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Zusammenfassung

Die Zeitprojektionskammer (TPC) und der Übergangsstrahlungsdetektor (TRD) sind
die wesentlichen Komponenten für Spurrekonstruktion und Teilchenidentifikation im Ex-
periment ALICE am LHC am CERN. In dieser Arbeit werden Methoden jenseits des
ursprünglich vorgesehenen Anwendungsbereichs dieser Detektoren entwickelt: die Er-
weiterung der Impulsmessung mit der TPC auf kosmische Strahlung im sub-TeV Bere-
ich, die zuverlässige Identifikation von Elektronen und Hadronen mit dem TRD, sowie
die Entwicklung neuer Methoden zur Beschreibung des TPC und TRD Signals. Diese
ermöglichen die Messung von Übergangsstrahlung von Myonen aus der Höhenstrahlung
mit Energien im sub-TeV Bereich, sowie die Identifikation unterschiedlicher Teilchenarten
mit Impulsen von 0.5 bis oberhalb von 20 GeV/c.

Der neu entwickelte “TPC coherent fit” zur Untersuchung des TPC Signals erlaubt die
Messung der Transversalimpulsspektren (0.6 < pt < 20 GeV/c) von Pionen, Kaonen
und Protonen im zentralen Rapiditätsbereich |y| . 0.8 in Proton-Proton Kollisionen
bei
√
s = 2.76 und 7 TeV und in Blei-Blei Kollisionen bei

√
sNN = 2.76 TeV. Der

universelle Ansatz, mit Gültigkeit über einen weiten Impulsbereich, erlaubt sowohl
die Beobachtung der sogenannten Baryonanomalie, die ungewöhnliche Erhöhung des
Verhältnisses zwischen Protonen und Pionen bei moderatem pt (2–8 GeV/c), als auch
die nukleare Modifikation der Teilchenproduktion bis zu hohem pt (> 10 GeV/c) in
Blei-Blei Kollisionen. Desweiteren wird die Teilchenproduktion in Jets in Proton-Proton
Kollisionen bei 7 TeV untersucht, wobei die Ergebnisse des “Perugia-0 Tune” von
PYTHIA6 gute Übereinstimmung mit den experimentellen Resultaten zeigen.

Abstract

The Time Projection Chamber (TPC) and Transition Radiation Detector (TRD) are the
main tracking and particle identification devices in the ALICE experiment at the CERN
LHC. This thesis studies aspects of their performance beyond the original designs. This
includes extending the TPC momentum measurement for cosmic rays to sub-TeV scale,
investigating a robust identification method for electrons and hadrons by the TRD, and
developing new approaches to characterize the TPC and TRD signals. These studies lead
to an intriguing observation of the transition radiation from sub-TeV cosmic muons, and
a universal method – the TPC coherent fit – to extract yields of different particle species
with momentum from 0.5 to above 20 GeV/c.

With the TPC coherent fit, transverse momentum spectra (0.6 < pt < 20 GeV/c) of pions,
kaons and protons at mid-rapidity (|y| . 0.8) in pp collisions at

√
s = 2.76 and 7 TeV and

Pb–Pb collisions at
√
sNN = 2.76 TeV at the LHC are measured. In this unified approach

both the anomalous enhancement of the proton-to-pion ratio at moderate pt (2–8 GeV/c)
(the so-called baryon anomaly) and the nuclear modification of particle yields up to
high pt (> 10 GeV/c) in Pb–Pb collisions are observed. The particle production is also
studied in jets from pp collisions at 7 TeV and the results are well described by Perugia-0
tune of PYTHIA6.
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Chapter 1

Introduction

Since the beginning of the 20th century, the understanding of the building blocks of matter
has been evolving. In the Standard Model (SM) of particle physics [Ber12], the elementary
particles are quarks, leptons, gauge bosons and the Higgs boson [Aad12, Cha12a]. Quarks
are the constituents of hadrons, of which the protons and neutrons are the constituents
of atomic nuclei. Leptons, of which the electron is the most common in daily life, make
up another sector of the matter in the universe. The gluons, the photon, and the W -
and Z-bosons are the gauge bosons mediating the fundamental interactions: the strong,
electromagnetic and weak interactions1, respectively. The Higgs boson is related to the
mass generation of other elementary particles. The dynamics of the SM is provided
by quantum field theory, where the concept of particles is promoted to quantum fields,
whose quantum fluctuations represent the creation and annihilation of particles. The
matter and gauge fields carry not only energy and momentum, but also charges which
are conserved as a consequence of the symmetry due to the redundant degrees of freedom
in the Lagrangian (Noether’s theorem). The strong interaction in the SM is described by
quantum chromodynamics (QCD), where the SU(3) group is the underlying symmetry.
The corresponding charges are the three so-called colors which are carried not only by the
six flavor of quarks but also by the eight gluons. The gluons carry different color-anticolor
combinations and can couple to each other. This peculiar feature leads to fascinating
phenomena of the strong interaction.

Due to quantum fluctuations, the vacuum is not empty. Condensates of gluons and quarks
populate the vacuum [Shi79a, Shi79b]. The gluon condensate leads to the breaking of the
dilatation symmetry, also known as the scale invariance, of the QCD Lagrangian, while
the quark condensate, also called “chiral condensate”, leads to the spontaneous breaking
of the chiral symmetry. In the presence of charge coupling, the vacuum is polarized.
Virtual particles are created from the momentum transfer associated with the coupling
and then propagate over a short interval of time before they annihilate each other. The
coupling is modified by the screening and/or antiscreening by these virtual particles.

In QCD, self-coupling allows gluons to also participate in vacuum polarization, leading
to an antiscreening of the color charge. In other words, the effective charge increases as
the distance from it becomes larger. At a distance2 larger than 1/Λqcd, which is about 1

1Gravity is not included in the SM.
2A system of units with ~ = c = kb = 1 is used, where ~, c, kb are the Planck constant, the speed of

1



Chapter 1: Introduction

 0.1

 1

 10

 0.1  1

α
Y

M
(k

,T
)

k [GeV]

T=0

T=100 MeV

T=500 MeV

one loop (T=0)

Figure 1.1: Running coupling in a pure SU(3) gauge (i.e. no quark degree of freedom)
theory at finite temperature (colored curves). Figure from [Brau07].

fm with the QCD scale Λqcd ∼ 200 MeV, the coupling is so strong that such a separation
between color charges requires an infinite amount of energy, a phenomenon known as color
confinement. Instead of quarks and gluons, hadrons – the color singlet bound state either
of a quark and an antiquark (meson) or of three quarks (baryon)3 with a spatial extension
of about 1 fm – are therefore the natural degrees of freedom in QCD. The experimentally
observed hadron spectrum suggests that the QCD vacuum is chirally asymmetric: if chiral
symmetry were unbroken then each hadronic state would be degenerate in parity [Gas82].
At a small distance, or equivalently with a large momentum transfer k � Λqcd, the
strong coupling αs decreases with the scale k as 1/ ln(k/Λqcd). The color interaction
at very small distance is so weak that quarks and gluons behave like free particles as is
observed in deep inelastic scattering of leptons off nucleons [Bre69]. This is the so-called
asymptotic freedom [Gro73, Pol73].

In the presence of a medium, in addition to quantum fluctuations, thermal fluctuations of
the matter and gauge fields further modify the interactions. The modification due to the
screening by real particles, whose population is determined by their thermal distributions,
depends on the temperature and the chemical potential. For the strong interaction,
the effects can be characterized by the Debye mass, which is related to the strength
of the exponential screening to the chromo-electric field, and the Meissner mass of the
quasi-particle propagation mode of the chromo-magnetic interaction, which represents the
inverse interaction range [Gro81, Alf08]. With increasing temperature T or quark chemical
potential µ, both masses grow linearly and hence the effective interaction is weakened.
The effective strong coupling at given scale k depends on T and µ. For example, Fig. 1.1

light and the Boltzmann constant, respectively.
3Without the quark degree of freedom, confinement and asymptotic freedom – driven by gluon self-

coupling – still hold, as is shown by pure gauge calculations. Nevertheless, the bound state of pure gluons
– the glueball – has not been experimentally conclusively confirmed.
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Figure 1.2: A schematic QCD phase diagram. Figure from [Alf08].

shows the running coupling calculated as a function of k and T [Brau07].

An important consequence of the running strong coupling αs(k, T, µ) as a function of T
and µ is that at ultra-high temperature and/or density, color is deconfined [Cab75, Col75]
and different forms of quark matter exist. Figure 1.2 is a schematic QCD phase diagram.
In the regime of high temperature there is quark-gluon plasma (QGP) [Shu78] which is
generally believed to have filled the universe for the first few microseconds after the Big
Bang (see for example [Sch03]), and to have been created in ultra-relativistic heavy ion
collisions in laboratories [Hei00, Ada05, Adc05, Ars05, Bac05]. In the low temperature
high density regime it is expected that a degenerate liquid of quarks in the form of
color superconductor, the so-called color-flavor locked (CFL) phase, exists in the cores of
neutron stars (for a review cf. [Alf08]).

1.1 Quark-gluon plasma

In 1965, Hagedorn [Hag65] noted that the mass spectrum of hadronic states suggests an
exponential growth and postulated “the highest possible temperature for strong interac-
tions” near to 160 MeV (Fig. 1.3). Cabibbo and Parisi [Cab75] suggested that in the
framework of the quark model the Hagedorn-type exponential spectrum is connected to
a phase transition to a state where quarks are liberated. Another proposal for quark
deconfinement was provided by Collins and Perry [Col75] using asymptotic freedom ar-
guments. They showed that for the strong interaction at sufficiently high densities the

3



Chapter 1: Introduction

Figure 1.3: The hadronic mass spectrum from [Hag65]. For an update, cf. [Bro04].

effective coupling becomes arbitrarily small. Similar arguments may be applied for high
temperature. This new phase of matter at high temperature was first called “plasma” by
Shuryak [Shu78] because “explicit calculation [...] has produced positive sign of the Debye
mass, opposite to that of virtual gluons and the same as in (quantum electrodynamics)
QED” [Shu09]. At the time when the deconfinement phase transition was conceived, a
chiral phase transition towards the restoration of chiral symmetry at high temperature
was also conjectured [Gro81]: following a similar argument to deconfinement, as the tem-
perature increases, all correlations between quarks decay exponentially, preventing the
symmetry breaking.

4
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Figure 1.4: Pseudo-critical temperature Tpc for QCD transition(s) determined by recent
lattice QCD calculations. Figure from [Fuk11], for details cf. references therein.

The QCD transitions have been studied, among many other approaches, with first-
principle calculations using lattice QCD [Wil74, Kog75] by which the QCD Lagrangian
is formulated in discretized space-time and results are obtained by extrapolation to the
continuum limit. The deconfinement phase transition was first shown on the lattice by
investigating the temperature dependence of the potential between two color charges in
a pure gluonic system4 [Pol78, Sus79, Kut81, McL81]: at high temperature, the potential
becomes a finite constant at a large distance due to the screening by gluons, in contrast
to the zero temperature case where it increases linearly with the charge separation. An-
other demonstration came from the energy density of gluon matter [Eng81] which was
shown to rise rapidly and approach the Stefan-Boltzmann limit of a free gluon gas as the
temperature increases, indicating as well the liberation of new degrees of freedom. The
first demonstration of the chiral phase transition was obtained using lattice calculations
with quarks in the quenched approximation (leading order in the limit of a small num-
ber of quark flavors) in the small mass limit [Kog82, Kog83] by showing that the chiral
condensate vanishes at large temperature.

The nature of the transitions observed in lattice calculations depends on how symmetries
are realized. With physical quark masses in the full QCD theory, no global symmetry5 of
the Lagrangian survives. As it turns out, both the deconfinement and chiral phase transi-
tions are analytic crossovers at similar temperatures [Aok06, Bor10a]. The determination
of these pseudo-critical temperatures is summarized (see [Fuk11] and references therein)
in Fig. 1.4. As can be seen they lie between 140-200 MeV. The temperature dependence
of the energy density obtained with physical lattice configurations [Bor10b] is shown in
Fig. 1.5 (see also [Baz10]).

4In [Pol78, Sus79] the potential was translated to the free energy of the system. In [Kut81, McL81]
the free energy of an isolated charge was further represented by what is nowadays called the Polyakov
loop.

5Except the trivial U(1) symmetry for baryon number conservation.
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Figure 1.5: Lattice results on the temperature dependence of the energy density ε. Fig-
ure from [Bor10b]. The Stefan-Boltzmann limit of an ideal gas of quarks and gluons is
indicated by an arrow. See also [Baz10].

1.2 Particle production in heavy ion collisions

The pseudo-critical energy density for the phase transitions is estimated as about 0.7 GeV/fm3

following the discussion above if one takes the pseudo-critical temperature at Tpc = 170 MeV
from Fig. 1.5, which is about four times that of normal nuclei (0.16 GeV/fm3). For a
given accelerator energy, to create the highest energy density it is necessary to accelerate
as heavy nuclei as possible. This is not a sufficient condition to observe QGP due to issues
like the efficiency of energy transfer into the system produced and whether this system
is large and long-lived enough to equilibrate (see discussions in [Sta93] and [Bra03]).

Existing facilities with largest maximum initial energy density are the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in New York, USA and
the Large Hadron Collider (LHC) at the European Organization for Nuclear Research
(CERN) near Geneva, Switzerland. RHIC, completed in 1999, provides Au–Au colli-
sions up to a center-of-mass energy 200 GeV per nucleon-pair, i.e.

√
s = 200 A GeV

or
√
sNN = 200 GeV. The LHC, which restarted operation in 2009, has provided Pb–Pb

collisions at
√
sNN = 2.76 TeV and is planned to eventually double the accelerator energy

after the shutdown for upgrade between 2013 and 2015. The initial energy density achieved
in these ultra-high energy heavy ion collisions has been estimated model-dependently, at
RHIC being 14–20 GeV/fm3 [Bra07], well above the critical values from lattice QCD cal-
culation. Measurements at the LHC imply that the initial energy density is approximately
a factor of three higher than at RHIC [Mul12].

The matter formed in the early stages of the collisions, instead of being a pure hadron
gas, behaves like a perfect liquid – very strongly interacting, the mean free path of the
constituents being very short and the shear viscosity being very small [Kol03, Shu04].
This matter expands both in the longitudinal and transverse directions. The first case
is sensitive to the initial conditions of the colliding nuclei while the latter, driven by the
transverse pressure gradients, is hydrodynamic – the velocities of neighboring particles are

6
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Figure 1.6: Relative particle abundances measured at RHIC at
√
sNN = 130 and 200 GeV

compared to thermal model calculations. Figure from [Bra03].

strongly correlated hence being collective. As the matter cools down it experiences chemi-
cal and kinetic freezeout and in the end all particles that are produced decouple and stream
freely. The chemical freezeout, at which inelastic collisions between the constituents of the
matter cease, is determined from the measured abundances of particle species assuming
chemical equilibrium [Bra96, Bra03]. Figure 1.6 shows the two-parameter calculation for
relative particle abundances, with the temperature T and baryon chemical potential µB
at the freezeout, compared to measurements. The kinetic freezeout, i.e. the termina-
tion of elastic collisions among the hadrons, can be studied with the differential particle
production on the transverse momentum pt. The hydrodynamics-motivated blast-wave
model [Sch93] has been used for this purpose (cf. discussions in [Abe13a]).

In general, particle pt spectra can provide information about the production mechanism
and the related medium effects. Hadrons (heavy flavors, the c and b quarks, are not
considered) in high energy nuclear collisions can either be produced by a large momen-
tum transfer (“hard” process), characterized by a high pt, in the first instance of the
interaction or from the subsequent parton production governed by multi-parton “soft”
collisions. Hadrons with pt larger than the soft scale progressively decouple from the
collective motion of the bulk matter and the matter properties other than hydrody-
namics begin to be important for the production. It was discovered at RHIC [Adc02a,
Adl03, Abe06] that in the intermediate pt region (2–6 GeV/c) the baryon-to-meson ra-
tios are strongly enhanced in nucleus-nucleus collisions – the so-called baryon-anomaly,
as is shown in Fig. 1.7. A quantitative understanding of this phenomenon still remains a
challenge [Bro08, Fri08, Top11]. The production of high-pt hadrons originating from the
fragmentation of high-pt partons is predicted to experience attenuation due to energy loss
in the QGP medium [Bjo82, Gyu90, Wan92], a phenomenon termed “jet quenching”. It
has been first confirmed at RHIC [Adc02b, Adl02] where the effect was quantified by the
nuclear modification factor RAA which is the suppression of the hadron yields in nucleus-
nucleus collisions compared to those in nucleon-nucleon collisions scaled by the number
of binary collisions. The measurements at the LHC [Aam11a, Cha12b] show a stronger
modification (see Fig. 1.8) and therefore indicate an enhanced energy loss and hence a
denser medium produced at the LHC.

7
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1.3 The ALICE experiment

Figure 1.9: The ALICE detector in 3D view. The inset shows the ITS.

The ALICE experiment [Aam08] at the CERN LHC [Eva08] is a heavy ion experiment
with the main goal to study Pb–Pb collisions at the LHC energies. The acceptance is
divided into the central region covering a range of polar angle 45◦ < θ < 135◦ and the
forward regions (Fig. 1.9). In the central region which is entirely enclosed by a solenoidal
magnet with field strength 0.5 T, the particle identification (PID) and tracking detec-
tors are, from the collision point outwards, the Inner Tracking System (ITS), the Time
Projection Chamber (TPC), the Transition Radiation Detector (TRD) and the Time-Of-
Flight detector (TOF). Detectors that cover partial azimuth, the Photon Spectrometer
(PHOS), the Electro-Magnetic Calorimeter (EMCal) and the High Momentum Parti-
cle Identification Detector (HMPID), locate also in the central region. In the forward
regions, the forward scintillator hodoscopes (VZERO) are used for triggering and the
Zero Degree Calorimeters (ZDCs) for measuring the interaction remnants of the nuclear
collisions. The forward muon spectrometer, which is optimized for the study of heavy
quarkonia via the muon decay channel, locates in the pseudo-rapidity region 2.5< η <4,
with η ≡ − ln tan θ/2. An absorber in front is used to absorb the hadronic background.
In the following the detectors which are involved in this work will be described.

The ITS consists of three types of silicon detectors in six cylindrical layers, the Silicon
Pixel Detectors (SPD), the Silicon Drift Detectors (SDD) and the Silicon Strip Detectors
(SSD), ranging from a radial position of 3.9 cm to 43.0 cm from the beam axis (Fig. 1.9
inset). It provides precise space point measurements for the tracking. In addition, the
SPD is included in the minimum-bias trigger logic, which requires at least one charged

9
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Figure 1.10: 3D view of the TPC field cage. Figure from [Alm10].

particle detected by one of the VZERO counters or by the SPD in coincidence with passing
bunches. The SDD and SSD measure the specific energy loss dE/dx of traversing particles
for PID. The ITS is used for tracking in the particle production analysis in Chapter 7.

The TPC [Del00b, Alm10] is the main tracking and PID device. Its active volume covers
a radial range from 0.85 m to 2.47 m and a length of 5.1 m along the beam axis. It has
acceptance in |η| < 0.9 (covering full radial range) and full azimuth. The drift volume,
filled with a Ne–CO2–N2 (85.7%− 9.5%− 4.8%) gas mixture, is split by a high voltage
central membrane (Fig. 1.10). The readout plane at each end cap consists of 159 pad rows
with position resolution in the rφ-direction about 1100 µm to 800 µm from the inner to
the outer radius. The resolution along the beam axis is between 1250 µm and 1100 µm.
The measured dE/dx signal is the truncated mean signal with the truncation fraction 0.6
(see Chapter 5 for a discussion on the truncated mean signal in general). More discussions
about the TPC tracking can be found in Chapter 2 and about the PID in Chapter 6. It
is also used for tracking and PID in the particle production analysis in Chapter 7.

The TRD [Cor01, Aam08, And12] is optimized for the detection and identification of elec-
trons. It also provides tracking and electron- and jet-triggers. It is a cylindrical detector
system located in a radial position between 2.9 and 3.7 m and segmented in 6 layers.
It has full azimuthal coverage in 18 super-modules and a polar coverage 45◦ < θ < 135◦

in 5 stacks (Fig. 1.11). Individual TRD chamber consists of a 4.8 cm thick layer of fibers/-
foam sandwich radiator and a drift chamber filled with Xe–CO2 (85%–15%). The depths
of the drift and amplification regions are 3 cm and 0.7 cm respectively (Fig. 1.12 (a)). The
induced charges are readout by cathode pads which have a typical size of 0.7×8.8 cm2.
The readout samples the signals in 100 ns time bins. A charged particle loses energy in
primary collisions with gas atoms by ionization. Energetic ones with Lorentz factor γ

10



1.4. Outline of this thesis

Figure 1.11: The layout of the TRD. Figure from [And12].

above 103 in addition induce transition radiation (TR) with an emission angle with re-
spect to the particle momentum θtr ' 1/γ [Ber12] when passing through the radiator.
The radial positions of the primary clusters of energy deposit are reconstructed from the
drift time (Fig. 1.12). Therefore, besides the energy loss measurement, the TRD is also
used for momentum determination. The TRD signal is the subject of Chapters 3, 4 and 5.

The TOF [Del00a, Aam08] detector is at the radial position between 370–399 cm from the
beam axis. It consists of 18 azimuthal sectors, each containing five modules segmented
along the beam axis. The measured time of flight of traversing particles from the vertex
(Fig. 1.13) is used for PID. A new method to combine the TOF and TPC signals is
discussed in Section 6.5 and used in the particle production analysis in Chapter 7.

1.4 Outline of this thesis

This thesis is organized as follows (see connections between chapters in Fig. 1.14). Chap-
ter 2 discusses the newly developed cosmic combined track fit. Chapter 3 describes the
TRD signal in a general statistical approach. In Chapter 4, using the methods devel-
oped in Chapters 2 and 3, the observation of TR induced by cosmic muons is reported.
Chapter 5 discusses the truncated mean signal of the TRD, which is developed as a new
method exploring the limit of the TRD PID. Chapters 6 and 7 focus on the analysis of
particle production with a novel method – the TPC coherent fit. Detailed discussions on
the observed baryon anomaly and nuclear modification are presented. The production of
identified particles in jets are also discussed. In Appendix A, the measurement of exclusive
central production of π+π− in ALICE is mentioned.

11
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Figure 1.12: Cross-sectional view of a TRD module in (a) rz-plane and (b) rφ-plane.
Figures from [And12].

Figure 1.13: The particle velocity β (in unit of the speed of light) measured by TOF as
a function of the momentum.

12



1.4. Outline of this thesis

� �
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Figure 1.14: Connections between chapters. Black arrows indicate direct dependency in
terms of machinery. Red dashed arrows represent logical connections following which the
techniques involved can be understood in a general framework based on the fact that the
qualitative properties of the TPC signal is the same as for the TRD without transition
radiation.
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Chapter 2

TPC combined cosmic track fit

In order to improve the ALICE tracking capability for TeV cosmic particles1, a dedicated
track fit project is developed in this work. In this chapter the description of the procedure
and the resulting momentum resolution are discussed.

Cosmic particles traverse the TPC volume. In the standard tracking [Aam08], a single
cosmic particle is reconstructed as two individual tracks assuming collision geometry. An
optimization is seen if both tracks, whose underlying degrees of freedom are the ionization
clusters reconstructed by the TPC, are combined into a single track. Because the accuracy
of the momentum measurement depends on the lever arm of the track and the number of
coordinate measurements, an improvement of about 10 times better resolution is foreseen
according to the scaling behavior of the pt resolution (for pt > 10 GeV/c where multiple
scattering can be ignored)

σ 1
pt

∼ σx
BL2

, (2.1)

where σ 1
pt

is the 1/pt resolution, σx is the spatial resolution of the tracking parameters

which depends on the number of coordinate measurements N as

σx ∝
1√
N
, (2.2)

L is the lever arm of the track and B is the longitudinal magnetic field strength which
is 0.5 T except otherwise explicitly stated. As the combined track doubles the number of
coordinate measurements and triples the lever arm2, the momentum resolution is improved
by a factor of 32

√
2 ' 13. Integrated over geometry, this number is about 10, taking into

1There were actually two physics motivations in this work. One was for the study of the TRD signal
(Chapter 4 and 5). The other was to observe neutrinos using TPC. Muons from neutrino scattering in
the earth come from below ground. When they traverse the ALICE muon filter (the “ABSORBER”
in Fig. 1.9) they lose a significant amount of energy. If the momentum resolution is so good that the
difference between the track momenta before and after crossing the muon filter can be resolved, the
direction of the traversing muons can be determined. Identifying up-going muons would be the signature
of neutrino detection at ALICE. First study using the developed cosmic track fit shows no positive results.

2The cross section of the TPC is an annulus with inner and outer radius 0.8 and 2.5 m, respectively
(see Section 1.3). The maximum lever arms of the standard track and the combined track are 1.7 and 5 m
respectively.
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Chapter 2: TPC combined cosmic track fit

account tracks that do not pass through the TPC inner wall but only remain inside the
TPC volume.

Another improvement can be achieved by considering the energy loss used in the track
fit. In the standard reconstruction the energy loss is wrongly assigned for cosmic tracks
because the direction of the propagation, i.e. the sign of the energy loss, is reversed for
the upper tracks with respect to the case in collisions. On the other hand, due to the
overburden above ALICE the cosmic rays observed are predominately muons. The energy
loss in the combined track fit can be further specified as from muons.

2.1 Implementation

The algorithm of the combined track fit can be summarized as the following stages (for
technical documentation see [Lu11]).

1. An event after standard reconstruction is read in. Reconstructed tracks are looped
over. Only those tracks fulfilling minimum quality cuts are selected.

2. Double loop of the selected tracks from the previous step. Select cosmic track pair
according to the absolute difference and the pull between the track parameters of
the pair candidates.

3. The clusters of the selected track pair are combined and fit by a dedicated cluster-
track fitting program (see below). In the end, the parameters of the full cosmic
track are stored.

The cluster-track fitting program is based on the existing ALICE Kalman-filter algorithm
(cf. [Bil84] and Section 8.1.2 in [Aam08]) which dynamically updates the track parame-
ters as the clusters are visited one by one and the difference between the predicted and
measured cluster coordinates is collected. The program drives the propagation through
all clusters of the combined track pair, and takes into account the energy loss correctly.

The first benchmark of the project is the flow of statistics: the statistics of the collected
data sample should be maximally preserved. As is shown in Table 2.1, the loss of nominal
statistics3 is about 7% (for TOF back-to-back trigger, events with track multiplicity 2)
which is acceptable for general purpose.

The characteristics of the combined cosmic tracks (TOF back-to-back trigger, events with
all track multiplicities) is as follows:

• The number of clusters is about 290± 20, out of a maximum of 318.

• The lever arm sharply peaks at about 490 cm.

• The mean and RMS4 of χ2/Ncluster are about 3.0 and 1.0 respectively.

• The double counting rate (ambiguity in forming a cosmic track from any two stan-
dard tracks in events with multiplicity larger than two) is about 0.1%.

3The full sample contains non-usable statistics about 5% which is rejected in stage 1.
4The use of “RMS” follows the convention in the community. Throughout this work, the RMS of a

random variable x is defined as the standard deviation σx = σ(x) =
√
〈x2〉 − 〈x〉2.
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2.2. Momentum resolution

stage loss (%)
1
reject kink daughter 0.8
TPC re-fit 0.2
TPC number of findable cluster 6= 0 0.1
findable ratio > 0.5 3.4
has TPC seeds in ESDfriends 0.2
2
correlation between φ 0.7
correlation between θ 0.8
pull cuts, absolute cuts on track parameters 0.2
3
separation of global y-coordinates of the two standard tracks 0.3

cut on the combined lever arm > 350 cm (∼ 250
√

2 cm) 0.4
full propagation 0.1
cut on χ2/Ncluster 0.1
all others (e.g. protections against small number of clusters) 0.2
total 7

Table 2.1: Flow of loss of statistics in each step of the combined cosmic track fit. Data
was taken in May–June 2011 with 0.5 T B-field and TOF back-to-back trigger. Only
events with 2 standard tracks are used.

2.2 Momentum resolution

The momentum resolution is characterized by the 1/pt resolution. As can be seen in
Eq. 2.1, 1/pt is directly related to the coordinate measurement, which in general has the
following sources of uncertainties [Alm10]:

1. spatial resolution limited by the diffusion of the drift charges,

2. multiple scattering (negligible at high momentum),

3. mis-alignment,

4. systematics of the B- and E-fields in the detector volume.

The first two effects induce symmetric smearing, while the latter two introduce bias and
distortion. In the high momentum limit, σx, and therefore σ 1

pt

, is a finite constant.

The conventional definition of the momentum resolution pmeasured/preference − 1 (given an
independently measured reference momentum) is equivalent to

σpt
pt

= pt
σpt
p2
t

∼ ptσ 1
pt
, (2.3)

which diverges with large pt and is not suitable when the limit of the tracking capability
is probed. Moreover, the difficulty in determining the momentum resolution for the
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Figure 2.1: Correlation between pt measured by even- and odd-pads separately. For
each x-slice the distribution is normalized to unity so that the interpretation of the z-
coordinate is the conditional probability of a pt from even-pads given a pt from odd-pads.
The left panel is using the standard track fit on cosmic tracks of half length, while the
right one is using the combined track fit on cosmic tracks of full length.

combined cosmic track fit is that there is no proper reference momentum5. For a practical
estimate, the following approach is developed.

As is discussed in the previous section, the track fit program in general visits each TPC
cluster and fits the track. (Quasi-)Independent measurements of the momentum for a
given track can be made by fitting separately the clusters read out by the pads on the
odd rows and on the even rows. The correlation between these two measurements is
shown in Fig. 2.1. As can be seen, with the standard track fit the correlation is lost at
high momentum and the measured momentum is entirely subject to random fluctuation,
while for the combined track fit the correlation is much improved.

Because the even- and odd-pads, by which the ionization clusters of a given track are
read out, are locally connected, the correlation, equivalently the difference, between their
measures is not sensitive to global systematic effects like mis-alignment or B- and E-field
systematics. From the spread of the correlation, one can only estimate the momentum
resolution due to spatial resolution and at low momentum also to multiple scattering.
Nevertheless, the accuracy of this approximate estimation of the momentum resolution
can be checked for the case of the standard track fit because an independently measured
reference momentum can be provided by the combined track fit. The comparison is shown
in Fig. 2.2. It can be seen6 that the spread of the even-odd correlation well approximate
the standard-combined (which is interpreted as the “measured-true”) correlation. The
expected difference of the spread at pt > 10 GeV/c is due to the increasing influence
of the global systematic effects on measuring nearly straight trajectories. Due to the
scaling behavior between the standard and combined track fit, the conclusion above for

5The TRD can serve as a reference detector using its signal-momentum correlation. But since this
very correlation is to be studied with a precise momentum measurement provided by the cosmic track
fit, TRD is only used for a consistency check in this work.

6In Fig. 2.2 the correlation between the upper and lower track partners by the standard track fit is also
presented. It overestimates the resolution because the irrelevant intrinsic difference between the momenta
and qualities of the upper and lower tracks due to the energy loss, the lever arms and the numbers of
clusters is also taken into account in this estimate.
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Figure 2.2: RMS of different correlations: even-odd, standard-combined.
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Figure 2.3: RMS of the even-odd correlation for the standard and combined track fits.
Cosmic data taking at B = 0.1 T and cosmic particles in full acceptance including the
region of the muon filter (see Footnote 1) are also compared.
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Figure 2.4: Inverse-pt resolution for the standard and combined track fits.

the former is directly applicable to the latter. Figure 2.3 shows the even-odd correlation
for different track fits.

The 1/pt resolution is calculated as

σ 1
pt

=
1

2
σ

(
1

pt even-pad

− 1

pt odd-pad

)
, (2.4)

where the factor 1/2 counts for the inflation due to on the one hand the addition of two
uncorrelated measurements and on the other hand the reduction of the number of clusters
compared to the full track fit. The results for different track fits are shown in Fig. 2.4.
As can be seen at pt & 1 GeV/c where multiple scattering starts to be suppressed, the
improvement for the combined track fit due to the increase of the number of clusters
and the lever arm becomes significant. The pt resolution is estimated in Table 2.2 using
Eq. 2.3. The estimate for the standard track fit is consistent with [Alm10]. It is interesting
to note that the results, including also the cosmic data taking at B = 0.1 T, show a scaling
behavior at high pt, consistent with the expectation according to Eq. 2.1. The asymptotic
value of σ 1

pt

for the combined track fit in the high pt limit is 8.1× 10−4 (GeV/c)−1.

pt (GeV/c) 1 10 100
standard track fit 1.1% 8.7% (not defined)
combined track fit 1.3% 1.2% 8.1%

Table 2.2: Transverse momentum resolution for the TPC standard and combined track
fits.

As an extension of the discussion, it is noted that the total momentum resolution is similar
to the pt resolution, as can be seen by comparing Fig. 2.5 to Fig. 2.3, where the difference
is mostly due to the change of variables.
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Figure 2.5: RMS of the even-odd correlation for the total momentum,
where σ (log10 p (GeV/c)) stands for (1/

√
2)RMSf(log10 pevent-pad| log10 podd-pad) as in

Fig. 2.3 but for the total momentum.

 (GeV/c)
t

p
1 10 210

3
10

R
ig

h
t 

S
ig

n
 P

ro
b

a
b

ili
ty

0

0.2

0.4

0.6

0.8

1

1.2

TPC standard track­fit

ALICE Performance
30/08/2011

Cosmic

ALI−PERF−9640

Figure 2.6: Right sign probability (see definition in text) for the standard track fit as a
function of pt.

The combined track fit can be further used as a reference measurement for the track sign,
i.e the charge of the particle. Figure 2.6 shows the right sign probability for the standard
track fit defined as the fraction of standard tracks with correct signs with respect to the
reference measurement provided by the combined track fit. At pt = 50 GeV/c, 10% of
the tracks are sign-flipped due to the limited pt resolution.
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Chapter 3

A general statistical description of
the TRD signal

A particle traversing the ALICE TRD loses energy in collisions with the gas atoms. For
particles with Lorentz factor γ roughly larger than several hundred, additional energy
loss takes place – transition radiation (TR) will be emitted along the flight direction of
the particle when it passes through the radiator. The TR photons which enter the gas
chamber will deposit their energy in the gas volume. After a trigger signal both types of
energy loss will be collected. The TRD signal [Cor01, Aam08] – the integrated charge over
all drift time corrected for a non-perpendicular incident angle – kinetically depends only
on the velocity of the particle and therefore provides separation power among different
particle species. This chapter provides a general statistical description of the TRD signals
with and without the TR component.

3.1 The Landau distribution

In his seminal paper [Lan44], Landau derived the energy loss distribution function which
gives the probability density that a particle traversing a layer of material loses an amount
of energy due to collisional ionization. Here this so-called Landau distribution function
will be derived in a more general statistical framework which considers the energy transfer
between the particle and the medium to be a general process where information of any
kind is transferred. It is hoped that in this framework the basic assumptions and the
physical content of the distribution could be illustrated in a systematic and universal
way.

Consider a particle traversing a slice of material. Assume that the particle either has no
interaction with the medium at all or interacts only once with probability τ . Denote an
additive observable associated with the interaction as x with x ∈ D ⊃ {0}, where D is
the domain of x. x can be the energy transfer of the particle, the azimuthal deflection
angle1, or in the trivial case the number of interactions. Denote the distribution of x
as η(x) (with normalization

∫
D
η(x)dx = 1) in case of an interaction. Here η(x) is called

1The polar deflection angle is correlated to the energy transfer. Its distribution can be deduced from
that of the latter.
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Chapter 3: A general statistical description of the TRD signal

the distribution kernel. In the case where x is the number of interactions, by definition

η(x) = δ(x− 1), x ≥ 0, (3.1)

where δ(x) is the Dirac delta function; in the case of an isotropic azimuthal deflection
angle2,

η(x) =
1

2R
, −R < x < R, R→ +∞, (3.2)

and in the case of the energy transfer,

η(x) =
dσ(x)/dx∫

dσ
, x ≥ 0 (3.3)

where σ is the interaction cross-section. With the details of the interaction encapsulated
in η(x), the total probability density of x, regardless of whether an interaction takes place
or not, reads

f(x) = (1− τ)δ(x) + τη(x), (3.4)

with
∫
D
f(x)dx = 1 by construction.

Consider now a particle traversing m slices with observable xi and probability densi-
ties fi(xi) where i indicates the slice dependence. The sum of the observables is

X =
m∑
i=1

xi (3.5)

with the corresponding probability density function F (X). Assuming that xi are uncor-
related, we have

F (X) = (f1 ∗ f2 ∗ · · · ∗ fm)(X), (3.6)

where “∗” denotes convolution. Taking an integral transform, either Fourier or Laplace
depending on which one is more convenient, on both sides, it reads

L[F ] = L[f1 ∗ f2 ∗ · · · ∗ fm] =
m∏
i=1

L[fi]. (3.7)

With a further assumption that all slices are identical, it reduces to

L[F ] = {L[f ]}m . (3.8)

Because

L[f ](s) = (1− τ)L [δ] (s) + τL[η](s) = 1 + τ [η̃(s)− 1] , (3.9)

where L[δ](s) = 1 and

η̃(s) ≡ L[η](s), (3.10)

2An isotropic distribution of a periodic number has to be defined on the whole real axis.
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3.1. The Landau distribution

Equation 3.8 reads

L[F ](s) = {1 + τ [η̃(s)− 1]}m . (3.11)

The quantity N ≡
∑m

i=1 τi is the expected number of interactions in the slices. In the
limit m → ∞ with N fixed, the binomial assumption leading to Eq. 3.4 is equivalent
to the statement that the interaction is exclusive in time which is generally justified.
The problem now is to determine F (X) for the interaction in the bulk of slices in this
limit. Using N = τm (according to the assumption of identical slices) and taking the
limit m→∞, we have

L[F ](s) =

{
1 +

N

m
[η̃(s)− 1]

}m
= eN [η̃(s)−1]. (3.12)

The solution of F (X) for a general η(x) is obtained by taking the inverse transform:

F (X) = L−1 {L[F ]} (X) = L−1
{
eN [η̃(s)−1]

}
(X). (3.13)

On expanding the exponential function in Eq. 3.12, that is,

L[F ](s) = e−N
∞∑
k=0

Nk

k!
η̃k(s), (3.14)

Equation 3.13 becomes

F (X) =
∞∑
k=0

P (k;N)L−1
[
η̃k(s)

]
(X) (3.15)

=
∞∑
k=0

P (k;N)Fk(X), (3.16)

where P (k;N) = e−NNk/k! denotes the Poisson probability of k with mean N
and Fk ≡ η ∗ η ∗ · · · ∗ η︸ ︷︷ ︸

k

is the distribution of X in case of k interactions.

The following discussions first show the exact solutions of F (X) in the cases of x being
the number of interactions and the isotropic azimuthal deflection angle, and then discuss
the approximate solution for the energy transfer distribution.

3.1.1 Distribution of the number of interactions

In the case that x is the number of interactions, η(x) = δ(x − 1). Taking the Laplace
transform,

η̃(s) =

∫
e−sxδ(x− 1)dx = e−s, (3.17)

we have

η̃k(s) = e−ks, (3.18)
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whose inverse transform reads

L−1
[
η̃k(s)

]
(X) =

1

2πi

∫ +i∞

−i∞
esX−ksds = δ(X − k). (3.19)

Therefore the solution of F (X) using Eq. 3.15 is

F (X) =
∞∑
k=0

P (k;N)δ(X − k), (3.20)

which is the Poisson distribution defined in the real domain. Therefore we see that the
assumptions that

(1) there is no correlation among interactions,

(2) individual interactions are identical,

(3) and the interaction is exclusive in time,

lead to a Poisson distribution of the number of interactions. In fact, the Poissonian nature
of the problem is readily illustrated by Eq. 3.16.

3.1.2 Distribution of the azimuthal deflection angle

The procedure is similar to the case for the number of interactions. For x being the
isotropic azimuthal deflection angle, taking the Fourier transform of Eq. 3.2, we have

η̃(s) = lim
R→∞

∫ +R

−R
e−isx

1

2R
dx = lim

R→∞

sinRs

Rs

=

{
1, s = 0

0, s 6= 0
. (3.21)

It follows that X is also isotropic (as it should be) because η̃k(s) = η̃(s) and there-
fore Fk(X) = η(X) = 1/(2R) which leads to F (X) = 1/(2R)

∑∞
k=0 P (k;N) = 1/(2R)

with R→∞ from Eq. 3.16.

3.1.3 Distribution of the energy transfer

In the case of the energy transfer from the particle to the medium due to collisions3, η(ε)
is the normalized differential interaction cross-section (Eq. 3.3). Here the Rutherford
scattering cross-section with the 1/ε2 dependence is used:

η(ε) = θ(ε− ε0)
A

ε2
, (3.22)

3From here on ε and E instead of x and X will be used as the single and total energy transfer,
respectively, to represent the physical meaning of the quantities.
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3.1. The Landau distribution

where θ(x) is the step function4

θ(x) =

{
0 if x < 0

1 otherwise
(3.23)

which provides a cut-off ε0 to avoid the unphysical t-channel singularity corresponding
to soft photon exchanges. The normalization constant A is determined to be A = ε0 by
requiring

∫∞
−∞ η(ε)dε = 1. The Laplace transform of η(ε) is

η̃(s) =

∫ ∞
ε0

e−sε
ε0
ε2

dε =

∫ ∞
1

e−zt

t2
dt = E2(z)

= z ln z + (C − 1)z + 1 + o(|z|2), Re{z} > 0, (3.24)

where the second line is obtained via change of variables t = ε/ε0, z = sε0 and E2(z) is
the exponential integral En(z) with n = 2 (cf. for example [Abr72]) and C = 0.57721 . . .
is Euler’s constant. Assuming the smallness of z in the significant integration region of
Eq. 3.13 and then neglecting the o(|z|2) term in Eq. 3.24, Eq. 3.13 then becomes

F (E) =
1

2πi

∫ c+i∞

c−i∞
exp (sX +N [η̃(s)− 1]) ds

=
1

2πiε0

∫ c+i∞

c−i∞
exp

(
z
E

ε0
+N [z ln z + (C − 1)z]

)
dz

=
1

2πiε0N

∫ c+i∞

c−i∞
exp

([
E

ε0N
− (lnN − C + 1)

]
u+ u lnu

)
du

=
1

2πiξ

∫ c+i∞

c−i∞
eλu+u lnudu, c > 0, (3.25)

with change of variables u = Nz and

ξ ≡ ε0N, (3.26)

λ ≡ E

ε0N
− (lnN − C + 1)

=
E

ξ
−
(

ln
ξ

ε0
− C + 1

)
≡ E −∆

ξ
. (3.27)

This is the Landau distribution in its original form. It depends on the expected number
of interactions N and the cut-off ε0 of the energy transfer, or equivalently on ξ and ∆.
Fig. 3.1 shows the Landau distribution with different parameters.

As a mathematical exercise, an alternative model of η(ε) is to modify the small-E behavior
instead of the sharp cut-off in Eq. 3.22 by an averaged probability:

η(ε) = θ(ε)θ(ε0 − ε)
1

2ε0
+ θ(ε− ε0)

ε0
2ε2

. (3.28)

4The behavior of θ(x) at x = 0 is not relevant here.
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Figure 3.1: Landau distribution with different parameters. Eq. 3.25 is evaluated with the
program ROOT [Bru97].

This leads to the same form as Eq. 3.25 but with different definitions of ξ and λ:

ξ ≡ ε0
N

2
, (3.29)

λ ≡ E

ε0
N
2

−
(

ln
N

2
− C +

3

2

)
=
E

ξ
−
(

ln
ξ

ε0
− C +

3

2

)
. (3.30)

The model used by Landau was based on Livingston and Bethe’s calculation (cf. [Lan44]
and reference therein) with the following physical cut-off for Eq. 3.22:

ln ε0 = ln
(1− v2

c2
)I2

2mv2
+
v2

c2
, (3.31)

where ε0 is measured in electron volts, m is the mass of electron, v the velocity of the
traversing particle, c the speed of light and I = 13.5Z eV is a certain ionization potential
with the atomic number Z of the material. For a minimum ionizing particle in xenon
gas, ε0 is about 0.1 eV. A general discussion about the cut-off can be found in [Jac99].

The Landau distribution, as we have seen so far, is based on further assumptions in
addition to the previous Poissonian assumptions. The validity of the model and the as-
sumed smallness of the o(|z|2) term in Eq. 3.24 limit the applicability of the distribution.
The physical energy transfer cannot attain arbitrarily large values. There is a maximum
transferable energy determined by the energy and mass of the traversing particle and the
electron mass. Moreover the Poissonian assumption of identical interactions requires the
energy transfer be so small that the change of the magnitude of the particle velocity is
negligible. On the other hand, when the energy transfer is comparable to the ionization
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3.2. Distribution of the collisional ionization signal

potential of the atom, the atomic structure has to be taken into account. Finally, neglect-
ing the o(|z|2) term requires that the cut-off is significantly small (z = sε0). This is not
always physically justified because the cut-off is determined by the ionization potential,
see Eq. 3.31. In practice, some numerical form of Eq. 3.25 is used to fit the measured
collisional ionization distribution, with ξ and ∆ being treated as free parameters.

3.2 Distribution of the collisional ionization signal

In Section 3.1.3, the distribution kernel η(ε) is taken to be the differential cross-section in
the energy transfer ε (Eq. 3.22) and the resulting F (E) (Eq. 3.25) describes the collisional
ionization distribution of the traversing particle. Now we consider the distribution of the
measured signal, which is subject to the fluctuation due to the efficiency of the ionized-
charge collection and the symmetric fluctuations in the signal collection and amplification.
The latter can be modeled as an addition of a Gaussian random variable to the collected
signal5. In the following we discuss an approximate treatment of the first effect.

There are several reasons leading to the loss of the ionized charges. Firstly, after the
electron-ion pairs are created during the collision between the projectile and the atoms,
the ionized particles drift in the electric-magnetic field. They have certain probability
to recombine with other oppositely charged particles, or to be attached to molecules
like H2O. Secondly, ionization electrons can be knocked out of the atom with large
kinetic energies and they are the so-called δ-electrons. They may escape the detector
volume or fail to be reconstructed. Thirdly, after the ionized charges are collected, their
origins are reconstructed to form the trajectories of the projectile. This procedure, the
so-called cluster attachment, has some inefficiency in associating correctly all charges to
the corresponding track.

Denote the survival probability against these processes as Ps. The distribution kernel for
the measured collisional ionization signal reads

η(q) =

∫
dε

dσ(ε)/dε∫
dσ

B(q;
ε

W
, Ps), (3.32)

where q is the measured ionized charges, W is the mean energy needed to create an
electron-ion pair, and

B(q;
ε

W
≡ qc, Ps) =

qc!

q! (qc − q)!
P q
s (1− Ps)qc−q (3.33)

is the binomial probability of q with mean qcPs.

In case that the deficit in the charge collection is small, i.e. 1 − Ps � 1, it is only
when qc = q that B(q; qc, Ps) has non-negligible contribution to the integral in Eq. 3.32.

5This includes the noise and the fluctuation of the gas gain [Blu08]. The latter depends on the detailed
properties of the electric field and the gas, and to a first approximation can be considered as a Gaussian
fluctuation. In fact all Gaussian fluctuations, at both the cluster and the total signal levels, effectively
combine as one single Gaussian fluctuation.
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Therefore we have6

η(q) ' W
dσ(ε)/dε∫

dσ

∣∣∣∣
ε
W

=q

B(q; q, Ps)

= W
dσ(ε)/dε∫

dσ

∣∣∣∣
ε
W

=q

P q
s

= ηε(q)e
−κq, (3.34)

where κ = − lnPs > 0 and ηε(q) is the collisional ionization distribution kernel, for
example Eq. 3.22, with change of variable ε→ q/W . The Laplace transform of Eq. 3.34
is

η̃(s) = η̃ε(s+ κ), (3.35)

where η̃ε = L[ηε]. Note that generally Ps depends on the location of the ionization.
Assuming the smallness of this dependency, which is justified when the inefficiency of the
cluster attachment is dominant over other charge loss processes, Eq. 3.35 can be inserted
into Eq. 3.13 which then reads

F (Q) =
1

2πi

∫ c+i∞

c−i∞
exp {sQ+N [η̃ε(s+ κ)− 1]} ds,

= e−κQFE(Q) (3.36)

= PQ
s FE(Q) (3.37)

where Q is the total measured ionized charges and FE(Q) is the collisional ionization
distribution, for example Eq. 3.25, with change of variable E → Q. It shows that a small
deficit in the charge collection leads to a geometric damping.

Figures 3.2 shows the measured collisional ionization distributions in the TRD from test-
beam measurement [Bai06]. The distributions are well described by

F (Q) =
1

A

∫
e−κxL(x; ∆, ξ)G(Q;x, σ)dx, (3.38)

where A is the normalization, L(x; ∆, ξ) is the Landau distribution of x with the param-
eters ∆ and ξ (Eq. 3.25– 3.27), and G(x;µ, σ) is the Gaussian distribution with mean µ
and standard deviation σ. In order to reduce the correlations between the parameters
and eliminate the dimensions, the following parametrization is used in the fitting

F (Q) = p0

∫
exp

(
−p4

x
p1

)
L(x; p1, p1p2)G(Q;x, p1p3)dx∫

exp
(
−p4

x
p1

)
L(x; p1, p1p2)dx

, (3.39)

with

(p1, p2, p3, p4) ≡ (∆, ξ/∆, σ/∆, κ∆) . (3.40)

The parameters for pions and electrons of different momenta in the testbeam measure-
ments are summarized in Fig. 3.3. It can be seen that

6The normalization has to be restored in the end, see Eq. 3.38.
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Figure 3.2: Distributions of measured collisional ionization (dE/dx) in TRD by pions
(left) and electrons (right) with momentum 1 GeV/c. N is the statistics.
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Figure 3.3: Summary of the fitting results for measured collisional ionization (dE/dx).
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Chapter 3: A general statistical description of the TRD signal

• χ2/nDOF lies between 1 and 3,

• ξ/∆ is almost flat as a function of βγ, which agrees with the expecta-
tion 1/ (lnN − C + 1) (Eq.3.27) from the Landau distribution , where lnN
only has a slight kinematic dependence,

• σ/∆ is about 12%,7

• and the damping e−κ∆ = P∆
s is about e−0.2 ' 0.8, from which Ps can be derived:

Ps ' 0.8
1
〈Q〉 , (3.41)

where 〈Q〉 is the expected physical number (following the definition q = ε/W ) of
the measured ionized charge. If 〈Q〉 = 10, then the charge collection inefficiency
is 1− Ps ' 2%.

3.3 Distribution of the combined signal of collisional

ionization and transition radiation

When the TR photons induced by particles with high Lorentz factor γ are collected in the
TRD gas chamber, the TRD signal is the convolution of the measured collisional ionization
(Eq.3.37) and the collected energy deposit from the TR photons. Instead of exploring the
energy spectrum of the TR photons, it is interesting to note that the parametrization
of Eqs. 3.39–3.40 is also applicable to this combined signal. This leads to a general and
practical modeling of the full TRD signal including the TR component.

Figure 3.4 shows the distributions of the measured TRD signal with TR by electrons in
the testbeam measurement [Bai06]. The fitting quality (χ2/nDOF ∼ 3) is slightly worse
than that for the collisional ionization. Fig. 3.5 is a summary of the fitting results. As
can be seen from the value of σ, the convolution with the Gaussian distribution in the
parametrization is redundant. The fitting results remain the same without it.

TRD signal (a.u.)

0 0.2 0.4 0.6 0.8 1

p
.d

.f
.

­310

­210

­110

1

10

0 0.2 0.4 0.6 0.8 1

s
ta

t
σ

(D
a

ta
­F

it
)/

­4
­2
0
2
4

Testbeam, dE/dx+TR, e 1.0 GeV/c, N=93357 
Data

 Landau)*Gaussian×Fit, (Exp 

TRD signal (a.u.)

0 0.2 0.4 0.6 0.8 1

p
.d

.f
.

­310

­210

­110

1

10

0 0.2 0.4 0.6 0.8 1

s
ta

t
σ

(D
a

ta
­F

it
)/

­4
­2
0
2
4

Testbeam, dE/dx+TR, e 6.0 GeV/c, N=56252 
Data

 Landau)*Gaussian×Fit, (Exp 

Figure 3.4: Distributions of measured TRD signal with TR component (dE/dx+TR) by
electrons with momentum 1 GeV/c (left) and 6 GeV/c (right). N is the statistics.

7This includes Gaussian fluctuations at all levels. See Footnote 5.
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Figure 3.5: Summary of the fitting results for measured TRD dE/dx+TR signal. The
fitted values of σ is consistent with zero, indicating that the convolution with the Gaussian
distribution is redundant.
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Chapter 4

TRD signals from sub-TeV cosmic
muons

Because of the large mass of muons – compared to the usual transition radiation (TR)
inducer, the electron – it is expected that muons can induce an observable TR signal
when their energies are above several hundred GeV. In fact the first observation of TR
was made with cosmic muons (see [Dol93] and reference therein), where the signature
was the characteristic K-line X-ray of the krypton gas which was used to absorb the TR
photons from the muons. With the assumption that the TR production depends only
on the Lorentz factor γ of the inducer, TR from muons has been used for the energy
measurement of high energy cosmic muons [Amb03]. However, an ab initio measurement
of the kinematic dependence of the TR from muons generally has the following technical
difficulties.

1. Muon sources: the most common stable sources of high energy muons above the
sub-TeV scale are cosmic rays which are produced by charged pion decays. These
pions originate from the hadronic interactions between extraterrestrial cosmic nuclei
and the atmosphere of the earth. Because cosmic rays also contain other particles
like electrons, filtering must be applied to select pure muons. Only ground-based
measurements, where massive background shielding could be practical, could have
a good sample of muons and therefore have the possibility to observe muon-induced
TR.

2. Momentum measurement: cosmic muons are dominantly low momentum particles.
The measurement needs to be able to resolve momenta up to sub-TeV where the
onset of TR is believed to occur.

3. Background: for muons with energies above the sub-TeV scale, the production of
TR is accompanied by an increase of collisional ionization, the so-called relativistic
rise. An unambiguous signal of TR from muons needs to be resolved from the large
collisional ionization background.

This chapter shows that the ALICE TRD, together with the TPC, is able to measure
distinctively the kinematic dependence of the TR production by muons. The idea is
based on the following observations (Fig. 4.1).
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Chapter 4: TRD signals from sub-TeV cosmic muons

Figure 4.1: One cosmic event in ALICE TPC and TRD (3D view along the beam pipe).

• Because the ALICE experiment is situated underground with 28 meters of material
above, cosmic rays which leave long trajectories in the TPC are predominantly
muons.

• The momentum measurement for cosmic particles using the TPC can be improved
by a factor of 10 with respect to the standard tracking, achieving a resolution of
about 8% at 100 GeV/c (see Chapter 2).

• Cosmic rays traversing the TRD chamber along the gas-radiator and the radiator-
gas directions have different signal compositions due to the characteristics of the
emission of TR photons. Because TR photons are emitted in the forward direction
along the particle momentum (emission angle θtr ' 1/γ [Ber12]), if the particle
traverses in the gas-radiator direction then the TR photons produced in the radiator
do not enter the gas volume and are therefore not measured. Pure TR production
can be inferred by comparing these two types of signals. This work utilizes this
feature for the first time.

4.1 Measurement

The measurement was based on 1.5×106 and 4.8×106 TOF-TRD triggered cosmic events
with the ALICE solenoidal magnetic field 0.1 T and 0.5 T at rate 28 Hz and 17 Hz,
respectively. The B = 0.1 T data taking was proposed in this work1 for the measure-
ment of the minimum ionizing muons, after an inspection on the B-field dependence of

1This was the first ALICE running at 0.1 T.

36



4.1. Measurement

γβ
1 10 210 310 410

m
o

s
t 

p
ro

b
a

b
le

 T
R

D
 s

ig
n

a
l 
(a

.u
.)

0

0.5

1

1.5

2

2.5
 [85­15])

2
ALICE TRD (Xe­CO

, dE/dx (cosmic rays)µ

, dE/dx+TR (cosmic rays)µ

Figure 4.2: Most probable TRD signals from cosmic muons. Horizontal error bars are
obtained from the estimated momentum resolution (see Chapter 2).

the low momentum cut-off in the cosmic ray spectra measured in previous data taking
with B = 0.2 T and 0.5 T. The cut-off is due to the deflection of minimum ionizing muons
out of the TPC before leaving reconstructible trajectories.

The data analysis imposes a requirement on the acceptance to avoid the particles crossing
the muon filter (see Footnote 1 in Chapter 2). Only events with exactly 2 standard
tracks (in the default reconstruction one cosmic particle is reconstructed as 2 tracks) are
selected in order to avoid the matching ambiguity between the upper and lower tracks.
In total 1.5× 105 and 3.4× 105 events are selected for B = 0.1 T and 0.5 T, respectively.

The particle momentum at B = 0.5 T is determined by the TPC cosmic combined track
fit described in Chapter 2, while for B = 0.1 T only low momentum muons are selected
and their momenta are determined by the standard TPC-TRD tracking. Due to the
cylindrical placement of the TRD layers, the collisional ionization (dE/dx) signals are
associated with the in-coming passages of the muons, while the combined (dE/dx+TR)
signals of collisional ionization and TR are associated with the out-going ones (Fig. 4.1).
Accordingly, the TRD signals from the upper and low modules are studied separately
assuming the muons are coming from above2. The TRD signal shape is analyzed by
the statistical approach discussed in Chapter 3. The most probable signals are shown in
Fig. 4.2. As can be seen, as the muon momentum increases, the dE/dx signal increases,
upon which the distinct contribution from TR is observed with an onset at βγ around 500.

2In practice there is no existing reliable method to distinguish between particles coming from below
and from above. TOF or the momentum difference between the upper and lower tracks are not accurate
enough for this purpose. In order to justify this assumption, the combined track fit in Chapter 2 is used
to determine the momenta before and after traversing the absorber. No muon coming from below is
observed.
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4.2 Discussion

The most probable TRD signals from cosmic muons, testbeam measurements and
proton-proton collisions are compiled in Fig. 4.3. The testbeam measurements [Bai06]
used secondary beams consisting of pions and electrons with momentum 1 – 10 GeV/c
for the dE/dx and dE/dx+TR measurements with prototype chambers. The collision
data [Fas12] provides low momentum pions, protons and electrons from K0

s, Λ decays
and γ-conversions. The testbeam and collision data cover the βγ range βγ . 70
and βγ & 103, while the region in between, where the onset of TR is observed, is only
covered by the cosmic data.

The dE/dx and dE/dx+TR signals of the TRD are well described by the ALEPH
parametrization [Dec90] and with an additional logistic function, respectively.

The ALEPH parametrization for the dE/dx signal is (in unit of minimum ionization)

dE

dx
(βγ) = p0

p1 − βp3 − ln
(
p2 + 1

(βγ)p4

)
βp3

, (4.1)

with the fitted parameters shown in Table 4.1. This model describes the dE/dx with a
saturation yield of 1.8 unit of minimum ionization in the high momentum limit.

p0 p1 p2 p3 p4

value 0.31 3.0 0.026 2.17 0.65
error 0.03 0.2 0.007 0.04 0.03

Table 4.1: Fitted parameters of the ALEPH parametrization to the dE/dx TRD signal.

The ALEPH+logistic parametrization for the dE/dx+TR signal is (in unit of minimum
ionization)(

dE

dx
+ TR

)
(βγ) =

dE

dx
(βγ; p0, . . . , p4) +

p5

1 + exp (−p6(ln γ − p7))
, (4.2)

with parameters shown in Table 4.2. In this model the saturation yield of dE/dx+TR
is 2.4 unit of minimum ionization. The 10%-, 50%- and 90%-saturation points of the
logistic function are

γ0.1 = 4.2× 102, (4.3)

γ0.5 = 2.2× 103, (4.4)

γ0.9 = 1.2× 104, (4.5)

respectively.

p0 p1 p2 p3 p4 p5 p6 p7

value 0.313 3.05 0.035 2.17 0.66 0.72 1.33 7.70
error 0.003 0.02 0.002 0.04 0.01 0.03 0.07 0.06

Table 4.2: Fitted parameters of the ALEPH+logistic parametrization to the dE/dx+TR
TRD signal.
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Figure 4.3: Most probable values of the TRD signals from different data sets as a function
of βγ.
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Chapter 5

TRD truncated mean signal

The signal of a particle in the TRD is measured in six layers of detector chambers, in
each of which the induced charges are collected every 100 ns. After baseline subtraction,
pad gain calibration, and correction for non-perpendicular incident angles, the collected
charges in each time-bin form the so-called cluster signal [Cor01, Aam08]. These sig-
nals are characterized by the heavy tail originating from the Landau distribution (see
discussions in Chapter 3).

The truncated mean signal of a particle is defined as the truncated mean (also called the
trimmed mean [Mar06]) of its associated N above-baseline cluster signals [Blu08]:

〈Q〉f ≡
M∑
i=1

Qi/M, (5.1)

where Qi is the i-th smallest one among all time-bins, f ∈ (0, 1] is the truncation
fraction and M is the largest integer smaller than Nf . It is an estimator for the expected
signal at the cluster level. Its advantage is robustness and high efficiency (namely small
variation) for heavy-tailed distributions [Mar06]. The truncated mean signals of a sample
of particles follow a distribution which depends on the particle velocity and thus provide
information on the particle types. Complementary to the design capability of the TRD,
which is optimized for the electron–hadron separation [Cor01, Loh13], this method allows
separation between different particle species, enabling the TRD for robust identification
of electrons and hadrons.

This chapter presents the technical principle and performance of this newly established
method as follows. Section 5.1 discusses the influence of the time-bin dependence of
the cluster signals and the resulting physical signal composition in terms of collisional
ionization and transition radiation (TR). Section 5.2 describes the so-called time-bin gain
calibration. Section 5.3 shows the optimization by tuning the truncation fraction f .
Section 5.4 discusses the properties of the truncated mean signal as a function of the
number of clusters N . In the end, the particle identification capability of the truncated
mean signal is presented in Section 5.5.
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Figure 5.1: Development of the most probable cluster signals (left) and the weight
(right panel, see text for definition, f = 0.6) with an increasing velocity of cosmic muons.
Positive and negative time-bins are for the lower and upper TRD sectors, respectively.

5.1 Influence of the time-bin dependence of the clus-

ter signals

Suppose in the ideal case when all cluster signals followed the same distribution, the rejec-
tion of the heavy tail which is subject to large fluctuations would improve the estimation
of the mean cluster signal. However, in the TRD the distribution of the cluster signals
depends on the radial position (represented by the time-bin) of the cluster. This is due
to the combined effects of the drift field configuration and the varying composition of the
combined signal of the collisional energy loss and the transition radiation. The time-bin
dependence introduces nonuniform weights via the ordering required by Eq. 5.1 in such a
way that large signals under small fluctuations can also be frequently rejected from the
summation, leading to a deteriorated estimation. On the other hand, despite this weight-
ing effect, the summation in Eq. 5.1 is still sensitive to the expected sum of all time-bin
contributions. This is because for a given truncation fraction, a larger rejection probabil-
ity for some signals means a larger survival probability for the others (for illustration see
the right panels of Figs. 5.1 and 5.4 and the corresponding text). As a consequence, even
though the late time-bin signals with a large TR component is more often rejected, the
loss of TR is compensated by the collisional ionization in early time-bins, preserving the
TR signature.

The time-bin dependence of the cluster signals is best illustrated with the cosmic data
(see Chapter 4). Depending on the detector position, either the collisional ionization or
the combined signal with TR can be measured. Figure 5.1 (left) shows the development of
the most probable cluster signals with an increasing velocity of cosmic muons. The time-
bins for the detector sectors in the upper half of the TRD cylindrical placement, which
measure the pure collisional ionization, are multiplied by -1. The positive time-bins are
for the lower sectors which measure the combined signals. The amplification peaks in
early time-bins dominate the signal spectra. At high velocity TR contributions in late
positive time-bins are visible.

The definition of the truncated mean requires a sorting and a partial sum. This is equiv-
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Figure 5.2: Mean values of 〈Q〉0.6 from two cosmic data taking periods with B = 0.1 T
and B = 0.5 T. Note that the y-scale is chosen such that the minimum ionizing signal is
around 1. Signals from upper and lower sector at B = 0.5 T are separately shown. The
discrepancy between data sets is due to uncalibrated detector effects at the cluster level
(see Section 5.2).

alent to assigning to individual cluster signals the following weights:

ε(t) ≡ Nsummed(t)

Ntotal(t)
, (5.2)

where Nsummed(t) is the frequency for the cluster signal Q(t) at time-bin t being summed
in Eq. 5.1 and Ntotal(t) is the frequency of an above-baseline Q(t). If Q at different time-
bins had identical distributions, ε would be independent of t and equal to the truncation
fraction f . The larger a most probable value Q(t) has, the smaller ε(t) becomes. Figure 5.1
(right) shows the development of ε(t) with an increasing velocity of cosmic muons (the
time-bin convention is the same as in Fig. 5.1). It can be seen that in the amplification
region the weights are much smaller than in the tail region.

The compensation effect, which preserves the physical sensitivity, is also visible in Fig. 5.1
(right). In the late positive time-bins at high velocity where TR is present, the weights are
smaller than in the adjacent earlier time-bins. As a result, the TR signature is preserved,
as can be seen in Fig. 5.2 where high-γ cosmic signals in the upper and lower TRD sectors
are compared.

5.2 Time-bin gain calibration

The advantage of the truncated mean is to reject contributions with large fluctuations
so as to obtain a more precise estimation of the mean cluster signal. This is based on
the assumption that the summands in Eq. 5.1 follow the same distribution. The time-bin

43



Chapter 5: TRD truncated mean signal

1

10

Time­bin

0 5 10 15 20 25

C
lu

s
te

r 
s
ig

n
a

l

0

20

40

60

80

100

120

140

160

180

200
EntriesEntries

1

10

210

Time­bin

0 5 10 15 20 25

C
lu

s
te

r 
s
ig

n
a

l

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
EntriesEntries

Figure 5.3: Cluster signal distributions in different time-bins (left) before and (right) after
the time-bin gain calibration. The black line indicates the most probable values.

dependence of the cluster signals imposes a necessity for a gain equalization among time-
bins. This so-called time-bin gain calibration is also needed because at the cluster level
several detector effects governing different time-bin regions start to show up, for example,

• the gas density and the drift velocity whose inhomogeneity will distort the drift
charge density per time bin,

• the electric field line configuration which determines the amplification peak in the
early time-bins,

• and the detector time response which characterizes the shape of the ion tails in the
late time-bins.

The idea of the calibration is to equalize the Q(t) distributions in different time-bins
to a common scale. As can be seen in Fig. 5.3 (left), which shows the cluster signal
distributions in different time-bins, the most probable values QM(t) differ among time-
bins. The calibration procedure scales Q(t) with 1/QM(t), resulting in the distribution
shown in Fig. 5.3 (right).

In practice, QM(t) is derived from a data sample in a small βγ interval to eliminate
the large variation due to the kinematic dependence. For the cosmic data the sample is
restricted to 1.65 < log10 βγ < 2.5. Figure 5.4 (left) shows the resulting development
of the most probable cluster signal after the calibration (see Fig. 5.1 for comparison).
Since the scale is set to βγ around 100, far below the onset of TR, we see an increase
of the collisional ionization uniform among negative time-bins (upper TRD sectors) and
the TR development in the positive time-bins (lower TRD sectors). The remaining non-
uniformity over time-bins only exists due to this TR component. The corresponding
non-uniformity in weight is within ±15%, as can be seen in Fig. 5.4 (right panel, see
Fig. 5.1 for comparison). In the same figure the compensation effect is more visible.

Because the calibration is performed per time-bin, namely as a function of the radial
position, differentially it equalizes the combined effect of the multiple detector systematics.
The time-bin gain calibration guarantees the consistency between the truncated mean
signals in different detector parts and data taking periods. This is shown in Fig. 5.5 as
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Figure 5.4: Development of the most probable cluster signals (left) and the weight (right)
after the time-bin gain calibration.

an updated version after the time-bin gain calibration compared to Fig. 5.2. As can be
seen besides the elimination of the discrepancy, the separation between the mean signals
at low and high βγ is improved.

The performance of the calibration can be characterized by the separation power:

s(β; β0) ≡ ∆m

σ̄
≡ m(β)−m(β0)

1
2

[σ(β) + σ(β0)]
, (5.3)

where m(β) and σ(β) are the mean and the standard deviation of 〈Q〉f (the f -dependence
is implicit), respectively, as functions of the velocity β (in unit of the speed of light). For
pp and Pb–Pb collision data, further optimization of the following degrees of freedom is
performed according to the separation power:

• Calibration scale: the common scale for the calibration can be chosen in different
ways.

1. With a sample of identified particles from known decays, for example, protons
from Λ, π± from K0

s and electrons from photon conversions [Fas12], the particle
velocity (β0) can be restricted. The most probable cluster signal QM(t; β = β0)
can be used as the scale. This method provides the most physically accurate
scale but suffers from limited statistics due to the inefficiency of particle iden-
tification and the narrow velocity interval required to reduce the kinematic
dependence. In practice the statistical fluctuation of QM(t; β = β0) cannot
be neglected.

2. By assuming that the whole data sample has a stable composition of particles
with constant momentum distributions, one can use QM(t) from the whole data
sample as the scale. However the assumption is generally not valid for different
triggers.

3. As an improvement [Iva12] of method 2, the most probable values of Q(t)/QTPC

from the whole data sample can be used as the scale, where QTPC is the TPC
energy loss signal. Due to the good resolution of the TPC signal, this method
provides a practically accurate scale with minimum statistical fluctuation.
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Figure 5.5: Mean values of 〈Q〉0.6 after the time-bin gain calibration. The y-scale is chosen
such that the minimum ionizing signal is around 1.

The trade-off among these methods is accuracy against statistics. Comparison be-
tween method 1 and 3 using collision data shows that the latter (scaling to TPC)
has a better performance by a 4% relative increase in the separation power.

• Particle charge dependence: the calibration is done separately for different magnetic
field and particle charge combinations, in which way the performance is improved
by 0.6% for pp data and 1.3% for Pb–Pb data.

5.3 Tuning the truncation fraction

The truncation fraction f is defined between 0 and 1. Hence there is a degree of freedom to
optimize the truncated mean signal according to the separation s defined in Eq. 5.3. As f
increases, larger number of contributions are summed in Eq. 5.1, leading to an increase
of m, namely dm/df > 0. Yet d∆m/df = ∆(dm/df) is generally not determined. It
depends on the particular cluster signal distributions at the given velocities. The f -
dependence of σ is relatively straightforward. Note that σ̄ ' σ ' σc/

√
M where σc is

the standard deviation of the Qi sample included in the summation in Eq. 5.1. As f
increases, cluster signals with larger and larger fluctuations are included while M also
increases. Therefore dσ̄/df is the competing results of the increasing fluctuation and
statistics. It may attain a minimum by tuning f .

The f -dependence of ∆m, σ and s is obtained in data samples from two pp runs taken
in two different periods. The particle velocities are measured via identified electrons
from γ-conversions and charged pions from K0

s decays [Fas12]. The velocities to compare
at are log10 β0γ0 = 0.55 and log10 βγ = 3.15, which are obtained with minimum ionizing
charged pions with momentum 0.5 GeV/c and electrons with momentum 0.7 GeV/c,
respectively. The choice of the high velocity is made so as to use the maximum statistics
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Figure 5.6: The mean, the standard deviation and the separation of the truncated
mean signal as a function of the truncation fraction. Note that the arguments of all y-
axis functions are log10 βγ and that the scale of the signal is chosen in such a way
that m(log10 βγ = 0.55) = 1 for all f .

of the electron sample. The tuning results are shown in Fig. 5.6. It is observed that

• ∆m increases with f for f < 0.8,

• σ attains a global minimum in f between 0.4 and 0.5,

• and the resulting separation s is maximum at about f = 0.55.

Accordingly, the optimum value f = 0.55 is used for further studies.

5.4 Dependence on the number of clusters

The effect related to N , the number of above-baseline cluster signals, is both statisti-
cal and systematical. While the statistical fact, that with larger N the relative spread
of 〈Q〉f becomes smaller, is basic, the N -dependence of the mean of 〈Q〉f is non-trivial.
The essence of the problem is, that the expected N is determined by the cumulative
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Figure 5.7: Truncated mean signals (left) and the number of above-baseline clusters (right)
as a function of the velocities of the identified particles from Λ, K0

s decays and γ conver-
sions [Fas12] from pp collisions at 7 TeV. The three distinct regions in log10 βγ are from
left to right exclusively populated with protons, charged pions and electrons. The black
curve is an ALEPH+logistic fit to the mean of 〈Q〉0.55 (see Section 4.2).

distribution function of the cluster charge Q,

N ∼
∫ ∞

baseline

g(Q)dQ, (5.4)

where g is the probability density function of Q. Generally the baseline is not dynamically
adjusted and the particle velocity dependence comes in via the distribution function g.
In this sense N also provides separation power as the energy loss does. However its
realization involves complicated systematics. On the other hand, the common velocity
dependence introduces a correlation between N and 〈Q〉f . Figure 5.7 shows the kinematic
dependence of both quantities.

The broad distribution of the number of clusters at given βγ is due to the following reasons
beside the intrinsic fluctuation of the number of primary collisions.

• The constant baseline is subject to gain variation.

• The number of clusters is proportional to the number of primary collisions which
depends on the path length (Fig. 5.8).

• Cluster signals in neighboring time-bins are correlated due to the time response in
the readout electronics. Signal tails smear out the distribution of the number of
clusters.

In order to study how the number of clusters affects the truncated mean signal, the
kinematic dependence has to be factored out by scaling down the signal by the expected
value as a function of βγ. The expected value is evaluated by an ALEPH+logistic fit
(see Section 4.2) to the mean of the signals in each βγ bin as is shown in Fig. 5.7 (left).
The correlation between the scaled signal and the number of clusters is shown in Fig. 5.9
(left). It shows that there is a systematic deviation of the signal with respect to the
expected value as the number of clusters varies. As a result, the signal is broadened due
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Figure 5.8: Number of clusters as a function of the particle path length in the TRD.
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Figure 5.9: (Left) Scaled truncated mean signal and (right) the signal resolution as a
function of the number of clusters.

to its correlation with the number of clusters which is subject to non-trivial systematic
variations.

The resolution of the signal, σ/m, calculated as the width of the scaled signal, also changes
with the number of clusters, see Fig. 5.9 (right). The resolution is well approximated by

σ

m
=

1.451√
N
, (5.5)

indicating that the number of above-baseline clusters N is in a good approximation pro-
portional to the number of primary ionization collisions Np,

Np ∼ kN, (5.6)

where the coefficient k is independent of N .

Due to the dependence of the signal performance on the number of clusters, it is recom-
mended to cut on the number of chambers that have signals and the number of clusters
per chamber to reduce the spread of the signal.
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5.5 Particle identification with the truncated mean

signal

The kinematic dependence of the truncated mean signal provides separation power be-
tween different particle types. The combined signal of collisional ionization and TR en-
ables identification among hadrons and also between electrons and hadrons. As can be
seen in Figure 5.10 and 5.11, electrons, pions, kaons, and protons can be identified. The
electrons signal is seen to rise with momentum as expected because of the increasing TR
yield. A further application of the truncated mean signal is to identify light nuclei, for
example, the deuteron as is shown in Fig. 5.10.

The identification capability of the truncated mean signal is quantified at a given mo-
mentum p by the electron and pion efficiencies Ee,π(p; qcut), which are simultaneously
calculated from the distributions of the truncated mean signal q for a given cut qcut:

1

Ee,π(p; qcut) =

∫ ∞
qcut

fe,π(q; p)dq, (5.7)

where fe,π(q; p) are the probability densities of the signal q at momentum p for electrons
and pions, see Fig. 5.12 for instance. The correlation between the pion and electron
efficiencies is shown in Fig. 5.13. The momentum ordering2 of the performance is due to
the decreasing separation at high momentum because of the relativistic rise of the pion
signal. It can be seen that at momentum around 1 GeV/c a signal cut selecting 90% of
the electrons will select about 1.5% of the pions3, resulting in a pion rejection factor of
about 1/0.015 ' 67.

1Note that the calculation relies on the purity of the electron and pion samples. Impurity will introduce
outliers in the distributions, leading to worse performance.

2The crossings between the correlation curves for p ≤ 2 at low electron efficiencies (50–60%) are due
to the improvement of the performance at high momentum because of larger TR yields.

3The ratio between the selected electrons and pions depends on their total yields.
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Figure 5.10: Truncated mean signals as a function of momentum for charged particles in
minimum bias data from p-Pb collisions at

√
sNN = 5.02 TeV (LHC period 13c).
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Figure 5.11: Truncated mean signals as a function of momentum for protons from Λ,
charged pions from K0

s, and electrons from γ-conversions [Fas12] from p-Pb collisions
at
√
sNN = 5.02 TeV (LHC period 13c).
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Figure 5.12: Probability densities of the truncated mean signal for pions from K0
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electrons from γ-conversions [Fas12] from p-Pb collisions at
√
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Chapter 6

The TPC coherent fit

The ALICE TPC measures the energy deposit of the traversing particles. For different
particle species, the TPC signal [Alm10], which is the truncated mean ionization energy
loss per path length, shows different momentum dependence (Fig. 6.1). With a resolution
of about 5%, the TPC signal provides separation power among different particle types
from momentum of several hundred MeV/c (limited by acceptance) up to above 20 GeV/c.
This chapter shows how one can extract the yield of a given particle type using the TPC
signal alone in this momentum range. Technically, the method disentangles the particle
contents in a two-dimensional observable space (p,∆) as in shown in Fig. 6.1, where ∆ is
the TPC signal and p is the momentum of the traversing particle.
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Figure 6.1: TPC signal as a function of the momentum of traversing particles.

The method relies on the following observations:

• The statistically dominant particle species are protons1, kaons, pions and electrons2.

1In this chapter no charge distinction is made and therefore protons refer to protons and antiprotons.
2The TPC signal resolution is not good enough to resolve muons and pions. The measured pion
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Light nuclei, like the deuteron, can be ignored.

• The signal shape for a given particle species can be well approximated by a Gaus-
sian distribution G(∆;µ, σ) with mean µ and standard deviation σ. The overall
signal shape at a given momentum p is therefore the weighted sum of 4 Gaussian
distributions (particle type dependence of µ and σ is implicit)∑

k

Ak (p)G (∆;µ, σ) , (6.1)

where the sum is made over particle type-k and Ak is the corresponding fraction
normalized at p, namely∑

k

Ak (p) = 1. (6.2)

• The signal mean µ is a function of the particle velocity3

µ = µ
( p
m

; a
)
, (6.3)

with parameters a.4 The particle mass is denoted as m.

• The signal spread σ can be well approximated by a function of µ

σ = σ (µ; b) , (6.4)

with parameters b.

• The fraction of a given particle species, Ak, is a continuous function of the momen-
tum.

With appropriate models for the signal mean and spread, particle fractions and signal
properties can be simultaneously extracted by fitting the constructed particle distribution
with free parameters Ak (p), a and b to the measured one. Because information between
momentum bins are used coherently in one single likelihood maximization, this fitting
procedure is called the TPC coherent fit.

This chapter is organized as follows. We first set the stage for the method with definitions.
Then the full machinery will be described, followed by discussions of error estimation and
data analysis.

6.1 Setting the stage

6.1.1 Definition of the momentum observable

The TPC coherent fit disentangles particle species in the two-dimensional observable
space (p,∆). It provides an estimate for the fraction of a given particle type Ak(p) as a

fraction, to be precise, is contaminated with muons, the fraction of which after cuts for primary particles
is at most at per mil level in minimum bias data.

3Other dependencies according to the detailed experimental setup can be treated as higher order
systematic uncertainties or corrections.

4A quantity x is a compact notation for a set of quantities x1, x2, . . . .
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Figure 6.2: Energy loss between the collision vertex and the TPC. Left : fitting the momen-
tum ratio pvertex/ptpc in a single pseudo-rapidity |η| window. The points are experimental
data and the curves are the fitting results of Eq. 6.5 with the material budget L as a
free parameter. Right : material budget L as a function of |η|. The points are the fitting
results of L in different |η| windows and the curves are Eq. 6.6 fitted to the points with
parameter B.

function of the momentum which can either be the one measured at the collision vertex
or at the TPC inner wall. Due to the material in between, a particle loses some energy
before entering the TPC5:

Emiss =
√
p2

vertex +m2 −
√
p2
tpc +m2 = L〈δ〉 ' Lδ

(pvertex

m

)
, (6.5)

where m is the particle mass, L is the material budget between the vertex and the TPC
and 〈δ〉 is the mean specific energy loss, which can be estimated with the standard Bethe-
Bloch formula δ(βγ) [Ber12] calculated with pvertex and m. This effect can be evalu-
ated from data. As can be seen in Fig. 6.2 (left), the momentum bias is about 5%
below 1 GeV/c and can be ignored above 2 GeV/c. Even though the TPC signal is deter-
mined by ptpc, Ak(pvertex) is eventually needed for physics study (for a precise conversion
to Ak(pt), see discussion in Section 6.1.2). In this work, the observable space (pvertex,∆)
is used and during the coherent fit, pvertex is internally converted to ptpc using Eq. 6.5
with

L =
B

sin (2 tan−1 (e|η|))
, (6.6)

where

η = − ln tan
θ

2
(6.7)

is the pseudo-rapidity of the particle with the polar angle θ with respect to the collision
axis and B is a free parameter obtained from data (Fig. 6.2 right). Namely the signal
mean internally has this form:

µ = µ
(ptpc
m

; a
)
. (6.8)

From here on the subscript of the momentum will be suppressed unless in case of potential
confusion.

5The energy loss integrated in the TPC volume is significantly smaller and can be neglected.
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Chapter 6: The TPC coherent fit

6.1.2 η-window restriction

The observable space (p,∆) has to be restricted in a small window of |η|. The reason is
two-fold:

• The mean and spread of the TPC signal depend on the inclination angle of the
traversing particle with respect to the drift field. This is because the ionization
energy loss of the particle in the gas depends on the path length6, and the drift
length of the ions depends on the location of the primary ionization. Signals of
particles with large |η| have better resolution due to a larger number of primary
ionization and a shorter drift length. As will be shown in Section 6.4, signals from
different |η|-windows exhibit different systematics.

• From the physics point of view, particle production is often studied as a function
of the transverse momentum pt instead of p. In a small |η|-window the one-to-
one correspondence between pt and p(vertex) is manifest (Fig. 6.3). The fraction of
particle-k Ak(p) can be precisely converted to Ak(pt).7
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Figure 6.3: Correlation between pt and p in 0.6 < |η| < 0.8.

6.1.3 η dependence of particle fractions

Particle production as a function of pt is independent of the particle rapidity:

y = sinh−1 sinh η√
1 + m2

p2
t

. (6.9)

Therefore for a given particle type with a given momentum, the particle yield scales with
the rapidity width ∆y defined as

∆y|η1<η<η2 = y (η2)− y (η1) . (6.10)

6The path length dependence can not be fully removed by normalizing the energy loss to path length
due to the residual lnN dependence in Eq. 3.27.

7In the correlation plot, for each momentum bin, the pt mean (〈pt〉) and the standard deviation (σpt)
are calculated and related to the fraction Ak measured in the same momentum bin. The x-variable of
the plot of Ak vs. pt is thus 〈pt〉 ± σpt
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at |η| < 0.2.

As can be seen in Fig. 6.4, for equal-width η-windows, the rapidity width is greater
in larger rapidity region. For protons with pt lower than 1 GeV/c, the difference be-
tween 0.6 < |η| < 0.8 and |η| < 0.2 is larger than 10%. As will be seen in Section 6.4, this
effect is visible. For physical measurements in η-windows, this ∆y-scaling has to be taken
into account and corrected for (see Section 7.1.5).

6.2 Machinery

The TPC coherent fit is based on the maximum likelihood estimation method [Ken79].
It maximizes the function l. It is calculated with the measured two-dimensional particle
distribution f (p,∆) in bins of the momentum p and signal ∆ (Fig. 6.1):

l = lstat + lreg, (6.11)

with the statistical likelihood function

lstat =
∑
i

∑
j

lnP

(
wif (pi,∆j) ;wi

∑
k

Ak (pi)G (∆j;µ, σ (µ,b))

)
, (6.12)

µ = µ

(
pi
mk

, a

)
, (6.13)

and the local regularization term

lreg = −
∑
i

∑
k

[
Ak (pi)− Âki

]2

2δ2
ki

. (6.14)

Here the measured distribution f is normalized at each p, namely∑
j

f (pi,∆j) = 1, (6.15)
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Chapter 6: The TPC coherent fit

and wi is the statistical weight of the integrated momentum bin i

wi = min{C,Ni}, (6.16)

where C is a pre-defined number and Ni is the actual integrated count in the bin. The
signal mean µ is parametrized with the ALEPH parametrization8 [Dec90]:

µ(βγ; a0, . . . , a4) = a0

a1 − a2 − βa3 − ln
[
1 + 1

(βγ)a4ea2

]
βa3

. (6.17)

The signal spread σ is similar to the one commonly used for the energy resolution of an
electromagnetic calorimeter [Ber12]:

σ(µ; b0, . . . , b2) =

(
b0√
µ

+ b1 +
b2

µ

)
µ. (6.18)

With the arguments n ≡ wf and n̄ ≡ w
∑

k AkG, the function P (n; n̄) is the Poisson
probability density function (p.d.f.)

P (n; n̄) =
n̄ne−n̄

n!
. (6.19)

In the regularization term Eq. 6.14, Âki is the particle-k fraction interpolated from neigh-
boring values Ak (pi−1) and Ak (pi+1) using Neville’s algorithm of polynomial interpola-
tion [Wil92], and δki is the error of Ak (pi) calculated as

δki =

√
wi

Ak(pi)+Âki
2

wi
. (6.20)

The minimization procedure is performed with the program TMinuit of the ROOT soft-
ware [Bru97]. An algorithm, the guided convergence, is developed for an optimized con-
vergence. It introduces an additional parameter λ as a guiding parameter in a series of
iterative maximization of l (λ) = lstat + λlreg with λ increasing from 0 to 1.

In the following discussion the static and dynamic features of the method will be described.
The regularized likelihood function and the models for the signal mean and spread will
be investigated in Section 6.2.1, followed by the introduction of the guided convergence
in Section 6.2.2.

6.2.1 Static features

The introduction of the statistical weight wi instead of the direct use of Ni provides the
functionality to cut off the dominant statistics, which affects the data sensitivity at bins of
low statistics, without loss of information. For example, this is needed in case of a steeply
falling spectrum. Such value of C of Eq. 6.16 can be chosen that they represent the
equivalent statistics as an estimate of the combined statistical and systematic uncertainty
of the fit, see discussion in Section 6.3.

8Compared to the original form, a2 is redefined for a better numerical stability.
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6.2. Machinery

The ALEPH parametrization (Eq. 6.17) describes the hadron and electron signals at small
and large βγ, respectively, with a smooth transition in between. In order to investigate
the systematic effect due to the mean signal parametrization, an alternative model which
decouples the hadrons and electrons is developed:

µ(βγ; a0, . . . , a4) =

{
g (βγ; a0, . . . , a3) , βγ < s,
min {a4, g (βγ, a0, . . . , a3)} , βγ > s,

(6.21)

where s is a pre-defined number and

g (βγ; a0, . . . , a3) = a0
1 + a2 ln βγ + a3 ln β

βa1
. (6.22)

The hadron part Eq. 6.22 is based on the velocity-dependence of the Bethe-Bloch for-
mula [Ber12] and s can be safely chosen as any value between the minimum ionizing and
the relativistic rise regions. As will be shown in Section 6.4, the difference between the
ALEPH and the modified Bethe-Bloch parametrizations is only relevant at the highest
pion momentum region where for the latter there is no constraint from the higher βγ
region by the electrons.

For the signal spread we compare Eq. 6.18 to the following model

σ(µ; b0, . . . , b2) = b0µ
b1 + b2. (6.23)

The first model mimics the energy resolution of an electromagnetic calorimeter while the
latter is motivated by a general statistical consideration. Both turn out to be consistent
in the parameter space covered by the signal and therefore are considered equivalent.

The p.d.f. P (n; n̄) gives the probability of an observed bin-count n with the expected
value n̄. The maximization of the likelihood function lstat with a Poisson p.d.f. of bin-
counts is the so-called binned maximum likelihood estimation (BML) [Ber12]. As an
alternative, the Gaussian p.d.f.

P (n; n̄, σn) =
1

σn
√

2π
e
− (n−n̄)2

2σ2
n , (6.24)

which would have reduced lstat to a χ2 function, is only applicable for large n̄. The χ2

estimation at small statistics is problematic, as is shown in Fig. 6.5 from toy Monte Carlo
simulations (ToyMCs) where binned distributions with different counts Ntrue are gener-
ated. The estimated counts Nfit by the χ2 estimation are biased and more at smaller Ntrue,
while the BML estimation gives unbiased results.

The maximization of the statistical term lstat drives the free parameters Ak (pi), a and b
so that the constructed one-dimensional distribution Eq. 6.1 describes the observed dis-
tribution in every p-bin simultaneously. As a comparison, an alternative method – the
incoherent fit – will be discussed here. The incoherent fit fits the distribution in each p-
bin individually. One can either treat the fraction, mean and spread in each p-bin as free
parameters (type I), or treat the mean and spread instead as functions of the mass using
Eqs. 6.3 and 6.4 with free parameters a and b locally defined in each p-bin (type II). The
statistical likelihood functions (the momentum dependence of each quantity is implicit)

lstat-I =
∑
j

lnP

(
wf (∆j) ;w

∑
k

AkG (∆j;µk, σk)

)
, (6.25)
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Figure 6.5: Comparison of the unbiasedness between the χ2 and BML estimations.
ToyMCs of binned distributions with different counts are used.

and

lstat-II =
∑
j

lnP

(
wf (∆j) ;w

∑
k

AkG (∆j;µ, σ (µ,b))

)
, (6.26)

µ = µ

(
pi
mk

, a

)
, (6.27)

respectively, are to be maximized for each p-bin, hence being incoherent. In practical
models of µ and σ, the number of parameters is of the order of 10. Therefore type II
is to be preferred due to a stronger constraint only if the number of particle species is
considerably larger than 5, which is not the case in our problem and so we consider both
incoherent treatments equivalent.

The advantage of the coherent fit (without regularization) over the incoherent one is
demonstrated in a ToyMC where a (p,∆)-distribution is generated with given realistic
forms of µ and σ and constant but realistic fractions. The same forms are used in max-
imizing the coherent and incoherent (type II) lstat so that the comparison between the
extracted fractions is parametrization-independent and only depends on the mechanism
how the intra-bin information is organized. Figure 6.6 a-b compares the corresponding ex-
tracted fractions to the true values. It shows a dramatic improvement of the unbiasedness
when the intra-correlation between p-bins is used. Inspecting the generated distribution
at a given momentum (Fig. 6.6 c-d) it is observed that the bias is due to the ambiguity
of two overlapping distributions. If the two distributions have the same mean, the un-
regularized coherent fit becomes also biased. It can be seen in Fig. 6.6b that large biases
happen at the signal crossings of p-e, π-K, π-p and p-K (see also Fig. 6.1). This motivates
the introduction of the regularization term.

The regularization term lreg reduces the fluctuations of the fractions Ak(pi) caused by the
ambiguity of overlapping distributions. It uses the correlation between neighboring p-bins
and require Ak(pi) to be continuous modulo statistical fluctuations: the χ2-form of lreg

requires that the deviation of Ak(pi) from the expectation is Gaussian (the factor 2 in the
denominator of lreg is for a consistent log-likelihood interpretation which is necessary for

a proper error definition). The expected value Âki is the interpolated one from neighbor-
ing points using polynomial interpolation with the degree determined by the number of
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Figure 6.6: (a)-(b) Extracted fractions as functions of momentum. Connected points are
the extracted values and lines are ToyMC input. (c)-(d) Fit to generated distribution at
a given momentum. (a) and (c) are by the incoherent fit. (b) and (d) are by the coherent
fit without regularization. A ToyMC of a (p,∆)-distribution is used.

involved points9 [Wil92], namely the range of the neighborhood, which also determines
the correlation length of the regularized Ak(pi). In order to avoid artificial correlation,
short range of neighborhood is preferred. Different short ranges, ±n bins with n = 1, 2,
have been studied and it turns out that higher order polynomial is too flexible and can
easily follow unphysical spike structures of the unregularized Ak(pi). Therefore direct
neighbors, namely ±1 bins, are used. Because of additional statistics from neighbor-
ing bins, the statistical errors of Ak(pi) are reduced. Figure 6.7 compares the extracted
fractions by the coherent fit with and without regularization using an ALICE MC pro-
duction (LHC11b10a), where the dependence of the particle fraction on the momentum
is non-trivial. The δ-function-like unphysical estimates at the signal crossing points are
smoothed out and the statistical fluctuation is clearly reduced at large momenta where

9An alternative procedure [Iva12] which fits the neighboring points with polynomials of fixed order is
tested and yields equivalent results.
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Figure 6.7: Extracted fractions by the coherent fit with and without regularization. (a)-
(d) compare the extracted fractions for pions, kaons, protons and electrons, respectively,
to the MC truth at the reconstruction level. Different regularization ranges (n± 1, 2) are
compared. The biases at the signal crossing points are reduced to less than 20%. The
ALICE MC production LHC11b10a is used.

less statistics is available. As is shown in Figs. 6.7 (b) and (c), between two crossing
points there can be a residual bias of about 20% because this region spans over several
bins without a solid internal constraint10 (see Section 6.5 for more discussion). Note that
outside the signal crossing region the regularized and unregularized results are consistent.

10An MC study is performed, where the true signal mean and width are plugged in in Eq. 6.11 and held
fixed in the maximization procedure. In this case a residual bias of a similar order persists, which indicates
that the residual bias is due to the diminishing separation power rather than imperfect parametrizations
of the signal mean and width.
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6.3. Error definition

6.2.2 Dynamic features

The convergence of the maximization of the regularized likelihood function Eq. 6.11 with
a total number of free parameters about NsNp ∼ 120 is non-trivial, where the number of
particle species Ns = 4 and the number of momentum bins Np ∼ 30. The strategy is to
first use the incoherent fit to obtain the initial values11 of the fractions Ak (pi), and then
to maximize

l (λ) = lstat + λlreg (6.28)

in iterations with λ increasing from 0 to 1. The parameters at the l-maximum obtained
with λj will be used as the initial values in the next iteration for l (λj+1). The evolution
of λ is determined by the ratio of lstat/lreg right after the first iteration where λ0 = 0,
namely where only lstat is maximized:

λ1 = min

{
1

2
, 2
dln2

lstat
lreg
e
}
, (6.29)

λj+1 = 2λj, for λj 6= 1, (6.30)

where dxe is the operator to calculate the smallest integer larger than x. The evolution is
designed in such a way that the influence of the regularization term gradually increases
and λ guides the parameters from the minimum of lstat to that of lstat + lreg.

To illustrate the convergence behavior of the maximization, Table 6.1 shows λ, lstat and lreg

of Eq. 6.28 after each iteration of the guided convergence, obtained from a fit to real data
(Section 6.4). It can be seen that the regularization term lreg is gradually maximized at
an expense of smaller lstat, resulting in an overall increase of the regularized likelihood
function l = lstat + lreg.

j λj −lstat −lreg − (lstat + lreg)
0 0 4671 3093 7764
1 1/2 4685 11 4696
2 1 4688 6 4694

Table 6.1: Iterations in the guided convergence. Note the minus signs in front.

6.3 Error definition

First we consider the case where there is no effective weighting, namely wi ≡ Ni (Eq. 6.16).
The covariance matrix of the estimated parameters provided by TMinuit is the inverse
of the Hessian matrix of −l (Eq. 6.11) at the l-maximum. It approximates the minimum
variance bound in the large sample limit (which we assume to be always the case). These
errors are statistical.

11The initial values of the parameters a (Eq. 6.17) for the signal mean can be obtained from a fit of
Eq. 6.17 to 5 points of (∆, p), which are read off from the signal distribution. Those of the parameters b
(Eq. 6.18) for the signal spread can be taken initially for a constant resolution.
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Chapter 6: The TPC coherent fit

When effective weighting sets in, the TMinuit errors correspond to the nominal statistics
set by C (< Ni) and therefore we see an artificial inflation of the statistical errors. Even
though the true statistical errors can be calculated [Sol64], we can use this equivalent
statistics approach to roughly estimate the systematic error of the coherent fit. By fitting
to a simulated sample with very large statistics one can estimate the systematic errors by
comparing the fit results and the simulation input. Then adjust the weight so that the
TMinuit errors represent the difference. When this weight is applied to data, the TMinuit
errors represent the combined statistical and systematic uncertainties of the fit.

Another way to estimate the systematic error of the coherent fit is to use different accept-
able configurations (signal mean and spread models, for example) to probe the parameter
space which is constrained by data. The variation of the extracted fractions defines the
range of the acceptable results.

6.4 Data analysis results

The TPC coherent fit is applied to a data sample of primary particles from the LHC
proton-proton collisions at the center-of-mass energy

√
s = 2.76 TeV (period LHC11a).

The results will be discussed systematically in this section.

The statistical weight wi with C = 104 is shown in Fig. 6.8.

p (GeV/c)
1 10

210

310

410

510

N

w

Figure 6.8: Statistical weight w with C = 104 (black) as a function of momen-
tum (0.6 < |η| < 0.8). The actual count N is shown as the red dashed histogram. The
bin width below 4 GeV/c is 1/10 of the one above.

The extracted parameters for the mean signal with the ALEPH parametrization Eq. 6.17
are shown in Table 6.2. The corresponding mean signals are shown in Fig. 6.9. Fig-
ure 6.10 (left) compares the extracted mean signals to those by the modified Bethe-Bloch
parametrization Eqs. 6.21–6.22. As can be seen, the difference is less than 0.2% except in
the βγ-region between 20 GeV pions and electrons (102 < βγ < 103). Figure 6.10 (right)
compares the extracted mean signals in the |η| ranges 0–0.2 and 0.6–0.8. The latter is
larger by 2% due to the residual path length dependence (see Footnote 6).
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6.4. Data analysis results

i 0 1 2 3 4
ai 3.75(9) 10.3(2) -12.6(3) 2.441(5) 2.23(6)

Table 6.2: Fitted parameters of the ALEPH parametrization (0.6 < |η| < 0.8). The
number in the parenthesis is the statistical uncertainty in the last digit.
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Figure 6.9: Mean signal obtained by the coherent fit, shown as the black curves overlaid
on top of the measured signal distribution (0.6 < |η| < 0.8).
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Figure 6.12: TPC signal resolution obtained by the coherent fit as a function of momentum
for different particle species in (left) |η| < 0.2 and (right) 0.6 < |η| < 0.8.

The extracted signal resolution, σ′ ≡ σ/µ, by the two models, Eqs. 6.18 and 6.23 (model I
and II, respectively), are shown in Fig. 6.11. The corresponding extracted fractions are
not sensitive to the 2% difference in the region 40 < µ < 80 of dominant statistics and
are thus consistent. The resolution in different η-windows are shown in Fig. 6.12. The
difference is due to the systematic effects discussed in Section 6.1.

A comparison between the unregularized and regularized particle fractions is shown in
Fig. 6.13. As can be seen the statistical errors are reduced by regularization as expected
from the discussion in Section 6.2.1. On the other hand, no bias due to the regularization
is observed.

The fit results are projected in different momentum bins in Fig. 6.14. As can be seen the
fit describes the data well in both the positions and the shapes of the signals.

The fractions of pions, kaons, protons and electrons in the η-windows are shown in
Fig. 6.15. The error bar represents a combination, using the equivalent statistics approach
with C = 104 in wi (Section 6.3), of the statistical error and the partial systematic error es-
timated from MC. It is mostly systematical at low pt and statistical at high pt. The errors
box represents an additional estimate of the systematic error by variations to the mean
signal model (ALEPH and the modified Bethe-Bloch) and the signal spread model (model
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Figure 6.13: Comparison between unregularized and regularized particle frac-
tions (0.6 < |η| < 0.8, the electron fraction which is at per mil level is not shown).
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Figure 6.15: Uncorrected particle fractions from proton-proton collisions
at
√
s = 2.76 TeV in η-windows. See text for the interpretation of the error bars

and error boxes.

I and II). The fractions are not corrected for detection efficiencies (see Section 7.1.4) nor
for ∆y-scaling (see Section 6.1.3). The relative η-dependent variation of the detection effi-
ciencies is smaller than 3% while the variation of the ∆y-scaling at pt < 1 GeV/c is larger
than 10%. As a result we see ∆y-ordering at low pt when comparing the uncorrected
fractions, for protons at pt < 1 GeV/c and kaons around pt 0.5 GeV/c — the fraction
in larger |η| is higher than that in lower |η|. At larger pt the η-variation of the uncor-
rected fractions is less then 5% and 10% at pt below and above 10 GeV/c, respectively.
It is mainly due to the systematic uncertainties of the fit and therefore provide a realistic
estimate of the systematic error with the help of the cross reference between η-windows.

Without the ∆y/∆η correction, the η-averaged fraction only serves as a technical ob-
servable for performance because of the intrinsic η-dependence of the particle fractions,
especially at low pt for protons. Nevertheless the principle of the averaging technique is
the same through out this work. The averaged value is the arithmetic mean of individ-
ual values in η-windows. The individual error bars are propagated to the averaged ones
assuming uncorrelated measurements. The averaged error box is the quadratic sum of
two parts: the η-variation of the fractions and the propagated mean error from individ-
ual error boxes. The averaged error bars represent the combination of partial systematic
uncertainty and statistical uncertainty, dominating at low and high pt, respectively. The
averaged error boxes represent a realistic estimate of the systematic uncertainty of the fit.
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6.5. TPC coherent fit with subsidiary particle identification

6.5 TPC coherent fit with subsidiary particle identi-

fication

The TPC coherent fit is a method using only the TPC signals of particles in the momentum
range from hundred MeV/c to above 20 GeV/c. In ALICE, there are other particle
identification detectors optimized for different momentum regions. In the momentum
range 1 – 3 GeV/c, where the fraction estimated by the TPC coherent fit can have residual
bias up to 20% due to the TPC signal crossings, the TOF detector [Del00a, Aam08] is
designed to provide precise particle identification. This section discusses how the TPC
coherent fit can be combined with other particle identification detector(s), which in the
current case is the ALICE TOF detector. Note that the method discussed below is general
for any subsidiary particle identification. For example, the TRD truncated mean signal
(see Chapter 5), which has a different βγ dependence due to a different gas composition,
can be used in the same procedure once it is integrated in the ALICE data production.

Suppose at an arbitrary momentum p, out of a sample of N tot particles, the TOF detector
identifies Ntof

k particles of type-k uniquely. One can remove the TOF-identified samples
for different particle types from N tot, perform the TPC coherent fit in the remaining
sample, which is denoted as N��tof ≡ N tot−

∑
kN

tof
k , and estimate the remaining fraction

of particle type-k to be A�
�tof
k . The overall fraction of particle type-k in N tot reads

Atot
k =

N��tof
k +Ntof

k

N tot
=
A�

�tof
k N��tof +Ntof

k

N tot
(6.31)

= A�
�tof
k

(
1−

∑
i

Atof
i

)
+ Atof

k , (6.32)

where N��tof
k ≡ A�

�tof
k N��tof and the TOF fraction Atof

k is defined as

Atof
k ≡ Ntof

k /N tot. (6.33)

In the case of perfect TOF identification, the statistical uncertainty of the estimated
overall particle fraction scales as

√
N��tof/N tot, while the systematic uncertainty is weighted

by a factor of N��tof/N tot (assuming δstat.A�
�tof
k ∼ 1/

√
N��tof
k and δsys.A�

�tof
k ∼ const.). In this

sense, compared to the pure TPC coherent fit (“no TOF” analysis) where N��tof = N tot,
both statistical and systematic uncertainties of Atot

k are reduced by increasing Ntof. In
terms of relative uncertainties, starting form Eq. 6.32, we have

δAtot
k

Atot
k

=
δA�

�tof
k

A�
�tof
k

A�
�tof
k (1−

∑
iA

tof
i )

Atot
k

=
δA�

�tof
k

A�
�tof
k

Atot
k − Atof

k

Atot
k

=
δA�

�tof
k

A�
�tof
k

(
1− Atof

k

Atot
k

)
=
δA�

�tof
k

A�
�tof
k

(1− εtofk ) . (6.34)
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Figure 6.16: TOF fractions (defined in Eq. 6.33) obtained from data (period
11a 0.6 < |η| < 0.8) as a function of momentum for the cuts (see text for details) with 1–
and 2– σ inclusion, respectively. Also shown are the sum of TOF fractions of pions, kaons
and protons.

where

εtofk ≡ Atof
k /Atot

k (6.35)

is the TOF identification efficiency for particle type-k. Equation 6.34 implies that the
relative uncertainty by the TPC coherent fit, when propagated to that of the overall
fraction, is reduced by a factor equal to the TOF efficiency.

On the other hand, in practice the TOF identification deteriorates as Ntof goes up, as a
consequence of increasing contamination as one looses the TOF particle identification cuts.
Therefore, the inclusion of the TOF identification to the TPC coherent fit is necessary
only if the TOF identification efficiency is large when the contamination is kept under
the TPC coherent fit systematic uncertainty. This condition is assumed to hold for the
equivalent class of the TOF identification cuts used in this work (described later in this
section) and the variation within this class is taken to be a systematic uncertainty.

The advantage of this method to include TOF in the framework of TPC coherent fit,
compared to the conventional treatment of using single detector in different momentum
regions, is that, firstly the requirement on statistics is minimum while the use of infor-
mation is maximum, and secondly there is no need for the efficiency correction (including
detection and reconstruction efficiencies and acceptance) of the TOF detector because the
overall sample N tot does not depend on the TOF identification.

In the following the details of the method including the TOF identification cuts and the
method performance are presented.

In this work, the TOF identification is used for pions, kaons and protons12. The cut for

12Not for electrons because an exclusion cut for the electron, despite its small amount (per mil level),
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Figure 6.17: The extracted remaining fractions by the TPC coherent fit A�
�tof
k with (“w/

reg. ���TOF”) and without (“no reg. ���TOF”) regularization and the resulting calculated
overall fractions Atot

k (“w/ reg. TOF 2σ”). The TOF cut with 2σ inclusion is used.
(period 11a 0.6 < |η| < 0.8)

any particle type-k is the intersection of a nσ (n = 1, 2) inclusion cut for type-k and a 4σ
exclusion cut for other particle types. The TOF fraction defined in Eq. 6.33 is shown in
Fig. 6.16 for the cuts with 1– and 2– σ inclusion.

For the TOF cut with 2σ inclusion, the remaining factions A�
�tof
k and the overall frac-

tions Atot
k are shown in Fig. 6.17. Also shown is the pre-regularized A�

�tof
k which indicates

the positions of TPC signal crossings. It can be seen that the TOF identification is
effective in these crossing regions.

According to Eq. 6.35, the TOF identification efficiency εtofk can be estimated from
Figs. 6.16 and 6.17. The values are shown in Table 6.3, indicating that with the TOF
identification, the relative uncertainty of the kaon estimates is reduced by about 40%
below 2 GeV/c and that of the protons by 50 – 60% below 3 GeV/c.

p (GeV/c) 1 2 3
π 0.51 0.31 0
K 0.43 0.38 0
p 0.63 0.57 0.49

Table 6.3: TOF identification efficiency (defined in Eq. 6.35) after a cut of 2σ inclusion
and 4σ exclusion in period 11a 0.6 < |η| < 0.8.

The overall fractions Atot
k obtained by the TOF inclusion with cuts with 1– and 2–σ cuts,

respectively, and also by the “no TOF” method are compared in Fig. 6.18. The variation

will much reduce the TOF efficiencies for other particle types. However electrons are still modeled in the
TPC coherent fit and their fraction can be extracted.
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Figure 6.18: Comparison among overall fractions Atot
k obtained by TOF inclusion with

cuts with 1– and 2–σ inclusion, respectively, and also by the “no TOF” method (pe-
riod 11a 0.6 < |η| < 0.8).

due to the TOF inclusion cuts is smaller than 2%13. The two TOF cuts are considered
to be equivalent and this variation is taken as a systematic uncertainty. The change
introduced by the TOF inclusion with respect to the “no TOF” method is up to 10% for
kaons and protons in the crossing regions, as is expected as a reduction of the residual
bias.

As a technical comparison, the η-averaged fractions with TOF inclusion and by the “no
TOF” method are compared in Fig. 6.19. In addition to the systematic error discussed
in Section 6.4, the fraction variation in a given η-window due to the change of the TOF
cuts is included as another systematic uncertainty which is in the end propagated to
the η-averaged error box. The difference between the two methods resembles that in
Fig. 6.18.

As a further proof of principle, the improvement by the TOF identification is shown
in MC as follows. The same procedure of the TPC coherent fit with TOF inclusion is
performed. The resulting TOF fractions by different TOF cuts are shown in Fig. 6.20.
Considering also the overall particle fractions in MC (see Fig. 6.7), it can be concluded

13The large variation for electrons due to different TOF cuts stems from the contamination of electrons
in other particle types. Because there is not electron exclusion cut, the Ntof

π,K,p samples contains electrons
which can be ignored for the hadron fractions, but is significant for the electron fraction.
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Figure 6.19: Comparison between the η-averaged fractions by the TOF inclusion and the
“no TOF” method.

that the TOF efficiencies in MC is consistent with those in data by the same TOF cuts.
The extracted particle fractions are compared to the “no TOF” method and to the MC
truth in Fig. 6.21. As can be seen the residual bias is much reduced14.

6.6 Summary

Before applying the TPC coherent fit in physics analysis (Chapter 7), a short summary
is in order. Whenever TOF information is available, the TPC coherent fit is applied with
TOF identification as discussed in Section 6.5. The machinery of the fit is summarized
in Section 6.2 and discussions of the error definition can be found in Section 6.3 and the
last part of Section 6.4. In case with TOF identification, the TOF cut variation defines
additional systematic errors.

14The introduced bias on the electron fraction is expected as discussed previously for Fig. 6.18.
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Figure 6.20: TOF fractions obtained from MC (LHC11b10a 0.6 < |η| < 0.8).
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Figure 6.21: Extension of the comparison in Fig. 6.7. Extracted fractions by the “no
TOF” method and by the TOF inclusion with different cuts are compared to the MC
truth.
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Chapter 7

Pion, kaon, and proton production
in pp and Pb–Pb collisions

The production of (unidentified) charged particles in Pb–Pb collisions at
√
sNN = 2.76 TeV

has been measured in the transverse momentum pt range 0.3 < pt < 20 GeV/c (see
Fig. 1.8) [Aam11a] and 0.15 < pt < 50 GeV/c [Abe13d] in ALICE. Measurements
of π±, K±, p and p̄ production in the pt regions from 100, 200, 300 MeV/c up
to 3, 3, 4.6 GeV/c, respectively, have been performed [Abe13a]. In this work the
measurements for the identified particles are extended to pp collisions at

√
s = 2.76

and 7 TeV, as well as to Pb–Pb collisions at
√
sNN = 2.76 TeV in the pt range

from 600 MeV/c to about 20 GeV/c, with focus on the moderate and high pt regions,
where baryon anomaly and jet quenching, respectively, are the characteristic phenomena
(see Section 1.2).

The measurement is performed with the TPC coherent fit as described in Chapter 6 (for
a short summary see Section 6.6). The pt spectra of primary pions, kaons, and protons,
which are produced from the collisions and are not weak decay products, are derived
from the extracted particle fractions. This measurement offers a unified picture of identi-
fied particle production in an unprecedentedly large pt range covering regions dominated
differently by multi-parton soft processes and/or parton-parton hard scattering. The
following sections describe the procedure and present the results of the measurements.

7.1 Procedure

7.1.1 Data sets and cuts

Individual data sets from the LHC periods 10d, 10h and 11a are used. The following
sequential event cuts (abbreviations in parentheses) select the minimum bias collision
candidates:

1. minimum bias trigger selection (MB),

2. successful primary vertex reconstruction (Vtx),
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Chapter 7: Pion, kaon, and proton production in pp and Pb–Pb collisions

period 10d 10h 11a
system pp Pb–Pb pp√
s(NN) /TeV 7 2.76 2.76

data Nev|(MB&Vtx&Zvtx)/106 127 15 53
MC id. 10f6a + 10f6 11a10a bis 11b10a

MC Nev|(MB&Vtx&Zvtx)/106 169 1.3 2.8

Table 7.1: Summary of data sets used in the particle production analysis.
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Figure 7.1: 〈Ncoll〉 as a function of the event centrality. Data from [Abe13b].

3. the reconstructed primary vertex being located within ±10 cm along the beam axis
about the nominal collision point (Zvtx).

Table 7.1 summarizes the collision systems, the center of mass energies, the number of
the selected minimum bias events Nev|(MB&Vtx&Zvtx) (recorded after the Zvtx cut) and the
corresponding ALICE MC production used in this analysis. The minimum bias Pb–Pb
events are divided into six centrality intervals [Abe13b] from the 0–5% to the 60–80% most
central collisions, in terms of the percentage of the total hadronic cross section. The event
centrality is related to the average number of binary nucleon-nucleon collisions 〈Ncoll〉 as
is shown in Fig. 7.1.

In order to select primary particles and ensure tracking and PID qualities, standard track
cuts are applied. The details are shown in Appendix B.

7.1.2 Systematic effects of the event cuts on the pt-spectra

The pt-distribution of the particles from the events selected by the event cuts may be
distorted with respect to the original one produced in the collisions1. The change of
the normalized pt-distribution in pp collisions due to the event cuts is demonstrated
in Fig. 7.2 using MC productions. The ratios of 1/Nev · dN/dpt between the generated
primary particles recorded after different cuts are shown. As can be seen, the Vtx and Zvtx

cuts change the shape of the pt-spectra only at the per mil level which can be ignored,
while the Vtx cut additionally changes the normalization.

1The discussion here generalizes the so-called “bin-0” issues, where events without reconstructed
vertexes are considered.
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Figure 7.2: Ratios between normalized pt-distributions after different event cuts. Gener-
ated primary particles in MC are used.

The approximately pt-independent ratio of the normalized pt-distributions before and
after the Vtx cut can be estimated by the inverse ratio of the corresponding numbers of
events as is shown in Tab. 7.2. As a comparison, Tab. 7.3 shows that the effect of the Zvtx

cut on the spectrum is simply a scaling with the number of events.

MC r1 ≡ 1
Nev

dN
dpt

-ratio (MB & Vtx)/MB r2 ≡ Nev|MB/Nev|(MB&Vtx) r2/r1 − 1 (h)

10d 1.093581 1.095088 1.4
11a 1.146103 1.151197 4

Table 7.2: Comparison between the ratio of the normalized pt-distributions and the in-
verse ratio of the event numbers (0.6 < |η| < 0.8). The former is obtained by a fit of a
constant to the ratio. Effect of the Vtx cut is shown.

MC 1
Nev

dN
dpt

-ratio (MB & Vtx & Zvtx)/(MB & Vtx) Nev|(MB&Vtx)/Nev|(MB&Vtx&Zvtx)

10d 1.000228 1.113619
11a 1.001680 1.063987

Table 7.3: Comparison between the ratio of the normalized pt-distributions and the in-
verse ratio of the event numbers (0.6 < |η| < 0.8). The former is obtained by a fit of a
constant to the ratio. Effect of the Zvtx cut is shown.

In Pb–Pb collisions, Nev|MB/Nev|(MB&Vtx) = 1 andNev|(MB&Vtx)/Nev|(MB&Vtx&Zvtx) − 1 ∼ 10−4

are observed in both data and MC. Therefore it can be concluded that there is no dis-
tortion effect in Pb–Pb collisions.

7.1.3 Contamination by secondary particles

The effect of the track cuts to reject secondary particles originating from weak decays and
interaction with detector materials is studied using MC productions. The contamination
is shown in Fig. 7.3. As can be seen, pions and kaons have secondary contamination
below 1% for pt > 0.5 GeV/c. Protons and antiprotons have different non-negligible
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Figure 7.3: Comparison among contributions of secondary particles in the MC track
sample selected by the track cuts.

contributions from material, especially at pt < 1 GeV/c. The contributions from weak
decays are similar, both at a few per cent level. The difference in the contamination
between positively and negatively charged secondary particles is due to a larger absorption
of the latter in the material and to the isospin effects. As a side remark, the selected
electrons turn out to be mostly originating from material and therefore are not further
discussed, their presence in the fitting being only part of the machinery.

7.1.4 Tracking efficiency

The tracking efficiency for detector acceptance, track reconstruction and selection is es-
timated in MC for primary pions, kaons and protons in pseudo-rapidity η windows. It is
defined as the ratio between the reconstructed pt spectrum after the track cuts and the
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Figure 7.4: Tracking efficiencies estimated in MC (10d period, pp collisions at 7TeV) for
positively charged particles (left) and negatively charged particles (right).

generated pt-spectrum after the event cuts. As can be seen in Fig. 7.4, the efficiencies
in different η-windows are consistent for pt > 0.5 GeV/c with maximum absolute differ-
ence 2–3%. The efficiencies from different data samples are also compared, the absolute
sample dependent variation being about 7%. The common increasing trend of the effi-
ciencies is a consequence of decreasing energy loss in the detector material and weaker
bending in the magnetic field, while the slight decrease at pt & 0.8 GeV/c is due to a
larger fraction of undetected track segments when the part of the azimuthal projection of
particle trajectories falling in the dead zones between the TPC readout sectors increases
with pt. As is the case for secondary contamination, the difference in efficiencies between
positively and negatively charged particles is due to absorption in material and isospin
effects. The efficiency deficit of the low momentum kaon is due to the fast decay. At
high pt the efficiency trends to be particle-type independent and is about 70%.

A study [Abb13] shows that the reaction cross sections for negative kaons and antiprotons
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Figure 7.5: Ratios between the GEANT3 and FLUKA tracking efficiencies for negative
kaons (left) and antiprotons (right).

in the detector material is overestimated in the transport model, GEANT3 [Bru94], of the
MC simulations . Correspondingly the ratio between the tracking efficiencies estimated
with GEANT3 and another transport model FLUKA [Fer05], which has been shown to
be more accurate, is used as a correction. This ratio is parametrized [Abb13] (Fig. 7.5)
by fitting to measurements:

Rk ≡
εgeant3k (pt)

εflukak (pt)
=


min {0.97 + 0.012pt, 1} , k = K−

1− 0.13e−0.68pt , k = p̄

1, otherwise

. (7.1)

It can be seen that the correction for antiprotons is significant: about 10%
at pt = 0.5 GeV/c and decreasing to below 1% at 5 GeV/c.

7.1.5 Calculation of pt-spectra and yield ratios

The normalized pt-spectra (for the normalization strategy, cf. [Aam11b]) is calculated for
positively and negatively charged particles separately as follows:

1

NINEL

1

2πpt

d2Nk

dydpt
=

1

Nev|(MB&Vtx&Zvtx)

Nev|(MB&Vtx)

Nev|MB

εtrig

× 1

2πpt

∆N

∆yk∆pt
Ak (pt) fk,prim (pt)

Rk (pt)

εk (pt)
, (7.2)

where

• Nev|MB, Nev|(MB&Vtx) and Nev|(MB&Vtx&Zvtx) are the numbers of events after the MB,
Vtx and Zvtx cuts (Section 7.1.2),

• εtrig is the minimum bias trigger efficiency estimated by the collaboration as 0.883
and 0.852 for 2.76 and 7 TeV pp collisions, respectively (εtrig = 1 for Pb–Pb colli-
sions),
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Figure 7.6: ∆y ratios in different η-windows.

• ∆N is the number of particles of all types in the pt-range ∆pt and rapidity range ∆yk
(Eq. 6.10) in the sample with a given charge,

• Ak (pt) is the particle fraction in the sample as a function of pt for particle type-k
(Chapter 6),

• fk,prim (pt) is the primary particle fraction for type-k (Section 7.1.3),

• and εk (pt) is the tracking efficiency with the correction Rk (Section 7.1.4).

The spectrum is η-independent (possible η-variation is included in the systematic error)
and can be extracted in η-windows and then averaged in the same way as discussed in
the last part of Sections 6.4. For η-windows of equal widths, ∆yk depends on the particle
type (see Section 6.1.3). In an η-window, the statistical errors of ∆N , Ak (pt), fk,prim (pt)
and εk (pt) are propagated to the spectrum assuming uncorrelated measurements. The
systematic error of the fraction Ak (pt) is also propagated. Similar to the case for the
particle fractions, in this case for the spectra the errors in individual η-windows are then
propagated to the η-averaged one with an additional component from the η-variation of
the spectra for the systematic error, which effectively contains systematic uncertainties
from the particle number ∆N , the primary particle fraction fk,prim (pt) and the tracking
efficiency εk (pt), all being evaluated independently in η-windows.

The (same charge) particle yield ratio is defined as the spectrum ratio relative to the pion
of the same charge, which can be calculated from the particle fractions as(

1

NINEL

1

2πpt

d2Ni

dydpt

)
/

(
1

NINEL

1

2πpt

d2Nπ

dydpt

)
=

d2Ni

dydpt
/

d2Nπ

dydpt
(7.3)

=
∆yπ (pt)

∆yi (pt)

Ai (pt)

Aπ (pt)

fi,prim (pt)

fπ,prim (pt)

επ (pt)

εi (pt)
Ri (pt) . (7.4)

The yield ratio, like the spectra, is calculated in η-windows and then averaged. The covari-
ance matrix between Ak’s is used when calculating the ratios Ai (pt) /Aπ (pt). The ∆y
ratios are shown in Fig. 7.6. Compared to the spectrum Eq. 7.4, it can be seen that
the particle number of all types with the same charge ∆N and the normalization fac-
tor εtrigNev|(MB&Vtx&Zvtx)/Nev|(MB&Vtx)/Nev|MB is canceled in the yield ratio, resulting in
reduced systematic errors.
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7.2 Results and discussions

A comparison of the pt-spectra (Eq. 7.2) among different collision systems at different
center of mass energies is shown in Fig. 7.7. The systematic uncertainty, whose dominant
part is estimated by the η-variation, is about 5− 10%. It is important to note that
at low pt the ∆y ordering, as discussed for the uncorrected fractions in Section 6.4,
is eliminated by the ∆y normalization. It can be seen that for pp collisions, the spectra
at
√
s = 7 TeV are higher than the 2.76 TeV spectra. The difference increases with pt and

is about 30% at 1 GeV/c, consistent with the results for unidentified particles [Abe13c].
The spectra from Pb–Pb collisions, which are all above the ones in pp collisions, increase
as the collisions go more central, as is expected from the increase of the number of binary
nucleon-nucleon collisions (Fig. 7.1).

A comparison of the pp spectra at 2.76 TeV to the low pt [Bus13] (pt < 4 GeV/c, extended
to 6 GeV/c for protons) and high pt [Chr13] (pt > 3 GeV/c, extended to 2 GeV/c for
pions) analyses is shown in Fig. 7.8. In the first case the PID is performed piecewise by dif-
ferent detectors (ITS, TPC, TOF and HMPID) whose application is limited by the dimin-
ishing separation power between particle species when approaching pt about 4–5 GeV/c,
while in the latter the incoherent TPC PID method, which relies on external PID infor-
mation, only works on the relativistic rise of the specific energy loss (pt & 3 GeV/c). The
results from different analyses are consistent.

A charge ratio is defined as the spectra ratio between the two charges of the same particle
type i:

i+/i− ≡
(

1

NINEL

1

2πpt

d2Ni+

dydpt

)
/

(
1

NINEL

1

2πpt

d2Ni−

dydpt

)
=

∆N+

∆N−
Ai+ (pt)

Ai− (pt)

fi+,prim (pt)

fi−,prim (pt)

εi− (pt)

εi+ (pt)

1

Ri− (pt)
. (7.5)

The superscripts ± denote the particle charges for which the spectra are extracted sepa-
rately. Compared to the (same charge) yield ratio, the systematic errors from ∆N± both
enter the charge ratio. The charge ratios are shown in Fig. 7.9. As can be seen, within
errors the ratios are flat around unity as a function of pt. The charge ratio p/p̄ is consis-
tent with the dedicated high precision measurement in 0.45 ≤ pt (GeV/c) ≤ 1.05 [Abb13].
Because of their consistency, spectra and yield ratios from both charges are summed and
averaged assuming uncorrelated errors, respectively, for further discussions.

The low pt parts of the π, K, and p spectra are simultaneously fit to a blast-wave func-
tion [Sch93], which models the fireball expansion with a transverse velocity profile

βT(r) =
( r
R

)n
βT(R), (7.6)

where r ≤ R is the radial position in the fireball. When n = 1, the expansion is Hubble-
like. In this parametrization, besides the individual normalization of the spectra there are
further three parameters: the kinetic freezeout temperature Tkin, the average transverse
velocity 〈βT〉 and the velocity profile exponent n. Because the particles with higher pt
decouple from the collective motion progressively, the upper bounds of the pt ranges have
systematic influence on the fit. Here the pt ranges are from 0.6 GeV/c, which is the com-
mon lower cut-off in this analysis, to the standard upper bounds used in [Abe13a]: 1, 1.5
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Figure 7.7: Comparison of the pt-spectra in different collision systems with different center
of mass energies.
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Figure 7.8: Comparison of the pt-spectra in pp collisions at
√
s = 2.76 TeV to the

low pt [Bus13] (TPC+ITS+TOF+HMPID) and high pt [Chr13] (Lund) analyses. The
high pt spectra are the averages between the positive and negative particles.
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Figure 7.9: Charge ratios for pions, kaons and protons.

and 3 GeV/c for π, K, and p, respectively. Another source of fit instability is the species
dependence of Tkin which is not considered in the model. Different combinations of the
particle species in the fit systematically vary the results. A simultaneous fit to all three
species is adopted here following the standard procedure. As is discussed in [Abe13a],
variations with respect to the standard setup should be considered sources of systematic
errors of the fit.

The blast-wave fit with the standard setting discussed above is applied to the spectra
from Pb–Pb collisions, and also to pp collisions for a comparison. The fit results are
summarized in Tab. 7.4. The reduced χ2 shows that the fit quality in general is good.
The ratios between the spectra and the blast-wave fits are shown in Fig. 7.10. Above the pt
upper bound of each species the fit under-estimates the spectra with larger deviation at
higher pt. Figure 7.11 shows the 1-σ contours for the correlation between Tkin and 〈βT〉, the
sizes of which represent the measurement uncertainties of the spectra. The Pb–Pb results
are consistent with the ones in [Abe13a] which have different pt lower bounds: 0.5, 0.2
and 0.3 GeV/c for π, K, and p, respectively. As the collisions become more central, 〈βT〉
increases, and n and Tkin decrease. It is interesting to note that for pp and Pb–Pb
collisions, the correlation between Tkin and 〈βT〉 lies on the same trend, and that all three
parameters, Tkin, 〈βT〉 and n, follow the same ordering as for the pt spectra in Fig. 7.7,
all suggesting pp collisions at higher energy resemble Pb–Pb collisions to a larger extent.
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data Pb–Pb 2.76 ATeV pp
0–5% 5–10% 10–20% 20–40% 40–60% 60–80% 7 TeV 2.76 TeV

Tkin/MeV 92 93 94 100 111 130 138 145
σTkin

/MeV 2 2 2 2 3 4 3 3
〈βT〉 0.634 0.634 0.631 0.607 0.545 0.448 0.358 0.299
σ〈βT〉 0.004 0.003 0.003 0.003 0.004 0.006 0.006 0.008
n 0.79 0.78 0.78 0.85 1.10 1.61 2.60 3.4
σn 0.02 0.02 0.02 0.02 0.03 0.05 0.09 0.2

χ2/nDOF 1.3 1.6 1.5 1.6 2.4 1.3 1.7 5.2

Table 7.4: Extracted Tkin, 〈βT〉 and n from the blast-wave fit to the spectra from Pb–Pb
and pp collisions. The reduced χ2 is also shown.

The comparison of the yield ratios (Eq. 7.4) among collision systems and energies is shown
in Figs. 7.12 and 7.13. Within errors the Pb–Pb results are consistent with [Abe13a]
which covers the low pt regions, 0.3–3 and 0.2–3 GeV/c, for p/π and K/π, respectively.
In contrast to the pt-spectra and the blast-wave parameters, the yield ratios from pp
collisions at different energies are consistent within errors. The baryon anomaly at pt
between 2–8 GeV/c, characterized by a larger enhancement at more central collisions, is
clearly seen in Fig. 7.12. The enhancement in the most central case is about a factor of
three. On the other hand at pt < 1.5 GeV/c the p/π ratio evolves with centralities in
a reverse order with a maximum reduction of 2.5 at 0.6 GeV/c. The different ordering
implies that protons at low pt are shifted to higher pt and the effect is most prominent
for central collisions. This is qualitatively expected from the collective flow effect where
the particle pt is blue-shifted proportionally to the mass. It is interesting to note that
another reverse ordering seems to appear at pt > 10 GeV/c but the significance is limited
by both the statistical and systematic uncertainties. This relates to the questions whether
the p/π ratio is suppressed in Pb–Pb collisions at high pt and whether or how the baryon
anomaly extends to the high pt limit where hard partonic interactions dominate. As will
be discussed, the ratio of yield ratios between Pb–Pb and pp collisions is the ratio of
nuclear modification between particle species.

The K/π ratio shown in Fig. 7.13 is in contrast more similar among collision systems and
energies than the case for proton. There is a slight centrality ordering at pt 1− 2 GeV/c.
But the magnitude of enhancement is so small, maximum about 20%, that the significance
is rather limited. At lower pt there is no reverse ordering – though the possibility that
the reverse ordering happens at pt < 0.6 GeV/c cannot be ruled out in this analysis.

As is already seen in Fig. 7.7, the pt spectrum from Pb–Pb collisions increases with the
number of binary nucleon-nucleon collisions. A detailed comparison to the spectrum from
pp collisions at the same energy per nucleon scaled by the number of binary collisions
describes how the particle production is modified in the medium produced in the Pb–Pb
collisions. The so-called nuclear modification factor for particle-k is defined as

Rk
AA ≡

d2NAA
k /dydpt

〈Ncoll〉d2Npp
k /dydpt

, (7.7)

with the spectra d2NAA, pp
k /dydpt for nuclear and pp collisions, respectively, defined in

their full forms in Eq. 7.2, and 〈Ncoll〉 shown in Fig. 7.1. At high pt, RAA < 1 means
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Figure 7.13: Comparison of (K+ + K−)/(π+ + π−) in different collision systems with
different center of mass energies.

that the production is suppressed in Pb–Pb collisions compared to an independent su-
perposition of nucleon-nucleon binary collisions. The results are shown in Figure 7.14.
The common centrality ordering for all three particle species indicates that the modifica-
tion in general increases as the collisions become more central. For pions and kaons
the modification reaches a local maximum at pt around 6–7 GeV/c and is lessened
as pt increases. This is consistent with the results for unidentified charged particles
(see Fig. 1.8) [Aam11a, Abe13d] where the statistics is dominated by pions. The pro-
ton RAA, on the other hand, does not exhibit any similar modification maximum up to
the high pt limit of this analysis, which is 15 GeV/c imposed by the statistics of pp col-
lisions at 2.76 TeV. The origin of this difference can be understood with the following
observation. In fact the ratios between RAA of different particle species have already been
shown in the “ratio to ref.” lower panels in Figs. 7.12 and 7.13. This is illustrated as the
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Figure 7.14: Nuclear modification factors for pions, kaons and protons.

following. The RAA ratio of kaons or protons to pions for the same centrality is, according
to Eq. 7.7,

RK,p
AA

Rπ
AA

=

(
d2NAA

K,p/dydpt

〈Ncoll〉d2Npp
K,p/dydpt

)
/

(
d2NAA

π /dydpt

〈Ncoll〉d2Npp
π /dydpt

)

=

(
d2NAA

K,p/dydpt

d2NAA
π /dydpt

)
/

(
d2Npp

K,p/dydpt

d2Npp
π /dydpt

)
, (7.8)

where both the numerator and the denominator are the yield ratios defined by Eq. 7.3. As
the pp collisions at 2.76 TeV are chosen as the reference data in Figs. 7.12 and 7.13, the
ratio of the yield ratios between the Pb–Pb collisions and this reference data is the RAA

ratio between particle species. In other words, the observed proton RAA is a product
of the pion RAA and the ratio of p/π with respect to the pp collisions, namely the local
maximum of the nuclear modification for pions and the baryon anomaly cancel each other,
leading to a monotonic increase of modification for protons at pt > 3 GeV/c. As the ratio
of p/π with respect to the pp collisions tentatively suggests a suppression of p/π at high pt
in Pb–Pb collisions, it remains unclear whether the nuclear modification for the protons
will continue to increase or at some point reach a local maximum, as for the pions and
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kaons. In either case, at high pt a suppressed yield ratio p/π in Pb–Pb collisions, or
correspondingly a difference in RAA for protons and pions, means that the hadrochemical
composition from parton fragmentation is modified in Pb–Pb collisions.

7.3 Outlook – identified jet fragmentation

As an extension of the discussion, the TPC coherent fit is applied (without TOF iden-
tification) to the sample of primary particles in jets (see analysis details in [Aam13])
and the fractions of pions, kaons, and protons with pt up to 30 GeV/c are extracted.
Figure 7.15 shows the uncorrected particle fractions extracted from charged leading jets
of pt 10–80 GeV/c in pp collisions at

√
s = 7 TeV. Since at high pt the tracking efficien-

cies tend to be independent of particle species (see Section 7.1.4), the results indicate that
the proton yield in jets is smaller than the pion or kaon yields. The results are compared
to MC simulations [Aam13] with Perugia-0 tune [Ska10] of PYTHIA6 [Sjo06] after the
ALICE reconstruction. It can be seen that the simulation describes the data well. The
particle fractions in jets are further compared to the particle fractions from the inclusive
primary particle sample obtained by the same event and track selections but without jet
reconstruction. The two sets of fractions are similar at pt & 10 GeV/c while at lower pt
the difference is large. Studies of identified particle production in jets from Pb–Pb colli-
sions will provide further information of the fragmentation mechanism and the properties
of the hot dense QCD medium created at the LHC.
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Figure 7.15: Uncorrected particle fractions (normalized to the total amount of primary
pions, kaons and protons) extracted from charged leading jets of pt 10–80 GeV/c in
pp collisions at

√
s = 7 TeV by the TPC coherent fit without TOF pre-identification.

The results are compared to MC simulations (see text for details). Also shown are the
uncorrected particle fractions from the inclusive primary particle sample obtained by the
same event and track selections but without jet reconstruction.
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Chapter 8

Summary and conclusion

The newly developed TPC combined cosmic track fit (Chapter 2) greatly improves the
momentum measurement for cosmic rays. It also provides a reference measurement for
the standard TPC tracking.

A general statistical description of the TRD signal (Chapter 3) is developed. It is appli-
cable for different signal compositions: collisional ionization with or without transition
radiation. Together with the cosmic track fit, a novel measurement of the transition radia-
tion induced by cosmic muons is performed (Chapter 4). The kinematic dependence of the
transition radiation production is measured in the βγ region from 1 to 104, representing
the state of the art for the community.

The knowledge of the cosmic track fit and the statistical description of the TRD signal
is further applied to the investigation of the TRD truncated mean signal (Chapter 5).
Systematic studies including calibration and various optimizations have been performed.
With this method, the TRD is able to provide robust identification for electrons, hadrons
and also light nuclei.

The TPC coherent fit (Chapter 6) is a novel particle identification method on a statistical
basis involving high dimensional minimization and regularization. The method has been
developed as a general framework aiming at simplicity, self-consistency and robustness.
No fine tuning or external information is employed (though can be applied for second order
accuracy1). As is shown in its application in the study of identified particle production
(Chapter 7), a good agreement with other analyses has already been achieved. Both the
low pt and high pt analyses have conceptual limitations in the methods and are therefore
confined to dedicated pt regions. An advantage of the TPC coherent fit is its compatibility
between different pt regions. In principle this method can be useful to any analysis where
statistical particle identification is needed. An example of a further application is the
extraction of the pion, kaon, and proton fractions in jets (Section 7.3).

The (inclusive) production of pions, kaons, and protons is studied in pt range
from 0.6 GeV/c to about 20 GeV/c for different collision systems at different energies
with the TPC coherent fit (Chapter 7). The baryon anomaly at 2 < pt < 8 GeV/c and
the nuclear modification up to high pt (> 10 GeV/c) in Pb–Pb collisions are observed.

1External PID information has to be used with caution due to different detector acceptance, as should
have been more emphasized in existing analyses.
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The identified particle production is also studied in jets from pp collisions (Section 7.3).
Compared to the inclusive production, a large difference is seen at pt . 10 GeV/c. The
jet fragmentation is further compared to Monte Carlo simulations and it is shown that
the Perugia-0 tune of PYTHIA6 describes the data very well.
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Appendix A

Exclusive central production of π+π−

In the early LHC period for proton-proton collisions where the pile-up could be ignored
the following interaction was investigated in this work:

p+ p→ p+ p+X, (A.1)

where the protons only transfer a small amount of their momenta and X subsequently
decays to two charged pions. Due to quantum number conservation, X is expected to
have the vacuum quantum number. Candidates are the fJ and χcJ families with JPC=J++.

The measurement is based on 3.5×108 minimum biased events of proton-proton collisions
at
√
s = 7 TeV. Because the out-going protons remain in the beam pipe, only indirect ex-

clusivity can be ensured: events with exactly two unlike-sign tracks in the pseudo-rapidity
range |η| < 0.9 are selected, requiring no signal in other detectors in |η| > 0.9. In total
the ALICE detector can provide gaps (veto regions) in η about 7 units (−3.7 < η < −0.9
and 0.9 < η < 5.1). With more veto detectors, the number of selected events decreases
while the exclusivity is enhanced (see Table A.1). The event candidates are further se-
lected if both tracks are identified as pions by TPC and TOF.

Veto detectors V0 V0-FMD V0-FMD-SPD V0-FMD-SPD-TPC
veto regions in η -3.7 – -1.7 -3.7 – -1.7 -3.7 – -0.9 -3.7 – -0.9

2.8 – 5.1 1.7 – 5.1 0.9 – 5.1 0.9 – 5.1
#exclusive two-track events

#minimum bias events
× 104 4.5 3.0 1.0 0.62

#two-track events with unlike signs
#two-track events with like signs

3.0 3.9 8.7 14

Table A.1: Number of selected events and exclusivity measured by the unlike-sign to
like-sign ratio for different veto conditions.

The reconstructed π+π− invariant mass distribution is shown in Figs. A.1. For compari-
son, the distribution from like-sign pairs is also shown as an indication for the contribution
from non-exclusive background. Compared to the case with the veto detectors V0 alone,
the like-sign background is much reduced by the veto detectors V0-FMD-SPD-TPC. In
both cases, f0(980) and f2(1270) are clearly seen.

It is interesting to compare the like-sign subtracted distribution to the non-exclusive
one (Fig. A.2). A large enhancement is seen for f0(980) and f2(1270) in exclusive events,
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Figure A.1: Invariant mass distribution of exclusive two-pion events with veto detectors
V0 (left) and V0-FMD-SPD-TPC (right). Events with like-sign tracks are compared.
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Figure A.2: Like-sign subtracted invariant mass distribution (events with double gaps)
with veto detectors V0 (left) and V0-FMD-SPD-TPC (right). Non-exclusive events (no
gap) are compared.

consistent with the expectation according to the quantum number conservation argument.
It is also interesting to note that, the f0 and f2 signals are still very strong even though
with V0 alone the exclusivity condition is less stringent which is indicated by the more
prominent K0

s and ρ(770) in the exclusive distribution.

The production of f0(980) and f2(1270) under investigation is typically non-perturbative.
Higher states like the χc family which would render a quantitative comparison to theories
is beyond the current statistical reach. The non-exclusive background can only be removed
to a negligible level by measuring the out-going protons which is not available at the time
of writing. Future potential experimental improvement may find its difficulty for this
measurement due to the large pile-up foreseen in future LHC proton-proton collisions.
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Appendix B

Track cuts for the particle
production analysis

In order to select primary particles and ensure tracking qualities, the following track cuts
are applied.

1 AliESDtrackCuts ∗ raaCut = AliESDtrackCuts : :
GetStandardITSTPCTrackCuts2010 (kTRUE, 1 ) ;

2 raaCut−>SetMinNCrossedRowsTPC (120) ;
3 raaCut−>SetMinRatioCrossedRowsOverFindableClustersTPC ( 0 . 8 ) ;
4 raaCut−>SetMaxChi2PerClusterITS (36) ;
5 raaCut−>SetMaxFractionSharedTPCClusters ( 0 . 4 ) ;
6 raaCut−>SetMaxChi2TPCConstrainedGlobal (36) ;
7 raaCut−>SetEtaRange ( −0 .9 ,0 .9 ) ;
8 raaCut−>SetPtRange ( 0 . 1 5 , 1 e10 ) ;

For the TPC coherent fit, a cut is applied to ensure the TPC signal quality.

1 t rackptr−>GetTPCsignalN ( ) >60.

The following pseudo-codes are used for TOF identification for pions, kaons and protons,

1 i f ( TOF status == AliPIDResponse : : kDetPidOk ) {
2 n s igma pion = PIDResponse−>NumberOfSigmasTOF( track , AliPID : :

kPion ) ;
3 n sigma kaon = PIDResponse−>NumberOfSigmasTOF( track , AliPID : :

kKaon) ;
4 n s igma proton = PIDResponse−>NumberOfSigmasTOF( track , AliPID : :

kProton ) ;
5 }
6 // i n c l u s i o n c u t = 1 or 2 , e x c l u s i o n c u t = 4
7 i f ( abs ( n s igma pion ) < i n c l u s i o n c u t && abs ( n sigma kaon )>

e x c l u s i o n c u t \\
8 && abs ( n s igma proton )> e x c l u s i o n c u t ) i s p i o n = true ;
9 i f ( abs ( n sigma kaon ) < i n c l u s i o n c u t && abs ( n s igma pion )>

e x c l u s i o n c u t \\
10 && abs ( n s igma proton )> e x c l u s i o n c u t ) i s kaon = true ;
11 i f ( abs ( n s igma proton )< i n c l u s i o n c u t && abs ( n sigma kaon )>

e x c l u s i o n c u t \\
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Appendix B: Track cuts for the particle production analysis

12 && abs ( n s igma pion ) > e x c l u s i o n c u t ) i s p r o t o n = true ;

where the cut on the TOF status additionally requires no mismatch with the TPC iden-
tification.
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