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Abstract

For certain quantum field theories, the Kreimer-Connes Hopf-algebraic approach to renormalization re-
duces the Dyson-Schwinger equations to a system of non-linear ordinary differential equations for the 
expansion coefficients of the renormalized Green’s function. We apply resurgent asymptotic analysis to find 
the trans-series solutions which provide the non-perturbative completion of these formal Dyson-Schwinger 
expansions. We illustrate the general approach with the concrete example of four dimensional massless 
Yukawa theory, connecting with the exact functional solution found by Broadhurst and Kreimer. The 
trans-series solution is associated with the iterative form of the Dyson-Schwinger equations, and displays 
renormalon-like structure of integer-repeated Borel singularities. Extraction of the Stokes constant is possi-
ble due to a property we call ‘functional resurgence’.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Kreimer-Connes approach to renormalization in quantum field theory recasts the per-
turbative renormalization process in Hopf-algebraic terms, leading to new perspectives as well 
as new computational methods [1–5]. A long-standing problem is to understand how non-
perturbative effects fit naturally into this formalism. In this paper we present an approach to 
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this problem based on Écalle’s resurgent trans-series and alien calculus [6–9]. We illustrate the 
general method by considering a local quantum field theory with a Green’s function depending 
on a single running coupling, α, and a single kinematical variable, L = lnq2/μ2, where μ is 
the renormalization scale. It has been shown by Broadhurst and Kreimer [10,11], and Kreimer 
and Yeats [12,13], that the recursive Hopf-algebraic structure of the Dyson-Schwinger equations, 
combined with the renormalization group equations describing the anomalous scaling under re-
scaling of parameters, reduces the problem to a set of non-linear ordinary differential equations 
(ODEs). This was used in [10,11] to extend Dyson-Schwinger solutions well beyond the simple 
“rainbow” and “chain” approximations, to a Hopf-based solution which sums over all possible 
nestings and chainings of the one loop self-energy. This is a highly non-trivial implementation 
of the BPHZ renormalization procedure, which is brought under algebraic and combinatorial 
control through the asymptotics of the growth of skeleton graphs. In the breakthrough papers 
20 years ago [10,11], this was implemented explicitly for four dimensional massless Yukawa 
theory, enabling a solution to 30th perturbative order, a computation requiring ∼ 1020 BPHZ 
subtractions. This solution agrees with numerical integration and also Borel resummation tech-
niques [10,11,14]. The relevant expansion coefficients of the anomalous dimension are related 
to the combinatorial problem of counting connected chord diagrams [15,16], and to a functional 
approach based on the properties of the ring of formal divergent series [5,17]. This enumerative 
graph interpretation is known to be a non-D-finite combinatorial problem [18]. In this paper 
we study the associated ODEs using resurgent asymptotics and alien calculus, complementary 
approaches which yield non-perturbative trans-series solutions, whose expansions display fa-
miliar features of resurgence such as large-order/low-order relations. The trans-series solution 
also provides insight into the origin of renormalon-like Borel plane behavior arising from the 
iteration of Feynman diagram structures. For other analyses of resurgence properties of renor-
malization group and Dyson-Schwinger equations see [19–22]. A novel perspective on this Hopf 
algebra based approach to QFT was recently uncovered by Krüger [23]. Renormalons have also 
been studied recently using ideas from resurgence, in a wide variety of theories: see for example 
[24–31], and references therein.

2. Broadhurst-Kreimer solution for the massless Yukawa theory

As a concrete example to illustrate the general approach, we consider four dimensional mass-
less Yukawa theory:

L = 1

2
(∂φ)2 + iψ̄ /∂ ψ − g ψ̄ σ ψ (1)

As in [10,11] we consider the renormalized fermion self-energy

�(q) := (2)

and take all propagator self-insertions into account. This approach can be depicted via the Dyson-
Schwinger equation,

subtractions (3)

with the appropriate BPHZ subtractions indicated. Another way to describe the relevant set of 
graphs is to start with the one-loop graph and add all possible iterated and multiple 
insertions of this graph into itself. The pictorial equation (3) corresponds to the integral equation
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�(q) = α

π2

∫
d4k

1

(q + k)2

(
1
/k

+ 1
/k
�(k)

1
/k

+ 1
/k
�(k)

1
/k
�(k)

1
/k

+ · · ·
)

− subtractions (4)

where α = (g/(4π))2. By Poincaré symmetry, the fermion self-energy �(q) must be propor-
tional to /q . We define the scalar-valued function �̃(q2), such that �(q) = /q �̃(q2), and the 
integral equation reduces to

�̃(q2) = α

π2

∫
d4k

q · k
k2(q + k)2(1 − �̃(k2))

− subtractions, (5)

where the subtractions can be chosen such that the momentum subtraction renormalization con-
dition �̃(μ2) = 0 is fulfilled.

Broadhurst and Kreimer [11] solved this integral equation using Hopf-algebraic methods. For 
the anomalous dimension in the momentum subtraction scheme

γ̃ (α) = d

d lnq2 ln
(

1 − �̃(q2)
) ∣∣∣∣∣

q2=μ2

, (6)

they obtained the non-linear ODE,

2γ̃ = −α − γ̃ 2 + 2αγ̃
d

dα
γ̃ . (7)

Subsequently, Kreimer and Yeats [12] confirmed and generalized this analysis, and uncovered 
a close relationship with connected chord diagrams, as reviewed below in Section 3. Among 
other things, they established that the full Green’s function can be recovered from eq. (7),

�̃(q2) = −
∞∑

j=1

γ̃j (α)Lj (8)

= −
∞∑

j=1

cj (L)αj , (9)

where we recall the notation: L ≡ ln q2

μ2 . The first term, γ̃1(α), is the anomalous dimension γ̃ (α). 
All higher coefficients are expressed recursively in term of γ̃1(α):

γ̃k(α) = 1

k
γ̃1(α) (1 − 2α ∂α) γ̃k−1(α), k ≥ 2. (10)

This equation is an avatar of the renormalization group equation in the Hopf-algebra approach 
[12]. The solution to the self-inserted Yukawa self-energy problem is the simplest non-trivial 
example of a more general framework. See [19,20,32–36] for generalizations and [4, Chap. 9]
for a recent review.

3. Asymptotic formal perturbative series

Solving the non-linear ODE (7) iteratively in orders of α gives the formal perturbative expan-
sion of the anomalous dimension:

γ̃ (α) ∼
∞∑

Cn

(−α)n

22n−1 = −α

2
+ α2

23 − 4
α3

25
+ 27

α4

27 + . . . as α → 0 (11)

n=1
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Fig. 1. A disconnected and a connected chord diagram.

where the coefficients Cn are generated by the recursion formula,

Cn+1 = n

n∑
k=1

CnCn+1−k, n ≥ 1 (C1 = 1). (12)

This recursion relation enumerates connected chord diagrams [12,15]. A chord diagram of order 
n is a matching of 2n points. There are (2n − 1)!! chord diagrams. A chord diagram is connected
if there is no way to draw the diagram without crossing chords. See Fig. 1 for illustrations of a 
disconnected and a connected chord diagram. The first terms are:

Cn = [1,1,4,27,248,2830,38232,593859,10401712,202601898, . . . ] (13)

This sequence is listed in the OEIS [37] as A000699. The numbers Cn diverge factorially with 
order n, so the expansion (11) is a formal asymptotic series. The large-order behavior of the Cn

is:

Cn ∼ e−1 2n+ 1
2 


(
n + 1

2

)
√

2π

(
1 −

5
2

2
(
n − 1

2

) −
43
8

22
(
n − 1

2

) (
n − 3

2

)
−

579
16

23
(
n − 1

2

) (
n − 3

2

)(
n − 5

2

) − . . .
)
.

(14)

The first coefficient of this asymptotic expansion was first evaluated by Kleitman [38] and later 
confirmed by Stein and Everett [39]. The higher order corrections have been given in [17].

It is interesting to compare the Hopf-algebraic perturbative expansion (11) with two simpler 
approximations to the Dyson-Schwinger equations: the rainbow and the chain approximations, 
depicted in Fig. 2. The rainbow approximation [40] yields a convergent expansion of the anoma-
lous dimension

γ̃rainbow(α) = 1 − √
1 + α = −α

2
+ α2

23 − 2
α3

25
+ 5

α4

27 + . . . (15)

while the chain approximation [10, eq. (19)] yields an asymptotic expansion

γ̃chain(α) = −2

∞∫
0

dt

t + 1
e−4t/α ∼ −α

2
+ α2

23 − 2
α3

25
+ 6

α4

27 + . . .

∼
∞∑

n=1

(−1)n(n − 1)! αn

22n−1 .

(16)
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Fig. 2. Simpler approximations for the Yukawa fermion propagator.

Fig. 3. Plot of the Borel plane singularity structure for the Borel transform of the anomalous dimension, for the 4d mass-
less Yukawa theory. The natural logarithm of the absolute value of the imaginary part of the Borel transform (constructed 
via a Padé approximant in the conformally mapped disc [7]) is plotted for t just above the negative real Borel axis: 
t → t + i

50 . We clearly see a leading singularity on the negative Borel axis at t = − 1
2 , and further Borel singularities at 

integer-multiples of this leading location. These singularities correspond directly to the higher non-perturbative terms in 
the trans-series, and are associated with the iterative renormalon-like structure of the Dyson-Schwinger equations.

The chain approximation is divergent, and has just one singularity in the Borel plane, a simple 
pole at t = −1, viewing the expansion (16) as an expansion in α/4. By contrast, the Hopf-
algebraic result in (11)-(14), which sums over all nestings and chainings of the one loop self-
energy divergence, yields a divergent expansion whose Borel structure is much richer, revealing 
the characteristic renormalon-like structure of Borel singularities repeated at integer multiples of 
the leading singularity [41,42]. From the large-order growth (14), we see that the leading Borel 
singularity is at t = −1/2 (with the same normalization), and that it is a branch point rather 
than a pole. This situation is consistent with the Borel structure of zero dimensional Yukawa 
theory, where also a Borel singularity at t = − 1

2 is observed [43, Sec. 6.4.3]. In the four dimen-
sional Yukawa theory treated here, further singularities appear on the negative Borel axis, at all 
integer multiples of the location of the leading singularity. See Fig. 3. This integer-repetition 
of Borel singularities is a key indicator of non-perturbative physics, and can be identified using 
the Padé-Conformal-Borel method as discussed in [44]. Such a Borel plane singularity structure 
arises naturally in the context of non-linear differential equations [7], as we illustrate in Sec-
tion 4 of this paper. It also appears naturally in the framework of alien calculus, as shown in 
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Section 5. Ultimately it is associated with the iterative structure of the Dyson-Schwinger equa-
tions. It is quite remarkable that the Hopf-algebraic solution of the four dimensional massless 
Yukawa theory is simple enough to be analyzable, and yet sophisticated enough to display non-
trivial non-perturbative behavior.

4. Trans-series solution from the Hopf algebraic Dyson-Schwinger differential equation

4.1. Formal perturbative series

The coefficients Cn in (11) are generated through the generating function of connected chord 
diagrams (see A000699 in the OEIS [37]):

C(x) =
∞∑

n=1

Cn xn (17)

The correspondence with the anomalous dimension is:

γ̃ (α) = 2C
(
−α

4

)
(18)

The connected chord diagram generating function C(x) satisfies the non-linear ordinary differ-
ential equation

C(x)

(
1 − 2x

d

dx

)
C(x) = x − C(x) (19)

which is a re-writing of eq. (7), or can be derived from the recurrence relation in eq. (12). The 
differential equation (19) was also considered by Stein [15], who established that its solution 
indeed enumerates connected chord diagrams.

By making the ansatz C(x) = c xb +O(xb+1) it is easy to confirm that eq. (19) has a unique 
solution C ∈ R[[x]] of the form C(x) = x +O(x2). The reason for this is the irregular singular 
point of the differential equation at x = 0. The free parameter, necessary for the solution of a first 
order differential equation, is hidden in non-perturbative corrections to the power series solution.

To go beyond the divergent perturbative expansion in (17), we write a trans-series ansatz [7]:

C(x) =
∞∑

k=0

σkC(k)(x) (20)

Here C(0)(x) is the formal perturbative series in (17), and C(k≥1)(x) are exponentially small 
(as x → 0+) non-perturbative terms. The constant σ in (20) is the “trans-series parameter”, or 
“instanton counting parameter”, which encodes the boundary condition parameter for the ODE. 
Inserting this ansatz for C(x) into (19), and collecting powers of σ , we obtain a tower of linear
inhomogeneous equations for the non-perturbative terms C(k≥1)(x).

4.2. One-instanton term

The O(σ ) term yields a linear inhomogeneous equation for the first non-perturbative term 
which can be expressed as:

C(1)′(x)

(1)
= −C(0)′(x)

(0)
+ 1 + 1

(0)
(21)
C (x) C (x) x 2x C (x)
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from which we learn that

C(1)(x) = x

C(0)(x)
exp

⎡⎣ x∫
dt

2t C(0)(t)

⎤⎦ (22)

The overall integration constant can be absorbed into the trans-series parameter σ . We can sim-
plify the expression (22) using the interesting identity

1

x C(0)(x)
= − d

dx

((
C(0)(x) + 1

)2

x
+ lnx

)
(23)

which follows from the non-linear ODE (19) satisfied by C(0)(x). Thus we can write the one-
instanton term C(1)(x) as:

C(1)(x) = 1√
2π

√
x

C(0)(x)
exp

[
−

(
C(0)(x) + 1

)2

2x

]
(24)

where we have chosen the (arbitrary) overall normalization constant for later convenience: see 
(54) and (55). Once we have made this normalization choice, it propagates through all orders of 
the trans-series expansion (20).

Using the formal series for C(0)(x) we obtain the formal series expansion for C(1)(x):

C(1)(x) ∼ e−1/(2x)

√
x

e−1

√
2π

[
1 − 5x

2
− 43x2

8
− 579x3

16
− . . .

]
(25)

≡ e−1/(2x)

√
x

∞∑
n=0

C(1)
n xn (26)

The first factor in (26) is identified as the “one-instanton” factor

ξ(x) ≡ e−1/(2x)

√
x

, (27)

and the second factor is identified as the “fluctuation about the one-instanton”,

C
(1)
fluc(x) ≡

∞∑
n=0

C(1)
n xn. (28)

This result for C(1)(x) exhibits two manifestations of resurgence. First, compare the coefficients 
C

(1)
n in (25), of the fluctuation series C(1)

fluc(x), with the coefficients in the large-order behavior

of the coefficients of the formal perturbative series C(0)(x) in (14): 
[
1,− 5

2 ,− 43
8 ,− 579

16 , . . .
]
. 

The coefficients of the large-order behavior (14) of the perturbative series coefficients re-appear 
(“resurge”) as the coefficients of the fluctuations about the one-instanton term in (25). This is an 
example of the generic Berry-Howls large-order/low-order resurgence relation [45]. But, more 
deeply, we see that the relation between the one-instanton term and the perturbative series is 
more explicit: expression (24) shows that the one-instanton term C(1)(x) is explicitly encoded in 
terms of the “zero-instanton” term C(0)(x).

Note that in (24) we have made a convenient choice for the arbitrary normalization of C(1)(x). 
Our choice is motivated by the overall multiplicative factor in the large-order growth (14), but we 
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emphasize that while the normalization of C(1)(x) is arbitrary, the overall normalization of the 
large-order growth on the other hand is not arbitrary: it is a property of the differential equation, 
known as a Stokes constant, and can be found by solving an associated connection problem. See 
[7,9,46,47] for in depth accounts of Stokes constants and associated phenomena. It is in general 
a difficult problem to determine these Stokes constants, but for this specific problem it is possible 
to fix the normalization and determine the Stokes constant by using more sophisticated tools from 
alien calculus. We illustrate these tools and determine the normalization factor in Section 5. In 
this example it is simple to generate very high orders of the perturbative expansion, so the Stokes 
constant can also be deduced numerically from the large order growth of the Cn generated by 
(12).

Similarly, we expect to find a relation between the one-instanton term C(1)(x) and the higher 
order instanton terms C(k≥2)(x) in the trans-series (20). To this end, we can use the expression 
(24) to generate straightforwardly the expansion coefficients of C(1)

fluc(x) to very high order, from 
which we can determine the large-order growth of these coefficients, including sub-leading terms:

C(1)
n ∼ −2e−2 2n+ 3

2 

(
n + 3

2

)
2π

(
1 − 5

2
(
n + 1

2

) −
11
2

22
(
n + 1

2

) (
n − 1

2

)
−

97
2

23
(
n + 1

2

) (
n − 1

2

) (
n − 3

2

) − . . .

)
. (29)

4.3. Two-instanton term

At order σ 2, the trans-series ansatz (20) in the ODE (19) also yields a linear inhomogeneous 
equation for the “two-instanton” term, C(2)(x), which can be written as

2x C(0) C(2)′ + (−1 − 2C(0) + 2x C(0)′)C(2) = C(1)
(
C(1) − 2x C(1)′) (30)

Using the equations for C(0)(x) and C(1)(x), this simplifies to the following compact form:(
C(2)

C(1)

)′
= −1

2

C(1)

(C(0))3
(31)

Using further identities for C(0)(x) and C(1)(x) we can write the right-hand-side as a total deriva-
tive. To see this, define the following bivariate function:

f (x, y) ≡ 1√
2π

x

y
exp

[
− 1

2x
y(y + 2)

]
. (32)

In terms of this function f (x, y), the one-instanton result (24) can be written as

C(1)(x) = ξ(x) · f (x,C(0)(x)) (33)

where we recall that ξ(x) is the non-perturbative instanton factor defined in (27). Furthermore, 
the differential equations for C(0)(x) and C(1)(x) imply that

C(1)

(C(0))3
= − d

dx

(
ξ(x)

[
∂f (x, y)

∂y

]
y=C(0)(x)

)
(34)

Consequently, we can write C(2)(x) as follows:



M. Borinsky, G.V. Dunne / Nuclear Physics B 957 (2020) 115096 9
C(2)(x) = 1

2!ξ(x)2 · f (x,C(0)(x))

[
∂f (x, y)

∂y

]
y=C(0)(x)

(35)

Note that expression (30) is an inhomogeneous equation, so the normalization of C(2)(x) is fixed 
in terms of the previously chosen normalization of the one-instanton term C(1)(x). (A possible 
constant term from integrating (31) would add a multiple of C(1)(x) to C(2)(x), which is excluded 
because it has a different exponential grading in the trans-series.)

The result (35) for the two-instanton term C(2)(x) also exhibits resurgence properties. First, 
it is expressed explicitly in terms of the formal perturbative series C(0)(x). Second, we observe 
the generic large-order/low-order resurgence relation between the large-order growth of the co-
efficients of the fluctuations about the one-instanton term, as shown in (29), and the fluctuations 
of C(2)(x) about the ξ(x)2 factor. These latter fluctuations can be generated from (35) using the 
formal expansion of C(0)(x):

C(2)(x) ∼ ξ(x)2 e−2

2π

[
1

x
− 5 − 11

2
x − 97

2
x2 − . . .

]
(36)

Note the correspondence of the expansion coefficients in (36) with the coefficients of the large-
order growth of the one-instanton fluctuation term in (29): 

[
1,−5,− 11

2 ,− 97
2 , . . .

]
.

4.4. All instanton orders

Remarkably, the structure of expressions (33) and (35), expressed in terms of the bivariate 
function f (x, y), generalizes to all orders of the trans-series expansion (20). Expanding in pow-
ers of the trans-series “instanton-counting” parameter σ , we find that at order k ≥ 2 we have a 
linear inhomogeneous ODE for C(k)(x) of the form:(

C(k)

C(1)

)′
= F

(
C(0)(x),C(1)(x),C(2)(x), . . . ,C(k−1)(x)

)
(37)

This implies that C(k) can be expressed as a (k−1)-fold nested integral involving the lower order 
terms. This is again a manifestation of resurgence: the k-instanton terms are expressed explicitly 
in terms of the lower instanton terms, all ultimately in terms of C(0)(x).

In fact, the situation is even more elegant than this. There are again identities in terms of the 
bivariate function f (x, y) which permit all these nested integrals to be done, and we find a very 
simple all-orders trans-series expression:

C(x) = C(0)(x) +
∞∑

k=1

(σ · ξ(x))k

k!

[(
f (x, y)

∂

∂y

)k−1

f (x, y)

]
y=C(0)(x)

=
[

exp

(
σξ(x)f (x, y)

∂

∂y

)
· y

]
y=C(0)(x)

(38)

This is the all-orders trans-series expansion of the solution to the non-linear ODE (19), giving 
the full non-perturbative solution of the Dyson-Schwinger equations of the massless Yukawa 
theory. Notice that each instanton order of the trans-series is expressed in terms of the formal 
perturbative series C(0)(x). We will prove this all-order result more explicitly in Section 5 using 
a completely different approach based on an explicit realization of Écalle’s alien calculus [6].
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4.5. Trans-asymptotics: summing all instanton orders

As x → +∞, the instanton factor ξ(x) in (27) is no longer small, and at a certain point the 
trans-series should be graded differently; as an expansion in powers of x, multiplied by functions 
of ξ(x), rather than the other way around [7,48]. To implement this trans-asymptotic matching, 
we re-arrange the trans-series (20) as

C(x) = x

∞∑
n=0

xnFn (ρ(x)) (39)

where the argument ρ(x) is related to the instanton factor (27) as

ρ(x) ≡ σ
ξ(x)

x
(40)

This means that for each order of the x expansion we re-sum all orders of the instanton expansion 
in powers of σ ξ(x)

x
. Inserting the expansion ansatz (39) into the Dyson-Schwinger equation (19)

and substituting ρ = σ
ξ(x)
x

, the coefficient of x gives the following equation for F0(ρ)

F0(ρ)ρ
dF0

dρ
= −1 + F0(ρ) (41)

This has the general solution

F0(ρ) = 1 + W(ecρ) (42)

in terms of the Lambert W function [49] which satisfies the defining equation W(ρ)eW(ρ) = ρ, 
with c an arbitrary parameter. The arbitrary parameter c can be absorbed into the trans-series 
parameter σ and the branch of W is fixed by matching the expansion (39) to the trans-series 
structure in (20) and (38):

C(x) = C(0) + ρ(x)xC(1)(x) + ρ(x)2x2C(2)(x) + ρ(x)3x3C(3)(x) + . . .

= (C
(0)
0 x +O(x2)) + ρ(x)(C

(1)
0 x +O(x2)) + ρ(x)2(C

(2)
0 x +O(x2))

= x
[
C

(0)
0 + C

(1)
0 · ρ(x) + C

(2)
0 · ρ(x)2 + . . .

]
+ x2

[
C

(0)
1 + C

(1)
1 · ρ(x) + . . .

]
+ . . .

= xF0(ρ(x)) + x2F1(ρ(x)) + . . .

(43)

Thus, the solution in (42) involves the W0 branch, which is real and positive on the positive real 
line. At the next order in x, we find the following first-order linear inhomogeneous ODE for F1:

F0(ρ)ρ
d

dρ
F1(ρ) +

(
ρ

dF0

dρ

)
F1(ρ) − F1(ρ) = 3F0(ρ)ρ

dF0

dρ
− F 2

0 (ρ) (44)

This can be integrated in closed form, and matching to the re-arranged trans-series (38) we ob-
tain:

F1(ρ) = −
(

W 3(ρ) + 3W(ρ) − 1)

2(1 + W(ρ))

)
(45)

This suggests that the Fn(ρ) are rational functions of W(ρ). This can be confirmed by changing 
variable from ρ to W , using the fact that
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ρ
d

dρ
= W

1 + W

d

dW
(46)

The “doubly-resummed” trans-asymptotic expansion therefore has the form

C(x) = x

∞∑
n=0

xnFn

(
W

(
σ ξ(x)

x

))
(47)

in which all the terms Fn (W) are rational functions of W . In other words, at each order n of the 
perturbative expansion, all orders of the instanton expansion can be summed to give a rational 

function of the Lambert function W
(

σξ(x)
x

)
, which is itself already an all-orders resummation 

of instanton terms.
We comment that in certain integrable ODEs such as the Painlevé equations, the correspond-

ing trans-asymptotic expansions are expressed in terms of rational functions, Gn(σ ξ(x)/x), of 
the one-instanton term ξ(x) [7,48]. Interestingly, the Lambert W-function also appears in the 
solution of the massless Wess-Zumino model [20], in a non-commutative scalar QFT [50], and 
in the context of algebraic group topology [51]. By its very definition, the W-function is indeed 
natural in the transition between expansions in powers of couplings and in powers of instan-
tonic exponentials [52]. The Lambert function has two real branches; it would be interesting to 
study the analytic continuation to the second branch in the context of trans-asymptotics and the 
analyticity properties of the associated QFT Green’s functions.

5. Trans-series from the alien derivation for formal series

5.1. Alien derivative operator on the ring of formal power series

The coefficients of the asymptotic expansion in eq. (14) have been evaluated in [17] using 
an approach that is entirely based on rings of power series. This approach to resurgence is a 
specialization of Écalle’s [6] general theory (see also [8,9,53] where different aspects of this 
theory are highlighted), which does not require any information on the Borel transformation of 
the power series under inspection.

At the center of the approach from [17] is the alien or asymptotic derivative operator. Take 
the subspace R[[x]]Aβ ⊂ R[[x]] of all formal power series f (x) = ∑

n=0 fnx
n whose coefficients

obey an asymptotic expansion of the form

fn ∼
∞∑

k=0

ckA
n+β−k
(n + β − k) as n → ∞. (48)

To each such power series f (x) we can associate a new formal power series by interpreting the 
coefficients ck of the asymptotic expansion as a formal power series again. In this way we obtain 
a linear operator AA

β :R[[x]]Aβ →R[[x]],

(AA
β f )(x) :=

∞∑
k=0

ckx
k, (49)

with the coefficients ck as in eq. (48). This operator is also often denoted as �A−1 , and called 
alien derivative.
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A simple but important example is the formal power series

I (x) =
∞∑

n=0

(2n − 1)!!xn =
∞∑

n=0

2n+ 1
2 
(n + 1

2 )√
2π

xn ∈ R[[x]]2
1
2

(50)

for which (A2
1
2
I )(x) = 1√

2π
, because of the definitions in eqs. (48) and (49). This example is 

important for our discussion because I (x) is the generating function for all chord diagrams. It 
is related to our function of interest C(x), the generating function of connected chord diagrams, 
via the functional equation:

I (x) = 1 + C(xI 2(x)) (51)

It is quite easy to prove this functional equation which C fulfills [16]. This functional equation 
can be used to solve the connection problem for the differential equation (19) completely.

To do this, we need to know that the AA
β operator is a derivation, which respects the Leibniz 

and chain rules [17]:

(AA
β (f · g))(x) = (AA

β f )(x)g(x) + f (x)(AA
β g)(x) (52)

(AA
β (f ◦ g))(x) = f ′(g(x))(AA

β g)(x) +
(

x

g(x)

)β

e

1
x − 1

g(x)
A (AA

β f )(g(x)). (53)

For the problem at hand, we can specialize these rules to A = 2 and β = 1
2 .

5.2. Trans-series from the functional equation

Since A2
1
2

satisfies the Leibniz and chain rules, we can apply it directly to both sides of the 

functional equation (51) to give an explicit expression for the A2
1
2

derivative of C. We can there-

fore solve for the asymptotics of the implicitly defined generating function C in eq. (51) by using 
A2

1
2

in a similar way as we can solve for the ordinary derivative of an implicitly defined function 

(see [17] for details):

(A2
1
2
C)(x) = 1√

2π

x

C(x)
e− C(x)(C(x)+2)

2x . (54)

Notice that the overall normalization of (A2
1
2
C)(x) is fixed by the functional equation (51). This 

result (54) should be compared with the one-instanton fluctuation term in eq. (24). With our 
chosen normalization of C(1)(x) in (24), we have the exact identification:

(A2
1
2
C)(x) =

∞∑
n=0

C(1)
n xn (55)

Therefore from eq. (48) we have proved that the coefficients of C(x) = ∑∞
n=0 C

(0)
n xn have the 

asymptotic expansion:

C(0)
n ∼

∞∑
k=0

C
(1)
k 2n+ 1

2 −k


(
n + 1

2
− k

)
as n → ∞. (56)
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Note that here we are directly working with the asymptotic behavior of the original sequence and 
there is no arbitrary normalization constant anymore. The Stokes constant is fixed completely by 
the application of the chain rule (53) and the functional equation (51).

An important consequence of this observation is that it is now straightforward to iterate the 
A2

1
2

operator to calculate the asymptotic expansion of the asymptotic expansion, and so on. By 

using eq. (54) and the chain rule in eq. (53), we immediately get

(A2
1
2
(A2

1
2
C))(x) = 1√

2π

(
− 1

C(x)
− 1

x
− C(x)

x

)
x

C(x)
e− C(x)(C(x)+2)

2x (A2
1
2
C)(x)

= − 1

2π

(
x2

C3(x)
+ x

C2(x)
+ x

C(x)

)
e− C(x)(C(x)+2)

x (57)

≡
∑

n≥−1

C(2)
n xn (58)

This expression is now actually a Laurent series, as it starts with a 1
x

-term, which matches with 
the two-instanton fluctuation factor in (36) — again thanks to our convenient choice of prefactor 
normalization. With this choice, we obtain the explicit form of eq. (29) without resorting to any 
numerical approximation to fix the overall constant:

C(1)
n ∼

∞∑
k=−1

C
(2)
k 2n+ 1

2 −k


(
n + 1

2
− k

)
as n → ∞. (59)

5.3. All orders generating function

In principle, we could continue iterating the A2
1
2

operator indefinitely and calculate higher and 

higher order A derivatives of C. This suggests that we might be able to find a three variable 
generating function g(η, x, y) such that

g(η, x,C(x)) =
∑
k≥0

ηk

((
A2

1
2

)k

C

)
(x)

k! , (60)

for all higher asymptotic (alien) derivatives of C(x).
We consider g(η, x, y) to be a function of the variables η, x, y, even though we are eventually 

only interested in the specialization y → C(x). By the chain rule property (53), g(η, x, C(x))

fulfills the equation

A2
1
2
g(η, x,C(x)) = ∂g(η, x, y)

∂y

∣∣∣
y=C(x)

(A2
1
2
C)(x) = ∂g(η, x, y)

∂y
f (x, y)

∣∣∣
y=C(x)

, (61)

where f (x, y) = 1√
2π

x
y
e− 1

2x (y(y+2)) is the bivariate generating function defined previously in 

eq. (32). On the other hand, because of the way g is defined as an exponential generating function,

A2
1
2
g(η, x,C(x)) =

∑
k≥0

ηk

((
A2

1
2

)k+1

C

)
(x)

k! = ∂g

∂η
(η, x,C(x)). (62)
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This equation which translates between the alien derivative and the ‘trans-series parameter’ η
is also called Écalle’s bridge equation [6]. We stress that the A operator gives a simple and 
completely explicit realization of the bridge equation for this problem.

Using the bridge equation and eq. (61) shows that g(η, x, y) is the solution of a partial differ-
ential equation

∂g(η, x, y)

∂η
= f (x, y)

∂g(η, x, y)

∂y
, (63)

with the boundary condition g(0, x, y) = y. This PDE is solved by the formal expression

g(η, x, y) = exp

(
η f (x, y)

∂

∂y

)
· y. (64)

The all-order trans-series solution in eq. (38) of the differential equation (19) is recovered after 
specifying y = C(x) and η = σξ(x).

Moreover, the PDE can also be solved explicitly with

g(η, x, y) = q−1 (x, η + q(x, y)) , (65)

where

q(x, y) :=
y∫

0

dy′

f (x, y′)
, (66)

and q(x, q−1(x, y)) = y. We therefore see that all order asymptotics that g(η, x, y) generates are 
encoded entirely in the function f (x, y).

The form of this PDE is universal for all problems h(x) = ∑∞
n=0 hnx

n with the property we 
call ‘functional resurgence’. This means that there exists a bivariate function f (x, y), with a 
finite radius of convergence in x and y, such that (compare with (54)):

(AA
β h)(x) = f (x,h(x)) . (67)

This relation explicitly encodes the way the original power series h(x) ‘resurges’ inside its own 
asymptotic expansion, via the function f (x, y). Under the assumption that there are no additional 
leading singularities in the Borel plane of the solution (as is guaranteed here by the fact that 
the solution fulfills a first-order ODE), the function f (x, y) contains all the non-perturbative 
information of h. Moreover, this information is easily accessible via the exponential generating 
function in eq. (64).

6. Conclusions

Our analysis shows that for quantum field theories for which the associated Hopf alge-
bra structure reduces the Dyson-Schwinger equations to a set of coupled non-linear ODEs 
[10–12,32–34], resurgent asymptotic analysis can be used to compute the full non-perturbative 
trans-series structure of physical quantities such as anomalous dimensions and beta functions. 
We have shown that the trans-series ansatz approach agrees perfectly with the alien calculus 
approach, based on an explicit and efficient alien derivative operator developed in [5,17]. The 
simplest illustrative example of this procedure has been discussed here, the four dimensional 
massless Yukawa theory, for which the relevant equation is a single first order non-linear ODE 
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(19), and the resulting non-perturbative completion is a natural extension of the pioneering high-
order perturbative results of Broadhurst and Kreimer [10–12]. The Hopf-algebraic analysis of 
this model is sufficiently sophisticated to reveal a rich non-perturbative structure, in the form of 
integer-repeated Borel singularities on the negative real axis, arising from the iterative structure 
of the Dyson-Schwinger equation. In other theories the ODE could be higher order, such as in 
the six dimensional scalar theory studied in [10–12], for which the trans-series and associated 
combinatorics is similar but much richer [54], or the Dyson-Schwinger equations could become 
a system of coupled non-linear ODEs [19–22,32–34]. From general results [7,46], the resurgent 
ODE analysis extends to these more general cases. There has been significant recent progress 
[55–57] in understanding the high-order perturbative behavior of scalar quantum field theo-
ries, and we hope the resurgent trans-series approach might provide a useful new perspective on 
the associated non-perturbative physics. Our considerations could be extended by using a more 
sophisticated combinatorial treatment of the respective Dyson-Schwinger equation. A Mellin 
transformation based approach as pioneered in [32] looks especially promising for that (see also 
[4, Chap. 9] for a recent review and [36] for explicit calculations of asymptotics using this ap-
proach). Moreover, there is ongoing work to find a combinatorial interpretation for the variety 
of related sequences that appear after application of the A operator [58]. These considerations 
might also be helpful to understand the resurgence behavior of these interesting combinatorial 
objects.
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