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Chapter 1

Introduction

110 years after the discovery of atomic nucleus by Ernest Rutheford [1], the theory of atomic
nucleus, simple in its fundamental ideas and explaining large amount of experimental facts, is still
missing. The field is governed by often disconnected approaches, and the best what one may expect
at present is building the comprehensive links between them. This realistic look should not prevent
us from stressing the importance of the ’silent revolution’, which started at the turn of the century
and led to the rapid change of objectives of the nuclear theory and the evolution of its paradigms.
Several new ideas and approaches were born at around the same time, which strongly influenced the
evolution of nuclear theory for almost two decades. These are: (i) the new many-body approaches,
such as the no-core shell model [2–4], the Gamow shell model (GSM) [5–7], the no-core shell
model combined with the resonating group method [8,9], the no-core Gamow shell model [10], the
no-core shell model with continuum [11, 12], the lattice effective field theory [13–15], etc., (ii) the
old many-body approaches revisited, such as the density functional theory [16], the shell model
embedded in the continuum (SMEC) [17–20], the coupled-cluster theory in Berggren basis [21–25],
the density-matrix renormalization group method [26–28], etc., (iii) the new approaches to effective
interactions, such as the chiral effective field theory [29], the in-medium similarity renormalization
group approach [30–33], etc. This impressive list of achievements, given here in the historic ’order
of appearance’, is by far not exhaustive and confirms the vitality of the nuclear theory.

The present situation reminds the glorious period from the end of forties to the end of sixties,
which gave birth to the nuclear shell model (SM), the microscopic optical potential, the unified
(Copenhagen) model of nucleus, the continuum shell model (CSM), the pairing interaction, the
G-matrix, the coupled-cluster theory, the Skyrme force, and many others. Is the present-day
renaissance of nuclear theory going to last longer than the previous renaissance of fifties? Is it
going to lead to the lasting change of the paradigms in nuclear theory? or it will dry up, evolving
into the period of innumerable precision calculations, as experienced before?

The evolution of paradigms in nuclear theory is seen mainly: (i) in the approach to in-medium
nucleon-nucleon interaction, with developments in connecting QCD with nuclear structure, and
affirmation of the significance of three (and higher) -body interactions, (ii) in the development
of new ab initio many-body theories for structure and reactions, and (iii) in the extension of
nuclear shell model for open quantum systems, with attempts to reconcile description of structure
and reactions in low-energy continuum.

The first two items are closely related, i.e. both aim at solving the same fundamental questions:
how the strong interaction described by QCD is responsible for binding protons and neutrons into
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nuclei?, how the shell structure arises from fundamental interactions and how it evolves across the
nuclear landscape?, what is the origin of simple patterns and collective excitations in nuclei?, how
the phenomenologically successful nuclear SM derives from the modern ab initio theories?, etc.

The third item reaffirms the role of continuum in structure aspects of nuclei by means of the
configuration interaction approach which is valid for bound and unbound nuclei, hence completing
and validating the standard nuclear SM. In this formulation, comprehensive and validated theory
of nuclei is on the horizon, allowing for the shell model treatment of both weakly bound/unbound
states and reaction channels, or an investigation of the collectivization of nuclear wave functions
as a result of interplay between internal mixing by interactions and external mixing via the decay
channels. Moreover, the unification of structure and reaction aspects of nuclei became possible,
and several crucial questions can be now addressed meaningfully, such as: how are the near-
threshold cluster configurations born in nuclei?, what is the interplay between continuum and
isospin-breaking effects?, what is the role of coalescence of eigenfunctions in the continuum?,
what is the common origin of resonance trapping and super-radiance phenomenon?, is the random
matrix theory justified?, what is the essential input for developing the "universal" optical model
potential?, how to take consistently into account breakup and transfer channels?, and how far can
surrogate reactions take us?, i.e. is (d,p) going to inform us about (n,γ)?, etc.

The work presented in this manuscript is a part of the latter efforts to describe the atomic
nucleus as an open quantum system. The immense richness of the nuclear many-body problem
stems from its genuine multi-scale character and underlying effective many-body interactions that
are strongly mediated by the nuclear medium. Further complexity is added by the open quantum
system nature of the atomic nucleus, which requires a treatment of bound states, resonances, and
the continuum of scattering states within a unified framework. To formulate the shell model for
open quantum systems, two frameworks have been proposed. The first one, the real-energy CSM
in the Hilbert space [34–41], is based on the Feshbach’s projection formalism [42,43]. The second
one, which will be discussed in this manuscript, is the GSM [5–7], which is the complex-energy
CSM based on the Berggren ensemble [44–46]. The GSM, which is conveniently formulated in the
rigged Hilbert space [47–49], offers a fully symmetric treatment of bound, resonance, and scattering
states.

At low excitation energies, well-bound nuclei can be considered as closed quantum systems,
well described by the standard SM or its modern versions such as the no-core shell model. Moving
towards drip lines, or higher in excitation energy, the continuum coupling becomes gradually more
important, changing the nature of weakly bound states. In this regime, the chemical potential has a
similar magnitude as the pairing gap; hence, the system is dominated by many-nucleon correlations
which no longer cannot be considered as small perturbations atop the average potential. Many-
body states in neighboring nuclear systems with different proton and neutron numbers become
interconnected via continuum, forming correlated domains of quantum states.

Exact numerical simulation of a complex many-body system is not equivalent to understanding
its properties. The understanding of specific nuclear properties is often improved by considering
exactly solvable models, motivated by a symmetry of the many-body system. Many such simple
models have been discussed for bound atomic nuclei. However, no such models exist for nuclei
considered as open quantum systems. In the first part of the thesis, we will generalize the rational
Gaudin pairing model [50] to include the continuous part of the single-particle (s.p.) spectrum,
and then derive a reliable algebraic solution which generalizes exact Richardson solution for bound
states [51, 52]. In future, numerous applications of these generalized Richardson equations are
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CHAPTER 1. INTRODUCTION

possible (i) to study spectra and transition probabilities in different conditions of binding, (ii)
to study the spectroscopy in a long chain of isotopes, or (iii) to calculate pairing properties of
unstable ultra-small superconducting grains.

The formulation of reaction theory rooted in GSM will be discussed in the second part of the
manuscript. For that the GSM will be expressed in the basis of reaction channels and generalized
for multi-nucleon projectiles. Our aim is to develop the microscopic approach which will be capable
to describe the transfer reactions. This reaction theory respects the antisymmetrization of target
and projectile wave functions, as well as the wave function of the combined system. The application
will be presented for the reaction 14O(p,p’)14O, where the combined system 15F is a proton emitter.

The manuscript is organized as follows. In Secs. 2.1 and 2.2, we discuss the basic features
of the GSM, the construction of the s.p. basis, the choice of the optimal coordinate system, and
the regularization of diverging integrals involving continuum states. Sec. 2.3 is devoted to the
formulation of the pairing model in the space of discrete and continuum states and solving it by
generalizing the Richardson equations for fermions and bosons.

Chapter 3 is devoted to the discussion of the application of GSM approach to nuclear reactions.
In Sec. 3.1, the real-energy CSM/SMEC approach for structure and reactions is shortly discussed.
In the next section (Sec. 3.2), the coupled-channel (CC) formulation of GSM is discussed in
details. This GSM-CC formulation enables to formulate the unified theory of nuclear structure and
reactions. Sec. 3.3 collects the presentation of different numerical methods to solve CC equations
of the GSM-CC approach for both local and non-local potentials calculated microscopically for
a given Hamiltonian. More technical parts of this thesis and some derivations concerning the
material of chapters 2 and 3 are contained in the appendices.

Finally, main conclusions of this work and a list of future perspectives are given in chapter 4.
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Chapter 2

Structure description of bound,
weakly bound and unbound systems
in nuclear physics

One of the early observation of the atomic nuclei concerns fluctuations in the relative abun-
dances and masses/separation energies in the periodic table. It has been shown that these fluc-
tuations are associated with particular values of the neutron N and proton numbers Z, called
the “magic numbers” [53–55]. This relation is at the origin of the first version of the shell model
(SM) [56] wherein independent protons and neutrons fill orbitals associated with the specific quan-
tum numbers. Magic numbers of nucleons in this model always correspond to the gain in binding
energy. This ’atomic’ version of the SM failed to reproduce magic numbers of nucleons and binding
energies of nuclei [57]. Later, following the suggestion of Enrico Fermi, the SM was modified by
Göppert-Mayer [58,59] and independently by Haxel, Jensen and Suess [60] to include the spin-orbit
coupling term. In this version, the SM succeeded to reproduce the magic numbers of nucleons and
the order of shells.

The interaction between nucleons in this independent particle nuclear SM is approximated by
the average potential and the spin-orbit coupling term. The description of nuclear spectra was
achieved in the SM by introducing the configuration interaction between various arrangements
of nucleons in different shells, respecting the Pauli exclusion principle [61–63]. The model was
completed by Brueckner [64] who reconciled the picture of independent nucleons moving in the
shells of an average potential with the picture of strongly interacting nucleons obeying Pauli prin-
ciple. (More about the history of nuclear SM can be found in Ref. [65]. A recent review of SM
applications for complex spectra is given in Refs. [66, 67].) In spite of the formidable develop-
ment of ab initio approaches, such as the no-core (Gamow) shell model [2, 3, 10, 68], the coupled
cluster theory [69, 70], the self-consistent Green’s functions approach [71–77], or the in-medium
similarity renormalization group method [30–33], the nuclear SM still remains the cornerstone of
our understanding of atomic spectra.

The tremendous success of SM in the description of well-bound nuclei lead to the separation of
nuclear structure and nuclear reactions. The drawbacks of this separation have been pointed out
early [78] as it became clear that the microscopic description of nuclear reactions depends on inter-
nal structure of colliding nuclei, and the SM fails to describe resonances and near-threshold states.
We know now that the coupling to the continuum can deeply affect the many-body dynamics
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CHAPTER 2. STRUCTURE DESCRIPTION OF BOUND, WEAKLY BOUND
AND UNBOUND SYSTEMS IN NUCLEAR PHYSICS

and gives rise to new phenomena, such as the two-proton [79–82] and two-neutron [83, 84] de-
cays, the formation of halo structures and Borromean systems [85–87], the appearance of doorway
states [88, 89] and trapped resonances [90], or the clusterization in the vicinity of the correspond-
ing cluster emission threshold [91–93]. In the past two decades, these exotic phenomena became
important topics of the experimental investigations.

The recent developments of new radioactive ion beam facilities provide the strong impulse
for the development of new theoretical approaches dealing with the continuum. Early attempts
based on the Feshbach projection formalism [94], led to the continuum shell model (CSM) [34–41]
and the shell model embedded in the continuum (SMEC) [17–20, 95] which have been successful
to describe exotic phenomena involving at most the two-nucleon decay channels. An alternative
approach, which will be discussed in this chapter, is the SM in the complex-energy plane, the
so-called Gamow shell model (GSM) [5–7]. This model combines all advantages of the standard
nuclear SM with the possibility to deal with any number of particles in the scattering continuum.
The GSM is using Berggren ensemble [44–46] to build Slater determinants and henceforth, the
many-body wave functions. Wave functions in this approach are the quasi-stationary solutions of
the time-dependent Schrödinger equation with the outgoing boundary conditions.

The GSM provides a comprehensive description of the many-body wave functions in all regimes
of the binding energy. Eigenfunctions of the resonant states are the poles of the scattering matrix,
and in that sense, GSM contains the necessary ingredients to unify the theory of nuclear structure
and reactions. One should mention also other approaches which attempt to describe nucleus as
an open quantum system. These are the coupled cluster theory [21–25] in Berggren basis, and the
no-core shell model with continuum [11,12] which resembles the SMEC approach and relies on the
resonating group method [8, 9] to calculate channel wave functions.

The first part of this chapter is devoted to the discussion of the GSM, the configuration in-
teraction approach for weakly bound and unbound nuclei. In Sec. 2.1, we remind shortly the SM
formalism. The following section (Sec. 2.2) is devoted to the open quantum system generalization
of the SM; we present the GSM and discuss limitations of the Hilbert space description of open
quantum systems. In Sec. 2.2.1, an extension of Hilbert space, the so-called rigged Hilbert space
or Gel’fand triple, is briefly presented. Then in Sec. 2.2.2, we introduce Gamow states. Different
methods to regularize Gamow states and their application in Berggren single particle (s.p.) basis
are discussed in Sec. 2.2.3.

The application of cluster orbital shell model (COSM) coordinates in GSM is discussed in Sec.
2.2.4. We will show that the center-of-mass (c.m.) excitations can be approximately removed if
the GSM Hamiltonian is expressed in COSM coordinates. The construction of the complete one-
and many-body bases is then discussed in Secs. 2.2.5 and 2.2.6, respectively. Finally, in Sec. 2.2.6,
we will list previous applications of the GSM.

In the second part of this chapter (Sec. 2.3), we will present the generalized Richardson
equations for fermions and bosons which are interacting with a pairing interaction in bound and
unbound s.p. levels. The mathematical framework of these equations, including a short introduc-
tion to the Richardson-Gaudin model and the connection between the XXX model of Gaudin and
the pairing model, are discussed in Secs. 2.3.1 and 2.3.2. In Sec. 2.3.3, we generalize the pairing
Hamiltonian in Berggren basis and derive the generalized Richardson equations which provide the
approximate solution for this model (Sec. 2.3.4). The numerical method to solve the generalized
Richardson equations are then discussed in Sec. 2.3.5.

In Sec. 2.3.6, results obtained using the generalized Richardson equations are compared with
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2.1. NUCLEAR SHELL MODEL

the exact GSM solutions of the pairing problem. Our aim is to estimate the reliability of the
generalized Richardson equations in different regimes of the pairing interaction for different s.p.
bases and number of particles. In the following section (Sec. 2.3.7.1), we apply these equations
to calculate binding energies and spectra of carbon isotopes. In these studies, we compare results
obtained with and without continuum couplings to see effects of the continuum in the spectra of
the pairing Hamiltonian. Finally, a possible application of the generalized Richardson equations
for the studies of unstable ultra-small superconducting grains will be shortly discussed in Sec.
2.3.7.2.

2.1 Nuclear shell model
The one-body part of the SM Hamiltonian consists of an isotropic harmonic oscillator potential

plus a spin-orbit coupling term:
U(r) = 1

2
mω2r2 + Vso ⃗̀.s⃗ (2.1)

where here m is the mass of physical object which generates the mean potential, and ⃗̀, s⃗ the
orbital angular momentum and intrinsic spin, respectively. Even if this potential (2.1) is sufficient
to reproduce observed magic numbers of nucleons, it fails to explain nuclear spectra. For that,
one should consider the configuration interaction, i.e. introduce the two-body interaction. In
laboratory coordinates, the Hamiltonian reads :

Ĥ =
A

∑
i=1
t̂i +

A

∑
i<j
V̂ij (2.2)

where t̂i is the kinetic energy operator, and V̂ij is the residual two-body interaction. In most cases,
we can limit ourselves to the two-body interaction in (2.2), but many recent studies stress the
importance of the three-body interaction [96–103].

In standard SM calculations, completely filled shells form an inert core, so that the configuration
mixing involves only nucleons in the valence shells. In such a description, the Hamiltonian can be
written as:

Ĥ = Ĥc + ∑
i∈val

(t̂i + Û core
i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥbasis

+ ∑
(i<j)∈val

V̂ij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V̂

(2.3)

where Ĥbasis is the one-body Hamiltonian which generates the s.p. basis, and V̂ the two-body
interaction which generates the configuration mixing. In Eq. (2.3), Ĥc is the Hamiltonian of the
core, and Û core

i the one-body potential generated by the core and felt by the valence nucleons.
They are defined as :

Ĥc = ∑
i∈core

t̂i + ∑
(i<j)∈core

V̂ij and ∑
j∈core

V̂ij → Û core
i (2.4)

The one-body potential Û core
i = U(r̂i) is the same as in Eq. (2.1).

Well bound many-body states of a nucleus can be conveniently described in the harmonic
oscillator basis. For weakly bound or unbound states, an explicit consideration of continuum states
in the many-body framework is mandatory. For example, an understanding of the near-threshold
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correlations [91, 92] is missing in SM due to the absence of branch points singularities associated
with the particle emission thresholds [104]. The standard procedure to break this deadlock is to
include effects of the continuum effectively by adjusting the matrix elements of the Hamiltonian.
We will discuss this point in Sec. 2.3.7.1. The application of this recipe became an obstacle in
learning about the role of the continuum coupling and the three- (many-) body interaction, or
the salient features of the near-threshold collectivity. In the following sections of this chapter,
we present the open quantum system formulation of the SM, the GSM, and in the next chapter
we will show how to formulate the comprehensive reaction theory which is rooted in this general
nuclear structure approach.

2.2 Gamow shell model
In this previous section, we have reminded main features of the SM. We have stressed that this

model is adapted for the description of well bound many-body states. The open quantum system
extension of SM in the rigged Hilbert space, the GSM, and mathematical details of its formulation
will be contained in this section.

2.2.1 Rigged Hilbert space

The mathematical apparatus of the Hilbert space H is sufficient to describe discrete states
of a bounded quantum system. Problems arise if the spectrum of the quantum system contains
both discrete and continuous parts. Resonances, which appear in this case, neither belong to the
Hilbert space nor they are solutions of the hermitian eigenvalue problem.

Resonances are genuine intrinsic properties of quantum systems, associated with their natural
frequencies, and describing preferential decays of unbound states. The standard formulation of
quantum mechanics in Hilbert space does not allow the description of state vectors with exponential
growth and exponential decay, such as resonance states. Since the spectrum of an observable in
the Hilbert space is real, the usual procedure for treating resonance states is either to extract the
trace of resonances from the real-energy continuum level density or to describe the resonances by
joining the bound state solution in the interior region with an asymptotic solution, e.g., within
the R-matrix approach [105–107].

The deficiency of the Hilbert space formulation of quantum mechanics is obvious if one con-
siders the operators, like the position Q̂ and momentum P̂ operators, which have the continuous
spectrum:

P̂ ∣p⃗⟩ = p⃗ ∣p⃗⟩ with −∞ < ∣∣p⃗∣∣ < +∞
Q̂ ∣r⃗⟩ = r⃗ ∣r⃗⟩ with −∞ < ∣∣r⃗∣∣ < +∞ (2.5)

Their wave functions: ⟨r⃗∣p⃗⟩ = 1
(2πh̵)3/2

e
i
h̵
p⃗.r⃗ and ⟨r⃗′∣r⃗⟩ = δ(r⃗′ − r⃗), are not square integrable and

hence, do not belong to the Hilbert space.
In the twenties of the last century, Dirac introduced a new mathematical formalism for quantum

mechanics, with objects such as bras and kets. As noticed by Dirac and von Neumman [108,109],
this formalism is not compatible with the standard formulation of quantum mechanics.

All these different difficulties of the standard quantum mechanics could be overcome using an
extension of the Hilbert space, the so-called rigged Hilbert space. Mathematical apparatus of the
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rigged Hilbert space has been formulated in sixties by Gel’fand, Maurin and Böhm [47–49]. The
rigged Hilbert space, also called the Gel’fand triplet or equipped Hilbert space, is a triad of spaces:

Φ ⊂ H ⊂ Φ× (2.6)

The subspace Φ is the set of physical wave functions on which any expectation value, any uncer-
tainty and any commutator can be computed. The dual space Φ× contains eigenvectors associated
with the continuous spectrum of the observables. These eigenvectors are defined as functionals
over the subspace Φ, and they can be used to expand any elements of Φ. Mathematically, Φ is the
subspace of test functions, and Φ× is the space of distributions.

The Hilbert space H does not play any particular role in the rigged Hilbert space formalism,
i.e. in all considered cases one needs only the dual pair of spaces Φ ⊂ Φ× which characterize
the quantum system. The rigged Hilbert space provides a better framework than H to capture
features of quantum systems. It provides a convenient setting for Dirac brackets as well as for
vectors and wave functions associated with the continuous spectra. Moreover, the rigged Hilbert
space provides a natural framework for a quantum-mechanical description of Gamow states because
Φ× may contain the generalized eigenvectors for observables having complex eigenvalues. Hence
the open quantum system generalization of the SM, the GSM, finds a natural place in the rigged
Hilbert space.

2.2.2 Gamow states

Experimentally, resonances often appear as peaks in the cross section. For isolated resonances,
their shape resembles the well-known Breit-Wigner distribution which has two parameters: the
centroid, which defines the resonance energy En, and the width Γn at half-maximum. In 1928,
George Gamow proposed the quasi-stationary formalism based on quantum tunneling to describe
the spontaneous particle emission [110]. In this model, decaying states (Gamow states) are char-
acterized by the complex-energy eigenvalues:

Ẽn = En − i
Γn
2

(2.7)

Let us now show the connection between the width of a decaying state and its half life. Let the
number of nuclei at t = 0 before the decay takes place is N0. Then, the number of remaining nuclei
at a time t > 0 is given by:

N(t) = N0S(t) (2.8)

where S(t) is the survival probability, i.e. the probability to find the nucleus at a time t > 0, which
is defined as:

S(t) = ∫ ∣ ⟨r⃗∣ e−
i
h̵
Ent ∣Ψn⟩ ∣

2
d3r⃗ = e−

Γn
h̵
t∫ ∣Ψ(r⃗)∣2d3r⃗ = e−

Γn
h̵
t (2.9)

where ∣Ψn⟩ is the eigenstate and Ẽn the associated eigenvalue. This shows that the Gamow states
decay exponentially, and one can identify the parameter Γ with the decay width which defines the
half-life of the state:

T1/2 =
h̵ ln(2)

Γ
(2.10)

One should stress that the counterpart of this exponential temporal decrease is the exponential
growth of the radial wave function at large distances to ensure the flux conservation [110]. Although
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resonances have a finite lifetime and their radial wave function diverges, it is possible to assign
the standard labels of stationary eigenstates, like angular momentum, charge, spin, parity, etc. to
them.

Resonances represented by Gamow states are also poles of the scattering matrix (S-matrix).
The S-matrix was introduced in the scattering theory to connect the asymptotic behavior of the
scattered wave function between the past and the future. Various poles of the S-matrix in the
complex energy plane can be identified with bound states, antibound (virtual) states, capturing
and decaying resonances.

The (complex) eigenenergy Ẽn of the system, corresponds to the wave number:

k̃n =

√
2mẼn
h̵2 = kn − iγn (2.11)

where m is the particle mass. For a decaying resonance, kn, γn > 0. At long distances, the radial
part of the wave function is proportional to:

eik̃nr = eiknreγnr (2.12)

and increases exponentially. The pole of the S-matrix corresponding to the decaying resonance is
situated in the forth quadrant of the k-plane.

The states with k̃n = −kn − iγn and kn, γn > 0 are called the capturing resonances. They are
situated in the third quadrant of the k-plane, and their radial wave function has the following
asymptotic behavior:

eik̃nr = e−iknre−γnr (2.13)

Capturing resonances are obtained by a time reversal operation t→ −t applied to decaying reso-
nances [49].

States with k̃n = −iγn and γn > 0 are called antibound or virtual states [111–114]. Asymptoti-
cally, the radial wave function of an antibound state grows exponentially:

un(r) ∼ eik̃nr = eγnr (2.14)

The physical interpretation of the antibound state is not so straightforward. In the standard
quantum mechanics, antibound state can be considered as a feature of the system rather than a
state. In the rigged Hilbert space, the antibound state can be interpreted both as a vector in the
rigged Hilbert space and as a pole of the S-matrix. Consequently, the antibound state near the
decay threshold increases the cross section of the low-energy scattering process [111,113,115,116],
and has an appreciable influence on the scattering length. Classic examples is the low-energy
` = 0 nucleon-nucleon scattering characterized by a large and negative scattering length [113,115].
Related to this is an increased localization of real-energy scattering states just above the decay
threshold [117].

A study of the energies of antibound states as a function of potential parameters was done
by Nussenzveig [118] (see also [119] for a discussion of the one-dimensional case). In these stud-
ies, radius and surface diffuseness of the potential were fixed and the trajectories of bound and
antibound states were calculated as a function of the potential depth V0. For s-wave neutrons,
no narrow resonance appears because there is no potential barrier. Thus, by increasing V0 from
the minimal value at which the antibound state appears, the pole crosses k = 0 and becomes the
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bound state. For protons or for neutrons with l > 0, the potential barrier assures the existence of
resonant poles. In this case, decaying and capturing poles move toward the imaginary k-axis with
increasing V0. At certain values of V0, the twin capturing and decaying poles meet at k = 0 forming
a double-pole singularity. For still larger values of V0, one of these poles becomes the bound state
while the other one moves down along the negative imaginary axis as the antibound state.

2.2.3 Normalization of Gamow states and the Berggren basis

To describe physical systems conveniently, the Hamiltonian and its eigenstates have to be
expressed in a suitable basis. For unbound and weakly bound systems, Gamow states and non-
resonant continuum states become relevant, and have to be included in the basis. However, due to
the complex energy of Gamow states, the probability density of resonances increases exponentially
in space, making their normalization and the proof of their orthogonality problematic.

A first method to normalize these states has been proposed by Zel’dovitch [120] who introduced
a convergence factor ε > 0 to regularize matrix elements:

⟨φf ∣ Ô ∣φi⟩ = ∫
∞

0
e−εr

2
φf(r)O(r)φi(r) (2.15)

where φf and φi are s.p. Gamow states, and Ô is a bounded operator.
Later, Tore Berggren used the method of Zel’dovitch to prove that Gamow states for neutral

particles are mutually orthogonal [44]. In the same paper, the first s.p. basis has been proposed,
now called the Berggren basis, which includes bound states, resonances, and scattering states. The
completeness of the Berggren basis for charged particles has been proved by Michel, Nazarewicz
and Płoszajczak [121,122].

The Berggren basis is an extension of the Newton basis [111], wherein the real-energy continuum
is deformed through an analytic continuation into the complex plane. This complex energy contour
L+ in the k-plane encompasses selected resonances and joins the real-k axis to continue toward
k →∞. Hence, using the residue theorem we can write down the completeness relation:

∑
n∈(b,r)

∣φn⟩ ⟨φn∣ + ∫
L+

∣φk⟩ ⟨φk∣dk = 1̂ (2.16)

where the sum runs over bound and resonance states.
The contour L+ lies in the fourth quadrant, as shown in Fig. 2.1, and surrounds selected

decaying resonances (k̃n = kn − iγn and kn > γn > 0). Due to the Cauchy integral theorem, the pre-
cise form of the contour L+ is not important. Usually, only decaying resonances which satisfy:
arg(kn) > −π/4, are included. Vertse [123] proposed the generalization of the Berggren complete-
ness relation (2.16) to include the antibound states, whereby extending the applicability of the
Berggren ensemble [124–126]. However, this generalized completeness relation is less efficient in
practical applications [125] since it requires a significantly denser discretization of the contour in
the complex k-plane.

In standard quantum mechanics, the mean value of the hermitian operator Ô associated with
an observable in an eigenstate ∣φk⟩ is always real:

⟨φk∣ Ô ∣φk⟩ = ⟨Ô⟩φk ∈ R (2.17)
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R(k)

I(k)

contour L+ (continuum)

Figure 2.1 – (Color online) Schematic illustration of the complete Berggren basis in k-plane. Blue
and red dots represent bound states and decaying resonances which are included in Berggren basis.
Decaying resonances which are omitted from the basis are shown with black dots. The antibound
or virtual state is represented by a green dot. Orange dots show capturing resonances. Non-
resonant continuum states which enter the Berggren completeness relation (2.16) belong to the
contour L+ (in red) which surrounds selected decaying resonances (red dots).

This is not the case in the rigged Hilbert space formulation of quantum mechanics. For the
resonance, the mean value of an operator Ô is:

⟨Ô⟩φ(k) =R⟨Ô⟩φ(k) + iI⟨Ô⟩φ(k) (2.18)

The interpretation of real and imaginary parts of the mean value for a given observable has
been discussed by Berggren [44–46]. The real part can be interpreted as the measured value of an
observable, and the imaginary part which is due to the interferences between the resonance and the
scattering continuum, corresponds to the uncertainty of the measured value. This interpretation
holds for the root mean square radius as well [127].

The regularization method proposed by Zel’dovich was essential to prove the completeness
of Berggren ensemble of s.p. states [44]. However, this method turned out to be impractical in
numerical applications and had been abandoned in favor of the methods proposed by Hokkyo [128]
and Romo [129]. The approach of Romo is based on using the Green’s function and its analytic
continuation in the complex energy plane. Hokkyo on the contrary, employed the uniform complex-
scaling approach to regularize diverging integrals.

In the uniform complex-scaling method, one applies the unitary transformation U , represented
by an operator Û(θ), which is defined by the uniform rotation r⃗ → eiθr⃗ of the coordinates, applied
on the s.p. wave functions [130,131]:

Û(θ)φ(r⃗) = ei
3
2 θφ (r⃗eiθ) (2.19)

17



2.2. GAMOW SHELL MODEL

The factor ei 3
2 θ in this expression comes from the dimension of the space [132]. The above transfor-

mation guarantees that the selected wave functions associated with the resonances become square
integrable [133–135].

Applying the uniform complex-scaling method to the s.p. Hamiltonian, one obtains:

ĥ(r⃗) → ĥθ(r⃗) = Û(θ)ĥ(r⃗)Û−1(θ) (2.20)

The transformed potential ĥθ(r⃗) is no longer hermitian. For a wide class of dilatation-analytic
potentials, the spectrum of bound states of ĥ(r⃗) and ĥθ(r⃗) are the same [136]. Properties of the
transformed Hamiltonian ĥθ(r⃗) and its spectrum for the dilation-analytic potentials have been
studied by the Aguilar, Balslev and Combes [133, 134]. The equivalence between the Zel’dovich’s
regularization method and the uniform complex-scaling has been proved by Gyarmati and Vertse
[137].

As most of the s.p. potentials used in nuclear physics are not dilatation-analytic, the applica-
bility of the uniform complex-scaling for nuclear physics problems is limited. To circumvent this
problem, Gyarmati and Vertse introduced the exterior complex-scaling method [137]. The method
consists of applying the complex rotation of coordinates only from a certain radius ra [138]:

Ûa(θ)φ(r) = φ(r) if r ≤ ra
= φ(ra + ∣r − ra∣eiθ) if r > ra (2.21)

The exterior complex-scaling method can be applied to any potential and the results do not depend
on the parameters a and θ. The existence of a norm for charged particle resonances was proved by
Gyarmati and Vertse [137]. In 2002, Michel et al. [5] applied the exterior complex-scaling method
in GSM.

In practical applications the truncations are required so that we define the maximum value
kmax of k on the contour L+. To ensure the completeness of the s.p. Berggren basis, one has to
discretize the contour L+. The N -point quadrature of the integral along the contour reads:

∫
L+

∣φk⟩ ⟨φk∣dk ≃
N

∑
j=1

wj ∣φki⟩ ⟨φkj ∣ (2.22)

where the kj and wj are values and weights given by the Gauss-Legendre quadrature method.
Normalizing the kets ∣φkj ⟩ with a factor √

wj :

N

∑
j=1

wj ∣φkj ⟩ ⟨φkj ∣ →
N

∑
j=1

∣φkj ⟩ ⟨φkj ∣ , (2.23)

one obtains the discretized Berggren basis:

∑
n∈(b,r)

∣φn⟩ ⟨φn∣ + ∫
L+
dk ∣φk⟩ ⟨φk∣ ≈ ∑

n∈(b,r)
∣φn⟩ ⟨φn∣ +

N

∑
j=1

∣φkj ⟩ ⟨φkj ∣

≈ ∑
n∈(b,r,kj)

∣φn⟩ ⟨φn∣ (2.24)

which is similar to any other discrete s.p. basis.
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The many-body basis for fermions consists of the Slater determinants {∣Φn⟩} constructed from
the s.p. states {∣φn⟩} of the complete Berggren basis, like in the case of the HO basis. The
completeness of the Berggren ensemble guarantees the following closure relation for the many-
body basis [7]:

∑
n

∣Φn⟩ ⟨Φn∣ = 1̂ (2.25)

which is used to formulate the GSM.

2.2.4 COSM coordinates and GSM Hamiltonian

In the standard SM, the center-of-mass (c.m.) excitations are removed using the Lawson
method [139]. In GSM, this method can no longer be used because Berggren states are not
eigenstates of the HO potential. Thus in order to eliminate the c.m. excitations, and also to avoid
numerical difficulties in describing nuclei with many valence nucleons in the Jacobi coordinates,
the GSM Hamiltonian is expressed in the core plus valence particle approximation using relative
nucleon-core coordinates of the COSM [140].

Let us introduce the COSM coordinates:

r⃗i = r⃗i,lab − R⃗c.m.,core if i ∈ val (2.26)
r⃗i = r⃗i,lab if i ∈ core (2.27)

where r⃗i,lab is the coordinate of a nucleon in the laboratory system and

R⃗c.m.,core =
1

Mcore
∑
i∈core

mi r⃗i,lab (2.28)

is the coordinate of the c.m. of the core, wheremi is the mass if the ith particle andMcore = ∑
i∈core

mi

is the mass of the core. The COSM momentum reads:

p⃗i = −ih̵∇⃗i (2.29)

where ∇⃗i is the gradient associated to r⃗i. The expression of the momentum p⃗i,lab and the total
momentum P⃗lab in the laboratory system is:

• For i ∈ core:
p⃗i,lab = p⃗i − ∑

j∈val

mi

Mcore
p⃗j (2.30)

• For i ∈ val:
p⃗i,lab = p⃗i (2.31)

and

P⃗lab = ∑
i∈core

p⃗i,lab + ∑
i∈val

p⃗i,lab = ∑
i∈core

p⃗i − ∑
i∈core
j∈val

mi

Mcore
p⃗j + ∑

i∈val
p⃗i

= ∑
i∈core

p⃗i − ∑
j∈val

p⃗j + ∑
i∈val

p⃗i = ∑
i∈core

p⃗i (2.32)
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One may notice that P⃗lab is only a function of the core linear momenta in COSM coordinates.
Thus, the kinetic part of the Hamiltonian in the COSM frame with the c.m. kinetic part taken
into account properly is written as:

A

∑
i=1

p⃗2
i,lab

2mi
−
P⃗ 2
lab

2M
= ∑
i∈val

p⃗2
i

2µi
+ 1
Mcore

∑
i<j∈val

p⃗i ⋅ p⃗j

+ ∑
i∈core

p⃗2
i

2µ′i
− 1
M

∑
i<j∈core

p⃗i ⋅ p⃗j −
1

Mcore
∑
i∈core

p⃗i ⋅ ∑
j∈val

p⃗j (2.33)

where M is the total mass, and µi, µ′i are reduced masses given by:

1
µi

= 1
mi

+ 1
Mcore

(2.34)

and
1
µ′i

= 1
mi

− 1
M

. (2.35)

Note that the residual coupling between core and valence spaces vanishes as the core is coupled to
0+ and ∑

i∈core
p⃗i is of rank one.

Interaction matrix elements involving many-body states built either from core s.p. states or
valence s.p. states pose no problem, as Eqs. (2.26,2.27,2.30,2.31) imply that:

r⃗i,lab − r⃗j,lab = r⃗i − r⃗j (2.36)
p⃗i,lab − p⃗j,lab = p⃗i − p⃗j , (2.37)

so that the standard methods can be used to calculate the associated two-body matrix elements.
Problems would arise if one considered interaction matrix elements in which one valence state ∣i⟩
and one core state ∣j⟩ occur in both bra and ket states of the nuclear interaction. Indeed, in this
case, Eqs. (2.26,2.27,2.30,2.31) imply that:

r⃗i,lab − r⃗j,lab = r⃗i − r⃗j + R⃗c.m.,core (2.38)

p⃗i,lab − p⃗j,lab = p⃗i − p⃗j + ∑
j′∈val

mj

Mcore
p⃗j′ . (2.39)

It is then clear that a two-body interaction in laboratory coordinates becomes a N-body interaction
in COSM coordinates, where core and valence degrees of freedom are coupled. One can avoid
these problems by defining an effective interaction with core and valence parts calculated in the
laboratory frame, so that couplings between core and valence spaces vanish.

Let us now write the GSMHamiltonian. We will consider an effective Hamiltonian: Ĥ = T̂ + Û + V̂ ,
where T̂ is the kinetic operator, Û is a s.p. potential, and V̂ is a two-body interaction, calculated
from a realistic interaction in the laboratory frame. The core part of the Hamiltonian is not
considered as the core is inert. We will express it with COSM coordinates:

Ĥ = T̂ + Û + V̂ = ∑
i∈val

(
p⃗2
i

2µi
+U(ˆ⃗ri)) + ∑

(i<j)∈val

⎛
⎝

ˆ⃗pi ⋅ ˆ⃗pj
Mcore

+ V̂i,j
⎞
⎠

(2.40)
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where Mcore is the mass of the core, and :

1
µi

= 1
Mcore

+ 1
mi

(2.41)

is the reduced mass of the i-th nucleon. The s.p. potential U(ˆ⃗r) describes the field of the core
and V (ˆ⃗ri − ˆ⃗rj) is the two-body interaction. Due to Eqs. (2.36,2.37), the sum involving V̂i,j in Eq.
(2.40) does not change from the laboratory frame to the COSM frame.

To see that the substitution of U(r⃗i,lab) by U(r⃗i) in Eq. (2.40) leads to a very small error, let
us separate U in central and spin-orbit parts:

U(r⃗i,lab) = U (c)(r⃗i,lab) +U (ls)(r⃗i,lab)(⃗̀i,lab ⋅ s⃗i) (2.42)

For the central part, one has:

U (c)(r⃗i,lab) = U (c)(r⃗i) + R⃗c.m.,core ⋅ ∇U (c)(r⃗i) + R⃗c.m.,core ⋅∆U (c)(r⃗i) ⋅ R⃗c.m.,core + rest, (2.43)

where ∆U (c) is the Hessian matrix associated to U (c). The first-order term of Eq. (2.43) vanishes
because the core is coupled to 0+ and R⃗c.m.,core is of rank 1.

One obtains a similar equation for the spin-orbit part of U :

U (ls)(r⃗i,lab)(⃗̀i,lab) ⋅ s⃗i) = U (ls)(r⃗i,lab) [(r⃗i + R⃗c.m.,core) × p⃗i] ⋅ s⃗i
= U (ls)(r⃗i)(⃗̀i ⋅ s⃗i)
+ (R⃗c.m.,core ⋅ ∇U (ls)(r⃗i))(⃗̀i ⋅ s⃗i) +U (ls)(r⃗i) [(R⃗c.m.,core × p⃗i) ⋅ s⃗i]

+ (R⃗c.m.,core ⋅∆U (ls)(r⃗i) ⋅ R⃗c.m.,core)(⃗̀i ⋅ s⃗i)
+ (R⃗c.m.,core ⋅ ∇U (ls)(r⃗i)) ⋅ [(R⃗c.m.,core × p⃗i) ⋅ s⃗i]
+ rest (2.44)

where the first-order terms of Eq. (2.44) also vanish.
The error made is small even for the α-particle core, as it is of the order of ∆U/Mcore. Indeed,

the core matrix elements involving Rc.m.,core are of the order of 1/
√
Mcore, the Laplacian of a

Woods-Saxon potential is about 5 times smaller than the potential itself, and the derivative of the
spin-orbit part of the Woods-Saxon potential is even smaller, so that the relative error made is
of the order of 5% or less for an arbitrary core. The Hamiltonian Ĥ can then be recast with a
one-body potential Ûbasis :

Ĥ = Ûbasis + T̂ + V̂res (2.45)

where Ûbasis is the potential which generates the basis, and V̂res = V̂ + Û − Ûbasis is the residual
interaction. The introduction of Ûbasis is a convenient way to remove approximately the long-
range component in V̂res.

2.2.5 Construction of the s.p. Berggren basis

Let us start by defining the s.p. Hamiltonian: ĥ = Ûbasis + T̂ . The s.p. potential generating the
basis: Ûbasis = Ubasis(ˆ⃗r), can be chosen either as a self-consistent potential like the Hartree-Fock
potential, or a phenomenological potential like the Wood-Saxon potential plus a Coulomb and
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spin-orbit terms. Hence, Berggren basis states are discrete solutions of the one-body Schrödinger
equation:

∂2ul(k, r)
∂r2 = ( l(l + 1)

r2 + 2m
h̵2 Ubasis(r) − k2)ul(k, r) with E = h̵

2k2

2m
(2.46)

where m is the mass of the nucleon, and l its orbital angular momentum. The reduced radial
solutions ul(k, r) are regular at the origin:

ul(k, r) ∼
r∼0

C0(k)rl+1 (2.47)

At large distances, i.e. in the region where the nuclear part of the potential is negligible, the
Berggren basis states ul(k, r) are the solutions of the equation:

∂2ul(k, r)
∂r2 = ( l(l + 1)

r2 + 2ηk
r

− k2) (2.48)

where η is the Sommerfeld parameter:
η = mZ

h̵2k
(2.49)

Solutions of Eq. (2.48) are linearly independent, and they can be identified as regular Fl,η(kr)
and irregular Gl,η(kr) Coulomb functions.

In order to introduce the concepts of incoming and outgoing solutions, it is more convenient
to write Coulomb functions as:

H±
l,η(kr) = Gl,η(kr) ± iFl,η(kr) (2.50)

The Berggren basis states ul(k, r) have thus the following asymptotic form:

ul(k, r) ∼
r→∞

C+H
+
l,η(kr) +C−(k)H

−
l,η(kr) (2.51)

For bound and resonance states, C−(k) = 0 and C+(k) ≠ 0, and for scattering states C−(k) ≠ 0 and
C+ ≠ 0. Hence, due to the boundary conditions (2.47) and (2.51), the solutions ul(k, r) are unique
and can be written as:

ul(k, r) = C+(k)u+l (k, r) +C−(k)u
−
l (k, r) (2.52)

Here, u+l (k, r) and u−l (k, r) are the two linearly independent solutions of Eq. (2.46).
The C0(k), C+(k) and C−(k) constants in Eqs. (2.52,2.47) are determined by the normalization

of the Berggren basis states. The normalization to the Dirac delta is straightforward since it is
equivalent to the following condition [121,122] (see Appendix A.4):

C+(k)C−(k) =
1

2π
∀k (2.53)

In practice, constants C+(k) and C−(k) are determined by the matching condition between the
radial wave function ul(k, r) and its asymptotic form at a given point R >> 0:

d

dr
(C+(k)H+

l,η(kR) +C−(k)H−
l,η(kR)) = dul(k,R)

dr
C+(k)H+

l,η(kR) +C−(k)H−
l,η(kR) = ul(k,R) (2.54)
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C0(k) is then obtained by normalizing the Berggren basis state such that:

∫
∞

0
u2
l (k, r) = 1 (2.55)

For bound states and resonances: C−(k) = 0, while for scattering states C−(k) satisfies Eq. (2.53).
Consequently, conditions (2.54) and (2.55) guarantee the continuity of radial wave functions for
bound states and resonances. Their differentiability is achieved using the Jost functions [111]:

J ± =W (u±l (k, r), ul(k, r)) = u
±
l (k, r)

dul(k, r)
dr

− ul(k, r)
du±l (k, r)

dr
(2.56)

Here, W (f, g) is the Wronskian. Jost functions do not depend on r, because ul(k, r) and u+l (k, r)
are linearly independent. Thus, the differentiability condition for ul(k, r):

J +(k) = 0 (2.57)

can be satisfied by varying k.

2.2.6 Determination of the many-body states

Once the s.p. basis is determined, we can diagonalize the full GSM Hamiltonian (2.40). This
Hamiltonian is complex-symmetric in the N -body basis (2.25):

tĤ = Ĥ with Hij ∈ C (2.58)

where Ĥ is the Hamiltonian matrix and Hij an element of Ĥ. In standard SM calculations, the
Hamiltonian is usually diagonalized using the Lanczos method [141]. However, as this method
determines the eigenstates by selecting the lowest energies, it fails to identify resonances as eigen-
values associated to scattering states can be lower than those associated to resonances.

The problem of the identification of resonances can be solved with the so-called overlap method
[5,142]. This method consists of determining the resonances among all eigenstates ∣Ψ⟩ by selecting
the one having the biggest overlap with a pivot state ∣Ψ0⟩. In practice, the pivot state ∣Ψ0⟩
is determined by diagonalizing the Hamiltonian (2.40) in a smaller space consisting of Slater
determinants composed by s.p. bound states and resonances only. In this space, the diagonalization
can be achieved using the Lanczos algorithm or some variant of this method. This is called the
pole approximation, and this space is called the pole space. The resulting spectrum is a zero-order
approximation of the full spectrum which includes the scattering continuum. Then each eigenstate
found in the pole approximation is used as a pivot for the Davidson method [143] which is more
precise for excited states. Eigenstates ∣Ψ⟩ with an overlap greater than 70% with pivots are then
selected.

Very large matrices, encountered for example in the no-core GSM [10], require the application
of the density matrix renormalization group method in GSM [26–28] to deal with the huge dimen-
sionality of the many-body basis. The main idea of the density matrix renormalization group in
GSM, is to gradually consider different s.p states of the discretized non-resonant continuum, and
retain only optimal states governed by the eigenvalues of the density matrix with the largest modu-
lus. Indeed, the method is based on the fact that Slater determinants involving many non-resonant
continuum s.p states do not play a significant role.
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2.2.7 GSM applications

The GSM has been applied in the description of various bound and unbound systems like
18−22O [5, 142], 80Ni [6, 144], 5−10He [142, 145], or 5−11Li [121, 145]. In several applications, in
addition to the energy spectra, other relevant quantities have been studied like the radial overlap
integrals [146], spectroscopic factors [147], the asymptotic normalization coefficients [148], the
charge radii and the neutron-neutron correlations [149].

In Refs. [125, 126, 150] the role of antibound states has been studied. A detailed comparison
between the GSM and the Gaussian expansion method has been done for 6He and 6Be [151].

The use of Lee-Suzuki regularization method [152] in GSM has been discussed in Ref. [153] for
schematic interactions, and in Refs. [154,155] for realistic chiral N3LO interactions [156].

The ab initio formulation of GSM, the no-core Gamow shell model, has been proposed to study
well bound and unbound states of Helium isotopes with a realistic N3LO chiral interaction [10]. In
these studies, the density matrix renormalization group method [26–28] has been employed. The
no-core Gamow shell model has also been applied to study the existence of a tetraneutron [157]
and the unbound isotopes of heavy hydrogen nuclei [158].

2.3 On the solution of pairing problem in the continuum
All even-even nuclei in the ground state are coupled to J = 0 angular momentum and are more

tightly bound than the neighboring even-odd nuclei. Moreover, in the even-even nuclei there is
an energy gap of 1-2 MeV between the ground state and the lowest two quasi-particle excitations.
These experimental observations suggest an important role of the residual interactions beyond
mean-field in atomic nuclei.

One of the important residual interaction is the pairing interaction. The seniority pairing
model has been proposed in 1942 by Racah to provide the classification of electron excitations
in atoms [159]. This model has been also applied to understand various inconsistencies of the
independent particle model in the description of binding energies and spectra of atomic nuclei.

The Hamiltonian of the seniority pairing model is too simple to offer a satisfactory framework
for nuclear studies. In 1957, an extension of this model was proposed by Bardeen, Cooper and
Schrieffer (BCS) [160] to explain the superconductivity. Soon afterwards, it was realized that
pairing is an important component of the effective interaction, responsible for nuclear superfluidity
from finite nuclei to neutron stars [161]. In the BCS model, the Hamiltonian consists of a one-body
part determined by either a phenomenological or self-consistent potential, and a two-body part
similar to the interaction introduced by Racah. A reliable solution of the BCS theory has been
given in terms of the independent quasiparticles. This was a beginning of the long ’success story’
of BCS in nuclear physics.

In 1960 Richardson derived an exact solution of the BCS Hamiltonian for a constant pairing
strength and a discrete set of s.p. levels [51, 52]. Recently, exact solutions of the pairing model
were discussed anew to quantify the error of number projected BCS approach, and to study the
superfluid ultra-small grains [162–168]. In 2001, Dukelsky et al. showed that by combining the
Richardson solution with the integrable model proposed by Gaudin for quantum spin systems [169],
one can derive three classes of exactly solvable pairing Hamiltonian for fermions and bosons [170].
In these models, the pairing Hamiltonian appears as a particular combination of the integrals of
motion within the rational class of integrable models. This finding allowed to find many exactly
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solvable pairing models by taking arbitrary combinations of the integrals of motion within each
class. In particular, the hyperbolic family of Gaudin models, has been proposed in [171] to describe
pairing in heavy nuclei. More recently, Gaudin models have been extended to larger Lie algebras
including the SO(5) for T = 1 isovector pairing [172] and the SO(8) for T = 0,1 spin-isospin
pairing [173] allowing for the exact treatment of proton-neutron pairing correlations.

Exactly solvable models have always played an important role in understanding properties of
strongly correlated quantum systems, both in condensed matter and nuclear physics. In nuclear
physics, the exactly solvable pairing models gave a deeper insight into the superfluid correlations
in well bound nuclei. In weakly bound or unbound nuclei, we are missing an insight that could
be provided by simple models. An understanding of the pairing correlations in these nuclei is still
the "chasse gardée" of advanced numerical simulations, such as the GSM or the coupled-cluster
theory. Recently, there have been several attempts to find an exact solution of the pairing model
in the continuum. Hasegawa and Kaneko studied effects of s.p. resonances (Gamow states) on
pairing correlations [168]. Id Betan attempted to solve Richardson equations with the real-energy
continuum [174] but no proof was given that this approach is reliable. An exact solution of pairing
Hamiltonian in the continuum can be obtained in GSM though only systems with a small number
of active particles can be studied in practice.

In this section, we start with a short presentation of the generalized Gaudin algebra which
leads to the Gaudin family of models. Then, we present the formulation of the rational Gaudin
pairing model in the Berggren ensemble. In the following subsection, we derive the generalized
Richardson solution for the rational Gaudin model with the continuum which is exact in three
distinct limits: (i) in the pole approximation [7], (ii) for the discrete spectrum of real energy s.p.
levels, and (iii) in the non-resonant s.p. continuum.

By comparing the generalized Richardson solution of the rational Gaudin pairing model with
the exact GSM solutions, we will assess the reliability of the generalized Richardson solution in the
most general cases of s.p. spectrum, including s.p. bound states, resonances, and the non-resonant
continuum.

Finally, we discuss the first application of the generalized Richardson equations for the de-
scription of binding energies and spectra of carbon isotopes. We will also point out a possible
application of these equations for the studies of unstable ultra-small superconducting grains.

2.3.1 Generalized Gaudin algebra

Exactly solvable quantum integrable models are defined by the Yang-Baxter equation [175–
177] which allows to replace an eigenvalue problem by a much simpler algebraic problem. This
interesting feature is associated with the existence of hidden symmetries. In condensed matter,
the most important exactly solvable models are those developed in the context of one-dimensional
systems, such as the Heisenberg model [178, 179], the Tomonaga-Luttinger models [180, 181], and
the models with the long-range interactions [182, 183]. The Hamiltonian of an exactly solvable
problem is written as a linear combination of the Casimir operators of the group decomposition
chain representing relevant symmetries. Some examples of such exactly solvable models are: the
Racah’s seniority model [159], the Elliott’s SU(3) rotational model [184], or the three dynamical
limits of the U(6) interacting boson model [185].

The constant pairing Hamiltonian has exact solutions which were derived by Richardson [51,52].
Independently, these solutions were discussed by Gaudin [186] and applied much later to ultra-
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small superconducting grains [163]. The connection found between the Richardson’s solution and
the Gaudin model [169] was followed by the proof of integrability of the pairing model [187]. By
establishing the relation between the integrals of motion of the pairing model and those of the
Gaudin model, it became possible to derive three classes of integrable pairing models for fermions
and bosons [50,170]. Recent studies of the relation between level crossings and exceptional points
in the integrable and non-integrable limits of the pairing model allowed to establish the criterion
to distinguish between chaotic and regular dynamics in the quantum regime, for finite systems in
low-dimensional Hilbert spaces [188] .

Gaudin algebra Representation l Model

XXX

⊕l(SU(2)-F-P) N
BCS Richardson
Nuclear pairing
BCS (k ↑,k ↓)

⊕l(SU(2)-F-S) N Particle-hole-like
⊕l(SU(1,1)-B) N Bosonic BCS
⊕l(SU(2)⊕SU(2)) N Central spin
⊕l(SU(1,1)⊕SU(1,1)) N Bosonic central spin

XXZ

⊕l(SU(2)-F-S) 2 Suhl-Matthias-Walker

⊕l(SU(1,1)-B) 2
Lipkin-Meshkov-Glick
Interacting Boson Model 1
Two-Josephon-coupled BECs

⊕l(SU(2)⊕h4) N Generalized Dicke, fermionic atom molecule
⊕l(SU(1,1)⊕h4) N Bosonic atom molecule
⊕l(SU(2)-F-S ⊕SU(2)) N Kondo-like impurity
⊕l(h4⊕SU(2)-F-S) N Special spin-boson

XYZ ⊕lsu(2) N Generalized XYZ Gaudin

Table 2.1 – Exactly solvable models which can be derived from different representations of the
generators of the generalized Gaudin algebra. Here, l refers to the number of copies of the algebra
used to write down the model. The notation F, B, S, P, and h4 stands for Fermionic, Bosonic, Spin,
Pseudospin, and Heisenberg-Weyl algebra respectively. This figure comes from Ref. [50] where
more informations about these model can be found. Note that the BCS Hamiltonian belongs to
the XXX Gaudin algebra.

The generalized Gaudin algebra can be introduced as a set of operators {Ŝkm ≡ Ŝk(Em)}, where
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k = x, y, z, satisfying the commutation relations:

[Ŝkm, Ŝk` ] = 0
[Ŝxm, Ŝ

y
` ] = i (Ym`Ŝ

z
m −Xm`Ŝ

z
` )

[Ŝym, Ŝz` ] = i (Zm`Ŝ
x
m − Ym`Ŝx` )

[Ŝzm, Ŝx` ] = i (Xm`Ŝ
y
m −Zm`Ŝy` ) (2.59)

where m ≠ `, Xm` =X(Em,E`), Ym` = Y (Em,E`), and Zm` = Z(Em,E`) are antisymmetric com-
plex functions of two arbitrary complex variables: Em,E`, labelled by the positive integers m and
`, respectively. Equivalently, in terms of the k = +,−, z basis and for Em ≠ E`, one obtains:

[Ŝ±m, Ŝ±` ] = ±2V −
m` (Ŝ

z
m + Ŝz` )

[Ŝ−m, Ŝ+` ] = −2V +
m` (Ŝ

z
m − Ŝz` )

[Ŝzm, Ŝ±` ] = ±(V +
m`Ŝ

±
m −Zm`Ŝ±` − V

−
m`Ŝ

∓
m) (2.60)

where Ŝ±m = Ŝxm ± iŜym, and V ±
m` = (Xm` ± Ym`) /2. Notice that Ŝ+(−)m and Ŝ+(−)` are non-commuting

operators, unless Xm` = Ym`.
The complex functions Xm`, Ym` and Zm` in (2.59) have the following boundary condition:

lim
ε→0

εX(x,x + ε) = f(x)

lim
ε→0

εZ(x,x + ε) = h(x)

lim
ε→0

εY (x,x + ε) = g(x) (2.61)

where f(x), g(x), and h(x) are the nonsingular functions. Indeed, X,Y , and Z are complex
meromorphic functions having poles of order one. In particular, when f(x) = g(x) = h(x) the above
commutations relations (2.59) can be analytically continued to the case m = `, i.e. Em → E`. For
example:

[Ŝxm, Ŝym] = lim
ε→0

i(Y (Em,Em + ε)Ŝz(Em) −X(Em,Em + ε)Ŝz(Em + ε))

= −if(Em) ∂Ŝ
z
m

∂Em
(2.62)

Then, the commutation relations:

[Ŝkm, Ŝkm] = 0

[Ŝxm, Ŝym] = −if(Em) ∂Ŝ
z
m

∂Em

[Ŝym, Ŝzm] = −if(Em) ∂Ŝ
x
m

∂Em

[Ŝzm, Ŝxm] = −if(Em) ∂Ŝ
y
m

∂Em
(2.63)
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together with Eqs. (2.59) form an infinite-dimensional Lie algebra. From the Jacobi identities for
the generators of the Lie algebra:

[Ŝxn, [Ŝxm, Ŝ
y
` ]] + [Ŝy` , [Ŝ

x
n, Ŝ

x
m]] + [Ŝxm, [Ŝ

y
` , Ŝ

x
n]] = 0 (2.64)

and considering the antisymmetry of the functions X,Y,Z, we obtain the Gaudin equation [169]:

Zm`X`n +ZnmY`n +XnmYm` = 0 (2.65)

This equation defines the XYZ model of Gaudin.
Let us now consider the XXZ model defined by: Xm` = Ym`. The Gaudin equation (2.65) in

this case reduces to:
Zm`X`n +ZnmX`n +XnmXm` = 0 (2.66)

The condition (2.66) was discussed by Gaudin [169] who found three solutions which can be written
in the compact form as:

Xij = γ

sin (γ(ηi − ηj))
(2.67)

Zij = γ cot (γ(ηi − ηj))

Different classes of integrable models correspond to specific values of γ:

• The rational class for γ → 0:
Xij = Zij =

1
ηi − ηj

(2.68)

• The trigonometric class for γ = 1:

Xij =
1

sin (ηi − ηj)
, Zij = cot (ηi − ηj) (2.69)

• The hyperbolic class for γ = i:

Xij =
1

sinh (ηi − ηj)
, Zij = coth (ηi − ηj) (2.70)

ηi,j in the above expressions are arbitrary, non-equal real numbers. It is interesting to notice that
the rational class corresponds to the XXX model, while the trigonometric and hyperbolic classes
correspond to the XXZ model.

Now, let us present the standard method to derive an integrable Hamiltonian for the XXZ model
with a realization in terms of the ⊕lSU(2) algebra. This realization leads to a pairing model. It
was demonstrated [187] that any Hamiltonian of a system of fermions interacting through a pairing
force can be written as a linear combination of the integrals of motion R̂i:

Ĥ = 2∑
i

εiR̂i +C (2.71)

where the εi are the s.p. energies, and C is an arbitrary constant.
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Let us consider a possible realization of the generalized Gaudin algebra operators Ŝ±m and Ŝzm in
terms of generators Â±

i and Âzi of the ⊕lSU(2) algebra. These generators satisfy the commutation
relations:

[Â+
i , Â

−
j ] = 2δijÂzj , [Âzi , Â±

j ] = ±δijÂ±
j (2.72)

with (Â+
j )

† = Â−
j . Defining the operators Ŝ±m and Ŝzm in terms of the ⊕lSU(2) operators:

Ŝ±m = ∑
j

XmjÂ
±
j , Ŝzm = −1

2
1̂ −∑

j

ZmjÂ
z
j (2.73)

one obtains a possible realization of the generators of the generalized Gaudin algebra (2.59). The
R̂i operators can be written in terms of both the X, Z functions and the Â operators as:

R̂i = Âzi − 2∑
j≠i

(
Xij

2
(Â+

i Â
−
j + Â−

i Â
+
j ) −ZijÂzi Âzj) (2.74)

Any combination of the R̂i operators (2.74) yields an integrable Hamiltonian. The pairing Hamil-
tonian belongs to the rational class γ → 0.

2.3.2 Representation of the rational XXX model : The pairing Hamiltonian

The pairing Hamiltonian is given in the second quantization formulation by:

Ĥ =
D

∑
α

εαĉ
†
αĉα −G

D

∑
α,β

ĉ†
αĉ

†
ᾱĉβ̄ ĉβ (2.75)

where εα are the the energies of bound s.p. levels, and G is the pairing strength. Operators ĉ†
α(ĉα)

stand for the particle creation (annihilation) operators, and
α ≡ {a,mα} = {na, `a, ja,mα}, ᾱ = {a, m̄α}. ĉ†

ᾱ is defined as ĉ†
ᾱ = (−)ja−mα ĉ†

α,−mα . The degeneracy
of a s.p. level a is Ωa = 2ja + 1.

Let us define the operators:

n̂a =
ja

∑
mα=−ja

ĉ†
αĉα ; b̂†

a = ∑
mα>0

ĉ†
αĉ

†
ᾱ = (b̂a)

† (2.76)

which obey the commutator algebra:

[n̂a, b̂†
a′] = 2δaa′ b̂†

a

[b̂a, b̂†
a′] = 2δaa′ (

Ω̂a

4
± n̂a

2
) (2.77)

where Ω̂a = Ωa1̂. From now on, whenever there are different signs in the equation, the upper
(lower) sign stands for bosons (fermions).

The complete set of states of N particles in N s.p. states, spanned by the operators n̂a, b̂a, b̂†
a

is given by:
∣n1, n2,⋯, nN , ν⟩ =

1
N̄
b̂†n1
1 b̂†n2

2 ⋯b̂†nN
N ∣ν⟩ (2.78)

29



2.3. ON THE SOLUTION OF PAIRING PROBLEM IN THE CONTINUUM

where ∣ν⟩ = ∣ν1, ν2⋯νN ⟩ is a state of the unpaired particles which satisfy:

b̂a∣ν⟩ = 0 ; n̂a∣ν⟩ = νa∣ν⟩ (2.79)

N̄ in Eq. (2.78) is the normalization constant, ν is the total number of the unpaired particles:
ν = N − 2Npair, where Npair is the number of pairs, and νa the number of unpaired particles in the
level a.

The pairing Hamiltonian (2.75) expressed in the operators n̂a, b̂a, b̂†
a reads:

Ĥ =
N
∑
a

εan̂a −G
N
∑
a,a′

b̂†
ab̂a′ (2.80)

Defining the three generators of SU(2):

Â+
a =

1
2
b̂†
a = (Â−

a)
†
, Âza =

1
2
n̂a −

1
4

Ω̂a (2.81)

which satisfy Eq. (2.72) and the rational parametrization: Xηa = Zia = 2G/(2εa −Ei), with Ei the
pair energies, it is possible to show that the pairing Hamiltonian (2.75) stands for an integrable
model (see Eq. (2.71)). In this model, any eigenvalue Ẽ of the pairing Hamiltonian (2.80) can be
written as:

Ẽ(K) =
Npair

∑
i=1

E
(K)
i +

N
∑
a=1

εaνa , K = 0,1,⋯,K max (2.82)

where the index K enumerates the eigenstates in an ascending order of the excitation energy, and
Kmax is the total number of eigenstates. In general, Ẽ(K) can be complex and then R(Ẽ(K)) = E(K)
is the energy, and 2I(Ẽ(K)) = Γ(K) is the corresponding width of the Kth eigenstate.

Now, considering the Bethe ansatz for the eigenstate of Ĥ:

∣Ψ⟩ =
Npair

∏
i

Ŝ+i ∣ν⟩ (2.83)

with Ŝ†
i , the generator of the generalized Gaudin algebra (2.59) defined in Eq. (2.73), it is possible

to show that the eigenvalue problem of the Schrödinger equation can be reduced to an algebraic
problem, i.e the Richardson equations [51,52], given by :

1 ± 2G
N
∑
a

da

2εa −E(K)i

∓ 2G
Npair

∑
j≠i

1
E
(K)
j −E(K)i

= 0 (2.84)

where the pair energies E(K)i are solutions ofNpair coupled non-linear equations, and da = Ωa/4 ± νa/2.

2.3.3 Generalization of the rational Gaudin model to include the continuum

Generalization of the rational Gaudin model to include the continuum part of a s.p. spectrum,
can be formulated in the Berggren s.p. ensemble [44] which includes bound states (b), resonances
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(r), and non-resonant (c) continuum states. In this representation, the pairing Hamiltonian of the
rational Gaudin model is:

Ĥ = ∑
i∈b,r

εin̂i +∑
c
∫
L+c
εkc n̂kcdkc

− G ∑
i,i′∈b,r

b̂†
i b̂i′ −G∑

c,c′
∫
L+c
b̂†
kc
b̂k′c′dkcdk

′
c′

− G ∑
(i∈b,r),c

∫
L+c

(b̂†
kc
b̂i + b̂†

i b̂kc)dkc (2.85)

Sums over c, c′ denote summations over different partial waves (`, j) until (`max, jmax). kc is related
to the energy of a s.p. state c in the non-resonant continuum: εc = h̵2k2

c /2m, and m is the particle
mass. The discrete sums run over the real energy bound s.p. states and the complex energy s.p.
resonances enclosed in between the contour L+c and the real k-axis. All resonances of the same
quantum numbers (`, j) have the same contour L+c(`,j) in the complex k-plane. More about the
complete Berggren s.p. ensemble and its application in many-body systems can be found in Sec.
2.2.5.

The pair creation (annihilation) operators satisfy the commutator relations (2.77) for the dis-
crete (bound states and resonances) s.p. states, and

[n̂kc , b̂
†
k′
c′
] = 2δ(kc − k′c)δcc′ b̂

†
kc

[b̂kc , b̂
†
k′
c′
] = δ(kc − k′c)δcc′

Ω̂kc

2
± δkck′cδcc′ n̂kc (2.86)

for the non-resonant scattering s.p. states.
In all practical applications, the continuum has to be discretized. It is convenient to define

new pair and number operators:

ˆ̃nq = wqn̂q ; ˆ̃b
†
q =

√
wq b̂

†
q = (ˆ̃bq)† (2.87)

where index q runs over all bound, resonance and discretized scattering states in the Berggren
basis. wq is a Gaussian weight of the integration procedure. For bound and resonance states,
wq = 1. With this definition, all states of the pairs of particles are normalized to unity and treated
on the same footing. The new operators ˆ̃nq, ˆ̃bq, ˆ̃b

†
q satisfy similar commutation relations as the

operators n̂i, b̂i, b̂†
i in discrete levels (Eq. (2.77)):

[ˆ̃nq, ˆ̃b
†
q′] = 2δqq′ˆ̃b

†
q

[ˆ̃bq, ˆ̃b
†
q′] = 2δqq′ (

Ω̂q

4
±

ˆ̃nq
2

) (2.88)

The Hamiltonian of the generalized rational Gaudin model (2.85) expressed in the operators
ˆ̃nq, b̃q, b̃†

q reads:

Ĥ =
N
∑
q

εq ˆ̃nq −
N
∑
q,q′

Gqq′
ˆ̃b

†
q′

ˆ̃bq ; Gqq′ =
√
wq

√
wq′G (2.89)
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where N is the total number of bound, resonance and discretized continuum s.p. states.
In general, pairing models with the state-dependent pairing interaction are not integrable. The

exception from this rule is the hyperbolic model [171, 189] where Gaussian weights wq are linear
functions of s.p. energies εq. Trying to find a good ansatz for the eigenstate, one has then to look
for reliable approximations of the Hamiltonian (2.89) and/or the commutation relations (2.86) for
the non-resonant scattering states which break the SU(2) commutator algebra.

It is important to note that if we want to diagonalize the Hamiltonian (Eq. (2.89)) we have
to be careful applying the new normalized operators ˆ̃nq and ˆ̃b

†
q,

ˆ̃bq. As the Hamiltonian (2.85) is
expressed in a certain basis of Slater determinants, the contour discretization leads not only to
new normalized operators but also to new normalized Slater determinants, so that the action of
ˆ̃nq, ˆ̃b

†
q and

ˆ̃bq on these Slater determinants is defined as in the discrete case.

2.3.4 Approximate solution for the rational Gaudin model with the continuum

An approximate solution for the generalized rational pairing model (2.89) can be found by
replacing the Kronecker delta by the Dirac delta in the commutator (2.86) for states in the non-
resonant continuum:

[b̂kc , b̂
†
k′
c′
] = 2δ(kc − k′c)δcc′ (

Ω̂kc

4
± n̂kc

2
) . (2.90)

With this change, the pair operators ˆ̃b
†
q(

ˆ̃bq) for bound, resonance and discretized scattering states
satisfy:

[ˆ̃nq, ˆ̃b
†
q′] = 2δqq′ˆ̃b

†
q

[ˆ̃bq, ˆ̃b
†
q′] = 2δqq′ (

Ω̂q

4
±

ˆ̃nq
2wq

) (2.91)

Note that the difference between Eqs.(2.91) and (2.88) is the presence of the weight wq. The
transformation presented in Eq. (2.91) is mathematically undefined. Due to this choice, we
cannot have a proper definition of these new operators and, hence, the direct diagonalization of a
Hamiltonian (2.89) using deformed operators (2.91) is not possible. In the following, we suppose
that the deformed operators act like those in Eq. (2.76).

Let us derive the eigenvalue of the pairing Hamiltonian (2.89). Similarly as in the Richardson
solution [51,52], we take the product of pair states

∣Ψnorm⟩ =
Npair

∏
η=1

Ŝ†
η;norm∣ν⟩ (2.92)

as an ansatz for the many-body state, where

Ŝ†
η;norm = cηG

N
∑
q

ˆ̃b
†
q
√
wq

2εq −Eη
(2.93)
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and Eη are the pair energies (here we removed the index K to simplify the notation). The
normalization constants cη are determined by solving:

1
(cηG)2 = 1

Cη
2 =

N
∑
q

wq

(2εq −Eη)2 (2.94)

It is convenient to define: Ŝ†
η = Ŝ†

η;norm/Cη, so that

∣Ψnorm⟩ =
Npair

∏
η=1

CηŜ
†
η ∣ν⟩ = C ∣Ψ⟩ (2.95)

and

C =
Npair

∏
η=1

Cη and ∣Ψn⟩ =
Npair

∏
η=1

Ŝ†
η ∣ν⟩ .

The operators ˆ̃n, Ŝη and Ŝ0:

Ŝ†
0 =

N
∑
q

ˆ̃b
†
q
√
wq (2.96)

satisfy the commutator relations:

[ˆ̃nq, Ŝ†
η] =

2ˆ̃b
†
q
√
wq

2εq −Eη

[ˆ̃nq, Ŝ†
0] = 2√wqˆ̃b

†
q

[Ŝη, Ŝ†
η′] =

N
∑
q

2wq(Ω̂q/4 ± ν̂q/2)
(2εq −Eη)(2εq −Eη′)

[Ŝ0, Ŝ
†
η] =

N
∑
q

wqΩ̂q/2 ± ˆ̃nq
2εq −Eη

[Ŝ†
0, Ŝ

†
η] = 0 (2.97)

which can be derived from the commutation relations for operators ˆ̃nq, ˆ̃b
†
q,

ˆ̃bq (Eq. (2.91)).
The Hamiltonian of the generalized rational Gaudin model (2.89) expressed in these operators

is:
Ĥ =

N
∑
q

εq ˆ̃nq −GŜ†
0Ŝ0 (2.98)

and the pair energies for boson and fermion systems are given by:

1 ± 2G
N
∑
q

wq (Ωq/4 ± νq/2)
2εq −Eη

∓ 2G
Npair

∑
µ≠η

1
Eµ −Eη

= 0 (2.99)

The first sum in these generalized Richardson equations can be split into separate terms coming
from from the resonant states and the discretized scattering states.
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In the continuum limit, the generalized Richardson equations are:

1 ± 2G
N
∑
i∈b,r

di
2εi −Eη

± 2G
`max,jmax

∑
c

∫
L+c

dkc
h̵2k2

c /m −Eη
dkc

∓ 2G
Npair

∑
µ≠ν

1
Eµ −Eη

= 0 (2.100)

where di = Ωi/4 ± νi/2 and similarly for dkc .
Equations (2.99) provide the approximate solution of rational Gaudin model with continuum

which is obtained by replacing exact commutator relations (2.86) by approximate ones (2.90) (see
Appendix A.2 for details of the derivation of Eq. (2.99)). In certain limiting situations this solution
is however exact. For a discrete set of bound s.p. levels, all weights wq are equal to 1 and, hence,
Eq. (2.99) reduces to an exact solution for the rational Richardson-Gaudin model [51,52]. By the
same argument, Eq. (2.99) provides an exact solution in the pole approximation, i.e. neglecting
the non-resonant continuum states. Eq. (2.99) is also exact if the Berggren ensemble contains
only states of the non-resonant continuum because in this case one may take the same weights
wq ≡ w for all continuum states q and renormalize the pairing strength G′ = Gw accordingly. In
this particular case, the third sum in Eq. (2.99) goes to 0 and one obtains:

1 ± 2G
`max,jmax

∑
c

∫
dkc

2εkc −Eη
dkc = 0 . (2.101)

2.3.5 Numerical solution of the rational Gaudin model with the continuum

Numerical solution of (generalized) Richardson equations (2.99) is plagued by divergencies if
two or more pair energies coincide with twice a s.p. energy. In the weak coupling limit (G → 0),
the standard way to approach this problem is to start with an educated guess for pair energies Ei
and then evolve them by iteratively solving the (generalized) Richardson equations for increasing
values of G. At each step, the solution for pair energies is updated with the Newton-Raphson
method using the solution of the previous step as the new starting point [190].

This initial guess is determined by solving the generalized Richardson equations in the limit
G→ 0. The general expression for pair energies Ei in this limit is:

lim
G→0

Ei = 2εq with i = 1,⋯,N pair and q = 1,⋯,N (2.102)

The analytical determination of pair energies becomes difficult if many pairs occupy the same s.p.
level q. In a general case of N pair pairs occupying the same s.p. state of energy εq, the starting
pair energies Ei are found by solving the set of N pair coupled equations:

1 ± 2Gdq
2εq −Ei

∓ 2G
Npair

∑
j≠i

1
Ej −Ei

= 0 i = 1,⋯,N pair (2.103)
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Notice that the non-resonant continuum states in the weak coupling limit G << 1 are not occupied
and, hence, the corresponding terms in generalized Richardson equations are absent in this limit.

It is possible to write the analytic solution of Eq. (2.103) for one or two pairs of particles on
the same level q. If a degeneracy of the s.p. level q is Ωq = 2, i.e. at most one pair of particles can
occupy this level, the solution of Eq. (2.103) is:

Ei = 2εq − 2Gdq (2.104)

For higher degeneracy of s.p. states q (Ωq ≥ 4), the analytical solution of Eq. (2.103) for two pairs
of particles is:

Ei = 2εq −G(dq + 1) + iG
√

2dq + 1
Ei′ = 2εq −G(dq + 1) − iG

√
2dq + 1 (2.105)

Derivations of Eq. (2.104) and Eq. (2.105) are given in Appendix A.3. For three pairs occupying
the same level q at G << 1, we can use a combination of the solutions (2.104) and (2.105), i.e. one
pair is initiated with Eq. (2.104) while the two others are initiated with Eq. (2.105).

It is interesting to notice that if two pairs at G→ 0 occupy the same s.p. state q, then their
energies are complex conjugate. If the s.p. spectrum is real then this symmetry of the pair energies
at G→ 0 is preserved by the iterative procedure of solving the generalized Richardson equations
for any G. This special symmetry of pair energies in the weak coupling limit is broken for finite
G if the non-resonant continuum states are included in the basis. Indeed, continuum states are
absent in Eq. (2.103) but become occupied for finite values of the pairing strength G and hence,
the initial symmetry of pair energies is broken in the course of solving the generalized Richardson
equations.

For systems with an odd number particles, i.e. with unpaired particles and seniority ν ≠ 0, we
have to use Eqs. (2.104), (2.105) to initiate the pair energies, and set νq in Eq. (2.99). Setting the
νq gives the information of how many of unpaired particles occupy the level q.

Numerical solutions of (generalized) Richardson equations exhibit singularities also for finite
G [191]. Formally, they cancel out and the total energy (the sum of pair energies) is always a
continuous function of G. However, these singularities generate instabilities in numerical applica-
tions which are hard to deal with. Those which occur at specific values of the pairing strength Gc,
are seen in the convergence of different pair energies to the same energy 2εq. Consequently, the
derivative of pair energies with respect to G becomes very large and the Newton-Raphson method
becomes unstable.

The practical solution of this problem has been proposed by Richardson for doubly degenerate
levels [192]. In this case, two pair energies Eλ and Eλ′ converge to the same energy 2εq, thus it is
convenient to use a new set of variables:

λ+ = 4εq −Eλ −E′
λ

λ− = (Eλ −E′
λ)

2 (2.106)

for G ≃ Gc. The particularity of these new variables is that their derivative with respect to G does
not diverge at G = Gc. Thus, it is possible to perform a polynomial fit of λ+(G) and λ−(G) in the
vicinity of Gc, and extrapolate the pair energies Eλ and Eλ′ across Gc.

The reference solution for the rational Gaudin model with the continuum is provided by the
exact diagonalization of the pairing Hamiltonian (2.85). We discretize the contour L+c using the
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Gauss-Legendre quadrature method and build the s.p. spectrum which is used both in the gener-
alized Richardson equations (2.99) and in the GSM.

2.3.5.1 Numerical solution of pairing Hamiltonian in the GSM

Exact solutions of the pairing Hamiltonian (2.85) are obtained by diagonalizing the Hamil-
tonian matrix using the Davidson method. This matrix is sparse with only ∼0.4% of non-zero
matrix elements. The calculation of eigenvalues in this case is efficient because matrix-vector
multiplications are fast and the storage of a matrix can be optimized.

2.3.5.2 Calculation of the pairing gap

A useful measure of pairing correlations in a given eigensate ∣Ψ(K)⟩ is the pairing gap:

∆(K) = G
N
∑
q

√
n
(K)
q (1 − n(K)q ) (2.107)

where the sum runs over s.p. states, and n(K)q is the occupation probability of the state q. Deter-
mination of the occupation probability n(K)q can be done exactly through the diagonalization of
GSM Hamiltonian.

Let us write the eigenstate ∣Ψ(K)⟩ of a pairing Hamiltonian (2.80) as an expansion in a basis
of Slater determinants ∣Φα⟩ :

∣Ψ(K)⟩ = ∑
α

C(K)α ∣Φα⟩ (2.108)

The expectation value of the particle number operator N̂ is:

N = ⟨Ψ(K)∣ N̂ ∣Ψ(K)⟩ = ∑
α,α′

C(K)α C
(K)
α′ ⟨Φα∣ N̂ ∣Φα′⟩

= ∑
q

2n(K)q (2.109)

Hence, the occupation probability can be determined numerically as:

n(K)q = ∑
α

g(α, q;K) (C(K)α )
2

(2.110)

where g(α, q;K) is equal to 1 or 0 depending on whether the s.p. state q is occupied or unoccupied
in the Slater determinant α of an eigenstate K.

In the generalized Richardson equations, we have no access to the expansion of the N -body
state in terms of Slater determinants. Therefore, the s.p. occupation probabilities in an eigenstate
K are determined by [191,193]:

n(K)q = ∂Ẽ
(K)

∂εq
, (2.111)

where Ẽ(K) is the total energy of the eigenstate K, and εq is the energy of the s.p. state q.
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G (MeV) Nb of pairs 9pts 15pts 21pts 30pts 45pts

0.01

2 pairs 7.2138e−13 7.7698e−13 8.0458e−13 8.2666e−13 8.4342e−13

3 pairs 2.3513e−12 2.5342e−12 2.6134e−12 2.6800e−12 2.7341e−12

4 pairs 6.7547e−12 7.2574e−12 7.4856e−12 7.6711e−12 7.8102e−12

5 pairs 2.5847e−11 2.7248e−11 2.8080e−11 2.8722e−11 2.9235e−11

0.3

2 pairs 1.2957e−6 1.3994e−6 1.4467e−6 1.4840e−6 1.5142e−6

3 pairs 3.7227e−6 4.0202e−6 4.1560e−6 4.2630e−6 4.3496e−6

4 pairs 9.3104e−6 1.0038e−5 1.0375e−5 1.0642e−5 1.0858e−5

5 pairs 2.8099e−5 2.9908e−5 3.0917e−5 3.1709e−5 3.2352e−5

0.5

2 pairs 1.4789e−5 1.5996e−5 1.6549e−5 1.6985e−5 1.7339e−5

3 pairs 4.1116e−5 4.4524e−5 4.6087e−5 4.7321e−5 4.8322e−5

4 pairs 9.6271e−5 1.0434e−4 1.0810e−4 1.1109e−4 1.1351e−4

5 pairs 2.5972e−4 2.8007e−4 2.9096e−4 2.9961e−4 3.0670e−4

0.7

2 pairs 6.8983e−5 7.4729e−5 7.7371e−5 7.9457e−5 8.1148e−5

3 pairs 1.9074e−4 2.0725e−4 2.1486e−4 2.2089e−4 2.2579e−4

4 pairs 4.3862e−4 4.7885e−4 4.9771e−4 5.1275e−4 5.2507e−4

5 pairs 1.1595e−3 1.2756e−3 1.3361e−3 1.3849e−3 1.4254e−3

Table 2.2 – Comparison between exact GSM diagonalization and generalized Richardson calcu-
lation (2.99). The relative error of the total energy calculated using Eqs. (2.99) is shown for
various values of the pairing strengths G, different number of fermion pairs and different number
of discretization points along the real-energy contour.

2.3.6 Comparison between solutions of GSM and generalized Richardson equa-
tions

2.3.6.1 Bound single particle states

In this subsection, we compare results obtained by solving the generalized Richardson equa-
tions (2.99) for fermions with the exact GSM results for a spectrum of well bound s.p. levels:
εq = {−5,−4,−3,−2,−1} MeV. Each level is doubly degenerate. To assure the completeness of a s.p.
basis, the set of s.p. states from the discretized real-energy contour is added.

The contour is composed of three segments: [k0;k1] = [0.0; 0.5], [k1;k2] = [0.5; 1.0], and
[k2;kmax] = [1.0; 2.0], and the calculations are performed for different strengths G of the pairing
interaction: G = 0.01 MeV, G = 0.3 MeV, G = 0.5 MeV and G = 0.7 MeV. The Gauss-Legendre
method is used to select optimal discretized s.p. levels along the real-energy contour for each given
number of the discretization points. The same set of s.p. levels and the corresponding Gaussian
weights are then used to find the total energy of the system by solving both, the generalized
Richardson equation (2.99) and the GSM.

The relative error of the total energy E (2.82) calculated using generalized Richardson equa-
tions (2.99) with respect to the exact GSM energy: δ(E) = (EGSM − E)/EGSM, is shown in Table
2.2 for different total number of the discretization points. Each segment of the contour L+c is
discretized with the same number of points. One may notice that the discrepancy between GSM
and generalized Richardson results grows with increasing pairing strength and number of fermion
pairs. Due to the approximation made in the commutator relations (2.86), the expression (2.99) for
pair energies does not account exactly for the pair-pair interaction. For a single pair, as expected,
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the energy obtained by solving generalized Richardson equations (2.99) coincides with the exact
GSM result.

2.3.6.2 Weakly bound and resonances states

The evolution of the relative error of the generalized Richardson equations (2.99) for weakly
bound and resonance double degenerate s.p. levels will be discussed in this subsection as a function
of the pairing strength for 2 and 3 pairs of fermions. Different spectra of s.p. states used in
these calculations are shown in Table 2.3. To construct complete s.p. Berggren basis, we take a

Spectrum S.p. energies (MeV)

1 { -2.5 , -1.5 , -0.5 }
2 { -1.5 , -0.5 , (0.5 , -0.05) }
3 { -0.5 , (0.5 , -0.05) , (1.5 , -0.15) }
4 { -2.5 , -1.5 , -0.5 , (0.5 , -0.05) }

Table 2.3 – The s.p. levels used in the studies of the relative error of the generalized Richardson
approach (2.99).

different contour in the complex k-plane for each considered resonance state. The contour used
for the spectrum 1 in Table 2.3 is divided into three segments along the real-k axis: [k0;k1] =
[0.0; 0.5], [k1;k2] = [0.5; 1.0], and [k2;kmax] = [1.0; 2.0]. The parametrization of contours for
different resonances is shown in Table 2.4. Each contour is discretized with 30 points selected by
the Gauss-Legendre quadrature procedure and all segments are discretized with 10 points.

Resonance k0 (fm−1) k1 (fm−1) k2 (fm−1) kmax (fm−1)

(0.5,−0.05) 0.0 (0.1549 , -0.14) 1.0 2.0
(1.5,−0.15) 0.0 (0.2682 , -0.2) 1.0 2.0

Table 2.4 – Parameters of the contours in the complex-k plane associated with the resonances.

The dependence of the relative error of ground state energy and width calculated using the
generalized Richardson equations (2.99) is plotted in Figs. 2.2 to 2.5 as a function of the pairing
strength G for different s.p. spectra shown in Table 2.3. The relative error depends strongly on
both the pairing strength and the number of fermion pairs. One may also notice (see Figs. 2.3 -
2.5) spikes of the relative error at certain values of the pairing strength. At these discrete values
of G, either real or imaginary part of the complex total energy calculated using the generalized
Richardson equations (2.99) is equal to the GSM energy. We found these spikes in δ(E) and/or
δ(Γ) only in the cases of s.p. spectra with at least one resonance.

Table 2.5 shows the relative error of the total energy for all discrete states in the space spanned
by 3 fermion pairs in five doubly degenerate levels with energies:
εi = {−2.5,−1.5,−0.5, (0.5,−0.05), (1.5,−0.15)} in units of MeV. The s.p. contours in the k-plane
are given in Table 2.4. Results are shown for two values of the pairing strength: G = 0.4 MeV and
G = 0.7 MeV. One can see that the precision of the calculation using the generalized Richardson
equations (2.99) can vary by two orders of magnitude from one state to another. As a rule, the
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Figure 2.2 – Spectrum 1 (Table 2.3): The relative error δ(E) of the ground state energy calculated
using solutions of the generalized Richardson equations (2.99) for the pair energies Ei, is plotted
as a function of the pairing strength G. Results for two (three) pairs of fermions are shown with
the solid (dashed) line.

G = 0.4MeV G = 0.7MeV
State Conf δ(E) δ(Γ) δ(E) δ(Γ)
1 11100 8.2900e−4 1.6856e−2 6.3687e−3 2.0974e−2

2 11010 5.8954e−4 4.9297e−2 3.9907e−3 2.9677e−1

3 11001 7.6322e−5 1.5083e−3 7.0742e−4 1.3266e−2

4 10110 2.5319e−3 5.1784e−2 2.3193e−2 1.3863e−1

5 01110 6.2516e−3 6.1601e−2 4.3516e−2 1.7037e−2

6 10101 1.5258e−4 1.3426e−3 1.7037e−2 1.2335e−1

7 10011 2.2406e−4 1.7029e−4 8.7716e−4 5.7504e−3

8 01101 2.2482e−4 1.5166e−3 1.1971e−4 6.1501e−3

9 01011 2.4802e−2 1.2426e−3 1.3286e−2 7.7301e−3

10 00111 6.9734e−4 7.9498e−4 1.6944e−2 5.6188e−3

Table 2.5 – The relative error of the complex energy for all excited states of a pairing Hamilto-
nian (2.85) with three pairs of fermions distributed over five doubly degenerate levels and three
discretized continua. The pole space configuration for each state, i.e. the occupation by pairs of
fermions of each discrete s.p. level, is indicated in the second column for G = 0. For more details,
see the description in the text.

relative error for the imaginary part of the total energy is bigger than the corresponding error of
the real part.

In Figs. 2.6, 2.7, and 2.8, we present the relative error for other relevant quantities: the
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Figure 2.3 – Spectrum 2 (Table 2.3): The relative error of the ground state energy δ(E) and width
δ(Γ) which are calculated using solutions of the generalized Richardson equations (2.99) for the
pair energies Ei, is plotted as a function of the pairing strength G. For more details, see the
caption of Fig. 2.2.
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Figure 2.4 – The same as in Fig. 2.3 but for spectrum 3 in Table 2.3.
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Figure 2.5 – The same as in Fig. 2.3 but for spectrum 4 in Table 2.3. The contour in the
complex-k plane for the resonance pole at (0.5 MeV,−0.05 MeV) is: [k0;k1] = [0.0; (0.1549,−0.2)],
[k1;k2] = [(0.1549,−0.2); 1.0], and [k2;kmax] = [1.0; 2.0] in fm−1. Results for two (four) pairs of
fermions are shown with solid (dashed-dotted) line.
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Figure 2.6 – Spectrum 2 (Table 2.3): The relative error of the generalized Richardson solution for
real parts of: (i) the correlation energy Ecorr (the upper part), (ii) the pairing gap ∆ (the middle
part), and (iii) the occupation probability nq for 5 lowest s.p. states q = 0 . . . ,4 (the lower part).
These calculations have been performed for the ground state of the spectrum 2.
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Figure 2.7 – The same as in Fig. 2.6 but for the first excited state.
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Figure 2.8 – The same as in Fig. 2.6 but for the second excited state.
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Figure 2.9 – Spectrum 2 (Table 2.3): The evolution of the three lowest complex eigenvalues
((E(i),Γ(i)) ; i = 0,1,2) of the pairing Hamiltonian is plotted as function of the pairing strength for
2 pairs of fermions. The upper most (lowest) figure shows results for the second excited (ground)
state, whereas the figure in the middle is for the first excited state. The solid and dashed lines
show the exact GSM solution, and the solution of the generalized Richardson approach (2.99),
respectively. Numbers at the curves denote limiting values of the pairing strength (in MeV).
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Figure 2.10 – Spectrum 2 (Table 2.3): The evolution of the lowest two (complex) pair energies
E
(K)
i (i = 0,1) with the pairing strength for 2 pairs of fermions. The pair energies are obtained

by solving the generalized Richardson equations (2.99) for the ground state (K = 0), and for the
two lowest excited states (K = 1,2). Numbers at the curves show limiting values of the pairing
strength (in MeV).
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correlation energy Ecorr, the pairing gap ∆, and the occupation probability nq for 5 lowest s.p.
states (q = 0, . . . ,4). The calculations are performed for two pairs of fermions. Results are shown
for the ground state, and the next two excited states. The correlation energy is calculated as:
Ecorr = EG=0 − E . The pairing gap ∆ is calculated according to Eq. (2.107). In GSM, the occupation
probabilities are determined using Eq. (2.110), whereas in the generalized Richardson equations
approach we use Eq. (2.111). One can see that deeps in the relative error of different quantities
shown in Figs. 2.6-2.8, do not appear at the same values of the pairing strength.

The trajectory of complex eigenvalues (E − Γ) of the pairing Hamiltonian in the energy-width
plane is plotted in Fig. 2.9 as a function of the pairing strength G in the interval from 0 to 1
MeV for the ground state (K = 0) (the upper part), the first excited state (K = 1) (the middle
part), and the second excited state (K = 2) (the lower part) excited state. The solid (dashed) lines
show the solutions of GSM (generalized Richardson equations). One may notice that the relative
discrepancy between exact and approximate results is largest for the first excited state at large
values of the pairing strength G .

In Fig. 2.10, the trajectory of pair energies in the complex energy plane is plotted for the
ground state (K = 0) (the upper part), the first excited state (K = 1) (the middle part), and the
second excited state (K = 2) as a function of the pairing strength G in the interval from 0 to 1 MeV.
In the upper part of the figure, one can see that the pair energies in an interval 0 < G < 0.53 MeV
tend to approach each other along the real-energy axis. At G ∼ 0.53 MeV, these two pair energies
exhibit an avoided crossing and then move rapidly into the complex-energy plane with increasing
value of the pairing strength. The pattern of avoided crossings, i.e. mixing pair energies, is a
general pattern and can be seen for excited states (K = 1,2) as well.

2.3.7 Application of generalized Richardson equations to physical systems

In the previous sections, we solved the generalized Richardson equation for the rational Gaudin
model with the continuum. In order to obtain the Richardson-like solution for this generalized
pairing problem, we had to compromise commutation relations for the non-resonant continuum
states. Therefore, whenever the occupation of non-resonant continuum states becomes important,
one might expect that the solution of the generalized Richardson equation is less accurate. This
happens for strong pairing correlations.

To test this expectation, we compared solutions of the generalized Richardson equation with
exact GSM solutions. We have shown that even though the relative error of the generalized
Richardson solution grows with the number of fermion pairs and the pairing strength, nevertheless
it remains rather accurate, especially in the limit of weak pairing correlations. One can use this
model to simulate various situations involving pairing correlations and continuum in weakly bound
or unbound states. In particular, one can use this model to test the common strategy of nuclear
SM to replace effects of continuum couplings by the phenomenological adjustment of both s.p.
energies and two-body matrix elements.

Like many well-known group theoretical models developed in nuclear physics, the rational
Gaudin model with the continuum can be applied to calculate not only energy spectra but also
transitions probabilities in the long series of isotopes. One should stress however that the absence
of particle-hole interaction makes this model unrealistic, as the essential element of the competition
between pairing and quadrupole interaction is missing.

Below, we will apply generalized Richardson equations to calculate spectra of carbon isotopes
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and investigate the role of the continuum in these spectra. We will also comment on a possibility to
investigate the weak-pairing limit of the ultra-small superconducting grains which is characterized
by strong fluctuations of the pairing field.

2.3.7.1 Chain of carbon and oxygen isotopes

To illustrate possible applications of the generalized Richardson equations, we will now calculate
spectra of carbon isotopes with 14 ≤ A ≤ 24. The choice of parameters in the Hamiltonian (2.89) is
motivated by the experimental spectrum of 13C and the binding energy of 14C. In this calculation,
we assume the core of 12C and calculate energies of all states in 14−20C with respect to the energy
of this core.

Berggren basis consists of the pole s.p. states: 0p1/2, 1s1/2, 0d5/2, 0d3/2, 0f7/2, and the
two non-resonant continua: {d3/2}, {f7/2}. S.p. energies of bound states 0p1/2, 1s1/2, 0d5/2
are given by experimental energies of 1/2−1 ,1/2

+
1 and 5/2+1 states in 13C: ε0p1/2 = −4.946 MeV,

ε1s1/2 = −1.857 MeV, and ε0d5/2 = −1.093 MeV. The energy of resonances 0d3/2 and 0f7/2 are [174]:
ε0d3/2 = (2.267 MeV;−0.416 MeV) and ε0f7/2 = (9.288 MeV;−3.040 MeV). The complex contours
{d3/2} and {f7/2} associated with 0d3/2 and 0f7/2 resonance are given in Table 2.6. They are
discretized with 10 points per segment, i.e. 30 points per contour. For the pairing strength, we

Resonance k0 (fm−1) k1 (fm−1) k2 (fm−1) kmax (fm−1)

d3/2 0.0 (0.332 , -0.03) 0.66 2.0
f7/2 0.0 (0.678 , -0.1) 1.24 2.0

Table 2.6 – Parameters of the contours L+ in the complex k-plane, associated with 0d3/2 and 0f7/2
resonance poles. Each contour consists of three segments: [k0, k1], [k1, k2], [k2, kmax], and each
segment is discretized with 10 points.

take: G = χ/A, where χ = 11.13 MeV. The constant χ is adjusted to reproduce the experimental
binding energy of 14C with respect to 12C.

To evaluate the role of the continuum in the spectra of carbon isotopes, we compare results of
the generalized Richardson equations (2.99) with results of the standard Richardson calculations
(2.84) without continuum couplings and with real s.p. energies. In the latter case, the s.p. energies
of the bound states: 0p1/2, 1s1/2, 0d5/2, are the same as given above, and energies of 0d3/2 and 0f7/2
resonances are real: ε0d3/2 = 2.267 MeV and ε0f7/2 = 9.288 MeV. To reproduce the experimental
binding energy of 14C in this SM-like basis, the pairing strength is increased χ = 15.064 MeV.

In Table 2.7, we compare experimental binding energies (Bexp) with binding energies calculated
using either generalized Richardson equations (BGR) or standard Richardson equations which
neglect continuum effects (BR). All energies are given with respect to the energy of 12C. One can
see that continuum changes the A-dependence of binding energies. Interestingly, BGR is equal to
Bexp both in 14C and in 20C.

Fig. 2.11 presents the spectrum of 14C calculated using either the generalized Richardson
equations for the rational Gaudin model with the continuum, or the standard Richardson equations
for the same model but without the continuum. The experimental spectrum for this nucleus is
shown for a comparison. The pairing strength in both calculations is adjusted to reproduce the
experimental ground state energy of 14C with respect to 12C. The calculated spectra in both
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Isotope Bexp (MeV) BGR (MeV) BR (MeV)

14C 13.123 13.124 13.124
16C 18.590 20.814 20.477
18C 23.505 25.130 24.386
20C 27.013 27.170 25.886

Table 2.7 – Binding energy in the chain of carbon isotopes 14−20C. BGR and BR give results of the
generalized Richardson equations (2.99) and standard Richardson equations (2.84), respectively.
Bexp gives the experimental binding energy. All energies are given with respect to the energy of
12C.

Conf State EGR(MeV) ER(MeV)

(1)2 0+ 0 0
(2)2 0+ 5.805 6.173

(1)1(2)1 0−,1− 6.321 6.321
(1)1(3)1 2−,3− 7.085 7.085

(3)2 0+ 9.821 9.871
(2)1(3)1 2+ 10.174 10.174
(3)1(3)1 2+,4+ 12.031 12.031

Table 2.8 – The initial configuration (G = 0) and excitation energies of different states of 14C
calculated using both the generalized Richardson equations (EGR) and the standard Richardson
(ER) equations. The initial configuration is denoted by the index of an occupied level (1 ≡ 0p1/2,2 ≡
1s1/2,3 ≡ 0d5/2) and the number of particles in a given level (1 or 2).

Conf State EGR(MeV) ER(MeV)

(1)2(2)2 0+ 0 0
(1)2(3)2 0+ 5.996 5.646

(1)2(2)1(3)1 2+,3+ 6.337 5.946
(1)2(3)1(3)1 2+,4+ 7.051 6.655
(2)2(1)1(3)1 2−,3− 7.392 7.947

(2)2(3)2 0+ 7.719 8.304
(2)2(3)1(3)1 2+,4+ 12.923 12.913

Table 2.9 – The initial configuration (G = 0) and energies of different states of 16C calculated using
both the generalized Richardson equations (EGR) and the standard Richardson (ER). For details,
see the caption of Fig. 2.8.

models are identical, except for the excited 0+ states which are shifted down by the coupling to the
continuum. The first excited 0+ state is shifted by almost 400 keV with respect to the ground state
even though the experimental one- and two-neutron separation energies in this nucleus are large.
Identical energy for other states is an artifact of having 12C as a core, namely, these states can be
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Conf State EGR(MeV) ER(MeV)

(1)2(2)2(3)2 0+ 0 0
(1)2(2)2(3)1(3)1 2+,4+ 5.788 5.328
(1)2(3)2(2)1(3)1 2+,3+ 5.730 5.459

(1)2(3)4 0+ – –
(2)2(3)2(1)1(3)1 2−,3− 7.668 7.820

(3)4(1)1(2)1 0−,1− 7.744 8.096
(2)2(3)4 0+ 9.161 9.846

(1)2(3)2(3)1(3)1 2+,4+ 9.166 8.449
(2)2(3)2(3)1(3)1 2+,4+ 14.041 14.059

Table 2.10 – The initial configuration (G = 0) and energies of different states of 18C calculated
using both the generalized Richardson equations (EGR) and the standard Richardson equations
(ER). The second 0+2 state could not be calculated due to a singularity problem arising at a finite
G. For other details, see the caption of Fig. 2.8.

Config State EGR (MeV) ER (MeV)

(1)2(2)2(3)4 0+ 0 0
(1)2(2)2(3)2(3)1(3)1 2+,4+ 5.168 4.613

(1)2(3)4(2)1(3)1 2+,3+ 5.578 5.289
(2)2(3)4(1)1(3)1 2−,3− 8.054 8.183

(3)6(1)1(2)1 0−,1− 8.452 8.848

Table 2.11 – The initial configuration (G = 0) and energies of different states of 20C calculated using
both the generalized Richardson equations (EGR) and the standard Richardson (ER) equations is
compared with the experimental spectrum. We omitted configurations with more than 2 pairs on
a level.

created only by breaking a pair of valence neutrons in 14C. The pairing correlations in this case
are absent and so are the continuum effects. For each calculated state of 14C, initial configurations
and excitation energies are shown in Table 2.8. The initial configuration (G=0) is defined by an
index of an occupied level, e.g. 1 ≡ 0p1/2,2 ≡ 1s1/2,3 ≡ 0d5/2, etc. and the number of particles in
a given level (n = 1,2, . . . ). n = 1 means an unpaired particle. n = 2 or 4, denotes 1 or 2 pairs of
particles, respectively.

Fig. 2.12 presents the spectrum of 16C. Both the generalized Richardson equations and the
standard Richardson equations for the same model without the continuum fail to reproduce an
experimental sequence of states. This is a failure of the schematic two-body interaction in this
model. Comparing the spectra of 16C obtained in the two variants of the rational Gaudin model,
one may notice significant relative energy shifts which depend strongly on the configuration of a
given state. The individual shifts due to the continuum couplings in this model can be as large
as 600 keV. Similar conclusions can be made by comparing results of the rational Gaudin model,
with and without the continuum couplings, for 18C (Fig. 2.13) and 20C (Fig. 2.14).
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Fig. 2.15 shows the evolution of the pairing gap (2.107) with the mass number in the ground
state of even-even carbon isotopes. The pairing gap is calculated either neglecting the continuum
(∆R) by solving the standard Richardson equations, or including the continuum (∆GR) and solving
the generalized Richardson equations. Parameters in these calculations have been described in Sect.
2.3.7.1. One can see that the pairing gap in 14C and 16C is strongly reduced by the presence of
0d3/2 and 0f7/2 resonances and their associated {d3/2} and {f7/2} non-resonant continuum states
in the complex k-plane. The A-dependence of the pairing gap is also significantly changed by the
presence of the continuum. ∆GR is more robust than ∆R, and at the 0d5/2 subshell closure in 24C
is almost 2 times bigger than ∆R.

The A-dependence of the ground state energy in even-even carbon isotopes is shown in Fig.
2.16. The energies are given with respect to the energy of 12C. The solid line shows experimental
data, whereas the dashed and dashed-dotted lines exhibit results of Richardson calculations with
(EGR) and without (ER) the continuum. One can see that both EGR and ER have incorrect A-
dependence for 14 ≤ A ≤ 20 what is due to an absence of the particle-hole component of the
two-body interaction in the Hamiltonian (2.85) of the rational Gaudin model. In view of the
simplicity of this Hamitonian, it may be considered as surprising that EGR describes well both
the binding energy of 20C, 22C isotopes, and the experimental position of the neutron dripline.
The magnitude of a rapid increase of the energy at A = 24 depends on the 0d5/2-0d3/2 spin-orbit
splitting and the {d3/2} non-resonant continuum.

Fig. 2.17 compares experimental and calculated A-dependence of the ground state energy in
even-even oxygen isotopes. In this calculation, we assume a core of 16O and calculate energies of
all states in 18−28O with respect to the energy of this core. Berggren basis consists of the pole
s.p. states: 0d5/2, 1s1/2, 0d3/2, 0f7/2, and the two non-resonant continua: {d3/2}, {f7/2}. S.p.
energies of bound states and resonances 0d5/2, 1s1/2, 0d3/2 and 0f7/2 are given by experimental
energies of 5/2+1 ,1/2

+
1 , 3/2+1 , and 7/2−1 states in 17O: ε0d5/2 = −4.143 MeV, ε1s1/2 = −3.273 MeV,

ε0d3/2 = (0.944 − 0.048i)MeV, and ε0f7/2 = (1.557 − 0.002i). The complex energy contours {d3/2} and
{f7/2} associated with 0d3/2 and 0f7/2 resonances are given in Table 2.12. They are discretized with
10 points per segment, i.e. 30 points per contour. For the pairing strength, we take: G = χ/A, with

Resonance k0 (fm−1) k1 (fm−1) k2 (fm−1) kmax (fm−1)

d3/2 0.0 (0.224 , -0.05) 0.448 2.0
f7/2 0.0 (0.274 , -0.01) 0.548 2.0

Table 2.12 – Parameters of the contours L+ in the complex k-plane, associated with 0d3/2 and
0f7/2 resonance poles. Each contour consists of three segments: [k0, k1], [k1, k2], [k2, kmax], and
each segment is discretized with 10 points.

χ = 10.602 MeV for generalized Richardson calculation and χ = 13.338 MeV for SM-like, standard
Richardson calculation. The constant χ is adjusted to reproduce the experimental binding energy
of 18O with respect to 16O.

It can be seen in Fig. 2.17 that the non-resonant continuum does not play a significant role for
18−24O and, consequently, EGR (the dashed line) and ER (the dashed-dotted line) are almost equal.
Continuum plays a significant role only in the vicinity of the neutron dripline, for A ≥ 26. The
A-dependence of both EGR and ER differs significantly from the experimental dependence (see the
solid line in Fig. 2.17), however the experimental position of the neutron dripline at 24O in oxygen
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is reproduced by the generalized Richardson calculation. On the contrary, the dripline predicted
by the SM-like calculation without the continuum (ER) is at 26O.

These examples show that the continuum couplings in the rational Gaudin model have signif-
icant and non-trivial effects on the spectra of studied systems. Adjusting parameters of the SM
Hamiltonian in one nucleus, 14C in the studied chain of isotopes, to include effectively neglected
continuum effects does not solve the problem in heavier isotopes of the same chain for which sig-
nificant state and configuration dependent energy shifts due to the continuum couplings are found.
On the other hand, this simple pairing Hamiltonian reproduce correctly an experimental position
of the neutron dripline in carbon and oxygen isotopes if the continuum states are included. At
this point, it is difficult to asses if this encouraging result is generic and can be associated with
the predominance of pairing correlations close to the two-nucleon driplines [7].

Even though the rational Gaudin model is not a realistic approximation of nuclear SM Hamil-
tonian, one is tempted to conclude that results of this model are more general than the model
itself, i.e. the coupling between discrete and continuum states cannot be replaced by simply fitting
the two-body matrix elements to the observed spectra in a certain mass region. This standard
procedure in many practical applications leads to wrong conclusions about the nature of effective
interactions and the structure of many-body states. This is particularly worrisome if one wants to
study states in long chains of isotopes from the valley of stability towards the drip lines.
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Figure 2.11 – The experimental spectrum of 14C is compared with the spectra calculated using
either the standard Richardson equations (no continuum) (ER), or and generalized Richardson
equations (EGR). For more details, see the discussion in the text.
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Figure 2.12 – Experimental spectrum of 16C is compared with the spectra calculated using either
the standard Richardson equations (no continuum) (ER), or and generalized Richardson equations
(EGR). For more details, see the discussion in the text.
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Figure 2.13 – The spectrum of 18C calculated using either the standard Richardson equations
(no continuum) (ER), or the generalized Richardson equations (EGR). For more details, see the
discussion in the text. We omitted the second 0+ as mentioned in Tab. 2.10
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0+ 0.0
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0+0.0

2+,4+5.168
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2−,3−8.054
0−,1−8.452
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Figure 2.14 – The spectrum of 20C calculated using the standard Richardson equations (no con-
tinuum) (ER) is compared with the spectrum obtained by solving the generalized Richardson
equations (EGR). For more details, see the discussion in the text. No excited states are known
experimentally for this nucleus.
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Figure 2.15 – The pairing gap (2.107) in even-even carbon isotopes. The dashed line shows results
obtained by solving the standard Richardson equations, i.e. neglecting the continuum. The solid
line depicts solutions of the generalized Richardson equations. For more details, see the discussion
in the text.
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Figure 2.16 – The energy of even-even carbon isotopes with respect to 12C, calculated using either
the standard Richardson equations ER (the dashed-dotted line), i.e. neglecting the continuum,
or the generalized Richardson equations EGR (the dashed line). Experimental energies are shown
with a solid line. For more details, see the discussion in the text.
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Figure 2.17 – The same as in Fig. 2.16 but for even-even oxygen isotopes.

2.3.7.2 Ultra-small superconducting grains

In 1959, Anderson [194] claimed that the phenomenon of superconductivity must disappear
for metallic grains if the mean level spacing d, which is inversely proportional to the volume, is of
the order of the superconducting gap in bulk ∆̃. A simple argument supporting this conjecture is
that the ratio ∆̃/d measures the number of electronic levels involved in the formation of Cooper
pairs, so that if ∆̃/d ≤ 1 then there are no active levels accessible to build the pair correlations.
Apart from some theoretical studies, this conjecture remained largely unexplored until the recent
fabrication of ultra-small metallic grains.

Ralph, Black and Tinkham [195, 196], in a series of experiments, studied the superconducting
properties of aluminum grains at the nanoscale. Giaever and Zeller [197] were among the first
to probe the Anderson’s criterion experimentally. Studying tunneling through granular thin films
containing electrically insulated Sn grains, they demonstrated the existence of an energy gap for
grain sizes right down to the critical size estimated by Anderson, but were unable to prove that
smaller particles are always normal. Later, Ralph, Black, and Tinkham [195, 196] succeeded to
study transport through individual nanometer-scale aluminium grains. These experiments revealed
the existence of a spectroscopic gap larger than d which could be driven to zero by applying a
suitable magnetic field. It was found in these studies, that the mean level spacings is d ∼ 0.45 MeV,
whereas the bulk gap is ∆̃ ∼ 0.38 MeV which satisfies the Anderson’s condition d ≥ ∆̃.

These experimental observations produced intense theoretical activity focused on the study of
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the pairing Hamiltonian with equally spaced s.p. levels [198–202]. The pairing Hamiltonian used
in the studies:

Ĥ =
D

∑
α

(εα − µ)ĉ†
αĉα − λd

D

∑
α,β

ĉ†
αĉ

†
ᾱĉβ̄ ĉβ (2.112)

belongs to the class of rational Richardson-Gaudin models. Here, the s.p. levels are given
by: εα = αd, d is the average level spacing, µ is the chemical potential, and λ is the dimen-
sionless coupling constant. The Hamiltonian (2.112) has two regimes depending on the ratio
d/∆̃ = 2 sinh (1/λ)/N , with N the number of electrons, between the equidistant spacing and the
bulk superconductivity [203]. In the weak coupling limit: (d/∆̃ >> 1), which corresponds to small
grains or small coupling constants, the system is in a regime with strong pairing fluctuations above
the Fermi sea. In the strong coupling limit: (d/∆̃ << 1), which corresponds to large grains or strong
coupling constants, the bulk BCS wave function describes correctly the ground state properties of
the grains.

The role of continuum couplings in these two regimes of the pairing Hamiltonian (2.112) is
unknown but could be easily studied using the generalized Richardson equations for the picket fence
set of bound states, resonances, supplemented by the non-resonant continuum states. Generally,
two types of quantities are calculated as functions of increasing d/∆̃, i.e. increasingN : the even and
odd (b = 0 and 1, respectively) condensation energy ECb , and the Matveev-Larkin parameter [204].
The condensation energy is given by:

E
(C)
b = Eg.s

b − ⟨FS∣ Ĥ ∣FS⟩ (2.113)

the difference between the ground state energy of the pairing Hamiltonian Eq. (2.112) and the
energy of the Fermi state (FS) which is the Slater determinant obtained by simply filling all levels
up to the Fermi surface. The Matveev-Larkin parameter:

∆ML = E1(N) − 1
2
[E0(N + 1) +E0(N − 1)] (2.114)

measures the difference between the ground state energy of an odd grain and the mean energy of
the neighboring even grains obtained by adding and removing one electron. Both the condensation
energy E(C)b and the Matveev-Larkin parameter ∆ML can be easily investigated for different both
s.p. spectra and numbers of electrons. In particular, one expects that the continuum coupling may
have an influence on the ultra-small grains in the weak coupling regime of the pairing Hamiltonian.
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Chapter 3

Towards a unified model of nuclear
structure and reaction

Nuclear reactions are used to probe properties of the atomic nuclei and understand various
astrophysical processes from the Big Bang nucleosynthesis to the evolution of stars and the relative
abundances of different isotopes/nuclei in the Universe. Reaction cross sections are one of the
most important observables which provide information not only about the reaction probabilities
but also about the structure of the nucleus. Indeed, many structural properties of the nucleus are
determined by means of nuclear collisions. For example, direct nuclear reactions can select the final
state of the reaction process. The transfer or knockout of one nucleon probes the single particle
(s.p.) states, the inelastic scattering excites collective states and the transfer of two nucleons
brings information about the pairing correlations. Single neutron transfer using the (p,d)-reaction
became a common tool to explore neutron capture reactions at stellar energies (see Ref. [205]). In
general, complex projectiles such as deuteron, triton, alpha, or even heavier nuclei are involved in
transfer reactions and hence their theoretical modeling is difficult.

Nuclear elastic scattering processes can be described using the complex one-body potential
[206–208] (the optical potential) where the imaginary part takes into account an absorption of
the wave function, in analogy to the absorptive imaginary part of the index of refraction in wave
optics. This approach reached its maturity in the works of Feshbach and others [209–211] on
the generalized optical potential which effectively takes into account couplings to the inelastic
channels. Later, Mahaux and Sartor [212] developed the dispersive optical model which uses the
dispersion relation to link the imaginary and real parts of the optical potential and hence, the
elastic scattering cross sections with the properties of bound s.p. states [213].

A more general formalism is required to describe the inelastic scattering or transfer reactions.
In these reactions, one has to introduce additional quantum numbers to label internal states of
colliding nuclei and different partitions of nucleons in the collision process. For this purpose, it is
convenient to introduce reaction channels [214–216] to define the asymptotic states of the quantum
system before and after the collision. Any partition of nucleons among collision partners defines
an arrangement channel. The particle transfer process becomes then the quantum hopping process
in the space of arrangement channels.

Narrow resonances are observed in various nuclear reaction cross sections. According to Niels
Bohr [217], the long lifetime of these states is related to their complexity which arises because the
available energy is shared among many nucleons. Accordingly, it was for a long time considered
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almost hopeless to approach nuclear reaction theory from a microscopic point of view. Many earlier
formulations of the reaction theory [218–220] proposed an expression for the collision matrix with
no explicit reference to the nuclear Hamiltonian. These formulations were devised to provide a
convenient framework for the analysis of the resonance processes.

Nuclear reaction theory received a considerable impetus from Feshbach [42,43] who emphasized
the dynamical origin of resonances and of the optical model. In his work, the collision matrix is
expressed in terms of the matrix elements of the nuclear Hamiltonian [42,43,221]. In its first for-
mulation, the Feshbach’s formalism neglected the antisymmetrization of the A-body wave function
which is a serious challenge to any nuclear reaction theory [94,222,223].

At higher energies, the precise knowledge of the structure of projectile and target nuclei is
not always mandatory for the quantitative description of nuclear reactions. On the contrary,
details of the shell structure of colliding nuclei and their many-body wave functions are essential
for understanding the low energy radiative capture or transfer reactions, and this cries out for a
unified framework. The attempts in this direction led to various formulations of the CSM/SMEC
[34, 35, 38, 39, 41, 104, 224] which are based on the Feshbach projection formalism [42, 43]. These
models were the first to provide a truly unifying picture of nuclear structure and reactions but their
applications for processes involving more than two nucleons in the non-resonant continuum were
too complicate to be pursued. The CSM is formulated in the coupled-channel (CC) framework
which is well suited for decay processes and reactions. On the other hand, the description of
spectroscopy requires the reformulation of the CSM to include the discrete part of the continuum
spectrum (the s.p. resonances) in the configuration mixing [225].

Recently, the GSM has been proposed which uses the Berggren basis [44–46] and the external
complex scaling method [137] to regularize the resonance wave functions. Contrary to the CSM,
the GSM is not limited by the number of particles in the scattering continuum. On the other hand,
the GSM is the configuration interaction approach and as such it is the tool of choice for nuclear
structure studies. To reconcile the GSM with the reaction theory, a reformulation of the GSM in
terms of the coupled channels is mandatory [226]. The first applications of the GSM in the CC
framework (GSM-CC) have been achieved for the elastic and inelastic scattering of protons on
6He [226], 18Ne [227], and 14O [228]. The GSM-CC has also been applied to study proton/neutron
radiative capture reactions [229,230].

Our aim in this chapter is to formulate the GSM-CC approach for transfer/knockout reactions
and extend its applicability for reactions involving complex (multi-nucleon) projectiles. Moreover,
since GSM-CC describes reactions in the COSM coordinates, the resulting theory can be applied
to study elastic and various inelastic reactions involving also medium- and heavy-mass nuclei.
However before approaching this goal, in the next section (Sec. 3.1 ) we will recall basic features
of the CSM/SMEC which were the first theoretical approaches to bring together the configuration
interaction approach (the SM) and the reaction theory (the S-matrix, the optical model potential).

In Sec. 3.2 we discuss the CC formulation of the GSM. In subsection 3.2.1 we remind general
features of the Schrödinger equation in the channel representation. In the following subsections,
we discuss the Hamiltonian of the projectile (Sec. 3.2.2) and the Slater determinant expansion of
the states of the composed system projectile+target (Sec. 3.2.3 - 3.2.4). The orthogonalization
condition for states of the composed system with respect to the occupied states in the core is
discussed in Sec. 3.2.5 . The following subsections (Sec. 3.2.6 - 3.2.7) concentrate on discussing
matrix elements of the Hamiltonian, approximations in the treatment of antisymmetry in the
system projectile-target at large c.m. energies, and details of the actual calculation of the matrix
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elements of the Hamiltonian and the norm.
Sec. 3.3 is devoted to the discussion of the numerical resolution of the CC equations. Among

many things, we discuss the Green’s function approach to obtain the solution of the CC equations.
The next section (Sec. 3.4) is devoted to the presentation of some applications of the GSM-CC

approach to nuclear reactions. After giving few practical tips concerning the GSM-CC calcula-
tions, we will present results of the calculation for the reaction 14O(p,p’) and properties of the
intermediate system 15F in this reaction.

3.1 From Feshbach projection formalism to the CSM
The basic idea of CSM is to use a finite depth potential to generate the s.p. basis. This potential

is generally a Wood-Saxon potential, plus a spin-orbit and Coulomb term, and it generates s.p.
bound states and resonances. Both bound states and resonances have an outgoing asymptotics
but the resonance wave function is not square integrable. To overcome this problem, one should
separate the localized part of the resonance wave function inside the Coulomb and centrifugal
barriers from its tail at large distances [225]. The localized part of resonance, properly normalized
and orthogonalized to all bound states, is then put in the subspace of discrete s.p. states, whereas
the resonance tail remains in the non-resonant continuum. The scattering states are taken along
the positive real-k axis. By construction, the CSM is formulated in Hilbert space. The many-body
states are Slater determinants made of bound s.p. states and anamneses of the s.p. resonances.

At this point, the Feshbach projection formalism is used. The idea is to separate Hilbert space
into the two subspaces Q and P such that : H = Q∪P, where H is a Hilbert space. The subspace
Q is the subspace of Slater determinants with only discrete states occupied, while the subspace P
is the complement subspace which includes the non-resonant continuum states. In the following,
we will only consider a simpler case where P stands for the set of configuration with only one
nucleon in the continuum.

The projection operator Q̂ and P̂ on the subspaces Q and P, are defined as :

Q̂ = ∑
n

∣SDn⟩ ⟨SDn∣ , P̂ = 1̂ − Q̂ (3.1)

where the Slater determinants ∣SDn⟩ are build of the discrete s.p. states generated by the mean
potential. Using Eq. (3.1), one can rewrite the Hamiltonian Ĥ of the A-nucleon system as:

Ĥ = (P̂ + Q̂)Ĥ(P̂ + Q̂) = P̂ ĤP̂ + Q̂ĤP̂ + P̂ ĤQ̂ + Q̂ĤQ̂
= ĤPP + ĤQP + ĤPQ + ĤQQ (3.2)

with:

ĤQQ ∣Φi⟩ = Ei ∣Φi⟩ (3.3)
ĤPP ∣ξ⟩ = E ∣ξ⟩ (3.4)

Here Eq. (3.3) is an eigenvalue problem, where ∣Φi⟩ = ∑n cn ∣SDn⟩, while Eq. (3.4) is a CC equation
with:

∣ξ⟩ = ∑
c
∫

∞

0

uc(r)
r

r2 ∣(c, r)⟩dr (3.5)

64



CHAPTER 3. TOWARDS A UNIFIED MODEL OF NUCLEAR STRUCTURE AND
REACTION

where ∣(c, r)⟩ = [∣ΨJT
T ⟩ ⊗ ∣r, `, j, τ⟩]

J
are the channel states and ruc(r) = ⟨(c, r)∣ξ⟩. Here, ∣ΨJT

T ⟩ is
the target state with JT its angular momentum, ∣r, `, j, τ⟩ is the projectile state with j its angular
momentum, and J is the total angular momentum. The boundary conditions defining the uc(r)
are: (i) the outgoing wave behavior in all channels c, and (ii) the incoming wave behavior in the
entrance channel c0. The correlations between the projectile and the target are taken into account
through the microscopically calculate coupling potentials between different channels.

Let us consider the state: ∣Ψ⟩ = (P̂ + Q̂) ∣Ψ⟩ = ∣ΨP ⟩ + ∣ΨQ⟩, of the A-nucleon system. The
Schrödinger equation Ĥ ∣Ψ⟩ = E ∣Ψ⟩ can be rewritten using Eq. (3.2), and then projected on the
subspaces Q and P as follows:

(Q) ∶ (E − ĤQQ) ∣ΨQ⟩ = ĤQP ∣ΨP ⟩ (3.6)
(P) ∶ (E − ĤPP ) ∣ΨP ⟩ = ĤPQ ∣ΨQ⟩ (3.7)

Introducing the resolvent operator:

Ĝ+
P = (E+ − ĤPP )

−1 = lim
η→0

(E + iη − ĤPP )
−1
,

the solution ∣ΨP ⟩ of Eq. (3.7) can be written as:

∣ΨP ⟩ = ∣ξ⟩ + Ĝ+
P (E)ĤPQ ∣ΨQ⟩ (3.8)

Note that ∣ΨP ⟩ is a sum of the unperturbed solution ∣ξ⟩ in P, i.e. the scattering part, plus a term
taking into account the coupling with Q. Using Eq. (3.8) in Eq. (3.6), one obtains the following
expression for ∣ΨQ⟩:

(E − ĤQQ − ĤQPG
+
P (E)ĤPQ) ∣ΨQ⟩ = ĤQP ∣ξ⟩ (3.9)

Using expressions (3.8), (3.9), and the completeness relation:

∑
i

∣Φi⟩ ⟨Φi∣ = 1̂ ,

one obtains the solution for ∣Ψ⟩ in the whole space Q∪P:

∣Ψ⟩ = ∣ξ⟩ +∑
ij

[∣Φi⟩ + ∣w(+)i ⟩] ⟨Φi∣
1

E − Ĥeff
QQ

∣Φj⟩ ⟨Φj ∣ ĤQP ∣ξ⟩ (3.10)

The state ∣Ψ⟩ is thus written as a sum of a direct part ∣ξ⟩ and a resonant part. Here ∣w(+)i ⟩ is the
extension of ∣Φi⟩ in P:

∣w(+)i ⟩ = G(+)p (E)ĤPQ ∣Φi⟩ (3.11)

and Ĥ eff
QQ is the effective Hamiltonian in Q:

Ĥ eff
QQ = ĤQQ + ĤQPG

+
P (E)ĤPQ (3.12)

In general, the effective Hamiltonian Ĥ eff
QQ (E) is non-hermitian and energy dependent. It contains

an “internal interaction” in ĤQQ which makes the configuration mixing like in SM, but it contains
also an “external interaction” ĤQP Ĝ

+
P (E)ĤPQ which couples the states in Q and P and generates

the energy correction to the Q-space eigenvalues.
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Let us now discuss the description of bound states and resonances of the A-nucleon system. In
this case, ∣Ψ⟩ is a set of discrete states: Ĥ ∣Ψn⟩ = En ∣Ψn⟩, and ∣Ψn⟩ = ∣Ψn

Q⟩ + ∣Ψn
P ⟩. Removing the

scattering part ∣ξ⟩ in ∣Ψn
P ⟩, one can see that the states ∣Ψn

Q⟩ are the eigenvectors of the effective
Hamiltonian:

(E − Ĥ eff
QQ (E)) ∣ΨQ⟩ = 0 ,

with the eigenvalues En(E) + iΓn(E)/2. Then, it is possible to define ∣w̃(+)n ⟩ the extension of ∣ΨQ⟩
in P as:

∣w̃(+)n ⟩ = Ĝ+
P (E)ĤPQ ∣ΨQ⟩ .

The states ∣Ψn
Q⟩ and w̃

(+)
n can be expressed in a basis of ∣Φi⟩ and ∣w(+)i ⟩, respectively:

∣Ψn
Q⟩ = ∑

i

αni ∣Φi⟩

∣w̃(+)n ⟩ = ∑
i

αni ∣w(+)i ⟩ (3.13)

Now, defining
∣Ω(+)n ⟩ = ∣Ψn

Q⟩ + ∣w̃(+)n ⟩

and inserting in Eq. (3.10) twice the following two completeness relations:

∑
n

∣Ψn
Q⟩ ⟨Ψn

Q∣ = 1̂

∑
n

∣Ω(+)n ⟩ ⟨Ω(+)n ∣ = 1̂ (3.14)

one obtains the final expression for ∣Ψ⟩:

∣Ψ⟩ = ∣ξ⟩ + 1√
2π
∑
n

∣Ω(+)n ⟩ γn

E −En(E) + iΓn(E)
2

(3.15)

where
γ̃cn =

√
2π ⟨Ψn

Q∣ ĤQP ∣ξ⟩ (3.16)

are the coupling matrix elements between the pure scattering states lying in P and the bound
states and resonances ∣Ψn

Q⟩ lying in Q.
It is interesting to notice that the states ∣Ψ⟩ and ∣Ω(+)n ⟩ are equivalent in the following sense: ∣Ψ⟩

is a scattering state which takes into account corrections from the discrete states while ∣Ω(+)n ⟩ is the
resonance state which takes into account corrections from the scattering states. The corrections
from the discrete states to the scattering states ∣Ψ⟩ are contained in the sum over these states (the
second term in Eq. (3.15)), while the corrections from the decay channels to the wave function
∣Ω(+)n ⟩ are contained in ∣w̃(+)n ⟩.

For a given incoming channel c0 and an exit channel c, the S-matrix is expressed as:

Scc0 = S
(0)
cc0 − ie

i(δ(0)c +δ(0)c0 )∑
n

γ̃nc γ̃
n
c0

E −En(E) + iΓn
2

(3.17)
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Here, δ(0)c is the scattering phase shift for the same incoming and exit channels, S(0)cc0 is the matrix
element for the non-resonant part of the scattering process, and γ̃cn is defined as:

γ̃cn = −eiδ
(0)
c

√
4µ
h̵kc
∑
ic′
∫

∞

0
ruc′(r)wc

′

i (r)dr (3.18)

with µ the reduced mass of the collision partners, ruc′(r) = ⟨(c′, r)∣ξ⟩ and wc′i (r) = ⟨(c′, r)∣wi⟩.
Finally, the cross section describing the wave scattered from an incoming channel c0 to an exit

channel c is given by:

dσ

dΩ
(c0 → c) = π

k2
c0

RRRRRRRRRRRR
∑

`,`′ ,m′
i`−`

′√
2` + 1Y m

′

`′
(θ, φ)(Scc0 − δcc0)

RRRRRRRRRRRR

2

(3.19)

By construction, CSM considers the configuration interaction for Slater determinants build by
harmonic oscillator wave functions for bound s.p. states and anamneses of s.p. resonances [34–41]
in the internal subspace (Q-space). The external subspace (P-space) is supposed to include only
non-resonant continuum states what implies that the special procedure to extract the localized
part of the resonance wave functions has to be defined. The coupling between the internal SM-
like states, and the external subspace (P-space) is evaluated by solving the CC equations. The
quality of the CSM approach depends on the goodness of the separation method between Q and
P subspaces. In the future, one could envisage the variant of Feshbach projection formalism in
which GSM instead of SM is used to build the subspace of discrete many-body states, leaving the
selected channel wave functions in P.

3.2 Coupled channel formulation of the GSM
GSM is the generalization of SM to the resonant and non-resonant continuum. Like in SM,

the many-body states in GSM are written in terms of Slater determinants and hence, the GSM
is a tool par excellence for the nuclear structure studies. The fundamental problem which will be
discussed in this chapter is how to reconcile the GSM with the reaction theory. A similar problem
challenged already the forefathers of the microscopic reaction theory, like Feshbach, Kerman,
Mahaux, and others, who were preoccupied by the (in)compatibility of the SM with the reaction
theory. This fundamental problem returns again because we know now that the SM is not a
satisfactory formulation of the configuration interaction in all binding and boundary conditions.

The reaction theory deals with scattering wave functions which are solutions of the Schrödinger
equation with the appropriate boundary conditions. This scattering state could be provided by
the GSM, but the Slater determinant representation of a GSM wave function is not suitable
for a description of reactions because the entrance and exit channels cannot be easily identified.
Furthermore, the determination of constants C+ and C− (see Eq. (2.52)), which are associated
with the A-body scattering wave function and allow to calculate the S-matrix, is not possible using
the Slater determinants.

To break this deadlock, one may formulate GSM in the CC representation. In general, the
scattering state in such a formulation is a combination of different reaction channels. The coupling
between different reaction channels is then given by the coupling potentials which are calculated
microscopically using the GSM wave functions. The expansion of the radial wave function gives
an access to the S-matrix [231] which provides the whole information about the reaction process.
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3.2.1 Coupled channel problem in Berggren basis

As discussed in the introduction of this chapter, to go beyond elastic scattering one has to
take into account the internal structure of the collision partners and consider different reaction
channels. In this formulation, the nucleus is seen as consisting of different cluster partitions of the
projectile and target nuclei. The wave function of an A-body system in any of its cluster partition
is fully antisymmetrized. A similar view on the reaction dynamics has been put forward by the
resonating group method [232,233]. With this assumption, the channel state is written as:

∣(c, r)⟩ = Â[∣ΨJT
T ⟩ ⊗ ∣ΨJP

P ⟩]
JA

MA

, (3.20)

with ∣ΨJT
T ⟩ and ∣ΨJP

P ⟩ the state of the target and the projectile respectively, and JT and JP their
are the associated total angular momenta. JA is the total angular momentum J⃗A = J⃗T + J⃗P, and
MA its projection. Here r denotes the relative distance between the c.m. of the projectile and the
target. This relative distance is contained in ∣ΨJP

P ⟩ with all the other quantum numbers defining
the projectile state:

∣ΨJP
P ⟩ = ∣r, `, Jint, JP⟩ (3.21)

In this expression, ` is the orbital angular momentum, Jint the intrinsic angular momentum, and
J⃗P = ⃗̀+ J⃗int. Note that ∣r, `⟩ stands for the c.m. part of the projectile. Hence channel index c
stands for the {A − a, JT;a, `, Jint, JP} quantum number, with (A − a) and a the number of nucleons
in the target and projectile respectively. The channel states ∣(c, r)⟩ form a complete basis:

∑
c
∫

∞

0
∣(c, r)⟩ ⟨(c, r)∣dr = 1̂ (3.22)

so that the A-body state ∣Ψ⟩ can be expanded in this basis as:

∣ΨJA
MA

⟩ = ∑
c
∫
uc(r)
r

r2 ∣(c, r)⟩dr , (3.23)

with ⟨(c, r)∣Ψ⟩ = r uc(r). The state ∣Ψ⟩ describes the scattering process in relative coordinates, as
the c.m. part of the target-projectile system is neglected since it reduces to a plane wave. Thus,
the uc(r) is the radial wave function describing the relative motion between the target and the
projectile. Using Eq. (3.23), the Schrödinger equation becomes:

∑
c
∫

∞

0
r2 (Hcc′ −ENcc′)

uc(r)
r

= 0 , (3.24)

where:

Hcc′(r′, r) = ⟨(c′, r′)∣ Ĥ ∣(c, r)⟩
Ncc′(r, r′) = ⟨(c′, r′)∣(c, r)⟩ (3.25)

Eqs. (3.24) are the CC equations which determine the radial wave function uc(r).

The projectile state ∣ΨJP
P ⟩ = ∣r, `, Jint, JP⟩ can be split into radial and internal parts:

∣r, `, Jint , JP⟩ = ∣r⟩ ⊗ ∣`, Jint , JP⟩ .
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Using a one-body Berggren basis {∣n⟩}, one can write:

∣r⟩ = ∑
n

un(r)
r

∣n⟩ (3.26)

where ⟨n∣r⟩ = un(r)/r. Then, the expansion of the projectile state in Berggren basis of the c.m.
states reads:

∣r, `, Jint , JP⟩ = ∑
n

un(r)
r

∣n, `, Jint , JP⟩ (3.27)

Note that n refers here to the (cluster) c.m. Berggren state of the projectile nucleus, while it
refers to a standard one-body Berggren state for one-nucleon projectiles. Finally, one obtains the
expression for the channel state in the Berggren basis:

∣(c, r)⟩ = Â[∣ΨJT
T ⟩ ⊗ ∣r, `, Jint , JP⟩]

JA

MA

= Â[∣ΨJT
T ⟩ ⊗ (∑

n

un(r)
r

∣n, `, Jint , JP⟩)]
JA

MA

= ∑
n

un(r)
r
Â[∣ΨJT

T ⟩ ⊗ ∣n, `, Jint , JP⟩]
JA

MA

= ∑
n

un(r)
r

∣(c, n)⟩ (3.28)

Using these expressions, the matrix elements Hcc′(r, r′) can be formally expanded in a basis of
∣n ` Jint JP MP⟩ states as:

Hcc′(r, r′) = ∑
n,n′

Hcc′(n,n′)
un(r)
r

un′(r′)
r′

(3.29)

In the following subsection, we will provide useful details on how to compute matrix elements of
Hcc′(r, r′).

3.2.2 Hamiltonian of the projectile

The determination of Hcc′(r, r′) involves the projectile Hamiltonian ĤP which has not been
defined until now. This Hamiltonian generates states of the projectile ∣n, `, Jint⟩. We start by
writing the Hamiltonian of the A-nucleons system in the laboratory coordinates:

Ĥ = ∑
i

P⃗2
i,lab

2mi
+∑
i<j
V̂ij , (3.30)

where i, j runs over all nucleons, and V̂ij is the nucleon-nucleon interaction in the laboratory
coordinates.

In the following, we want to separate the projectile Hamiltonian into the c.m. and intrinsic
parts. Let Û target

i be the mean-field created by all target nucleons and acting on projectile nucleons
i:

∑
j∈target

V̂ij → Û target
i (3.31)
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We assume that the one-body potential Û target
i is spherically symmetric and spin-independent.

Neglecting couplings between the target and the projectile, i.e. at large distances, the projectile
Hamiltonian ĤP can be written as:

ĤP = ∑
i∈proj

⎛
⎝

P⃗2
i,lab

2mi
+ Û target

i

⎞
⎠
+ ∑
i<j∈proj

V̂ij (3.32)

As linear momenta of valence particles are identical in laboratory and COSM coordinates, and as
Rcore corrections are second-order when one goes from laboratory to COSM coordinates (see Sec.
2.2.4), ĤP in COSM coordinates is the same as in Eq. (3.32). Hence, from now on, we will use
COSM coordinates only. We can write:

ĤP = ∑
i∈proj

⎛
⎝

P⃗2
i,lab

2mi
+ Û target

i

⎞
⎠
+ ∑
i<j∈proj

V̂ij

= ∑
i∈proj

(P⃗i − 1
a P⃗c.m.)

2

2mi
+∑
i<j
V̂ij +

P⃗2
c.m.

2Meff
+ ∑
i∈proj

Û target
i (3.33)

where P⃗c.m. = ∑
i∈proj

P⃗i. In this expression, a is the number of nucleons in the projectile, m the

nucleon mass, and Meff the reduced mass which is defined as:

1
Meff

= 1
MP

+ 1
MT

(3.34)

with MP and MT the masses of the projectile and target, respectively. Assuming the cluster
approximation, i.e. implying r⃗i ≃ R⃗c.m. and replacing Rc.m. by r for the sake of simplicity, the
average field created by all targets nucleons can be approximated by:

Uc.m.(r, r′) = ∑
i∈proj

U target
i (r, r′) = ap U target

p (r, r′) + an U target
n (r, r′) , (3.35)

where ap and an are the number of protons and neutrons in the projectile, respectively. Conse-
quently, ĤP reads:

ĤP = Ĥint + Ĥc.m. (3.36)

with:

Ĥint = ∑
i∈proj

(P⃗i − 1
a P⃗c.m.)

2

2m
+ ∑
i<j∈proj

V̂ij (3.37)

Ĥc.m. = P⃗2
c.m.

2Meff
+ Ûc.m. (3.38)

Ĥint is the intrinsic Hamiltonian of the projectile and Ĥc.m. only involves the c.m. coordinates of
the projectile and bears the spherical symmetry. Clearly, ĤP generates the ∣n, `, Jint⟩ states (3.27).
Here ∣n, `⟩ are the eigenstates of Ĥc.m., and ∣Jint⟩ is the exact ground state of the projectile and
the eigenstate of Ĥint.
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3.2.3 About the harmonic oscillator basis in the expansion of projectile states

The determination of Hcc′(r, r′) involves the calculation of matrix elements of the interaction
for target and projectile states expanded in a basis of Slater determinants. The procedure is
straightforward for the target states which are calculated in GSM. The construction of projectile
states as the linear combination of Slater determinants requires the separation of c.m. and intrinsic
parts.

Let us start with the definition of projectile states (3.21) in k-space:

∣ΨJP
P ⟩ = ∣k, `, Jint, JP⟩ , (3.39)

where k and ` are the relative momentum and angular momentum of the c.m., respectively. In
order to use implement targets and projectile within a GSM picture, we should be expand the
projectile state in a complete basis of Slater determinants:

∣ΨJP
P ⟩ = ∑

α

Caα ∣Φa
α⟩ , (3.40)

where the Slater determinants are built from the s.p. states of the Berggren ensemble. To ensure
the exact numerical reproduction of the Dirac’s delta:

⟨ΨJP
P ∣ΨJ ′P

P ⟩ = δ(k − k′) ,

one should consider an infinite set of Slater determinants ∣Φa
α⟩ with an extremely fine discretization

of the one-body continuum. The exact reproduction of δ(k − k′) ensures the separation of c.m.
and intrinsic parts of ∣ΨJP

P ⟩.
To circumvent this numerical problem, we will use the harmonic oscillator basis. As the nuclear

reactions are localized close to the target, the wave function of the projectile can be approximated
by the bound state wave function, so that we can use the harmonic oscillator basis to expand it.

Let us define the harmonic oscillator expansion of the projectile state as:

∣ΨJP
P ⟩ = ∑

γ

Ba
γ ∣Ωa

γ⟩ ≡ [∣N,L⟩HO ⊗ ∣Jint⟩]
JP

MP
(3.41)

with ∣Ωa
γ⟩ a Slater determinants made of the one-body harmonic oscillator states. The many-body

state ∣N,L,Jint⟩JP
MP

has to be computed. For this, we begin by calculating the ground state of the
cluster with a 0s c.m. part:

∣N = 0, L = 0, M = 0⟩ ∣Jint,Mint⟩ (3.42)

In order to calculate the c.m. harmonic oscillator many-body states efficiently, we introduce the
rang 1 tensor ladder operator:

Â†
µ =

√
Mω

2h̵
R̂(1)µ − i

√
1

2Mh̵ω
P̂(1)µ , (3.43)

where µ = −1,0,+1, and R̂(1)µ , P̂(1)µ represent the position and momentum of the projectile in c.m.
system, respectively:

R̂(1)µ = 1
a

a

∑
i=1
r̂
(1)
i,µ , P̂(1)µ =

a

∑
i=1

P̂(1)i,µ (3.44)
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r̂
(1)
i,µ , and P̂(1)i,µ in (3.44) are respectively the position and momentum of each nucleon of the projectile
in the c.m. system, and a is the number of nucleons in the projectile. In practice, the action of Â†

on ∣Ωa
γ⟩ is calculated using:

R̂(1)µ = 1
a
∑
α,β

⟨α∣ r̂(1)µ ∣β⟩ ĉ†
αĉβ , P̂(1)µ = ∑

α,β

⟨α∣ p̂(1)µ ∣β⟩ ĉ†
αĉβ (3.45)

with ∣α⟩ , ∣β⟩ the one-body harmonic oscillator states, and ĉ†
α(ĉβ) the particle creation (annihilation)

operators. If we apply the Â†
µ tensor operator on the ∣N,L,M⟩ state, we increase the 2N +L by

one harmonic oscillator c.m. quantum:

2N +L→ 2N +L + 1 ≡ 2N ′ +L′ . (3.46)

At this point, we couple the tensor operator Â† acting on ∣N,L,Jint,Mint⟩:

[Â† ∣N,L,Jint,Mint⟩]
L′

M ′ = C
N ′,L′

N,L ∣N ′, L′,M ′, Jint,Mint⟩ (3.47)

where the coefficient CN
′,L′

N,L does not depend of M ′ because it can be expressed as:

CN
′,L′

N,L = ⟨N ′, L′,M ′∣[Â† ∣N,L,Jint,Mint⟩]
L′

M ′⟩

= 1√
2L′ + 1

⟨N ′, L′∣ ∣Â†∣ ∣N,L⟩ (3.48)

using the Wigner-Eckart theorem. Note that Â†
µ does not act on ∣Jint,Mint⟩. Therefore, we can

build the set of states
{∣N,L,ML, Jint,Mint⟩} (3.49)

because the harmonic oscillator degeneracy induced by Â†
µ is lifted by the L coupling. Then using

Clebsch-Gordan coefficients, we couple the many-body state in Eq. (3.47) to JP:

⟨N,L,ML, Jint,Mint∣N,L,Jint⟩JP
MP

(3.50)

As we already mentioned in (3.41), each state ∣N,L,Jint⟩ has to be expanded in the basis of
harmonic oscillator Slater determinants ∣Ωa

γ⟩. For that, we used (3.45) in:

Â† ∣N,L,Jint,Mint⟩ = CN
′L′

NL ∣N ′, L′, Jint,Mint⟩ = ∑
γ

Ba
γÂ

† ∣Ωa
γ⟩ (3.51)

which allows to determine all coefficients Ba
γ of each state ∣N,L,Jint,Mint⟩.

We now express the projectile state in the Berggren basis:

∣ΨJP
P ⟩ = ∑

α

Caα ∣Φa
α⟩ (3.52)

The Caα coefficients are readily obtained:

Caα = ⟨Φa
α∣N,L,Jint⟩JP

MP
= ∑

γ

Ba
γ⟨Φa

α∣Ωa
γ⟩ (3.53)
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As ∣Φa
α⟩ and ∣Ωa

γ⟩ are built from different one-body basis states, the overlap ⟨Φa
α∣Ωa

γ⟩ must be calcu-
lated using the definition of SD as a linear combination of non-antisymmetrized tensor products:

⟨Φa
α∣Ωa

γ⟩ = ∑
P

(−1)P ⟨s1...sa∣ P̂ ∣σ1...σa⟩ , (3.54)

where P̂ is the permutation operator. In this expression, ∣si⟩ are s.p. states of the Berggren basis
occupied in ∣Φa

α⟩, and ∣σi⟩ are s.p. states of the harmonic oscillator basis occupied in ∣Ωa
γ⟩.

3.2.4 Expansion of nuclear states in a basis of Slater determinants

In the previous section, we have discussed how the projectile states are expanded in a basis of
Slater determinants made of the one-body Berggren states. In this section, we will calculate the
expansion of the A-body ∣Ψ⟩:

∣Ψ⟩ = {C†
∣n,`,Jint⟩

JP
MP

∣ΨJT
T ⟩}JAMA

= ∑
α

Cα ∣Φα⟩ , (3.55)

where C†
∣n,`,Jint⟩ is the projectile creation operator. For that, we use the expansion of ∣ΨJT

T ⟩ in (A−
a)-body Slater determinants and ∣n, `, Jint⟩JP

MP
in a-body Slater determinants, which are obtained

from the diagonalization of the GSM Hamiltonian Ĥ:

∣ΨJT
T ⟩ = ∑

β

CA−aβ ∣ΦA−a
β ⟩ (3.56)

∣n, `, Jint⟩JP
MP

= ∑
γ

Caγ ∣Φa
γ⟩ (3.57)

One may notice the a and (A−a)-body character of expansion coefficients and Slater determinants
in the above expression. Applying the creation operator of Eq. (3.55) on the state (3.56) with
a given angular momentum projection Mp, and using Eq. (3.57), the following uncoupled fully
antisymmetrized A-body wave function appears:

{C†
∣n,`,Jint⟩

JP
MP

∣ΨJT
T ⟩} = ∑

β

CA−aβ C†
∣n,`,Jint⟩

JP
MP

∣ΦA−a
β ⟩

= ∑
βγ

CA−aβ Caγ A{∣ΦA−a
β ⟩ ∣Φa

γ⟩}

= ∑
α

Cα ∣Φα⟩ (3.58)

where the Slater determinants:

∣Φα⟩ = (−1)ϕα Â{∣ΦA−a
β ⟩ ∣Φa

γ⟩}

are A-body basis functions, and the expansion coefficients:

Cα = (−1)ϕαbA−aβ baγ

include the rearrangements phase: (−1)ϕα . The angular momentum projection Mp verifies: M +
Mp =MA. The Slater determinants ∣Φα⟩ vanish if ∣ΦA−a

β ⟩ and ∣Φa
γ⟩ have at least one s.p. state in

common. The expansion of A-body wave function (3.55) can then be determined by coupling the
wave function (3.58) to a given angular momentum.
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3.2.5 Orthogonalization condition model in GSM-CC approach

If we act with C†
∣n,`,Jint⟩

JP
MP

on ∣ΨJT
T ⟩, we have to ensure that all calculated wave functions

are orthogonal to the occupied states in the core, as demanded by the orthogonalization condition
model. In principle, this should be assured by handling all states in the basis of Slater determinants.
However, the orthogonalization condition model does not work in the finite model space, as in
this case formally exact cancellations become numerically inexact and generate large unphysical
couplings. Thus, we have to use a different procedure to avoid the occupation of core states.

We will introduce projectors defined with c.m. and relative coordinates:

Q̂ = ∑
n≤nmin

∣n, `, Jint, JP,MP⟩ ⟨n, `, Jint, JP,MP∣ (3.59)

P̂ = 1 −Qc.m. (3.60)

where nmin is chosen so as to remove the cluster eigenstates of ĤP sizably occupying the core.
Using Eqs. (3.59) and (3.60), Ĥc.m. is redefined :

Ĥc.m. → P̂Ĥc.m.P̂ = Ĥc.m. − Q̂Ĥc.m. − Ĥc.m.Q̂ + Q̂Ĥc.m.Q̂ (3.61)

The new operator generates an additional short-range interaction which should be added to ĤP
in Eq. (3.32). The modification of ĤP also generates a modification of the coupling part between
the target and the projectile, while Ĥ (3.30) remains the same. This orthogonalization procedure
has been checked to be reliable and numerically stable.

3.2.6 Matrix elements and approximations

Let us define the projectile state as a product:

∣ΨJP
P ⟩ = Â∏

krel≤kmax

∣krel⟩ ∣kc.m.⟩ (3.62)

involving the low relative momentum state ∣krel⟩, which embodies its compact cluster structure,
and the c.m. part ∣kc.m.⟩. Here kmax stands for a maximal linear momentum allowed for pairs of
nucleons, related to the average relative velocity of nucleons inside the cluster. The Hamiltonian
is written as: Ĥ = T̂ + Ûcore + V̂res, where Ûcore is the potential of the core and V̂res is the two-body
residual interaction.

In order to evaluate the matrix elements:

⟨Â{⟨Ψ
JTf
Tf ∣ ⊗ ⟨rf `f Jint,f JP,f ∣}

JA

MA

∣ Ĥ ∣Â{∣ΨJTi
Ti ⟩ ⊗ ∣ri `i Jint,i JP,i⟩}

JA

MA
⟩ (3.63)

we separate the Hamiltonian Ĥ into a part which generates the basis, and the residual part:

Ĥ = T̂ + Ûbasis + (V̂res − Û0) (3.64)

where Ûbasis is the optimal potential of A-particle system and Û0 = Ûbasis − Ûcore. The advantage
of this decomposition is that V̂ = V̂res − Û0 is finite-range.
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The two-body matrix elements ⟨a, b∣ V̂ ∣c, d⟩ involved in the target-projectile coupling at high
kc.m. energy are negligible (see Appendix A.1):

⟨a, b∣ V̂ ∣c, d⟩ → 0 unless { ka, kb ≤ kmax and kcore, kd ≤ kmax
ka, kb > kmax and kcore, kd > kmax

(3.65)

∣a⟩ , ∣b⟩ , ∣c⟩ and ∣d⟩ in (3.65) are Berggren states of momentum ka, kb, kcore and kd, respectively.
kmax is an arbitrarily large momentum of the one-body state. Another way to formulate Eq. (3.65)
is:

⟨a, b∣ V̂ ∣c, d⟩ → 0 if ∃(i, j) ∈ {a, b, c, d} ∣ ki ≤ kmax and kj > kmax (3.66)

where i, j ∈ {a, b, c, d}. This property of ⟨a, b∣ V̂ ∣c, d⟩ is useful to derive the analytic form of the CC
equations.

3.2.6.1 The antisymmetry of a target-projectile system at large c.m. energies

Results obtained in Sec. (A.1.1) imply that assuming kc.m. > kc.m.max, with kc.m.max = 2kmax the
only non-vanishing two-body matrix elements ⟨a, b∣V̂ ∣c, d⟩ are those for which ki > kmax ∀i ∈ {a, b, c, d}.
Therefore, an important consequence of the decoupling between target and projectile is that the
antisymmetry can be suppressed between projectile and target if kc.m. > kc.m.max, as in this case
linear momenta of the occupied states verify: k ≤ kmax in the target and k > kmax in the projectile.

We will use in practice a basis of harmonic oscillator states to expand c.m. states whereas all
previous results implied the use of Bessel and Berggren basis states (see Appendix A.1). However,
the overlap ⟨kc.m.∣N⟩ is small at large momentum kc.m. unless N > Nmax for Nmax sufficiently large,
because for Bessel functions of momentum kc.m.: ⟨kc.m.∣N⟩ = UHO

N (kc.m.). Hence, all previous
results remain valid if we replace c.m. Berggren states of momentum kc.m. > kc.m.max by c.m.
harmonic oscillator states of principal quantum number N > Nmax.

3.2.7 Matrix elements of Hamiltonian Hcc′(r, r′) and norm Ncc′(r, r′)
In this section, we will discuss the computation of Ncc′(r, r′) and Hcc′(r, r′). The calculation

of the overlaps Ncc′(r, r′) is straightforward:

Ncc′(r, r′) = ∑
n,n′

un(r)
r

un′(r′)
(r′)

= ∑
n,n′

un(r)
r

un′(r′)
r′

⟨ΨJT
T ∣ Ĉ∣n,`,Jint⟩Ĉ

†
∣n,`,Jint⟩ ∣Ψ

JT
T ⟩

= ∑
n,n′

un(r)
r

un′(r′)
r′

∑
α,α′

CαCα′ ⟨Φα′ ∣Φα⟩ (3.67)

∣Φα⟩ in this equation are given in Eq. (3.58). Due to the decoupling of the target and projectile
at high energy, it is more convenient to rewrite the Hamiltonian Ĥ by introducing the target
Hamiltonian ĤT:

ĤT = T̂T + ÛT
basis + (V̂res − Û0)

A−a
, (3.68)

where (V̂res − Û0)
A−a is the part of V̂res − Û0 acting on the (A − a)-body target state, and where

T̂T and ÛT
basis are the target kinetic and potential parts of the Hamiltonian Ĥ, respectively. The
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Hamiltonian can thus be written as:

Ĥ = ĤT + ĤP + ĤTP , (3.69)

where ĤTP = Ĥ − ĤT − ĤP by definition.
The action of target and projectile Hamiltonians ĤT and ĤP (3.36) on A-body states is effected

by considering non fully antisymmetrized A-body states:

ĤT (∣ΨT⟩ ⊗ ∣ΨP⟩) = (ĤT ∣ΨT⟩ ⊗ ∣ΨP⟩) (3.70)
ĤP (∣ΨT⟩ ⊗ ∣ΨP⟩) = (∣ΨT⟩ ⊗ ĤP ∣ΨP⟩) (3.71)

Matrix elements Hcc′(r, r′) (3.29) can be decomposed in four terms using Eq. (3.29):

Hcc′(r, r′) = ∑
n≤nmax
n′≤nmax

Hcc′(n,n′)
un(r)
r

un′(r′)
r′

+ ∑
n≤nmax
n′>nmax

Hcc′(n,n′)
un(r)
r

un′(r′)
r′

+ ∑
n>nmax
n′≤nmax

Hcc′(n,n′)
un(r)
r

un′(r′)
r′

+ ∑
n>nmax
n′>nmax

Hcc′(n,n′)
un(r)
r

un′(r′)
r′

(3.72)

The first term is a finite sum and can be calculated using standard shell model formulas.
Sums in the second term will be shown to be equal to zero:

Hcc′ (n,n′)

= [⟨ΨJT
T ∣ ⊗ ⟨n ` Jint JP MP∣] ÂĤÂ [∣ΨJ ′T

T ⟩ ⊗ ∣n′ `′ J ′int J
′
P M ′

P⟩]

= [⟨ΨJT
T ∣ ⊗ ⟨n ` Jint JP MP∣] (ĤT + ĤP + ÂĤTPÂ) [∣ΨJ ′T

T ⟩ ⊗ ∣n′ `′ J ′int J
′
P M ′

P⟩] (3.73)

= [⟨ΨJT
T ∣ ⊗ ⟨n ` Jint JP MP∣]Ec.m. +ET +Eint [∣ΨJ ′T

T ⟩ ⊗ ∣n′ `′ J ′int J
′
P M ′

P⟩]

+ ∑
α,β

CαCβ ⟨Φα∣ ĤTP ∣Φβ⟩

= (Ec.m. +ET +Eint) δcc′δnn′ + ∑
α,β

CαCβ ⟨Φα∣ ĤTP ∣Φβ⟩ (3.74)

= ∑
α,β

CαCβ ⟨Φα∣ ĤTP ∣Φβ⟩ = ∑
α,β

γ,δ,ε,ζ∈T,p

CαCβ ⟨γ, δ∣ V̂ ∣ε, ζ⟩ ⟨Φα∣a+γa+δ aεaζ ∣Φβ⟩ (3.75)

because the conditions (3.66) are verified. Indeed, due to Eqs. (3.70) and (3.71), the antisym-
metrizers have been suppressed in (3.73) except for ĤTP. In Eq.(3.74), the term involving Ec.m.,
ET, and Eint disappears because we have n ≠ n′ and c ≠ c′. Then, only the sum involving the Slater
determinants remains in Eq. (3.75). In this equation, ∣γ⟩ , ∣δ⟩ , ∣ε⟩ , ∣ζ⟩ stand for s.p. states which are
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occupied in target and projectile. As the conditions (3.66) are verified, we have ⟨γ, δ∣ V̂ ∣ε, ζ⟩ = 0,
and Eq.(3.75) is equal to zero.

The third sum in Eq. (3.72) is treated identically for symmetry reasons. The last sum in Eq.
(3.72) reads :

Hcc′(n,n′)

= [⟨ΨJT
T ∣ ⊗ ⟨n ` Jint JP MP∣] (ĤT + ĤP + ÂĤTPÂ) [∣ΨJ ′T

T ⟩ ⊗ ∣n′ `′ J ′int J
′
P M ′

P⟩] (3.76)

= [⟨ΨJT
T ∣ ⊗ ⟨n ` Jint JP MP∣] ĤT + ĤP [∣ΨJT

T ⟩ ⊗ ∣n′ `′ J ′int J
′
P M ′

P⟩]

= [⟨ΨJT
T ∣ ⊗ ⟨n ` Jint JP MP∣] ĤT + Ĥint + Ĥc.m. [∣ΨJ ′T

T ⟩ ⊗ ∣n′ `′ J ′int J
′
P M ′

P⟩]

= (ET +Eint +Ec.m.) δcc′δnn′ (3.77)

Here, the matrix elements involving ĤTP in Eq.(3.76) are equal to zero due to the decoupling
between the target and the projectile because we have n > nmax and n′ > nmax (see Sec. 3.2.6.1).

Consequently, we can express the matrix elements Hcc′(r, r′) as:

Hcc′(r, r′) = ∑
n≤nmax
n′≤nmax

Hcc′(n,n′)
un(r)
r

un′(r′)
r′

+ δcc′ ∑
n>nmax

(ET +Eint +Ec.m.)
un(r)
r

un(r′)
r′

(3.78)

The sums in Eq. (3.78) involving n > nmax and n′ > nmax can be written as:

∑
n>nmax

(ET +Eint +Ec.m.)
un(r)
r

un(r′)
r′

= ∑
n

(ET +Eint +Ec.m.)
un(r)
r

un(r′)
r′

− ∑
n≤nmax

(ET +Eint +Ec.m.)
un(r)
r

un(r′)
r′

(3.79)

where the first sum in Eq. (3.79) can be expressed with Dirac delta’s due to completeness properties
of un(r) states:

∑
n

(ET +Eint +Ec.m.)
un(r)
r

un(r′)
r′

= (ET +Eint)
δ(r − r′)
rr′

+Tc.m.
δ(r − r′)
rr′

+Uc.m.(r, r′)

(3.80)

Tc.m. and Uc.m.(r, r′) in (3.80) stand for the c.m. kinetic and potential parts of Eq. (3.38),
respectively. Hence, we can write finally:

Hcc′(r, r′) = δcc′ [−
h̵2

2Meff

∂2

∂r2 +
h̵2`(` + 1)
2Meffr2 +ET +Eint]

δ(r − r′)
rr′

+ δcc′Uc.m.(r, r′) + Ṽcc′(r, r′) (3.81)
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where Ṽcc′ includes the remaining short-range potential terms of the Hamiltonian kernels, i.e. the
first sum of Eq. (3.72,3.78) and the last sum of Eq. (3.79):

Ṽcc′ = ∑
n≤nmax
n′≤nmax

Hcc′(n,n′)
un(r)
r

un′(r′)
r′

− ∑
n≤nmax

(ET +Eint +Ec.m.)
un(r)
r

un(r′)
r′

(3.82)

Hcc′(n,n′) in the above expression is:

Hcc′(n,n′) = (Ec.m. +ET +Eint) δcc′δnn′ + ∑
α,β

γ,δ,ε,ζ∈T,p

CαCβ ⟨γ, δ∣ V̂ ∣ε, ζ⟩ ⟨Φα∣a+γa+δ aεaζ ∣Φβ⟩ (3.83)

To compute the matrix elements ⟨γ, δ∣ V̂ ∣ε, ζ⟩, it is necessary to use the harmonic oscillator basis
to calculate the last term involving V̂ in Eq. (3.83), because it is more convenient and stable
numerically. For this, we perform an expansion of the eigenstates ∣n, `⟩ of Ĥc.m. into an harmonic
oscillator basis : ∣n, `⟩ = ∑N,L ⟨N,L∣n, `⟩ ∣N,L⟩.

3.2.8 Calculation of the reaction cross sections

In this section, we will discuss the determination of cross sections for elastic, inelastic or transfer
reactions. Let us start with the following ansatz for the A-nucleon eigenstate of Ĥ :

∣Ψe,JA
MA

⟩ = ∑
c
∫

∞

0

ue,JAc (r)
r

r2 ∣(c, r)⟩dr (3.84)

In the above expression, we have introduced additional indices JA,MA, and e in the total state and
in the relative wave function. These are the total angular momentum JA defined as J⃗A = J⃗T + J⃗P,
its projection MA, and the entrance channel e. The asymptotic behavior of the radial amplitude
ue,JAc (r) associated with the channel c is:

ueJAc (r) Ð→ − 1
2i

[δceH−
`e(ηe, k

er) − SJAec H+
`c(ηc, k

cr)]

= δceF`e(ηe, ker) + T JAec H
+
`c
(ηc, kcr) ,

(3.85)

where F`e(ηe, ker) is the regular Coulomb function, and η the Sommerfeld parameter. The S-
matrix and the T -matrix elements are related by the expression:

T JAec = (SJA − 1)ec
2i

(3.86)

In the reactions involving light projectiles (A ≤ 4), mostly the target states stand for the
actual physical channels. Let us denote by c̃ the set of quantum numbers which completely defines
target states, so that c = {c̃, `, Jint, JP}. The physical scattering wave function, characterized by
the entrance state of the target ẽ (usually the ground state), the magnetic quantum numbers M ẽ

P
and M ẽ

T of the projectile and the target, respectively, reads:

∣ϕẽM ẽ
PM

ẽ
T
⟩ = ∑

`e,JeP,JA

A
`eJintJ ẽTJA
M ẽ

PM
ẽ
T

kẽ
∣Ψẽ`eJeP
MA=M ẽ

P+M
ẽ
T
JA⟩ (3.87)
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where the coefficients are given by :

A
`eJintJ ẽTJA
M ẽ

PM
ẽ
T

= ⟨JePM
ẽ
P∣`emeJintMint⟩ ⟨JAMA∣JePM

ẽ
PJ

ẽ
TM

ẽ
T⟩ i`e

√
4π(2`e + 1)eiσ`e (3.88)

Here, σ` is the Coulomb phase shift defined as σ` = arg (Γ(` + 1 + iη)) with Γ the Euler’s gamma
function. This particular partial wave decomposition in terms of ∣Ψe,JA

MA
⟩ confers to the physical

scattering state ∣ϕẽ
M ẽ

PM
ẽ
T
⟩ its correct asymptotic behavior, that is:

⟨r⃗ ∣ϕẽ
M ẽ

PM
ẽ
T
⟩ Ð→ exp (i [kz + η ln(k(r − z))]) ⋅ ∣Jint⟩ ⊗ ∣Ψẽ,JT

MT
⟩

+ ∑
c̃M ẽ

PM
ẽ
T

fẽM ẽ
PM

ẽ
T→ c̃M

c̃
PM

c̃
P
(θ, φ) ⋅ exp (i [kr − η ln(2kr)])

r
⋅ ∣Jint⟩ ⊗ ∣Ψẽ,JT

MT
⟩

(3.89)

In the above expression, we changed notations and replaced c by c̃ defined as c = {c̃, `, Jint}, and
e by ẽ with e = {ẽ, `, Jint}. These modifications are motivated by the fact that (`, Jint) are not
measured experimentally, so the cross section will only depend on c̃ and ẽ.

The scattering amplitude in terms of the T -matrix elements is:

fẽM ẽ
PM

ẽ
T→ c̃M

c̃
PM

c̃
T
(θ, φ) = δc̃ẽ δM c̃

PM
ẽ
P
δM c̃

TM
c̃
T
fC(θ)

+ ∑
`eJeP`

cJcPJA

C
`eJePJ

ẽ
T`
cJcPJ

c̃
TJA

M ẽ
PM

ẽ
TM

c̃
PM

c̃
T

kẽ
T JAẽ`eJeP,c̃`cJ

c
P
Y `c

M ẽ
P+M

ẽ
T−M

c̃
P−M

c̃
T
(θ, φ)

(3.90)

where

C
`eJePJ

ẽ
T`
cJcPJ

c̃
TJA

M ẽ
PM

ẽ
TM

c̃
PM

c̃
T

= ⟨JePM
ẽ
P∣`

e0MintM
ẽ
P⟩ ⟨J

c
P M

ẽ
P +M

ẽ
T −M

c̃
T∣`cM ẽ

P +M
ẽ
T −M

c̃
P −M

c̃
TMintM

c̃
P⟩

× ⟨JAM ẽ
P +M

ẽ
T∣JePM

ẽ
PJ

ẽ
TM

ẽ
T⟩ ⟨JAM ẽ

P +M
ẽ
T∣JcP M

ẽ
P +M

ẽ
T −M

c̃
T J

c̃
TM

c̃
T⟩

× i(`
e−`c)√4π(2`e + 1)ei(σ`e+σ`c) . (3.91)

From the expression (3.89) of the physical scattering state, the differential cross section for the
scattering process to the channel (c̃,M c̃

P,M
c̃
T) at a given angle θ reads:

dσẽM ẽ
PM

ẽ
T→c̃M

c̃
PM

c̃
T

dΩ
(θ) = kc̃

kẽ
∣fẽM ẽ

PM
ẽ
T→c̃M

c̃
PM

c̃
T
(θ, φ)∣2 (3.92)

The differential cross sections of the scattering process to a given target state c̃ thus reads:

dσẽ→c̃
dΩ

(θ) = 1
2(2J ẽT + 1) ∑

M ẽ
PM

ẽ
TM

c̃
PM

c̃
T

kc̃

kẽ
∣fẽM ẽ

PM
ẽ
T→c̃M

c̃
PM

c̃
T
(θ, φ)∣2 (3.93)
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3.3 Numerical resolution of the coupled-channel equations
In this section, we present different numerical methods to calculate the A-body scattering states

∣ΨJA
MA

⟩ (3.23). These A-body scattering states ∣ΨJA
MA

⟩ are expanded in a basis of channels ∣(c, r)⟩.
However, due to the antisymmetrization between the projectile and the target, the channel are not
orthogonal among each other. Thus in Sec. 3.3.1 we shall detail the method used to orthogonalize
the channel states ∣(c, r)⟩. Observables can be calculated if we know the radial amplitude uc(r) for
each channel c involved in ∣ΨJA

MA
⟩. Hence, in Sec. 3.3.2 and 3.3.3 we shall detail the the boundary

conditions that we considered for the radial amplitude. In Sec. 3.3.3 we shall detail the method
of the equivalent potential which is used to deal with non-local potential occurring in Eq. (3.81)
when we solved the CC equations (3.24) with direct integration. Finally, in Sec. 3.3.5 we present
an alternative method of the direct integration, which is based on the use of the Green’s functions,
to solve the CC equations (3.24).

3.3.1 Orthogonalization of the channel states

The CC formalism leads to a generalized eigenvalue problem because different channel basis
states are non-orthogonal. To formulate the GSM-CC equations as the generalized eigenvalue
problem, one should express Eq. (3.24) in the orthogonal channel basis {∣(c, r)⟩o}:

o ⟨(c′, r′)∣(c, r)⟩o =
δ(r − r′)

r2 δcc′ (3.94)

The transformation from the non-orthogonal channel basis {∣(c, r)⟩} to the orthogonal one {∣(c, r)⟩o}
is given by the overlap operator Ô:

∣(c, r)⟩ = Ô
1
2 ∣(c, r)⟩o

The CC equations in Eq. (3.24) written in the orthogonal basis are:

∑
c
∫

∞

0
dr r2(o ⟨(c′, r′)∣Ĥo∣(c, r)⟩o −Eo ⟨(c, r)∣Ô∣(c, r)⟩o)o ⟨(c, r)∣Ψo⟩ = 0 , (3.95)

where : Ĥo = Ô1/2ĤÔ1/2, ∣Ψo⟩ = Ô1/2 ∣Ψ⟩, Eo = ÔE and :

o ⟨(c′, r′)∣Ĥo∣(c, r)⟩o = ⟨(c′, r′)∣Ĥ ∣(c, r)⟩
o ⟨(c′, r′)∣Ô∣(c, r)⟩o = ⟨(c′, r′)∣(c, r)⟩ (3.96)

The transformation of this generalized eigenvalue problem into a standard eigenvalue problem is
achieved with a substitution: ∣Φ⟩ = Ô ∣Ψ⟩. One obtains:

∑
c
∫

∞

0
dr r2(o ⟨(c′, r′)∣Ĥ ∣(c, r)⟩o −Eo ⟨(c

′, r′)∣(c, r)⟩o)o ⟨(c, r)∣Φ⟩ = 0 (3.97)

with
o ⟨(c, r)∣Φ⟩ = ⟨(c, r)∣Ô

1
2 ∣Ψ⟩ ≡ wc(r)r .

In the non-orthogonal channel basis, these CC equations become:

∑
c
∫

∞

0
dr r2 ⟨(c′, r′)∣Ĥm∣(c, r)⟩ wc(r)

r
= Ewc

′(r′)
r′

(3.98)
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with
o ⟨(c′, r′)∣Ĥ ∣(c, r)⟩o ≡ ⟨(c′, r′)∣Ĥm∣(c, r)⟩ .

Ĥm in (3.98) is the modified Hamiltonian: Ĥm = Ô− 1
2 ĤÔ− 1

2 . In practice, the Ô−1/2 operator is
calculated using the Moore-Penrose pseudoinverse method [234,235].

In order to have a more precise treatment of antisymmetry in the calculation of matrix elements
of Ĥm, we introduce a new operator ∆̂: Ô− 1

2 = ∆̂ + 1̂, which is associated with the part of Ô− 1
2

acting on the low-energy channel states. Then, instead of calculating the matrix elements of Ĥm
directly, it is possible to calculate them as:

Ĥm = (∆̂ + 1̂)H(∆̂ + 1̂) = Ĥ + Ĥ∆̂ + ∆̂Ĥ + ∆̂Ĥ∆̂ (3.99)

In this formulation, the non-antisymmetrized terms are taken into account exactly with the identity
operator. Inserting Eq. (3.99) in CC equations (3.98), one obtains the CC equations for the reduced
radial wave functions wc(r)/r:

(− h̵2

2Meff
( ∂

2

∂r2 −
`(` + 1)
r2 )

+ V (loc)c (r)) wc(r)
r

+∑
c′
∫

∞

0
dr′ rr′

2V
(non-loc)
c,c′ (r, r′)

rr′
wc′(r′)
r′

= (E −ET −Eint)
wc(r)
r

(3.100)

where Eint is the intrinsic energy of the projectile (it is zero in the case of a single-nucleon projectile)
and the non-local potential V (non−loc)

c′,c (r′, r) reads:

1
r′r

V
(non-loc)
c′,c (r′, r) = Ṽc′,c(r′, r) + ⟨r′, c′∣Ĥ∆̂∣r, c⟩ + ⟨r′, c′∣∆̂Ĥ ∣r, c⟩ + ⟨r′, c′∣∆̂Ĥ∆̂∣r, c⟩ . (3.101)

Note that we split the local and non-local part of Uc.m.(r, r′) and Ṽcc′(r, r′) (see 3.81) into V (loc)c

and V (non-loc)c . The radial channel wave functions uc(r)/r are then obtained from solutions of Eq.
(3.100) using the equation:

uc(r)
r

= wc(r)
r

+∑
c′
∫

∞

0
dr′ r′

2 ⟨(c, r)∣Ô
1
2 ∆̂Ô

1
2 ∣(c′, r′)⟩ wc

′(r′)
r′

. (3.102)

3.3.2 Boundary conditions and basis functions

Boundary conditions for the radial wave functions at r = 0 are wc(r = 0) = 0 for all channels.
For r → +∞, we have an outgoing wave behavior wc(r) = w(+)c (r) for all channels, except for the
incoming channel where it is: we(r) = w(+)e (r) +w(−)e (r). In our problem, the incoming part w(−)e

is fixed, and the outgoing parts w(+)c (r) and w(+)e (r) have to be determined. Due to the channel-
channel couplings, the radial wave functions wc(r) for r ∼ 0 are not always wc ∼ r`+1, like in the
GSM.

To solve this problem, radial wave functions wc(r) are expanded in the forward basis corre-
sponding to the internal region (0 ≤ r ≤ R) where the nuclear part of the potential is not negligible,
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and in the backward basis corresponding to the asymptotic region (R ≤ r ≤ Rmax) where the nu-
clear part of the potential can be neglected. The expansion of the CC equations in the forward
basis is integrated from r = 0 to r = R, and the expansion in the backward basis is integrated from
r = Rmax to r = R. Contrary to the radial wave functions wc(r), these new basis states have the
correct boundary conditions. Thus the CC equations can be integrated numerically in each region,
with the matching condition at r = R.

The expansion is written in the forward basis for 0 ≤ r ≤ R:

wc(r) = ∑
b

C
(0)
b w

(0)
c,b (r) (3.103)

and in the backward basis for R ≤ r ≤ Rmax:
wc(r) = ∑

b

C
(+)
b w

(+)
c,b (r) +w(−)e (r) (3.104)

Eq. (3.103) stands for bound states, while Eq. (3.104) is general for scattering states and reso-
nances. Note that for resonances we have: w(−)e (r) = 0). For c = b, the forward basis at r ∼ 0 is
defined by: w(0)c,b (r) ∼ r

`b+1. Other channels (c ≠ b) are ruled by: w(0)c,b (r) = o(r
`b+1). The backward

basis verifies for c = b :
w
(+)
c,b (r) ∼ C(+)b H+

`b
(ηb, kbr) (3.105)

and for other channels (c ≠ b) :
w
(0)
c,b (r) = 0 (3.106)

It should be stressed that in the region r > R, the solutions (3.105) and (3.106) are exact, because
only the Coulomb+centrifugal interaction remains in this region. However, as the centrifugal po-
tential is singular at r = 0, one cannot demand that channels with c ≠ b verifying w(0)c,b (r) = o(r

`b+1)
should be put to zero for r ∼ 0, as it would be not precise numerically. It is therefore necessary to
devise their behavior for r ∼ 0.

For that, one writes the CC differential equations for a channel c ≠ b at r ∼ 0:

[w(0)c,b ]
′′(r) = (`c(`c + 1)

r2 + ac)w(0)c,b (r) + ∑
c′≠c

ac′wc′(r) + o(w(0)c,b (r)) (3.107)

where ac = (2m/h̵2)V (eq)
cc (0) − k2, and ac′ = (2m/h̵2)V (eq)

cc′ (0). All terms inside the sum in this
equation are o(r`b+1), except the one for which c′ = b. One also has w(0)c,b (r) = o(r

`b+1). Thus, the
Eq. (3.107) becomes:

[w(0)c,b ]
′′(r) = `c(`c + 1)

r2 w
(0)
c,b (r) + abr

`b+1 + o(r`b+1) (3.108)

It is then immediate to verify that for c ≠ b:

w
(0)
c,b (r) ∼ C

(0)
b,bef

ab
(`b + 2)(`b + 3) − `c(`c + 1)

r`b+3 , `c ≠ `b + 2 (3.109)

w
(0)
c,b (r) ∼ C

(0)
b,bef

ab
2`b + 5

r`b+3 ln(r) , `c = `b + 2 . (3.110)

Note that C(0)b,bef are the constants C(0)b calculated during the previous iteration. It is necessary to
use C(0)b,bef and C

(+)
b,bef in the asymptotic form of the channel components because the local equivalent

equation used is inhomogeneous, i.e. the fact that w(r) is a solution of the local CC Schrödinger
equation does not imply that const ×w(r) is a solution as well.
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3.3.3 Components of the basis functions

Matching linear combinations of the two sets of basis wave functions (Eqs. (3.103), (3.104))
and their derivatives, at a given radius rm, provides the full solution of the CC equations:

∑
b

[C(0)b w
(0)
e,b (rm) −C(+)b w

(+)
e,b (rm)] = w(−)e (rm) (scattering) (3.111)

∑
b

⎡⎢⎢⎢⎢⎣
C
(0)
b

dw
(0)
e,b

dr
(rm) −C(+)b

dw
(+)
e,b

dr
(rm)

⎤⎥⎥⎥⎥⎦
= dw

(−)
e

dr
(rm) (scattering) (3.112)

∑
b

[C(0)b w
(0)
c,b (rm) −C(+)b w

(+)
c,b (rm)] = 0 (all other cases) (3.113)

∑
b

⎡⎢⎢⎢⎢⎣
C
(0)
b

dw
(0)
c,b

dr
(rm) −C(+)b

dw
(+)
c,b

dr
(rm)

⎤⎥⎥⎥⎥⎦
= 0 (all other cases) (3.114)

For scattering states, c = c0 in Eqs. (3.111), (3.112), and c ≠ c0 in Eqs. (3.113), (3.114). For bound
states and resonances, one should use Eqs. (3.113), (3.114) for all cases.
In Eq.(3.111), w(−)e,b (r) = C

(−)
c0 H−

`c0
(ηc0 , kc0r) for r > R, with C

(−)
c0 = 0 for bound states and reso-

nances, and C(−)c0 ⋅C(+)c0,bef
= 1/2π for scattering states (see Appendix A.4).

For scattering states, Eqs. (3.111)-(3.114) form a linear system of equations: AX = B, which
is immediate to solve. For bound states and resonances (Eqs. (3.113), (3.114)), AX = 0 as there
is no incoming channel. In this case, one has to have detA = 0, and detA can be considered as
a generalization of Jost function for the CC equations. The constants C(0)b ,C

(+)
b are given by the

eigenvector of zero eigenvalue.

3.3.4 Method of the modified equivalent potential

The CC equations are systems of coupled differential equations function of a single variable
r. Using the equivalent potential method, one can include the integro-differential equations in the
same class of systems. For this, we define the matrix differential equation:

W ′′(r) =M (eq)(r)W (r) + S(eq)(r) , (3.115)

where W (r) is a vector where each component is a wc. Then M (eq)
cc′ (r) is equal to:

M
(eq)
cc′ (r) = (2m/h̵2)V (eq)

cc′ (r) + (`c(`c + 1)
r2 − k2) δcc′ , (3.116)

and S
(eq)
c (r) is the residual source coming from the equivalent potential method. One has then

for Eq. (3.100):

V
(eq)
cc′ (r) = V

(loc)
cc′ (r) +

(1 − Fc′(r)) ∫
+∞

0 V
(non−loc)
cc′ (r, r′)wc′(r′) dr′

wc′(r)

S(eq)
c (r) = ∑

c′
Fc′(r)∫

+∞

0
V
(non−loc)
cc′ (r, r′)wc′(r′) dr′ (3.117)

where Fc′(r) is a function removing the singularities due to the zeros of wc′(r).
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3.3.5 Green’s function representation of the CC equation

The methods presented in previous sections are iterative and hence can present instabilities if
the channel-channel coupling is too strong. In this case, it is preferable to use the Green’s function
method to obtain the scattering solution of Eq. (3.100).

We start from the A-body scattering state ∣ΨJA
MA

⟩, of energy E, which is the solution of the
Schrödinger equation:

Ĥ ∣ΨJA
MA

⟩ = E ∣ΨJA
MA

⟩ (3.118)

The A-body scattering state is decomposed in a channel basis as:

∣ΨJA
MA

⟩ = ∑
c
∫

∞

0

uc(r)
r

r2 ∣(c, r)⟩dr (3.119)

Here, uc(r) is the radial wave function associated with the channel c. Note that the radial distance
r stands for either the distance between the projectile and the target.

In order to see the appearance of the resolvent, we introduce an approximate Hamiltonian Ĥ(0)
and its eigenvector ∣Ψ(0)⟩:

Ĥ(0) = t̂ + Ûbasis (nucleon)
= T̂CM + ÛCM (cluster) (3.120)

Ĥ(0) ∣Ψ(0)⟩ = E ∣Ψ(0)⟩ (3.121)

Ĥ(0) is the matrix with all non-diagonal elements equal to zero, and one non-zero diagonal element
for the entrance channel (only c0 is activated). Eq. (3.121) is straightforward to solve as Ĥ(0)
leads to a one-dimensional differential equation.

Let us separate Ĥ and ∣ΨJA
MA

⟩ in two parts involving Ĥ(0) and ∣Ψ(0)⟩, and a remaining part:

Ĥ = Ĥ(0) + Ĥrest (3.122)
∣ΨJA
MA

⟩ = ∣Ψ(0)⟩ + ∣Ψrest⟩ (3.123)

Using Eqs. (3.118), (3.121), (3.122), and (3.123), one obtains:

(Ĥ −E) ∣Ψrest⟩ = ∣S⟩ (3.124)
∣S⟩ = −Ĥrest ∣Ψ(0)⟩ (3.125)

where the source term ∣S⟩ has been introduced. One can see from (3.125), that if Ĥrest is of finite
range, then S(r) → 0 when r → +∞. Hence, ∣S⟩ can be expanded in the Berggren basis generated
by Ĥ(0), so that Eq. (3.124) becomes a linear system in this representation:

MEΨrest = S (3.126)

where

(Ψrest)n,c = ⟨n, c∣Ψrest⟩ (3.127)
(ME)n,c n′,c′ = ⟨n′, c′∣Ĥ −E∣n, c⟩ (3.128)

(S)n,c = ⟨n, c∣S⟩ (3.129)
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and ∣n, c⟩ is a Berggren basis state of index n in the channel c.
Similarly to the Lippman-Schwinger equation, the fundamental problem of Eq. (3.126) is the

non-invertible character of ME on the real-energy axis. The standard remedy is to replace E by
E + iε, with ε→ 0+. In this way, the linear system of equations (3.126) becomes invertible, and an
outgoing asymptotic of uc(r) in all outgoing channels is imposed.

This method becomes unstable for small ε. To circumvent this problem, the contour defining
∣n, c⟩ Berggren basis states is chosen so that the energy of basis states has always a non-zero
imaginary part. Consequently, ME is invertible along this contour, and Eq.(3.126) is numerically
solvable. The outgoing wave character of ∣Ψrest⟩ in all channels is guaranteed by the finite norm
of ∣Ψrest⟩ in the Berggren basis representation. Indeed, as ∣∣Ψrest∣∣ is finite, we have Ψrest(z) → 0
if z → +∞, where z = r + (R − r)eiθ, R is a radius outside of the range of nuclear interaction,
and angle θ (0 < θ < π/2) is properly chosen. Once ∣Ψrest⟩ is calculated in the Berggren basis, its
calculation in the coordinate space becomes straightforward. It has been checked numerically that
if the equivalent potential method is numerically stable, then both the Green’s function method
and the direct integration method provide the same solution ∣ΨJA

MA
⟩.

The Berggren basis is also useful to determine bound states and resonances of the CC Hamil-
tonian Ĥ, in which case the CC problem becomes the matrix diagonalization problem. The
application of the Berggren basis for solving the Faddeev equation is discussed in the Appendix
A.5.

3.4 Applications of the GSM-CC to nuclear reactions
In this section, we will present some applications of the GSM-CC formalism. In Secs. 3.4.1 and

3.4.2, we will comment on practical aspects of the nuclear reaction calculation. In particular, Sec.
3.4.2.3 is devoted to a study of the importance of deuteron and non-resonant reaction channels
for the completeness of the channel basis in GSM-CC calculation of 42Sc. In the following section
(Sec. 3.4.3), we will discuss the 14O(p,p’)14O reaction and the structure of 15F.

3.4.1 Practical issues involved in GSM-CC calculations

The GSM-CC calculation requires a rigorous approach to produce relevant results. The A-body
state of a nucleus in GSM-CC calculation is built using the basis of channel states which includes
information about target and projectile nuclei. In the applications presented in this manuscript,
we consider one-nucleon projectile (proton or neutron). The computer code for deuteron induced
reactions projectile is in progress.

Target states are described in GSM, using different approximations for continuum states. In a
typical calculation, we have to define: (i) the core and the valence space in target nucleus, (ii) the
truncations, (iii) the mean-field potential and (iv) the residual two-body interaction. The choice
of the core fixes the number of active nucleons, i.e. the number and the nature of nucleons in the
valence shells.

S.p. states in valence space are either harmonic oscillator or Gamow states. In the harmonic
oscillator space, one works with the real-energy continuum which is discretized by a finite number
of harmonic oscillator states. In this case, one has to fix both the maximum angular momentum
` max and the maximum energy n max h̵ω, where n max is a positive integer number. For each (`, j)
state, the highest oscillator shell N max considered is fixed by the relation: 2N max + ` = n max .
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Working with the Berggren ensemble, one has to define first the pole states, i.e. the s.p. bound
states and/or resonances. Decaying resonances lie in the fourth quarter of the complex k-plane
and satisfy: R(k) > ∣I(k)∣. In order to ensure the completeness of the Berggren ensemble, one
should include non-resonant states from the contour in k-plane which encompasses resonances
included in the valence space. In practice, one performs a partial wave decomposition of the
continuum, and choose different complex contour for each (`, j) state. Cauchy theorem guarantees
that results of the Berggren basis calculation are independent of the chosen contour if the number
of (`, j)-resonances inside of the contour remains the same. Similarly as in the harmonic oscillator
calculation, one should choose the maximum angular momentum (`max) and the maximum energy
or momentum (kmax) of s.p. states in the continuum.

Valence shells are defined by s.p. states of the average potential generated by the core and
acting on the valence nucleons. This potential can be described either by an infinite depth harmonic
oscillator potential:

UHO(r) = 1
2
Mcoreω

2r2

or by a finite-depth potential, like the Woods-Saxon potential:

UWS(r) = −V0[1 + exp(r −R0
a

)]
−1

or the Hartree-Fock potential. In the harmonic oscillator potential, Mcore is the mass of the
core and ω is the oscillator frequency. They are put together in the oscillator length parameter:
b =

√
h̵/(Mcoreω), with a standard value b ≃ 1.01A1/6 fm [236, 237]. Concerning the Woods-Saxon

potential, V0 is the depth, R0 is the radius, and a is the diffuseness of the potential with a standard
value a ∼ 0.67 fm [236, 237]. Parameters R0 and V0 are chosen according to the size of the core:
R0 = r0A

1/3, V0 = (51 ± 33(N −Z)/A) MeV, where r0 ≃ 1.25 − 1.27 fm [236, 237]. These formulae
provide useful initial values for the optimization of an average potential in each studied case.

In the study of nucleus A = Acore +Av, where Acore and Av are the number of nucleons in
the core and valence shells, the first step is to determine the average potential which fits binding
energy and excited states in a nucleus Acore + 1. In general, we have different average potentials for
protons and neutrons, but also for each angular momentum `. The `-dependence can be justified
by the non-locality of the nuclear potential.

In the next step, we go to Acore + 2 nucleus to fix parameters of the two-body interaction which
allows to describe binding energy and spectrum of excited states in this nucleus. These can be
readjusted again at a later stage to find the best compromise between the description of nuclei
Acore + 2 and Acore +Av.

In the calculation of nuclei with A ≥ Acore + 2, we have to choose the truncation scheme in the
space of Slater determinants. In practice, this space is limited by two kinds of truncations: (i)
the energy truncation in the s.p. space, and (ii) the limitation of the number of particles excited
from the pole space into the non-resonant continuum. The latter truncation is crucial in GSM-CC
studies of medium mass and heavy nuclei with the large number of valence nucleons.

GSM can be useful to adjust parameters of the GSM-CC Hamiltonian. The first step consists of
fixing the many-body pole states in GSM-CC, i.e. many-body bound states and resonances of the
composite system of projectile and target (see the discussion at the end of Sec. 3.3.5). In general,
the calculation of many-body pole states requires less numerical resources than the complete
calculation of the cross section. Moreover, these states are useful to determine important reaction
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channels, or estimate the role of the non-resonant channels which are built using scattering states
of the target. In some applications, these non-resonant channels are not included to simplify the
GSM-CC calculation. Then the correction factors are determined to rescale the two-body part of
channel-channel coupling potentials and in this way compensate for missing non-resonant channels.
These correction factors ensure that the GSM-CC and GSM spectra of many-body pole states are
the same.

One could think that once the relevant reaction channels are identified and the channel-channel
coupling potentials are rescaled, if necessary, then the calculation of the reaction cross sections is
straightforward. Unfortunately, in the partial wave decomposition of the projectile wave function
it might happen that for certain values of `, the associated average potentials are not constrained
by the pole states of the composite system. Nevertheless, these partial waves play a role in the
partial wave decomposition of the projectile and thus in the reaction cross section calculation.
In this weakly constrained problem, the GSM-CC calculation of cross sections or phase shifts for
smaller systems, like the nucleon scattering on (Acore)- or the (Acore + 1)-nucleus, can be useful
to adjust those unconstrained parameters of the average potential. In this way, one may obtain
better average potentials for the description of reactions involving the (Acore + Av) system. We
will return to this discussion in Sec. 3.4.2.

3.4.2 Tests of the GSM-CC approach with deuteron and non-resonant reaction
channels

In this section, we present various tests of the GSM-CC approach on the examples of the elastic
scattering reactions 40Ca(p,p), 40Ca(n,n), the neutron transfer reaction 40Ca(d,p)41Ca, and the
spectrum of 42Sc. The role of non-resonant reaction channels, built by the scattering states of
target nucleus, on the spectroscopy of bound and resonance states will be discussed by comparing
the spectrum of GSM-CC pole states with the GSM spectrum for 42Sc.

3.4.2.1 Parameters of one-body potentials and two-body interaction

To illustrate certain aspects of the GSM-CC approach, we present in this section an example
of GSM-CC calculations for systems with one and two nucleons outside of the core of 40Ca . The
42Sc is studied in the basis of reaction channels consisting of 40Ca+d and 41Ca+p, and 41Sc+n.
GSM is used to construct target states (3.56) and fix one- and two-body terms of the Hamiltonian.
Here, we consider a core of 40Ca with a valence space defined in either a harmonic oscillator basis
or a Berggren basis. The harmonic oscillator basis is limited by a maximum energy of 12h̵ω what
implies: 2n + ` ≤ 12. This means that we have 7 shells for ` = 0, 6 shells for ` = 1 and ` = 2, and 5
shells for ` = 3 and ` = 4.

The target nucleus (40Ca) is considered as an inert core in a 0+ state. Low-lying states of
41Ca (41Sc) are described using the Woods-Saxon potential as one neutron (proton) outside of the
40Ca core. Parameters of the potentials for ` = 1 and ` = 3 are adjusted to reproduce experimental
energy of 7/2−1 , 3/2−1 , 5/2−1 and 1/2−1 states in 41Ca and 41Sc. These states are considered as s.p.
states, and their energies determine the position of subshells 0f7/2, 1p1/2, 0f5/2, and 1p1/2 in the
GSM calculation. In the Berggren basis, we consider non-resonant continuum states on a complex-
energy contour for each of these real or complex-energy s.p. pole states. In addition, we include
complex-energy continua for s1/2, d3/2, d5/2, g7/2, and g9/2. Each contour is discretized with 21
points, i.e. the Berggren basis contains 193 s.p. states which become shells in the multiparticle
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calculations. All s.p. continuum states along the chosen contours have a complex energy (see Tab.
3.1) in order to avoid singularities in a calculation of the resolvent in the Green’s function method
(see the discussion at the end of Sec. 3.3.5).

GSM calculation of the spectrum of 42Sc determines parameters of the two-body FHT inter-
action [238]. In this calculation we use the Woods-Saxon potential which is adjusted in 41Ca and
41Sc for ` = 1 and ` = 3.

Woods-Saxon potentials for ` = 0,2,4 are adjusted using the GSM-CC approach. These `-waves
contribute to the reaction cross-sections but are not unambiguously determined by the spectra of
41Ca and 41Sc. Woods-Saxon potentials for ` = 0,2,4 are obtained by fitting elastic scattering cross
sections for 40Ca(p,p)40Ca and 40Ca(n,n)40Ca reactions calculated in GSM-CC.
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Figure 3.1 – Differential cross section for the reaction 40Ca(p,p)40Ca at 9.61 MeV in the c.m. [239].

The cross sections for 40Ca(p,p)40Ca and 40Ca(n,n)40Ca reactions are presented in Figs. 3.1
and 3.2. The projectile (proton or neutron) is described by partial waves ` in the range from 0 to
4. One can see that GSM-CC with fitted Woods-Saxon average potentials fails to reproduce the
data at backward angles Θc.m. ≥ 120°. This suggests the deficiency of a simple structure assumed
for 40Ca and low-lying states in 41Ca and 41Sc.
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Figure 3.2 – Differential cross section for the reaction 40Ca(n,n)40Ca at 2.69 MeV in the c.m. [240].

3.4.2.2 GSM-CC calculation of the pole states in different approximations for 41Ca,
41Sc, and 42Sc

Calculation of the pole states provides a test of the GSM-CC computational scheme. It consists
of diagonalizing the Hamiltonian (3.69) in a basis of the channel states ∣(c, n)⟩ (3.28). As a test,
let us compare the two diagonalization schemes:
(i) the diagonalization where the c.m. part of the projectile ∣n, `⟩ (see Sec.3.2.2) is described with
the same basis (e.g. the harmonic oscillator basis) as the one used in GSM for the calculation of
target states: ∣(c, nGSM⟩, and
(ii) the diagonalization where the c.m. part of the projectile ∣n, `⟩ is described in Berggren basis
and used in the Green’s function method (see Sec. 3.3.5).

The GSM space used for ∣(c, nGSM)⟩ is defined by a maximal energy of 12 h̵ω (see the discussion
above), while the Berggren basis used for ∣(c, nGF)⟩ is defined in Tab. 3.1 for neutron and proton
projectiles. The comparison between these two diagonalizations is presented in Tab. 3.2 for 41Sc.

GSM space in Tab. 3.2 is the harmonic oscillator space (GSM −HO) with non-resonant chan-
nels described in the harmonic oscillator approximation. One can see an excellent agreement
between results of the GSM-CC diagonalization in the space of channels ∣(c, nGSM)⟩ and the GSM
diagonalization in the space of Slater determinants. This proves the equivalence of these two
formulations in the same model space. A small discrepancy between the two GSM-CC diagonal-
izations is due to the difference between the harmonic oscillator basis (HO), and the Berggren
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States k0 (fm−1) k1 (fm−1) k2 (fm−1) k3 (fm−1)
0f7/2 - - - -
1p1/2 - - - -
0f5/2 - - - -
1p3/2 - - - -
s1/2 0.0 (0.5,-0.05) (1.0,-0.05) 2.0
p3/2 0.0 (0.5,-0.05) (1.0,-0.05) 2.0
p1/2 0.0 (0.5,-0.05) (1.0,-0.05) 2.0
d5/2 0.0 (0.5,-0.05) (1.0,-0.05) 2.0
d3/2 0.0 (0.5,-0.05) (1.0,-0.05) 2.0
f7/2 0.0 (0.5,-0.05) (1.0,-0.05) 2.0
f5/2 0.0 (0.5,-0.05) (1.0,-0.05) 2.0
g9/2 0.0 (0.5,-0.05) (1.0,-0.05) 2.0
g7/2 0.0 (0.5,-0.05) (1.0,-0.05) 2.0

Table 3.1 – Berggren basis of the c.m. state ∣n, `⟩ for the neutron/proton projectile. All pole states
which are not presented here, are contained in the core. For each segment of the contour, we
consider 7 scattering states.

State 41Sc (GSM-HO) 41Sc (GSM-CC) (HO) 41Sc (GSM-CC) (GF)
7/2− -1.085 -1.085 -1.099
3/2− 0.632 0.632 0.513
5/2− 1.503 1.503 1.471
1/2− 2.380 2.380 2.090

Table 3.2 – Spectrum of 41Sc calculated in GSM and GSM-CC in different approximations. GSM-
CC (HO) denotes the calculation in the harmonic oscillator space including the non-resonant
channels. GSM-CC (GF) is the calculation in Berggren basis using the Green’s function method.
GSM calculation is performed in the harmonic oscillator space with the non-resonant continuum
described in the harmonic oscillator approximation. All energies are given with respect to the 40Ca
core. For more details, see the text.

basis (GF), namely: (i) the scattering wave functions are different, (ii) the number of continuum
states is different, (iii) and the truncation in those bases is different. Note that the Berggren basis
used in GSM-CC (GF) (see Tab. 3.1) includes the complex contour. Such a contour is necessary
to perform numerically stable Green’s function method calculation which avoids the singularities
in the resolvent operator (3.128).

In Tab. 3.3 we present the same calculations as in Tab. 3.2 but using the Berggren space
for GSM (GSM-B) calculations. This Berggren basis is defined in Tab. 3.1. Here the agreement
between the two GSM-CC calculations is excellent. Again, if the same s.p. basis is used in GSM
and GSM-CC (GF), one finds identical pole states. This provides a stringent test of the GSM-CC
solution using the Green’s function method. This method will be used later to calculate reaction
cross-sections.

In Tab. 3.4 we present a comparison between the two GSM-CC diagonalizations and the
GSM calculation for 42Sc. The GSM space is the harmonic oscillator space (GSM −HO) with
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State 41Sc (GSM-B) 41Sc (GSM-CC) (GSM) 41Sc (GSM-CC) (GF)
7/2− -1.085 -1.085 -1.085
3/2− 0.632 0.633 0.629
5/2− 1.503 1.503 1.502
1/2− 2.380 2.380 2.384

Table 3.3 – The same as in Tab. 3.2 but in the Berggren basis. For more details, see the caption
of Tab. 3.2 and text.

State 42Sc (GSM-HO) 42Sc (GSM-CC) (HO) 42Sc (GSM-CC) (GF)
0+ -12.632 -12.089 -12.112
1+ -12.172 -11.626 -11.657
7+ -11.789 -11.669 -11.693
3+ -11.122 -10.836 -10.870
5+ -11.044 -10.832 -10.864
2+ -10.999 -10.740 -10.772

Table 3.4 – Spectrum of 42Sc calculated in GSM and GSM-CC in different approximations. All
energies are given with respect to the 40Ca core. For more details, see the text.

non-resonant configurations included in the harmonic oscillator approximation. The GSM-CC
solution using the Green’s functions method (GSM-CC (GF)) is performed in the Berggren basis
∣(c, nGF)⟩ given in Tab. 3.1. Only channels with one-nucleon projectiles: 41Sc+n and 41Ca+p, are
included in this calculation. The channels of 42Sc are built using 7/2−1 bound state, 3/2−1 , 5/2−1 , 1/2−1
resonances, and non-resonant continua: {9/2+1}, {1/2+1}, {5/2+1}, {3/2+1}, {7/2+1}, {3/2−1}, {1/2−1},
{7/2−1}, and {5/2−1} in 41Ca, and 7/2−1 , 3/2−1 , 5/2−1 , 1/2−1 bound states and non-resonant continua:
{9/2+1}, {1/2+1}, {5/2+1}, {3/2+1}, {7/2+1}, {3/2−1}, {1/2−1}, {7/2−1}, and {5/2−1} in 41Sc. One can
see that the difference between the two GSM-CC calculations is of the order of ∼100 keV. This
amounts to different s.p. bases, as discussed in Tab. 3.2 and 3.3.

One can also notice a more important difference between the GSM calculation and both the
GSM-CC diagonalization in the harmonic oscillator space ∣(c, nGSM)⟩ (GSM-CC (HO)), and the
GSM-CC diagonalization in the Berggren space ∣(c, nGF)⟩ (GSM-CC (GF)). This is due to the
orthogonalization procedure between many-body channels involved in the description of 42Sc in
GSM-CC. Indeed, among all considered reaction channels, there are many redundancies because
the same configurations of 42Sc can be generated either by 41Sc+n channels or by 41Ca+p channels.
The redundant channels have a nonzero overlap with other channels, but their norm is close to 1.
This means that each redundant channel contains a small physical component which is orthogonal
to all other channels.

Redundant channels generate numerical instabilities in the Moore-Penrose pseudo-inverse pro-
cedure which is used to invert the overlap matrix Ô (see Sec. 3.3.1). To avoid this problem,
one could simply remove redundant channels, but this brute force cancellation of small physical
components contained in redundant channels would break slightly the completeness of the channel
basis and, therefore, would lead to numerical imprecisions. These imprecisions generate differences
between the GSM and GSM-CC calculations (see Tab. 3.4 ).

Redundant channels can be a serious problem for nuclei like 42Sc which are described in a small
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s.p. basis and where all states can be generated doubly, either in 41Sc+n or 41Ca+p channels.
Fortunately, the spurious effects of redundant channels can be kept under control in most applica-
tions by a suitable choice of the model space, they can be kept under control. Their importance
can be quantified by making a comparison with the GSM results in the same model space. In
the following section, we will discuss the GSM-CC reaction calculation for 14O (p,p) 14O, which is
almost free from the spurious effects of the redundant channels.

One should stress that the possibility to compare the GSM eigenvalues with those obtained by
diagonalizing the GSM-CC Hamiltonian matrix in the space of channels ∣(c, n)⟩, gives a control of
the numerical precision of GSM-CC reaction calculations, in what concerns the role of both the
non-resonant channels and the redundant channels.

3.4.2.3 Deuteron and non-resonant channels in the GSM-CC description of 42Sc

At present, we continue the study of 42Sc by including reaction channels with deuteron pro-
jectile and the non-resonant reaction channels. The intrinsic part of the deuteron is a 1+ state
which is calculated in a NCSM formalism using N3LO chiral interaction [241]. The c.m. part of
the deuteron which is calculated in Berggren basis with `max = 2, is defined in Tab. 3.5.

L (2S+1)LJ pole scattering k0 (fm−1) k1 (fm−1) k2 (fm−1) k3 (fm−1)
0 3S1 5 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0

1
3P0 4 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
3P1 4 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
3P2 4 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0

2
3D1 3 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
3D2 3 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0
3D3 3 30 0.0 (0.2,-0.1) (1.0,-0.1) 2.0

Table 3.5 – Berggren basis describing the c.m. part of the deuteron wave function. The columns
“pole” and “scattering” give the number of pole and scattering states, respectively. Here S is the
spin of the deuteron, L its angular momentum and J⃗ = L⃗ + S⃗. In the following three columns, we
present the complex contour of the Berggren basis for each state.

State 42Sc (GSM-HO) 42Sc (GSM-CC) (HO) 42Sc (GSM-CC) (GF)
0+ -12.632 -12.088 -12.095
1+ -12.172 -11.891 -11.966
7+ -11.789 -11.670 -11.740
3+ -11.122 -10.973 -11.229
5+ -11.044 -10.890 -10.969
2+ -10.999 -10.740 -10.758

Table 3.6 – Spectrum of 42Sc calculated in GSM and GSM-CC in different approximations. As
compared to results shown in Tab. 3.4, the deuteron projectile channels have been added.

In Tab. 3.6 we present a comparison between the GSM and GSM-CC spectra of 42Sc. The
GSM-CC calculations include deuteron projectile channels. Inclusion of these channels improves
the description of 42Sc for 1+1 and 3+1 states. However, a significant difference between GSM and
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GSM-CC remains, i.e. significant correlations are still missing in the GSM-CC wave function for
discrete states of 42Sc.

State 42Sc (GSM-HO) 42Sc (GSM-CC) (HO) 42Sc (GSM-CC) (GF)
0+ -12.632 -12.580 -12.549
1+ -12.172 -12.134 -12.091
7+ -11.789 -11.788 -11.873
3+ -11.122 -11.121 -11.42
5+ -11.044 -10.998 -11.089
2+ -10.999 -11.043 -11.084

Table 3.7 – Spectrum of 42Sc calculated in GSM and GSM-CC in different approximations. As
compared to results shown in Tab. 3.4, the deuteron projectile channels and the non-resonant
channels have been included.

The role of non-resonant channels can be seen in Tab. 3.7. Tab. 3.8 we present the non-resonant
channels used for 41Ca and 41Sc.

Jπ Nb of scattering states
7/2− 4
3/2− 4
5/2− 4
1/2− 4
1/2+ 5
3/2+ 5
5/2+ 5
7/2+ 5
9/2+ 5

Table 3.8 – Non-resonant scattering states of 41Ca and 41Sc which are used to build the non-
resonant channels in 42Sc.

One can see that taking non-resonant channels into the basis improves significantly the spec-
trum of 42Sc. One may expect that the non-resonant channels are also indispensable for a com-
prehensive analysis of the reaction cross sections involving the 42Sc in the intermediate state. Fig.
3.3 compares GSM results with those of the GSM-CC approach which are obtained with (GSM-
CC(NRC)) or without (GSM-CC) non-resonant channels. No correction factors have been used
in this calculation to compensate for missing reaction channels, i.e. the absence of non-resonant
channels in the channel basis is a principal reason of the discrepancy between GSM and GSM-CC
results.
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Figure 3.3 – Spectrum of 42Sc calculated in GSM and in GSM-CC without the non-resonant
channels (GSM-CC) and with the non-resonants channels (GSM-CC(NRC)).

3.4.2.4 Neutron transfer reaction 40Ca(d,p)41Cag.s.

Fig. 3.4 presents the GSM-CC calculation of the neutron transfer differential cross section for
the reaction 40Ca(d,p)41Cag.s. with the deuteron projectile. The one-body Woods-Saxon potential
for ` = 0,2,4 has been adjusted to describe 40Ca(p,p)40Ca, 40Ca(n,n)40Ca, and 40Ca(d,p)41Ca
differential cross-sections. In this exploratory GSM-CC calculation of the transfer reaction, we
do not include non-resonant channels to describe the spectrum of 42Sc. Consequently, we apply
small corrective factors in the channel-channel coupling potentials which are: 1.05, 1.1, and 0.965,
for 1+, 2+, and 3+ states of 42Sc, respectively. One can see that the GSM-CC approach describes
satisfactorily the experimental neutron transfer differential cross section 40Ca(d,p)41Cag.s.. Small
deviations with respect to the experimental data [242] are seen at most forward and backward
angles.
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Figure 3.4 – Neutron transfer differential cross section for the reaction 40Ca(d,p)41Cag.s. at Ed = 1.9
MeV incident deuteron energy in the laboratory system, is calculated using the GSM-CC approach
without non-resonant reaction channels. Experimental data are taken from [242].

3.4.3 Proton scattering on 14O

In this section, we shall discuss GSM-CC calculation for the reaction: 14O (p,p) 14O. This
investigation was stimulated by the recent experimental study of this reaction at GANIL [228].

Properties of the ground state Jπ = 1/2+1 and its first excited state Jπ = 5/2+1 of 15F were mea-
sured several times [243–249] (see Ref. [250] for a recent compilation of the experimental results).
Both states 1/2+1 and 5/2+1 are unbound by ∼ 1.3 MeV and ∼ 2.8 MeV, respectively. The theoretical
predictions of the ground state width vary from 0.5 MeV to 1.3 MeV, whereas the first excited
state is estimated to have the width Γ ≃ 300 keV [250–252]. The structure of the ground state
(first excited state) of 15F has been interpreted as the ` = 0 (` = 2) proton coupled to the 14Og.s

core [253]. Both states are described well as the s.p. configurations with a spectroscopic factor of
S > 0.5 [250,253,254].

In the mirror nucleus 15C, the second excited state is known at 3.103 MeV with Jπ = 1/2−1 with
a width Γ = 29(3) keV [255]. Canton et al. [256] used the multichannel algebraic scattering theory
with the Pauli-hindered method to calculate low-lying states in 15F. They predicted a very narrow
width Γ = 5 MeV for the second excited state Jπ = 1/2−1 .

Fortune and Sherr [257] used a potential model to determine the s.p. widths which they scaled
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down to reproduce the measured widths in 15C. The extracted spectroscopic factors was then used
to estimate widths of mirror states in 15F. These calculations confirmed that narrow resonances
are expected in 15F, but their width for the second excited state is ∼ 10 times larger than the one
reported in Ref. [256].

Experimentally, a first indication of the second excited state in 15F was obtained in the transfer
reaction 15O(14N, 15C)15F [247]. In this experiment, 150(100) keV width was found, but the spin
and the parity of this state were not determined. This narrow width is surprising because the
second excited state in 15F is ∼ 3.5 MeV above the combined Coulomb plus centrifugal barrier in
14O + p. Later, the same state was observed through the angular correlations of decay products in
the fragmentation of 17Ne [258].

15F has been studied recently in the reaction 14O(p,p)14O at GANIL SPIRAL1 facility [259].
The excitation function was measured in the inverse kinematics. The excitation function at low
energy is dominated by Coulomb scattering, but it also shows peaks and interferences that corre-
spond to the presence of resonances in 15F. Properties of these resonances, i.e. resonance energy,
width, and spin, have been deduced from the R-matrix analysis of the shape of the peaks [260,261].

Due to the unbound nature of 15F, a proper treatment of continuum couplings is mandatory.
The GSM-CC formalism is particularly adapted for the description of 15F. It allows to compare the
calculated GSM-CC excitation function for 14O(p,p)14O and the GSM/GSM-CC spectrum of 15F
resonances with the experimental data. In this way, one may extract the structural information
about unbound states of 15F without recourse to uncontrolled approximations.

a0 (MeV) R0(fm) V0 (MeV) Vso(MeV)

` = 0 0.65 3.13 59 0
` = 1 0.65 3.13 60 5
` = 2 0.65 3.13 56 5.22

Table 3.9 – Parameters of the Woods-Saxon potential for the description of 13N, 14O and 15F.

Parameter Value (MeV)

V C,odd,t 159.778
V C,even,t -10
V C,odd,s 2
V C,even,s 9.876
V SO,odd,t 38.644
V SO,even,t 1000
V T,odd,t 34.411
V T,even,t -10

Table 3.10 – Parameters of the FHT interaction [238] for the description of 14O and 15F

In our studies, the translationally invariant GSM Hamiltonian consists of (i) the Woods-Saxon
potential with a spin-orbit term which describes the field of 12C acting on valence nucleons in 13N,
14O, and 15F, (ii) the Furutani-Horiuchi-Tamagaki (FHT) finite-range two-body interaction [238]
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k min (fm−1) k peak (fm−1) k middle (fm−1) kmax(fm−1)

L+d5/2
0.0 0.3-i0.1 0.6 2.0

L+s1/2 0.0 0.25-i0.1 0.5 2.0

Table 3.11 – Parameters of the contours in the complex k-plane

for valence nucleons, and (iii) the recoil term (for details see Sec. 2.2.4). The Woods-Saxon
parameters (see Table 3.9) are adjusted to reproduce the ground state 1/2−1 and the excited states
1/2+1 and 5/2+1 of 13N. Parameters of the FHT interaction (see Table 3.10) are adjusted to reproduce
energies of the low-lying states in 14O and 15F, and the one- and two-proton separation energies
in 15F.

14O+p

13N+2p

1/2+ (1.27,0.376)
1/2+

(1.27,0.376)
1/2+(1.195,0.437)

5/2+ (2.794,0.305)
5/2+

(2.794,0.305) 5/2+(2.8,0.211)

1/2− (4.757,0.036)

1/2−
(4.757,0.036) 1/2−(4.751,0.03)

Exp GSM GSM-CC

15F

Figure 3.5 – 42Sc spectrum calculated in GSM and GSM-CC, and compared with experimental
data.

The s.p. space consists of three resonant shells 0p1/2, 0d5/2, 1s1/2, and several shells in the
discretized non-resonant continuum on L+d5/2

and L+s1/2 in the complex k-plane. Each contour
consists of three segments (see Table 3.11), and each segment is discretized with 10 points, so
altogether L+d5/2

and L+s1/2 contours are discretized with 30 points. Scattering states states along
each contour are generated by the same Woods-Saxon potential.

To reduce the size of GSM matrix, the basis of Slater determinants is truncated by limiting the
number of particles in the non-resonant continuum to 2 nucleons. Moreover, the p1/2 continuum is
approximated by 5 lowest harmonic oscillator wave functions. Similarly, the p3/2 and d3/2 continua
are approximated by 5 and 6 harmonic oscillator states, respectively.
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The antisymmetric eigenstates of GSM-CC are expanded in the basis of channel states which
are built by coupling the GSM wave functions for the ground state 0+1 , and excited states 1−1 , 0+2 ,
3−1 , 2+1 , 0−1 , 2+2 , 2+1 with the proton wave functions in partial waves: s1/2, p1/2, p3/2, d3/2 and d5/2.

The two-body part of the FHT interaction from which the channel-channel coupling potentials
are calculated, is rescaled by the multiplicative factors 1.07, 0.96 and 0.95 for 1/2+1 , 5/2+1 and 1/2+1
states of 15F, respectively, to compensate for neglected channels built from higher lying resonances
and non-resonant continuum states of 14O. We checked the mutual consistency of the GSM and
GSM-CC by comparing 15F eigenvalues which are calculated either in the Slater determinant
representation (GSM) or in the CC representation (GSM-CC).

The lowest resonances Jπ = 1/2+1 ,5/2+1 , and 1/2−1 in 15F, are shown in Fig. 3.5. We compare
the experimental spectrum with GSM and GSM-CC calculations. Numbers in the brackets give
energy and width of these states. All energies are given with respect to the energy of 12C core.

The narrow resonance 1/2−1 can decay either by one- or two-proton emission. In GSM, this
state:

⟨Ψ∣0p1/2[1]1s1/2[2]⟩2 = 0.97 , ⟨Ψ∣0p1/2[1]0d5/2[2]⟩2 = 0.02 (3.130)

is an almost pure configuration of two protons in s1/2 resonant and non-resonant shells coupled
to 13N. The non-resonant continuum s1/2 plays an important role in the structure of this state.
The collectivization of near-threshold state due to the coupling to the nearby two-proton decay
channel, helps to increase the weight of this diproton configuration in GSM calculation [92].

The diproton nature of 1/2−1 state implies that the one-proton decay width is suppressed as
compared to widths of low-lying levels 1/2+1 and 5/2+1 . Indeed, the emission of two protons from
this narrow state is energetically possible. Since there is no intermediate state accessible, it should
be a direct two-proton emission to the ground state of 13N. However, the available decay energy
is only Q2p = 129 keV (see Fig. 3.6) and the Wigner limit for 2He cluster emission with ` = 0 is:
Γ2He = 4.e−11 eV (t1/2 = 16.5 µs) [228].

Figure 3.6 – (Color online) Level scheme of 15F. Open decay channels for the 1/2−1 resonance are:
the one proton emission (red arrow), the gamma transition and the two proton emission (red
dashed arrow). The hatched areas correspond to the width of the resonances 1/2+1 and 5/2+1 .
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Figure 3.7 – (Color online) Experimental excitation function of the reaction 14O(p,p)14O at 180°
in the c.m. system is compared with the GSM-CC results [228]. Inset shows the calculated and
measured excitation function at around the narrow resonance 1/2−1 .

Even if spectroscopic factors are model dependent, their values within a given theoretical frame-
work provide a useful insight into the structure of the calculated wave functions. The spectroscopic
factors make more sense in the unified framework, such as the GSM (GSM-CC), where both the
reaction cross sections and the spectra are calculated using the same Hamiltonian.

Table 3.12 presents the one-proton spectroscopic factors calculated in GSM for 1/2+1 , 5/2+1 , and
1/2−1 resonances in 15F. One can see that the ground state 1/2+1 is mainly the p1/2 proton coupled
to Jπ = 1−1 state of 14O at E = 5.173 MeV, and a 1s1/2 proton coupled to the ground state of 14O.
The dominant configuration in the first excited state 5/2+1 is a 0d5/2 proton coupled to the ground
state of 14O. The 1/2−1 state exhibits large one-proton spectroscopic factors to the excited states of
14O: Jπ = 1−1 at E∗ = 5.173 MeV, Jπ = 0+2 at E∗ = 7.040 MeV, and Jπ = 3−1 at E∗ = 6.272 MeV. The
p1/2 spectroscopic factor to the ground state of 14O is very small, reducing the one-proton decay
width significantly. The weight of the non-resonant continuum in these spectroscopic factors is of
the order of few percents.

The GSM-CC excitation function for the reaction 14O(p,p)14O at 180° in the c.m. is compared
with the experimental data in Fig. 3.7. The overall agreement with the data is excellent. The
calculated cross section above 5/2+1 resonance is lower than seen experimentally. This deficiency

99



3.4. APPLICATIONS OF THE GSM-CC TO NUCLEAR REACTIONS

1/2+1 5/2+1 1/2−1
S(⟨1/2+1 ∣a

†
p1/2 ∣1−1 ⟩) 0.95 S(⟨5/2+1 ∣a

†
d5/2

∣0+1 ⟩) 0.84 S(⟨1/2−1 ∣a
†
s1/2 ∣1−1 ⟩) 0.55

S(⟨1/2+1 ∣a
†
s1/2 ∣0+1 ⟩) 0.85 S(⟨5/2+1 ∣a

†
d5/2

∣0+2 ⟩) 0.05 S(⟨1/2−1 ∣a
†
p1/2 ∣0+2 ⟩) 0.47

S(⟨1/2+1 ∣a
†
s1/2 ∣0+2 ⟩) 0.02 S(⟨1/2−1 ∣a

†
d5/2

∣3−1 ⟩) 0.31
S(⟨1/2−1 ∣a

†
p1/2 ∣0+1 ⟩) 0.05

S(⟨1/2−1 ∣a
†
d3/2

∣1−1 ⟩) 0.001

Table 3.12 – Real part of spectroscopic factors calculated in GSM for different resonances in 15F.

can be explained by the absence of higher lying resonances and non-resonant continuum states of
14O.

Figs. 3.8, 3.9 and 3.10 show the differential cross section for elastic 0+, and inelastic 1−,
3− channels, respectively. The GSM-CC calculations are done for different c.m. energies of the
incident projectile: Ec.m. = 6.5 MeV,8.5 MeV, and 10.5 MeV.

The elastic differential cross section (Fig. 3.8) varies strongly with the excitation energy, mainly
at intermediate (Θc.m. ∼ 40 °) and backward (Θc.m. ∼ 160 °) angles. One can see a significant
increase of the differential cross section for ECM ≥ 8.5 MeV at backward angles which is due to the
opening of inelastic channels: 1−1 and 3−1 at 5.17 MeV and 6.27 MeV, respectively.

Figs. 3.9 and 3.10 show the inelastic differential cross section in 1− and 3− channels. The
magnitude of these differential cross-sections depends strongly on Ec.m..
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Figure 3.8 – Differential cross section for the elastic channel 0+ at different c.m. energies.
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Figure 3.9 – Differential cross section for the inelastic channel 1− at different c.m. energies.
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Figure 3.10 – Differential cross section for the inelastic channel 3− at different c.m. energies.
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Conclusions

Two problems have been addressed in this work. The first one concerned generalization of
the Richardson solution for the pairing Hamiltonian of a rational Gaudin model including the
continuum. The second one was devoted to the formulation of the GSM-CC approach for nuclear
reactions with multi-nucleon projectiles. This paves the way for the applicability of the reaction
theory which is rooted in GSM for a broader class of reactions, including the transfer/knockout
reactions.

The first objective is related to an urgent need to characterize and understand effects of the
continuum coupling on nuclear spectra and binding energy. Algebraic models, based on emergent
symmetries of nuclear many-body problem, helped in the past to identify elementary building
blocks and essential concepts behind the formation mechanism of rich spectra of excited states.
In the domain of weakly bound and/or unbound nuclei, such models do not exist, what hinders
the understanding of qualitative features of the continuum. The pairing model plays a special
role among the algebraic models. Exact solution for this Hamiltonian was derived by Richardson
for a spectrum of bound s.p. levels [51, 52]. In this work, pairing Hamiltonain was generalized
in Berggren basis and the generalized Richardson solution was derived for this problem. The
comparison between this solution and exact results of GSM, obtained by the diagonalization of the
pairing Hamiltonian, confirmed that the generalized Richardson solution is a reliable alternative of
an exact GSM diagonalization, in particular in heavy nuclei with large number of valence nucleons.
In the problem of ultra-small superconducting grains, the generalized Richardson solution of the
pairing Hamiltonian in Berggren basis could help to understand the influence of continuum on
pairing properties, in particular in the transitional region of the weak coupling limit.

There is an intense activity to describe the A-dependence of nuclear binding energy in the ab
initio framework, using the interactions derived in chiral effective field theory [23, 102, 262–264].
In these studies, it was found that the chiral 3-body interaction plays a significant role reducing
the over-binding which is found systematically when only 2-body interactions are used. In SMEC
studies with the effective 2-body Hamiltonian including the continuum, it was found that the
continuum coupling plays an essential role to explain one- and two-neutron separation energies in
oxygen and fluorine chains of isotopes, i.e. it may change the A-dependence of nuclear binding
energies [265]. In this work, the chain of carbon isotopes was studied using the (generalized)
Richardson solution for a schematic pairing Hamiltonian in two approximations: (i) in the closed
quantum system approximation, i.e. with bound s.p. levels and neglecting continuum couplings,
and (ii) in the open quantum system approximation using Berggren s.p. ensemble. Fixing in both
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approaches the strength of pairing interaction in a nucleus (14C) with 2 nucleons outside of the 12C
closed core, it was found that the A-dependence of binding energy and the spectra of 14−20C depend
strongly on the continuum coupling. Of course, the interaction in this model is much too simple
to draw definitive conclusions but the qualitative effect is indisputable. Another observation was
that the effect of continuum coupling on eigenvalues and structure of their eigenfunctions, depends
strongly on the coupling of nucleons and, hence, varies rapidly from one state to another. Again,
the interaction in a pairing model is too simple and the coupling to the one-nucleon continuum
neglected, in order to draw the quantitative conclusions. Nevertheless, results of this generalized
pairing Hamiltonian gives a warning that one should be cautious not to over-interpret results of
SM with fitted two-body matrix elements as this model is missing significant physical ingredients.

The development of reaction theory which would be compatible with GSM is a challenge to nu-
clear theorists and urgent need for the experimental nuclear physics. The analysis of experimental
data is done using often unjustified theoretical concepts, such as the local optical potential, be-
cause for several decades there was no sufficient progress in the consistent application of dispersion
relations in the optical model, or in the derivation of new non-local parameterizations of the optical
potential which are based on the GSM or CSM. One should stress that there is also no general
acceptation among experimentalists of the fact that the systematic and hence, dull experiments on
proton/neutron scattering in the broad range of energies and in long chains of (stable) isotopes,
are mandatory to understand the in-medium interactions of nucleons. Instead, the experimen-
talists concentrate efforts on producing pseudo-data, like the spectroscopic factors, and produce
an avalanche of ’exciting’ data/conclusions using not well understood experimental techniques.
An example of such are transfer and knockout reactions which give contradictory results on the
spectroscopic factors and their dependence on the asymmetry of neutron and proton separation en-
ergies [266–268]. All that calls for a strong involvement of theorists in the development of reaction
theory which would be rooted in GSM and allows for a direct connection between spectroscopic
and reaction observables within the unified framework. This is a key problem not only in the
physics of exotic nuclei in the vicinity of drip lines, but also in the traditional playground, close
to the valley of β-stability.

GSM-CC approach provides the link between experiment and theory which allows to determine
spectroscopic information directly from reaction physics observables, such as the (in)elastic scat-
tering cross-section, excitation function, nucleon transfer cross section, etc. In this work, such a
consistent application of the nuclear reaction theory (GSM-CC) has been presented on the example
of spectrum of low-lying resonances in 15F which was studied experimentally via the excitation
function 14O(p,p)14O. Here, combined application of GSM and GSM-CC approaches allowed to
link directly the reaction data to the structure of 15F without any inconsistent ’massaging’ of the
data. Moreover, the exploratory study of the neutron transfer cross-section has been presented
for the reaction 40Ca(d,p)41Cag.s.. Further development of the GSM-CC approach for transfer and
knockout reactions is urgent not only to avoid above mentioned hubbub in knockout vs transfer
reactions, but also to verify claims that the surrogate reaction, like (d,p), can inform us about the
low-energy (n,γ) radiative capture cross-sections of interest in astrophysics.

In this work, we have made a progress by completing the formulation of nuclear reaction theory
based on GSM, which allows to describe any binary reaction process with multi-nucleon (nuclear)
projectiles. Numerical applications of this consistent microscopic theory are very demanding and
offer surprises, like the problem of redundant reaction channels which has to be treated with
great caution. The great advantage of the present formulation of reaction theory is that by
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comparing the spectrum of eigenvalues calculated in GSM and obtained by diagonalizing the
GSM-CC Hamiltonian matrix, one can estimate an importance of redundant channels. In the
same way, the lack of non-resonant reaction channels can be judged according to their influence on
the spectrum of GSM/GSM-CC eigenvalues. As an interesting by-product of the formal reaction
theory based on GSM and Berggren basis, we have also discussed the application of Berggren basis
to solve Faddeev equations.

The GSM-CC formulation which has been presented in this thesis uses the COSM coordinates
to reduce dimensionality of the Fock space and to remove (approximately) the spurious c.m.
excitations. In this way, heavy nuclei with a limited number of valence particles, can be studied
systematically. Similarly as the no-core generalization of the standard GSM, one can envisage
the studies of reactions in light nuclei using no-core GSM-CC approach with modern interactions
derived in chiral effective field theory.
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Annexes

A.1 Matrix elements and approximations

A.1.1 Neutron-neutron case

a) Plane waves
Neutron wave functions in the asymptotic region are free wave functions, so that they can always
be expanded in a basis of plane waves, even if they are scattering states. Plane waves will be
denoted as ∣k⃗⟩, and we will perform a decomposition into relative and c.m. parts, for a moment
with the real linear momenta:

⟨r⃗a, r⃗b∣k⃗a, k⃗b⟩ = eik⃗a⋅r⃗aeik⃗b⋅r⃗b = eik⃗rel⋅r⃗releik⃗c.m.⋅r⃗c.m. (A.1)

where:

r⃗rel = r⃗a − r⃗b and r⃗c.m. =
1
2
(r⃗a + r⃗b) (A.2)

k⃗rel = 1
2
(k⃗a − k⃗b) and k⃗c.m. = k⃗a + k⃗b (A.3)

The translationally invariant character of V implies that:

⟨k⃗a, k⃗b∣V̂ ∣k⃗c, k⃗d⟩ = ⟨k⃗rel, k⃗c.m.∣V̂ ∣k⃗′rel, k⃗′c.m.⟩ = δ(k⃗c.m. − k⃗′c.m.) ⟨k⃗rel∣V̂ ∣k⃗′rel⟩ . (A.4)

As we are dealing with the effective nuclear interactions, of low-energy character, we can demand
V to verify ⟨k⃗′rel∣V̂ ∣k⃗rel⟩ = 0, unless krel ≤ krelmax and k′rel ≤ krelmax. This requirement is clearly
consistent with the cluster definition of Eq. (3.62).

Let us write the equation of energy conservation arising from Eq. (A.3):

k2
c.m. + 4k2

rel = 2(k2
a + k2

b). (A.5)

Due to the cluster approximation, krel ≪ kc.m. if kc.m. > kmax, as the nucleons in the projectiles
virtually follow the same trajectory. Thus, Eq. (A.5) becomes:

k2
c.m. = 2(k2

a + k2
b) for ka > kmax or kb > kmax (A.6)
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up to an error which can be made arbitrarily small. Moreover, having ka > kmax, kb ≤ kmax or
ka ≤ kmax, kb > kmax is also impossible within the cluster approximation, as they correspond to the
configurations for which the cluster dislocates. Consequently, from Eqs. (A.5), (A.6) one obtains :

ka ≤ kmax, kb ≤ kmax ⇒ kc.m. ≤ 2kmax (A.7)
ka > kmax, kb > kmax ⇒ kc.m. > 2kmax (A.8)

with other cases leading to vanishing matrix elements of V due to the cluster approximation.
Consequently, the only non-vanishing matrix elements ⟨k⃗a, k⃗b∣V̂ ∣k⃗′a, k⃗′b⟩ are those for which

ki ≤ kmax or ki > kmax ∀i ∈ {a, b, c, d}, because the case for which ka ≤ kmax, kb ≤ kmax, k′a > kmax
and k′b > kmax have the Dirac delta function δ(kc.m. − k′c.m.) and vanish, and other cases imply
that ka > kmax, kb ≤ kmax or ka ≤ kmax, kb > kmax (same for k′a, k′b). Hence, ⟨k⃗a, k⃗b∣V̂ ∣k⃗′a, k⃗′b⟩ ≃ 0
when Eq. (3.66) is fulfilled by plane waves.

b) Bessel functions

The matrix elements ⟨k⃗rel∣V̂ ∣k⃗′rel⟩ will be expanded in a set of Bessel functions {∣krel, `rel,mrel⟩}.
This representation is convenient to handle because of its natural connection to planes waves, and
because Berggren basis functions become asymptotically equal to Bessel functions for large linear
momenta:

⟨krel, `rel,mrel∣V̂ ∣k′rel, `
′
rel,m

′
rel⟩

= ∫ ⟨k⃗rel∣krel, `rel,mrel⟩ ⟨k′rel, `
′
rel,m

′
rel∣k⃗′rel⟩ ⟨k⃗rel∣V̂ ∣k⃗′rel⟩ dΩkrel dΩk′rel

(A.9)

The overlaps in Eq. (A.9) are determined using the plane wave expansion in partial waves arising
from the additional theorem:

⟨r⃗∣k⃗⟩ = 1
(2π)3/2 e

ik.r = 1
(2π)3/2 e

ikr cos θ′ = 4π
(2π)3/2∑

`

`

∑
m=−`

i`j`(kr)Y m
` (Ωr)Y m

` (Ωk)∗ (A.10)

where θ′ stands for the angle between the two vectors k⃗ and r⃗. The overlap between plane wave
and Bessel function thus reads:

⟨k⃗′rel∣krel, `rel,mrel⟩ = ∫ ⟨k⃗′rel∣r⃗rel⟩ ⟨rrel,Ωrrel ∣krel, `rel,mrel⟩ dr⃗rel

= 1
(2π)3/2

√
2
π
∫ j`rel(krel rrel)Y mrel

`rel
(Ωrrel)e

−ik⃗′rel.r⃗rel dr⃗rel

= 4π
(2π)3/2

√
2
π
Y mrel
`rel

(Ωkrel)∫ i
`relj`rel(krel rrel)j`rel(k

′
rel rrel) r2

rel drrel

= 4π
(2π)3/2 i

`relδ(krel − k′rel)Y mrel
`rel

(Ωkrel) (A.11)
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Inserting Eq. (A.11) in Eq. (A.9), one obtains:

⟨k⃗rel∣V̂ ∣k⃗′rel⟩ =
1

2π ∑
`rel,`′rel
mrel,m′

rel

i(`rel+`′rel)Y mrel
`rel

(Ωkrel)Y
m′

rel
`′rel

(Ωk′rel
)∗

× ∫ δ(krel − k′′rel)δ(k
′
rel − k′′′rel) ⟨k

′′
rel, `,m∣V̂ ∣k′′′rel, `

′,m′
rel⟩dk

′′
rel dk

′′′
rel

= 1
2π ∑

`rel,`′rel
mrel,m′

rel

i(`rel+`′rel)Y mrel
`rel

(Ωkrel)Y
m′

rel
`′rel

(Ωk′rel
)∗ ⟨krel, `rel,mrel∣ V̂ ∣k′rel, `

′
rel,m

′
rel⟩

(A.12)

c) Berggren basis

In order to treat the general Berggren basis ensemble, we write the asymptotic behavior of the
Berggren wave function in terms of Bessel functions, firstly for large r and then in the entire space:

u(r) → C+h+` (kr) +C
−h−` (kr), r → +∞ (A.13)

where the functions h+` and h−` are Hankel functions, and C+, C− their associated coefficients. Let
us to write Eq. (A.13) in terms of Ricatti-Bessel functions ĵ`(kr) = krj`(kr):

ĵ`(kr) =
h+` (kr) − h

−
` (kr)

2i
(A.14)

Hence:
u(r) → Cĵl(kr) +Dh+` (kr), r → +∞ (A.15)

where u(r) is written in terms of Bessel and purely outgoing parts. Eq. (A.15), valid in the
asymptotic region, can be extended to the entire space:

∣a⟩ = Ca ∣ka, `⟩ + ∣a+⟩ (A.16)

where ∣ka, `⟩ is an other Bessel function, and ∣a+⟩:

∣a+⟩ = ∫ ⟨k, `∣a+⟩ ∣j`(k)⟩dk = ∫ ua+(k) ∣j`(k)⟩dk (A.17)

ka and k should belong to different contours, as ∣ka⟩ must lie above the k-contour so that it can
be treated as an integrable state using the complex scaling.

In order to determine the asymptotic behavior of ua+(k) for k → +∞, we will use the fact that
ua(k) verifies the following Schrödinger equation ĤP in momentum space:

h̵2k2

2m
ua(k) + ∫Ubasis(k, k′)ua(k′)dk′ =

h̵2k2
a

2m
ua(k) . (A.18)

Due to the low energy character of Ubasis, Eq. (A.18) implies that ua(k) → 0 faster than any
inverse power of ka when k → +∞ (same for k fixed and ka → +∞). Eq. (A.16) implies that:

⟨k′a, `a∣a⟩ = u(k′a) = δ(k′a − ka) + ⟨k′a, `a∣a+⟩ . (A.19)
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Thus, ⟨a+∣k′a, `a⟩ → 0 for k′a → +∞ and ka fixed (same for k′a fixed and ka → +∞).
If k′i > kmax or k′i ≤ kmax, then there is at least one ki ≤ kmax or ki > kmax, respectively (con-

ditions from Eq. (3.66)). Thus, if we have for example k′a ≤ kmax and ka > kmax then the r.h.s. of
the Eq. (A.18) is unbounded while the l.h.s. is bounded, and u(k′a) = O(1).

By injecting this in Eq. (A.18), one obtains:

u(k′a) = O ( 1
k2
a

)

Repeating this n times, one obtains:

u(k′a) = O ( 1
k2n
a

) ,

and with Eq. (A.19) we have: ⟨k′a, `a∣a+⟩ = 0. Finally, if we have either k′i > kmax or k′i ≤ kmax then
there is at least one product ⟨k′i, `i∣i+⟩ which vanishes. Hence, the matrix elements ⟨fa, fb∣V̂ ∣fc, fd⟩
always vanish if we have the conditions (3.66).

Let us write the matrix elements of V̂ using Eq. (A.15):

⟨a, b∣V̂ ∣c, d⟩ = ∑
fa,fb,fc,fd

⟨fa, fb∣V̂ ∣fc, fd⟩ , (A.20)

where ∣fi⟩ = {∣ki, `i,mi⟩ , ∣i+⟩} with i = {a, b, c, d}. We express the matrix elements
⟨fa, fb∣V̂ ∣fc, fd⟩ using the Bessel function expansion of ∣fi⟩ states:

⟨fa, fb∣V̂ ∣fc, fd⟩ = ∫ ⟨fa∣k′a, `a,ma⟩ ⟨fb∣k′b, `b,mb⟩ ⟨fc∣k′c, `c,mc⟩ ⟨fd∣k′d, `d,md⟩

× ⟨k′a, `a,ma, k
′
b, `b,mb∣V̂ ∣k′c, `c,mc, k

′
d, `d,md⟩dk′adk′bdk′cdk′d

(A.21)

where Eq. (3.66) is supposed to be verified. Note that a product in the integrand of Eq. (A.21)
is negligible if only one of its factor is negligible, because all factors therein are bounded, due to
the normalizations of basis states and the low-energy character of V̂ .

Let us first consider k′i ≤ kmax ∀i ∈ {a, b, c, d} or k′i > kmax ∀i ∈ {a, b, c, d}, so that ⟨k′a, `a, k′b, `b∣V̂ ∣k′c, `c, k′d, `d⟩ ≠ 0.
Thus, there is at least one ∣fi⟩ whose associated linear momentum ki is far from k′i, i.e. ki ≤ kmax
and k′i > kmax, or ki > kmax and k′i ≤ kmax. Due to ki ≠ k′i, we have ⟨fi∣k′i, `i,mi⟩ equal to zero if
∣fi⟩ is equal to ∣ki, `i,mi⟩. If ∣fi⟩ is equal to ∣i+⟩, ⟨fi∣k′i, `i,mi⟩ is negligible (see Eq. (A.19) and
below).

The last case to consider is that of the k′i verifying Eq. (3.66) ∀i ∈ {a, b, c, d}. For this, we will
expand ⟨k′a, `a,ma, k

′
b, `b,mb∣V̂ ∣k′c, `c,mc, k

′
d, `d,md⟩ in relative and c.m. basis states, so that the
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demonstrated properties of the relative two-body matrix elements of V̂ at high energy can be used:

⟨k′a, `a,ma, k
′
b, `b,mb∣V̂ ∣k′c, `c,mc, k

′
d, `d,md⟩

= ∫ ⟨k′a, `a,ma, k
′
b, `b,mb∣k⃗a, k⃗b⟩ ⟨k⃗c, k⃗d∣k′c, `c,mc, k

′
d, `d,md⟩

× ⟨k⃗a, k⃗b∣V̂ ∣k⃗c, k⃗d⟩dk⃗adk⃗bk⃗ck⃗d
= ∫ ⟨`a,ma∣Ωka⟩ ⟨`b,mb∣Ωkb⟩ ⟨`c,mc∣Ωkc⟩ ⟨`d,md∣Ωkd⟩

× δ(k⃗c.m. − k⃗′c.m.) ⟨k⃗rel∣V̂ ∣k⃗′rel⟩dk⃗adk⃗bdk⃗cdk⃗d

= 1
2π ∑

`,m,`′,m′
i`+`

′
∫ Y m

` (Ωk)Y m′

`′ (Ωk′)∗

× ⟨`a,ma∣Ωka⟩ ⟨`b,mb∣Ωkb⟩ ⟨`c,mc∣Ωkc⟩ ⟨`d,md∣Ωkd⟩
× ⟨krel, `,m∣V̂ ∣k′rel, `

′,m′⟩dΩkadΩkbdΩkcdΩkd (A.22)

To derive the above expression, Eqs. (A.4) and (A.12) have been used.
As we have at least one k′i ≤ kmax and k′j > kmax with i, j ∈ {a, b, c, d}, we have either krel

bounded and k′rel unbounded, or vice versa, so that ⟨krel, `,m∣V̂ ∣k′rel, `
′,m′⟩ is always negligible.

Hence, ⟨a, b∣V̂ ∣c, d⟩ → 0 when Eq. (3.66) is fulfilled for all cases.
The Berggren basis possesses in general the complex-energy states, so that Eq. (3.66) has to

be extended to this case, with the inequalities related to kmax now verified by the real parts of
linear momenta. For this, one can see that we can apply analytic continuation on linear momenta
in Eq. (A.22), because radial and angular parts are well separated therein. Thus, ⟨a, b∣V̂ ∣c, d⟩ → 0
when Eq. (3.66) stands is also fulfilled for complex linear momenta.

A.1.2 Proton-proton and proton-neutron case

For the cases involving protons in {a, b, c, d}, we will consider the screening method in order
avoid divergences due to the infinite-range of the Coulomb potential arising from the proton gen-
erating potential. This is justified by the fact that reactions of importance always occur relatively
close to the target, all the others reducing to pure Rutherford scattering. Hence, we can con-
sider that the Coulomb Hamiltonian acts up to a radius R. Consequently, proton wave functions
become proportional to neutron wave functions at large distances. We then have to prove that
normalization of screened and unscreened proton wave functions is asymptotically the same for
R → +∞ so that the plane wave decomposition method elaborated for neutrons in the previous
paragraph can be applied in the proton case as well.

For r ≤ R, but nevertheless sufficiently large to be outside of the nuclear region, the asymptotic
behavior of the screened Berggren proton wave function as r → +∞ is that of Coulomb wave
functions:

ue(r) = uc(r) → C ′
+H

+
`η(kr) +C

′
−H

−
`η(kr)

= C+eikr−iη ln (2kr) +C−e−ikr+iη ln (2kr) +O ( 1
kr

) (A.23)

where H+
`η and H−

`η are the incoming and outgoing Coulomb wave functions. For r > R, the
asymptotic behavior of proton wave functions goes back to that of neutrons:

us(r) → C+
s e

ikr +C−
s e

−ikr +O ( 1
kr

) (A.24)
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where the index s stands for “screening”. Constants in Eqs. (A.23) and (A.24) are determined
using the continuity of the wave function and of its derivative:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C+eikR−iη ln (2kR) +C−e−ikR+iη ln (2kR) +O ( 1
kR

) = C+
s e

ikR +C−
s e

−ikR

C+eikR−iη ln (2kR) −C−e−ikR+iη ln (2kR) +O ( 1
kR

) = C+
s e

ikR −C−
s e

−ikR

(A.25)

so that for R → +∞, knowing that C+
s C

−
s = 1

2π
, we have the normalization:

C+C− = 1
2π

+O ( 1
R

) (A.26)

and we have proved that screened functions have the same normalization as unscreened functions.
Therefore, if protons are present in {a, b, c, d}, Eq. (A.26) implies that:

⟨a, b∣V̂ ∣c, d⟩ = ⟨as, bs∣V̂ ∣cs, ds⟩ +O ( 1
R

) . (A.27)

Consequently, as R can be arbitrarily large, one can consider that ⟨a, b∣V̂ ∣c, d⟩ = 0 in Eq. (A.27)
when the conditions embedded in Eq. (3.65) are verified.

A.2 Derivation of the generalized Richardson equations
An approximate solution for the pairing Hamiltonian in Berggren basis (2.89) can be found by

replacing the Kronecker delta by Dirac delta in the commutation relation:

[b̂k, b̂†
k′] = 2δ(k − k′)( Ω̂k

4
± n̂k

2
) (A.28)

With this change, the new pair operators satisfy:

[ˆ̃nq, ˆ̃b
†
q′] = 2δqq′ˆ̃b

†
q

[ˆ̃bq, ˆ̃b
†
q′] = 2δqq′ (

Ω̂q

4
±

ˆ̃nq
2wq

) (A.29)

where the index q runs over bound, resonance and discretized continuum states. In this approxi-
mation, let us now derive the solution of the Schrödinger equation for both the fermion and boson
system: Ĥ ∣Ψ norm ⟩ = E ∣Ψ norm ⟩, with E = ∑Npair

ν=1 Eν +∑Nq νqεq where Eν are the pair energies,
N pair the number of pairs and N the total number of bound, resonance and discretized contin-
uum states, i.e. N = 2N + ν with ν = ∑Nq νq the number of unpaired particles. As an ansatz for
the many-body state we take:

∣Ψ norm ⟩ =
Npair

∏
ν=1

Ŝ†
ν; norm ∣0⟩ ; Ŝ†

ν; norm = cνG
N
∑
q

ˆ̃b
†
q
√
wq

2εq −Eν
(A.30)
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where the normalization constants cν are given by:

1
(cνG)2 = 1

Cν
2 = ∑

q

wq

(2εq −Eν)2 (A.31)

In order to simply the derivation, it is more convenient to define Ŝ†
ν = Ŝnorm,†

ν /Cν so that:

∣Ψ norm ⟩ =
Npair

∏
ν=1

Cν Ŝ
†
ν ∣0⟩ = C ∣Ψ⟩ (A.32)

where

C =
Npair

∏
ν=1

Cν

and

∣Ψ⟩ =
Npair

∏
ν=1

Ŝ†
ν ∣0⟩

Let us begin by evaluating the commutator:

⎡⎢⎢⎢⎢⎣
Ĥ,

Npair

∏
ν=1

Ŝ†
ν

⎤⎥⎥⎥⎥⎦
=
Npair

∑
ν=1

⎛
⎝
⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠
[Ĥ, Ŝ†

ν]
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠
⎞
⎠

(A.33)

It is convenient to rewrite the Hamiltonian (2.89) in a discretized form:

Ĥ =
N
∑
q

εq ˆ̃nq −GŜ†
0Ŝ0 ; Ŝ†

0 =
N
∑
q

ˆ̃b
†
q
√
wq , (A.34)

where N is the total number of bound, resonance and discretized continuum states. Thus, knowing
the following commutation relations:

ˆ̃b
†2
q = 0 , [ˆ̃bq, ˆ̃b

†
q′] = 2δqq′(

Ω̂q

4
±

ˆ̃nq
2wq

) , [ˆ̃nq, ˆ̃b
†
q′] = 2δqq′ˆ̃b

†
q (A.35)

we get:

[ˆ̃nq, Ŝ†
ν] =

2ˆ̃b
†
q
√
wq

2εq −Eν
, [Ŝ0, Ŝ

†
ν] =

N
∑
q

wqΩ̂q/2 ± ˆ̃nq
2εq −Eν

(A.36)

and with [Ŝ†
0, Ŝ

†
ν] = 0 we have:

[Ĥ, Ŝ†
ν] =

N
∑
q

εq [ˆ̃nq, Ŝ†
ν] −G [Ŝ†

0Ŝ0, Ŝ
†
ν]

= Eν Ŝ†
ν + Ŝ

†
0
⎛
⎝

1 −G
N
∑
q

wqΩ̂q/2 ± ˆ̃nq
2εq −Eν

⎞
⎠

(A.37)
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Inserting (A.37) into Eq. (A.33), one obtains:

⎡⎢⎢⎢⎢⎣
Ĥ,

Npair

∏
ν=1

Ŝ†
ν

⎤⎥⎥⎥⎥⎦
=
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠
[Ĥ, Ŝ†

ν]
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

=
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠
Eν Ŝ

†
ν

⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

+
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠
Ŝ†

0
⎛
⎝

1 −G
N
∑
q

wqΩ̂q/2 ± ˆ̃nq
2εq −Eν

⎞
⎠
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

=
Npair

∑
ν=1

Eν
⎛
⎝

Npair

∏
η=1

Ŝ†
η

⎞
⎠
+
Npair

∑
ν=1

⎛
⎝

Npair

∏
η=1

Ŝ†
µ

⎞
⎠
Ŝ†

0
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

−
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠
Ŝ†

0G
N
∑
q

wqΩ̂q/2 ± ˆ̃nq
2εq −Eν

⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

(A.38)

where the 2nd term can be expressed as:

Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠
Ŝ†

0
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠
=
Npair

∑
ν=1

Ŝ†
0

⎛
⎜⎜
⎝

Npair

∏
η=1
≠ν

Ŝ†
η

⎞
⎟⎟
⎠

(A.39)

and the 3rd term :
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠
Ŝ†

0G
N
∑
q

wqΩ̂q/2 ± ˆ̃nq
2εq −Eν

⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

= G
Npair

∑
ν=1

Ŝ†
0
⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

N
∑
q

wqΩ̂q/2 ± ˆ̃nq
2εq −Eν

⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

= G
Npair

∑
ν=1

wqΩ̂q/2
2εq −Eν

Ŝ†
0

⎛
⎜⎜
⎝

Npair

∏
η=1
≠ν

Ŝ†
η

⎞
⎟⎟
⎠

±G
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

N
∑
q

Ŝ†
0 ˆ̃nq

2εq −Eν
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

(A.40)
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Now, let us derive the expression for [ˆ̃nq,∏Npair
µ=ν+1 Ŝ

†
µ] using Eq. (A.36):

ˆ̃nq
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠
= fq(EJν+1)

⎛
⎝

Npair

∏
µ=ν+2

Ŝ†
µ

⎞
⎠
+ Ŝ†

Jν+1
ˆ̃nq

⎛
⎝

Npair

∏
µ=ν+2

Ŝ†
µ

⎞
⎠

= fq(EJν+1)
⎛
⎝

Npair

∏
µ=ν+2

Ŝ†
µ

⎞
⎠
+ fq(EJν+2)

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠ν+2

Ŝ†
µ

⎞
⎟⎟
⎠
+ Ŝ†

Jν+1
Ŝ†
Jν+2

ˆ̃nq
⎛
⎝

Npair

∏
µ=ν+3

Ŝ†
µ

⎞
⎠

= fq(EJν+1)
⎛
⎝

Npair

∏
µ=ν+2

Ŝ†
µ

⎞
⎠
+ fq(EJν+2)

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠ν+2

Ŝ†
µ

⎞
⎟⎟
⎠
+ fq(EJν+3)

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠ν+3

Ŝ†
µ

⎞
⎟⎟
⎠

+ Ŝ†
Jν+1

Ŝ†
Jν+2

Ŝ†
Jν+3

ˆ̃nq
⎛
⎝

Npair

∏
µ=ν+4

Ŝ†
µ

⎞
⎠

(A.41)

To simplify notation in the above expressions, we have defined:

[ˆ̃nq, Ŝ†
ν] =

2ˆ̃b
†
q
√
wq

2εq −Eν
= fq(Eν) (A.42)

Eq. (A.41) can be generalized as follows:

ˆ̃nq
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠
=
Npair

∑
`=ν+1

fq(EJ`)
⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠`

Ŝ†
µ

⎞
⎟⎟
⎠
+
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

ˆ̃nq (A.43)

and one obtains:
⎡⎢⎢⎢⎢⎣
ˆ̃nq,

Npair

∏
µ=ν+1

Ŝ†
µ

⎤⎥⎥⎥⎥⎦
=
Npair

∑
`=ν+1

2√wqˆ̃b
†
q

(2εq −EJ`)

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠`

Ŝ†
µ

⎞
⎟⎟
⎠

(A.44)

Consequently Eq. (A.40) becomes:

Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠
Ŝ†

0G
N
∑
q

wqΩ̂q/2 ± ˆ̃nq
2εq −Eν

⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

= G
Npair

∑
ν=1

wqΩ̂q/2
2εq −Eν

Ŝ†
0

⎛
⎜⎜
⎝

Npair

∏
η=1
≠ν

Ŝ†
η

⎞
⎟⎟
⎠

±G
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

N
∑
q

Ŝ†
0

2εq −Eν
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

ˆ̃nq

±G
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

Npair

∑
`=ν+1

N
∑
q

2√wqŜ†
0
ˆ̃b

†
q

(2εq −Eν)(2εq −EJ`)

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠`

Ŝ†
µ

⎞
⎟⎟
⎠

(A.45)
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Inserting (A.39) and (A.45) into Eq. (A.38), one finds:

⎡⎢⎢⎢⎢⎣
Ĥ,

Npair

∏
ν=1

Ŝ†
ν

⎤⎥⎥⎥⎥⎦
=
Npair

∑
ν=1

Eν
⎛
⎝

Npair

∏
η=1

Ŝ†
η

⎞
⎠
+
Npair

∑
ν=1

⎛
⎝

1 −
N
∑
q

GwiΩ̂q/2
2εq −Eν

⎞
⎠
Ŝ†

0

⎛
⎜⎜
⎝

Npair

∏
η=1
≠ν

Ŝ†
η

⎞
⎟⎟
⎠

∓G
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

N
∑
q

Ŝ†
0

2εq −Eν
⎛
⎝

Npair

∏
µ=ν+1

Ŝ†
µ

⎞
⎠

ˆ̃nq

∓G
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

Npair

∑
`=ν+1

N
∑
q

2√wqŜ†
0
ˆ̃b

†
q

(2εq −Eν)(2εq −EJ`)

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠`

Ŝ†
µ

⎞
⎟⎟
⎠

(A.46)

Applying the commutator (A.46) on the vacuum state ∣0⟩, and using: Ĥ ∣0⟩ = 0, one obtains:

Ĥ ∣Ψn⟩ = En∣Ψn⟩ +
Npair

∑
ν=1

⎛
⎝

1 −
N
∑
q

Gwq (Ω̂q/2 ± νq)
2εq −Eν

⎞
⎠
Ŝ†

0
⎛
⎝

Npair

∏
η=1;≠ν

Ŝ†
η

⎞
⎠
∣0⟩

∓
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

Npair

∑
`=ν+1

N
∑
q

2G√
wqŜ

†
0
ˆ̃b

†
q

(2εq −Eν)(2εq −EJ`)

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠`

Ŝ†
µ

⎞
⎟⎟
⎠
∣0⟩ (A.47)

The summation over q in the last term can be rewritten as:

Ŝ†
ν − Ŝ†

J`

Eν −EJ`
= 1
Eν −EJ`

N
∑
q

⎛
⎜
⎝

ˆ̃b
†
q
√
wq

2εq −Eν
−

ˆ̃b
†
q
√
wq

2εq −EJ`

⎞
⎟
⎠

=
N
∑
q

ˆ̃b
†
q
√
wq

(2εq −Eν)(2εq −EJ`)
(A.48)

Hence, the last term of Eq. (A.47) can be expressed as:

Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

Npair

∑
`=ν+1

N
∑
q

2G√
wqŜ

†
0
ˆ̃b

†
q

(2εq −Eν)(2εq −EJ`)

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠`

Ŝ†
µ

⎞
⎟⎟
⎠

=
Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

Npair

∑
`=ν+1

2GŜ†
0 (Ŝ†

ν − Ŝ†
µ)

Eν −Eµ

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠`

Ŝ†
µ

⎞
⎟⎟
⎠
∣0⟩

=
Npair

∑
ν=1

⎛
⎝

Npair

∑
`=ν+1

2G
Eν −EJ`

⎞
⎠
Ŝ†

0

⎛
⎜⎜
⎝

Npair

∏
η=1
≠`

Ŝ†
η

⎞
⎟⎟
⎠
∣0⟩ −

Npair

∑
ν=1

⎛
⎝

Npair

∑
`=ν+1

2G
Eν −EJ`

⎞
⎠
Ŝ†

0

⎛
⎜⎜
⎝

Npair

∏
η=1
≠ν

Ŝ†
η

⎞
⎟⎟
⎠
∣0⟩ (A.49)

If we consider the Heavyside function H(ν − µ) and the function f(µ, ν), where µ and ν are two
integer parameters, then:

Npair

∑
µ=1;≠ν

f(µ, ν)H(ν − µ) =
Npair

∑
µ=1

Npair

∑
ν=µ+1

f(µ, ν) =
Npair

∑
ν=1

ν−1
∑
µ=1

f(µ, ν) (A.50)
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Using this property, one can do the following modification of indices involved in the sums in the
first term of Eq. (A.49):

Npair

∑
ν=1

⎛
⎝

ν−1
∏
η=1

Ŝ†
η

⎞
⎠

Npair

∑
`=ν+1

N
∑
q

2G√
wqŜ

†
0
ˆ̃b

†
q

(2εq −Eν)(2εq −EJ`)

⎛
⎜⎜
⎝

Npair

∏
µ=ν+1
≠`

Ŝ†
µ

⎞
⎟⎟
⎠

=
Npair

∑
µ=1

(
µ−1
∑
ν=1

2G
Eν −Eµ

) Ŝ†
0

⎛
⎜⎜
⎝

Npair

∏
η=1
≠ν

Ŝ†
η

⎞
⎟⎟
⎠
∣0⟩ −

Npair

∑
ν=1

⎛
⎝

Npair

∑
µ=ν+1

2G
Eν−Eµ

⎞
⎠
Ŝ†

0

⎛
⎜⎜
⎝

Npair

∏
η=1
≠ν

Ŝ†
η

⎞
⎟⎟
⎠
∣0⟩

=
Npair

∑
ν=1

⎛
⎜⎜
⎝

Npair

∑
µ=1
≠ν

2G
Eµ −Eν

⎞
⎟⎟
⎠
Ŝ†

0

⎛
⎜⎜
⎝

Npair

∏
η=1
≠ν

Ŝ†
µ

⎞
⎟⎟
⎠
∣0⟩ (A.51)

As Ĥ ∣Ψ⟩ = E∣Ψ⟩, one obtains from (A.47) the generalized Richardson equations (A.52) for the
pair energies of the discretized pairing Hamiltonian in the Berggren basis:

1 ± 2G
N
∑
q

wqdq

2εq −Eν
∓
Npair

∑
µ≠ν

2G
Eµ −Eν

= 0 (A.52)

with dq = Ωq/4 ± νq/2.

A.3 Initial conditions for solving the generalized Richardson equa-
tions

Initial conditions are essential to solve numerically the generalized Richardson equations (2.99).
They are usually determined by considering the solution for pair energies in the weak coupling
limit (G≪ 1):

lim
G→0

Ei = 2εq i = 1, . . . ,Npair ; q = 1, . . . ,N (A.53)

In the case of one pair per level (Ω = 2) and G << 1, the generalized Richardson equations (2.99)
become:

1 ± 2Gdq
2εq −Eq

= 0 q = 1, . . . ,N (A.54)

The solution of Eq. (A.54):
Eq = 2εq ± 2Gdqwq

provides a good starting point for solving the generalized Richardson equations (2.99) using the
Newton-Raphson procedure in the case of one pair of particles (bosons or fermions) per level.

In the case of two pairs of particles (i = 1,2) on a s.p. level q, the boundary conditions in the
weak coupling limit G≪ 1 are:

lim
G→0

E1 = lim
G→0

E2 = 2εq (A.55)
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where E1 and E2 are the energies of the two pairs being on the same s.p. level at G = 0. In such
a case, generalized Richardson equations (2.99) become:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 ± 2Gdq
2εq −E1

∓ 2G
E2 −E1

= 0

1 ± 2Gdq
2εq −E2

∓ 2G
E1 −E2

= 0
(A.56)

One can rewrite them in the following form:
⎧⎪⎪⎨⎪⎪⎩

− (E1 −E2)2 ∓ 2G(4εq −E1 −E2) = 0
(4εq −E1 −E2) ± 4Gdq ± 2G = 0

(A.57)

Eqs. (A.57) can be linearized:

{
λ− ∓ 2Gλ+ = 0
λ+ ± 4Gdq ± 2G = 0

(A.58)

in variables:
λ+ = 4εq −E1 −E2 and λ− = (E1 −E2)2 .

The solutions for λ+ and λ− are:

λ+ = ∓4Gdq ∓ 2G
λ− = −8G2dq − 4G2 (A.59)

and hence the expression for E1 and E2 in the weak coupling limit is:

E1 = 2εq −
1
2
(λ+ −

√
λ−)

E2 = 2εq −
1
2
(λ+ +

√
λ−) (A.60)

A.4 Normalization of scattering states including the Coulomb po-
tential

A.4.1 Partial overlap integral

The radial Schrödinger equation for a spherical non-local potential reads:

u′′k(r) = (`(` + 1)
r2 + v(r) − k2)uk(r) + ∫

+∞

0
w(r, r′)uk(r′) dr′ (A.61)

where ` is the orbital angular momentum, v(r) is the local part of the potential and w(r, r′) its
non-local part. In the asymptotic region, one demands:

v(r) = α
r

for r > Rpot (A.62)

w(r, r′) = 0 for r > Rpot or r′ > Rpot (A.63)
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where α is real and Rpot > 0. These conditions are always satisfied in practice.
Let us consider two different linear momenta ka > 0 and kb > 0, and a radius R > Rpot. Eq.

(A.61) provides the overlap of uka and ukb in [0 ∶ R]. After simple manipulations, one obtains:

∫
R

0
[u′′kb(r)uka(r) − u

′′
ka(r)ukb(r)]dr =

(k2
a − k2

b)∫
R

0
uka(r)ukb(r)dr + ∫

R

0 ∫
R

0
w(r, r′) [ukb(r

′)uka(r) − uka(r
′)ukb(r)]dr

′dr

(A.64)

As w(r, r′) is symmetric in r and r′, the integral involving w(r, r′) in Eq. (A.64) vanishes identi-
cally. Hence, integrating the l.h.s. of Eq. (A.64) and using the fact that uka(0) = ukb(0) = 0, one
obtains:

Iab(R) ≡ ∫
R

0
uka(r)ukb(r) dr =

u′kb(R)uka(R) − u′ka(R)ukb(R)
k2
a − k2

b

(A.65)

Iab(R) will be shown in Appendix A.4.3 and A.4.4 to converge weakly to a Dirac delta.

A.4.2 Asymptotic expression of partial overlap integral

From Eqs. (A.62) and (A.63), uk(R) is equal to a linear combination of incoming and outgoing
Coulomb wave functions:

uk(R) = C+
kH

+(`, η, kR) +C−
kH

−(`, η, kR) (A.66)

where η = α/k is the Sommerfeld parameter, and C±
k are fixed up to an overall factor to be deter-

mined.
H±(`, η, kR), uk(R) and its derivative have simple analytical form in the asymptotic region :

H±(`, η, kR) = e±i(kR−ηk ln(2kR)−`π2 +σ`(η)) +O ( 1
R

) (A.67)

[dH
±(`, η, kr)
dr

]
r=R

= ±ik e±i(kR−ηk ln(2kR)−`π2 +σ`(η)) +O ( 1
R

) (A.68)

where σ`(η) is the Coulomb phase shift. The asymptotic form of uk(R) and uk′(R) derive from
Eqs. (A.66), (A.67),(A.68):

uk(R) = Ck sin(kR − ηk ln(2kR) + δk) +O ( 1
R

) (A.69)

u′k(R) = Ckk cos(kR − ηk ln(2kR) + δk) +O ( 1
R

) , (A.70)

where C2
k = 4C+

kC
−
k , and δk is the phase shift associated to uk(r), which verifies

e2iδk = −C+
k /C

−
k

Note that Ck and δk are real.
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Inserting Eqs. (A.69) and (A.70) in Eq. (A.65), one obtains:

Iab(R) = CkaCkb
kb sin(kaR − ηka ln(2kaR) + δka) cos(kbR − ηkb ln(2kbR) + δkb)

(ka − kb)(ka + kb)

− CkaCkb
ka cos(kaR − ηka ln(2kaR) + δka) sin(kbR − ηkb ln(2kbR) + δkb)

(ka − kb)(ka + kb)
+O ( 1

R
)

= CkaCkb
ka sin((kb − ka)R − ηkb ln(2kbR) + ηka ln(2kaR) + δkb − δka)

(kb − ka)(ka + kb)

− CkaCkb
sin((ka + kb)R − ηka ln(2kaR) − ηkb ln(2kbR) + δka + δkb)

2(ka + kb)

+ CkaCkb
sin((kb − ka)R − ηkb ln(2kbR) + ηka ln(2kaR) + δkb − δka)

2(ka + kb)
+O ( 1

R
)

= CkaCkb
ka sin(∆kR + βab∆k ln(R) + f−(ka, kb))

∆k (ka + kb)

− CkaCkb
sin((ka + kb)R − (ηka + ηkb) ln(R) + f+(ka, kb))

2(ka + kb)

+ CkaCkb
sin(∆kR + βab∆k ln(R) + f−(ka, kb))

2(ka + kb)
+O ( 1

R
)

and finally:

Iab(R) = CkaCkb
sin(∆kR + βab∆k ln(R))

2∆k

+ CkaCkb sin(∆kR + βab∆k ln(R))(ka
cos(f−(ka, kb))
∆k (ka + kb)

− 1
2∆k

)

+ CkaCkb cos(∆kR + βab∆k ln(R))(ka
sin(f−(ka, kb))
∆k (ka + kb)

)

− CkaCkb
sin((ka + kb)R − (ηka + ηkb) ln(R) + f+(ka, kb))

2(ka + kb)

+ CkaCkb
sin(∆kR + βab∆k ln(R) + f−(ka, kb))

2(ka + kb)
+O ( 1

R
) , (A.71)

where:

∆k = kb − ka
βab =

α

kakb
f±(ka, kb) = ∓ηka ln(2ka) − ηkb ln(2kb) + δkb ± δka . (A.72)

The five terms which enter Eq. (A.71) are denoted respectively as J(i)ab (∆k,R), i ∈ {1,2,3,4,5}.
Only J(1)ab (∆k,R) provides a Dirac delta if R → +∞. All the other terms will be shown to vanish
in this limit.
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A.4.3 Generalized Riemann-Lebesgue lemma

We will formulate the generalization of the Riemann-Lebesgue lemma in the case if R enters
integrated functions logarithmically. The generalized lemma will be then used to prove that all
terms not leading to a Dirac delta vanish for R → +∞.

Let us consider a differentiable function fR(k) defined for k ∈ [kmin ∶ kmax], and verifying:

∣fR(k)∣ = O (lnn(R)) ∀k

∫
kmax

kmin
∣f ′R(k)∣ dk = O (lnn(R)) (A.73)

where n is an integer which can be the same for fR(k) and fR′(k). Integration by parts provides:

∫
kmax

kmin
fR(k) eikR dk = 1

iR
([fR(k) eikR]

kmax

kmin
− ∫

kmax

kmin
f ′R(k) eikR dk) (A.74)

Thus, majoring Eq. (A.74), one obtains:

∣∫
kmax

kmin
fR(k) eikR dk∣ ≤ 1

R
(∣fR(kmin)∣ + ∣fR(kmax)∣ + ∫

kmax

kmin
∣f ′R(k)∣ dk)

= O ( lnn(R)
R

) → 0 (A.75)

A.4.4 Weak convergence of the overlap to a Dirac delta

In order to show that Iab(R) converges to a Dirac delta, we will integrate Iab(R) with a
smooth test function F (∆k) of a compact support: ∆k ∈ [∆kmin ∶ ∆kmax], where −ka < ∆kmin < 0
and ∆kmax > 0 (These conditions are consistent with the requirements ka > 0 (fixed) and kb > 0.):

IF (R) = ∫
∆kmax

∆kmin

F (∆k)Iab(R) d∆k =
5
∑
i=1
∫

∆kmax

∆kmin

F (∆k)J(i)(∆k,R) d∆k (A.76)

Integrals involving J(i)ab (∆k,R) for i ≥ 2 in Eq. (A.76) can be written as the real or imaginary part

of ∫
∆kmax

∆kmin

f
(i)
R (∆k) ei∆kR d∆k, where:

f
(2)
R (∆k) = CkaCkbe

iβab∆k ln(R) (ka
cos(f−(ka, kb))
∆k (ka + kb)

− 1
2∆k

)

f
(3)
R (∆k) = CkaCkbe

iβab∆k ln(R) (sin(f−(ka, kb))
∆k (ka + kb)

)

f
(4)
R (∆k) = CkaCkbe

2ikaR−i(ηka+ηkb) ln(R) (e
if+(ka,kb))

2(ka + kb)
)

f
(5)
R (∆k) = CkaCkbe

iβab∆k ln(R) ( e
if−(ka,kb)

2(ka + kb)
) (A.77)

One can check from Eq. (A.77) that f (i)R (∆k) always verifies Eq. (A.73) for i ≥ 2. Consequently,
from the generalized Riemann-Lebesgue lemma (see Appendix A.4.3) one finds that integrals
involving J(i)ab (∆k,R) for i ≥ 2 in Eq. (A.76) vanish for R → +∞.
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A.4. NORMALIZATION OF SCATTERING STATES INCLUDING THE
COULOMB POTENTIAL

In the integral involving J(1)ab (∆k,R), let us expand the sine function in products of sine and
cosine functions:

∫
∆kmax

∆kmin

F (∆k)J(1)(∆k,R) d∆k =
CkaCkb

2 ∫
∆kmax

∆kmin

F (∆k) sin(∆kR) cos(βab∆k ln(R)) d∆k

∆k

+
CkaCkb

2 ∫
∆kmax

∆kmin

F (∆k) cos(∆kR) sin(βab∆k ln(R)) d∆k

∆k

(A.78)

The second integral of Eq. (A.78) is a real part of:

∫
∆kmax

∆kmin

F (∆k)ei∆kR sin(βab∆k ln(R)) d∆k

∆k
(A.79)

This integral vanishes if R → +∞:

fR(∆k) = F (∆k) sin(βab∆k ln(R))/∆k

because the function fR(∆k) verifies Eq. (A.73).
The first integral of Eq. (A.78) is a real part of the integral:

I
(c)
F (R) =

CkaCkb
2 ∫

∆kmax

∆kmin

F (∆k) sin(∆kR) eiβab∆k ln(R) d∆k

∆k
(A.80)

To determine the limit of I(c)F (R) for R → +∞, we introduce the function GR(∆k):

F (∆k) = [F (0)U(∆k) +∆kGR(∆k)] e−iβab∆k ln(R) , (A.81)

where U(∆k) = 1 for ∆k ∈ [∆kmin ∶ ∆kmax], and U(∆k) = 0 elsewhere. Then, from Eqs. (A.80),
(A.81), one finds that I(c)F (R) becomes:

I
(c)
F (R) =

CkaCkb
2

(F (0)∫
∆kmax

∆kmin

sin(∆kR) d∆k

∆k
+ ∫

∆kmax

∆kmin

GR(∆k) sin(∆kR) d∆k)

=
CkaCkb

2
(F (0)∫

∆kmaxR

∆kminR
sin(x) dx

x
+ ∫

∆kmax

∆kmin

GR(∆k) sin(∆kR) d∆k) (A.82)

where a change of variable has been effected in the first integral.
The first integral of Eq. (A.82) clearly has π as a limit when R → +∞. The second integral in

Eq. (A.82) equals:

1
2i

(∫
∆kmax

∆kmin

GR(∆k) ei∆kR d∆k − ∫
∆kmax

∆kmin

GR(∆k) e−i∆kR d∆k) (A.83)

By reversing and deriving Eq. (A.81), we can show that the function GR(∆k) has the same
properties as the function fR(∆k) in Eq. (A.73). Thus, the integrals in Eq. (A.83) vanish if
R → +∞.

We can now evaluate the limit of Iab(R) (Eq. (A.71)) when R → +∞:

Iab(R) → π

2
C2
kaδ(ka − kb) (A.84)
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and obtain (see Eq. (A.65)):

∫
+∞

0
uka(r)ukb(r) dr =

π

2
C2
kaδ(ka − kb) = 2πC+

kaC
−
kaδ(ka − kb) (A.85)

The Dirac delta normalization arises from the following equality:

∫
+∞

0
uka(r)ukb(r) dr = δ(ka − kb) ⇔ 2πC+

kC
−
k = 1 ∀uk (A.86)

A.5 Solution of Faddeev equation using Berggren basis
Berggren basis, due to its completeness properties, can be used to solve the reaction problems

represented by the Faddeev equation. Its Hamiltonian and Schrödinger equation read:

H ∣Ψ⟩ = E ∣Ψ⟩ (A.87)

H = HP +
P⃗ 2

2µT
+ VS (A.88)

where HP is the intrinsic Hamiltonian of the projectile, P⃗ is the linear momentum of the c.m. of
the projectile with respect to the target, µT is the reduced mass of the target and VS is a potential
describing the scattering of the projectile subsystems away from the target.

Let us consider Berggren basis associated with the intrinsic Hamiltonian HP of the projectile:

HP ∣ΦP⟩ = eP ∣ΦP⟩ (A.89)

In the case of a three-body problem, whereby the projectile bears two subsystems, HP in Eq.
(A.89) becomes a one-body Hamiltonian:

HP = p⃗2

2µP
+ VP(r) (A.90)

where r is the intrinsic radius, p⃗ the intrinsic linear momentum, µP the reduced mass of the
projectile, and VP(r) the intrinsic interaction of the projectile. In this case, ∣ΦP⟩ is a one-body
Berggren basis state, which is straightforward to calculate.

In the continuum discretized CC method, the scattering states ∣ΦP⟩ are dealt with the bin
states, obtained by integrating scattering states on finite energy interval. In this way, one obtains
a basis of discrete bound states. It is however not necessary to use this procedure if one works with
the Berggren basis, as one would consider scattering states ∣ΦP⟩ of a fixed energy. Such a method
is already used in the mid point method, where one takes the middle energy of the considered
bin to define ∣ΦP⟩. However, the energies would hereby be determined with a Gauss-Legendre
quadrature, so that one would expect a much better precision for a fixed number of discretized
scattering states.

The standard method of solving Eq. (A.87) is to expand ∣Ψ⟩ in a basis of intrinsic and c.m.
projectile states:

∣Ψ⟩ = ∑
n

∣Φ(n)P ⟩ ∣Ψ(n)⟩ (A.91)
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where ∣Φ(n)P ⟩ is an eigenstate of HP and ∣Ψ(n)⟩ is a c.m. projectile state verifying the equation:

( P⃗
2

2µT
+ Vnn(R⃗) −En)Ψ(n)(R⃗) + ∑

n′≠n
Vnn′(R⃗)Ψ(n′)(R⃗) = 0 (A.92)

Vnn′(R⃗) = ⟨Φ(n
′)

P ∣VS∣Φ(n)P ⟩ (A.93)

where R⃗ is the space coordinate of the c.m. of the projectile with respect to the target, and
En = E−en. Expanding Ψ(n)(R⃗) in partial waves, one obtains the set of CC equations which must
be solved to obtain ∣Ψ⟩:

Ψ(n)(R⃗) = ∑
L

iLχa(R)YL(ΩR) (A.94)

[− h̵2

2µT
( d2

dR2 −
L(L + 1)
R2 ) + V J

aa(R) −En]χJa(R) + ∑
a′≠a

iL
′−LVaa′(R)χa′(R) = 0

(A.95)
Vaa′(R) = ⟨[Φ(n

′)
P Y ′

L]
J
∣VS∣ [Φ(n)P YL]

J
⟩ (A.96)

where J is the total angular momentum of the system and a represents different quantum numbers
associated to the total system.

As Eq. ( A.95) has the same form as Eq. (3.100), it can be solved with the Green’s function
method described in Sec. (3.3.5). As this method replaces the direct integration of CC equations
by a linear system, it should be more efficient, insofar as the number of channels in Faddeev
equations is usually very large. If we have more than two subsystems in the projectile, Eq. (A.89)
becomes a many-body problem which can be solved by the GSM as well.
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Titre : Réactions nucléaires dans le modèle en couches de Gamow et solutions de l’Hamiltonien
d’appariement basées sur le modèle rationnel de Gaudin

Au voisinage de la limite de stabilité, ou à haute énergie d’excitation, l’influence du continuum
devient de plus en plus importante, modifiant ainsi la structure des états faiblement liés. Dans
cette région, les noyaux sont des systèmes quantiques ouverts qui peuvent être décrits correctement
avec le Gamow Shell Model (GSM) offrant une description unifiée des états liés, des résonances et
des états de diffusion.

La compréhension de propriétés nucléaires induites par certaines symétries du système à
plusieurs corps, peut être approfondie en considérant des modèles exactement solubles. Dans
la première partie, nous avons généralisé l’Hamiltonien d’appariement basé sur le modèle rationel
de Gaudin aux états du continuum, et dérivé la solution algébrique qui généralise la solution ex-
acte de Richardson initialement introduite pour les systèmes liés. Ces équations de Richardson
généralisées ont ensuite été appliquées à l’étude des spectres et des énergies de liaison dans une
chaîne d’isotopes de carbone.

Dans la deuxième partie, nous avons formulé une théorie des réactions basée sur le GSM. Dans
ce but, le GSM est formulé dans une base de canaux de réaction pour les projectiles à plusieurs
nucléons. Cette théorie des réactions prend en compte l’antisymétrisation des fonctions d’onde de
cible et de projectile, ainsi que la fonction d’onde du système composé. Les applications de cette
théorie sont présentées pour la réaction 14O(p,p’)14O, où le système composé 15F est un émetteur
de proton, et pour la réaction 40Ca(d,d)40Ca.

Mots-clés : Structure nucléaire, réactions nucleaire, Gamow shell model, Hamiltonien d’appariement,
réactions directes, sections efficaces.

Title : Nuclear reactions in the Gamow shell model and solutions of the pairing Hamiltonian
based on the rational Gaudin model

Moving towards drip lines, or higher in excitation energy, the continuum coupling becomes
gradually more important, changing the nature of weakly bound states. In this regime, atomic
nuclei are open quantum systems which can be conveniently described using the Gamow shell
model (GSM) which offers a fully symmetric treatment of bound, resonance and scattering states.

The understanding of specific nuclear properties is often improved by considering exactly solv-
able models, motivated by a symmetry of the many-body system. In the first part , we have
generalized the rational Gaudin pairing model to include the continuous part of the single-particle
spectrum, and then derived a reliable algebraic solution which generalizes the exact Richardson
solution for bound states. These generalized Richardson solutions have been applied for the de-
scription of binding energies and spectra in the long chain of carbon isotopes.

In the second part, we have formulated the reaction theory rooted in GSM. For that the
GSM is expressed in the basis of reaction channels and generalized for multi-nucleon projectiles.
This reaction theory respects the antisymmetrization of target and projectile wave functions, as
well as the wave function of the combined system. The application of this theory have been
presented for the reaction 14O(p,p’)14O, where the combined system 15F is a proton emitter, and
for 40Ca(d,d)40Ca.

Keywords : Nuclear structure, nuclear reactions, Gamow shell model, pairing Hamiltonian,
direct reactions, cross sections.


