] the question is discussed under which conditions a Haag-Kastler net 
can be associated with a Wightman theory. The condition for the locality of 
the associated algebra net turned out be a property of the Wightman fields 
called "central positivity". Central positivity is fulfilled for Haag-Kastler 
nets and is stable under pointlike limits [BoY]. Hence, the Wightman fields 
constructed in this thesis fulfill central positivity. The possibility, however, 
that the local net has to be defined in an enlarged Hilbert space could not 
be ruled out in general by [BoY]. 

Furthermore, it has been proved in [BoY] that Wightman fields fulfilling 
generalized H-bounds (cf. [DSW]) have associated local nets of von Neu
mann algebras that can be defined in the same Hilbert space. The closures 
of the Wightman field operators are then affiliated to the associated local 
algebras. We could not prove generalized H-bounds for the Wightman fields 
constructed in this thesis. Actually, we suppose that the criterion of general
ized H-bounds is too strict for general conformal - and therefore massless 
quantum field theories. (Generalized) H-bounds have been proved, however, 
for massive theories, i.e. for models in quantum field theory with massive 
particles (cf. also [DrF, FrH, Sum, Buc1]). 



82 Results 

6 Results 

This chapter summarizes in a compact form and as generally as possible the 
results derived in this thesis: 

In the first section, we review the results of chapter 3 of this thesis. This 
chapter deals with the vacuun1 sector of the theory, i.e. with algebras of local 
observables and with the construction of pointlike localizable neutral fields 
without charge. 

The content of chapter 4 is the generalization of the procedure and the 
calculations above from the vacuum sector to the full theory with all supers
election sectors carrying arbitrary charge and finite statistics. The results of 
chapter 4 on the construction of pointlike localizable charged fields from the 
net of algebras in the reduced field bundle formalism, on the spin-statistics 
theorem, and on the PCT theorem can be found in the second section. 

Finally, the results of chapter 5 on the canonical construction of Wight
man n-point functions starting from the algebraic framework are reviewed in 
the third section of this chapter. 

6.1 On the Construction of Pointlike Neutral Fields 

Let (A(J) hElCo be a conformally covariant local net on R fulfilling the Haag
Kastler axioms in the formulation given in the section "Assumptions" at the 
beginning of this thesis. We consider the extension of this net to the set ;::; 
of non-empty non-dense intervals on 8 1 = R U {(X)} (cf. equation (2.5)). 

In [FroG] and [BGL] it has been shown that for such nets Haag duality 
and the Bisognano-Wichmann property can be proved. Therefore, we have 
for every J E ;::; the duality relation 

A(J')' = A(J). (6.1) 

(1' here denotes the complement of J with respect to ;::; ) and, furthermore, 
the identification of the modular operators of the theory as well-known geo
metrical objects (cf. [BiW]). Hence, there is always an antiunitary involution 
8 (the PCT operator) which acts on A by 

8A(J)8 = A(-J) (6.2) 

and on U(5L(2, R)) by 
8 U(g) 8 = U(g{)). (6.3) 
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Here gd for 9 (::) means (~c ~b) 
As a further consequence of the results of [FroG, BGL], we have shown 

that the net is automatically additive, i.e. if 1 = UO'/O' with 1,10' E K then 

A(/) = VA(/O') , (6.4) 

where Vdenotes the generated von,Neumann algebra. 
We have been able to prove a conformal cluster theorem for chiral con

formal Haag-Kastler nets that specifies the decrease properties of conformal 
two-point functions in the algebraic framework to be exactly those known 
from conformal field theories with pointlike localization (cf. [FrJ]): 
Let a, b, c, d E R and a < b < c < d. Let A E A( (a, b) ), B E A( (c, d) ) , 
n EN, and Pk An Pk A'" n = 0, k < n. Pk here denotes the projection 
on the subrepresentation of S L(2, R) with conformal dimension k. We then 
have 

I( n, BAn)1 s: ((b a) (d - C)) n IIAIIIIBII. (6.5)
(c-a)(d-b) 

We now proceed to the main result in this section, the proof of the exis
tence of pointlike localized conformal fields (cf. [Fr J]): 

Due to the condition of positive energy, the representation U(·) is com
pletely reducible into elements of the "discrete series" of S L(2, R) (cf. [Lang]), 
and the irreducible components Tare (up to unitary equivalence) uniquely 
characterized by the conformal dimension n". E No (n". is the lower bound of 
the spectrum of the conformal Hamiltonian H in the representation T ). 

Associated with each irreducible subrepresentation T of U(·), we find 
for each 1 E K a densely defined operator-valued distribution <p~ on the 
space V(J) of Schwartz functions with support in 1 such that the following 
statements hold for all f E V( J) : 

i) The domain of definition of <p~(f) is given by A(J)' n. 

ii) 
<p~(f) n E H".. (6.6) 

iii) 
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with 9 = (: :) E SL(2,R), 1,91 E K.. 

iv) 
(6.8) 

with f(·) = e7(·)e and.! the complex conjugate of f; in particular, 
'P~(f) is closable. 

v) The closure of 'P~(f) is affiliated to A( I) . 

vi) 	A(I) is the smallest von Neumann algebra to which all operators 'P~(f) 
are affiliated. 

We have not been able to find a domain of definition for the fields that is 
conform ally invariant and stable under the action of field operators. There
fore, we can neither define products of neutral field operators nor prove that 
the Wightman axioms are fulfilled by the pointlike localized neutral fields. 

Being interested in operator product expansions for conformal field the
ories, we have been able to derive the following result: 
For each interval I E K, and each observable A E A( I) there is a local 
expansIon 

(6.9) 

into a sum over all irreducible modules 7 of U(SL(2,R)) with explicitly 
calculable testfunction fr,A fulfilling the support property 

supp fr,A C I . 	 (6.10) 

This expansion can be shown to converge *-strongly on A( I)' n (cf. the def
inition in [Br RD. 

6.2 On the Construction of Pointlike Charged Fields 

Having presented so far the results of the calculations in the vacuum sector 
of the theory, we now look at what has been proved for the full theory 
with arbitrary charge and finite statistics (cf. [Jor3]). In order to be able to 
describe charge-carrying objects (i.e. "charged fields") intertwining between 
the superselection sectors with finite statistics of the theory, we consider the 
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reduced field bundle Fred = (Fred(J)hEK,o (cf. [FRS1, FRS2]) associated to 
the net of observables' A = (A(J)hEK,o . 

In chapter 3 of this thesis, we have presented the proof of the conformal 
cluster theorem in the vacuum sector (cf. [FrJ]). In chapter 4, we have proved 
the generalization of this cluster theorem to superselection sectors carrying 
arbitrary charge and finite statistics (cf. [Jor3]). By this theorem, the de
crease properties of charged conformal two-point functions in the algebraic 
framework have been specified to be exactly those known from conventional 
conformal field theory with pointlike localization: 
Let a, b, c, d E R and a < b < c < d. Let F E Fred ( (a, b)), G E 
Fred( (c,d)), m E R+, and Pk FO = Pk Po = 00< m. Pk here denotes 
the projection on the subrepresentation of U(SL(2, R)) with conformal di
mension k. F is given by the antilinear charge conjugation operation in the 
reduced field bundle. We then have 

1(f!,GFf!)I::S ((b-a)(d-C))m IIFIIIIGIi. (6.11 ) 
(c-a)(d-b) 

Generalizing the construction of pointlike localized neutral fields in the 
vacuum sector, we have been able to prove the existence of pointlike localized 
charged fields associated with the chiral conformal Haag-Kastler net A and 
the reduced field bundle Fred. The charged field operators intertwine between 
the superselection sectors of the theory with finite statistics. 

Due to the condition of positive energy, again, the representation of the 
universal covering of the conformal group U(SL(2, R)) is completely re
ducible into irreducible subrepresentations. The irreducible components T 

are (up to unitary equivalence) uniquely characterized by the conformal di
mension mr E R+ (mr is the lower bound of the spectrum of the conformal 
Hamiltonian H in the representation T ). 

Associated with each irreducible subrepresentation T of U( S L(2, R)) and 
each superselection sector [0] with finite statistics, we find for each J E Ko 
a densely defined operator-valued distribution <.p~,o: on the space V( J) of 
Schwartz functions with support in J such that the following statements 
hold for all f E V(J) : 

i) 	The domain of definition of <.p~,o:(f) is given by Po: Fred(l')± f!. Po: here 
denotes the projector on Ho: , i.e. on the copy of the vacuum Hilbert 
space H in H red associated with the superselection sector [0] . Fred(J')± 
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has been defined to be the span of elements of Fred(J') localized in just 
one of generally two complements of / with respect to Ko . 

ii) 

(6.12) 

with PT denoting the projector on the module of T. 

iii) 

(6.13) 

with the covering projection 9 f-+ 9 and 9 = (: ;) E SL(2, R) for 

/,g/ E Ko. 

iv) 	<.p;,c/f) is closable. 

v) 	The closure of any <.p;,a(f) is affiliated to Fred(/). 

vi) 	Fred(/) is the smallest von Neumann algebra to which all operators 
<.p;,a(f) are affiliated. 

As in the vacuum sector, we have not found a domain of definition for 
the fields that is stable under the action of the field operators. Hence, we 
cannot define products of charged field operators and do not know how to 
prove that the pointlike localized charged fields fulfill the Wightman axioms. 

With the existence of pointlike localized fields we are able to give a proof 
of a generalized Bisognano-Wichmann property. This theorem identifies ob
jects in the representation of the conformal group with well-known geomet
rical meaning as generalized modular operators associated with the charge 
conjugation operation in the reduced field bundle (cf. [Ara]). 

As a consequence, we obtain a PCT operator on Hred proving the PCT 
theorem for the full theory. 

Moreover, the existence of point like localized fields gives a proof of the 
hitherto unproven spin-statistics theorem for conformal Haag-Kastler nets of 
local observables in 1 +1 dimensions. 
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6.3 On the Construction of Wightman Functions 

We do not know at the moment whether the pointlike localized neutral and 
charged fields constructed in chapter 3 and 4 of this thesis satisfy all Wight
man axioms, since we have not yet found an invariant domain of definition. 
We have been able to prove, though, that to each chiral conformal Haag
Kastler net of local observables a Wightman field theory can be canonically 
associated. We now present the construction of a complete set of pointlike 
localized correlation functions from the net of algebras of local observables 
we have been starting with. 

Consider algebraic n-point functions 

(6.14)(n, Crt Ai) n) 

of local observables Ai with minimal conformal dimensions ni, i = 1,2, ... ,n, 

in a chiral theory with conformal covariance. We have been able to present 

the following generalization of the conformal cluster theorem (cf. [FrJ]) to 

algebraic n-point functions: 

Let (A(J))JeKo be a conform ally covariant local net on R. Let ai, bi E 

R, i = 1,2,3, ... , n, and ai < bi < ai+l < bi+1 for i = 1,2,3, ... , n -1. 

Let Ai E A( (ai, bi )), ni EN, and Pk Ai n = Pk Ai n = 0, k < ni and 

i = 1,2,3, ... , n. Pk here denotes the projection on the subrepresentation 

of U (G) with conformal dimension k. We then have for each set of ex

ponents Cij fulfilling the consistency conditions 2::1=1 Cij = 2ni, Cij = Cji, 


J~' 

i = 1,2,3, ... ,n, the following bound: 

(6.15) 

If we additionally assume at - b1 = ... = an - bn , we can introduce conformal 
cross ratios and get 
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< (6.16) 

Using this result, we can control the pointlike limit of canonically scaled 
correlation functions 

( 6.17) 

where U (. ) denotes the representation of the translation group. This sequence 
of algebraic correlation functions converges to a point like localized n-point 
function known from conventional conformal field theory. The limit has been 
shown to be of the form 

(6.18) 

Here, f(', ... , .) denotes an appropriate function depending on n-3 algebraicly 
independent conformal cross ratios 

(6.19) 

The exponents Cij must fulfill the consistency conditions 

L 
n 

Cij = 2ni, Cij = Cji, 1 ~ i S n . (6.20) 
j=l 
j::Ji 

These conditions do not fully determine the exponents Cij. 

The algebraic correlation functions can easily be shown to fulfill posi
tive definiteness, conformal covariance, locality, and the spectrum condition. 
Hence, the pointlike limit of such algebraic correlation functions fulfills the 
Wightman axioms (see [St W]) by construction. By the reconstruction theo
rem in [St W] and [Jos], the existence of Wightman fields associated with a 
complete set of Wightman functions is then guaranteed. The realization of 
this Wightman field theory is unique up to unitary equivalence. 

We have not been able to prove that the Wightman fields can be identified 
with the pointlike localizable field operators constructed in chapter 3 of this 
thesis from the Haag-Kastler theory. We do not know either whether the 
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Wightman fields are affiliated to the associated von Neumann algebras and 
how the Haag-Kastler net of local observables we have been starting from 
can be reconstructed from the Wightman fields. It has been shown that the 
Wightman theory canonically associated with the Haag-Kastler theory has 
the same two-point functions as the pointlike localized fields constructed in 
chapter 3 and is therefore non-trivial. 
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Conclusion and Outlook 

Conclusion and Outlook 

The aim of this thesis has been to investigate the relation between the for
mulation of quantum field theory in terms of Haag-Kastler nets of local ob
servables on the one hand and the formulation by Wightman in terms of 
pointlike localized fields on the other hand. 

We restricted our investigation to chiral conform ally covariant theories. 
Indeed, we heavily used the strong consequences of the assumption of this 
high symmetry and simple geometry in our constructions and lines of argu
ment. 

Hence, the results of this thesis, presented in detail in the last chapter, 
only apply to a small class of quantum field theories. This class might be basic 
and mathematically interesting, it might even be generic for more general 
classes of quantum field theories it is, however, still idealized and far from 
describing complex physical situations. 

In order to enlarge the domain of validity of the results proved in this 
thesis, the following two strategies could be chosen: 

Firstly, one might reduce the assumption on the symmetry of the the
ory. If we consider dilation invariant theories, scaling is well-defined and the 
definition of pointlike localized fields in this thesis (cf. equation (3.22)) could 
be expected to hold since the formula does not contain special conformal 
transformations. However, our control of the existence of the pointlike limit 
in the physical Hilbert space depends on our explicit knowledge of the rep
resentation theory of the conformal group. Even more, the construction of 
Wightman functions in this thesis relies on conformal covariance as it makes 
use of the conformal cluster theorem. Nevertheless, we suppose that dila
tion covariant Haag-Kastler nets can be shown to have associated pointlike 
localized fields. 

Secondly, more complex geometrical situations could be investigated. One 
might, e.g., consider Minkowski space-time in higher dimensions. The repre
sentation theory of the conformal group on Minkowski space-time in higher 
dimensions is well-known (cf. [Mac2]) and has structural similarities to the 
representation theory of the Mobius group, that has been used in this thesis. 
This group-theoretical parallelism between two and more space-time dimen
sions does not hold, however, in the context of conventional conformal field 
theory (cf., e.g., [Mac3]). The existence of "conformal families" with "pri
mary fields" transforming covariantly with respect to the Virasoro algebra 
is, e.g., a particular property of the situation in two-dimensional space-time 
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(cf. [FST]). The infinite-dimensional symmetry group of primary fields is a 
relict of the infinite-dimensional group of conformal transformations in clas
sical physics on two-dimensional Minkowski space-time and has no obvious 
correspondence on Minkowski space-time in higher dimensions. Since in this 
thesis neither the existence of "primary fields" in two-dimensional conformal 
field theory nor covariance with respect to the infinite-dimensional Virasoro 
algebra have been used, we expect that our results can be transferred from 
1+ 1 space-time dimensions to theories on Minkowski space-time in higher 
dimensions. 

We like to conclude by pointing out some open questions concerning the 
relation between conventional conformal field theory on the one hand and the 
approaches of Haag-Kastler and Wightman to a general theory of quantized 
fields on the other hand. It would be important and interesting to formulate 
the axioms of conventional conformal field theory in terms of more natural 
"first principles" (cf. [Sch, Fuc, Was]). Actually, we were not very successful 
in deriving specific features assumed to be true in conventional conformal 
field theory from the more abstract approaches. The local expansion of ob
servables in terms of pointlike localized fields that has been proved in this 
thesis is still quite different from the formulation of operator product expan
sions known from conventional conformal field theory (cf. [FST]). We assume 
that it would be valuable and fruitful to be able to combine the knowledge 
and experience from conventional conformal field theory with the structural 
insight of algebraic quantum field theory. 



92 Conclusion and Outlook 

Acknowledgments 

Above all I would like to thank Prof. Dr. K. Fredenhagen for his confidence, 
constant encouragement, and the numerous inspiring discussions over the 
whole period of the work. I am indebted to him for many important insights 
I received by his guidance. His cooperation was crucial and fruitful for this 
dissertation. 

This thesis also profited a lot from helpful and stimulating conversations 
with many colleagues and friends at the institute, at DESY, and outside. 
Thanks are due, as well, to a number of people for their assistance in all 
sorts of mathematical and computer problems. 

The generous financial support given by the Deutsche Forschungsgemein
schaft and by the Friedrich-Ebert-Stiftung is gratefully acknowledged. 



93 

APPENDIX 

A The Bound for suppl<I>~n)(p)1 
We present an argument (see [FrJD using complex analysis and some alge
braic transformations to derive a bound on 

(A.I) 


needed in the construction of pointlike localized fields (cf. equation (3.29): 
The eigenfunction of the conformal Hamiltonian for the eigenvalue k 2: n 

is well-known and can be written in position space as 

(A.2) 


Its Fourier transform may be computed by the theorem of residues from 
complex analysis and turns out to be 

iln)(p) - fR dxe ipx fln)(x) 

- Nln
) L~~k:l (2p) e-P , p > o. (A.3) 

Hereby, we have used the normalized associated Laguerre polynomials L~~k:l 
and constants 

N(n) = 2n- 1 ((k + n - I)!) 1/2 (_I)k+n+l (A.4)
k (k n)! . 

For a bound on its modulus we choose as integration path a circle with center 
iR and radius R 2: 1. We obtain 

and find 

I f~k(n) I <_ 

< 

2 R [ 
1 +2R(R + 1)(1 + sin<p)] k/2

1i sup 
rp 1 +2R( R  1) (1 + sin<p) 

n-l 

sUPrp [(1 + 2R(R  1) (1 + sin<p)) (1 +2R(R + 1) (1 + sin<p))]-2 

( 
R+I)k/2

21iR (1 +4R2)n-l R -1 . (A.6) 



The Bound for sUP Iq>~n) (p) I94 p 

We insert R == k + 1 , and find 

< 27T (k + 1) (5 + 8k + 4k2)n-l (1 + ~ )k/2
k 


< :::'e (5 + 4k)2n-l (A.7)
2 . . 

As a bound on the normalized ,eigenfunctions we obtain 

-
N(n) 

k 

C k 2n + D 
< 

(A.8) 

with appropriate constants C and D . 
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