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Calibrating quantum gates up to 52 qubits
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Benchmarking large-scale quantum gates, typically involving multiple native two-qubit and single-
qubit gates, is crucial in quantum computing. Global fidelity, encompassing information about inter-
gate correlations, offers a comprehensive metric for evaluating and optimizing gate performance,
unlike the fidelities of individual local native gates. In this work, utilizing the character-average
benchmarking protocol implementable in a shallow circuit, we successfully benchmark gate fidelities
up to 52 qubits. Notably, we achieved a fidelity of 63.09% + 0.23% for a 44-qubit parallel CZ gate.
Utilizing the global fidelity of the parallel CZ gate, we explore the correlations among local CZ gates by
introducing an inter-gate correlation metric, enabling one to simultaneously quantify crosstalk error
when benchmarking gate fidelity. Finally, we apply our methods in gate optimization. By leveraging
global fidelity for optimization, we enhance the fidelity of a 6-qubit parallel CZ gate from 87.65% to
92.04% and decrease the gate correlation from 3.53% to 3.22%), compared to local gate fidelity-
based optimization. The experimental results align well with our established composite noise model,
incorporating depolarizing and ZZ-coupling noises, and provide valuable insight into further study and
mitigation of correlated noise.

Realistic quantum computers suffer from noise, hindering themselves from  made great efforts to develop practical benchmarking methods"™"” and

demonstrating an advantage over their classical counterpart'~. Quantum
error correction is the key to reducing noise®"’, yet its implementation
hinges on the availability of high-fidelity quantum gates and weak corre-
lations among different gate operations' ™. Thus, diagnosing the noise level
and assessing the interaction within the quantum circuits is essential to
improving their performance and, hence, realizing fault-tolerant quantum
computing. Within a step of quantum circuits, single-qubit and two-qubit
gates are parallelly implemented to reduce the circuit depth. Due to the
potential crosstalk and residual coupling between the qubits', the local gate
fidelities may be insufficient to give an overall evaluation of the global gate.
In contrast, global gate fidelity contains information about correlations
among different local gates, providing an overall performance metric.

As quantum hardware advances and platforms grow, large-scale
quantum gate calibration becomes increasingly crucial. Researchers have

enlarge the gate calibration size. Currently, the most frequently used method
to evaluate the quantum gate fidelity is randomized benchmarking (RB)"**,
which enjoys the advantage of low complexity and robustness to state
preparation and measurement errors. Nonetheless, the original RB
protocol” is only realized up to three qubits” owing to the compiling
problem of global Clifford gates. Several RB variants™** were proposed
circumventing compiling issues and significantly advanced the bench-
marking size to 10 qubits for an individual gate via cycle benchmarking™
and 27 qubits for a gate set via mirror RB*.

Nonetheless, a gap exists between these achievements and the scale of
state-of-the-art quantum computers. Currently, quantum computers have
been realized with tens of or even hundreds of qubits in
superconducting”’ ", ion trap’””, and neutral atom systems”. Calibrating
larger gates is demanding for assessing and enhancing the performance of
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current quantum computers. Meanwhile, a noticeable challenge to achiev-
ing this goal is the low fidelity often associated with large-scale gates. Many
RB protocols require repeated execution of the target gate. However, noise
can prevent the gate from being repeated without significant signal loss,
which can render the protocol ineffective. Resolving this issue requires
enhancing benchmarking protocols to ensure their effectiveness in short-
depth circuits and achieving the realization of higher-performance quan-
tum gates.

In this work, to achieve large-scale gate calibration, we utilize the
character-average benchmarking (CAB)* protocol. This method can eval-
uate the fidelity robust to state preparation and measurement errors for an
individual Clifford gate up to a local unitary transformation and be scalable
with respect to the system size. Compared to cycle benchmarking™ that also
aims to evaluate the individual gate fidelity, CAB requires shorter circuit
depth and can tolerate higher gate errors and benchmarking larger gates.
Additionally, CAB exhibits smaller statistical fluctuations than cycle
benchmarking, with more details shown in the Supplemental Material (See
Supplementary Material for more detailed experimental data of the com-
parison between character-average benchmarking and cycle benchmarking,
the fluctuation analysis of the experimental results, and additional bench-
marking and optimization results, which includes references™). Mean-
while, in experiments, we improve gate fidelity and reduce a significant
portion of gate control errors via qubit frequency adjustment and pre-
calibration of gate parameters, as elaborated in Methods. The high fidelity
and nearly depolarizing noise of the quantum gates are crucial to our success
in realizing large-scale CAB experiments.

Here, we consider two important types of gates for experimental
benchmarking. One is a fully connected gate composed of two layers of CZ
gates and two layers of local Clifford gates. This gate is a part of the brickwise
architecture circuit with an efficient realization scheme on current devices
and hence is favored in variational quantum algorithms™. It also plays an
essential role in other quantum information processing tasks like simulating
a nearest-neighbor interacting Hamiltonian evolution. We benchmark such
gates up to 46 qubits and get a fidelity of 17.42% + 0.45% dressed with local
twirling gates.

We also benchmark the parallel CZ gate, composed of parallelly
implemented local CZ gates, which excels in generating entanglement
across multiple parties and is essential in preparing graph states and
executing numerous quantum algorithms™’. We benchmark such gates
from 4 to 44 qubits. The average fidelity of a single local CZ gate is about 98%
and does not decrease with the qubit number increase.

With the global fidelity of the parallel CZ gate, we characterize the
correlation among the local CZ gates. This procedure can be done simul-
taneously when benchmarking global fidelity without extra experiments.
The correlation data provides the interaction information within the circuit
and helps to evaluate and optimize the gate performance. The correlation of
the 44-qubit parallel CZ gate turns out to be weak and constantly positive. In
contrast, the results of the 52-qubit parallel CZ gate present some negative
values. The experimental results are well explained by our established
composite noise model, which incorporates local depolarizing and ZZ-
coupling noises. The correlation magnitude positively depends on the
coupling strength. Interestingly, the correlation sign between two gates
varies in two cases: staying positive in two-gate coupling yet turning negative
in three-gate coupling when one gate strongly couples with a third one. The
correlation results help identify coupling gates and advance the study of
correlated noise.

Since an important application of fidelity benchmarking is gate opti-
mization, we demonstrate optimization experiments for parallel CZ gates
and compare outcomes when setting the target function as the parallel CZ
gate fidelity and the individual local CZ gate fidelities. We observe better
results of the former. This result validates the effectiveness of CAB and
suggests that global fidelity is more effective in optimizing quantum circuit
performance, originating from containing more correlation information.
The optimization result is consistent with the ZZ-coupling noise model.
When three gates couple, improving the fidelity of one local CZ gate may

reduce the fidelities of others. This antagonistic relationship demonstrates
the limitations of local fidelities.

Results

Preliminary

Let us start with briefly revisiting the concept of gate fidelity. Any noisy
quantum gate U can be treated as a composite of its noise channel A, and the
ideal gate U, expressedas U = U ,A. In this work, the fidelity of gate U refers
to the process fidelity of A, defined by,

F(A) =27 tr(PA(P)), 1

PeP,

where # is the number of qubits and P, = {1, X, Y, Z}®" represents the n-
qubit Pauli group. This process fidelity is a linear function of the average
fidelity, a metric commonly employed in quantum gate benchmarking
studies. The summation in Eq. (1), initially spanning 4" terms, can be
effectively restructured into 2" terms as follows:

F(AN) =272 S 3
we{0,1}®" (2)
I 2n ZPm:W tr(PA(P))
w 3wl ’

where pt(P) denotes a bitstring that takes 0 on bit 7 if P acts as the identity [
on qubit i and takes 1 if Pacts non-trivially, and |w/| signifies the weight of the
bitstring w. The quantity A,, is termed the weighted quality parameter of A
with weight 272"3", and below, we concisely refer to it as the quality
parameter of A.

The core of CAB lies in assessing the quality parameter of the channel
U A UAy through the circuit depicted in Fig. 1(a), with Ay and Aj,
being the Pauli-twirled noise channels of U and U™', respectively. This
approach yields the CAB fidelity of U, closely approximating U’s fidelity
under physically reasonable conditions™. Hereafter, we refer to the CAB
fidelity simply as the gate fidelity unless stated otherwise. While estimating
all quality parameters for fidelity evaluation demands exponential resources,
the number of quality parameters necessary for accurate fidelity estimation
within acceptable error margins and confidence levels is independent of the
qubit count, thereby ensuring the scalability of the protocol. The whole
procedure is shown in Fig. 1 and elaborated in Methods. Note that the
fidelity evaluated by this procedure is associated with the noise of Uand that
of the local twirling gates adjacent to U and U, referred to as dressed
fidelity. To isolate U's fidelity, one can employ interleaved RB techniques™,
comparing the dressed fidelity against the local twirling gate fidelity. Par-
ticularly, the fidelity of U is derived by ref.”

4F, 1 1) 1
F= ot (1= )+ ®)
4F g — 1 )Ty

with Fjpess and Fyiy the dressed and twirling gate fidelities, respectively. The
local twirling gate fidelity itself is determined through CAB, with the identity
operation as the target gate.

Fully connected gate and parallel CZ gate benchmarking

Our CAB experiments for the fully connected gate and the parallel CZ gate
are conducted on a 54-qubit superconducting quantum computer. On a
two-qubit system, the CZ gate is CZ = |0)(0| ® [ + [1)(1| ® Z, and its
parallel extension across multiple qubits is defined by U = ®£:1CZ(ika),
where CZU%J) denotes the CZ gate acting on a specific qubit pair, (i ji),
making U a 2r-qubit gate. The fully connected gate comprises two layers of
different parallel CZ gates intertwined with two layers of single-qubit gates,
as shown in Fig. 2(a). One of the parallel CZ gates connects qubits 1 and 2, 3
and 4, ... and the other connects qubits 2 and 3, 4 and 5...
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Fig. 1 | Illustration of the CAB procedure for assessing the fidelity of an n-qubit
gate, U. a shows the circuit, beginning with the preparation of the state |0)®",
followed by a random local Clifford gate @, C,. Subsequently, 2m layers of random
Pauli gates ®;:1P)(-i) are interleaved with alternate sequences of Uand U . The
inverse gate U,,, = (Hf”:l(U_l®21P}2')U®;:1P](-2’7”)) and the inverse of the
local Clifford gate @', C;"* are applied thereafter. Finally, one applies
computational-basis measurements and records the outcome. One needs to sample
K, random sequences, and for each sequence, one measures K times. The outcome
statistics are counted for each sequence, as in (b). After that, one randomly chooses
K, observables Z,, € {I, Z}®", where w € {0, 1}" and pt(Z,,) = w, with probability
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272"3lw|. One estimates the expectation values of these chosen observables, and the
expectation values need to be averaged across K, random sequences. The above
procedure is repeated for different m from a circuit depth set, {m,, m,, ---, mp}. For
all m, the chosen observables have to be the same. ¢ demonstrates the expectation
values of different observables for different sequence lengths. The expectation value
0,,(m) is approximately proportional to A>”, which can be fit to A\*" to determine
quality parameter A, like (d). e shows the last step. The final fidelity estimation is the
average of the fitting values, and subsequently, one can further evaluate the gate
correlation and employ gate optimization. Practical experimental settings choose
constant values for K,, K, and K, independent of the qubit count.

Fig. 2 | The topological diagram and corresponding fidelity of a fully
connected gate. a The left figure demonstrates the qubits and CZ gates used to
realize the fully connected gate with 46 qubits. We select a ring on the two-
dimensional quantum processor, corresponding to a one-dimensional quantum
system. The ring contains two patterns of parallel CZ gates, shown in red and green,
respectively. The right figure shows the circuit structure for the fully connected
quantum gate on # = 2r qubits, where Q; represents the i-th qubit. The gate

0.7 [ Quality_para
—4— Fidelity

2]

IS

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
Qubit number

comprises two layers of single-qubit gates, @', V} and Q'_, V5, and two layers of
different parallel CZ gates. b The quality parameters and the fidelities of the dressed
gates, including the error from the local twirling gates and the target gates. The
distributions of the noise channel quality parameters are shown with violin plots.
Their mean values equal the gate fidelities, shown with a point with an error bar. The
length of the error bar equals the standard error of the fidelity estimation.

Fully connected gate benchmarking. The single-qubit gates in the fully
connected gate, like Vi and V7 in Fig. 2(a), are free to vary. In quantum
information tasks like variational quantum algorithms, they are normally
chosen according to specific problems. In our experiments, we randomly
sample all the single-qubit gates from the Clifford group so that the global
gate is a Clifford gate and can be benchmarked with CAB. It is worth

mentioning that cycle benchmarking requires repeatedly implementing
the target gate U proportional to the gate order, defined as the smallest
positive integer p to make UP = I. The fully connected gate generally has
arapidly increasing order with respect to the qubit number, and the order
has already been thousands on average for 16 qubits, which we show in
the Supplemental Material (See Supplementary Material for more
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Fig. 3 | The topological diagram and corresponding experimental results of
parallel CZ gate benchmarking. a Two parallel CZ gate patterns, colored orange (22
CZ gates) and blue (26 CZ gates) on a 54-qubit quantum processor, with available
qubits shown in black. b Benchmarking fidelities for the parallel CZ gate within the
orange pattern. The benchmarking is done progressively from 2 to 22 CZ gates.
Brown and purple violin plots illustrate the noise channel quality parameters for the
dressed and local twirling gates, respectively. The point with an error bar in each
violin plot represents the mean value equal to the gate fidelity, and the length of the
error bar equals the standard error of the fidelity estimation. Green diamond-shaped
points denote individual fidelities of target gates, fitting well with the theoretical
curve F"”, where n is the qubit number and F = 97.94%. ¢ A heatmap displays the
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pairwise correlation among CZ gates within the orange pattern, revealing weak
positive correlations among several neighboring gates. We label the indexes of the
CZ gates on the two axes. CZAB means the CZ gate between qubits A and B. For
instance, CZ0802 is the CZ gate between qubits 2 and 8. The scatter diagram shows
that the absolute value of the correlation decreases with the distance of the CZ gates
and is mainly large between nearby CZ gates. The CZ gate distance is measured as the
minimal line count connecting qubit pairs in the processor layout from (a). d The
heatmap and scatter plot for the blue pattern, with the same color scale and inter-
pretation as in (c), indicate more significant correlations compared to the orange
pattern and show that large correlations also exist for two remote CZ gates.

detailed experimental data of the comparison between character-average
benchmarking and cycle benchmarking, the fluctuation analysis of the
experimental results, and additional benchmarking and optimization
results, which includes references””*). The long-depth circuit will lead to
extremely noisy experimental results and cannot provide effective
benchmarking. Instead, by using the target gate and its inverse, this gate
can be benchmarked within a short-depth circuit using CAB.

We realized the fully connected gate with qubit numbers from 16 to 46
and benchmarked its dressed fidelity. The dressed fidelity of each target gate
is estimated with circuit depths of {0, 1} through 50 circuit samples per
circuit depth and performed 20,000 measurements per circuit. Theoreti-
cally, larger circuit depth differences can reduce fidelity estimation fluc-
tuations, but practical constraints limit how deep the circuits can be. To
reduce the impact of gate noise on the measurement results, we choose the
circuit depths below 2.

Based on the measurement results, we estimated 100 quality para-
meters and averaged them to compute the gate fidelity. The results are
shown in Fig. 2(b), ranging from 63.49% + 0.07% to 17.42% + 0.45% for
qubit numbers from 16 to 46, with the full data available in the Supplemental
Material (See Supplementary Material for more detailed experimental data
of the comparison between character-average benchmarking and cycle
benchmarking, the fluctuation analysis of the experimental results, and
additional benchmarking and optimization results, which includes

references™”). The quality parameters are distributed near the mean value,

meaning the noise is close to a depolarizing noise. This feature is extremely
useful in realizing CAB experiments in a low-fidelity region. If the noise is far
from the depolarizing noise, like the unitary noise, and the fidelity is low, the
quality parameters may be below 0. Since a quality parameter A is obtained
by fitting it to AA*" as shown in Fig. 1, a negative quality parameter A is
indistinguishable from—A and cannot be obtained correctly by the expo-
nential fitting.

Parallel CZ gate benchmarking. The benchmarking for the parallel CZ
gates contains two patterns, depicted in Fig. 3(a) using two distinct colors.
We first evaluate the fidelities of the gates within the orange pattern,
consisting of 22 pairs of CZ gates aligned in the same physical direction.
This benchmarking was conducted progressively, starting with 2 pairs of
CZ gates and incrementally including more gates up to the full set of 22
pairs. Subsequently, we evaluate the gate correlations within the orange
and the blue patterns. The latter incorporates 26 pairs of CZ gates and
engages almost the entire quantum processor.

The settings for benchmarking parallel CZ gates within the orange
pattern are the same as that for the fully connected gate, except the circuit
depths changed to {0, 2}. In this experiment, we benchmark both the dressed
fidelity and the local twirling gate fidelity. The local twirling gate fidelity is
obtained by changing the target gate U with the identity operation. We then

npj Quantum Information | (2025)11:33


www.nature.com/npjqi

https://doi.org/10.1038/s41534-025-00983-5

Article

(a)

Selected Qubits

Reference
--
parameters
o ' EEl-
parameters
°

Reference fidelity

Iterative fidelity

I - -
g lercircuitl g
g Ref.cicuit2 gl
g lercircuit2 gl
g Ref.cicuit3 gy
g ercircuit3 g

| —| Ref. circuit 40 -

Reference
fidelity

—

—
Iterative
fidelity

==

I
Nelder-Mead
Algorithm
|

0.95 0.05
—— Global I Global Ref
m B Global Iter
0.901 0.04{ HEE Local Ref
{ AN\ |
W EEE Local Iter
20851 §0.03
g
i | I
0.8071 | , 1 100 §o0.02
0751 § 2 0.01 ‘ ‘
0 70 . O.iiVSO 0.8‘75 . 0.9‘00 . . ° . 0.;35 . 0.‘90 .
0 50 1,00 150 0 50 190 150 Correlationag Correlationac Correlationgc Correlationagc
Iteration Iteration

Fig. 4 | The experimental optimization process and corresponding results of
parallel CZ gates. a The left figure shows the topology of 3-pair parallel CZ gates on
the quantum processor. The three CZ gates are labeled with A, B, and C. During the
optimization, we benchmark the fidelities of the target gate associated with two sets
of parameters via CAB. The reference fidelity, fluctuating due to environmental
factors, is based on reference parameters, and the iterative fidelity, mainly influenced
by varying CZ gate parameters, corresponds to iterative parameters. The target
function subtracts the reference fidelity from the iterative fidelity, thus mitigating the
interference of environmental factors. The optimization algorithm is the Nelder-
Mead algorithm. b The data of global fidelity during the optimization procedure. The
line is the fidelity estimation, and the shadow above and below represents the value of
one standard error away from the fidelity. The blue and orange lines correspond to
the optimization results utilizing global and local CZ gate fidelities, respectively. The
left and right figures show the reference and iterative fidelities, respectively. The

small figure shows the probability density distribution of the fidelities within
iterations 100-180, obtained by kernel density estimation. During this range, two
reference fidelities remain stable and close, and iterative fidelities converge. Com-
paring the iterative fidelities in this range allows for a fair assessment, with the right
figure indicating more effective fidelity improvements when global fidelity is used for
optimization. ¢ The distribution of gate correlations derived from reference and
iterative fidelities within iterations 100-180 in (b). For a 3-pair parallel CZ gate,
correlations are observed among all three gates (Correlation,pc) and between each
pair (Correlation g, Correlationc, and Correlationpc). For instance, Correlation g
refers to the correlation between CZ gates A and B. The average values and standard
deviations of correlations from reference fidelities are similar for both objective
functions, indicating consistent environmental influences. However, for iterative
fidelities, except Correlationpc, employing global fidelity as the target function
generally leads to improved outcomes.

use the interleaved technique® and Eq. (3) to isolate the pure parallel CZ gate
fidelity.

In Fig. 3(b), we show the noise channel quality parameter distribution
for the dressed parallel CZ gates and the local gates with violin plots. The
mean value equals the fidelity and is shown with a point. The green
diamond-shaped points represent the pure fidelities of the parallel CZ gates
within the orange pattern. The largest one, or the 22-pair parallel CZ gate,
possesses a fidelity of 63.09% + 0.23%. These fidelities have been fit using the
function F?, where n is the qubit number. The fit aligns closely with our
experimental data, suggesting a fidelity value of approximately 97.94% for a
single CZ gate. This indicates that, in the orange pattern, the fidelity of
individual CZ gates remains nearly constant and is not affected by an
increase in qubit number. This observation implies that the crosstalk among
these parallel CZ gates is either limited to short-range interactions or is
remarkably minimal. Such a characteristic is critical for the implementation
of quantum error correction. The detailed fidelity and standard error data
are available in the Supplemental Material (See Supplementary Material for

more detailed experimental data of the comparison between character-
average benchmarking and cycle benchmarking, the fluctuation analysis of
the experimental results, and additional benchmarking and optimization
results, which includes references™).

Correlation benchmarking

Beyond gate fidelity, our analysis extends to examining correlations within
parallel CZ gates. We define this correlation as the deviation of the paralle] CZ
gate fidelity from the product of the fidelities of its comprising local CZ gates.
The concept of correlation is elaborated in Methods. Any nonzero correlation
value emerges as an indicator of interactions among the local gates.

The correlations among every two CZ gates within the orange and blue
patterns are visualized through heatmaps in Fig. 3(c) and (d), respectively.
Additionally, we plot the correlation magnitudes as a function of the phy-
sical distance between CZ gates in the processor. For the orange pattern, we
used the pure CZ gate fidelities from the parallel CZ gate benchmarking
experiment to evaluate the correlation. The result of the blue pattern is
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obtained by another experiment. The orange pattern exhibits a notable
feature: correlations between CZ gates are consistently positive and pro-
nounced only when the gates are closed. This observation suggests a neg-
ligible presence of long-range interactions in the implementation. However,
the 26-pair parallel CZ gate within the blue pattern reveals different per-
formance, with substantially higher correlations even for distant CZ gates,
indicating the existence of long-range interactions within this configuration.
The difference between the two patterns can be explained by whether a
parallel calibration of CZ gates before benchmarking exists. Before experi-
ments, gates in the same direction-such as all the two-qubit gates in the
orange pattern-were calibrated in parallel using the method detailed in the
“Parallel calibration of controlled-Z gate parameters with back probability"
subsection in Methods. To maximize the qubit number of a pattern, the blue
pattern is formed by combining gates in two directions. The results show
that correlation benchmarking serves as an additional indicator of gate
performance, alongside fidelity.

In Methods, we establish a noise model composed of depolarizing and
ZZ-coupling noises to explain the correlation benchmarking results. The
model first introduces a local depolarizing noise on each gate, followed by a
unitary correlated noise. The Hamiltonian of the correlated noise is a
summation of pairwise ZZ on each pair of CZ gates, where the coefficients
depend on the coupling strengths. Our analysis focuses on the two-gate and
three-gate coupling cases. A natural result is that the correlation value
between two gates positively depends on their own coupling strength. Weak
correlation implies weak coupling. Interestingly, we find that when only two
gates couple with each other, the correlation is always positive. The corre-
lation value is normally less than 0.001 for uncorrelated gates and can be on
the order of 0.01 for correlated gates, which is consistent with the experi-
mental data. Nonetheless, if one of the two gates couples with a third gate,
the correlation between the original two gates can become negative. Parti-
cularly, when one gate is strongly coupled with the third gate, and the other
gate is weakly coupled to it, the negative correlation becomes significant.

Applying the theoretical analysis to the experimental data, we observe
that most correlation values are positive, corresponding to weak coupling or
two-gate coupling cases. The results of the orange pattern can be fully
explained by two-gate coupling. The pair of CZ2216 and CZ1004 and the
pair of CZ4337 and CZ3125 exhibit the strongest couplings. The CZ gates in
the two pairs are both nearest neighbors. For the blue pattern, negative
correlation values are observed, indicating that the two-gate coupling model
is not sufficient to explain the data. Take the pair of CZ4943 and CZ1812 as
an example, the negative correlation value implies that besides the coupling
between CZ4943 and CZ1812, there exists a third gate strongly coupled with
CZA4943 or CZ1812. From the correlation data, we infer that a neighbor of
CZ4943, like CZ3731, couples strongly with CZ4943 but not with CZ1812.
The coupling relationship among these three CZ gates can lead to a negative
correlation between CZ4943 and CZ1812. Note that in real experiments,
couplings can involve more than three gates, making the origins of negative
correlations more complicated than the three-gate model described here.
We expect our results to inspire more explorations into the correlation and
coupling among quantum gates.

Parallel CZ gate optimization

In addition to benchmarking, we conducted optimization on parallel CZ
gates, employing two distinct approaches: optimizing with global fidelity
and optimizing with individual local CZ gate fidelities. In both cases, the
Nelder-Mead algorithm is utilized for optimization’”*. Note that the noise
of the target gate is much larger than that of the local twirling gates, and the
fidelities of the local twirling gates are stable. The noise of the target gate
dominates the dressed fidelity, making this quantity sufficient for optimi-
zation. To reduce benchmarking time, we optimize using the dressed
fidelity, avoiding additional benchmarking of local twirling gates and the
interleaved procedure. To minimize the influence of other unstable factors
on gate fidelity, we measure both the fidelity of the parameters being iterated
(iterative fidelity) and the fidelity of the initial parameters as a reference
(reference fidelity) throughout the optimization process. The optimization

target function is defined as the difference between these two fidelities.
Before this optimization experiment, each local CZ gate was calibrated with
the “fast calibration” and “parallel calibration” approaches shown in
Methods.

In our experiments, the parallel CZ gate comprises 2n optimizable
parameters with #n the qubit number. We chose # as 4 and 6 so that the
number of parameters is suitable for the Nelder-Mead algorithm to work.
Optimizing gates with tens of qubits requires more scalable optimization
algorithms. Figure 4 presents the optimization results for a parallel CZ gate
comprising 3 local CZ gates on 6 qubits. The topology of the three CZ gates
and the optimization procedure are shown in Fig. 4(a). The three gates are
relatively close, which are more likely to correlate with each other. Mean-
while, the readout channels of these three gates are relatively stable com-
pared to other gates, ensuring minimal influence of environmental noise on
the optimization procedure.

The progression of fidelities during the optimization is depicted in
Fig. 4(b), and the inter-gate correlations, calculated based on data from
iterations 100-180, are illustrated in Fig. 4(c). This specific iteration range is
chosen as it is the phase of the iterative parameter convergence and stable
reference fidelities, indicating a reduced impact from other fluctuating
factors. Further experimental details and results of a 4-qubit setup are
available in the Supplemental Material (See Supplementary Material for
more detailed experimental data of the comparison between character-
average benchmarking and cycle benchmarking, the fluctuation analysis of
the experimental results, and additional benchmarking and optimization
results, which includes references™).

Below, we compare the optimization results employing global
fidelity and the local gate fidelities with data from iterations 100-180. The
fidelity is improved to 92.04% and 87.65%, and the correlation is reduced
to 3.22% and 3.53% when using global fidelity and the local gate fidelities
for optimization, respectively. It is clear that using global fidelity for
optimization more effectively enhances fidelity and reduces correlation.
Using local gate fidelities tends to yield inferior optimization outcomes,
attributable to the lack of correlation information within the target
function. In Methods, we use the ZZ-coupling model to explain the
difference between global and local gate fidelities. When three gates are
mutually coupled, optimizing one local fidelity may cause a decrease in
the other two. This antagonistic relationship between local fidelities can
trap the optimization in a local region. In contrast, global fidelity
incorporates all correlation information, allowing the optimization to
proceed monotonically. This finding underscores the significance of
correlation in optimizing parallel gates and demonstrates the crucial
advantage and essence of benchmarking large-scale quantum gates.

Discussion

In conclusion, we utilize CAB to conduct large-scale experiments of
benchmarking the fully connected and parallel CZ gates. The benchmarking
of gate correlation provides quantity to evaluate the quantum gate perfor-
mance beyond gate fidelity, allowing the detection of long-range interaction,
which may further be useful in studying many-body physics. Combined
with the ZZ-coupling noise model, it is feasible to detect the coupling pattern
of the parallel gates with correlation benchmarking. The established noise
model also provides insight into further study of near-term quantum devices
and quantum error correction.

The results highlight the crucial role of correlation in optimizing
parallel quantum gates. Practically, one can decompose the circuit into
multiple layers and optimize each layer with improved gate fidelity and
reduced inter-gate correlation. This approach is more effective than opti-
mizing each local gate individually, as evidenced by our optimization results.
Meanwhile, one can first identify strongly coupled gates through correlation
benchmarking and divide them into distinct groups. Gates within each
group are strongly correlated, while groups themselves are weakly corre-
lated. By optimizing each group individually, the overall performance of the
entire layer can be enhanced. This approach simplifies the optimization
process by focusing on the dominant gate correlations.
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Box 1 | Procedure of character-average benchmarking

1. Choose alist of circuit depths {m4, mo, -+,
of circuit depths.

2. Choose integers K, and K as the number of random sequences and
single-shot measurements, respectively.

3. For any 1<j<M, choose K, random sequences Sk = C™'U;, [T
(U'P@UYPE-D)C, Here, C is a local Clifford gate uniformly and
randomly sampled from the n-qubit local Clifford group C$", and
v 1<i<2my, P? s uniformly and randomly sampled from the n-qubit

Pauli group P,,. The inverse gate Uy, = ([T (U~'P® up@-1y))™"
is a Pauli gate.

my}, where M is the number

4. Prepare state |0)®", implement each random sequence Kj times, and
collect all Z-basis measurement results.

Our experimental methodology for benchmarking and optimizing
large-scale gates applies to enhancing all Clifford circuits up to a
local gauge transformation™, including the essential case of quantum
error-correcting code circuits”. Typical quantum encoding schemes like
surface codes”"” or, more generally, quantum low-density-parity-check
codes”, involve tens or even hundreds of qubits. Optimizing such large
batches involves managing many gate parameters, necessitating the
development of scalable optimization algorithms rather than solely
scalable benchmarking. In the future, advanced large-scale optimization
algorithms, particularly gradient-free ones, will help to explore large-gate
optimization, ultimately contributing to realizing universal fault-tolerant
quantum computers.

Methods
Procedure of character-average benchmarking
Below in Box 1, we introduce the procedure of the CAB protocol when
benchmarking an n-qubit Clifford gate corresponding to Fig. 1. For target
gates as non-Clifford gates and more protocol details, one can refer
to Ref. 33.

Note that the procedure in Box 1 differs from the original one in Ref. 33.
The main modification lies in step 5. In Ref. 33, one does not sample
observables but takes all observables from {1, Z}®", which requires K;=2"
Here, we only need to set K, = O(—e2logé) to ensure that Eq. (4) only
differs from the fidelity estimated by traversing observables a small quantity,
€, with a high confidence level, 1 — §. This can be seen from Hoeffding’s
inequality, which is shown below. Note that A; is limited in the region
[—1,1].

2

Pr(|F — K, [F]| > €)<2exp(— KqTe). (5)

Setting 2exp(— ) =4, we get K, = 2¢ *(log 24~ "). Note that K is
irrelevant to the qublt number 7. Thus, the complexity of the classmal
postprocessing is independent of #. The number of sampled sequences for
fidelity estimation is also independent of # as proved in Ref. 33. Thus, the
whole benchmarking protocol is scalable.

Correlation
Here, we introduce the formal definition of the correlation of a parallel gate.
We consider a parallel gate, U = ®)$_, U, where Uj is more local or acts on
fewer qubits than U. Normally, U; is a one-local or two-local gate in
experiments. That is, U; only acts on one qubit or two qubits. Via CAB, one
can simultaneously get the fidelity of U and the fidelities of Uj, denoted as
F(U) and F(U), respectively. If there is no correlation among Uj, the noise
channel of U can be expressed as A = ®?_, A; where A; is the individual

5. Independently sample K, Z-basis observables, {O;, 1<i<Kg}, from
{I,Z}®". The sampling distribution is given by 2-2"3/%! where |0/ isthe
weight of O;, or the number of Z in O;. For each O,, compute traiS}‘(p)
with the measurement results from the previous step where p is the
noisy version of |0)¢ (0|®", and 6 is the noisy version of O,. Then, average
trO S (p) over dn‘ferent random sequences for each circuit depth m;and
obtaln fi(m;) = K Zk 1 trO S (p), which is named survival probability.

6. For each O, fit {f(m,) mj} to the function f;(m) = A/\z'“ and obtain A,
which is a quality parameter of the noise channel. Then, the process
fidelity of the target gate U is given by the average of {4, 1 <i<Kg},

b )
=—> A
KCI i=1 ;

Table 1 | Summary of system parameters

Parameters Mean Median SD
Qubit maximum frequency (GHz) 5.504 5.504 0.093
Qubit idle frequency (GHz) 5.411 5.403 0.104
Qubit anharmonicity (MHz) —243 —242 4

T, at idle frequency (us) 22.14 22.11 7.60
T atidle frequency (us) 4.94 4.55 3.24
Readout eq, (%) 1.03 0.90 0.72
Readout e, (%) 3.82 3.43 1.64
1Q XEB eq (%) 0.31 0.24 0.18
2Q-CZ XEB e; (%) 3.35 3.21 0.98

SD denotes the standard deviation.

noise of U;. Then, the global fidelity, F(U), would be equal to the product of
local gate fidelities, [[5_, F(U)). In reality, the interaction among different
gates would make the two values different. We define the following quantity
to characterize the total correlation among {U;, 1 <i < g},

F(U) — {HU)
(6)
VEWTLL, FU)

The denominator is a normalization factor. When the correlation is positive,
the global fidelity is larger than the product fidelity, indicating that the
correlation helps to increase the global fidelity. Since Eq. (6) is defined
among g gates, we call it g-correlation. Except for g-correlation, one can also
obtain j-correlation among each j gate in {U, 1<i< g} where2<j<g—1
for parallel gate U = ®%_,U,. Note that since F(U) and F(U;) can be
obtained simultaneously from the same experimental data, gate correlation
can also be evaluated concurrently without any additional experimental
effort.

C(U, (U 1<i<g)) =

Experimental platform

In this work, we utilized a processor with the same design as the
Zuchongzhi2.0 processor’' and selected up to 54 qubits for our experiments.
The basic performance of the processor is shown in Table 1, where the
single-qubit gate error and the two-qubit CZ gate error with a median of
0.24% and 3.21% by cross-entropy benchmarking (XEB)***. Our scheme to
realize a two-qubit CZ gate is implementing an all-microwave coupler with a
fixed gate time of 110 ns*. The approach involves applying a microwave
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Fig. 5 | Circuits for fast calibration of CZ gates. Q,

and Q, represent the first qubit and the second
qu,Bit, respectively. C represents the coupler. X =
e~z where X is the Pauli X operator. N normally
takes 1, 3, 5, 7.
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signal with an envelope A(f) and a driving frequency of w, to the tunable
coupler, with an extra flux given by ®(t) = A(t) cos(w,t + ¢,). When the
driving frequency w, matches the energy difference between the |11) and
|02) states, ie., w; = w1, — wgy, resonance takes place between these two
states. Here, |11) is a computational-basis state with each qubit at state |1),
and |02) is a state outside the computational subspace. However, due to the
nonlinear relationship between the extra flux and the coupling strength,
although @(¢) is a good single-frequency signal when transformed into the
coupling strength, the signal contains significant frequency components not
only at w,, but also at 2w, and 4w,. Therefore, when considering the fre-
quency layout of qubits, it is necessary to avoid wj, 2w, and 4w, equal to
either Agy10 = |wor — wiol Or A1y 20 = W11 — Wyo.

Before our experiments, we adjusted the qubit frequency and
calibrated the parameters for each local gate to make the processor
perform well. In the following subsections, we will elaborate on this
procedure in detail.

Frequency conflict and frequency adjustment

The distribution of qubit frequencies is typically constrained within a range
of 0-400 MHz due to magnetic flux noise and the bandwidth of the digital-
to-analog converter. When arranging the qubit frequencies, the following
factors need to be considered and balanced: (1) Energy relaxation time T;
and dephasing time Ty. (2) Spacing of frequencies between neighboring
qubits and next-to-nearest neighboring qubits. (3) Two-qubit gate fre-
quencies, as well as their second and fourth harmonic frequencies, and the
frequency conflicts with Agy19 = |wor — w10l and Ay, = w11 — wao. (4)
Maximum frequencies for each qubit, which represent the available fre-
quency range for each qubit. By defining the above factors as error functions
and frequency domains, we can obtain a set of theoretically optimal fre-
quencies. After adjusting the frequencies of all qubits to the optimized
arrangement, a majority of single-qubit gates and two-qubit gates can
achieve high fidelity through standard calibration. However, local fine-
tuning is still required for poorly performing gates. Additionally, the per-
formance of a quantum processor may deteriorate during certain time
intervals due to long-term periodic frequency variations in two-level sys-
tems. This also requires fine-tuning of the corresponding qubits. Qubit
frequency tuning is relatively frequent and tedious, as adjusting the fre-
quency of one qubit requires re-calibrating two-qubit gates associated with
it. Therefore, it is crucial to calibrate single-qubit gates and two-qubit gates
efficiently in this process. On the other side, the success of subsequent
benchmarking relies on an initial good adjustment of qubit frequencies, as a
higher gate fidelity improves the benchmarking accuracy and stability. The
configuration of qubit frequencies is the key to the success of our
experiments.

Fast calibration of controlled-Z gates

After fine-tuning the qubit frequency, we need to recalibrate CZ gates
related to it. The main parameters for calibrating the CZ gates are micro-
wave frequency, microwave amplitude, and dynamic phase of the two
relevant qubits. First, we roughly determine the microwave frequency and

amplitude through the circuit in Fig. 5(a) with N typically set to 0. Within
this circuit, the two qubits Q; and Q, are initially set at |0). We first flip these
two qubits by applying pulse X.. Then, we apply the microwave pulse once,
and after that, we measure the probability of two qubits returning to the |11)
state. In the process of applying microwave pulses, |11) and |02) states will
be exchanged, and we try to find the microwave pulse parameters to max-
imize the probability back to |11) for the ending state. Then, we fine-tune the
microwave amplitude by implementing circuit (a) again. To amplify the
errors caused by the parameters, we superimpose 2N + 1 CZ gates, with N>
0 this time. As the conditional phase is relatively sensitive to the frequency,
we fine-tune the microwave frequency through the circuit in Fig. 5(b). When
the 8 of X3 changes, the probability of Q;, or the first qubit, changes as
follows:

14 cos(B+ ¢;)

5 @)

PB) = forU =I;

forU = X.

1+ cos(B+¢,)
— ()]

P(B) =

By fitting P() and obtaining ¢; and ¢,, we can get the conditional phase ¢ =
¢, — ¢1. The optimal microwave frequency is the frequency at which ¢ = wis
satisfied. We then repeat the circuit (a) again to calibrate the microwave
amplitude further with a large N. The optimal microwave amplitude is the
amplitude that makes the probability of the |11) state closest to 1. The
dynamic phase of the two relevant qubits can be calibrated through the
circuit in Fig. 5(c). We first change the dynamic phase Z, of Q; and find the
point where the probability of the |1) state is closest to 1 to complete the
dynamic phase compensation for Q;. This process is repeated for Q, sub-
sequently with Xz and Zg applied at Q, in circuit (c).

Parallel calibration of controlled-Z gate parameters with back
probability

When we calibrate CZ gate parameters by means of amplifying errors
through the superposition of multiple layers of CZ gate circuits, we can
attain a high level of fidelity for most CZ gates. To further refine the gate
parameters, we resort to the Nelder-Mead algorithm to continue to search
for CZ gate parameters. Particularly, for each local CZ gate, we input |00),
implement a random sequence of two-qubit Clifford gates, and record the
probability of the final state back to |00). Each two-qubit Clifford gate is
decomposed into CZ and single-qubit gates in implementation. Addition-
ally, we alternate running the same set of random circuits with the reference
and iterative parameters. The difference between their outcomes is used as
the target function of the Nelder-Mead algorithm to mitigate environmental
influence. To quickly calibrate a set of CZ gates where no two gates share a
common qubit, we execute the above procedure in parallel for each local CZ
gate. Each gate is calibrated independently using its own back probability.
This parallel calibration method typically yields better gate parameters than
the parameter scanning approach described in the previous subsection.
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Fidelity and correlation analysis of depolarizing and

correlated noise

In this part, we establish a simple but physical noise model to explain the
experimental results Note that CAB faithfully evaluates the process fidelity
of quantum gates®. We consider how the process fidelity behaves under a
combination of local depolarizing noise and gate interaction. Particularly,
for a unitary gate U = ®%_, U,, we consider the following noise model.

A= @, o

where A, is a depolarizing noise on the i-th gate with parameter p; such that

I.
A, (p)=pp+(1 _Pi)j- (10)

Here, d; is the dimension of gate Uj, and I; is the identity operator on this
subsystem. The noise Ay is a correlated noise among all local gates U,
modeled as a unitary evolution:
Ay(p) = VpVT. (11)
The form of A incorporates both decoherence on individual gates and
interactions between gates. The decoherence on each gate is set as a depo-
larizing type, which is a standard setting in studies of near-term quantum
devices”™*. Different from previous works, we introduce an additional
interaction term V, which makes the noise model more physical. The form
of Vdepends on the implemented gate U, which will be specified later. When
considering the action of V on a subsystem S, the remainder of the system is
treated as a maximally mixed state or a thermalized state at infinite tem-
perature. That is, for state ps on subsystem S,

:[,
Ayls(pg) = trgV (ps ® d—s> vt (12)
S

Here, Ay]s is the restriction of Ay to S, S is the complementary subsystem of
S, dy is the dimension of S, and [[g is the identity operator on S.

Since the gate U = ®?_, U; comprises g gates {Uy, Uy, - , U}, we use
(gl ={1,2, -, g} to denote the whole system. Given a subset S Q [g], we can
represent a part of the gate U, R)icsU, whose fidelity is given by
F(Ay|s dQ;es/p,) and denoted as Fs. Note that the process fidelity has an
expression F(A) = tr(|®+><d)+|A(|(D+><(D+|)) where |®T) is a maxi-
mally entangled state on two copies of the system. Through direct calcu-
lation, we have that

d
Fg=) pta - p)S\LdT;é It VI3,

LCS

(13)

where L is a subset of S, S\L is the complementary set of L in S, d; and dg are
the dimensions of subsystems L and S, respectively, and

pr=1]pn=p™ = [T =p) Il tr, VI3 = trtr, Vir, V).

ieL ieS\L
(14)

Note that L is the complementary set of L in [g]. From Eq. (13), we can
obtain the global fidelity and local gate fidelities, and hence evaluate the
correlation and investigate how fidelities depend on noise parameters.

In our experiments, we mainly consider the parallel CZ gate
U = ®,_,Cz%). Based on experimental observations, the correlated
noise mainly arises from the ZZ coupling among qubits. Particularly, we
consider a simplified noise model where only one qubit from each CZ gate
couples with each other. Without loss of generality, we set this qubit as 7.
Meanwhile, the Hamiltonian of the correlated noise only contains two local
terms while the strength between 7 and i, is set as yy;. Thus, the correlated

noise V'is

V = ef"megv}'ku‘szz, (15)
The strength parameter is determined by yy; = git, where ¢ is the evolution
time, and gy, is the coupling strength between two qubits. In our experi-
ments, ¢ corresponds to the two-qubit gate time, which is 110ns. For two
physically isolated qubits, their coupling strength is typically less than 0.3
MHz, resulting in yy less than 0.033 for two uncorrelated gates. For two
coupled qubits, yy; can be on the order of 0.1.

Substituting Eq. (15) into Eq. (13) gives the global fidelity and local CZ
gate fidelities. We provide the results when r = 2 and r = 3, which relates to
our correlation benchmarking and gate optimization results. More general
cases can be straightforwardly obtained using Eq. (13).

When r = 2, the fidelities of the two local CZ gates are

_pl. (16)

F1=P1C052V12+ R

1—
F, :P2C052V12 + 4P2 . (17)

The global fidelity of the two CZ gates is

A—p)  p(L=p) (A -p)d—p)
Fy = (Plpﬁpl —22) 20 )cos2y12+ p1= )

(18)
The above gives the correlation when only two CZ gates correlate with each

other via the ZZ coupling:

Fp—F\F, — Pipycos’yysin’yy,
JFabiE NG

P lsiny, tany,.

(19)

In the limit that p; and p, are close to 1, \/m is approximately
P1P,c08%y,,. Then, the correlation is approximately sin y,, tan y,,. Given
the value of y;, as 0.033 and 0.1, the correlation values take 0.001 and 0.01,
respectively. This is consistent with our experimental results.

When = 3, we give the fidelities of the three local CZ gates, the fidelities
of each pair of CZ gates, and the global fidelity.

F = Pl(coszylzcosz)’ls I6p1 ; (20)
_ 2 2 S22 1—-p,.

Fy = p,(cos”y;,c087y,; + sin”y;,sin”y,;) + TR (21)
— 2 2 - P3 . 22

Fy = ps(cos®y,;c087y,, 6 ' (22)

— — _
Fi, = p,py(cos? X +sin? 1) + P‘(l PZ) (cos?yp,co8?y,; + sin?y,,sin’y,;)

+ &= P‘ P2 (cos? 12€08%Y,; + sin®y,,sin’y,,) +—(17P12);617P2);

(23)

— — _ ) )
Fi3 = p,ps(cos? A +sin* 1) —0—1¥(c0s2yucoszy13 + sin?y,,sin’y,;)
1- . . (1—p)(1—py)

+ G fé)Pi (c0s>y|5€087y,5 + sin’y,;sin*y,;) +—p12)56 £,

(24)

— — _
Fy; = pyps(cos? A +sin’ 1) +P2(1 P3)(coszylzcoszy23 + sin’y,,sin’y,;)

+ 4 pz 5 (cos? Y13€08%Y,3 + siny,;sin’y,;) +7(17p22)¥7pz);

(25)
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Fig. 6 | These graphs depict the relationship
between different coupling strengths {y12, y13, y23}
and correlation F,, within the context of three-
gate coupling examples. Particularly, we assign
fixed values to y;,, selecting from the set {0, /32,
7116, 37/32, n1/8, 57/32}. The values of y;5 and y;
range from 0 to 57/16.
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Fy = (P,P,Ps +P1Pz(116 ;) +P1P3(116 j2)) +P2P3(116 P1))(COSZ X +sin? 1)
+ p7‘(172§§17P3) (coszyucoszy13 + sinzylzsinzyB)

+ pz(1—1;15>6<1—p3) (cos’y;,c08?y,; + Sin2Y1ZSin2y23)

+ 2 _1;15)651_1,2) (cos?y, 3087y, + sin’y,sin®y,;)

(1—p))1—p,)(1—p;)

+ 4096

(26)
9 . - . . .
Here, cos A = cosy,, cosy,;cosy,; and sin A = siny,, siny,; siny,;.

In this case, the correlation between the first and second local CZ gates is
given by

— —
Fp—FiF, _ pipy((cos® A sin? A)— (cos”yy,c087yy; + sin’yy,sin’y;;)(cos”y;,€08%ys + sin’y,sin’y,5))

/FFiFs FiFiF,
) 08>y jpsin’ y,(cos’y s —sin’y;3)(cosyy; — sin’yy;)
NFuFiF
prp—1 005" y1p8in” 1 (08 yy3 — sin’ yy3)(cos yy; — sin’ y3)

— —
(cos? A +sin? A )cos2y;5c082yy +in’yp,sin”y;;)(cos?y €08 yyy + sinyy,sin’ y)
27)

Note that when p; and p, are close to 1, the first term in the formula of
fidelities dominates, and we get the above approximation. It is interesting
that the sign of the correlation depends on (cos’y,; — sin’y,,)
(cos?y,; — sin’y,,). A negative correlation value implies that one of ;3 and
y23 is larger than /4.

To further investigate how the correlation depends on parameters y;,,
13> and y,3, we fix y;, with values in {0, 7/32, /16, 371/32, 7/8, 57/32} and
depict the correlation with respect to y;3 and y,3. The results are available in
Fig. 6.

From the expressions in Egs. (19) and (27), we observe a natural result
that the correlation between two gates always increases with their own
coupling strength. In the two-gate coupling case, the correlation is
sin y,, tan y,,, which increases monotonically with y;,. In the three-gate
coupling case, the numerator of the correlation is proportional to
cos?y,,sin’y,,, which also increases monotonically with y,. Thus, the
correlation magnitude directly reflects the coupling strength.

Examining the sign of the correlation reveals distinct behaviors. If
only two CZ gates are coupled, their correlation is always positive.
However, in a three-gate coupling scenario, the situation changes. The
correlation is still positive for a low-strength correlated noise when all
parameters are less than 71/4. Nonetheless, if two CZ gates exhibit strong
ZZ coupling, one of the CZ gates will have a negative correlation with the
third CZ gate. From Eq. (27) and Fig. 6, we can see that the negativity
becomes particularly pronounced when one coupling is weak while the
other is strong. This characteristic is useful for identifying the strongly
coupled pair of gates.

Beyond correlation analysis, the dependence of local gate fidelities and
global fidelity on the coupling strength helps explain the differences
between these two types of fidelities in gate optimization. In the case of r =
2, this difference is small. Both kinds of fidelities are proportional to
cos’y,,, and optimization naturally reduces y;, to improve performance.
Nonetheless, for the three-gate coupling model, the situation can be dif-
ferent. Each local fidelity depends only on two coupling parameters. When
optimizing F,, the coupling parameters y;, and y;3 tend to be smaller to
make F; higher and make the correlation weaker. However, given a fixed
y23, the decrease of y;, or y;3 can also decrease F, or Fs. For instance,
F, = p,(cos*y,,(cosy,; — sin’y,,) + sin’y,;) + 722 When cos’y,;—
sin2y23<0, the decrease of y;, makes F, also decrease. This creates a
competition between optimizing one local fidelity and another, often
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leading to the optimization being trapped in a local region. In contrast,
global fidelity incorporates all coupling parameters, allowing the optimi-
zation process to simultaneously reduce all coupling strengths.
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