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_____________________________________________________________________________________ 

Abstract Proxy-SU(3) symmetry is an approximation scheme extending the Elliott SU(3) algebra of 

the sd shell to heavier shells, in order to make possible the application of the symmetry properties in cutting 

down the size of the required calculations. When introduced in 2017, the approximation had been justified 

by calculations carried out within the Nilsson model, an elementary shell model based on a 3-dimensional 

harmonic oscillator with cylindrical symmetry, applicable to deformed nuclei. Recently our group managed 

to map the cartesian basis of the Elliott SU(3) model onto the spherical shell model basis, fully clarifying 

the approximations used within the proxy-SU(3) scheme and paving the way for using the proxy-SU(3) 

approximation in shell model calculations for heavy nuclei. As a by-product, the relation of the 0[110] 

Nilsson pairs used in proxy-SU(3) to the earlier used de Shalit-Goldhaber pairs and  Federman-Pittel pairs 

has been clarified. The connection between the proxy-SU(3) scheme and the spherical shell model has also 

been worked out in the original framework of the Nilsson model, with identical results. 

  

Keywords Elliott SU(3), proxy-SU(3), shell model, de Shalit-Goldhaber pairs, Federman-Pittel pairs 

_____________________________________________________________________________________ 

BASES OF MAIN NUCLEAR STRUCTURE MODELS  

The fundamental underlying model of nuclear structure is the shell model, introduced [1-4] in 1949, 

which is based on a three-dimensional (3D) isotropic harmonic oscillator (HO), with a spin-orbit term 

added to it. The states are labeled by the number of oscillator quanta n, the orbital angular momentum l, 

the total angular momentum j, and its z-projection mj, with the notation | n l j mj> being used. The shell 

model was considered adequate for describing near-spherical nuclei, with few valence nucleons outside 

closed shells. 

In 1952 the collective model of Bohr and Mottelson has been introduced [5,6], in order to 

accommodate departure from the spherical shape and from axial symmetry, described by the collective 

variables β and γ respectively. 

In 1955, Nilsson [7,8] introduced a modified version of the shell model, allowing for axial nuclear 

deformation to be included, based on a 3D anisotropic HO with cylindrical symmetry [9-14]. In the 

Nilsson model the states are labeled by the total number of oscillator quanta N, the number nz of quanta 

along the z-axis, and the projections along the z-axis of the orbital angular momentum and the total 
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angular momentum, represented by Λ and Κ respectively. Thus the Nilsson states are denoted by [7,8]  K 

[N nz Λ]. 

In 1958 Elliott proved that deformation within the nuclear sd shell can be described in terms of the  

SU(3) algebra [15-19]. In contemporary language, the sd shell possesses the U(6) symmetry, while 

deformation within it can be described in terms of the SU(3) subalgebra of U(6). In the Elliott model the 

cartesian basis of a 3D isotropic HO is used, [nz nx ny ms], in which the number of quanta along the z, x, y 

directions and the z-projection of the spin appear. 

In 1972 the group theoretical structure of the Bohr--Mottelson model, having an overall U(5) 

symmetry possessing an O(5) subalgebra, has been understood [20]. The seniority quantum number τ, 

related to the irreducible representations (irreps) of O(5), plays a major role in labeling the states. 

In 1975 the Interacting Boson Model [21-24] has been introduced, which also has an overall U(6) 

symmetry built by s-bosons of zero angular momentum and d-bosons of angular momentum two, 

possessing three limiting symmetries, U(5) for vibrational nuclei, which is equivalent to the Bohr-

Mottelson collective model, O(6) for γ-unstable nuclei, and SU(3) for deformed nuclei. 

A comprehensive review of using the SU(3) symmetry in nuclear structure has been given recently 

by Kota [25]. 

Beyond the sd nuclear shell the SU(3) symmetry of the 3D isotropic HO is known to be broken by 

the spin-orbit force, which within each HO shell pushes the orbitals possessing the highest angular 

momentum j to the shell below. As a consequence, each shell consists by the orbitals left back after this 

removal, called the normal parity orbitals, plus the orbitals invading from the shell above, having the 

opposite parity and called the intruder orbitals. 

In 2017 the proxy-SU(3) symmetry has been introduced [26-28], in which the intruder orbitals in 

each shell (except the one with the highest projection of the total angular momentum) are replaced by the 

orbitals which have deserted this shell by sinking into the shell below. As a result of this replacement, 

each shell regains the relevant U(n) symmetry having a SU(3) subalgebra, with only one orbital (which 

can accommodate two particles) remaining estranged. However, this orbital is the one lying highest in 

energy within the shell, thus it should be empty for most of the nuclei living in this shell. Therefore, it is 

expected that its influence on the structure of most nuclei living in the shell should be minimal. 

The proxy-SU(3) scheme has been initially justified as a good approximation through calculations 

[26] carried out within the Nilsson model [7,8]. Within the proxy-SU(3) scheme the importance of the 

highest weight irreducible representations of SU(3) has been demonstrated [29] and used [27,28] for the 

successful prediction of the prolate to oblate shape transition at N=114, the dominance of prolate over 

oblate shapes in the ground states of even-even nuclei, and the prediction of specific islands on the 

nuclear chart in which shape coexistence can appear [30]. In the present work we are going to discuss its 

justification through its connection to the shell model. However, before doing so, it is instructive to 

discuss the nature of nucleon pairs related to the development of nuclear deformation.      

  

NUCLEON PAIRS FAVORING DEFORMATION  

 

As early as 1953 it has been observed by deShalit and Goldhaber [31] in their studies of β transition 

probabilities that within the proton--neutron pairs of orbitals (1p3/2, 1d5/2), (1d5/2, 1f7/2), (1f7/2,   

1g9/2), (1g9/2, 1h11/2), (1h11/2, 1i13/2) the nucleons of one kind (protons, for example) have a 

stabilizing effect on pairs of nucleons of the other kind (neutrons in the example), thus favoring the 
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development of nuclear deformation. In the standard shell model notation | n l j mj>, the orbitals forming 

a pair differ by | Δn Δl Δj Δmj> = | 0 1 1 0>. 

A major step forward in our understanding of effective interactions and coupling schemes in nuclei 

has been taken in 1962 by Talmi [32] through the introduction of seniority [32-35], representing the 

number of nucleon pairs coupled to non-zero angular momentum, which explained the linear dependence 

of neutron separation energies on the mass number within series of isotopes. 

In 1977 Federman and Pittel [36-38] realized that when adding valence protons and valence neutrons 

to a nucleus, the proton--neutron pairs (1d5/2, 1d3/2), (1g9/2, 1g7/2), (1h11/2, 1h9/2), and (1i13/2, 

1i11/2) are responsible for the onset of deformation, while deformation is then established by the proton--

neutron pairs (1d5/2, 1f7/2), (1g9/2, 1h11/2), (1h11/2, 1i13/2), and (1i13/2, 1j15/2). These sets 

correspond to | Δn Δl Δj Δmj> = | 0 0 1 0> and | 0 1 1 0> respectively in the shell model notation, the latter 

set coinciding with the de Shalit--Goldhaber pairs. 

The decisive role played by proton-neutron pairs has been demonstrated in 1985 through the 

introduction of the NpNn scheme [39,40] and the P-factor, P= Np Nn / (Np+Nn) [41,42], by showing the 

systematic dependence of several observables on the competition between the quadrupole deformation, 

``measured'' by the quadrupole-quadrupople interaction through NpNn, and the pairing interaction, 

``measured'' through Np+Nn, where Np (Nn) is the number of valence protons (neutrons). 

In 1995 the quasi-SU(3) symmetry [43,44] has been introduced, based on the proton--neutron pairs 

(1g9/2, 2d5/2), (1h11/2, 2f7/2), (1i13/2, 2g9/2), expressed as | Δn Δl Δj Δmj>=| 1 2 2 0> 

in the shell model notation, which lead to enhanced quadrupole collectivity [45]. 

Following detailed studies of double differences of binding energies [46-50], in 2010 it has been 

realized [51] that proton-neutron pairs differing in the Nilsson notation [7,8] K [N nz Λ] by  

ΔK [ΔN Δnz ΔΛ]=0[110], play a major role in the development of nuclear deformation, due to their large 

spatial overlaps [52]. These pairs correspond to the replacements made within the proxy-SU(3) scheme 

[26-28]. No relation to the pairs mentioned in the previous paragraphs had been realized at that time.  

 

CONNECTING THE CARTESIAN ELLIOTT BASIS TO THE SPHERICAL SHELL 

MODEL BASIS  

 

The cartesian basis of Elliott [15-19]  can be transformed to the spherical basis [n l  ml ms] in l-s coupling 

through a unitary transformation [53-55]  

[nz nx ny ms] = R [n l  ml ms], 

the details of which can be found in Ref. [56]. Using Clebsch-Gordan coefficients the spherical basis can 

be rewritten in j-j coupling as  

[n l  ml ms] = C [ n l j mj], 

in which the total angular momentum j and its z-projection appear. Combining these two transformations 

one obtains  

[nz nx ny ms] = R C [ n l j mj], 

i.e., the connection between the cartesian Elliott basis and the shell model basis in j-j coupling. Details of 

the calculations and tables for all relevant shells can be found in Ref. [56].  

Using the above transformation one sees that the Nilsson 0[110] replacements made within the 

proxy-SU(3) scheme are ``translated'' into | 0 1 1 0> replacements within the spherical shell model basis. 

The resulting correspondence between original shell model orbitals and proxy-SU(3) orbitals is 

summarized in Table 7 of Ref. [56]. This correspondence proves that the 0[110] Nilsson pairs identified 
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in Ref. [51] and used within the proxy-SU(3) scheme [26-28] are identical to the de Shalit--Goldhaber 

pairs [31] and the Federman--Pittel pairs [36-38] within the spherical shell model basis, in which they are 

expressed as | 0 1 1 0> pairs. 

The correspondence between Nilsson pairs and shell model pairs has been corroborated by 

calculations [57] within the Nilsson model, in which the first justification of the proxy-SU(3) scheme has 

been found [26]. As one can see in Tables 1 and 3 of Ref. [58], the correspondence used in proxy-SU(3) 

works only for the Nilsson orbitals which possess the highest total angular momentum j within their shell, 

which are exactly the orbitals which are replaced within the proxy-SU(3) scheme. In further corroboration 

of this result, a unitary transformation connecting the orbitals being replaced within the proxy-SU(3) 

scheme has been found [56] within the shell model basis. 

This correspondence also paves the way for taking advantage of the proxy-SU(3) symmetry in shell 

model calculations for heavy nuclei, in a way similar to that of the symmetry-adapted no-core shell model 

approach [58,59] used in light nuclei. 
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