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Abstract. Many apparently contradictory approaches to TMD factorization and its non-perturbative content

exist. This talk evaluated the different methods and proposed tools for resolving the contradictions and experi-

mentally adjudicating the results.

1 Introduction
In the literature there is a bewildering variety of methods

for using transverse-momentum-dependent (TMD) par-

ton densities and the associated factorization properties

of cross sections. Taken at face value, many of the

methods and their uses appear incompatible or contradic-

tory, especially as regards the non-perturbative contribu-

tions. The problems are particularly important when plan-

ning new experiments to measure polarization-dependent

TMD quantities like the Sivers function, since the non-

perturbative part of TMD evolution can notably dilute

them as energy is increased.

In this talk, I examined and evaluated some of the

different methods. I proposed a systematic approach to

test treatments of the non-perturbative contributions from

large transverse distances (bT), both from theoretical and

phenomenological view points. Then I proposed system-

atic modifications to the standard parameterizations of the

large-bT behavior that could resolve contradictions, espe-

cially as regards the apparently incompatible phenomenol-

ogy of the function controlling evolution of TMD densi-

ties. The methods will pinpoint the experimental condi-

tions needed to give incisive experimental probes of the

contradictory theoretical statements.

2 The need for and existence of non-trivial
QCD contributions to TMD cross
sections

In this article, I use the Drell-Yan process to illustrate is-

sues that apply to TMD factorization in general.

For the transverse-momentum distribution in the Drell-

Yan process, the simplest model is the parton model,

where the TMD cross section is a convolution of the TMD

densities for the annihilating quark and antiquark, and

the TMD densities do not evolve. In the parton model,

the transverse momentum of the Drell-Yan pair directly

probes the intrinsic transverse momentum distribution of

the quark and antiquark inside their parent hadrons.
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2.1 Experimental view

That the parton model description is inadequate in reality

(and hence in QCD) is shown by the data in Fig. 1. The

graphs also contain several QCD fits to the data. In plot (a)

is shown E dσ/d3q from the E605 experiment at relatively

low Q = 7–18 GeV and
√

s = 38.8 GeV. The width is

around 1 GeV.

In plot (b) is shown dσ/dqT from the CDF experiment

for Z production at
√

s = 1800 GeV. This has a much

larger width, around 3 GeV. This value is much larger than

for the lower energy data, and it also appears incompatible

with any reasonable distribution of purely intrinsic trans-

verse momentum. It indicates substantial evolution effects,

a specific effect of QCD and other gauge theories.

There is an apparent dramatic difference between the

plots at qT = 0. This is merely an artifact of the normaliza-

tion of the plotted cross section: Plot (b) has an extra factor

of qT, which gives a kinematic zero at the origin; for this

plot a sensible measure of the width of the distribution is

the position of the peak.

The values of parton x are characterized by the ratio

Q/
√

s, which is quite different for the two plots. So inter-

preting the difference between the widths as being associ-

ated with evolution with respect to Q is not totally unam-

biguous; this is recurrent problem. Actual fits [1, 2] use

other data as well, and appear to unambiguously manifest

that there is Q dependence at fixed x.

2.2 Need for evolution from QCD

That QCD requires substantial modifications to the parton

model is shown on the theoretical side by examining typi-

cal graphs that contribute. In Fig. 2(a) is shown the graph-

ical structure of the amplitude for the Drell-Yan process

in the parton model. One quark or antiquark out of each

of the high-energy incoming hadrons annihilates to make

the Drell-Yan pair; the remaining “spectator” parts of the

hadrons continue into the final state unchanged, with a big

rapidity gap between them. In the parton model, other con-

tributions are assumed to be power suppressed.
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Figure 1. The transverse-momentum distribution in the Drell-

Yan process at different values of Q and
√

s, showing data from

the E605 and CDF experiments, together with some fits to the

data using TMD factorization. (Adapted from plots by Landry et

al. [1].)
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Figure 2. For the Drell-Yan process: (a) Parton model graphs;

(b) Examples of leading QCD graphs.

However, in QCD there are many other contributions

that are not suppressed, as in the example in Fig. 2(b).

First, there are final-state interactions that must exist to

neutralize the color of the spectator parts. Also, many fur-

ther contributions exist: Gluons of any rapidity within the

kinematic range set by the incoming hadrons can connect

any of the other lines, including all of: the active quarks,

Fourier trans. of 〈p|ψ̄ WL ψ|p〉
Figure 3. Examples of graphs for parton density with Wilson

line.

the spectator parts, and the final-state interaction compo-

nent. Individual graphs do not give a factorized structure.

But at leading power in Q, Ward identities and other meth-

ods can be used to convert the sum over graphs to a fac-

torized form. The Ward identities are somewhat unusual,

and details can be found in [3, Sec. 11.9]. (Earlier lit-

erature is lacking fully explicit formulations and proofs.)

One consequence is that the parton densities must be de-

fined with Wilson lines, as in Fig. 3. Effectively the Ward

identities convert misattached gluons, that link regions of

the graph with opposite rapidities, to attachments to Wil-

son line operators. Further complications involve potential

double counting of contributions from different kinematic

regions of internal momenta, which must be suitably com-

pensated, and the presence of a soft factor that in recent

formulations is absorbed into a redefinition of the TMD

densities.

The actual definition of the parton densities is such that

the parton densities have extra scale arguments, and must

evolve with energy. QCD thereby substantially violates

the prediction of the pure parton model that the shape of

transverse-momentum distribution scales with energy. The

broadening arises because gluons are emitted roughly uni-

formly into the available range of rapidity, which increases

with energy. This applies to both perturbative and non-

perturbative gluons.

3 TMD factorization (modernized
Collins-Soper form)

In this section I summarize the formulae of TMD factor-

ization in the form I gave in [3]; detailed proofs were given

there. Then then I remark on the location of the non-

perturbative information.

3.1 TMD factorization

The factorization formula itself for the Drell-Yan cross

section is

dσ

d4q dΩ
=

2

s

∑
j

dσ̂ j j̄(Q, μ)

dΩ
×

×
∫

eiqT·bT f̃ j/A(xA, bT; ζA, μ) f̃ j̄/B(xB, bT; ζB, μ) d2bT

+ poln. terms + high-qT term + power-suppressed. (1)

Here, dσ̂ is the hard scattering coefficient, while the

f̃ j/H(x, bT; ζ, μ) are TMD parton densities Fourier trans-

formed into transverse coordinate space. We can set their

scale parameters to ζA = ζB = Q2, μ = Q.
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The evolution equations are

∂ ln f̃ f /H(x, bT; ζ; μ)

∂ ln
√
ζ

= K̃(bT; μ), (2)

dK̃
d ln μ

= −γK(αs(μ)) , (3)

d ln f̃ f /H(x, bT; ζ; μ)

d ln μ
= γ f (αs(μ); 1) − 1

2
γK(αs(μ)) ln

ζ

μ2
.

(4)

Here, K̃(bT; μ) is a defined function that controls the evolu-

tion of the TMD pdfs and fragmentation functions of light

quarks with respect to the ζ parameter.

In the parton model, the integral over all transverse

momentum of a TMD parton density is the corresponding

integrated, or collinear parton density. Equivalently, when

the TMD densities are transformed to transverse coordi-

nate space, the integrated density equals the TMD density

at zero transverse separation. In any renormalizable quan-

tum field theory, this result generally needs to be modi-

fied. Instead, there is a kind of operator-product expansion

(OPE) that expresses the TMD density at small bT in terms

of the integrated densities:

f̃ f /H(x, bT; ζ; μ) =
∑

j

∫ 1+

x−
C̃ f / j(x/x̂, bT; ζ, μ, αs(μ))×

× f j/H(x̂; μ)
dx̂
x̂
+ O
[
(mbT)p] . (5)

The coefficients are perturbatively calculable provided that

the TMD densities are evolved to scales that avoid large

logarithms. The lowest-order value of the coefficients is

δ j f δ(x/x̂ − 1), which is the parton model result.

3.2 Location of non-perturbative information

The TMD-specific non-perturbative information is at

large-bT. Given the existence of the evolution equations,

the necessary information is

• In the parton densities at large bT f̃ j/A(xA, bT; ζA, μ) at

one particular scale. One may choose to label this

the “intrinsic transverse momentum” distribution if the

scale is low, although this terminology is not entirely

accurate.

• In the evolution kernel K̃(bT; μ) at large bT. This gives a

universal character to the evolution, and can be charac-

terized as giving the effect of “soft glue per unit rapid-

ity”.

Predictions for cross sections can only be made with the

aid of phenomenological fits for these functions, and/or

with the aid of non-perturbative theoretical modeling and

calculation. The predictive power of the formalism stems

from the universality of these functions: they can be mea-

sured from a limited set of data and used to predict cross

sections in many other situations, with the aid of evolution

and of perturbative calculations of the remaining quanti-

ties needed.

The OPE at small-bT also needs the values of the ordi-

nary integrated parton densities. These are obtained from

fits to other data than is relevant for TMD factorization.

This part of the non-perturbative information is therefore

the same as in collinear factorization.

4 Formalisms used

A list of some of the formalisms that have been used in

recent years is:

Parton model: Here QCD complications, especially

TMD evolution, are ignored.

Non-TMD formalisms: These eschew the use of TMD

densities in favor of collinear factorization and a resum-

mation of large logarithms in the massless hard scattering.

An old example is by Altarelli et al. [4]; a recent one is by

Bozzi et al. [5].

Original CSS: Here a non-light-like axial gauge was used

to define TMD densities without Wilson lines, and a soft

factor appeared in the TMD factorization formula.

Ji–Ma–Yuan [6]: They implemented the CSS method

with gauge-invariant TMD densities with non-light-like

Wilson lines. They still had a soft factor, and used another

parameter ρ beyond the scale parameters of CSS.

New CSS: Here [3] there is a clean up relative to the orig-

inal CSS version, Wilson lines are mostly light-like, and

(square roots of) the soft factor are absorbed into TMD

densities, in such a way that rapidity divergences associ-

ated with light-like Wilson lines cancel.

Becher–Neubert (BN) [7]: This work uses SCET. TMD

parton densities appear, but they are never finite.

Echevarría–Idilbi–Scimemi [8]: This is a SCET-based

formalism, but with a different regulator to handle the di-

vergences given by light-like Wilson lines than is used in

the CSS and BN formalisms.

Mantry–Petriello [9, 10]: Another SCET-based method.

Boer [11], Sun-Yuan [12, 13]: These authors start from

the CSS formalism, but make certain approximations. Sun

and Yuan use no non-perturbative function for TMD evo-

lution.

There is disagreement on size of non-perturbative con-

tribution to evolution, i.e., on the form at large bT of the

function that CSS call K̃(bT); there is even disagreement

as to whether this non-perturbative contribution exists.

5 Examination of some of the methods

5.1 Parton Model

The factorization formula (1) reduces to the parton model

formula when the hard scattering is replaced by its lowest-

order approximation, TMD evolution is ignored, and the
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high-qT correction term is ignored. The parton-model ap-

proximation is typically used to fit data at relatively low

energies compared with the earlier Drell-Yan fits. At these

energies, a particular interest is in fitting polarization-

dependent functions like the Sivers and Collins functions,

e.g., [14, 15]. Typically a Gaussian ansatz is used for the

shape of the TMD functions, e.g., [14].

The OPE (5) for the TMD densities at small bT shows

that the Gaussian ansatz cannot be exactly correct and that

the Gaussian ansatz will fail once large enough transverse

momenta are considered. But it evidently allows a good fit

to data at low energy.

The neglect of higher-order terms in the hard scattering

is reasonable, since αs(Q) is small. It is also reasonable

to neglect the high-qT correction when qT is small enough

compared with Q. However, in view of the TMD evolution

effects definitely seen at high Q, omitting evolution is not

correct when a broad enough range of Q is considered.

However, in reality it is found [16, 17] that the data

indicates that between the energies of the HERMES and

COMPASS experiments, TMD evolution appears to exist

but is weak. A complication in coming to this conclusion

is that in an experiment at fixed energy, x and Q are highly

correlated.

5.2 Methods without TMD functions

Some authors, e.g., Altarelli et al. [4] and Bozzi et al.

[5], eschew completely the use of TMD densities. They

use collinear factorization together with a resummation of

large logarithms of Q/qT in higher orders of the mass-

less hard scattering coefficient in the collinear factoriza-

tion framework. If this were fully justified, it would im-

prove predictive power, since the only non-perturbative in-

formation used is in the ordinary integrated parton densi-

ties.

However, the justification of collinear factorization

uses approximations for large Q that are valid only when

qT is of order Q or when qT integrated over. The logical

foundation fails when qT � Q. The errors in collinear fac-

torization relative to the true cross section are suppressed

by powers not only of Λ/Q but also of qT/Q. An impor-

tant symptom of this is that in the leading power “twist-

2” collinear factorization, the effects of Boer-Mulders and

Sivers functions are missed, whereas at low transverse mo-

mentum these functions given leading power effects. See

Ref. [18] for a good description of this last issue.

Further, in the resummation formalism, integrals over

scale include non-perturbative regions with, e.g., αs(k2) at

small k. A proper TMD factorization shows what to in this

region.

5.3 Original CSS

In the original CSS formalism [19, 20], TMD parton den-

sities were defined in a non-gauge-invariant way with use

of non-light-like axial gauge; this was used to cut off the

rapidity divergences that would appear if the most natu-

ral definition, with light-cone gauge, were used. The CSS

evolution formula, of the form of (2), gave the dependence

of TMD functions on this rapidity cut off. There was a

separate soft function in the factorization formula. Fur-

thermore the evolution equations have power-suppressed

corrections, which are dropped in phenomenological ap-

plications.

CSS recognized that there are non-perturbative effects

at large transverse distance bT. To separate these from

perturbatively calculable phenomena, they proposed [21]

their b∗ prescription. The combination of TMD factor-

ization, TMD evolution and the definitions of the TMD

densities etc determined what kinds of functions to use for

parameterization of non-perturbative parts of the cross sec-

tion.

Phenomenologically, classic fits to Drell-Yan with

5 GeV � Q ≤ mZ were made by Landry et al. (BLNY)

[1], and later by Konychev and Nadolsky (KN) [2].

On the theoretical side, a difficulty with the use of ax-

ial gauge to define parton densities is that the singularities

in gluon propagators prevent the direct use of the contour

deformations that are used in showing that the effects of

the Glauber region cancel in the inclusive Drell-Yan cross

section. CSS did not present an explicit solution to this

problem. Nevertheless the structure of the formula they

presented for the solution of the evolution equations re-

mains as an actually implemented method for comparison

with data, and agrees with later results.

5.4 Ji-Ma-Yuan

Ji, Ma and Yuan [6] converted the CSS formalism so that

the TMD densities were defined gauge-invariantly, with

non-light-like Wilson lines. Their factorization formula

still has a separate soft factor, like that of CSS. The way

in which they derived factorization entail the use of an ex-

tra (dimensionless) ρ parameter in the hard scattering etc,

with ρ being large. There are associated large logarithms,

and the ρ parameter is in addition to the scale parameters

of the CSS formalism. There should have been evolution

equation for ρ, but such an equation appears not to have

been given.

I know of no fits that actually use this scheme. Fits

continued to use the CSS method.

5.5 New CSS

In [3], I derived an updated, improved version of the CSS

results. On the theoretical side:

• Covariant gauge was used throughout, with suitable

Wilson lines in gauge-invariant definitions of all the

TMD functions.

• Full proofs (at least to all orders of perturbation theory)

were given, including a proof of cancellation of the ef-

fects of the Glauber region that applies both to collinear

and to TMD factorization. (This entails particular direc-

tions for the Wilson lines.)

• A square root of the soft factor was absorbed into each

TMD parton density and fragmentation functions (in a

rather unexpected, but unique way).
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• As many Wilson lines were made light-like as possible.

The limits are quite non-trivial to formulate, which is a

problem that stymied Ji, Ma and Yuan.

• The evolution equations are strictly homogeneous.

The result is substantially cleaner methods relative to the

original CSS work. From a phenomenological viewpoint,

the new results should be regarded as being at most a

scheme change from the original CSS method, as repre-

sented by the solution of the evolution equations.

5.6 Becher-Neubert

Becher and Neubert [7] obtained a kind of TMD factor-

ization in the framework of soft-collinear effective theory

(SCET) in the Beneke-Smirnov style. The results are in-

tended to be valid for large Q with qT � Q, but with a

restriction to qT � Λ (unlike the CSS framework, which

does not have this last restriction). By the restriction to

qT � Λ, they evade issues of a full TMD formalism and

the need for non-perturbative information at large bT. But

this also means that their method does not apply in the re-

gion of low qT, which is of much experimental interest.

Thus their methods also do not include the physics asso-

ciated with Sivers and Boer-Mulders functions, etc, which

at leading power show their characteristic effects primarily

in the region of non-perturbative qT.

Furthermore they could not define separate TMD pdfs;

only the product of two TMD pdfs was defined and free of

divergences. This represents an inadequacy of the Beneke-

Smirnov approach.

However, the Becher-Neubert method has given an im-

portant tool for NNLO calculations of the coefficient func-

tions in the OPE (5) — see [22, 23].

5.7 Echevarría–Idilbi–Scimemi

Echevarría, Idilbi and Scimemi [8] also obtained TMD

factorization in a SCET framework. Their methods are

characterized by the use of strictly light-like Wilson lines,

but with a different kind of regulator for the associated ra-

pidity divergences. (I do not think it obeys gauge invari-

ance, which causes considerable difficulty in constructing

full proofs. Full proofs of factorization make essential use

of Ward identities or some equivalent to combine and can-

cel non-factorizing terms from individual graphs.)

As with the method of [3], they absorb soft factors into

the definition of TMD parton densities, but in a simpler

way that depends on their methodology. Individual TMD

parton densities are defined, unlike the case for Becher and

Neubert’s approach.

In phenomenological fits, Gaussian parameterizations

are used for the TMD parton densities at an initial scale.

But a claim is made that non-perturbative information is

not needed in their equivalent of CSS’s K̃ function that

controls the evolution of the shape of TMD functions. In-

stead, for K̃, they use a resummation of perturbation the-

ory. This is applied up to a scale of bT = 4 GeV−1 = 0.8 fm

or beyond.

In Fig. 4 is shown an example of their results for K̃, in

various approximations.

1 2 3 4 5 6
b�GeV�1�

�1

0

1

2

3
DR

NNLL
NLL
LL

Qi � 2.4 GeV

Figure 4. Plot of DR(bT; Qi) = −K̃(bT; Qi), from Melis,

QCD Evolution 2014 workshop. Numerical results of three

approximations are shown: leading logarithm (LL), next-to-

leading-logarithm (NLL), and next-to-next-to-leading-logarithm

(NNLL).

6 Geography of evolution of cross section

The evolution of TMD parton densities in formulated mul-

tiplicatively in the space of transverse position. In Fig. 5

is plotted the bT-space integrand corresponding to the two

cross section plots in Fig. 1. Up to an overall normaliza-

tion factor, the integrand plotted is bT times the integrand

in the TMD factorization formula (1) when μ = Q. To

get the cross section, this integrand is to be multiplied by

the Bessel function J0(qTbT) and integrated over bT from

zero to infinity. In general, in going from low to high Q,

the peak region of the integrand migrates to ever-smaller

values of bT.

We now examine the plots with a black solid line

and a purple dot-dashed line. These correspond to fits

made to the same data by Konychev and Nadolsky [2]

with the same theoretical conditions except that bmax =

1.5 GeV−1 = 0.3 fm and bmax = 0.5 GeV−1 = 0.1 fm, re-

spectively, for the two lines. At lower energies, in graph

(a), the two plots do not differ greatly. At high energy,

in graph (b), the two lines match even more closely up to

about bT = 0.8 GeV−1, and then they diverge strikingly, so

that the line corresponding to the smaller value of bmax is

a factor of about two below the other line at the right-hand

edge of the graph. Although this is a large difference, it

occurs in a region where the integrand is small, so that the

large difference has little effect on the actual cross section.

The calculation of the cross section is dominated by much

smaller values of bT, which are in a perturbative region.

In both cases, the non-perturbative part of K̃(bT) was

parameterized by a quadratic function of bT, but the co-

efficient is substantially larger for the fit with the small

value of bmax = 0.5 GeV−1. The plot illustrates a general

phenomenon. Although the integral to get the cross sec-

tion needs an integral over all bT, up to ∞, there is little

sensitivity at large Q to the detailed properties of the in-

tegrand at large bT, and hence little sensitivity to the non-

perturbative dependence at large bT.

7 Standard fits of TMD evolution give bad
low-Q predictions

The standard fits (to Drell-Yan data at Q from 5 GeV to

mZ) use a quadratic form for K̃, K̃(bT, μ) ∝ −b2
T
, at large
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Figure 5. Plots of the bT-space integrands corresponding to the

cross section plots in Fig. 1. Adapted from plots by Konychev

and Nadolsky [2].

bT. When the TMD pdfs are evolved backwards, to lower

Q, this results in unphysical behavior. To see this, consider

the large-bT behavior of the integrand for the cross section,

as given in:

∫
d2bT eiqT·bT e−b2

T
[coeff(x)+const.×ln(Q2/Q2

0
)] . . . . (6)

The x-dependent coefficient is to be obtained from a stan-

dard Gaussian fit to data of TMD densities at some initial

scale. The coefficient with the ln(Q2/Q2
0) factor in the ex-

ponent results from applying the CSS equation (2) with a

quadratic fit for K̃(bT) at large bT.

At low enough Q, the coefficient of b2
T

in the expo-

nent reverses sign, so that the integral diverges at large

bT instead of converging. With the BLNY fit, this rever-

sal of sign occurs [13] in a region where there is data

and where it is reasonable to apply TMD factorization.

This is illustrated in Fig. 6. Even with the KN fit using

bmax = 1.5 GeV−1, which gives a smaller coefficient of b2
T

in K̃, the evolved exponent is well below what is needed

to fit HERMES data.

2 5 10 20 50
0.1

0.0

0.1

0.2

0.3

0.4

0.5

Q GeV

Figure 6. Coefficient of −b2
T in the exponent in Eq. (6), from Sun

and Yuan [13], as a function of Q at x = 0.1. The blue dashed

line is for the BLNY fit, and the red solid line for a KN fit with

bmax = 1.5 GeV−1. The dot represents the value needed for SIDIS

at HERMES.

8 Systematic analysis of non-perturbative
part of evolution

I propose the following assertions as a starting point to

resolve the apparent discrepancies and contradictions in

the literature, concerning K̃(bT) at large bT:

• This function (or something equivalent) is needed to im-

plement correctly the Q dependence of TMD cross sec-

tions.

• Surely bT above about 3 GeV−1 = 0.6 fm is in domain

of non-perturbative physics, since we know that the size

of the proton is about 1 fm.

• It is difficult to avoid confounding x-dependence with

Q-dependence of transverse-momentum distributions.

In measuring K̃ one must be careful to analyze data with

different Q at the same value of parton x.

• Fig. 6 strongly suggests that evolution of the shape of

TMD parton densities slows down at lower Q compared

with what happens in the data fit by BLNY and KN.

• Low Q involves larger (more non-perturbative) bT than

high Q.

I propose the following general guidelines for modify-

ing current parameterizations:

• One should assume that the KN form (with its b2
T

form)

is appropriate only for moderate bT, to fit the higher

energy DY data correctly. KN is preferred here over

BLNY both because it gives a better fit, and because its

value bmax = 1.5 GeV−1 = 0.3 fm is not excessively con-

servative.

• As can be seen from Fig. 5, the data used for the KN

and BLNY fits constrain K̃ mostly at bT below about

2 GeV−1.

• But K̃(bT) should flatten out at the higher values of bT

that are relevant for lower Q experiments (HERMES and

COMPASS, etc).

9 K̃ at large bT

9.1 Basic issues

In this section, I make some remarks on issues about pa-

rameterizing the large bT behavior of K̃. Within the CSS
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Figure 7. The components of K̃ in (7). It is evaluated with the

KN parameters for bmax = 1.5 GeV−1 = 0.3 fm. The dashed line

is the cutoff version K̃(b∗, μ), calculated by perturbation theory

and a standard renormalization-group (RG) improvement. The

red solid line is the same thing but with bmax = ∞, i.e., it is pure

RG-improved perturbation theory. It has a divergence at a finite

value bT because of the Landau pole in the coupling; perturbation

theory is evidently incorrect there. The solid black line gives the

full KN result including the quadratic fitted gK function.

b∗ prescription, one has

K̃(bT, μ) = K̃(b∗, μ) − gK(bT; bmax), (7)

where

b∗ =
bT√

1 + b2
T
/b2

max

. (8)

In Eq. (7), K̃(b∗, μ) is intended to be always perturbative,

and all non-perturbative behavior is parameterized in the

function gK . To illustrate this, Fig. 7 shows the decompo-

sition of K̃ with the KN fit.

The fitted value of the gK function corrects the cut-off

perturbative term, K̃(b∗, μ), and brings the result for the

full K̃ back to its RG-improved perturbative value for bT

up to around bT = 2 GeV−1; only at higher bT does its

curve move away from the diverging pure-PT line. One

could therefore argue that the fitting has simply repro-

duced perturbatively calculable behavior in this extended

region, i.e., up to around bT = 2 GeV−1, perhaps also

that the b∗ method could be improved, and perhaps that

bmax = 1.5 GeV−1 is still too conservative.

9.2 A possible parameterization

One naive idea is that instead of b2
T
, one uses the following

parameterization for gK :

C
[√

b2
T
+ b2

1
− bT − b1

]
. (9)

This goes to a constant as bT → ∞. There are two param-

eters in (9). Better parameterizations can be found.

9.3 Simple ideas for physics constraints on large
bT behavior

Given the evolution equation (2), one can characterize

K̃(bT) as quantifying the effects of the emission of glue

for each extra unit of available rapidity, when the energy

of an experiment is increased, at fixed x.

So, for extra rapidity range Δy, let

• 1 − cΔy = probability of no relevant emission

• cΔy = probability of emitting particle(s)

• So another possibility for the non-perturbative part of K̃
is

K̃(bT)NP = FT of c
[
−δ(2)(kT) + e−k2

T
/k2

0 T/(πk2
0 T)
]

= c
[
−1 + e−b2

T
k2

0 T
/4
]
. (10)

Here, I have made an ansatz that the transverse-momentum

distribution of non-perturbative particle emission at low

transverse momentum is Gaussian, motivated by com-

monly used parameterizations.

We get yet another parameterization, now with

quadratic behavior at small bT, and a non-infinite limit

when bT → ∞.

Perhaps an exponential at large bT instead of a Gaus-

sian would be better, given known general behavior of cor-

relation functions at large Euclidean distances, as argued

by Schweitzer, Strikman and Weiss [24].

10 Tool to compare different methods:
The A function

In a separate talk, I proposed a tool that can conveniently

be used to quantitatively compare different methods for

TMD factorization in a scheme-independent way. It will

be described in much more detail in a forthcoming paper

with Ted Rogers.

The motivation arises as follows:

• The shape change of transverse momentum distribution

comes only from bT-dependence of K̃ in the CSS for-

malism, or from some similar quantity.

• Generally in any TMD factorization scheme, the cross

section can be written as a Fourier transformation:

dσ

d4q
= normalization ×

∫
eiqT·bT W̃(bT, s, xA, xB) d2bT

(11)

• So let us define a scheme-independent function1

A(bT) = − ∂

∂ ln b2
T

∂

∂ ln Q2
ln W̃(bT,Q, xA, xB)

CSS
= − ∂

∂ ln b2
T

K̃(bT, μ), (12)

where the second line gives its value in the CSS method.

• QCD predicts that this function is:

– independent of Q, xA, xB,

– independent of light-quark flavor,

– RG invariant,

– perturbatively calculable at small bT,

– non-perturbative at large bT.

1The function was called L in the talk. But is now renamed A because

of its essential identity with a function of the same name but different

arguments in [21].
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It will be useful to compare the values of A(bT) that

correspond to fits and formula in the different articles on

the subject of TMD factorization and evolution. The val-

ues of parameters where discrepancies occur can be used

as a diagnostic: To show which experimental data will

be most incisive in arbitrating the correctness of different

treatments, and to diagnose which treatments are in dis-

agreement with QCD and whether the disagreements are

significant.

11 Concluding remarks
• Surely we need non-perturbative contributions to TMD

factorization. The values of bT that are important

in the Gaussian parameterizations of TMD densities

are in a region not far from the proton size. Every-

body agrees that some parameterization of the non-

perturbative properties of TMD densities is needed to

describe data at low enough transverse momentum (and

hence at large bT).

• Therefore one must also understand their evolution in

this same non-perturbative region of large bT.

• According to established theorems, evolution of TMD

functions is governed by a single universal function, K̃
or some equivalent.

• Extrapolation of earlier DY fits to use them at the values

of bT relevant for lower energy SIDIS is incorrect.

• It is essential to use better parameterizations of K̃ so

that at large bT its functional form flattens. The parame-

terizations should be such that they retain compatibility

with the evolution measured in Drell-Yan experiments,

where substantially smaller values of bT are important

compared those needed for the data from the HERMES

and COMPASS experiments.

• Physical and phenomenological arguments were given

in support of these assertions.

• It is necessary to redo global fits with better parameteri-

zations, and a clear sense of which data are relevant for

which regions of transverse position bT.

• In testing and measuring TMD evolution it is essential to

ensure that the data being compared are at fixed x with

different Q.

• A large coefficient for the b2
T

term in K̃ (and gK) at large

bT causes substantial dilution of the Sivers asymmetry,

etc, at large Q, thereby requiring greater sensitivity in

future higher-energy experiments. Getting improved un-

derstanding and measurements of the non-perturbative

part of TMD evolution is important to planning these

future experiments.
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