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Kurzfassung

Diese Dissertation befasst sich mit topologischer Stringtheorie und ihrer Beziehung zu Matrix-
modellen und Instantoneffekten. Topologische Stringtheorie ist ein Sektor der Stringtheorie.
Sie wird konstruiert, indem in einem N = (2, 2) supersymmetrischen Sigmamodell auf dem
Worldsheet durch den sogenannten topologischen Twist die Lorentzströme neu definiert wer-
den, bevor es an zweidimensionale Gravitation gekoppelt wird. Das Ergebnis ist eine String-
theorie mit metrikunabhängigen Observablen. Da der topologische Twist auf zwei konsistente
Weisen definiert werden kann, gibt es zwei topologische Stringtheorien, das A- und das B-
Modell, die mittels Mirrorsymmetrie zueinander äquivalent sind. Ihre Amplituden entsprechen
effektiven Ladungen in der Typ IIA beziehungsweise IIB Theorie, kompaktifiziert auf der Calabi-
Yau-Mannigfaltigkeit, in die das Sigmamodell das Worldsheet abbildet. Vom mathematischen
Standpunkt aus beschreiben sie die Gromov-Witten-Invarianten des betreffenden Calabi-Yaus.

Das B-Modell zeigt die sogenannte holomorphe Anomalie, die sich durch rekursive Differen-
tialgleichungen ausdrücken lässt, die die B-Modell-Amplituden erfüllen. Die durch diese Gle-
ichungen beschriebene Nicht-Holomorphizität der Amplituden steht in enger Beziehung zu ihrer
Modularität. Ein Resultat dieser Arbeit ist eine Methode, die holomorphen Anomaliegleichun-
gen effizient zu integrieren, wobei die modulare Struktur der Amplituden genutzt wird.

Ein weiterer Aspekt der topologischen Amplituden ist ihre Bedeutung in Verbindung mit
der Dualität zwischen heterotischer und Typ II-Stringtheorie. Wir berechnen die topologischen
Amplituden auf der heterotischen Seite für eine grosse Klasse von vorgeschlagenen Paaren von
heterotischen und Typ II-Theorien. In einem Teil der Fälle sind die Gromov-Witten-Invarianten
der betreffenden Calabi-Yau-Mannigfaltigkeit bekannt und stimmen mit unseren Ergebnissen
überein, was einen weiteren präzisen Test der Dualität darstellt.

Gegenstand des zweiten Teils dieser Arbeit ist die Verbindung zwischen topologischer String-
Theorie, Matrixmodellen und Instantoneffekten. Es wird seit einigen Jahren vermutet, dass
das topologische B-Modell in vielen Fällen äquivalent zu einem Matrixmodell ist. Andererseits
besteht eine klassische Beziehung zwischen dem asymptotischen Verhalten der Störungsreihe und
der Zustandssumme der Instantonübergänge. Wir zeigen, dass diese Beziehung auch für Matrix-
modelle gilt. Mittels der Dualität zwischen Matrixmodellen und topologischen Strings können
wir aus der Instanton-Zustandssumme im Matrixmodell auch Vorhersagen für das asymptotische
Verhalten topologischer Stringtheorien machen, unter Umgehung der zugehörigen Instantonam-
plitude innerhalb der Stringtheorie. Wir testen unsere Vorhersagen für eine Reihe von Matrix-
modellen und topologischen Stringtheorien und finden in allen Fällen hervorragende Überein-
stimmung. Die Matrix-Formulierung des B-Modells liefert so eine mögliche nicht-perturbative
Erweiterung, die mit perturbativen Methoden überprüfbar ist.

Abschliessend zeigen wir, dass Lösungen von Matrixmodellen, die die Eigenwerte auf Gebiete
um mehrere Extrema des Potentials verteilen, sogenannte Multi-Cut-Modelle, sich mithilfe eines
Multi-Instanton-Formalismus aus den Single-Cut-Modellen heraus beschreiben lassen.





Abstract

This thesis is about topological string theory and its relation with matrix models and instanton
effects. Topological string theory is a sector of string theory. It is constructed by redefining the
Lorentz currents on the worldsheet of an N = (2, 2) supersymmetric Sigma model by means of
a so-called topological twist, before coupling it to two-dimensional gravitation. The result is a
string theory with metric-independent observables. As the topological twist can be defined in
two consistent ways, there are two topological string theories, the A model and the B model,
equivalent to one another by mirror symmetry. Their amplitudes correspond to effective charges
in the type IIA and IIB theories, respectively, compactified on the Calabi-Yau manifold which
is the target of the Sigma model. In mathematical terms, the topological string describes
the Gromov-Witten invariants of that Calabi-Yau manifold. The B-model exhibits a so-called
holomorphic anomaly. This can be expressed in recursively defined differential equations which
are satisfied by the amplitudes. The deviation of the amplitudes from being holomorphic, as
described by the differential equations, is closely related to their modularity. A key result of this
thesis is a method for integrating the anomaly equations efficiently by exploiting the modular
structure of the amplitudes.

Another important aspect of the topological amplitudes is their role in the duality between
heterotic and type II string theory. On the heterotic side, we calculate the topological amplitudes
for a large class of conjectured pairs of heterotic and type II theories. In some of these examples,
the Gromov-Witten invariants of the appropriate Calabi-Yau manifolds are known and agree
with our calculations. This provides further data in favor of heterotic-type II duality.

Furthermore, we explore the connections between topological string theory, matrix models
and instanton effects. In recent years it has been conjectured that the topological B model is
equivalent to a matrix model. On the other hand, there is a classical relationship between the
asymptotic behavior of the perturbation series and the instanton corrections to the partition
sum. We use this relationship to make predictions concerning the asymptotic behavior of the
perturbation series based on the partition sum. By means of the duality between matrix models
and topological strings, we are then also able to make predictions for the asymptotic behavior of
topological string theories, avoiding the corresponding instanton amplitude within string theory.
These predictions are tested for some matrix models and topological string theories. In all cases
tested we find precise agreement. In this way, the matrix formulation of the B model leads to a
possible nonperturbative extension which can be tested with perturbative methods.

Finally, we show that solutions of matrix models which distribute the eigenvalues over regions
around several extrema of the potential (multi-cut models) can be described in terms of the
single-cut models by means of a multi-instanton formalism.
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Motivation

The search for a unified theory of particle physics and gravitation has occupied theoretical
physicists since the early days of quantum mechanics and general relativity at the beginning
of the last century, and is likely to continue for a long time to come. This is due to the
very different nature of general relativity and quantum physics. In order to be unified with the
standard model of particle physics, we surely need a quantum theory of gravity. However, general
relativity defies quantization. A simple argument for this comes from dimensional analysis. Since
the gravitational coupling GN is of dimension mass−2, the one-graviton correction to the zero-
graviton amplitude is of order Λ2

M2
Planck

. Accordingly, the gravitational interaction grows weaker

at low energy, but diverges at high energy. We therefore need either a nontrivial UV fixed
point or new physics at the Planck scale to soften the divergence. One way to “smear out” the
divergence is offered by string theory: if the graviton is generated by a vibrating string, the
graviton-fermion vertex is not a point, but a one-dimensional object, and the divergence coming
from coincident graviton vertices is softened.

The idea to introduce strings as the fundamental building blocks of particle physics came
out of the observation that seeing particles as vibrational modes of strings could explain the
Regge behaviour of resonances arising in strong interactions, and at the same time remove UV
divergences. String theory was thus proposed in the late 1960s as a theory of strong interactions.
However, experimental data from SLAC soon disposed of this idea, since it confirmed the com-
peting parton model of hadrons as composite objects that ultimately led to QCD. Still, research
in string theory continued, and it eventually emerged as a candidate for a theory unifying the
four fundamental forces. With the advent of string dualities during the 1990s, it became clear
that the various versions of the theory are all connected to each other and are nothing but
descriptions of one theory in different regimes. Accordingly there was hope that string theory
would ultimately lead to a unique description of nature, with the standard model with all its
masses and charges as the only possible solution.

It is by now far from clear whether this will ever happen. It seems rather that one has to
get used to the idea of a landscape of string vacua, among which ours may be entropically or
anthropically favoured but by no means unique. Even though there has been some progress in
making string theory a consistent, testable theory of nature with research on topics such as flux
compactifications, orientifolds, and metastable supersymmetry breaking (see e.g. [1] and [2] for
reviews), and there may even be some hope of seeing traces of it at the LHC in the near future
[3], string theory still has to find its place in our picture of the world.

It is thus all the more important to understand the many fundamental aspects of string
theory that still remain unclear, rather than look for the standard model within the zillions
of vacua as for a needle in a gargantuan haystack. At the same time, this approach can push
progress in both physics and mathematics as indeed it has done over the last 30 years.

On the physics side, one of the most dramatic developments has been triggered by the AdS-
CFT conjecture due to Maldacena [4], a concrete realization of the general idea of gauge/string
correspondence due to ’t Hooft [5]. In mathematics, string theory has made important con-
tributions to various fields such as algebraic topology, differential geometry and representation
theory.

One particularly fruitful area where new findings have emerged is topological string theory
[6, 7, 8], the main focus of this thesis. There are several ways to look at the topological string. It
serves as a toy model of string theory, useful for studying fundamental properties of more general
string theories in a simplified setting. Indeed, this aspect has led to deep insights about string
dualities, the gauge/string correspondence, and nonperturbative effects. Furthermore, since it
captures and organizes topological information about the target space, topological string theory
can be seen as a mathematical construction which is interesting in its own right. As such, it has
been a source of new developments in enumerative geometry and algebraic topology. Finally,
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it is intimately related to physical amplitudes of type II string theory, and this connection has
led to many new insights not only about string theory, but also about supersymmetric gauge
theories and black holes.
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Chapter 1

Topological Strings

This chapter contains a brief review of the topics most relevant to this thesis, focusing on the
topological string. For more detailed surveys, see e.g. [9, 10, 11, 12].

1.1 String Perturbation theory

In the following, we will briefly sketch the main ideas on which perturbative string theory is
based. For a textbook treatment, see [13, 14, 15].

In relativistic quantum field theory, particles are generated by fields in four-dimensional
space-time. A moving particle can therefore be seen as a map from a one-dimensional worldline
to four-dimensional Minkowski space, and its classical action is equal to the length of this
worldline,

S(γ) =

∫
|γ̇|dt. (1.1.1)

String theory merely adds one dimension to this picture, generating particles by fields living on
one-dimensional strings sweeping out a two-dimensional worldsheet Σ. The classical action of
the bosonic string is the surface of the worldsheet, analogously to (1.1.1),

S(Σ) =
1

4πα′

∫ √
hhαβgµν(X)∂αX

µ∂βX
νdσdτ. (1.1.2)

In the above action, the string tension appears as a new parameter α′. The perturbative ex-
pansion is therefore always twofold, in α′ and in the string coupling gs. String theory is thus
constructed as a two-dimensional conformal field theory on the worldsheet, mapped to a higher-
dimensional target. In order to include fermions in the picture, one has to incorporate super-
symmetry, a symmetry relating bosonic and fermionic degrees of freedom. The requirement
of anomaly cancellation upon quantization of the above action restricts the target space to be
26 dimensional for bosonic strings, or 10-dimensional for superstrings. The supposedly “physi-
cal” string theory comes in five versions, called type I, heterotic with symmetry group SO(32),
heterotic with symmetry group E8 × E8, type IIA and type IIB. They are related by various
dualities, as shown in Fig. 1.1. Since at least at low energies, our world certainly appears
four-dimensional, the extra dimensions have to be compactified. This can be done preserving
supersymmetry if the compactification space is a complex Kähler manifold of vanishing first
Chern class, a so-called Calabi-Yau space.

Thus, from the algebraic point of view string theory is a two-dimensional conformal field
theory on the world-sheet coupled to two-dimensional gravity, mapped to a target space. If the
correlation functions of the conformal field theory in question do not depend on the worldsheet
metric, we call it topological and the resulting string theory topological string theory. We will
here take the target to be a Calabi-Yau manifold. There are essentially two ways to construct
such a topological field theory. Either one starts with a theory whose action does not contain
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Figure 1.1: The web of string dualities

the metric at all, therefore metric independence of correlation functions is trivial. One example
for such a theory is Chern-Simons theory. The other option is to construct the theory in such a
way that even though the metric does appear in the action, the metric dependence drops out of
physical quantities such as correlation functions. Theories of this type are called cohomological

field theories, for reasons which will be explained below.

1.2 Twisting N = 2 theories

One way to obtain a topological field theory is to take a two-dimensional N = (2, 2) superconfor-
mal field theory, here a sigma model, and redefine its symmetry currents in a specific way called
twisting. Let us start with some basic facts about theories with N = (2, 2) supersymmetry1.

1.2.1 Supersymmetry and Superspace

A supersymmetry transformation is a transformation of the form

δXµ =ǭψµ

δψµ =ρα∂αX
µǫ,

(1.2.3)

where

ǫ =

(
ǫ−
ǫ+

)
(1.2.4)

is an infinitesimal constant Majorana spinor. A convenient way to make supersymmetries mani-
fest is the superfield formalism. In addition to the world-sheet coordinates σα, we introduce four
fermionic coordinates θ±, θ̄±. θ± and θ̄± are anticommuting Grassmann coordinates forming a
Majorana spinor. Note that since

{θA, θB} = 0, (1.2.5)

the anticommuting variables square to zero. This motivates the rules of Grassmannian integra-
tion ∫

dθ 1 = 0,

∫
dθ θ = 1. (1.2.6)

We can now organize the bosonic and fermionic fields of the theory into “superfields” Φ with
a finite expansion in θ, since θ2

± = 0,

Φ(xµ, θ, θ̄) = φ(y±) + θαψα(y±) + θ+θ−F (y±), (1.2.7)

1For a review of N = 2 special geometry, see section 2.1
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where y± = x± − iθ±θ̄±. An important property of supersymmetric theories in general is the
localization of certain correlation functions. If both the action and the inserted operators O are
invariant under some supersymmetry transformation generated by Q, the path integral

∫
e−SO

reduces to a sum over local contributions from the fixed points of Q [16]. The reason for this
simplification is that for all other configurations, one can introduce coordinates in which Q acts
by shifting one of the fermionic coordinates in the integration measure. Since the integrand is
invariant under the transformation, the coordinate does not appear and the integral vanishes by
(1.2.6) .

In the following we will consider a non-linear sigma model defined by an action of the form

∫
d2zd2θK(Φ, Φ̄), (1.2.8)

where K(Φ, Φ̄) is the Kähler potential, giving rise to the Kähler metric

gij = ∂i∂j̄K. (1.2.9)

Note that the action (1.2.8) involves an integral over both ordinary and Grassmanian coordinates.
The sigma model describes maps ϕ from a Riemann surface Σ, the worldsheet, into a target
manifold X with a metric g. Locally, the maps ϕ are described by configurations of bosonic
fields φi. If we denote by K, K the canonical and the anticanonical bundle on Σ, fermion fields

ψi
± on Σ transform as sections of K

1
2 ×ϕ∗(TX) and K

1
2 ×ϕ∗(TX) respectively, where ϕ∗(TX)

is the pullback of the tangent bundle on X.
In terms of component fields, the action (1.2.8) reads

S = t

∫
d2z

(
gij̄∂

µφi∂µφ̄j − gij̄ψ̄
j̄
− (D0 +D1)ψ

i
− + gij̄ψ̄

j̄
+ (D0 −D1)ψ

i
+ −Rij̄kℓ̄ψ

i
+ψ

k
−ψ

j̄
−ψ̄

ℓ̄
+

)
,

(1.2.10)
where Dµ are covariant derivatives

Dµψ
i
± = ∂µψ

i
± + ∂µφ

jΓi
jkψ

k
±, (1.2.11)

and we have eliminated the auxiliary fields F, F̄ using their equations of motion. We also have
introduced the parameter t as a coupling constant. The Christoffel symbols Γi

jk and Rieman-
nian curvature R are defined with respect to the Kähler metric. Symmetries of superspace
are generated by operators that leave the measure of integration invariant and we can orga-
nize the generators of U(1)-Lorentz symmetry together with the operators generating fermionic
coordinate shifts into the combinations

Q± =
∂

∂θ±
+ iθ̄±∂±

Q± = − ∂

∂θ̄±
− iθ±∂±

D± =
∂

∂θ±
− iθ̄±∂±

D̄± = − ∂

∂θ̄±
+ iθ±∂±.

(1.2.12)

The conserved charges Q±, Q± acting on a superfield Φ generate the supersymmetry transfor-
mation

δΦ = ǫ+Q− − ǫ−Q+ − ǭ+Q− + ǭ−Q+. (1.2.13)

An (anti-)chiral superfield is defined as a field Φ satisfying D±Φ = 0 (D̄±Φ = 0). There are two
more U(1) symmetry groups compatible with superfields of fixed chirality, generated by left-and
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rightmoving currents FL, FR. They combine into vector and axial R-symmetry currents FV , FA

defined as
FV = FR + FL, FA = FR − FL (1.2.14)

and act on the superfields as

eiαFV F(xµ, θ±, θ̄±) =eiαqV F(xµ, e−iαθ±, eiαθ̄±)

eiβFAF(xµ, θ±, θ̄±) =eiβqAF(xµ, e−iβθ±, eiβ θ̄±).
(1.2.15)

Note that these are internal currents acting only on the Grassmann variables θ, θ̄. We obtain
the following (anti-)commutation relations for the N = 2 supersymmetry algebra:

{Q±, Q±} = H ± P,

{J,Q±} = ±1

2
Q±, {J,Q±} = ±1

2
Q±,

{FV , Q±} = ±1

2
Q±, {FV , Q±} = ±1

2
Q±,

{FA, Q±} = ±1

2
Q±, {FA, Q±} = ∓1

2
Q±,

(1.2.16)

and all other combinations vanish.

1.2.2 Twisting

So far, we have been considering flat worldsheets. However, in order to couple to 2d gravity we’ll
need to sum over worldsheets of arbitrary geometry. All it takes to formulate the theory on a
curved worldsheet is to endow the surface with a spin structure such that spinors on the surface
are well-defined objects. In order for supersymmetry of the action to be preserved, we would
need a covariantly constant spinor ǫ in our definition of the supersymmetry transformation.
However, such an object does not exist on a general Riemann surface! The way out is to define

a new generator of Lorentz symmetry by either

JA = J − FV (A − twist) (1.2.17)

or
JB = J + FA (B − twist). (1.2.18)

Note at this point already that if one changes the sign of FR, FV gets replaced by −FA and vice
versa, thus exchanging the A- with the B-twist. This is what happens under mirror symmetry,
one of the central ingredients of (topological) string theory.

From the supersymmetry algebra (1.2.16), one sees that in both cases a new scalar super-
charge, also called topological charge, can be defined:

QA ≡ Q+ + Q− (A − twist),

QB ≡ Q+ + Q− (B − twist).
(1.2.19)

It also follows from the supersymmetry algebra that the new topological charge is nilpotent and
the Hamiltonian and momentum are Q-exact:

Q2
A = 0, HA =

1

2
{QA,Q+ + Q−}, PA =

1

2
{QA,Q+ −Q−},

Q2
B = 0, HB =

1

2
{QB,Q+ + Q−}, PB =

1

2
{QB,Q+ −Q−}.

(1.2.20)

The effect of this twist, as we will see in a moment, is to make all physical observables metric
independent! The new, twisted sigma models turn out to be topological quantum field theories.
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They are of the cohomological type2 mentioned above, by definition quantum field theories with
a scalar symmetry Q acting on the fields in such a way that the correlation functions are metric
independent. The physical observables are the Q-invariant operators. Since Q-exact operators
have vanishing correlation functions, they decouple from the theory and one can restrict the set
of observables to the cohomology of Q;

O =
KerQ
ImQ . (1.2.21)

For both the A- and the B-model, one can indeed show that not only Hamiltonian and mo-
mentum, but the complete energy-momentum tensor is QA/B-exact. This immediately implies
topological invariance, as for any set of Q-invariant operators {Oi} and Tµν = {Q, Gµν} for
some tensor Gµν ,

δ

δgµν
〈O1 · · · On〉 = 〈O1 · · · OnTµν〉 = 〈O1 · · · On{Q,Gµν}〉

= ±〈QO1 · · · OnGµν〉 + 〈O1 · · · OnGµνQ〉 = 0,

(1.2.22)

since Q annihilates the vacuum.

1.2.3 The A-model

Let us now have a closer look at the physical implications of the A-twist. In order to make the
new spin manifest, we rename the component fields of Φ

χi := ψi
+, χī := ψ

ī
−

ρī
z := ψ

ī
+, ρi

z̄ := ψi
−.

(1.2.23)

The QA charge acts as

{QA, φ
i} = χi, {QA, φ̄

i} =χī,

{QA, ρ
i
z̄} = 2∂z̄φ

i − Γi
jkρ

j
z̄χ

k, {QA, ρ
ī
z} =2∂zφ̄

ī − Γī
j̄k̄ρ

k̄
zχ

j̄ ,

{QA, χ
i} = 0.

(1.2.24)

After integrating over the Grassmann variables, the action (1.2.10) reads in the new variables

SA = t

∫
d2z

(
1

2
gij̄∂zφ

i∂z̄φ̄j − gij̄ρ
j̄
zDz̄χ

i − gij̄ρ
i
z̄Dzχ

j̄ +Rij̄kℓ̄ρ
i
z̄χ

jρk̄
zχ

ℓ̄

)
. (1.2.25)

Next, we need to show that the energy-momentum tensor is Q-exact, such that the theory
really is cohomological. It turns out that the action (1.2.25) is almost Q-exact. Introducing the
operator

VA = gij̄

(
ρj̄

z∂z̄φ
i + ∂zφ

j̄ρi
z̄

)
, (1.2.26)

we find that SA can be written as

SA = t

∫

Σg

{QA, VA} + t

∫

Σg

d2zgij̄

(
∂zφ

i∂z̄φ̄j − ∂z̄φ
i∂zφ̄j

)
. (1.2.27)

However, the extra bosonic term is nothing else than the pullback of the Kähler class ω =
igij̄dz

i ∧ dz̄j̄ to the worldsheet Σg! We can therefore write

SA = t

∫

Σg

{QA, VA} + t

∫

Σg

ϕ∗ω = t

∫

Σg

{QA, VA} + t

∫

ϕ(Σg)
ω. (1.2.28)

2also called “Witten type”
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Now, since the Kähler class is a closed form, its integral only depends on the homology class β
of ϕ(Σg), not on the worldsheet metric. So this term simply contributes a prefactor

e
−t

R
ϕ(Σg) ω ≡ e−tβ·ω, (1.2.29)

and we have shown that the A-model is indeed topological. As discussed above, the observables
in a cohomological field theory are the elements of the Q-cohomology. In the A-model, the most
general local operator satisfying the requirement of metric independence is

OK = Ki1···ipj̄1···j̄q
χi1 · · ·χipχj̄1 · · ·χj̄q , (1.2.30)

where Ki1···ipj̄1···j̄q
is a (p, q)–form on X. One can show that

{QA,OK} = −OdK , (1.2.31)

where d is the ordinary exterior derivative, so the BRST-cohomology of the A-model on X, with
BRST-operator QA, is in direct correspondence with the de Rham cohomology of the target
manifold X, and QA can be interpreted as the de Rham differential on X. Note also that
after extracting the prefactor, the action SA is QA-exact. This implies that for any correlation
function, we find

∂t〈O〉 = −〈O∂tSA〉 = ±〈{QA,OVA}〉 = 0, (1.2.32)

and therefore the correlator is independent of t. This means in particular that the semi-classical
approximation t→ ∞ is exact. Hence, the only contributions to the path integral

〈O〉 =

∫
DφDψDχ O e−SA (1.2.33)

come from configurations extremizing the action, that is, instanton configurations. Because of
the localization principle introduced above, these are precisely those that are fixed points of QA.
From the variation of the fields under QA (1.2.24), one can deduce that the fixed points of QA

have to satisfy χi = 0 and
∂z̄φ = 0, (1.2.34)

therefore the worldsheet instantons of the A-model are nothing else than holomorphic maps
φ : Σ → X. This can also be seen when rewriting the bosonic part of the action as

Sb =

∫

Σ
gij̄

(
∂zφ

i∂z̄φ̄j + ∂z̄φ
i∂zφ̄j

)

= 2

∫

Σ
gij̄

(
∂z̄φ

i∂zφ̄j
)

+ β · ω ≥ ω · β.
(1.2.35)

Since the action is bounded from below and the minimum is reached if and only if the map φ is
holomorphic, this is the dominant contribution in the semiclassical approximation, and therefore
–as we have just seen– the only relevant one.

The action being QA-exact up to the term −
∫
ϕ(Σg) ω, by the same argument as above physical

observables don’t depend on anything appearing only in VA. The only relevant structure is the
Kähler form that appears in the extra term. However, the moduli space of the target contains
not only the Kähler moduli parametrizing the Kähler form, but also complex structure moduli
to which the A-model is blind. Therefore, it is “half-topological” with respect to the target
space. We will see shortly that the B-model depends on the other half of the moduli.

The classical R-symmetries U(1)V and U(1)A survive the twisting procedure and lead to a
selection rule for a correlation function to be non-vanishing. Consider a correlation function of
the form

〈O1 · · · Os〉. (1.2.36)
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As we have seen above, each of the inserted operators is given by a differential form in Hp,q(X).
The vector and axial charges of such an operator are qV = q − p and qA = q + p. While the
vacuum is invariant under U(1)V and thus the total vector charge of the inserted operators has
to vanish, there is an anomaly in the axial R-symmetry which the inserted operators have to
compensate. The mismatch in zero modes is given by the index of the fermion kinetic operators
which can be shown to be

2

∫

Σg

ϕ∗(c1(X)) + 2 dim(X)(1 − g). (1.2.37)

We therefore find the selection rule

s∑

i=1

pi =

s∑

i=1

qi =

∫

Σg

ϕ∗(c1(X)) + dim(X)(1 − g). (1.2.38)

This is an important result! It implies that if the target has vanishing first Chern class, the only
truly nontrivial correlation functions appear at g = 0. At g = 1, the only quantity satisfying
(1.2.38) is the partition function itself, and at higher genus g > 1 all correlation functions vanish.
To put it otherwise, there are no holomorphic maps from a generic Riemann surface Σg to a
target X unless X has non-vanishing first Chern class or g ≤ 1.

1.2.4 The B-model

Now what happens if instead of choosing the A-twist, we go for the B-twist? Following [6], we
rename the fields as follows:

ρi
z = ψi

+, ρi
z̄ =ψi

−

ηī = ψ
ī
+ + ψ

ī
−, θi =gij̄

(
ψ

j
+ − ψ

j
−
)
.

(1.2.39)

We now have another field content. There’s still a scalar, commuting map φ : Σg → X, but in
addition two Grassmannian fields η, θ, scalars on the world-sheet, and a Grassmannian one-form
ρ. The action of the QB-transformation is now

{QB, φ
i} = 0, {QB, θi} =0,

{QB, φ̄
i} = ηī, {QB, η

ī} =0,

{QB, ρ
i
z} = ∂zφ

i, {QB, ρ
i
z̄} =∂z̄φ

i.

(1.2.40)

We thus immediately see that the only QB-fixed point is

∂zφ
i = ∂z̄φ

i = 0. (1.2.41)

According to the localization principle, the only contributions to B-model observables come from
constant maps. The observables in this model now take the form

OW = W
J1···Jq

Ī1···Īp
ηĪ1 · · · ηĪpθJ1 · · · θJq . (1.2.42)

Note that these are not (p, q)–forms as in the A-model case, but rather (0, p)–forms taking values
in
∧q(T (1,0))(X), i.e. elements of Ω0,p(X,

∧q T (0,1)X). Similarly to the A-model case, one can
show that [16]

{QB,OW } = −O∂̄W . (1.2.43)

Hence, OW as an element of the BRST-cohomology of the B-model corresponds directly to an
element of the Dolbeault cohomology Hp

∂̄
(X,

∧q TX) 3.

3For a very brief description of cohomology theories, see appendix C.2.
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Consider now the correlation function

〈O1 · · · Ok〉 =

∫
e−SO1 · · · Ok, (1.2.44)

with Oi corresponding to an element of Hpi

∂̄
(X,

∧qi TX), having vector and axial charge qV =
qi − pi, qA = qi + pi. As in the A-model case, we find a selection rule from the fact that the
U(1) vector R-symmetry is non-anomalous, namely

∑

i

(pi − qi) = 0, (1.2.45)

while the U(1) axial R-symmetry has an anomaly. The zero mode mismatch to be compensated
by the inserted operators O1 · · · Ok is

2 dim(X)(g − 1), (1.2.46)

so that we get the selection rule

∑

i

pi =
∑

i

qi = dim(X)(1 − g) (1.2.47)

As in the A-model, the only nontrivial correlation functions occur at g = 0, whereas at g = 1
only the partition function itself is non-vanishing. However, since we only have to sum over
constant maps, computation of correlation functions reduces to an integral of forms over the
target X itself. How do we compute such a correlation function? After all, the product of
operators in the integrand corresponds to a form in Hp

∂̄
(X,

∧q TX). In order to integrate this
object over X, we somehow need to map it into an ordinary (p, p)–form in a canonical way.

At this point, we need to make another assumption about the target space. While the A-
model could be defined on any Kähler manifold, the B-model is most conveniently defined for
a Calabi-Yau target. In this case, there is a holomorphic, nowhere vanishing section ΩI1···Id

of
the canonical bundle Ω(d,0)(X)4. The prescription to compute correlation functions is then to
use the invertible map

Ωp

∂̄
(X,

q∧
TX) → Ωd−q,p(X)

W
J1···Jq

Ī1···Īp
→ ΩI1,···IqIq+1···Id

W
I1···Iq

Ī1···Īp

(1.2.48)

to map W ∈ Hd
∂̄
(X,

∧d TX) to a (0, d)–form contracting the holomorphic indices with those of
Ω, and then multiply by the (d, 0)–form Ω to obtain a (d, d)-form that can be integrated over
X.

It turns out that the full information about the B-model at genus 0 can be encoded in a
single function called the prepotential. It only depends on the complex structure moduli and
can be computed by purely classical methods from N = 2 special geometry, as will be explained
in section 2.1.

A-model versus B-model

Summarizing, we have seen that even before coupling to gravity the A-model contains interesting
geometric information that is comparatively hard to compute, while the B-model is much simpler,
but also less interesting at first sight. Both models are completely trivial at worldsheet genera
higher than one. In the next section, we will explain how the extension to higher genus is
achieved via coupling to gravity, and how mirror symmetry connects the two models, allowing
one to compute A-model geometric information with B-model technology.

4In particular, this implies that the canonical line bundle is trivial, therefore c1(X) = 0 and we recover the
standard Calabi-Yau definition.
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1.3 Coupling to Gravity: Topological Strings

In order to couple a two-dimensional quantum field theory to gravity, one essentially has to
integrate over the space of all possible worldsheet metrics. Naively, one might assume that in
the special case of a topological theory, this should have no effect on the observables, since they
are independent of the worldsheet metric. This is not so. The most obvious reason for this
is that the volume of the gauge group of all possible metric configurations is infinite, so just
performing the path integral over all metrics and dividing by this volume is not a well-defined
operation. Furthermore, we have to be careful with the loitering anomalies. However, help with
the problem of coupling to gravity comes from an unexpected side: the bosonic string. All the
ingredients we have introduced above have their analogous counterparts in bosonic string theory,
as is summarized in table 1.1. The topological charge Q plays the role of the BRST-operator
QBRST , and the operator

Gµν ≡
δVA/B

δgµν
(1.3.49)

is associated with the antighost b(z). It is a very fortunate coincidence that the ghost number
anomalies of the two theories precisely agree if the target is a Calabi-Yau threefold, and therefore
the critical dimension of the topological string is precisely the one we will be most interested in
in order to study the connection to the superstring. For a more detailed comparison between

Property Topological String Bosonic String

∃ nilpotent operator QA/B BRST-operator QBRST

energy-momentum tensor exact T (z) = {Q, Gµν} T (z) = {Q, b(z)}
antighost field Gµν b(z)

ghost number anomaly 2 d(X)(g − 1) 6g − 6

Table 1.1: Comparison bosonic/topological string

bosonic and topological string theory, see [17].
We thus couple the topological sigma model to gravity just as in the case of the bosonic

string [13, 14], defining a free energy

Fg =

∫

Mg

〈
6g−6∏

k=1

(G,µk)〉, (1.3.50)

where the antighost fields have to be included in the integral over the metric moduli space in
order to cancel the axial charge anomaly, and µk are Beltrami differentials. It can be shown
that the Fg so defined still depend only on the Kähler moduli for the A-model, and only on
the complex structure moduli for the B-model. However, note that Fg as defined above is not a
function on (half) the moduli space of a Calabi-Yau, but a section of a bundle over it, as will
be made explicit in section 2.1.

1.3.1 Topological amplitudes in type II compactifications

As we have already mentioned, there is a beautiful story about the connection between topo-
logical strings and the more “physical” type II theories, started by the ground-breaking papers
[18, 19, 20]. It turns out that the A- and B-model topological string on a given target Calabi-
Yau are deeply related to the four-dimensional effective action of type IIA and type IIB theory
respectively, compactified on that same Calabi-Yau. In the following, we will briefly summarize
how this comes about, and how this connection has led to startling new developments both in
string theory and in mathematics.

Take a type II theory in ten dimensions. After compactification on a generic Calabi-Yau
manifold, the resulting theory has N = 2 supersymmetry (see [13] for more details on superstring

13



IIA IIB

h1,1 Kähler vector hyper

h2,1 complex structure hyper vector

Table 1.2: Organization of the moduli into vector- and hypermultiplets for IIA and IIB theory

IIA IIB

MH -corrections λ λ and α′

MV -corrections α′ exact

Table 1.3: Corrections to hyper- and vectormultiplet moduli space

compactifications, and section 2.1 for a more detailed review of N = 2 special geometry). The
moduli space of the compactified theory can be organized into multiplets as follows.

For IIA theory, the massless ten-dimensional fields are gMN , bMN , φ, cM and cMNP . After
Kaluza-Klein decomposition, their four-dimensional components are the metric gµν , dilaton φ,
axion field a and a massless vector cµ. The remaining components are decomposed under the
forms of the Calabi-Yau; the single (3, 0) and (0, 3) forms each give rise to one scalar from cijk
and cīj̄k̄, the h1,1 harmonic one-forms split off two scalars from gij̄ and bij̄ , and one gets a vector

from cµij̄ . For each of the h2,1 harmonic (2, 1)-forms, there are four scalars from gij , gīj , cijk̄
and cījk. The model-independent fields form the bosonic content of the supergravity multiplet
(graviton gµν and graviphoton cµ) and one hypermultiplet (φ, a, cijk and cīj̄k̄). Of the remaining
fields, the vector and two scalars for each (1, 1)-form fall into a vector multiplet and the four
scalars from each (2, 1)-form organize into a hypermultiplet. All in all, there is therefore one
supergravity multiplet, h(1,1) vector multiplets and h(2,1)+1 hypermultiplets. For IIB theory, the
only difference is that the massless ten-dimensional fields are c, cMN and cMNPQ, such that now
the (2, 1)-forms lead to two scalars and a vector (from cµijk̄), while the (1, 1)-forms only produce

scalars, and we get h(2,1) vector multiplets and h(1,1) + 1 hypermultiplets. Summarizing, the
moduli of the Calabi-Yau manifold are organized into multiplets as shown in table 1.2. A crucial
observation is that the dilaton φ sits in both type IIA and IIB theory in a hypermultiplet. Since
the moduli space factorizes exactly into M = MV × MH due to supersymmetry [21], only the
part of moduli space containing the dilaton gets higher genus corrections in the string coupling
λ = eφ. Similarly, the α′-expansion in the string length has to vanish in the large radius limit
and should therefore only affect the part of moduli space sensitive to volume, namely the one
containing the Kähler moduli. This situation is summarized in table 1.3.

In compactifications of superstring theories on Calabi-Yau spaces, conifold singularities in
the moduli space generically appear at the classical level. In 1995, Strominger showed that these
singularities could be resolved by the appearance of massless black holes due to nonperturbative
effects in the full quantum theory [22]. A crucial postulate for this mechanism to work is that the
above absence of couplings between vector and hypermultiplets even holds nonperturbatively.

As a consequence, the couplings appearing in the four-dimensional effective action of type II
theories are subject to strong non-renormalization theorems. In particular, one can show that
the self-dual part of the four-dimensional effective action is exactly determined by the topological
string amplitudes and does not receive any further quantum corrections. More precisely, the
effective action of both type II theories contains an F-term

SF ∼
∫

d4xd4θ Fg(ti)W2g =

∫
d4x Fg(ti)R

2
+T

2g−2
+ + · · · , (1.3.51)

where W is the supergravity multiplet in superfield notation, R is the Riemann tensor, T the
graviphoton field strength, and Fg(ti) is the topological string free energy. For type IIA, Fg(ti) is
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the A-model free energy, depending on the Kähler moduli ti, whereas for type IIB the statement
holds with respect to the B-model free energy and complex structure moduli.

In chapter 3, we will explain this in more detail and use heterotic-type II duality to compute
the Fg(ti) for a large class of models.

1.3.2 The A-model topological string and Gromov-Witten invariants

As we have explained in section 1.2.3, the A-model localizes on fixed points of Q and is constant
on the homology classes of the map ϕ, and therefore the integral over the moduli space Mg

reduces to a sum over homology classes

Fg(t) =
∑

β

Ng,βQ
β , (1.3.52)

which we can reorganize into a generating function

F (t, gs) =
∑

g

Fg(t)g
2g−2
s . (1.3.53)

Here, Ng,β are the Gromov-Witten invariants of the Calabi-Yau X, “counting” the number of
embeddings of a Riemann surface of genus g in the two-homology class β. Precisely what is
meant by “counting” in this context has only become clear with the work of Gopakumar and
Vafa [23, 24], who uncovered the hidden integrality structure in the rational Gromov-Witten
invariants. We will here summarize the main ideas; for more details about both mathematical
and physical aspects, we refer the reader to [12].

Recall that in the previous section, we saw that compactification of type II theory on a
Calabi-Yau manifold generates higher-derivative F-terms in the effective action that are given
by topological string amplitudes. These terms actually have a target space interpretation as
resulting from integrating out hidden degrees of freedom [23].

If we give a constant vacuum expectation value gs to the self-dual part of the graviphoton
field T , the F-term appearing in (1.3.51) reads

F (t, gs)R
2
+. (1.3.54)

The computation of such a term is then analogous to the Schwinger computation for integrating
out a charged scalar field coupled to a constant background field strength,

S =

∫
Dφe−

R
|(∂µ−eAµ)φ|2+m2|φ|2 . (1.3.55)

This standard computation involves the determinant of the operator in the exponent, and the
result is the famous Schwinger formula

S =

∫
ds

s

Tr(−1)F e−sm2
e−2seσLF

(2 sin(seF/2))2
, (1.3.56)

where F = 2(σL + σR) is the total fermion number.
The particles we have to take into account when performing a similar computation in string

theory are BPS states. They turn out to be obtained from D2 branes, bound to D0-branes and
wrapped around two-cycles in the Calabi-Yau X, and their mass is given by the central charge
of the bound state. For the D2-brane, the central charge is the area of the wrapped two-cycle.
If this two-cycle is in the homology class β, its area is given by t · β, where ti are the Kähler
moduli. Here, we have decomposed β with respect to a basis {Si} of H2(X,Z) such that

β =
∑

i

βiSi, β · t =
∑

i

βiti, (1.3.57)
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and we also write in the following

Qi = e−ti , Qβ = e−t·β. (1.3.58)

The full mass of the bound state is shifted by 2πi for each D0-brane (this can be understood
from the lift to M-theory where this shift is nothing but the momentum of the M2 brane along
the eleventh dimension compactified on a circle). For the trace in (1.3.56), we change basis from
σL to

Ig =

[(
1

2

)
+ 2(0)

]⊗g

. (1.3.59)

The {Ig} form a basis for SU(2)-representations with integer coefficients, i.e.

∞∑

g=0

ng
βIg =

∑

jL

njL

β [jL], (1.3.60)

and one finds

TrIg(−1)F e−2τσLgs = (−1)g
(
2 sinh

(τgs

2

))2g
, (1.3.61)

where we have absorbed F in the coupling gs. Finally, we have to sum over all possible BPS
states, parametrized by the number of D-branes d, SU(2)L-representations Ig and homology
classes β. After performing the integral, we obtain

F (gs, t) =
∞∑

g=0

∑

β

∑

d≥1

ng
β

1

d

(
2 sinh

(
dgs

2

))2g−2

Qdβ , (1.3.62)

where ng
β are the integer Gopakumar-Vafa invariants, labeled by genus g and homology class β.

This integrality structure finally uncovers the enumerative meaning of the Gromov-Witten
invariants. The reason why this structure is hidden in the original Gromov-Witten invariants
is that even though the latter do count maps at genus g in a fixed homology class, these maps
are not primitive maps in one-to-one correspondence with BPS states, but receive weighted
contributions from maps at lower-genus and lower homology class destroying integrality. These
two effects are known as multicovering and bubbling : given one holomorphic map from a genus
g Riemann surface into X, one can construct an infinity of similar maps either composing it
with a d-multiple cover of P1 leading to a map in homology class dβ, or by letting the genus g
surface “bubble” into a higher-genus surface by gluing a small genus h surface to it. All these
derived maps contribute with a non-integer weight to the Gromov-Witten invariants, whereas
the Gopakumar-Vafa invariants only count primitive maps, in direct correspondence with BPS
states.

The above can be summarized in the so-called Gopakumar-Vafa conjecture stating that all
ng

β are indeed integers for all Calabi-Yau threefolds. There is a bold generalization of this
conjecture due to Pandharipande for more general non-singular threefolds. Both conjectures,
even though well-motivated physically, remain unproved at the time of writing but for some
special cases. There is another class of invariants closely related to the Gromov-Witten and
Gopakumar-Vafa invariants introduced above, namely the Donaldson-Thomas invariants. Again,
a conjecture motivated by the duality of Chern-Simons theory with the A-model and proved
for the special case of toric Calabi-Yaus states their equivalence with Gromov-Witten invariants
[25, 26, 27]. In a nutshell, S-duality of the type II theories implies that A-model worldsheet
instantons, encoded in Gromov-Witten and Gopakumar-Vafa invariants, capture B-model D-
brane instantons, encoded in Donaldson-Thomas invariants. Thus, the latter can be seen as
S-dual partners of Gromov-Witten invariants [28]. The story of Gromov-Witten, Gopakumar-
Vafa and Donaldson-Thomas invariants is a beautiful example where mathematical puzzles can
be understood from a string point of view.
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It is instructive to expand (1.3.62) in gs. One finds the following form for Fg(t):

Fg(t) =
∑

β

(
|B2g|n0

β

2g(2g − 2)!
+

2(−1)gn2
β

(2g − 2)!
+ · · · − g − 2

12
ng−1

β + ng
β

)
Li3−2g

(
Qβ
)
. (1.3.63)

From this expression, one can read off that e.g. at genus 0, each BPS state (counted by n0
β)

contributes

Li3(Q
β) =

∑

d

Qd

d3
, (1.3.64)

i.e. the weight of the multicovering solutions is 1
d3 .

The appearance of the polylogarithm was already predicted from heterotic-type II duality in
[29]. In chapter 3, we will use heterotic-type II duality to compute Gopakumar-Vafa invariants
for a large class of models.

The proposed duality between the A-model and Chern-Simons theory [27] has been used in
[30, 31] to derive a method to compute all-genus A-model amplitudes for any non-compact toric
Calabi-Yau threefold.

1.3.3 The B-model topological string

As we have seen above, the B-model localizes on constant maps and is therefore generally much
simpler to compute with than the A-model. However, as we will see below, the two models are
related by mirror symmetry and are therefore completely equivalent, so it is often convenient to
compute the geometric content of the A-model on the B-model side and map to the A-model at
the end, as we will do many times in the following chapters.

The B-model has some beautiful properties that have not only shed light on many surpris-
ing connections between string theory and mathematics, but also allow one to compute the
topological amplitudes in a comparatively simple way. We will briefly summarize some of them:

• The holomorphic anomaly.
As we have mentioned in section 1.2, QB-exact operators should in principle decouple
completely from the theory. However, as will be explained in detail in section 2.2, the
argument for the decoupling fails after coupling to gravity because the moduli space of
Riemann surfaces Σg has a boundary, and it is precisely this boundary which keeps some
deformations from decoupling even though they are QB-exact. As a consequence, B-model
amplitudes are almost, but not quite holomorphic in the complex structure moduli, and this
effect can be quantified in a set of differential equations for the Fg(t, t̄) called holomorphic
anomaly equations. In chapter 2, we will develop an efficient method to integrate these
to obtain the amplitudes Fg of the B-model. This method relies heavily on the interplay
between holomorphicity and modularity properties of Fg, as stated most clearly in [73].
We explain this in more detail in section 2.1.

• Connection to matrix models.
In [32], Dijkgraaf and Vafa have proposed a duality between the B-model topological
string on some specific Calabi-Yau targets and a matrix model. Building on the matrix
model technologies constructed in [33], this connection has recently been developed into
a general formalism for computing B-model amplitudes and generalized to a much larger
class of targets including those with interesting mirror geometry in [34, 35, 36]. This will
be explained in more detail in section 4.2. See chapter 5 for applications.

• Picard-Fuchs equations.
The Picard-Fuchs equations are differential equations for the periods of the target space.
Their system of solutions allows one to determine the mirror map and the prepotential,
which completely determines the B-model at genus 0, see also section 2.1.
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1.3.4 Mirror Symmetry

The statement of mirror symmetry is that the A-model on one Calabi-Yau is completely equiv-
alent to the B-model on another Calabi-Yau, called “mirror”.

At the algebraic level, mirror symmetry changes the sign of the right-moving U(1) current
FR. The result is that the spaces Hp,q(X) and Hd−p,q(Xmirror) get identified, that is, the Kähler
moduli space of one Calabi-Yau is completely equivalent to the complex structure moduli space
of its mirror, or again equivalently: the A-model on X becomes the B-model on Xmirror. This
extends to the full string theory, such that type IIA compactified on X is equal to type IIB
compactified on Xmirror.

Unfortunately, a detailed introduction to mirror symmetry and its many applications in
mathematics and physics is beyond the scope of this thesis. We therefore refer the reader to the
book [12].

1.4 Topological strings and heterotic-type II duality

Heterotic and type IIA theory are among the best-connected knots in the web of string dualities
(see also Fig. 1.1), and hence at the heart of many fundamental results about string theory
and supersymmetric gauge theories. Apart from their relations to the other realizations of
superstring theory, they are tied together by the fact that after compactification on suitable
pairs of manifolds, they yield identical low-energy theories. This has first been proposed for
compactification of the heterotic string on T4 and the type II theory on K3 [37], where K3
is a compact Calabi-Yau twofold, namely, the only Calabi-Yau twofold that is not the four-
torus5. After further compactification to four dimensions on T2, these theories have N = 4
supersymmetry. Furthermore, there is by now overwhelming evidence that heterotic strings
compactified on K3 × T2 are dual to type IIA compactified on a suitable K3-fibration [39, 40],
both yielding four-dimensional theories with N = 2 supersymmetry.

A crucial observation is that the dilaton, governing the expansion in the string coupling, sits
in a hypermultiplet in type IIA and in a vectormultiplet in heterotic theory. This is what makes
heterotic-type II duality so appealing. According to the (perturbative and even nonperturbative)
decoupling of vector- and hypermultiplet moduli mentioned in section 1.3.1, it implies that both
the vector multiplet prepotential F0 on the type II side and the hypermultiplet superpotential
on the heterotic side are exact at tree-level, while they get nonperturbative quantum corrections
on the respective other sides. Thus, using the duality we can compute the exact quantum
moduli space classically! In particular, worldsheet instantons on the type IIA side, accessible to
a classical computation, determine space-time instanton effects on the heterotic side and vice
versa [39].

The non-renormalisation argument can be extended to g-loop level, such that the couplings
Fg appearing in the type II effective action (1.3.51) should be generated at g-loop level only and
not receive further quantum corrections, which is why they correspond exactly to the topological
string amplitudes, as we have mentioned above. On the heterotic side, even though the Fg are not
protected by supersymmetry since the dilaton sits here in a vectormultiplet, general arguments
imply that they arise at one-loop level only [20]. It turns out that the Fg are given by a one-
loop integral over the heterotic gauge lattice of the form studied by Borcherds [41], and can be
computed with his technique of lattice reduction (see also appendix A.1). Computations of this
type have first been performed in [29] and later also in the articles [42, 43] presented in this
thesis. A particularly nice aspect of this mapping between type II and heterotic theory is that in
Borcherds-type one-loop integrals the automorphicity of the amplitudes under the full symmetry
group of the lattice moduli space becomes explicit, due to the Borcherds-Harvey-Moore extension

5See [38] for further information on K3 surfaces in the context of string dualities
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of the Howe or theta correspondence [44, 41]. In chapter 3, we will use heterotic-type II duality
to compute worldsheet instanton numbers at arbitrary genus on chains of Calabi-Yau manifolds.

Another intriguing property of heterotic-type II duality has been pointed out in [40]. The
number of vector- and hypermultiplets changes over the moduli space of heterotic K3×T2 com-
pactifications when one explores different Higgs branches, passing through points of enhanced
symmetry. On the type II side, this corresponds to jumping through successive Calabi-Yau
spaces, and this process can be achieved via black hole condensation [22]. For more details on
the geometric implications of this mapping, see chapter 3.

As far as the topological string amplitudes are concerned, the main drawback of heterotic-
type II duality is that it applies only to Calabi-Yau spaces which are K3–fibrations, and much
worse, the heterotic dilaton gets mapped to the Kähler modulus controlling the volume of the
base space. This implies that the heterotic weak-coupling limit corresponds on the type II side to
the region of the Kähler cone where the volume of the base space goes to infinity, and therefore,
the only geometric information one can extract from heterotic-type II duality applies to the
K3-fibers.

1.5 Topological strings and matrix models

According to a general principle put forward by ’t Hooft [5], there should be a correspondence
between matrix models at large N , where N is the rank of the gauge group, and string theories.
In [32], Dijkgraaf and Vafa proposed that the topological B–model is indeed equivalent to a
matrix model for some target space geometries. Recently, the authors of [34, 35] have completely
reformulated the open and closed topological B-model in terms of matrix models, using the
matrix model techniques of [33]. In this section, we sketch very briefly the main ideas, a more
detailed review of matrix models and their intimate relation to topological strings will be given
in chapter 4, while toric Calabi-Yau’s and their mirrors are briefly reviewed in appendix C.3.

The crucial observation of [32] is that one can associate a matrix model to some topological
string geometries by taking the spectral curve of the matrix model, a Riemann surface, to be the
mirror curve Σ of the target geometry, the Riemann surface naturally defined by the topological
string. Conversely, the target geometry is determined by the master field of the 1/N expansion.

The geometries considered in [32] are very restrictive and in particular don’t include the
geometrically interesting mirrors of toric geometries. However, there is a recursive reformula-
tion of the 1

N -expansion of matrix models in a geometric setup where the main ingredient is
precisely the spectral curve [45, 33]. In [29, 35, 36], this was used to completely reformulate and
substantially generalize the correspondence between matrix models and topological strings such
that it can be applied to general toric Calabi-Yau’s. These are CY threefolds described by an
equation of the form

uv = Σ(X,Y ), (1.5.65)

where Σ(X,Y ) = 0 describes a Riemann surface embedded in C∗ × C∗. The authors of [29, 35]
then take this Riemann surface to be the spectral curve of a matrix model, and adapt the
formalism of [33] such that it applies to the toric case, where X and Y are exponentiated
variables taking values in C∗. This allows one to compute open and closed amplitudes of the
B-model using only the spectral curve without having to specify the potential of the matrix
model.

This formalism has opened several new perspectives. For one thing, the matrix model recur-
sion relations imply the holomorphic anomaly equations satisfied by the B-model amplitudes,
however, they are considerably more general. In particular, they are completely determined
and don’t give rise to a holomorphic ambiguity. Furthermore, the matrix model equations yield
holomorphic anomaly equations for both open and closed amplitudes, the standard holomorphic
anomaly equations for closed amplitudes simply appear as a special case. Thus, the B-model
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formalism implies that open string amplitudes should be seen as somewhat more fundamental
quantities than closed amplitudes.

In chapter 5, we will show how the matrix description of the B-model can be used to obtain
nonperturbative information about the topological string.

1.6 Nonperturbative Aspects

Some of the most fundamental aspects of quantum field theory such as quark confinement and
spontaneous symmetry breaking are due to strong interactions or infinitely many degrees of
freedom; in short, beyond the scope of perturbation theory. Furthermore, instanton transitions
have been a source of astonishment and delight in both classical and quantum field theories; for
a review, see [46, 47]. It is fair to say that without understanding these issues, we would not
understand quantum field theory at all.

Contrary to quantum field theory, string theory has two expansion parameters, namely the
string coupling gs playing the role of ~, and the string tension α′ that has no counterpart in
the standard model. Nonperturbative effects related to the α′–expansion appear at the level
of the worldsheet theory and are called worldsheet instantons. As we have seen in section
1.3.2, they correspond to different embeddings of the world-sheet in the Calabi-Yau and correct
the topological string amplitudes, or, from a superstring point of view, the string scattering
amplitudes. They are conceptually well understood, and in many cases even computable to high
order, as we have explained above and will explicitly show in the following chapters.

However, the genus expansion in the string coupling gs is more problematic. String theory is
only defined perturbatively in gs, and the perturbation series is an asymptotic, non-convergent
series that does not define the theory nonperturbatively. Nonperturbative effects related to
the gs–expansion are due to space-time instantons associated to D-branes. Even though the
understanding of such nonperturbative aspects has very much improved, in particular with the
advent of string dualities, a full nonperturbative definition of string theory is still not available.
In chapter 4 and 5, we will show how matrix models and large-order behaviour can shed some
light on these issues.

Let us now briefly summarize nonperturbative effects in the context of topological strings.
Consider the topological A-model free energy on a Calabi-Yau X,

F (Q, gs) =
∑

d,g

Nd,gQ
dg2g−2

s . (1.6.66)

Recall from section 1.3.2 that Nd,g are the Gromov-Witten invariants counting embeddings of
the world-sheet in X, the world-sheet instantons. This series is doubly perturbative, in the
Kähler parameter Q = e−t corresponding to the α′-expansion, as well as in the topological
string coupling gs

6. Using mirror symmetry, we can go beyond perturbation theory in Q and
obtain

F (Q, gs) =
∑

g

Fg(Q)g2g−2
s , (1.6.67)

where Fg(Q) can be computed exactly as a modular function in Q. As in the type II theories,
the gs–expansion is more difficult. In the A-model, the genus expansion can be resummed using
the topological vertex [31] to obtain an expression of the free energy as a sum over partitions,

F (Q, gs) = log
∑

Ri

C(Ri, gs)Q
ℓ(Ri), (1.6.68)

where ℓ(Ri) is the length of the partition, and the coefficient C(Ri, gs) is exact in gs. However,
the price to pay is that this is again an expansion in Q only valid at the specific point in moduli

6A notational warning: by gs we refer to both the topological string coupling and the type II coupling. Which
one is meant should be clear from the context
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space, called the large radius point, where Q is small. It is therefore desirable to incorporate
nonperturbative corrections in gs directly in the B-model, where one can go anywhere in moduli
space.

It has been observed a long time ago by Shenker [48] that nonperturbative corrections of

the order e
− 1

gs generically appear in string theory. When considering the embedding of the
topological string in type IIB theory, these effects come from D-branes wrapping different cycles
in the Calabi-Yau. However, they are known to depend on hypermultiplet moduli [28, 49],
whereas the B-model a priori only sees vectormultiplet moduli. A nonperturbative completion
of the B-model might therefore necessarily involve hypermultiplets.

Putting this complication aside for the moment, there are still nonperturbative effects re-
lated to space-time D-branes involving vector multiplet moduli only. These effects are precisely

the generic e
− 1

gs effects appearing in B-model topological strings, where gs is the topological
string coupling. In the lift to type II theory, they are associated to domain walls interpolating
between branes wrapped around different cycles. As will be reviewed in detail in chapter 4,
these instantons are very closely related to perturbation theory, since they control the large-
order asymptotics of the perturbative series! This is a standard connection that has made it
into quantum field theory textbooks [50], but has until now been studied in string theory only
in the context of minimal models [51].

In chapter 5, we test this connection between large-order behaviour of the perturbative
amplitudes and instanton effects for matrix models and show that using the proposed matrix-
model formalism for the B-model [29, 35] introduced in the last section, an instanton computation
within the matrix model correctly predicts the large-order behaviour of B-model amplitudes and
therefore allows one to go beyond perturbation theory in the topological string.

1.7 Disclaimer, Summary and Outline

In this chapter, we have sketched the main aspects of topological strings relevant to this thesis.
Of course, it is not intended to be a comprehensive overview of the field, as many important
areas of research have been left out for the sake of brevity, and due to the limited competence of
the author. One important topic that has not been covered is the fascinating study of black hole
microstates and the OSV-conjecture [52]. Fortunately, this is treated in many excellent reviews,
for example [53]. Another area we have not mentioned at all is Landau-Ginzburg theory and
the description of B-branes as matrix factorizations, see e.g. the short review [54]. On the pure
mathematics side, we have only very briefly mentioned Gromov-Witten and Donaldson-Thomas
theory. Furthermore, some beautiful applications of topological strings that we had to leave out
are related to knot theory [55], for a general introduction to knot theory, see [56].

Let us now summarize the various approaches to solving the topological string, their range of
application, and the role they will play in the remainder of this work. By solving the topological
string on a given background, we generally mean computing the amplitudes Fg. This problem can
be addressed at different levels. A complete solution would require a nonperturbative expression
of the full partition sum, exact in both the string coupling gs and the Kähler/complex structure
parameter Q, and valid everywhere in moduli space. At the time of writing, this is far too
ambitious. More modest solutions can however be found. Which part of the problem can be
solved to what extent depends crucially on the type of background, in particular, whether it is
compact or non-compact, as can be seen from Fig. 1.2. The case of non-compact, toric Calabi-
Yau’s is relatively well under control. For the A-model, we have mentioned the topological vertex,
allowing to resum all-genus amplitudes as exact expressions in gs. However, this approach
is perturbative in Q and applies only at the large radius point in moduli space, where Q is
small. On the more mathematical side, the available techniques are localization and relative
Gromov-Witten theory, neither permitting a complete solution, but the amplitudes can at least
in principle be computed to arbitrary genus. A related, quite recent mathematical development
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Figure 1.2: Solving the topological string on different types of backgrounds

is the study of orbifold Gromov-Witten invariants [57] and the crepant resolution conjectures [58,
59]. For the B-model on a non-compact Calabi-Yau, the most powerful techniques are integration
of the holomorphic anomaly equations and the description in terms of matrix models. These have
the advantage that they also apply to open amplitudes, while the corresponding open Gromov-
Witten invariants are mathematically still poorly understood. A purely mathematical approach
is Donaldson-Thomas theory. As we explained in section 1.3.2, Donaldson-Thomas invariants
are conjectured to be the S-dual counterparts of Gromov-Witten invariants and accordingly
we associate them to B-model rather than A-model computations. The exact correspondence
between Donaldson-Thomas and Gromov-Witten theory has been proved for the case of local
curves [25], and is conjectured for more general –including compact– backgrounds. Solutions of
the B-model are generally automorphic functions, exact inQ and valid anywhere in moduli space,
but perturbative in the genus expansion. The matrix model formulation allows to incorporate
some nonperturbative effects, but these have to be computed instanton sector by instanton

sector, as an expansion in e
−1
gs .

If the target is compact, the problem turns out to be much more difficult. Few techniques
are available. The A-model on compact Calabi-Yau manifolds has been addressed by Kontse-
vich via localization [60], and via relative Gromov-Witten theory by Gathmann, Maulik and
Pandharipande [61, 62, 63]. In principle, the invariants can be computed at least for small
genus, but few concrete results have been obtained, and most of these computations are limited
to the comparatively simple cases of the Enriques Calabi-Yau studied in chapter 2 [63] and
the quintic hypersurface in P4. Recently, Zinger has proved the mirror symmetry prediction
made in [8] for the genus one Gromov-Witten invariants [64]. Open Gromov-Witten invariants
have recently been addressed in [65, 66, 67] using localization and mirror symmetry, however,
these approaches are limited to genus 0. Another approach to open Gromov-Witten invariants
at genus 0 via geometric transitions is pursued in [68]. On the B-model side, the situation is
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more encouraging, but the problem is still far from being solved. The holomorphic anomaly
equations for closed strings have been integrated to genus 51 on the quintic hypersurface [69],
and in chapter 2 of this work, we develop a technique to efficiently integrate them making use
of modularity properties, which we apply on the Enriques Calabi-Yau to compute closed ampli-
tudes up to genus six. However, this approach heavily relies on boundary conditions to fix the
holomorphic ambiguities appearing at each genus, and even in these simple cases one invariably
runs out of these conditions, so this is only a partial solution. Donaldson-Thomas theory is also
defined on compact manifolds [25]. For some restricted compact cases, including low degrees on
the quintic, the equivalence with Gromov-Witten theory has recently been proved in [70].

N = 2 heterotic-type II duality applies to any targets which are K3-fibrations, but since
one is limited to the heterotic weak coupling regime, it only determines the amplitudes in the
K3-fiber limit, and the base directions cannot be addressed. From a purely mathematical point
of view, one recent success is the proof of the Yau-Zaslow conjecture, determining the reduced
Gromov-Witten invariants for K3 surfaces at genus 0.

The remainder of this thesis is organized as follows. The second part focuses on the problem
of how to compute closed topological amplitudes. In chapter 2, we review N = 2 special
geometry and the holomorphic anomaly equations and develop an efficient method to integrate
the latter. Chapter 3 presents a computation of geometric invariants of a large class of Calabi-
Yau spaces using heterotic-type II duality. In the third part of this thesis, matrix models come
into play. Chapter 4 presents an introduction to matrix models, instantons and the connection
to topological strings. In chapter 5, we study the large-order behaviour and instanton effects
in this context. In chapter 6, we consider multi-instanton effects and relate them to multicut
matrix models. The last part contains a conclusion and remarks on open questions.

Part of the material presented in this thesis has been obtained in collaboration with M. Mariño,
T. Grimm, A. Klemm and R. Schiappa and is published in [42, 43, 71], or will appear in [72].
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Chapter 2

Direct Integration of the

Holomorphic Anomaly Equations

One of our main concerns throughout this thesis is solving the topological string on a given
Calabi-Yau manifold. Recall from section 1.7 that while this problem is well under control –
at least at the large-radius point– on non-compact, toric Calabi-Yau manifolds, it remains a
challenge in the compact case. Currently, one of the best-suited approaches to obtain higher-
genus amplitudes are the holomorphic anomaly equations due to Bershadsky, Cecotti, Ooguri
and Vafa [19]. In this chapter, we develop a method to integrate them efficiently. The material
presented is based on a publication with T. Grimm, A. Klemm and M. Marino [42].

We will make use of the fact that each Calabi-Yau manifold has a target space symmetry
group which provides a symmetry of the topological partition function [73] and thereby dras-
tically reduces the space of candidate solutions. The topological string amplitudes F (g) turn
out to be polynomials in a finite set of generators which transform in a particularly simple way
under the space-time symmetry group. Moreover, it can be shown that all non-holomorphic
dependence in these amplitudes arises through a very special set of generators that are suitable
generalizations of the non-holomorphic Eisenstein function E2(τ, τ̄). The remaining generators
are holomorphic. Keeping track of these non-holomorphic contributions we will be able to di-
rectly integrate the holomorphic anomaly equations. This method turns out to be very efficient
and gives us rich new information about the remaining holomorphic generators. A similar ap-
proach to the holomorphic anomaly equations was sketched in [19], in the analysis of toroidal
orbifolds. For the quintic Calabi-Yau manifold a more complicated method was outlined in [74].
Other related approaches have been used before in [75, 76] to analyze rational elliptic surfaces,
and in [77, 78] to study noncritical strings and N = 4 super Yang–Mills theory.

The direct integration of the holomorphic anomaly equations can be performed for a generic
Calabi-Yau manifold, as we show in the final section of [42]. However, in order to fully exploit
the interplay of the holomorphic anomaly with the space-time symmetry, we will intensively
discuss specific examples. To illustrate the general ideas we first study the local Calabi-Yau
manifold associated to the Seiberg-Witten curve. Here the target-space symmetry group is a
subgroup of Sl(2,Z) and the generating modular functions are well-known.

Applying these methods to a compact Calabi-Yau manifold is far more involved. In most
of this chapter we will focus on the specific example of the Enriques Calabi-Yau [39], arguably
the simplest Calabi-Yau compactification with nontrivial topological string amplitudes [79, 62].
This manifold can be obtained as the free quotient (K3×T2)/Z2, where Z2 acts as the Enriques
involution on the K3 fibers. The target space duality group of the Enriques Calabi-Yau is shown
to be the discrete group Sl(2,Z) × O(10, 2,Z), with the factors corresponding to the T2 base
and Enriques fiber, respectively. The generating modular forms for Sl(2,Z) are well-known,
therefore we will be particularly concerned with the contributions from the Enriques fiber and
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specially their mixing with the T2 base.
After integrating the holomorphic anomaly equations the only problem remaining is to fix

the holomorphic ambiguities, i.e. the boundary conditions in the integration of the equations.
These ambiguities are constrained by information coming from boundaries of the moduli space
where the F (g) are known explicitly. In the Enriques case one can use the fiber limit, where all
amplitudes can be determined by heterotic-type II duality [79], and a field theory limit where
the manifold degenerates to give rise to SU(2), Nf = 4 Seiberg-Witten theory. By making
use of these boundary conditions we determine the full topological string amplitudes up to
genus 6, improving in this way previous results in [79]. As a bonus of our analysis, we clarify
the modularity properties of the conformal Nf = 4 theory and its gravitational corrections
described in [80]. At present the available boundary conditions are not enough to completely
solve topological string theory on the Enriques Calabi–Yau, but we provide efficient tools to
analyze the amplitudes at all genus with the method of direct integration.

The rest of this chapter is organized as follows. In section 2.1 and 2.2 we review N = 2
special geometry and the derivation of the holomorphic anomaly equations. Section 2.3 gives a
simple example of the method of direct integration and the fixing of holomorphic ambiguities
by application to Seiberg-Witten theory. Section 2.4 reviews what will be our main focus, the
Enriques Calabi-Yau. We introduce modular and automorphic forms which will be relevant later
and discuss the topological amplitudes on the Enriques fiber. Also an all-genus product formula
for the fiber partition function will be introduced. In section 2.5, we show explicitly how one
can solve for F (g) up to genus six and present the general recursive formalism. Furthermore,
boundary conditions and a reduced Enriques model where part of the moduli space is blown
down are investigated. In section 2.6 we analyze the field theory limit corresponding to Nf = 4
SYM and we relate it in detail to the Enriques Calabi–Yau.

2.1 N = 2 special geometry

We now review some basic facts about N = 2 special geometry [81, 82, 83, 84]. Let us start
with some very basic definitions.
Definition 0.
A Kähler manifold is a hermitian complex manifold endowed with a metric gij̄ such that the
associated Kähler form

G = igij̄dz
i ∧ dz̄j̄ (2.1.1)

is closed, dG = 0. Locally, this implies that there is a Kähler potential K satisfying

gij̄ = ∂∂̄K. (2.1.2)

It turns out that we need a more restrictive object to allow for fermions, since they impose a
quantisation condition on the Kähler form, and one finds that for consistency the Kähler form
should be of integer cohomology [83], such that we can pick a line bundle L with

c1(L) =
1

2π
[G]. (2.1.3)

By slight abuse of language, we call this type of Kähler manifold a Hodge-Kähler manifold.
Now let us focus on a type II compactification on a Calabi-Yau, and let’s take IIB because

of the absence of quantum corrections to the space of complex structure deformations MV . We
can think of variations of complex structure as variations of Hodge structure:

H3(Y,C) = H3,0(Y ) +H2,1(Y ) +H1,2(Y ) +H0,3(Y ) = H3(Y,Z) ⊗Z C (2.1.4)

As we vary the complex structure, the embedding of the lattice H3(Y,Z) rotates with respect
to this decomposition.
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Comsider the holomorphic 3-from Ω ∈ H3,0(Y ), unique up to rescaling an nowhere vanishing
by the Calabi-Yau condition. Choose a symplectic basis {Aa, Ba} for H3(Y ), a = 1, · · ·h2,1 + 1,
with intersections Aa ∩Bb = δa

b .
Define the periods

Xa =

∫

Aa

Ω; Fa =

∫

Ba

Ω (2.1.5)

These periods span MV , however, since there are 2h2,1 + 2 of them and the complex dimension
of MV is h2,1, they cannot all be independent. Indeed, one can show that given all the Xa,
the Fa are determined. Furthermore, the Xa can only be homogeneous coordinates since Ω is
only determined up to a multiplicative constant, so we get the right dimension of MV h2,1 =
2h2,1+2

2 − 1. One can also show that we can define a prepotential F such that

F =
1

2

∑
XaFa

F(λX0, λX1, · · · ) =λ2F(X0, X1, · · · )

Fa =
∂F
∂Xa

(2.1.6)

This prepotential is the key quantity in special geometry, as will become clear below. It leads
us to the first definition of a special Kähler manifold:
Definition 1.
A special Kähler manifold is a Hodge-Kähler manifold with a single holomorphic function F as
above such that

(1) the Kähler potential is
K = − ln Im(XaFa), (2.1.7)

(2) Transitions between local trivializations of F on overlaps of charts are given by holomorphic
transition functions fij and Mij ∈ Sp(2n+ 2,R):

(
X

∂F

)

i

= efij(z)Mij

(
X

∂F

)

j

. (2.1.8)

Note that the geometry of MV is completely determined by F ! In particular, the metric is
given by the Kähler potential K according to (2.1.2). Notice also that XI ∈ L, FI ∈ L, where
L denotes the holomorphic line bundle over MV , the first Chern class of which equals the class
of the Kähler form. Obviously the periods carry the information about the complex structure
deformations. The XI , I = 0, . . . h21 can serve locally as homogeneous coordinates on M. Local
special coordinates on M are defined by ti = Xi/X0, i = 1, . . . h(2,1).

We can rephrase this in bundle language:
Definition 2.
A special Kähler manifold is a Hodge-Kähler manifold with

(1) a holomorphic Sp(h2,1) vector bundle H over MV with fibre H3(Y,C), and a holomorphic
section Ω of L⊗H such that the Kähler 2-form G (equivalently, we can consider the Kähler
potential K) is

G = −∂∂̄ ln〈Ω̄,Ω〉 or K = − ln〈Ω̄,Ω〉. (2.1.9)

(2) Ω satisfies 〈Ω, ∂Ω〉 = 0.

These two definitions of special Kähler geometry, one inspired by N = 2 supergravity, one from
Calabi-Yau geometry, are completely equivalent [22, 83]! This is a highly nontrivial statement.
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K thus induces the following Kähler metric structures on MV

Gi̄ = ∂i∂̄K, Γk
ij = Gkl̄∂iGjl̄, Γk̄

ı̄̄ = Glk̄∂̄ı̄Gl̄

Ri̄kl̄ = −∂i∂̄̄Gkl̄ +Gmn̄(∂iGkn̄)(∂̄̄Gml̄), R l
ij̄k

= −∂̄̄Γ
l
ik

Ri̄ ≡ Gkl̄Ri̄kl̄ = −∂i∂̄̄ log det(Gi̄) .

(2.1.10)

Ω and Ω̄ are sections of holomorphic and anti-holomorphic lines bundles L and L over M
respectively and holomorphic gauge transformations Ω → efΩ in L correspond to Kähler trans-
formations, i.e. e−K ∈ L ⊗ L. The derivatives ∂i are with respect to coordinates ti of MV , and
sections like Vj̄ in TM∗

(1,0) ⊗ TM∗
(0,1) ⊗Lm ⊗Ln

have a natural connection with respect to the
Weil-Petersson metric Gi̄ and the line bundle Ki = ∂iK, Kı̄ = ∂ı̄K

DiVj̄ = ∂i − Γl
ijVl̄ +mKiVj̄, Dı̄Vj̄ = ∂ı̄ − Γl̄

ı̄̄Vjl̄ + nKı̄Vj̄ . (2.1.11)

The forms Ω, χi ≡ DiΩ, χı̄ ≡ Dı̄Ω̄ and Ω̄ provide a basis which spans the above cohomology
groups over C. Since it depends on the complex structure we call it the moving basis. It can be
expanded in terms of the fixed symplectic basis αI , β

J given by the dual of {Aa, Ba} as

Ω = XIαI −FIβ
I , χi = χI

iαI − χIiβ
I , etc . (2.1.12)

By Kodaira theory, infinitesimal deformations of the complex structure are elements ofH1(Y, TY ).
Ω induces an isomorphism H1(Y, TY ) ∼ H(2,1)(Y ). Hence the harmonic (2, 1)-forms χi, i =
1, . . . , h21 can be identified as (co)tangent vectors to MV and these deformations are unob-
structed on a CY manifold [85, 86].

It turns out to be useful to introduce the second and third derivative of the prepotential as

τIJ = ∂I∂JF , CIJK = ∂I∂J∂KF , (2.1.13)

which are homogeneous of degree zero and minus one respectively.
Special Kähler geometry describes the relation between the metric structure and the Yukawa

coupling

C
(0)
ijk ≡ iCijk ≡ −

∫

Y
Ω ∧ ∂i∂j∂kΩ = −

∫

Y
Ω ∧DiDjDkΩ , (2.1.14)

a section of Cijk ∈ Sym3(T ∗
(1,0)) ⊗ L2. Using 〈χi, χ̄ı̄〉 = Gi̄e

−K and transversality of 〈, 〉 under

the the decomposition (2.1.4), i.e. 〈γ(k,l), γ(m,n)〉 = 0 unless k + m = l + n = 3 one gets the
special geometry identities [81]

DiX
I ≡ χI

i , Diχ
I
j = iCijkG

kk̄χ̄I
k̄e

K , Diχ̄
I
j̄ = Gij̄X̄

I . (2.1.15)

From (2.1.11) and (2.1.10) follows [Di, D̄]χk = −Gi̄ +R l
i̄kχl and using (2.1.15) one gets

[Di, Dk̄]
l

j = R l
ik̄j = Gik̄δ

l
j +Gjk̄δ

l
i − CijmC̄

ml
k̄ , (2.1.16)

where we abbreviated

C̄
(0)ml

k̄
= e2KC̄

(0)

k̄ı̄̄
Gmı̄Gl̄ , C̄ml

k̄ = iC̄
(0)ml

k̄
. (2.1.17)

Let us also summarize some relations obeyed by τIJ and CIJK . One first notes that by
homogeneity and (2.1.14) and (2.1.15) one has

CIJKX
K = 0 , Cijk = CIJKχ

I
iχ

J
j χ

K
k . (2.1.18)

Using the above definitions and the degree two homogeneity of F one also shows that

2eKXIImτIJX̄
J = 1 , X̄IImτIJχ

J
i = 0 , 2eKχI

i ImτIJ χ̄
J
j̄ = Gij̄ . (2.1.19)
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Denoting by Imτ IJ the inverse of ImτIJ it follows from these conditions that

χI
iG

ij̄χ̄J
j̄ e

K = 1
2 Imτ IJ +XIX̄JeK . (2.1.20)

We summarize once again the crucial points we learn from the above analysis:

• The holomorphic 3-form Ω is only defined up to rescaling, so the XI are homogeneous
coordinates and parametrize the so-called “big moduli space”. In the following, we will
mainly use the small moduli space, parametrized by the local special coordinates ti = Xi

X0 .

• One can change the symplectic basis (and with it the periods) by any symplectic trans-
formation. However, those symplectic transformations corresponding to automorphisms
of the cohomology lattice will leave the complex structure invariant, so we get a subgroup
Γ ∈ Sp(2h2,1 + 2) of monodromies under which F (g)(tI), being functions of the complex
structure itself, have to be invariant, as has been nicely made explicit in [73].

• There is a holomorphic line bundle L, and a prepotential F (0) section of L2 such that
FI = ∂IF

(0). This prepotential completely defines the geometry of the moduli space. In
particular, it determines the Kähler potential K and the Kähler metric Gi̄.

• L has a natural connection ∂iK, such that we get the covariant derivatives
Di = ∂i + k∂iK for sections of Lk, which include the Christoffel symbols with respect to
Gi̄ when acting on tensors.

For our paper, it is furthermore essential that the amplitudes F (g) transform as sections of L2−2g

with connection Di [19], as we will see below.

2.2 The holomorphic anomaly equations

In this section, we review the derivation of the holomorphic anomaly equations of [19]. As we
have seen in the previous section, the special geometry of the vector multiplet moduli space can
be entirely encoded in a single holomorphic section of L2, the prepotential F (0) = F(t), which is
nothing else than the genus zero amplitude of the topological string. From a world-sheet point
of view one does not obtain F (0) directly, but rather finds the three-point function

C
(0)
ijk = 〈O(0)

i O(0)
j O(0)

k 〉g = −
∫

Y
Ω(t) ∧ ∂i∂j∂kΩ(t) , (2.2.21)

where ∂i are derivatives with respect to ti. What about the higher genus amplitudes? From
the point of view of the four-dimensional effective action, one is interested in the dependence
of the F (g) on the complex moduli ti, t̄i in the vector multiplets. These parametrize marginal
deformations, which in the B-model correspond to complex structure deformation of the Calabi-
Yau manifold. Infinitesimally the world-sheet action is perturbed by the ti, t̄i as follows

S = S0 + ti
∫

Σg

O(2)
i + t̄i

∫

Σg

Ō(2)
i , (2.2.22)

where the sums run over i = 1, . . . , h1(Y, TY ) = h(2,1)(Y ). Here the marginal two-form operators
are obtained using the descent equations as

O(2)
i = {G−

0 , [Ḡ
−
0 ,O

(0)
i ]}dzdz̄ , O(2)

ı̄ = {G+
0 , [Ḡ

+
0 , Ō

(0)
ı̄ ]}dzdz̄ , (2.2.23)

where G+
0 , G

−
0 are the charges corresponding to the composite operators Gzz, Gz̄z̄ that were in-

troduced as the BRST-operators of the topological string in section 1.3. In the above equations
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we denoted by O(0)
i the zero-form cohomological operators, which are in one-to-one correspon-

dence with the H1(Y, TY ) cohomology of the target space. The operators O(2)
i are the only ones

that can be inserted into the action without spoiling axial and vector symmetry.

From (2.2.23), one can show that O(2)
ı̄ is QB–exact, since the operators Gab are the Q–

partners of the energy-momentum tensor while at the same time we have from the supersym-
metry algebra (1.2.16)

{Q±,Q±} = P ±H, (2.2.24)

therefore it is straightforward to show that

G± = ±1

2
Q±, (2.2.25)

and we find using QB = Q+ + Q−

(
Oi

(2)
)

±
=

1

4

{
Q+,

[
Q−,Oi

(0)
]}

=
1

8

{
QB,

[(
Q− −Q+

)
,O(2)

i

]}
. (2.2.26)

According to our general arguments in section 1.2, these operators should have vanishing cor-
relation functions and decouple from the theory, therefore all observables should be insensitive
to any variation parametrized by t̄ī, and therefore simply t̄–independent, that is, holomorphic.
This would indeed be true if we were still considering the topological field theory constructed
in section 1.2. But we are now dealing with topological string theory, and it turns out that
the integration over the moduli space of worldsheet metric that couples the sigma model to
gravity spoils the holomorphicity [8, 19]. However, it does so in a very subtle way: QB–exact,
non-holomorphic operators only fail to decouple at the boundaries of moduli space, where the
genus g Riemann surface is degenerate with lower-genus surfaces, as shown in Fig. 2.1.

Figure 2.1: O(2)
i , inserted in the throat of the Riemann surface at the point where it degenerates

to one (or two) of lower genus do give a nonzero contribution to ∂īF
(g)

Note that as can be seen from Fig. 2.1, contributions to the antiholomorphic derivative of F (g)

can only involve lower genus amplitudes. This startling phenomenon has been worked out by
Bershadsky, Cecotti, Ooguri and Vafa [8, 19], whose results we briefly summarize as follows: i.)
The F (g) transform as sections of L2−2g with the connection (2.1.11).
ii.) The topological B-model correlation functions

C
(g)
i1...in

=





〈
∫
Σg

O(2)
i1

· · ·
∫
Σg

O(2)
in

〉g = Di1 . . . DinF
(g) for g ≥ 1

〈O(0)
i1

O(0)
i2

O(0)
i3

∫
Σg

O(2)
i4

· · ·
∫
Σg

O(2)
in

〉g = Di4 . . . DinC
(0)
i1i2i3

for g = 0
(2.2.27)
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can be obtained using the covariant derivatives (2.1.11) and obey

C
(g)
i1...in

= 0 for 2g − 2 + n ≤ 0 . (2.2.28)

iii.) The anti-holomorphic derivative ∂ı̄ = ∂
∂t̄i

of the F (g),

∂̄ı̄F
(g) =

∫

Mg

∂̄ı̄µg =

∫

Mg

∂m∂̄m̄λı̄,g =

∫

∂Mg

λı̄,g, (2.2.29)

receives only contributions from the complex codimension one locus in the moduli space of Rie-
mann surfaces corresponding to world-sheets which are degenerate with lower genus components.
These boundary contributions can be worked out and yield recursive equations for the F (g). For
g > 1 one gets

∂̄ı̄F
(g) = 1

2 C̄
(0)jk
ı̄

(
DjDkF

(g−1) +

g−1∑

r=1

DjF
(r)DkF

(g−r)
)

(2.2.30)

and for g = 1 a generalisation of the Quillen anomaly

∂i∂̄̄F
(1) = 1

2C
(0)
ikl C̄

(0)kl
̄ −

( χ
24

− 1
)
Gi̄ . (2.2.31)

Here we defined
C̄

(0)kl
̄ = e2KGkk̄Gll̄C̄

(0)

̄k̄l̄
, (2.2.32)

where Gkk̄ = ∂k∂̄k̄K is the Weil-Petersson metric corresponding to the Kähler potential (2.1.9).
These are the recursive holomorphic anomaly equations, which we want to integrate directly

in this paper. Note that there is no holomorphic anomaly at genus zero. C
(0)
ijk has no world-sheet

moduli dependence, hence no boundaries, and is therefore holomorphic. The genus zero data
thus have to be provided from the outset. They can be determined from the period integrals of
the manifold Y .

It is further shown in [19] that (2.2.30) can be integrated recursively. With an iterative
procedure of complexity growing exponentially with the genus, one rewrites (2.2.30) as

∂k̄F
(g)(t, t̄) = ∂̄k̄Γ

(g)(∆̂ij , ∆̂i, ∆̂, C
(r<g)
i1...in

) , (2.2.33)

and integrates it to

F (g)(t, t̄) = Γ(g)(∆̂ij , ∆̂i, ∆̂, C
(r<g)
i1...in

) + f (g)(t) . (2.2.34)

Here Γ(g) is a functional of some propagators ∆̂ij , ∆̂i, ∆̂ and the lower genus vertices C
(r)
i1...in

with r < g. The holomorphic ambiguity f (g)(t) arises as an integration constant. To prove
that the functional Γ(g) exists at every genus, [19] show that it is the disconnected Feynman
graph expansion of an auxiliary action with the above vertices and propagators, whose partition
function fulfills a master equation equivalent to (2.2.30) and (2.2.31). The propagators can be
defined using the genus zero data as follows. Since

D̄ı̄ C̄
(0)

̄k̄l̄
= D̄̄ C̄

(0)

ı̄k̄l̄
(2.2.35)

one can integrate

C̄
(0)

̄k̄l̄
= −1

2e
−2KD̄ı̄D̄̄∂̄k̄∆̂ (2.2.36)

as
Gı̄j∆̂

j = 1
2 ∂̄ı̄∆̂ , Gı̄k∆̂

kj = ∂̄ı̄∆̂
j , C̄

(0)jk
ı̄ = ∂̄ı̄∆̂

jk . (2.2.37)

Note that the propagators are defined by these equations only up to holomorphic ambiguities
arising in the integration steps. Fixing these ambiguities directly affects the definition of the
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holomorphic functions f (g)(t) in (2.2.34). It turns out that a preferred choice for this ambiguity
is provided by relating the propagators in a canonical way to F (1)(t, t̄) [73].

The combinatorics of the Feynman graph expansion are useful to establish some general
properties of the F (g), but its complexity grows exponentially with the genus. However, the
F (g) are invariant under space-time modular transformations which are a symmetry of the full
string compactification. As we will discuss later, they generically admit a split into a universal
factor times a modular form. Here the weights of the modular forms grow linearly with the
genus. Since the ring of modular forms is finitely generated, the complexity of modular invariant
expressions grows only polynomially with the genus. The method of direct integration that we
develop in this chapter uses this connection with modular forms such that its complexity also
grows only polynomially with the genus. It has the advantage that the modular properties of
the amplitudes are manifest in all steps of the derivation.

2.3 Solving Seiberg-Witten theory by direct integration

Local Calabi-Yau geometries provide simple and instructive examples for the interplay between
holomorphicity and modular invariance in topological string theory. In this section we will
explain the key features using the simplest example, namely the local Calabi-Yau corresponding
to SU(2) Seiberg-Witten theory with no matter [87]. In section 2.3.1 we first recall the geometry
of Seiberg-Witten theory. We show that all genus zero data can be expressed in terms of a finite
set of holomorphic modular forms. All higher amplitudes F (g) are invariant under the modular
group. In section 2.3.2 we directly integrate the holomorphic anomaly equations, determining
all F (g) up to a holomorphic modular ambiguity. Modularity restricts this ambiguity so much
that simple boundary conditions set by the effective action near special points in the moduli
space allow one to reconstruct all F (g). We review such a convenient set of boundary conditions
in section 2.3.3. The general philosophy presented in this section will be later applied to the
more complicated case of compact Calabi-Yau manifolds.

2.3.1 The Seiberg-Witten geometry

Seiberg-Witten theory with no matter [87] can be obtained in the A–model as a limit of the
local Calabi-Yau geometry1 O(−2,−2) → P1 × P1 [88]. The mirror B–model geometry of this
limit is the Seiberg-Witten elliptic curve E

y2 = (x− u)(x− Λ2)(x+ Λ2) , (2.3.38)

whose modular group is Γ(2). This subgroup of Sl(2,Z) acts on the period integrals

t =

∫

a
λ , tD =

∫

b
λ , (2.3.39)

where λ =
√

2
2π

y
x2−1

dx is the Seiberg-Witten meromorphic differential. In the limit described
above, λ is obtained as a reduction of the holomorphic (3, 0) form of the Calabi-Yau manifold.
Rigid special geometry guarantees the existence of a prepotential F (0) = F(t) with the properties

tD =
∂F
∂t

, τ = − 1

4π

∂2F
∂2t

. (2.3.40)

These conditions are obtained as the rigid limit of the special geometry relations presented
in section 2.1. Note that τ is precisely the complex structure parameter of the torus and
hence parametrizes the upper half-plane. In particular, Imτ > 0 is guaranteed by the Riemann

1for a short review of local Calabi-Yau geometry, see appendix C.3
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inequality consistent with the fact that Imτ is the gauge kinetic coupling function of Seiberg-
Witten theory. Moreover, a modular transformation acts on τ as

τ 7→ aτ + b

cτ + d
. (2.3.41)

The genus zero data are functions of τ and transform in a particularly simple way under (2.3.41).
They can be expressed in terms of a finite set of modular generators, which we will specify in
the following.

A modular function f(τ) of weight m is defined to transform as f(τ) 7→ (cτ + d)mf(τ)
under (2.3.41). Focusing on the modular group of the Seiberg-Witten curve, we note that
the ring of modular functions of Γ(2) can be expressed as powers of the Jacobi θ-functions.
Relevant properties of the Jacobian θ-functions are summarized in Appendix C.1. We introduce
two generators

K2 = ϑ4
3 + ϑ4

4, K4 = ϑ8
2 , (2.3.42)

which are of modular weight two and four respectively. The modular transformation properties
follow from (C.1.3). K2,K4 generate the graded ring of holomorphic modular forms M∗(Γ(2))
of Γ(2), which we will also denote by C[K2,K4]. It turns out to be useful to also introduce

h = K2 , E4 = 1
4(K2

2 + 3K4) . (2.3.43)

As we will see when we develop the method of direct integration, it is natural to take h, E4 as
the generators of the ring M∗(Γ(2)).

Let us now express the genus zero data in terms of modular forms. The connection with the
geometry of the Seiberg-Witten curve is given by the following relation

u(τ) =
K2√
K4

. (2.3.44)

The combination z(τ) = 1/u2(τ) is modular invariant and can be viewed as the analog of the
mirror map for this non-compact Calabi-Yau manifold. The analog of the holomorphic triple
coupling is

C ≡ C
(0)
ttt =

∂τ

∂t
=

32K
1/4
4

K2
2 −K4

(2.3.45)

Note that C2 is a form of weight −6 under the modular transformations in Γ(2). The modular
group Γ(2) also determines the periods t, tD as weight 1 objects2

t(τ) =
E2(τ) +K2(τ)

3K
1/4
4 (τ)

, tD(τD) = −i2E2(τD) −K2(τD) − 3K
1/2
4 (τD)

3
(
2K2(τD) − 2K

1/2
4 (τD)

)1/2
, (2.3.46)

where τD = − 1
τ and E2 is the second Eisenstein series defined in (C.1.15). It is natural to

give the periods in the above parameters. In the electric phase of Seiberg-Witten theory the
q = e2πiτ series converges and t is the physical expansion parameter, while in the magnetic phase
the qD = e2πiτD series converges and tD is the physical expansion parameter. Of course tD(τ)
and t(τD) can be obtained by performing an S-duality transformation on E2 and the Jacobi
theta functions.

2.3.2 Direct integration

Having discussed the genus zero geometry, let us now turn to the higher genus free energies
F (g) and their holomorphic anomaly. Starting with F (1), we note that the holomorphic anomaly
equation (2.2.31) specializes to

∂t∂t̄F
(1) = 1

2C
(0) tt
t̄

C
(0)
ttt . (2.3.47)

2They can be calculated likewise using the Picard-Fuchs equation.
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where the indices are raised with the Weil-Petersson metric Gtt̄ = 2Imτ . This equation integrates
immediately to

F (1) = −1
2 log Imτ − log |Φ(τ)| , (2.3.48)

where ∂τ/∂t is evaluated using (2.3.45). The holomorphic object Φ(τ) is the ambiguity at genus
one. It is determined from modular constraints and the physical requirement that F (1) should
only be singular at the discriminant of E . Note that under a modular transformation (2.3.41)
one finds that Imτ 7→ |cτ + d|−2Imτ . Together with the invariance of F (1) this implies that
Φ(τ) must be a modular form of weight 1. The only modular form of weight 1 which has only
poles at the discriminant of E is the square of the η function given in (C.1.4). This fixes the
ambiguity at genus one as Φ(τ) = η2(τ).

At genus one the non-holomorphic dependence was induced through the appearance of Imτ .
As dictated by the holomorphic anomaly equations, all higher F (g) also depend on t̄. We now
show that this dependence arises through the propagator ∆̂tt only. ∆̂tt is obtained in the local
limit of (2.2.37) and thus obeys

∂t̄∆̂
tt = C

(0) tt
t̄

. (2.3.49)

All other propagators vanish in this limit. To integrate this condition, we first multiply both

sides in (2.3.49) by C
(0)
ttt . The result is easily compared to the holomorphic anomaly equation

(2.3.47) of F (1). Changing derivatives by inserting ∂τ/∂t = C
(0)
ttt one evaluates with the help of

(C.1.5)
∆̂tt = 2∂τF

(1)(τ, τ̄) = − 1
12Ê2(τ, τ̄) , ∂τ = (2πi)−1 ∂

∂τ (2.3.50)

The occurrence of the non-holomorphic extension of the second Eisenstein series E2(τ)

Ê2(τ, τ̄) = E2(τ) −
3

πImτ
. (2.3.51)

is forced by modular invariance. Since F (1)(τ, τ̄) is a modular function of weight zero, its
derivative must be a modular form of weight 2 which is not holomorphic. The only form with
these properties is the almost holomorphic form Ê2(τ, τ̄). This form is the canonical, almost
holomorphic extension of the second Eisenstein series E2, where E2 is the unique holomorphic
quasimodular form of weight 2 transforming as

E2(τ) 7→ (cτ + d)2E2(τ) − 6
π ic(cτ + d) (2.3.52)

under a modular transformation (2.3.41). The shift in the transformation of the anholomorphic
piece in (2.3.51) cancels precisely the shift in (2.3.52). More generally the ring M̂∗ of almost
holomorphic forms of Γ(2) is generated as C[Ê2, h,∆].

Using the propagator and general properties of the Feynman graph expansion one can extract
the fact that the higher genus F (g) are weight 0 forms with the structure

F (g)(τ, τ̄) = C2g−2
3g−3∑

k=0

Êk
2 (τ, τ̄)c

(g)
k (τ) , g > 1 , (2.3.53)

where we defined C = C
(0)
ttt . Modular invariance implies then that the holomorphic forms c

(g)
k (τ)

are modular of weight 6(g−1)−2k in C[h,∆]. We will show next that all forms c
(g)
k (τ) with k > 0

are very easily determined by direct integration of the holomorphic anomaly equation. The form

c
(g)
0 (τ) is not determined in this way and corresponds to a holomorphic modular ambiguity.

In order to analyze the holomorphic anomaly equations in the local case, it turns out to be
very useful to discuss some general properties related to modular transformations. Let us first
discuss how derivatives transform under the modular transformation (2.3.41). Denoting by fk a
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modular form of weight k it is elementary to check that its derivative transforms under (2.3.41)
as

∂τfk 7→ (cτ + d)k+2∂τfk +
k

2πi
c(cτ + d)k+1fk . (2.3.54)

Similarly, we can evaluate ∂tfk = C−1∂τfk, where as above C = C
(0)
ttt . In order to cancel the

shift in (2.3.54) we will now introduce covariant derivatives. There are two possible ways to
achieve this3. Firstly, one can cancel the shift against the shift of (Imτ)−1 and set

Dtfk =
(
∂t −

kC

4πImτ

)
fk , Dτfk =

(
∂τ − k

4πImτ

)
fk . (2.3.55)

Here Dt is the covariant derivative to the Weil-Petersson metric Gtt̄ and Dτ is the so-called Mass
derivative. Dt maps almost holomorphic forms of Γ(2) of weight k into almost holomorphic forms
of weight k − 1, while Dτ increases the weight from k to k + 2. Note that both derivatives in
(2.3.55) are non-holomorphic due to the appearance of Imτ . There is however a second possibility
to cancel the shift (2.3.54) which is manifestly holomorphic. More precisely, one can cancel the
shift against the shift (2.3.52) of E2(τ) and define

D̂tfk =
(
∂t − 1

12kCE2

)
fk , D̂τfk =

(
∂τ − 1

12kE2

)
fk . (2.3.56)

In this case D̂τ is known as the Serre derivative. Both D̂t and D̂τ are holomorphic. They map
holomorphic modular forms of weight k to holomorphic modular forms of weight k−1 and k+2
respectively. It is easy to check that the following identity holds

Dtfk = D̂tfk + 1
12kCÊ2 fk , Dτfk = D̂τfk + 1

12kÊ2 fk . (2.3.57)

These equations also imply that whenever fk is holomorphic all the non-holomorphic dependence
of Dtfk and Dτfk lies in a term involving the propagator. In other words, once again all anti-
holomorphic dependence arises through the propagator Ê2 only. The generalizations of the
modular derivatives (2.3.55) and (2.3.56) will reappear in later sections of this work. For the
Enriques Calabi-Yau they are given in (2.1.11),(2.4.81) and (2.5.177).

Here we will us the covariant derivatives (2.3.55) and (2.3.56) to rewrite the holomorphic
anomaly equations (2.2.30). Firstly, we will apply modularity and the fact that all non-
holomorphic dependence arises through the propagator Ê2(τ, τ) to convert anti-holomorphic
derivatives into derivatives with respect to Ê2. Using (2.3.57) we will be able to carefully keep
track of the Ê2 dependence in the holomorphic anomaly equations. Eventually, a solution will
be simply obtained by direct integration of a polynomial in Ê2.

To begin with, note that the holomorphic anomaly equations specialize in the local limit to

∂t̄F
(g) = 1

2C
(0)tt
t̄

(
Dt∂tF

(g−1) +

g−1∑

r=1

∂tF
(r)∂tF

(g−r)
)
. (2.3.58)

Using the fact that all non-holomorphic dependence arises only through the propagator Ê2(τ, τ̄),
this equation can be rewritten as

∂F (g)

∂Ê2

= 1
48

(
Dt∂tF

(g−1) +

g−1∑

r=1

∂tF
(r)∂tF

(g−r)
)
. (2.3.59)

Here we used (2.3.49) to substitute C
(0)tt
t̄

with the derivative ∂t̄Ê2, which then cancels with the
same factor arising on the left-hand side of this equation. Let us now manipulate the right-hand

3We thank Don Zagier for explaining us several manipulations involved in the following.
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side of (2.3.62) and split off the derivative of F (1) in the second term

∂F (g)

∂Ê2

=





1
48

(
Dt∂tF

(1) + (∂tF
(1))2

)
g = 2 ,

1
48

(
(Dt + 2∂tF

(1))∂tF
(g−1) +

g−2∑

r=2

∂tF
(r)∂tF

(g−r)
)

g > 2 ,
(2.3.60)

where the sum now runs from r = 2 to r = g − 2. One then notes that ∂tF
(1) can be replaced

by − 1
24CÊ2 by using (2.3.50). Furthermore, we replace the non-holomorphic derivative Dt with

its holomorphic counterpart D̂t via (2.3.57). Altogether, one evaluates

∂F (2)

∂Ê2

= − 1
48·24

(
D̂t(CÊ2) − 1

8(CÊ2)
2
)

(2.3.61)

for genus two and for g > 2

∂F (g)

∂Ê2

= 1
48

(
(D̂t − 1

6CÊ2)∂tF
(g−1) +

g−2∑

r=2

∂tF
(r)∂tF

(g−r)
)
. (2.3.62)

We are now in the position to make the dependence on Ê2 explicit. This can be done by
rewriting the right-hand side of (2.3.62) using (2.3.56). We also define d̂t and d̂τ as covariant

derivatives Dt, D̂τ not acting on the propagators Ê2, such that e.g. d̂τ (Ê
k
2 c

(r)
k ) = Êk

2 D̂τc
(r)
k .

Applying the chain rule we find

∂tF
(r) =

[
d̂t + (D̂tÊ2)∂ bE2

]
F (r) = C

[
d̂τ − 1

12(E4 + Ê2
2)∂ bE2

]
F (r) , (2.3.63)

where (2.3.51), (2.3.56) and (C.1.20) are applied to evaluate the derivative of E2. The Eisenstein
series E4 arises naturally in rewriting the derivatives. We will therefore work with the ring
C[Ê2, h, E4] introduced in (2.3.43).

Similarly, we rewrite the second derivative

D̂t∂tF
(g−1) = 1

122C
2
(
122d̂2

τ + 62hd̂τ + 2E4(Ê2∂ bE2
+ Ê2

2∂
2
bE2

)

−(3h+ 12d̂τ )Ê
2
2∂ bE2

+ 2Ê3
2∂ bE2

+ Ê4
2∂

2
bE2

(2.3.64)

+(−9E4h+ 2h3 − 12E4d̂τ )∂ bE2
+ E2

4∂
2
bE2

)
F (g−1) ,

where we have used that the derivative of C is given by D̂τC = 1
4hC. This is how the holomor-

phic modular form h defined in (2.3.43) arises in the direct integration.
We can now actually perform the direct integration. This is done by inserting the expres-

sions (2.3.63) and (2.3.64) for ∂tF
(r) and D̂t∂tF

(g−1) into the holomorphic anomaly equation
(2.3.62). Replacing all F (r) for 1 < r < g with their propagator expansion (2.3.53), it is then
straightforward to keep track of the number of propagators Ê2 in each term of the right-hand
side of (2.3.62). Finally, F (g) is determined up to a Ê2−independent ambiguity by integrating
the resulting polynomial in Ê2. Without much effort this procedure can be repeated iteratively
up to the desired genus.

Note that the equation (2.3.61) for F (2) is particularly simple to integrate. Using (2.3.56)
and (C.1.20) one evaluates

D̂t(CÊ2) − 1
8(CÊ2)

2 = 1
24C

2
(
− 5Ê2

2 + 6Ê2h− 2E4

)
. (2.3.65)

Inserted into (2.3.62) it is straightforward to integrate this quadratic polynomial in Ê2 to derive
F (2) as

F (2)(τ, τ̄) = 1
2·243C

2
(

5
3 Ê

3
2 − 3hÊ2

2 + 2E4Ê2

)
+ C2c

(2)
0 , (2.3.66)
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where c
(2)
0 (h,E4) is the holomorphic ambiguity which can be fixed by additional boundary condi-

tions as we discuss in the next section. For genus up to 7 the expressions for F (g) were calculated
in [89] using the Feynman graph expansion. The direct integration using (2.3.62) provides a far
more effective method to solve Seiberg-Witten theory and confirms the results of [89]. Further-
more, the modular properties of the expressions are manifest at each step. As we will discuss
in the later sections, similar constructions will provide us with a powerful tool to determine the
set of candidate modular generators for more complicated Calabi-Yau manifolds. In particular,
holomorphic modular forms are needed to parametrize the holomorphic ambiguity. In case we
know the ring of holomorphic modular forms, fixing the ambiguity reduces to a determination
of a finite set of numerical factors at each genus. For Seiberg-Witten theory this can be done
systematically, as we will discuss in the next section.

2.3.3 Boundary conditions

To systematically fix the c
(g)
0 we have to understand the boundary behavior of the F (g). As it is

well known, there are three distinguished regions in the moduli space of pure SU(2) N = 2 SYM
which correspond to the geometrical singularities of E . We will parametrize the moduli space
by the vacuum expectation value u = 〈TrΦ2〉 of the scalar Φ in the N = 2 vector multiplet. The
first region occurs at u ∼ 1

2 t
2 → ∞, and it corresponds physically to the semiclassical regime.

The monopole region occurs near u→ Λ2, where a magnetic monopole of charge (e,m) = (0, 1)
becomes massless and the electric SU(2) theory with gauge coupling Imτ is strongly coupled. At
the point u → −Λ2 a dyon of charge (e,m) = (−1, 1) becomes massless. However, this point is
identified with the monopole point by a Z2 exact quantum symmetry. For this reason there are
no independent boundary conditions at u→ −Λ2 and we focus on u→ Λ2 and u ∼ ∞. In both
cases the elliptic curve acquires a node, i.e. a local singularity of the form ξ2 + η2 = (u ± Λ2),
where a cycle of S1 topology shrinks. In string theory, a point in the moduli space where a node
in the target geometry develops is called a conifold point.

The natural physical parameter in the magnetic monopole region u→ Λ2 is tD. We get first
a convergent expansion for the F (g) in the variable qD = exp(2πiτD) for τD = − 1

τ → i∞, which
corresponds to tD → 0. This is obtained by an S- transformation of the modular expressions
for the F (g)(τ, τ̄) such as (2.3.66), which converge in the semiclassical region. The holomorphic

magnetic expansions F (g)
D (τD) can be obtained by formally taking the limit τ̄D → ∞, while

keeping τD fixed. Finally we obtain the expansion in tD by inverting (2.3.46). In these magnetic
expansions, a gap structure was observed near the monopole (or conifold) point [89]. One finds

that the leading behavior of F (g)
D (τD) is of the form

F (g)
D =

B2g

2g(2g − 2)t̃2g−2
D

+ k
(g)
1 t̃D + O(t̃2D) , (2.3.67)

where the Bn are the Bernoulli numbers and we used a rescaled variable t̃D = i tD2 . The
knowledge of the leading coefficients and the absence of the remaining 2g−3 sub-leading negative

powers in the t̃D expansion imposes 2g − 2 conditions. Since dimM6g−3(Γ(2)) =
[

3g−1
2

]
this

overdetermines the c
(g)
0 , e.g. for g = 2 we find c

(2)
0 = − 1

2·243

(
1
2E4 h + 1

30h
3
)
. It is very easy to

integrate (2.3.62) using (2.3.63), (2.3.64) and the gap condition, which fixes the ambiguity to
arbitrary genus. This solves the theory completely. One finds moreover a pattern in the first
subleading term in the magnetic expansion

k
(g)
1 =

((2g − 3)!!)3

g!27g−2
. (2.3.68)

The gap can be explained by using the embedding of Seiberg-Witten theory into type IIA
string theory compactified on a suitable Calabi–Yau manifold. The most generic singularity of
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a d complex dimensional manifold is a node where an Sd shrinks. The codimension one locus
in the moduli space where this happens is called the conifold. It was argued in [22, 90] that at
the conifold a RR-hypermultiplet becomes massless. This hypermultiplet is charged and couples
to the U(1) vector multiplets. Its one loop effect on the kinetic terms of the vector multiplets
in the effective action is captured by the local expansion of F (0) [22]. A gravitational one-loop
effect yields the moduli dependence of the R2

+ term in the effective action and is given by local
expansion F (1) [90]. Using further one-loop arguments it was shown that the F (g), which capture
the moduli dependence of the coupling of the self-dual part of the curvature to the self-dual part
of the graviphoton R2

+ F
2g−2
+ , have the following gap structure

F
(g)
conifold =

(−1)g−1B2g

2g(2g − 2)t2g−2
D

+ O(t0D), (2.3.69)

where tD is a suitable coordinate transverse to the conifold divisor [69]. The Seiberg-Witten
gauge theory embedded in type IIA string theory inherits this structure, and the massless
hypermultiplet at the conifold is identified as a monopole becoming massless at the monopole
point. In this way, (2.3.69) explains the field theory result (2.3.67) and extends it to the full
supergravity action.

Once the Seiberg-Witten amplitudes F (g) have been determined in terms of modular func-
tions, these can be expanded around every point in the moduli space. For example, in the
semiclassical regime τ → i∞, u→ ∞ one finds the holomorphic amplitudes

F (g) =
(−1)gB2g

g(2g − 2)(2t)2g−2
+
l
(g)
2g+6

t2g+6
+ O(t2g+10) . (2.3.70)

The higher order terms in this expansion correspond to gauge theory instantons and have been
computed in [80].

2.4 A first look at the Enriques Calabi-Yau

In this section we review some basic properties of topological string theory on the Enriques
Calabi-Yau. We begin by reviewing the N = 2 special geometry of the classical moduli space
of Kähler and complex structure deformations. The first world-sheet instanton corrections arise
from genus one Riemann surfaces as shown in refs. [39, 91, 79]. The holomorphic higher genus
free energies, restricted to the K3 fiber, can also be derived by using heterotic-type II duality
[79]. We briefly summarize these results. We then derive an all-genus product formula for the
fiber amplitudes. In understanding and deriving the expression for the full F (g) an important
hint is given by their transformation properties under the symmetry group of the full topological
string theory on the Enriques Calabi-Yau. More precisely, generalizing the results of the previous
section, one expects that all F (g) are built out of functions transforming in a particularly simple
way under the group Sl(2,Z) × O(10, 2,Z). In paragraph 2.4.4, we will review some essentials
about these modular and automorphic functions and forms.

2.4.1 Special geometry of the classical moduli space

The Enriques Calabi-Yau can be viewed as the first non-trivial generalization of the product
space T2 × K3. It is defined as the orbifold (T2 × K3)/Z2, where Z2 acts as a free involution
[39]. This involution inverts the coordinates of the torus and acts as the Enriques involution on
the K3 surface. The cohomology lattice of T2 × K3 takes the form [38]

Γ6,22 = Γ2,2 ⊕ [Γ1,1 ⊕ E8(−1)]1 ⊕ [Γ1,1 ⊕ E8(−1)]2 ⊕ Γ1,1
g ⊕ Γ1,1

s , (2.4.71)
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where the inner products on the sublattices E8(−1) and Γ1,1 are given by

(Cαβ) = −CE8 , (Cij) =

(
0 1
1 0

)
. (2.4.72)

with α, β = 1, . . . , 8 and i, j = 1, 2. Here CE8 is the Cartan matrix of the exceptional group E8.
The lattice (2.4.71) splits into H1(T2) ⊕H1(T

2) = Γ2,2 and H∗(K3) = Γ4,20. Under heterotic-
type II duality it can be identified with the Narain lattice of the heterotic compactification on
T6. The Z2 involution on the Enriques Calabi-Yau acts on the five terms of the lattice (2.4.71)
as [39]4

|p1, p2, p3, p4, p5〉 → eπiδ·p5 | − p1, p3, p2,−p4, p5〉 , (2.4.73)

where pi is an element of the i-th term in (2.4.71) and we denoted δ = (1,−1) ∈ Γ1,1
s .

The Enriques Calabi-Yau has holonomy group SU(2) × Z2. This implies that type II string
theory compactified on the Enriques Calabi-Yau will lead to a four-dimensional theory with N =
2 supersymmetry. Nevertheless, due to the fact that it does not have the full SU(3) holonomy
of generic Calabi-Yau threefolds, various special properties related to N = 4 compactification
on T2 ×K3 are inherited.

As an example of the close relation of the Enriques Calabi-Yau to its N = 4 counterpart
T2 × K3 one notes that the moduli space of Kähler and complex structure deformations are
simply cosets. The complex dimensions of these moduli spaces are given by the dimensions
h(1,1) and h(2,1) of the cohomologies H(1,1) and H(2,1). They can be determined constructing a
basis of H(p,q) of forms of K3 and T2 invariant under the free involution. One obtains [39]

h(2,1) = h(1,1) = 11 , (2.4.74)

while H(0,0), H(3,3) as well as H(3,0) are one-dimensional. Moreover, one can show that the
Enriques Calabi-Yau is self-mirror and that both the Kähler and complex structure moduli
spaces are given by the coset

M =
Sl(2,R)

SO(2)
×N8 , (2.4.75)

where

Ns =
O(s+ 2, 2)

O(s+ 2) ×O(2)
. (2.4.76)

The actual moduli space is obtained after dividing M by the discrete groups Sl(2,Z)×O(10, 2; Z).
M is a simple example of a special Kähler manifold. We will discuss its properties in the fol-
lowing.

It is a well-known fact that the geometric moduli space of a Calabi-Yau manifold consists
of two special Kähler manifolds corresponding to Kähler and complex structure deformations.
A summary of some of the basic definitions and identities of special geometry can be found in
section 2.1. Essentially all information is encoded in one holomorphic function, the prepotential
F . Let us for concreteness consider the moduli space of Kähler structure deformations of the
Enriques Calabi-Yau which is of the form (2.4.75). Denoting by ω̂ the harmonic (1, 1)-form in
the T2-base and by ωa the (1, 1) forms in the Enriques fiber, we obtain complex coordinates
S, ta by expanding the combination

J + iB2 = S ω̂ + ta ωa , a = 1, . . . , 10 , (2.4.77)

where J is the Kähler form on the Enriques Calabi-Yau and B2 is the NS-NS two-form. Note
that in our conventions ReS > 0 and Re ta > 0 such that the world-sheet instantons arise as
series in qS = e−S and qta = e−ta in the large radius expansion. We note that these complexified
Kähler parameters ta can be regarded as a parametrisation of the coset N8. The parametrisation

4The effect of the phase factor on the type II side was interpreted as turning on a Wilson line [39].
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we are using here is the one suitable for the conventional large radius limit and corresponds to
what was called in [79] the geometric reduction. In terms of (2.4.77), the prepotential takes the
form

F = − i
2Cabt

atbS . (2.4.78)

For the Enriques Calabi-Yau the cubic expression for the genus zero free energy F (0) = F is
exact and world-sheet instanton corrections will only arise at higher genus. This is precisely the
reason for the simple form (2.4.75) of the moduli space. The symmetric matrix Cab in (2.4.78)
encodes the intersections in the Enriques fiber E such that

Cab =

∫

E
ωa ∧ ωb . (2.4.79)

The inverse matrix Cab ≡ C−1 ab can be calculated explicitly and coincide in an appropriate
basis with the intersection matrix of the Z2 invariant lattice of the second and the third factor
in (2.4.71), i.e.

ΓE = Γ1,1 ⊕ E8(−1) , (Cab) =

(
0 1
1 0

)
× (−CE8). (2.4.80)

Here CE8 is the Cartan matrix of the exceptional group E8. The lattice ΓE is identified with
the second cohomology group of the Enriques surface.

The prepotential for the Enriques Calabi-Yau encodes the classical geometry of the moduli
space (2.4.75). The Kähler potential is derived using equation (2.1.7) to be of the form

K = − log
[
Y (S + S̄)

]
, Y = 1

2Cab(t
a + t̄a)(tb + t̄b) . (2.4.81)

Note that K as given in (2.1.7) contains a term − log |X0|2, with X0 being the fundamental
period. Such a term can be removed by a Kähler transformation K → K − f − f̄ , where f
is a holomorphic function, such that our expression (2.4.81) corresponds to a certain Kähler
gauge. In general, all objects we will consider below are sections of a line bundle L which
parametrizes such holomorphic rescalings V → efV . As an example e−K is a section of L ⊗ L̄.
Such Kähler transformations do not change the Kähler metric which is obtained by evaluating
the holomorphic and anti-holomorphic derivative of K. The Kähler metric splits into two pieces

GSS̄ =
1

(S + S̄)2
, Gab̄ = −Cab

Y
+
Cac(t+ t̄)cCbd(t+ t̄)c

Y 2
, (2.4.82)

with all other components vanishing. The Christoffel symbols for this metric are easily evaluated
to be

ΓS
SS = 2KS , Γc

ab = KeC
edΓ̂c

ab|d , (2.4.83)

where KS and Ka are the first derivatives of the Kähler potential (2.4.81) and we have defined

Γ̂b
ac|d =

(
δb
cCad + δb

aCcd − δb
dCac

)
. (2.4.84)

It is also easy to derive the holomorphic Yukawa couplings C
(0)
ijk defined in (2.1.14). In coordinates

S, ta one uses the prepotential (2.4.78) to show

C
(0)
Sab = Cab . (2.4.85)

In general C
(0)
Sab is a section of L2 ⊗ Sym3(T ∗M). In the case of the Enriques Calabi–Yau

it is constant in the Kähler gauge and coordinates chosen above, and covariantly constant in a
general gauge. The covariant derivative, acting on a section of Lm ⊗ L̄n, is (2.1.11)

Da = ∂a +mKa, Dā = ∂ā + nKā, (2.4.86)
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and includes the Christoffel symbols when acting on tensors. Applied to C
(0)
Sab one shows

DcC
(0)
abS = −Γd

caCdb − Γd
cbCad + 2∂cKCab = 0 , (2.4.87)

which vanishes by means of the equation (2.4.83) for the Christoffel symbols. A similar equation

holds for the covariant derivative DSC
(0)
abS , showing that C

(0)
abS is indeed covariantly constant.

Once again, this special property of the Yukawa couplings is immediately traced back to the
fact that the prepotential F receives no instanton corrections.

The space M has two different types of singular loci in complex codimension one on the
moduli space [39, 38] which lead to conformal field theories in four dimensions. The first de-
generation comes from the shrinking of a smooth rational curve e ∈ ΓE with e2 = −2. The
shrinking P1 leads to an SU(2) gauge symmetry enhancement together with a massless hyper-
multiplet, also in the adjoint representation of the gauge group. We then obtain for this point
the massless spectrum of N = 4 supersymmetric gauge theory. In terms of the complexified
Kähler parameters introduced in (2.4.77) this singular locus occurs along

t1 = t2. (2.4.88)

In order to understand the second singular locus, we first point out that the coset N8 can be
parametrized in many different ways. In [79] it was noticed that there is a parametrisation of
this coset in terms of some coordinates taD, a = 1, · · · , 10 which are related to what was called
there the BHM reduction. By using the formulae in [79] it is easy to see that the coordinates ta

and taD are related by the following simple projective transformation,

t1 = t1D − 1

4t2D

10∑

i=3

(tiD)2,

t2 =
2π2

t2D
,

ti = −πi
tiD
t2D
, i = 3, · · · , 10.

(2.4.89)

The second singular locus occurs when

t1D = t2D. (2.4.90)

On this locus one gets as well an SU(2) gauge symmetry enhancement. In addition one gets four
hypermultiplets in the fundamental representation of SU(2), and the resulting gauge theory is
N = 2, SU(2) Yang-Mills theory with four massless hypermultiplets. In Fig. 2.2 we represent
schematically the two singular loci in moduli space, related by the projective transformation
(2.4.89). In sections 2.5 and 2.6 of this paper we will explore in some detail the field theory limit
of the topological string amplitudes and we will verify this picture of the moduli space.

2.4.2 Genus one and the free energies on the Enriques fiber

So far we have discussed the classical moduli space of the Enriques Calabi-Yau Y . We introduced
the prepotential F which is cubic in the Kähler structure deformations and receives no worldsheet
instanton corrections. One expects that such a simple structure will no longer persist at higher
genus. This is already true at genus one as was shown in [91, 79]. Heterotic–type II duality
can also be used to determine all higher genus free energies on the K3 fibers of the Enriques
Calabi-Yau [79]. In this section we will summarize some results of [79] and present a closed
expression for the fiber free energies also including the anti-holomorphic dependence.
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Figure 2.2: The singular loci in the moduli space N8, leading to two different gauge theories in
the field theory limit.

Let us begin with a brief discussion of the free energies for the Enriques fiber. The fiber limit
of the topological string amplitudes corresponds to blowing up the volume of the base space by
taking

S → ∞ , qS ≡ e−S → 0 . (2.4.91)

In what follows we will need to distinguish the full topological string amplitudes F (g) from their
fiber limits as well as from their holomorphic limits. We will denote,

F
(g)
E (t, t̄) = lim

S→∞
F (g)(t, t̄) (2.4.92)

and
F (g)

E (t) = lim
t̄→∞

F
(g)
E (t, t̄). (2.4.93)

The fiber limit F
(g)
E (t, t̄) can be calculated using heterotic-type II duality [18, 29, 79]. In the

heterotic string they are given by a one–loop computation of the form

F
(g)
E (t, t̄) =

∫
dτ Θ

g
Γ(τ, v+)fg(τ, τ̄)/Y

g−1 (2.4.94)

where Y is defined in (2.4.81), and Θg
Γ(τ, v+) is a theta function with an insertion of 2g − 2

powers of the right–moving heterotic momentum. We will not need the precise definitions of Θg
Γ

and fg here. However, it is important to note that these amplitudes can be evaluated in closed
form by using standard techniques for one–loop integrals. The holomorphic limit (2.4.93) was
determined in [79] and it is given by

F (g)
E (t) =

∑

r>0

cg(r
2)
[
23−2gLi3−2g(e

−r·t) − Li3−2g(e
−2r·t)

]
, (2.4.95)

where Lin is the polylogarithm of index n defined as

Lin(x) =
∞∑

d=1

xd

dn
. (2.4.96)

In formula (2.4.95) we have also set r2 = Cabrarb and r · t = rat
a. We will sometimes write

r = (n,m, ~q). (2.4.97)
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The restriction r > 0 means n > 0, or n = 0,m > 0, or n = m = 0, ~q > 0. Finally, we need to
define the coefficients cg(n). They can be identified as the expansion coefficients of a particular
quasi-modular form

∑

n

cg(n)qn = −2
Pg(q)

η12(2τ)
, (2.4.98)

with Pg(q) given by (
2πη3λ

ϑ1(λ|τ)

)2

=
∞∑

g=0

(2πλ)2gPg(q). (2.4.99)

The definition of η(τ) and the theta-function ϑ1(λ|τ) can be found in Appendix C.1. From the
definition (2.4.99) and the identities summarized in Appendix C.1 one also infers that the Pg

are quasimodular forms of weight 2g and can be written as polynomials in the Eisenstein series
E2, E4, E6. We have for example

P1(q) = 1
12E2(q) , P2(q) = 1

1440(5E2
2 + E4) . (2.4.100)

In general, as we will see in section 2.5, it is very hard to include the T2-base in order
to obtain the expressions F (g) for the full Enriques Calabi-Yau. It turns out that only F (1)

factorizes nicely, namely we can write the A–model free energy F (1) as [91, 79]

F (1)(S, t) = F (1)
base + F (1)

E , (2.4.101)

where F (1)
base and F (1)

E are the contributions from the T2 base and the K3 fiber. F (1)
base is the torus

free energy given by [8]

F (1)
base = −12 log η(S) , (2.4.102)

where η(S) is defined in (C.1.4), while

F (1)
E = −1

2 log Φ(t), (2.4.103)

where Φ(t) is the infinite product

Φ(t) =
∏

r>0

(
1 − e−r·t

1 + e−r·t

)2c1(r2)

. (2.4.104)

This infinite product first appeared in the work of Borcherds [41]. As we will discuss in more
detail later on, Φ(t) is the key example of a holomorphic automorphic form for the Enriques
Calabi-Yau. It is also convenient to introduce,

Φ(S, t) = η24(S)Φ(t), (2.4.105)

so that we can write
F (1)(S, t) = −1

2 log Φ(S, t). (2.4.106)

We presented above formulae for the holomorphic limit of F
(g)
E (t, t̄), but heterotic-type II

duality can be used as well to obtain the antiholomorphic dependence on t̄. At genus one, one
finds [92, 29]

F
(1)
E (t, t̄) = −2 log Y − log

∣∣Φ(t)
∣∣. (2.4.107)

The antiholomorphic dependence on S̄ is the usual one for the torus [8] and one has

F (1)(S, S̄, t, t̄) = F
(1)
E (t, t̄) − 6 log

(
(S + S̄)|η2(S)|2

)
. (2.4.108)
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Equivalently, we can write

F (1)(S, S̄, t, t̄) = −2 log
[
(S + S̄)3Y

]
− log

∣∣Φ(S, t)
∣∣. (2.4.109)

As a consistency check one shows that this anti-holomorphic dependence can also be inferred
from the holomorphic anomaly equation (2.2.31) for F (1).

The antiholomorphic dependence in the heterotic calculation at higher genus is much more
complicated, but was written down for the STU model in [29]. As we show in Appendix A.2,
this computation can be considerably simplified and adapted to the Enriques case. We find that

the non-holomorphic free energy F
(g)
E (t, t̄) can be cast into the form

F
(g)
E (t, t̄) =

g−1∑

l=0

min
(l,2g−3−l)∑

C=0

(
2g − 3 − l

C

)
(t+ t̄)a1 . . . (t+ t̄)al−C∂a1 . . . ∂al−C

F (g−l)
E (t)

(l − C)!2l Y l

− 1

2g−2(g − 1)Y g−1
, (2.4.110)

where F (r)
E (t) is the holomorphic fiber expression given in (2.4.95). It is easy to check that the

F
(g)
E (t, t̄) fulfill the holomorphic anomaly equation on the fiber.

So far we have discussed the heterotic results for the fiber limit by using the Kähler param-
eters (2.4.77) appropriate for the large radius limit. As shown in [79], one can also compute
them in the coordinates taD introduced in (2.4.89). This was called the BHM reduction in [79],
and leads to the holomorphic couplings,

F (g)
E (tD) =

∑

r>0

dg(r
2/2)(−1)n+mLi3−2g(e

−r·tD) (2.4.111)

where the coefficients dg(n) are defined by

∑

n

dg(n)qn =
22+gPg(q

4) − 22−gPg(q)

η12(2τ)
, (2.4.112)

and in (2.4.111) we regard r as a vector in Γ1,1 ⊕ E8(−2). Note that in comparison to (2.4.80)
we now need to include the lattice E8(−2) with inner product given by −2 times the Cartan
matrix of E8, such that r2 = 2nm− 2~q 2. One has, in particular,

F (1)
E (tD) = −1

2 log ΦB(tD) , (2.4.113)

where

ΦB(tD) =
∏

r>0

(
1 − e−r·tD

)(−1)n+mcB(r2/2)
(2.4.114)

with coefficients ∑

n

cB(n)qn =
η(2τ)8

η(τ)8η(4τ)8
. (2.4.115)

This is the modular form introduced by Borcherds in [93], and the above expression for F1 agrees
with that found by Harvey and Moore in [91] (up to a factor of 1/2 due to different choice of
normalizations).

2.4.3 An all–genus product formula on the fiber

As we have already mentioned, the infinite product (2.4.104) was first considered by Borcherds
in [41]. Borcherds also noticed that (2.4.104) is the denominator formula for a generalized
Kac–Moody (or Borcherds) superalgebra (see [94, 92] for a review of Borcherds algebras). The
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root lattice of this superalgebra is Γ1,1 ⊕ E8(−1) (i.e. the cohomology lattice of the Enriques
surface), and the simple roots are the positive, norm 0 vectors. Each simple root appears
also as a superroot, both with multiplicity 8, and this is why the product of (2.4.104) has a
“supersymmetric” structure: the numerator is a trace over fermionic degrees of freedom, while
the denominator traces over bosonic degrees of freedom. Both have the same multiplicity 2c1(r

2).
In addition, the fact that c1(−1) = 0 is equivalent to the absence of tachyons in the spectrum.

We will now write down a formula for the total partition function of topological string theory,
restricted to the fiber, and we will show that it preserves the structure found by Borcherds for
(2.4.104). As a first step, we define a generating functional ξ(q, gs) closely related to (2.4.99),

ξ(q, gs) =

∞∏

n=1

(1 − qn)2

1 − 2qn cos gs + q2n
. (2.4.116)

We have the identity
∞∑

g=0

Pg(q)g
2g−2
s =

(
2 sin

gs

2

)−2

ξ2(q, gs), (2.4.117)

Let us now define the Enriques degeneracies ΩE(r, ℓ) as

∑

r,ℓ

8ΩE(r, ℓ)qr2
qℓ
s =

2

(q
1
4
s − q

− 1
4

s )2

1

η12(2τ)
(ξ2(q, gs/2) − ξ2(−q, gs/2)), (2.4.118)

where
qs = eigs . (2.4.119)

The right-hand side of (2.4.118) only involves integer powers of q±1
s . We can collect the Enriques

degeneracies in the generating polynomials

Ωn(z) =
∑

r2=2n,ℓ≥0

ΩE(r, ℓ)zℓ, (2.4.120)

which are of degree n in z. We have for the first few:

Ω0(z) = 1,

Ω1(z) = 12 + 2z,

Ω2(z) = 90 + 24z + 3z2,

Ω3(z) = 520 + 180z + 36z2 + 4z3,

Ω4(z) = 2538 + 1040z + 270z2 + 48z3 + 5z4,

Ω5(z) = 10944 + 5070z + 1560z2 + 360z3 + 60z4 + 6z5.

(2.4.121)

Notice that the constant terms of Ωn(z) are closely related to the Euler characteristics of the
Hilbert schemes of the Enriques surface, but there are “deviations” which become more and
more important as the degree increases. Finally, notice that

∑

ℓ

ΩE(r, ℓ)qr2
qℓ
s = Ωn(qs) + Ωn(q−1

s ) − Ωn(0). (2.4.122)

We now define

FE =

∞∑

g=1

g2g−2
s F (g)

E (t), ZE = e−2FE . (2.4.123)

Notice that, as gs → 0, ZE is precisely the Borcherds product Φ(t). It is now an easy exercise
to evaluate it for finite gs from (2.4.95), and we find

ZE(gs, t) =
∏

r,ℓ

(
1 − qℓ

se
−r·t

1 + qℓ
se

−r·t

)8ΩE(r,ℓ)

. (2.4.124)
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As in the g = 1 case, (2.4.124) has a supersymmetric structure, with the same degeneracies
for fermionic and bosonic states. This formula in fact suggests the existence of a superalgebra
structure for the all–genus result as well. By including gs we have extended the lattice to

Γ1,1 ⊕ E8(−1) → Γ1,1 ⊕ E8(−1) ⊕ Z (2.4.125)

which is reminiscent of the growth of an eleven–dimensional direction associated to the string
coupling constant. The fact that the all–genus heterotic results seem to lead to an extra direction
in the heterotic lattice has been pointed out in [95, 96]. It would be very interesting to see if
there is indeed a superalgebra associated to the all–genus result (2.4.124). If this was the case,
the quantities 8ΩE(r, ℓ) would correspond to root multiplicities.

Finally, we mention that according to the conjecture in [25] and the results of [62], (2.4.124)
is essentially the generating functional of an infinite family of Donaldson–Thomas invariants
on the Enriques surface (written already in the right variables). Such product formulas for Z
exist generically if the latter is expressed in terms of of Gopakumar-Vafa invariants [97]. Our
comments above indicate that the Donaldson–Thomas theory on this manifold has a highly
nontrivial algebraic structure (see section 3.2.6 in [62] for a related observation).

2.4.4 Automorphic forms

The free energies F
(g)
E (t, t̄) on the fiber turn out to be automorphic forms on the coset space

N8. Here we will study in some detail automorphic forms on the space Ns. We will say that a
function on the moduli space Ns is automorphic if it has well–defined transformation properties
under the discrete subgroup O(s+ 2, 2; Z).

The transformation properties are easier to understand if we consider explicit generators
of the symmetry group. We consider the explicit parametrisation of the coset space (2.4.75)
induced by a reduction

Γs+2,2 = Γs+1,1 ⊕ Γ1,1, (2.4.126)

and let t ∈ Cs+1,1 be the vector of complex coordinates parametrizing the coset. Our conventions
are such that t has positive real part. For an element ta ∈ Cs+1,1 we define the inner product

t2 = 1
2Cabt

atb, (2.4.127)

where Cab is the intersection matrix.
The generators of the symmetry group are taken to be [92]:

• t 7→ t+ 2πiλ, λ ∈ Γs+1,1.

• t 7→ w(t), w ∈ O(s+ 1, 1; Z).

• The automorphic analog of an S–duality transformation

ta 7→ t̃a =
ta

t2
. (2.4.128)

We say that a function Ψ(t) is an automorphic function of weight k if it is invariant under
the first two transformations above, and if under (2.4.128), it behaves as follows:

Ψk(t̃) = t2kΨk(t). (2.4.129)

We can also have automorphic forms of weight (k, k̄) which transform as

Ψk,k̄(t̃) = t2k t̄ 2k̄Ψk,k̄(t). (2.4.130)

Although we have not indicated it explicitly, these functions might have a non-holomorphic
dependence on t̄. Automorphic forms are in general non-holomorphic. Some automorphic forms
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are meromorphic (they have poles at divisors). If they do not have poles, they are called
holomorphic.

Notice that (2.4.128) transforms the metric Y = (t+ t̄)2 on the “upper half plane” as follows:

Y 7→ t−2 t̄−2Y . (2.4.131)

Following the definition (2.4.130) this identifies Y as an automorphic form of weight (−1,−1).
Recalling the form of the Kähler potential for the classical moduli space (2.4.81) this is nothing
but a Kähler transformation [98]

K 7→ K + log t2 + log t̄2 . (2.4.132)

in special coordinates where X0 = 1. Note that, if we keep X0, this shift can be absorbed by
the transformation of X0

X0 7→ t2X0 . (2.4.133)

This can be traced back to the fact that K as given in (2.1.7) is a scalar under the full symplectic
group.

In order to understand how the automorphic properties mix with taking derivatives, it is
useful to derive the Jacobian Jb

a of the change of coordinates (2.4.128). We immediately find,

∂t̃a

∂tb
≡ (J−1)a

b =
1

t4

(
δa

bt
2 − taCbet

e
)
,

∂ta

∂t̃b
= Ja

b = δa
bt

2 − taCbet
e . (2.4.134)

Notice that Jb
a obeys the following useful identities

Jb
a = t4(J−1)b

a , Cab = t−4CcdJ
c
aJ

d
b , CabJc

aJ
d
b = t4Ccd . (2.4.135)

Let us now assume that Ψ is an automorphic form of weight (k, 0). We want to determine the
transformation behavior of DaΨ and DaDbΨ under the dualities (2.4.128). Da are here the
derivatives covariant both with respect to Christoffel connection and the canonical connection
on the vacuum bundle L, as introduced in section 2.4.1. Therefore,

DaΨ = (∂a − kKa)Ψ . (2.4.136)

Notice that, since K transforms as given in (2.4.132), its first derivative Ka shifts as

Ka 7→ Jb
a

(
Kb + t−2Cbct

c
)
. (2.4.137)

Combining this with the transformation of the automorphic form Ψ itself we conclude

DaΨ 7→ t2kJb
aDbΨ . (2.4.138)

Similarly, we show that the second derivative of Ψ transforms as

DbDaΨ 7→ t2kJb
dJ

c
aDbDcΨ , (2.4.139)

where we have used that the Christoffel symbols in the second connection transform as

Jd
b ∂dJ

c
a − Γ̃d

baJ
c
a = Γd

baJ
c
a . (2.4.140)

Hence, we have shown that the covariant derivatives Da of Ψ transform with a factor t2k but
are also rotated by the Jacobian Ja

b containing another factor of t2. Note however, that we can
easily obtain automorphic forms containing the derivatives DaΨ. More precisely, if Ψ and Ψ′

are automorphic forms of weight (k, 0) and (k′, 0) we find by using (2.4.135) that

CabDaDbΨ , CabDaΨDbΨ
′ (2.4.141)
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are automorphic forms of weight k+2 and k+k′+2 respectively. Such automorphic combinations
arise in the derivation of all F (g)(S, S̄, t, t̄), g > 1. More precisely, we will argue in the next
sections that as function of t, t̄, F (g)(S, S̄, t, t̄) itself is an automorphic form of weight (2g− 2, 0)
such that

F (g) 7→ t4g−4F (g) for g > 1 . (2.4.142)

An important example of an automorphic form is the heterotic integral (2.4.94). It is easy to
show from the properties of the Narain–Siegel theta function that it has weight (2g−2, 0). Since

this integral gives the fiber limit F
(g)
E , we obtain a check of the general property (2.4.142) from

heterotic/type II duality. Note that it is straightforward to define amplitudes F (g) invariant
under automorphic transformations by

(X0)2−2g F (g) . (2.4.143)

The invariance of this combination is readily checked by using (2.4.133) and (2.4.142). The
expressions (2.4.143) are shown to be invariant under the full target space symmetry group
Sl(2,Z)×O(10, 2). They are the direct analogs of the invariant free energies encountered in the
Seiberg-Witten example in section 2.3.

A particularly important and simple example occurs at g = 1. Since F
(1)
E is invariant, one

deduces from (2.4.107) and (2.4.131) that Φ(t) is an automorphic form of weight (4, 0) i.e.

Φ(t̃) = t8 Φ(t) , t̃a =
ta

t2
. (2.4.144)

One can also show that Φ(t) is holomorphic. This is proved in [41], and it is in fact a consequence

of the regularity of F (g)
E (t) at the singular locus (2.4.88), which will be discussed in more detail

in section 2.5.4. In addition, Φ(t) is what is called a singular automorphic form (see [99], section
3, for a definition). Singular automorphic forms are known to satisfy a wave equation

Cab ∂2

∂ta∂tb
Φ(t) = 0. (2.4.145)

Equivalently, they have Fourier expansions involving only vectors of zero norm. It follows that

F (1)
E (t) satisfies

Cab∂a∂bF (1)
E = 2Cab∂aF (1)

E ∂bF (1)
E . (2.4.146)

This is equivalent to the recursive relation found in [62] for genus one invariants on the fiber,

and proves that the expression for F (1)
E (t) obtained in [79] agrees with the Gromov–Witten

calculation of [62].

2.5 Direct Integration on the Enriques Calabi-Yau

In this section we illustrate the power of the method of direct integration by studying the
topological string amplitudes F (g) on the Enriques Calabi-Yau. Our approach will follow and
generalize the strategy developed for the Seiberg-Witten example in section 2.3. To begin with,
we perform a direct integration along the T2−base. Using the fiber results obtained in the
previous section as additional input, the first six free energies F (g) can be determined in a closed
form. We then present a more general formalism combining direct integration in base and fiber
directions, and we introduce the relevant holomorphic and non-holomorphic O(10, 2,Z) forms.
A closed recursive expression for F (g) will also be derived. It determines the F (g) up to a
holomorphic ambiguity and we will briefly discuss possible boundary conditions. Finally, we
consider a reduced Enriques model with three parameters only, which was already studied in
[79]. This model has the advantage that the mirror map can be determined explicitly. We also
study in more detail the boundary conditions (such as the gap condition), which lead to valuable
conclusions also applying to the full model.
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2.5.1 A simple direct integration and F (g) to genus six

Let us now perform the direct integration along the T2 base and derive the first few amplitudes
F (g). In order to do that we carefully keep track of their dependence of on the base direction
S, S̄. As in the case of Seiberg–Witten theory studied in section 2.3, it is easy to see from
the structure of the holomorphic anomaly equations that the only antiholomorphic dependence
of F (g) on S̄ appears through Ê2(S, S̄). By taking derivatives with respect to S we will also
generate in the holomorphic anomaly equations the modular forms E4(S), E6(S), and by keeping
track of the modular weight one immediately finds that F (g) is an element of weight 2g − 2 in
the ring generated by

Ê2(S, S̄), E4(S), E6(S) . (2.5.147)

Our only assumption here is that the holomorphic ambiguity for F (g) is also a modular form of
weight 2g− 2 in this ring. This assumption (as well as the details of the direct integration) can
be checked in a highly nontrivial way by comparing the resulting expressions to the field theory
limit in the Nf = 4 locus of Fig. 2.2. This check will be performed in section 2.6.

To perform the direct integration let us first rewrite the holomorphic anomaly equation for
the base direction S̄. The general expression (2.2.30) reduces to

∂S̄F
(g) = −1

2

Cab

(S + S̄)2

(
DaDbF

(g−1) +

g−1∑

r=1

DaF
(r)DbF

(g−r)
)
. (2.5.148)

We now convert the derivative ∂S̄ into a derivative with respect to Ê2. The definition of Ê2 was
already given in (2.3.51). Since we now consider an expansion in qS = e−S it takes the form

Ê2(S, S̄) = − 12

S + S̄
+ E2(S) . (2.5.149)

Since the dependence of F (g) on S̄ is only through this quantity, we can rewrite the anomaly
equation as

∂F (g)

∂Ê2

= − 1
24C

ab
(
DaDbF

(g−1) +

g−1∑

r=1

DaF
(r)DbF

(g−r)
)
. (2.5.150)

Here the covariant derivatives Da are only taken with respect to the fiber directions and do not
depend on the base due to the simple special geometry of the Enriques Calabi-Yau. This implies
that all dependence on Ê2 arises directly through the F (r). We thus expand F (g) in powers of
Ê2 by writing

F (g) =

g−1∑

k=0

Êk
2 (S, S̄) c

(g)
k , g > 1 . (2.5.151)

We see that (2.5.150) determines all the coefficients c
(g)
k for k = 1, . . . , g−1 in terms of quantities

at lower genera. Explicitly, we have the solution

c
(g)
k = − 1

24kC
ab
(
DaDbc

(g−1)
k−1 +

g−1∑

r=1

∑

l+m=k−1

Dac
(r)
l Dbc

(g−r)
m

)
, (2.5.152)

where we have set
c
(1)
0 = F (1) , c

(1)
i = 0 , i 6= 0 . (2.5.153)

The Ê2-independent term c
(g)
0 arises as an integration constant and hence cannot be determined

by the holomorphic anomaly equation. However, given our assumptions, we can fix it up to
genus 6 as follows. Let us denote the coefficients in the fiber limit by

c
(g)
E| k = lim

S,S̄→∞
c
(g)
k . (2.5.154)
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By also taking the fiber limit of (2.5.151) we find

g−1∑

k=0

c
(g)
E| k = F

(g)
E (t, t̄). (2.5.155)

The free energies F
(g)
E (t, t̄) are known from the heterotic computation and given in (2.4.110).

Together with the fact that all c
(g)
E| k for k ≥ 1 are uniquely determined by the direct integration

we can use (2.5.155) to derive c
(g)
E| 0 i.e. the fiber limit of the integration constant. But the

condition that c
(g)
0 is a modular form in the ring generated by (2.5.147) and does not involve Ê2

fixes it uniquely in terms of c
(g)
E| 0 as

c
(2)
0 = 0 , c

(3)
0 = c

(3)
E| 0 E4 , c

(4)
0 = c

(4)
E| 0 E6 ,

c
(5)
0 = c

(5)
E| 0 E

2
4 , c

(6)
0 = c

(6)
E| 0 E4E6 ,

(2.5.156)

where E4(S) and E6(S) are the two holomorphic generators in (2.5.147). This can be checked
by noting that the definition (C.1.15) of the Eisenstein series implies that

E2 , E4 , E6 → 1 , (2.5.157)

in the fiber limit S, S̄ → ∞. For g ≥ 7, the number of possible modular forms is greater than

one and c
(g)
E| 0 is no longer uniquely determined in terms of its fiber limit. For example, at genus

seven c
(7)
0 can contain terms proportional to E3

4 as well as E2
6 .

Let us now write down some explicit formula for lower genera. For g = 2 we find,

F (2)(S, S̄, t, t̄) = Ê2(S, S̄) c
(2)
1 , (2.5.158)

where we use (2.5.156) and apply (2.5.152) to derive

c
(2)
1 = − 1

24C
ab
(
DaDbF

(1)
E +DaF

(1)
E DbF

(1)
E

)
. (2.5.159)

Consistency of the fiber limit requires that c
(2)
1 = F

(2)
E (t, t̄). This can be checked by using the

heterotic expression (2.4.110) for F
(2)
E (t, t̄), the property (2.4.146), and the identity [79]

F (2)
E = − 1

16C
ab∂a∂bF (1)

E , (2.5.160)

which follows directly from (2.4.94). In the holomorphic limit we find,

F (2)(S, t) = E2(S)F (2)
E (t) , (2.5.161)

in agreement with the results of [79, 62]. In the following sections we will also need a slightly
different form of F (2). Namely, it is straightforward to apply (2.4.146) to write

F (2) = −1
8C

ab∂aF
(1)∂bF

(1) . (2.5.162)

Let us now consider the g = 3 case. The amplitude F (3) can be expanded by using (2.5.151)
and (2.5.156) as

F (3) = Ê2
2(S, S̄) c

(3)
2 + E4(S) c

(3)
E| 0 . (2.5.163)

Using the result of the direct integration (2.5.152) we obtain

c
(3)
2 = − 1

48C
ab
(
DaDbF

(2)
E + 2DaF

(2)
E DbF

(1)
E

)
. (2.5.164)
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To determine c
(3)
E| 0 we use (2.5.155), which gives

c
(3)
2 + c

(3)
E| 0 = F

(3)
E (t, t̄) . (2.5.165)

On the other hand, one finds that

F
(3)
E (t, t̄) = − 1

24C
abDaDbF

(2)
E . (2.5.166)

This can be derived in the holomorphic limit by using (2.4.94), and it is similar to (2.5.160).
The antiholomorphic part can be checked with (2.4.110). Using all this, we finally obtain the
following simple expression for F (3)(S, S̄, t, t̄),

F (3) = − 1
24E4C

abDaDbF
(2)
E − 1

48(Ê2
2 − E4)C

ab
(
DaDbF

(2)
E + 2DaF

(2)
E DbF

(1)
E

)
, (2.5.167)

with the holomorphic limit

F (3)(S, t) = − 1
24E4C

ab∂a∂bF (2)
E − 1

48(E2
2 − E4)C

ab
(
∂a∂bF (2)

E + 2∂aF (2)
E ∂bF (1)

E

)
. (2.5.168)

Note that the second term in these expressions vanishes identically in the fiber limit where
E2, E4 → 1. As we will discuss in more detail in section 2.5.4, this is the first F (g) where the
inclusion of the base yields a behavior near the singular loci that differs significantly from the
fiber limit.
Explicit calculations at genus 4 proceed in the same way. Modular invariance with respect to S
gives

F (4)(S, S̄, t, t̄) = Ê3
2 c

(4)
E| 3 + Ê2E4 c

(4)
E| 1 + E6 c

(4)
E| 0. (2.5.169)

Once again, the general equation (2.5.194) allows us to determine the coefficients as

c
(4)
E| 3 = − 1

72C
ab
(
DaDbc

(3)
E| 2 + 2DaF

(1)
E Dbc

(3)
E| 2 +DaF

(2)
E DbF

(2)
E

)
,

c
(4)
E| 1 = − 1

24C
ab
(
DaDbc

(3)
E| 0 + 2DaF

(1)
E Dbc

(3)
E| 0
)
.

(2.5.170)

The ambiguity c
(4)
E| 0 is again determined by the heterotic computation in the fiber limit. More

precisely, one specializes (2.5.155) to

c
(4)
E| 0 + c

(4)
E| 1 + c

(4)
E| 3 = F

(4)
E (t, t̄) , (2.5.171)

and solves for c
(4)
E| 0 by inserting the fiber result (2.4.110). This determines the free energy F (4).

A similar analysis also applies to g = 5, 6. As already discussed above, the main obstacle that
has to be overcome in order to proceed to higher genus is the difficulty to fix the ambiguities

c
(g)
0 . We will discuss possible additional boundary conditions in sections 2.5.4, 2.5.5 and 2.6.

2.5.2 Propagators and holomorphic automorphic forms

In the previous section we calculated the first free energies F (g) by a direct integration along

the base direction. The results were expressed in terms of the holomorphic fiber energies F (g)
E ,

which are known from heterotic-type II duality. Even though the results were rather compact
and transparent, the information we have extracted is somewhat partial, since we have not used
the holomorphic anomaly equations for the fiber moduli. In order to exploit the information
they contain, we will construct building blocks for the automorphic forms in the fiber which
enable us to perform the direct integration of the remaining holomorphic anomaly equations.
Recall that we argued in the previous sections that the almost holomorphic modular form

Ê2(S, S̄) = − 12

S + S̄
+ E2(S) , E2(S) = ∂S log Φ , (2.5.172)

53



contains all non-holomorphic dependence of F (g) along the base direction S. It will be the task
of this section to introduce the analog of Ê2 for the fiber directions ta. Furthermore we will
define the fiber analogs of the holomorphic modular forms E4(S) and E6(S). This will lead us
to the definition of a new class of holomorphic automorphic forms of O(10, 2,Z). Eventually, in
section 2.5.3 we will argue that a direct integration along the fiber direction allows us to express
all F (g) in terms of these almost holomorphic and holomorphic forms of O(10, 2,Z).

Let us now introduce the fiber analog of the almost holomorphic modular form Ê2(S, S̄).
This can be done by recalling that the genus one free energy F (1) is an invariant of the full
symmetry group Sl(2,Z)×O(10, 2,Z) and hence its first derivatives transform in a particularly
simple way. For the derivative with respect to S one finds ∂SF

(1) = 1
2Ê2. The derivative with

respect to ta we denote by ∆a = −1
2C

ab∂bF
(1) and evaluate

∆a =
ta + t̄a

Y
+ ǫa(t) = ǫa(t) −Kb(t)C

ba , ǫa(t) = 1
4C

ab∂tb log Φ , (2.5.173)

where Y = 1
2Cab(t+ t̄)b(t+ t̄)b and Φ is given in (2.4.104). The function ǫa(t) is holomorphic in

the coordinates ta and is the fiber analog of E2(S), while ∆a plays the role of Ê2. To see this
note that ǫa transforms with a shift under the duality ta 7→ ta/t2:

ǫa 7→ t4(J−1)a
b (ǫ

b + t−2tb) . (2.5.174)

This shift is precisely canceled by the shift of the non-holomorphic term in (2.5.173) such that
∆a simply transforms as

∆a 7→ t4(J−1)a
b∆

b(t) . (2.5.175)

Note that Ê2 and ∆a are sufficient to parametrize all propagators ∆̂ij , ∆̂i, ∆̂ introduced in
(2.2.37). Indeed, one has

∆̂ab = − 1
12C

abÊ2 , ∆̂aS = ∆a , (2.5.176)

∆̂S = −1
2Cab∆

a∆b , ∆̂a = 1
12Ê2∆

a , ∆̂ = − 1
12Ê2Cab∆

a∆b .

Using the explicit form of Ê2 and ∆a it is straightforward to check that these propagators
fulfill the defining conditions (2.2.37). The fact that all ∆̂−propagators can be expressed as
polynomials in Ê2 and ∆a implies that all non-holomorphic dependence of F (g) only arises
through Ê2,∆

a. However, we also have to extract the non-holomorphic dependence in the
covariant derivatives Da defined in (2.1.11). Following the logic of section 2.3 we will show that
each derivative can be split into a holomorphic covariant derivative D̂a plus holomorphic terms
times the propagators ∆a. As an important byproduct, the definition of D̂a will also allow us
to find an interesting construction of holomorphic automorphic forms.

Let us now construct a holomorphic covariant derivative D̂a, which has the same properties
as Da under automorphic transformations (2.4.128). More precisely, given an automorphic form
Ψ of weight k we define its first derivative as

D̂aΨ ≡
(
∂a − kCabǫ

b
)
Ψ , (2.5.177)

where ǫa is defined in (2.5.173), and note that D̂a = Da − kCab∆
b. D̂a can be viewed as the

analog of the Serre derivative (2.3.56) for modular forms of subgroups of Sl(2,Z). It is not hard
to check that it transforms under (2.4.128) exactly as Da. This transformation property was
given in (2.4.138). Note however, that D̂a maps holomorphic forms into holomorphic forms,
while Da contains an anti-holomorphic contribution. Moreover, by definition of ǫa one has

D̂aΦ(t) = 0 , (2.5.178)

for the automorphic form Φ(t) given in (2.4.104). In order to evaluate second derivatives we
need to introduce the holomorphic analog of the Christoffel symbol in the definition (2.1.11) of
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Dk. To do that, let us consider a section Ψa which transforms as Ψa 7→ t2kJb
aΨb under the

action (2.4.128). The covariant derivative is then defined to act as

D̂aΨb =
(
∂a − kCacǫ

c
)
Ψb − Γ̂c

abΨc . (2.5.179)

Here we have included the holomorphic Christoffel symbol

Γ̂c
ab = Γ̂c

ab|dǫ
d = 1

2 Ĉ
cd
(
∂bĈda + ∂aĈdb − ∂dĈab

)
, (2.5.180)

where Γ̂b
cd|a is defined in (2.4.84) and related to Γb

cd by Γb
cd = Γ̂b

cd|aC
aeKe. We also have intro-

duced the holomorphic ‘metric’ Ĉab. Explicitly, Ĉab is defined as

Ĉab = Φ1/2Cab , Ĉab 7→ Jc
aJ

d
b Ĉcd , (2.5.181)

where Φ is given in (2.4.104) and we have also displayed the transformation behavior of Ĉab under
(2.4.128) as inferred from (2.4.144) and (2.4.135). Once again we evaluate the transformation
behavior of D̂aΨb under (2.4.128) and finds the holomorphic analog of (2.4.139). It is now easy
to show that every non-holomorphic derivative Da can be split as

DaΨb = D̂aΨb + kCac∆
c Ψb + Γ̂c

ab|d∆
d Ψc . (2.5.182)

In other words, whenever Ψb is holomorphic the non-holomorphic dependence in DaΨb arises
through the propagators ∆a only.

Let us now discuss a second interesting application of the holomorphic covariant derivative
D̂a. Namely, we will now show how it can be used to construct new holomorphic automorphic
forms. To start with let us note that ǫa = Cabǫ

b transforms in (2.5.174) similarly to a vector
field. We can use this analogy and define a field strength

ǫ4ab = ∂aǫb − 1
2 Γ̂c

abǫc = ∂aǫb − ǫaǫb + Cabǫ
2 , ǫa = Cabǫ

b , (2.5.183)

which transforms covariantly, ǫ4ab 7→ Jc
aJ

d
b ǫ

4
cd, under automorphic transformations (2.4.128).

Note that by using the wave-equation (2.4.146) one shows that ∂aǫ
a = −4Cabǫ

aǫb such that

Cabǫ4ab = 0 . (2.5.184)

Nevertheless, we can use ǫ4ab to construct holomorphic automorphic forms. To do that, we define

ǫ2k
a1...ak

= D̂ak
. . . D̂a3

ǫ4a2a1
, (2.5.185)

which is shown to be totally symmetric in the indices. Holomorphic automorphic forms are now
constructed by contraction with Cab. For example, forms of weight 4 and 6 are given by

weight 4 : CabCcdǫ4acǫ
4
bd , (2.5.186)

weight 6 : CacCbeCdf ǫ4abǫ
4
cdǫ

4
ef , CacCbeCdf ǫ6abdǫ

6
cef .

It is tempting to conjecture that holomorphic automorphic forms of this type are sufficient
to parametrize the holomorphic ambiguity of F (g). The fact that there is no holomorphic
weight 2 automorphic form of this type due to (2.5.184) matches nicely the fact that there is
no holomorphic ambiguity for F (2). Also the forms in (2.5.186) can be shown to be sufficient to
parametrize the ambiguities of F (3) and F (4). This will be analyzed in further work.
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2.5.3 Direct integration of the holomorphic anomaly

We will now use the material developed in the previous section to perform the direct integration
in both fiber and base directions. This will allow us to give closed expressions which determine
the F (g) up to a holomorphic ambiguity. To begin with, we show that each F (g) can be written
as

F (g) =

g−1∑

k=0

2g−2∑

n=0

Êk
2∆a1 . . .∆anc

(g)
k | a1...an

, g > 1 (2.5.187)

where c
(g)
k | a1...an

are holomorphic functions of S, ta and all anti-holomorphic dependence arises

through the propagators ∆a and Ê2 introduced in (2.5.172) and (2.5.173). Note that by using
the transformation properties of F (g) and ∆a given in (2.4.142) and (2.5.175) one infers that

c
(g)
k | a1...an

7→ t4g−4−4nJb1
a1
. . . Jbn

an
c
(g)
k | b1...bn

(2.5.188)

under automorphic transformations (2.4.128).
Let us now show that each F (g) for g > 1 can indeed be written as (2.5.187) by using

induction. We first note that F (2) is of the form (2.5.187),

F (2) = −1
2Ê2Cab∆

a∆b , (2.5.189)

as is immediately inferred from (2.5.162) and (2.5.173). So let us assume that (2.5.187) is true
for all r < g and show that this implies that (2.5.187) is true for g. In order to do that we use
the Feynman graph expansion (2.2.34) of F (g) [19], which states that each F (g) can be written

as an expansion with propagators ∆̂ij , ∆̂i, ∆̂ and vertices C
(r)
i1...in

with r < g. We have already

shown that the ∆̂-propagators are polynomials in Ê2 and ∆a in (2.5.176). Hence, it remains

to show that also the vertices C
(r)
i1...in

are polynomials in Ê2 and ∆a. By definition (2.2.27) and

our assertion, the vertices are defined as the covariant derivatives of amplitudes F (r) of the form
(2.5.187). Using (2.5.182) each of these covariant derivatives Da can be split into a holomorphic
covariant derivative D̂a and an expansion in ∆a. So we only have to show that D̂a∆

b admits
again an expansion into ∆’s. A straightforward computation shows that

D̂a∆
b = Cbdǫ4da − 1

2 Γ̂b
cd|a∆

c∆d , (2.5.190)

where ǫ4ab and Γ̂b
cd|a are defined in (2.5.183) and (2.4.84). Altogether one infers that all vertices

and ∆̂-propagators are polynomial in ∆a and hence that F (g) is of the form (2.5.187).
Having shown that every F (g) is of the form (2.5.187) we will now derive a closed expression

for F (g) by direct integration of the holomorphic anomaly equation (2.2.30). Applying the
definition (2.2.37) of the propagators we can write the holomorphic anomaly equation as

∂ı̄F
(g) = 1

2∂ı̄∆̂
ik
(
DjDkF

(g−1) +

g−1∑

r=1

DjF
(r)DkF

(g−r)
)
. (2.5.191)

This equation captures the anti-holomorphic derivatives ∂S̄F
(g) along the base as well as the

derivative ∂āF
(g) along the fiber of the Enriques Calabi-Yau. Recall that the only non-vanishing

propagators are ∆̂ab = − 1
12C

abÊ2 and ∆a = ∆̂aS . As we have shown, they contain all anti-
holomorphic dependence such that we can rewrite (2.5.191) as

∂F (g)

∂Ê2

= − 1
24C

ab
(
DaDbF

(g−1) +

g−1∑

r=1

DaF
(r)DbF

(g−r)
)
, (2.5.192)

∂F (g)

∂∆a
= DaDSF

(g−1) +

g−1∑

r=1

DaF
(r)DSF

(g−r) . (2.5.193)
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As we have seen above, the first equation is already very powerful and can be integrated easily.
We can write the solution (2.5.152) as

F (g) = − 1
24

∞∑

k=1

1
k Ê

k
2C

ab
(
DaDbc

(g−1)
k−1 +

g−1∑

r=1

∑

l+m=k−1

Dac
(r)
l Dbc

(g−r)
m

)
+ c

(g)
0 , (2.5.194)

where c
(1)
m is defined in (2.5.153). Note that c

(g)
0 (∆, S, t) arises an integration constant of the Ê2

integration and hence can be a function of the propagators ∆a but not Ê2.
Let us now determine a second closed expression for F (g) by integrating the second anomaly

equation (2.5.193). Since F (1) is not of the form (2.5.187) we first split off terms involving F (1).
Inserting the definitions of the propagators ∆a and Ê2 we find for g > 2 that

∂F (g)

∂∆a
= (DS + 1

2Ê2)DaF
(g−1) − 2Cac∆

cDSF
(g−1) +

g−2∑

r=2

DaF
(r)DSF

(g−r). (2.5.195)

To make the dependence on the propagators ∆a explicit we expand the covariant derivative
DaF

(g). The covariant derivative Da can be split into a holomorphic derivative D̂a defined
in (2.5.179) plus a propagator expansion using (2.5.182). Moreover, using the chain rule one
rewrites

D̂a = d̂a + (D̂a∆
b)∂∆b , (2.5.196)

where d̂a is the covariant holomorphic derivative not acting on the propagators, i.e. we set

d̂a

(
∆a1 . . .∆anca1...an

)
= ∆a1 . . .∆anD̂aca1...an . (2.5.197)

Combining (2.5.182), (2.5.196) and (2.5.190) we immediately derive

DaF
(g) =

[
d̂a + ǫ4acC

cb∂∆b + (2g − 2)Cad∆
d − 1

2 Γ̂b
cd|a∆

c∆d∂∆b

]
F (g) . (2.5.198)

This expansion makes the dependence of Da on the propagators ∆a explicit. We note that the
d̂a term on the right-hand side of this expansion does not change the number of propagators.
The second term lowers the number of propagators by one, while the two last terms raise the
number of propagators by one. Inspecting the holomorphic anomaly equation we note that only
the first derivative along the fiber direction appears on the right-hand side of (2.5.195). Hence,
at least for the integration of (2.5.195) it will not be necessary to evaluate the second derivative
DaDbF

(g) as a propagator expansion.
To integrate expressions such as (2.5.198) for DaF

(g) we also need to keep track of the
number of propagators in the expansion of F (g). Therefore, we introduce the following short-
hand notation

F (g) =
∑

n

c
(g)
(n) , c

(g)
(n) =

g−1∑

k=0

Êk
2∆a1 . . .∆anc

(g)
k | a1...an

, (2.5.199)

where each c
(g)
(n) contains n propagators ∆a. By counting the number of propagators one finds

∫
DaF

(g)d∆a =
∑

n

{
1

n+1∆ad̂a + 1
n∆aǫ4acC

cb∂∆b + 4g−4−n
n+2 ∆2

}
c
(g)
(n) , (2.5.200)

where as defined above ∆2 = 1
2Cab∆

a∆b. This integral together with similar ones for the

remaining terms in (2.5.195) yields a closed expression for F (g) of the form

F (g) =
(
DS + 1

2Ê2)
∑

n

{
1

n+1∆ad̂a + 1
n∆aǫ4acC

cb∂∆b + 4g−8−n
n+2 ∆2

}
c
(g−1)
(n)

−
∑

n

4
n+2∆2DSc

(g−1)
(n) +

g−2∑

r=2

∑

n

∑

k+l=n

DSc
(g−r)
(l)

{
1

n+1∆ad̂a

+ 1
n∆aǫ4acC

cb∂∆b + 4r−4−n
n+2 ∆2

}
c
(r)
(k) + c

(g)
(0) . (2.5.201)
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Here c
(g)
(0)(Ê2, S, t) is the integration constant of the ∆a integration and hence can depend on

Ê2 but not on ∆a.
Before turning to the discussion of an explicit example, let us consider the fiber limit of

(2.5.201). We therefore apply (C.1.20) and (2.5.157) to show that

lim
S,S̄→∞

DSF
(g) = 0 . (2.5.202)

We also denote by c
(g)
E (k) the fiber limit of the coefficients c

(g)
(k) in (2.5.199). Inserting (2.5.202)

into the formula (2.5.201) for direct integration along the fiber direction one finds

F
(g)
E = 1

2

∑

n

(
1

n+1∆ad̂a + 1
n∆aǫ4acC

cb∂∆b + 4g−8−n
n+2 ∆2

)
c
(g−1)
E (n) + c

(g)
E (0) , (2.5.203)

where c
(g)
E (0)(t) is a holomorphic ambiguity in the fiber. Recall that the full expression (2.4.110)

for F
(g)
E (t, t̄) is known from heterotic-type II duality. Therefore, verifying that this closed ex-

pression fulfills the differential equation (2.5.203) provides a non-trivial check of our derivations.
Let us end this section by presenting the first non-trivial solution to the closed expressions

(2.5.194) and (2.5.201) for F (g). More precisely, one derives that the free energy F (3) admits
the following propagator expansion

F (3) = − 1
48Ê

2
2

(
14∆4 + 10ǫ4ab∆

a∆b − ǫ4acǫ
4
bdC

abCcd
)

− 1
48E4

(
− 2∆4 + 2ǫ4ab∆

a∆b − ǫ4acǫ
4
bdC

abCcd
)
, (2.5.204)

where ǫ4ab is defined in (2.5.183). Note that the last term in the first line has to be determined by

the direct integration with respect to Ê2 by using (2.5.194). Moreover, the purely holomorphic
term

f (3)(S, t) = 1
48E4ǫ

4
acǫ

4
bdC

abCcd (2.5.205)

is the holomorphic ambiguity at genus 3, determined by the fiber limit. In other words, applying
(2.5.157) one easily derives

F
(3)
E = −1

4ǫ
4
ab∆

a∆b − 1
4∆4 + 1

24ǫ
4
acǫ

4
bdC

abCcd , (2.5.206)

which is readily compared with the general expression (2.4.110) for the fiber free energies. It
is straightforward to derive all F (g) for g < 7 by evaluating (2.5.194) and (2.5.201) and fixing
the ambiguity by comparison with the fiber result (2.4.110). Clearly, at genus greater than 6
we will encounter the same difficulties as in section 2.5.1. Only additional boundary conditions
can help to fix the ambiguities in these cases. In the next section we will summarize possible
additional conditions.

2.5.4 Boundary conditions

One important feature of the formalism of direct integration is that modular and holomorphic
properties of the F (g) are manifest. In particular the ambiguity is holomorphic, modular invari-
ant and for given genus expressible in terms of a modular form of finite weight. This implies
that a finite number of data will fix it. The latter must be provided from additional information
at the boundaries of the moduli space of the Calabi-Yau manifold. Let us give a short overview
over the the nature of these boundary conditions.

In the large radius limit the holomorphic limit of the F (g) has an expansion in terms of

Gromov-Witten invariants N
(g)
β . Since the an-holomorphic part is fixed, the F (g) can be com-

pletely determined by calculating a finite number of Gromov-Witten invariants. The reorgani-

sation of the expansion in terms of Gopakumar-Vafa invariants n
(g)
β is useful here, because the
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latter vanish if the degree is higher then the maximal degree for which a smooth curve exists in
a given class.

For K3-fibered Calabi-Yau threefolds, the limit of large base volume corresponds generically
to a perturbative heterotic string theory on K3×T2. If the heterotic theory is known one can
calculate the dependence of the F (g) on the fiber moduli by calculating a BPS saturated one
loop amplitude in the heterotic string [29, 79]. In the Enriques CY case this yields most of the
information and is the reason that one can tackle an 11 parameter model at all. Even if the
heterotic dual is not known, one may get all the holomorphic F (g) in the fiber from the modular
properties of the B-model on the K3 and the formula for the cohomology of the Hilbert scheme
of points on the fiber [97].

If the Calabi-Yau admits controllable local limits, e.g. to toric Fano varieties with anti-
canonical bundle, then the F (g) can be unambiguously calculated using the topological ver-
tex [31]. One can also find boundary conditions by looking at the behavior of the topological
string amplitudes near the conifold point, as we discussed in section 2.3.3. When there is only
one hypermultiplet becoming massless at the conifold point, the amplitudes behave like (2.3.69),
where tD is a suitable coordinate transverse to the conifold divisor. This yields 2g − 2 indepen-
dent conditions on the holomorphic ambiguity.

In contrast to generic N = 2 compactifications, the four dimensional massless spectrum at
singularities of the Enriques Calabi-Yau is conformal, which requires hyper- and vector multiplets
to become simultaneously massless. The leading behavior of the corresponding effective action
is less characteristic. We will find a partial gap in the reduced model considered in section 2.5.5,
which is similar to the partial gap structures that were found in [69] at a point where likewise
several RR states become massless. The determination of the subleading behavior is possible
in the field theory limit and yields conditions on the anomaly. We will consider here only the
complex codimension singularities that we discussed in section 2.4. The nontrivial information
about the F (g) comes from the Nf = 4 locus: as we will show in section 2.6, the residue of the
leading singularity near (2.4.88) can be computed using instanton counting in field theory.

Let us now analyze the leading singularity of F (g) near the singular loci in the fiber limit. This
can be done with the heterotic computations of [79] reviewed in section 2.4. These computations
give us expansions around two special regions in moduli space, the large radius limit (where ta

are large) and the region appropriate to the BHM reduction (where taD are large). As in [18, 29],
we can use the computation at large radius to obtain the leading behavior of the fiber amplitudes
near (2.4.88), and the computation in the BHM reduction to obtain the behavior near (2.4.90).

Let us first look at the behavior near (2.4.88). A possible singular behavior there must come
from the vector r = (1,−1) in (2.4.95), since this leads to a polylogarithm which, when expanded
at the singular locus (2.4.88),

Li3−2g(e
−z) =

(2g − 3)!

z2g−2
+ O(z0), g ≥ 2, (2.5.207)

exhibits a pole. Here, z = t1−t2. However, since cg(−2) = 0, the coefficient of this polylogarithm
vanishes and we conclude that the amplitudes are regular at (2.4.88). This is indeed consistent
with the fact that the field theory limit of this model at (2.4.88) is massless SU(2), N = 4 super
Yang–Mills theory, which has F (g) = 0 for all g ≥ 2 [80, 100, 101].

Let us now look at the behavior near (2.4.90). To understand this, we look at the heterotic
result for the holomorphic couplings in the BHM reduction (2.4.111). Again, the singular be-
havior comes from the vector r = (1,−1). Since the coefficients are defined now by (2.4.112),
we find

dg(−1) =
4g − 1

2g−2

|B2g|
2g(2g − 2)!

. (2.5.208)

If we set
µ = t1D − t2D, (2.5.209)
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and we take into account the behavior of the polylogarithm (2.5.207), we find that the singular

behavior of F (g)
E (tD) near (2.4.90) is given by

F (g)
E (tD) → 4g − 1

2g−2

|B2g|
2g(2g − 2)

1

µ2g−2
+ O(µ0) (2.5.210)

for g ≥ 2, while for g = 1 we have a logarithm singularity

−1

2
log µ. (2.5.211)

Since the full F (g)(S, tD) can be written for g ≤ 6 in terms of (2.4.111), as we showed in section
2.5.1, we can compute its leading singular behavior at the locus (2.4.90). This will be useful
in section 2.6 to compare to the field theory limit. The above computation shows that along

the fiber direction the topological string amplitudes F (g)
E show the gap behavior discovered in

[89, 69]. In order to see if the gap also holds in the mixed directions, it is clear from the
formulae above that we need a precise knowledge of the regular terms in µ in the expansion of

F (g)
E . Unfortunately, this is something we cannot extract from the heterotic expressions. We

will however be able to do this in the reduced model introduced in [79] and studied in more
detail below. We will see that indeed the strong gap condition obtained for the fiber direction
in (2.5.210) does not hold for the mixed directions.

2.5.5 The reduced Enriques model

We now discuss a reduced model for the Enriques Calabi-Yau introduced in [79]. The main
advantage of this model is that the target symmetry group becomes much simpler, and one
can easily parametrize the holomorphic functions which appear in the expansion of F (g) in the
propagators ∆a(t, t̄) and Ê2(S, S̄). In particular, the holomorphic ambiguity can be parametrized
in terms of a finite number of coefficients at each genus. Also the mirror map is known explicitly
and can be used to translate the F (g) into a simple polynomial form. In these aspects, the
reduced model is very closely related to the Seiberg–Witten theory studied in section 2.3.

Special geometry and the mirror map

We begin with a brief discussion of the reduced special geometry and recall the mirror map
derived in [79]. Out of the eleven special coordinates S, ta the reduced model is only parametrized
by three parameters. More precisely, it is obtained by shrinking 8 out of the 10 cycles in the
Enriques fiber as

(S, ta) = (S, ti, tα) → (S, ti, 0) , i = 1, 2 , α = 3, . . . , 10 . (2.5.212)

We denote the reduced moduli space spanned by the remaining coordinates S, t1, t2 by Mr.
Explicitly, the full coset (2.4.75) reduces in this limit to

Mr =
Sl(2,R)

SO(2)
×
(
Sl(2,R)

SO(2)

)2

, (2.5.213)

inducing a split of the full target space symmetry group as

Sl(2,Z) ×O(10, 2,Z) → Sl(2,Z) × Γ(2) × Γ(2) . (2.5.214)

The generators of Sl(2,Z) are precisely the Eisenstein series Ê2(S, S̄), E4(S), E6(S) as already
introduced for the full model in (2.5.147). The generators for Γ(2) have been introduced in
the Seiberg-Witten section 2.3. More precisely, we will generate the ring of almost holomorphic
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modular forms of Γ(2) by Ê2(t, t̄), K2(t) and K4(t) explicitly defined in (2.5.149) and (2.3.42).
In the following we will simplify expressions by abbreviating

E2 = E2(t
1) , K2 = K2(t

1) , K4 = K4(t
1) ,

Ẽ2 = E2(t
2) , K̃2 = K2(t

2) , K̃4 = K4(t
2) . (2.5.215)

Whenever not stated otherwise, we will keep the S-dependence explicit. Let us also note that
the matrix Cab splits as

Cab =

(
Cij 0
0 Cαβ

)
, Cij =

(
0 1
1 0

)
, (2.5.216)

as already given in (2.4.80). Hence, the holomorphic prepotential (2.4.78) and the fiber Kähler
potential Y = (t+ t̄)2 reduce to

Fr = iSt1t2 , Yr = (t1 + t̄1)(t2 + t̄2) . (2.5.217)

As we have already noted in section 2.4.1 this prepotential and fiber potential are exact and
receive no instanton corrections.

Let us now turn to a discussion of the mirror map for the reduced Enriques model. In
order to determine this duality map we first note that the reduced Enriques has an algebraic
realization. Applying standard techniques, one can thus derive the three Picard-Fuchs equations
for the holomorphic three-form Ω(z) as

L1Ω(z) = 0 , L2Ω(z) = 0 , L3Ω(z) = 0 , (2.5.218)

where zi(t), z3(S) with i = 1, 2 are the mirror coordinates of ti, S respectively. The Picard-Fuchs
operators are found to be

Li = θ2
i − 4(4θi + 4θj − 3)(4θi + 4θj − 1)zi , i, j = 1, 2 , i 6= j , (2.5.219)

L3 = 36(z3 − 1)2(z3 − 2)θ2
3 + 36z3(z3 − 1)θ3 + z3

(
8z3 − 4(z3)2 − 31

)
, (2.5.220)

where θi = zi ∂
∂zi . The Picard-Fuchs equations (2.5.218) can be solved to determine the mirror

maps zi(t), z3(S). This was done in [79] and we will only quote the result here. We first
abbreviate

z(qi) =
K4(t

i)

K2
2 (ti)

. (2.5.221)

Using this shorthand notation the fiber mirror map reads

z1(t) = z(q1)
(
1 − z(q2)

)
, z2(t) = z(q2)

(
1 − z(q1)

)
. (2.5.222)

These coordinates are related by a factor of 64 to z1, z2 used in ref. [79]. In the base one evaluates

z3(S) = 1 − E
−3/2
4 E6 . (2.5.223)

Compared to [79] we have rescaled z3 by a factor 864. Using these explicit expressions for
z1, z2 and z3, one immediately verifies their invariance under the target space symmetry group
Sl(2,Z)×Γ(2)×Γ(2). Also the fundamental period X0 can be obtained from the Picard-Fuchs
system (2.5.218) and reads

X0 = x0X̂0 , (X̂0)2 = 1
4K2K̃2 , (x0)4 = E4 . (2.5.224)

We immediately verify that X0 is not invariant under the symmetry group Sl(2,Z)×Γ(2)×Γ(2).
The S-duality transformation (2.4.128) reads for the reduced model t1 7→ 1/t2 and t2 7→ 1/t1.
Applied toX0 this yields precisely the transformation behavior given in (2.4.133). Before turning
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to the higher genus amplitudes in the next section let us also note that the discriminant of the
reduced model is given by

∆(z1, z2) D(z3) , (2.5.225)

where ∆(z1, z2) is the discriminant along the fiber and D(z3) is the discriminant along the base.
Explicitly, we find in the coordinates (2.5.221) and (2.5.222) that

∆(z1, z2) =
(
1 − z(q1) − z(q2)

)2
(2.5.226)

= 1 − 2(z1 + z2 + z1z2) + (z1)2 + (z2)2 . (2.5.227)

The second discriminant D(z3) is given by

D(z3) = 1
2633

(
(z3)2 − z3

)
. (2.5.228)

In the next section we will use the mirror coordinates z1, z2 to express the reduced free energies

F
(g)
r . Since along the base direction all equations are expressed in terms of simple Eisenstein

series E2n(S) we choose to keep this S-parametrisation also in the following discussions.

Reduced free energies and direct integration

Let us now discuss the free energies F
(g)
r and their holomorphic limits F (g)

r for the reduced
model. In the limit (2.5.212) they are simply defined as

F (g)
r (S, t1, t2) = F (g)(S, t1, t2, tα = 0) . (2.5.229)

The reduced form of F (1) can be derived by direct computation as was already discussed in [79].
Explicitly one finds

F (1)
r = −2 log

[
(S + S̄)3(t1 + t̄1)(t2 + t̄2)

]
− log |Φr(S, t)| , (2.5.230)

where

Φr(S, t
1, t2) = η24(S)

∏

m,n

(1 − qnqm

1 + qnqm

)cr1(2mn)
. (2.5.231)

The coefficients cr1(n) are given through the modular form

∑

n

cr1(n)qn = − 64

3η6(q)ϑ6
2(q)

E2(q)E4(q
2) . (2.5.232)

Note that in comparison with the expression (2.4.98) for the full Enriques model the Eisenstein
series E4(q

2) appears in (2.5.232). This extra factor arises due to the summation over the E8

vectors in (2.4.104) and precisely counts their degeneracy. It was further shown in [79] that the
following denominator formula holds

Φr(S, t
1, t2) = 1

16η
24(S) δ = η24(S)(X̂0)4∆1/2 (2.5.233)

where
δ(t1, t2) = K2

2K̃
2
2 −K4K̃

2
2 −K2

2K̃4 . (2.5.234)

Here the Γ(2) generators K2, K̃2 as well as K4, K̃4 are defined in (2.5.215), while the fundamental
period X̂0 and the discriminant ∆ were given in (2.5.224) and (2.5.226).

The holomorphic reduced amplitudes restricted to the Enriques fiber can also be computed
directly by reducing the heterotic expressions (2.4.95) and (2.4.111). The result reads [79]

F (g)
r,E(t) =

∑

r>0

crg(r
2)
[
23−2gLi3−2g(e

−r·t) − Li3−2g(e
−2r·t)

]
,

F (g)
r,E(tD) =

∑

r>0

dr
g(r

2/2)(−1)n+mLi3−2g(e
−r·tD) ,

(2.5.235)
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where the coefficients cr(n), dr
g(n) are defined by

∑

n

crg(n)qn = −2E4(q
2)

Pg(q)

η12(2τ)
,

∑

n

dr
g(n)qn = E4(q

2)
22+gPg(q

4) − 22−gPg(q)

η12(2τ)
.

(2.5.236)

Once again we recognize the additional factor E4(q
2) counting the degeneracies of the E8 lattice.

Clearly, also the expressions F (g)
r,E(t) and F (g)

r,E(tD) can be expressed in terms of the holomorphic

generators (2.5.215) depending on ti and tiD respectively.
Let us now turn to the discussion of the complete reduced amplitudes including the base and

the non-holomorphic dependence. In order to do that we describe the direct integration for the
reduced model focusing on the essential differences to the considerations presented in section
2.5.3. To begin with, note that the propagators of the full model reduce as

∆i → @
i , ∆α → 0 , (2.5.237)

where @
i is obtained from (2.5.173) by setting tα = 0 and using (2.5.231). That ∆α reduces to

zero arises from the fact that in summation over the E8 lattice the vectors cancel pairwise. In
order to perform the direct integration we first have to find recursive relations which are valid

for the reduced free energies F
(g)
r . Recall that in the full Enriques model we found two sorts of

recursive relations (2.5.192) and (2.5.193) capturing the properties F (g) in the base and in the
fiber of the Enriques. It turns out that only the second anomaly equation (2.5.193) admits a
simple reduction. More precisely, it can be rewritten for the reduced model as

∂F
(g)
r

∂@i
= DSDiF

(g−1)
r +

g−1∑

r=1

DiF
(r)
r DSF

(g−r)
r , (2.5.238)

since performing the reduction tα = 0 interchanges with the differentiation with respect to t1, t2.
Note that this is no longer true for derivatives with respect to tα. In particular, the first equation
(2.5.192) involves a summation over the α indices and one shows that the resulting terms do
not vanish under the reduction tα = 0. Nevertheless, one can directly integrate (2.5.238) for the
reduced free energies

F (g)
r =

2g−2∑

n=1

@
i1 . . . @in ĉ

(g)
i1...in

+ ĉ(g) , g > 1 . (2.5.239)

The function ĉ(g) is holomorphic in ti and generally depends on Ê2(S, S̄), E4(S), E6(S). Note

that due to (2.5.237) the coefficients of the full and reduced model are related by ĉ
(g)
i1...in

=

c
(g)
i1...in

(tα = 0). The direct integration is performed in analogy to the integration in the full
model and results in a closed expression similar to (2.5.201). The important difference is that
the ǫ4r ij as well as the covariant derivatives D̂r

a are not obtained from the full ǫ4ab and D̂a by

simply restricting to the i, j indices and setting tα = 0. Both ǫ4r ij as well as D̂r
a have to be defined

with respect to a new holomorphic metric Ĉr
ij = Φ

1/2
r Cij but otherwise analog to (2.5.183) and

(2.5.179). If one had been using the old connection, an additional summation over the α indices
would arise and yield extra contributions. Applied to the specific free energy F (3) one finds the
reduction of the holomorphic ambiguity (2.5.205)

f (3)
r (S, t) = 1

48E4

(
ǫ4r ikǫ

4
r jlC

ijCkl + 1
8(ǫ4r ijC

ij)2
)

(2.5.240)

After these considerations it is not surprising that the contraction of the new ǫ4r ij with Cij does
not vanish as it is the case in the full model (2.5.184).
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The free energies F (g) on the mirror

So far the reduced free energies F
(g)
r were expressed as functions of the variables ti, S or tiD, S.

In the reduced model we know the mirror map explicitly and thus will be able to translate the

expansion (2.5.239) of F
(g)
r into a function of the complex coordinates zi. We will show that

the holomorphic coefficients become polynomials in zi divided by an appropriate power of the

discriminant. Since the dependence of F
(g)
r is rather transparent we chose to keep this variable

and do not replace it by its mirror counterpart z3.
The F (g) transform non-trivially under the reduced automorphic transformations. We al-

ready discussed the actually invariant combination in (2.4.143). In the coordinates zi, S we thus
set

F (g)(z, z̄, S, S̄) = (X̂0)2−2g F (g)(t, t̄, S, S̄) . (2.5.241)

This definition is consistent with the fact that the zi(t) are invariant under the target space group
(2.5.214), while (X̂0)2g−2 transforms exactly as F (g)(t, S). To rewrite the expansion (2.5.239)
we first note that the propagator @

i can be written in the zi coordinates as

@
i = (X̂0)2

∂ti

∂zj
@

zj
, @

zi
= −Czizj(

K̂zj − 1
8∂zj log ∆

)
, (2.5.242)

where @
zi

is a function of zi, z̄i and we have used

Cij = (X̂0)−2Czkzl

∂zk

∂ti
∂zl

∂tj
, K̂(z, z̄) ≡ − log

[
|X̂0|2Yr(z, z̄)

]
. (2.5.243)

It is not hard to use the expressions (2.5.222) for z1 and z2 to evaluate Czizj explicitly as

Cz1z2 =
1

z1z2∆
(1 − z1 − z2) , Cz1z1 =

1

z1z2∆
2z2 , Cz2z2 =

1

z1z2∆
2z1 . (2.5.244)

Once again (2.5.242) and (2.5.243) are in accordance with the transformation behavior of the

@
i and Cij given in (2.5.175) and (2.4.135). Similarly, we transform the coefficients ĉ

(g)
i1...in

in
(2.5.239) and set

ĉ
(g)
i1...in

= (X̂0)2g−2−2n ∂zj1

∂ti1
. . .

∂zjn

∂tin
ĉ
(g)

zj1 ...zjn
(z) , (2.5.245)

which is consistent with (2.5.189). It is also straightforward to rewrite the direct integration

expression for F
(g)
r by using the zi coordinates. Let us once again only discuss the appearing

building blocks. We begin by noting that the holomorphic covariant derivative transforms as

D̂iVj = (X̂0)2k ∂z
l

∂ti
∂zm

∂tj
D̂zlVzm , (2.5.246)

where the covariant derivative D̂zi is given by

D̂ziVzj = ∂ziVzj − k
8 (∂zi log ∆)Vzj + Γ̂zl

zizjVzl . (2.5.247)

The holomorphic Christoffel symbol in this expression is defined by

Γ̂zl

zizj = 1
2 Ĉ

zlzm(
∂ziĈzmzj + ∂zj Ĉzizm − ∂zmĈzizj

)
, Ĉzizj = ∆1/4Czizj . (2.5.248)

The second important object in the general equation for the direct integration is the automorphic
form ǫ4r ij . One shows that it can be decomposed as

ǫ4r ij =
1

z1z2∆2

∂zl

∂ti
∂zm

∂tj
ǫ4zlzm . (2.5.249)
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where for i = 1, 2, i 6= j one finds that

ǫ4zizi = − 1
16z

j
(
(zi)2

(
1 + 3 zj

)
+
(
−1 + zj

)2 (
1 + 3 zj

)
− 2 zi

(
1 − 5 zj + 3 (zj)2

) )
,

ǫ4zizj = 3
16 z

i zj
(
−2 + zi + (zi)2 + zj + (zj)2 − 2 zi zj

)
. (2.5.250)

Note that ǫ4
zizi is polynomial due to the fact that we extracted the denominator z1z2∆2 in

(2.5.249). This turns out to be possible for all the coefficients ĉ
(g)

zi1 ...zin
appearing in (2.5.245).

We thus define
P

(g)
i1...in

(z, Ê2, E4, E6) = (z1z2∆)g−1 ĉ
(g)

zi1 ...zin
, (2.5.251)

where P (g) are polynomials in zi as well as Ê2, E4, E6. The reduced free energies are thus of the
form

F (g)
r (z, z̄, S, S̄) =

1

(z1z2∆)g−1

∑

n

@
zi1
. . . @zin

P
(g)
i1...in

, g > 1 . (2.5.252)

In particular, this implies that at each genus the holomorphic ambiguity is parametrized by a
polynomial P (g)(z, E4, E6) holomorphic in zi and S. As it was the case before the coefficients
in P (g) have to be determined by boundary conditions. For the lower genera this can be done
explicitly by using the fiber limes. At higher genus additional information are needed and we
will discuss in the next section the possible input from a small gap condition. We believe that
essentially all results on the mirror rewriting can be generalized to the full model in case one is
able to determine the full mirror map. For the ten parameters along the fiber this is however a
technically challenging task.

Boundary conditions and the small gap

As we have seen in (2.5.214), the automorphism group acting on the fiber variables is simply

Γ(2) × Γ(2) , (2.5.253)

where these groups act on t1,2, respectively, plus the exchange t1 ↔ t2. Moreover, we see from
(2.4.89) that the {ti = 0 : i = 3, · · · , 10} locus maps to the {tiD = 0 : i = 3, · · · , 10} locus. If we
now define

2πiτ1,2 = −t1,2, 2πiτ1,2
D = −t1,2

D . (2.5.254)

we see that the transformation (2.4.89) relating the geometric and the BHM expressions reduces
to

τ1
D = τ1, τ2

D = −1

2

1

τ2
. (2.5.255)

By using the explicit expressions for F (g)
r,E(t) in terms of modular forms (which can be obtained

for example by direct integration), one finds that under (2.5.255)

F (g)
r,E(t) → 21−gF (g)

r,E(tD), (2.5.256)

where the factor of 2 is inherited from the factor of 2 in (2.5.255) and F (g)
r,E(tD) are also given

in (2.5.235). Therefore, one can obtain expressions for the amplitudes in the BHM reduction in
terms of modular forms by simply applying the transformation (2.5.255) to the results of the
direct integration in the reduced model (which are valid for the geometric reduction).

These expressions for the BHM amplitudes can also be used to study in detail the behavior
near the singularity (2.4.90), and in particular to calculate the subleading terms. One can verify
that the discriminant (2.5.226) transforms under (2.5.255) as

∆(t1, t2) 7→ ∆(t1D, t
2
D) = (z(q1D) − z(q2D))2, (2.5.257)
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which vanishes at the locus (2.4.90). This leads to the singular behavior of F (g)
r (tD), and one

can now verify the behavior (2.5.210) by expanding the expressions in terms of modular forms.
One finds,

F (1)
r,E(tD) = −1

2
log(µ) − 1

2
log
[ 1

128
K2K4(K

2
2 −K4)(q

2
D)
]

+ O(µ),

F (2)
r,E(tD) =

1

16µ2
− 80E2

2K
2
2 − 16K4

2 + 3K2
2K4 + 9K2

4 + 16E2(K
2
2 + 3K2K4)

9216K2
2

(q2D) + O(µ),

F (3)
r,E(tD) =

1

32µ4
+

1

53084160K4
2

(
−800E4

2K
4
2 + 214K8

2 − 726K6
2K4 + 1431K4

2K
2
4

+ 405K4
4 − 320E3

2(K5
2 + 3K3

2K4) + 120E2
2(10K6

2 − 15K4
2K4 + 9K2

2K
2
4 )

−540K2
2K4 − 40E2(14K7

2 − 54K5
2K4 + 27K3

2K
2
4 − 27K − 2K3

4 )
)
(q2D) +O(µ).

(2.5.258)
However, if one includes the base directions, the gap is “partially filled” starting at genus three
(for F (2)(S, tD), the gap property away from the fiber limit is trivially satisfied). Indeed, one

finds that the term Cab∂aF (1)
E (tD)∂bF (2)

E (tD), leads, in the reduced model, to the expansion

∂1F (1)
r,E(tD)∂2F (2)

r,E(tD) + ∂2F (1)
r,E(tD)∂1F (2)

r,E(tD) =

− 1

8µ4
− 20E2

2K2 + 17K3
2 + 3K2K4 + 4E2(K

2
2 + 3K4)

9216K2
(q2D)

1

µ2
+ · · ·

(2.5.259)

Although there are some nontrivial cancellations (for example, there is no term in µ−3), generi-
cally one finds, for finite S, singular terms in µ beyond the leading one.

2.6 The field theory limit

As we reviewed in section 2.4, there is a line of enhanced symmetry in the moduli space of the
Enriques Calabi–Yau which leads in the field theory limit to SU(2), N = 2 QCD with four
massless hypermultiplets. This occurs at the locus (2.4.90). Similarly to what happens for other
K3 fibrations [102], we expect that near this locus the leading singularities of the topological
string partition functions become field theory amplitudes of the Nf = 4 theory. At genus zero
one should recover the prepotential, and at higher genus the gravitational amplitudes introduced
by Nekrasov in [80] by using instanton counting techniques. In this section we will explain this
in some detail, and as spin-off we will obtain some new results on the modularity properties of
the Nf = 4 theory and its gravitational corrections.

We first note that the behavior of the amplitudes near (2.4.88), in the fiber limit, has been
already determined with heterotic techniques in (2.5.210). The results of section 2.5 including
the base were obtained in principle in the large radius limit, in terms of the “electric” coordinates
t. However, the calculations of F (g) performed there are also valid in the tD coordinates, due
to general covariance. In particular, the holomorphic limit F (g)(S, tD) can be expanded in
polynomials in E2(S), E4(S), E6(S) as explained before (2.5.147), and we can write

F (g)(S, tD) =
∑

k

pg
k(S)fg

k (tD). (2.6.260)

Near the locus (2.4.90) the fg
k should show display a singular behavior of the form

fg
k (tD) =

bgk
µ2g−2

+ · · · , (2.6.261)

as we checked in the fiber limit in (2.5.210). How does this compare to the field theory?
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The prepotential and gravitational corrections of the massless Nf = 4, SU(2) N = 2 Yang–
Mills theory depend on the vector multiplet variable a and on the microscopic coupling τ0. They
can be put together into a generating functional

FYM(a, τ0, ~) =

∞∑

g=0

~2gFYM
g (a, τ0), (2.6.262)

where FYM
0 (a, τ0) is the N = 2 prepotential and the higher g amplitudes are the gravitational

corrections. The statement that the type II theory on the Enriques Calabi–Yau has this gauge
theory as its field theory limit near the locus (2.4.90) implies that the leading singularity of the
topological string amplitudes is given by

F (g)(S, tD) → 1

µ2g−2

∑

k

bgkp
g
k(S) = FYM

g (a, τ), (2.6.263)

where S is related to the coupling constant of the theory τ0, and µ is related to the a variable
of Seiberg and Witten in a way that we will make precise in a moment. Let us first look at the
prepotential. While it has been originally assumed [87] that the prepotential of the self-dual
theories with N = 2, gauge group SU(N) and 2N flavors is classically exact, it was found in
[103] that it does get instanton corrections. Those can however be absorbed in the following
redefinition of the coupling [104],

τ0 → τ =
1

2

∂2

∂a2
FYM

0 (a, τ0) = τ0 +
∑

k

ckq
k
0 , (2.6.264)

where
q0 = exp(2πiτ0). (2.6.265)

We then have for the instanton-corrected prepotential

FYM
0 (a, τ0) =

1

2
τa2, (2.6.266)

in terms of the renormalized coupling τ . This is needed in order to match the type II prepotential
(2.4.78), which does not exhibit instanton corrections. We will then express the FYM

g obtained
by instanton computations not as functions of q0, but of q = e2πiτ .

The computation of the field theory amplitudes proceeds as follows. The functional (2.6.262)
has the structure

FYM(a, τ0, ~) = FYM
pert(a, ~) − ~2 logZ(a, τ0, ~), (2.6.267)

where

FYM
pert,g(a, ~) = − 2B2g

4(g−1)2g(2g − 2)
(1 − 4g)

1

a2g−2
(2.6.268)

is the perturbative piece computed in [100], and

Z(a, τ0, ~) =
∑

k

Zk(a, ~)qk
0 (2.6.269)

is an instanton sum. Nekrasov’s formula for the k-instanton contribution to the partition sum
Zk(a, ~) can be written as [101]

Zk(a, ~) =
∑

{Yλ}

N∏

λ

∏

s∈Yλ

ϕλ(s)4∏
λ̃E(s)2

. (2.6.270)
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The sum runs over sets {Yλ} of Young diagrams labeled in the SU(2) case by λ = 1, 2. For
massless flavors,

ϕλ(s) = aλ − (sj − si)~, (2.6.271)

where si, sj are the coordinates of the cell s inside the Young diagram Yλ. We also have

E(s) = aλλ̃ − ~(h(s) − v(s) − 1), h(s) = νsi − sj , v(s) = ν̃ ′sj
− si, (2.6.272)

where νsi is the length of row si in Yλ, ν̃ ′sj
the length of column sj in Yλ̃ and h(s), v(s) are the

number of boxes to the right of s inside Yλ respectively above s inside Yλ̃, see Fig. 2.3. The
constants aλ = (a1, a2) are set to (−a, a).

s

ν1

ν2

ν ′1 ν ′2

ν9

ν ′10

ν̃1

ν̃2

ν̃9

ν̃ ′1 ν̃ ′2 ν̃ ′10

Figure 2.3: A sample pair of Young diagrams Yλ, Yλ̃ contributing to (2.6.270).

The relative normalizations between the results in [80] and the Calabi–Yau case can be
obtained from the limit q → 0, which is the limit S → ∞. The only remaining singularity on the
Enriques is then (2.5.210), while in the Yang–Mills case we are left with the perturbative piece
(2.6.268). Comparing this to (2.5.210) and taking into account the relative sign in (2.6.263) we
find

(−2)g−1 a
2g−2

µ2g−2
= 1, (2.6.273)

and one can immediately read off the normalization of a with respect to µ = t1D − t2D:

a =
µ

i
√

2
. (2.6.274)

We notice the following factorization,

FYM
g (q0, a) =

1

a2g−2
Ξg(q0), (2.6.275)

where Ξg(q0) is a power series in q0. The relation between q0 and q is defined by

q = q0 exp[Ξ0(q0)], (2.6.276)

which can be inverted to obtain the relation between q0 and q. The explicit power series one
finds is

q0 = q − q2

2
+

11q3

64
− 3q4

64
+

359q5

32768
− 75q6

32768
+

919q7

2097152
− 41q8

524288
+ O(q9). (2.6.277)
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If we now plug this series into FYM
g (a, q0) we find that all gravitational couplings are functions

of q2, that is to say, there are no odd instanton contributions, as it should be since those are
forbidden by a Z2–symmetry of the theory [87]. The power series (2.6.277) should be given by
a mirror map, corresponding to some algebraic realization of an elliptic curve. Indeed, when
expressed in terms of

q = 24q
1
2
S , qS = e−S , (2.6.278)

we find

q0 = 16 q
1
2
S − 128 qS + 704 q

3
2
S − 3072 q2S + · · · =

ϑ4
2(qS)

ϑ4
3(qS)

, (2.6.279)

which is (up to an overall factor 16) the Hauptmodul of Γ0(4). This equality between q0 and
the Hauptmodul has only be checked for the first few terms of the instanton expansion, and we
don’t have a general proof.

We can now express the couplings FYM
g (a, q0), computed from (2.6.270), in terms of qS , µ.

Due to the connection to the Enriques results and the field theory limit (2.6.263), we expect
them to be (up to an overall factor µ2−2g) quasi–modular forms in qS of weight 2g − 2, and
belonging to the ring generated by E2(S), E4(S) and E6(S). The results obtained with the
instanton expansion are in perfect agreement with this. We find at g = 2

µ2FYM
2 =

1

16
− 3qS

2
− 9q2S

2
− 6q3S − 21q4S

2
− 9q5S + 18q6S + O

(
q7S
)

=
1

24
E2(qS) .

(2.6.280)

Proceeding in the same way we find,

µ4FYM
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µ12FYM
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(2.6.281)

We point out that we have not proved these equalities, but rather verified them by using the
instanton expansion up to high order. It is however highly non–trivial that this expansion can
be matched to a quasimodular form of the required weight. In addition, one can verify that the
coefficients of the above combinations agree with the Enriques results. For example, if we look
at the singular behavior of (2.5.168) by using (2.5.210), one finds,

F (3)(S, tD) → 1

32µ4
E4(S) +

1

48µ4
(E2

2(S) − E4(S)) =
1

96
(2E2

2(S) + E4(S)), (2.6.282)

in agreement with the result above. We have checked that the above polynomials are in accor-
dance with the field theory limit of the Enriques model also for g = 4, 5, 6. For higher genus
the instanton results for the Nf = 4 theory provide a boundary condition for the holomorphic
anomaly equation, since they determine the coefficient of the leading singularity near (2.4.90)
as a function of S, and generalize the heterotic result (2.5.210) away from the fiber.
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In summary, we have verified with the instanton computations of [80] our general results
about the structure of the topological string amplitudes in the Enriques Calabi–Yau (in particu-
lar our assumption after (2.5.147) about the modular properties of the holomorphic ambiguity).
Conversely, the results on the Enriques side have been instrumental in clarifying the modularity
structure of the massless Nf = 4 theory.

Conclusion

In this chapter we have developed a new approach to solving the holomorphic anomaly equa-
tions of [19], based on the interplay between modularity and non-holomorphicity, which makes
possible to perform a direct integration of the equations at each genus. This approach is more
efficient than the diagram expansion of [19] and leads to closed expressions for the topological
string amplitudes, once the ambiguities are fixed by appropriate boundary conditions. The am-
plitudes obtained with this procedure can be written as polynomials in a finite set of generators
that transform in a particularly simple way under the space-time symmetry group, making the
modularity properties manifest.
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Chapter 3

Topological Amplitudes and

Heterotic-Type II Duality

In this chapter, we report on a computation of topological amplitudes on a chain of Calabi-Yau
manifolds, using N = 2 heterotic-type II duality. This duality connects the heterotic string
compactified on K3 × T2 with compactifications of type IIA theory on K3-fibrations, as we
briefly reviewed in section 1.4. The material presented here is based on the publication [43].

Recall that the 4d effective action of these N = 2 compactifications contains a series of BPS
protected higher-loop terms of the form

S ∼
∫
F (g)(t, t̄)T 2g−2R2 + · · · , (3.0.1)

where R is the Riemann tensor, T the graviphoton field strength, and the couplings F (g) are
amplitudes of the topological string on the internal Calabi-Yau [18, 19]. On the heterotic side,
these amplitudes appear at 1–loop [20] and are therefore in general accessible to computation
[44, 29, 97, 79]. The result can be mapped to the type II side, yielding striking predictions in
enumerative geometry.
The Higgs transitions on the heterotic side correspond to geometric transitions between the
corresponding Calabi-Yaus on the type II side. A more precise picture of how the heterotic
moduli spaces are connected might therefore provide some insight into the web of type II vacua.
Until now, most explicit comparisons between heterotic and type II models have been restricted
to cases with a small number nv of massless Abelian vector multiplets, namely nv = 3, 4, 5. These
vector multiplets are the graviphoton, the heterotic dilaton S, one or two (nv = 4) moduli T,U
from the compactification torus, and if nv = 5, one Wilson line modulus V . However, by now
there is a myriad of conjectured heterotic-type II pairs with higher numbers of vector multiplets
waiting to be analyzed.
In [105], the authors obtained chains of heterotic-type II duals by compactifying the heterotic
string onK3×T2 in various orbifold realizations. In each chain, subsequent models are connected
by a sequential Higgs mechanism reducing the number of generic Wilson line moduli by one. K3
is realized as an orbifold T4/ZN , N = 2, 3, 4, 6 and the ZN is simultaneously embedded in the
gauge connection in a modular invariant way. For the last models in the chains, the candidate
type II duals can be explicitly constructed.
The classical vector multiplet moduli space of compactifications with k = nv − 4 Wilson lines is
given by the special Kähler space

SU(1, 1)

U(1)
× SO(2 + k, 2)

SO(2 + k) × SO(2)
, (3.0.2)

where the first factor corresponds to the dilaton and the second to the torus and Wilson line
moduli. The T-duality group, under which the vector multiplet couplings have to transform as
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automorphic functions, is SO(2 + k, 2; Z) [106, 107, 108].
For the SO(2, 2; Z) case with four vector multiplets, i.e. the well-known STU model, the higher
derivative couplings have been computed in [29]. They can be expressed in terms of expansion
coefficients of ordinary modular forms. The case with five vector multiplets (one Wilson line)
has been studied at the level of prepotential and F (1) in [109]. This case is somewhat special,
as the T-duality group is here SO(3, 2; Z) ∼= Sp(4,Z) [108], and the corresponding automorphic
functions are given by Siegel modular forms [108]. The effective couplings can be expressed in
terms of Jacobi forms of index one, yielding a prescription how to split off the part depending
on the Wilson line modulus from the gauge lattice.
In this chapter, we present the results of [43] about the generic case, involving more general
automorphic forms. We define a splitting procedure analogous to the one in [109], and show
how the split lattice sum can be explicitly expressed in terms of ordinary Jacobi Theta functions.
Once this split is determined, we use the technique of lattice reduction [41] to explicitly compute
higher-derivative F-terms for heterotic N = 2 compactifications with an arbitrary number of
Wilson lines. The final result involves the q-expansion coefficients of the moduli independent
Higgsed part of the lattice sum. Even though the computation is done at the orbifold point, the
results are fully valid at generic points of K3 moduli space, since the couplings F (g) only depend
on vector multiplets and therefore cannot mix with theK3 moduli, belonging to hypermultiplets.
While the formalism can be applied to almost any symmetric ZN orbifold limit of K3, we mainly
focus on the dual pairs found in [105]. We compute the corresponding topological amplitudes
F (g) in closed form. For genus zero, our results agree with the numbers of rational curves
found on the type II side wherever those are known [110]. The present computation extends
previous work on threshold corrections for models with a single Wilson line [96, 109, 111], and
also provides a more explicit realization, extended to higher genus, of the general results of [92].

The rest of this chapter is organized as follows. In section 3.1, we review heterotic com-
pactifications with N = 2 supersymmetry and the Higgs chains of [105]. In section 3.2, we
explain how to compute partition sums and higher derivative F-terms in general heterotic orb-
ifold setups. Section 3.3 introduces the lattice splits in the presence of Wilson lines. A general
expression for the amplitudes F (g) in the presence of Wilson lines is derived. In section 3.4, we
use our results to extract geometric information on the dual Calabi-Yau manifold. This provides
a highly nontrivial check of our computation in those cases where instanton numbers are known
on the type II side.

3.1 Heterotic N = 2 compactifications

In this section, we briefly discuss the construction of heterotic N = 2 compactifications and
their matter spectrum. There are two main approaches to analyzing these models. Section
3.1.1 reviews the purely geometrical approach of [40], while section 3.1.2 reviews the exact CFT
construction via orbifolds of [105]. Even though the two approaches are completely equivalent, it
proves very useful to keep the two in mind simultaneously, as sometimes one is more convenient,
sometimes the other. Section 3.1.3 reviews how these compactifications fall into chains of models
connected by a sequential Higgs mechanism [105].

3.1.1 The Calabi-Yau approach

Consider compactification of the heterotic string on K3×T2. In order to break the gauge group
G = E8×E8 of the ten-dimensional heterotic string down to a subgroup G, one gives gauge fields
on K3 an expectation value in H, where G×H is a maximal subgroup of G. Geometrically, this
corresponds to embedding a H-bundle V on K3. This bundle can be chosen to be the tangent
bundle of K3, an SU(2)-bundle with instanton number

∫
K3 c2(V ) = 24. This is the standard

embedding, where the spin connection on K3 is equal to the gauge connection. More generally,
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one can embed several stable holomorphic SU(N)-bundles Va, as long as the constraints from
modular invariance ∑

a

c2(Va) = 24 c1(Va) = 0 (3.1.3)

are satisfied. We will here only consider embeddings of one or two SU(2)-bundles on one respec-
tively both E8 and write their instanton numbers according to (3.1.3) as (d1, d2) = (12+n, 12−n).
The number of gauge neutral hypermultiplets is determined as follows [40]. There is a universal
gravitational contribution of 20, and each of the SU(Na)-bundles Va → K3 with

∫
K3 c2(Va) = A

has an extra ANa + 1 − N2
a moduli, therefore we get additional 45 moduli for one and 51 for

two embedded SU(2) bundles. The rank of the gauge group is reduced by the rank of the
embedded bundle, N-1. For the standard embedding, we thus find 65 hypermultiplets and an
enhanced gauge group E7 ×E8, the first model in the Z2 chain in [105]. The Cartan subalgebra
of E7 ×E8 contains 15 generators, and there is an extra U(1)4 from the SUGRA multiplet and
torus compactification, therefore this model has nv = 19 vector multiplets.

3.1.2 Exact CFT construction via orbifolds

Rather than following the approach presented above, we will here realize the heterotic models
following [105] in the so-called exact CFT construction via orbifolds. In this approach, the K3 is
realized as a ZN orbifold, while simultaneously the spin connection is embedded into the gauge
degrees of freedom. We will mainly concentrate on the ZN–embeddings given in table 3.1. The

orbifold ZN twist θ acts on two of the four complex bosonic transverse coordinates as e±
2πi
N .

Since we impose N = 2 SUSY, N can only take on the values 2, 3, 4, 6 [92]. The action of θ
on the gauge degrees of freedom is strongly restricted by worldsheet modular invariance. We
implement it as a shift of the gauge lattice, writing for the torus and gauge lattice sum

Z18,2[ab ] =
∑

p∈Γ18,2+aγ

e2πibγ·pq
|pL|2

2 q̄
|pR|2

2 , (3.1.4)

where a, b ∈ {1/N, · · · (N − 1)/N}. The shift γ ∈ Γ18,2 has to fulfill the modular invariance and
level-matching constraints [13]

8∑

i=1

γi =
16∑

i=9

γi = 0 mod 2 (3.1.5)

and
γ2 = 2 mod 2N. (3.1.6)

One then finds the possible inequivalent ZN orbifolds: There are 2 for Z2, 5 for Z3, 12 for Z4 and
61 for Z6 [111]. Note that in those cases where the same type of shift is modular invariant for
different N, those models are equivalent as far as the topological amplitudes F (g) are concerned.
The reason for this is that they are only distinguished by the specific orbifold realization of the
K3-surface. Since the moduli of the K3 live in hypermultiplets which do not mix with the vector
multiplets, the higher-derivative couplings should be identical for the different ZN embeddings.
They can however differ if we turn on Wilson line moduli corresponding to the gauge groups
only present in the orbifold limit [92], as will be explained in section 3.3.2.
Some non-standard embeddings, along with their perturbative gauge group, are given in table
3.3. These groups are easily read off from the simple root system for E8 given below, table 3.2.
The unbroken group is generated by the roots αi invariant under the shift γ, i.e. fulfilling

e
2πiγ·αi

N = 1. (3.1.7)
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Z2 γ1=(1,-1,0,0,0,0,0,0);
γ2=(0,0,0,0,0,0,0,0) SU(2) × E7 × E′

8 n=12
Z3 γ1=(1,1,2,0,0,0,0,0);

γ2=(1,-1,0,0,0,0,0,0) SU(3) × E6 × U(1)′ × E′
7 n=6

Z4 γ1=(1,1,1,-3,0,0,0,0);
γ2=(1,1,-2,0,0,0,0,0) SO(10) × SU(4) × E′

6 × SU(2)′ × U(1)′ n=4
Z6 γ1=(1,1,1,1,-4,0,0,0);

γ2=(1,1,1,1,1,-5,0,0) SU(5) × SU(4) × U(1) × SU(6)′ × SU(3)′ × SU(2)′ n=2

Table 3.1: Embeddings of the spin connection in the gauge degrees of freedom

0 1 1 0 0 0 0 0 α1

0 0 -1 1 0 0 0 0 α2

0 0 0 -1 1 0 0 0 α3

0 0 0 0 -1 1 0 0 α4

0 0 0 0 0 -1 -1 0 α5

0 0 0 0 0 0 1 1 α6

-1
2 -1

2
1
2

1
2

1
2

1
2 -1

2 -1
2 α7

0 0 0 0 0 0 1 -1 α8

Table 3.2: A simple root system for E8

In the first embedding in table 3.3, the invariant roots on the first E8 are the 126 roots of
E7, generated by the roots α2, · · · , α8. One realization is given in table 3.2. For a general ZN

embedding, the gauge group from the first E8 would then be U(1) × E7. For N = 2, γ itself is
also a root, orthogonal to the others, fulfilling (3.1.7), and the U(1) is enhanced to an SU(2).
On the second E8, the invariant roots are the roots of SO(14) α1, · · · , α6, α8, and an extra root
(1,−1, 06) such that the unbroken gauge group is SO(16). The second embedding is obviously
analogous, only in this case N = 3, therefore (1,−1, 06) is not an invariant root anymore. For
the left-hand side of the third embedding, the unbroken roots are α1, (1,−1, 06), and the second
system, orthogonal to the first α3, · · ·α8, yielding a perturbative gauge group SU(3) × E6. On
the second E8, the unbroken roots are α1, · · · , α7, (

1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 ,
1
2 ,−1

2), forming the
Dynkin diagram of SU(9). The other examples work out similarly. Note that each of these
realizations breaks the original gauge group E8 ×E8 to a different rank 16 subgroup, containing
a nonabelian rank r group G and a U(1)16−r that may be enhanced as in the example above.
However, this latter factor is only present in the orbifold limit; for a smooth K3, the gauge group




2 −1 0 · · · 0
−1 2 −1 0 0
0 −1 2 −1 0 0
... 0 −1 2 −1 0 0

0 −1 2 −1 0 −1
0 −1 2 −1 0

0 −1 2 0
0 · · · −1 0 · · · 2




(3.1.8)

Figure 3.1: Cartan matrix of E8
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consists merely of G.
The perturbative gauge group G × G′ can subsequently be spontaneously broken to a sub-

group G1 ⊂ G via maximal Higgsing, as explained in section 3.1.1 within the Calabi-Yau ap-
proach of [40]. This subgroup depends on the embedding γ only via its instanton numbers: For
the standard embedding with n = 12, there are no instantons on the second E8 and the gauge
group E′

8 can not be broken at all. For the cases n = 0, 1, 2, complete Higgsing is possible. For
n = 3, 4, 6, 8, there are too few hypermultiplets on E′

8 that could be used for Higgsing, and G′

can only be broken to a terminal subgroup G1 = SU(3), SO(8), E6, E7 [111]. Once again, we
consider the standard Z2 orbifold as an example. The hypermultiplets in the untwisted (θ0) and
twisted (θ1) sectors transform under E7 × SU(2) in the following representations:

(56, 2) + 4(1, 1) (untwisted, θ0)

8 ((56, 1) + 4(1, 2)) (twisted, θ1).
(3.1.9)

We can now Higgs the SU(2) giving vevs to three scalars, and we are left with 10 hypermultiplets
transforming in the 56 of E7 and 65 singlet hypermultiplets, as advertised in section 3.1.1.
We can then break E7 further by sequential Higgs mechanism. Since the instanton numbers
corresponding to this embedding are (24, 0), we can not break the E′

8 from the second E8 lattice
at all. A complete classification of orbifold limits of K3 along with their instanton numbers can
be found in [111].

Z2 (1,−1, 0, 0, 0, 0, 0, 0);
(2, 0, 0, 0, 0, 0, 0, 0) SU(2) × E7 × SO(16)′ n = 4

Z3 (2, 0, 0, 0, 0, 0, 0, 0);
(2, 0, 0, 0, 0, 0, 0, 0) U(1) × SO(14) × U(1)′ × SO(14)′ n = 0

Z3 (1, 1,−2, 0, 0, 0, 0, 0);
(−2, 1, 1, 1, 1, 1, 2, 1) SU(3) × E6 × SU(9)′ n = 3

Z4 (3,−1, 0, 0, 0, 0, 0, 0);
(0, 0, 0, 0, 0, 0, 0, 0) SU(2) × U(1) × SO(12) × E′

8 n = 12
Z6 (3,−1,−1,−1,−1,−1, 1, 1);

(3,−3, 2, 0, 0, 0, 0, 0) U(1)2 × SU(7) × U(1)′ × SU(2)′2 × SO(10)′ n = 2

Table 3.3: Other ZN embeddings of the spin connection

3.1.3 Chains of dual models and the sequential Higgs mechanism

Once one has chosen a modular invariant embedding of SU(N) bundles, and maximally Higgsed
the gauge group on the E8 lattice where the embedding has the lower instanton number, one can
perform a cascade breaking on the remaining gauge group along the chain E8 → E7 → E6 →
SO(10) → SU(5) → SU(4) → SU(3) → SU(2) → (nothing). For the example of the standard
Z2 orbifold, this goes as follows.
Starting with the (65,19) model with E7 ×E8 symmetry remaining after the gauge embedding,
one can move to a point in moduli space where the E7 gauge symmetry is restored. Under the
maximal subgroup E6 × U(1) ∈ E7, the 56 of E7 decomposes as 56 = 27 + 27 + 1 + 1. At
this point, there are 10 56, therefore 20 E6 singlets charged under the U(1). We now give a
generic vev to the adjoint scalars in the unbroken vector multiplets, thereby giving masses to all
hypermultiplets charged with respect to E6, and at the same time breaking E6 to its maximal
Abelian subgroup U(1)6. Using one scalar to Higgs the U(1), we get 19 extra gauge singlet
fields: the new spectrum is (84, 18), the second model in the corresponding chain in [105]. We
can then move to a point in moduli space where the U(1)6 is enhanced to E6 and continue this
procedure until no gauge symmetry remains on this lattice. In this way, one easily finds a chain
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of models with characteristics (nh, nv) [105]

(65, 19), (84, 18), (101, 17), (116, 16), (167, 15), (230, 14), (319, 13), (492, 12) (3.1.10)

The same mechanism can be applied to the other embeddings in table 3.1. For the Z3 orbifold,
n = 6, therefore we can maximally Higgs on the second lattice down to E6. On the first E8

lattice, we first Higgs down to the rank-reduced subgroup and then start cascade breaking as
explained above. The result is a chain E6 → SO(10) → · · · → SU(2) → 0 passing through
models with characteristics

(76, 16), (87, 15), (96, 14), (129, 13), (168, 12), (221, 11), (322, 10). (3.1.11)

For the Z4 orbifold, n = 4, maximal Higgsing leaves an SO(8) on the second lattice and the
embedding of the spin connection leaves a rank-reduced subgroup SU(4) on the first. The
resulting chain reads

(123, 11), (154, 10), (195, 9), (272, 8). (3.1.12)

The Z6 orbifold in table 3.1, finally, has n = 2 and therefore allows for complete Higgsing. The
rank-reduced subgroup is SU(5), Higgsed via the chain

(118, 8), (139, 7), (162, 6), (191, 5), (244, 4). (3.1.13)

The last four models in each chain have candidate type II duals, i.e. known K3 fibrations
with the right Betti numbers. It is interesting to note that on the type-II side, the cascade
breaking procedure corresponds precisely to moving between moduli spaces of different Calabi-
Yau manifolds. Indeed, as pointed out in [40], this is strikingly similar to the specific type-II
process described in [112].

3.2 Higher derivative couplings for Zn orbifolds

We will consider here the E8 ×E8 formulation of the 10 dimensional heterotic string, where the
gauge degrees of freedom are encoded by 16 left-moving bosons, and compactify it on K3×T2,
yielding another two left- and two right-moving bosons. These fields take their values on an
even self–dual lattice of signature (18, 2) that will be denoted by Γ18,2. One can identify Γ18,2

as obtained from a Euclidean standard lattice by an SO(18, 2) rotation. The moduli space of
inequivalent lattices is therefore given by

SO(18, 2)

SO(18) × SO(2)
. (3.2.14)

This homogeneous space can be parametrized following [44],[92] by

u(y) = (~y, y+, y−; 1,−1

2
(y, y)), y ∈ C17,1 (3.2.15)

with y2 > 0, (y2, y2) < 0 and inner product

(x, y) = (~x, ~y) − x+y− − x−y+. (3.2.16)

The right-moving components of a vector in Γ18,2 with respect to a vector (~b,m−, n+,m0, n0) in
the fixed Euclidean standard lattice are then denoted by pR = p · u(y), and we have

p2
L − p2

R

2
=

1

2(y2, y2)

(
~b ·~b+m−n+ +m0n0

)
, (3.2.17)

p2
R

2
=

−1

2(y2, y2)

∣∣~b · ~y +m+y
− − n−y

+ + n0 +
1

2
m0(y, y)

∣∣2, (3.2.18)
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The general expression for F (g) is given by [20, 113, 79]

F (g) =
1

Y g−1

∫

F

d2τ

τ2

1

|η|4
∑

even

i

π
∂τ

(
ϑ[αβ ](τ)

η(τ)

)
Z int

g [αβ ], (3.2.19)

where
Z int

g [αβ ] = 〈:
(
∂X
)2g

:〉 = PgC
int
g [αβ ]. (3.2.20)

Pg(q) is a one-loop correlation function of the bosonic fields and is given by [114],[20]

e−πλ2τ2

(
2πη3λ

ϑ1(λ|τ)

)2

=
∞∑

g=0

(2πλ)2gPg(q), (3.2.21)

and C int
g [ab ] denotes the trace over the (a, b) sector of the internal CFT with an insertion of p2g−2

R ,
namely

∑

a,b

c(a, b)(−1)2α+2β+4αβ
ϑ[αβ ]ϑ[α+a

β+b ]ϑ[α−a
β−b ]

η3
· Z4,4[

a
b ] · Zg

T2 [
a
b ], (3.2.22)

where c(a, b) are constants ensuring modular invariance.
Note that for g=1, (3.2.19) is just the unregularized one-loop gravitational threshold correction

F (1) =

∫

F

d2τ

τ2
2

(
τ2
|η|4

∑

even

i

π
(−1)2α+2β+4αβ∂τ

(
ϑ[αβ ](τ)

η(τ)

)
Ê2

12
C int

g [αβ ]

)
. (3.2.23)

The contribution from the bosonic (4,4) blocks reads

Z4,4[
a
b ] = 16

η2η̄2

ϑ2[1−a
1−b ]ϑ̄

2[1−a
1−b ]

(a, b) 6= (0, 0) (3.2.24)

while the bosons on the T2 together with the 16 bosons corresponding to the gauge degrees of
freedom contribute [92]

Zg
T2 [

a
b ] =

1

η18
e−2πiabγ2

∑

p∈Γ18,2+aγ

p2g−2
R e2πibγ·pq

|pL|2
2 q̄

|pR|2
2 . (3.2.25)

Using

i

4π

∑

(α,β)even

(−1)2α+2α+4αβ∂τ

(
ϑ[αβ ]

η

)
ϑ[αβ ]ϑ[α+a

β+b ]ϑ[α−a
β−b ]

η3

Z4,4[
a
b ]

|η|4 = 4
η2

ϑ̄[1+a
1+b ]ϑ̄[1−a

1−b ]
, (3.2.26)

one can write for (3.2.19)

F (g) =
1

Y g−1

∫

F

d2τ

τ2
2

τ2g−1
2 P2g(q)

∑

a,b

c(a, b)e2πiab(2−γ2)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

p∈Γ18,2+aγ

p2g−2
R e2πibγ·pq

|pL|2
2 q̄

|pR|2
2 .

(3.2.27)
The constants c(a, b) can be determined by the modular invariance constraints [92]

c(0, b) = 4 sin4(πb)

c(a, b) = eπia2(2−γ2)c(a, a+ b)

c(a, b) = e−2πiab(2−γ2)c(b,−a).
(3.2.28)

Introducing the Siegel-Narain theta function with insertion and shifts (see Appendix C.1)

Θg
Γ(τ, γ, a, b) =

∑

p∈Γ+aγ

p2g−2
R q

|pL|2
2 q̄

|pR|2
2 eπibγ·p, (3.2.29)
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we can rewrite (3.2.27) as

F (g) =
1

Y g−1

∫

F

d2τ

τ2
2

τ2g−1
2 P2g(q)

∑

a,b

c(a, b)e2πiab(2−γ2)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]
Θg

Γ18,2(τ, γ, a, b). (3.2.30)

For the special cases of N=2 compactifications with a factorized T2, the prepotential and F (1)

have been shown to be universal, i.e. independent of the specific model [114]. In other words,
they are identical for all compactifications on K3 × T2 with all Wilson lines set to zero. Ev-
erything then only depends on the torus moduli. It is easy to see that this also applies to the
amplitudes F (g): When we set all Wilson line moduli to zero, the lattice sum obviously factorizes
as ∑

p∈Γ16,0+aγ

q
|pL|2

2 e2πibp·γ ∑

bp∈Γ2,2

q
|bpL|2

2 q̄
|bpR|2

2 , (3.2.31)

and we obtain

F
(g)
0WL =

1

Y g−1

∫

F

d2τ

τ2
2

τ2g−1
2 P2g(q)

∑

a,b

c(a, b)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

p∈Γ16,0+aγ

q
p2

2 eπigγ·pΘg
Γ2,2(τ)

=

∫
d2τ2
τ2
2

τ2g−1
2 P2gΘ

g
Γ2,2

1

η24
Ω,

(3.2.32)

where

Ω =
∑

a,b

c(a, b)η6

ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

p∈Γ16,0+aγ

q
p2

2 eπibγ·p. (3.2.33)

For modular invariance, Ω then has to be a modular form of weight (10,0). Since the spaces of
modular forms of even weight 2 < w < 12 are one-dimensional, Ω has to be proportional to the
single generator of weight 10 holomorphic modular forms E4E6. Indeed, one finds easily

Ω =
∑

a,b

η6

ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

A,B∈{0,1}

8∏

i=1

ϑ[A+aγi

B+bγi
] (3.2.34)

which can be checked to be −E4E6. An abstract proof of this identity based on 6d anomaly
cancellation can be found in [15]. We thus find that (3.2.32) yields precisely the expression for
the STU-model without Wilson line moduli given in [29]. This universality property is related
to the structure of the elliptic genus [114, 115].
We will now consider the nontrivial case with non-vanishing Wilson lines. The lattice sum does
not factorize completely anymore. However, it should factorize partly, into a preserved and a
Higgsed part. Indeed, it turns out that one can now write F (g) as

F (g) =
1

Y g−1

∫

F

d2τ

τ2
2

τ2g−2
2 P̄2g(q)

∑

a,b

c(a, b)e2πiab(2−γ2)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]

∑

J

Θ̄g
J,k(τ)Φ

k
J [ab ](q) (3.2.35)

with

Θ̄g
J,k =

∑

p∈Γk+2,2
J

p̄2g−2
R q

|pL|2
2 q̄

|pR|2
2 , (3.2.36)

where Γk+2,2
J denotes the conjugacy class J inside the lattice Γk+2,2, and Φk

J [ab ](q) is a sum over
theta functions that will be determined in the following section. Note that (3.2.35) is manifestly
automorphic under the T-duality group SO(2+k, 2; Z), since it has the structure of a Borcherds’
type one-loop integral [41].
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3.3 Wilson lines: Splitting the lattice

3.3.1 Decompositions of the E8 lattice

Recall from section 3.1.3 that the sequential Higgs mechanism is realized by moving along specific
branches of moduli space, away from the generic point. This corresponds to imposing constraints
on the Wilson line moduli, such that at each step in the chain, the number of free Wilson line
moduli is reduced by one. The lattice then splits non-trivially into a Higgsed part with p · y = 0
and a part depending on the remaining unconstrained moduli from Wilson lines and the torus.

First of all, we will determine how the lattice sum of E8 behaves under decomposition into
the maximal subgroups involved in the cascade breaking. Consider the Dynkin diagram of E8

(Fig. 3.2) and the simple root system given in table 3.2. In all the figures, crosses correspond
to Higgsed generators of the group, while the generators remaining in the Coulomb phase due
to Wilson lines are shown as circles. Note that as can be seen from the labeling of the Dynkin

a1 a2 a3 a4 a5 a6 a7

a8

Figure 3.2: E8 Higgsed completely (no Wilson lines)

diagram, the subgroup E7 of E8 is spanned by α2, · · · , α8, E6 by α3, · · · , α8, E5 = SO(10) by
α4, · · · , α8, and so on for SU(5), SU(4), SU(3), SU(2). We denote the simple roots of the second
E8 by α′

i.
We can now turn on one Wilson line, y ∼ α1. On the other hand, turning on seven Wilson

line moduli can be encoded in the constraint α1 ·y = 0. Both cases result in a split of the lattice
sum of E8 into

∑

p∈ΓE8

q
p2

2 =
∑

ni∈Z

qn2
1+···+n2

8−n1n2−n2n3−n3n4−n4n5−n5n6−n5n8−n6n7

=
∑

ni∈Z

q(n1−n2
2

)2+ 3
4
n2

2+n2
3+···+n2

8−n2n3−···−n6n7

=
∑

j=0,1

∑

n1

q(n1− j
2
)2

∑

n2,···n8∈Z

q
3
4
(2n2−j)2+n2

3+···+n2
8−(2n2−j)n3−···−n6n7

=
∑

j=0,1

ϑ[
j/2
0 ](2·)

∑

n2,··· ,n8

q
3
4
(2n2−j)2+n2

3···+n2
8−(2n2−j)n3−···−n6n7 .

(3.3.37)

Here and in the following, arguments (m·) stand for m · τ , see appendix C.1. The second sum
in the last line is nothing else than the sum over the conjugacy class of E7 corresponding to
(α1, p) = j:

(α1, p) = 2n1 − n2
!
= j ⇒ n2 = 2n1 − j

⇒ p = n1α1 + (2n1 − j)α2 + n3α3 + · · · + n8α8,

p2 =
3

2
(2n1 − j)2 +

j2

2
+ 2n2

3 − 2n3(2n1 − j) − · · ·
(3.3.38)

and therefore

q
j2

4

∑

n2,··· ,n8

q
3
4
(2n2−j)2+n2

3···+n2
8−(2n2−j)n3−···−n7n8 =

E8∑

(p,α1)=j

q
p2

2 = q
j2

4

∑

E
(1)
7

q
p2

2 . (3.3.39)
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We can also express the above in terms of theta functions. Rewriting the exponent in the second
sum in the last line of (3.3.37) as a sum over p with (p, α1) = 0 i.e. as

p = (n1 −
j

2
)α1 + (2n1 − j)α2 + n3α3 + · · ·n8α8

= (−n7

2
, n1 −

j

2
− n7

2
,−n1 +

j

2
+
n7

2
, 2n1 − j − n3 +

n7

2
, n3 − n4 +

n7

2
,

n4 − n5 +
n7

2
,−n5 + n6 −

n7

2
+ n8, n6 −

n7

2
− n8),

(3.3.40)

we can write this sum as
∑

n2,··· ,n8

q
3
4
(2n2−j)2+n2

3···+n2
8−(2n2−j)n3−···−n7n8 =

∑

p∈E
(1)
7

q
p2

2 =
∑

p∈ΓE8
−j

α1
2

(p,α1)=0

q
p2

2

=
∑

N1,N3,···N8
N3+···+N8=j mod 2

a=0,1

q(N1− j
2
−a

2
)2q

1
2((N3−a

2
)2+···+(N8−a

2
)2)

=
∑

N1,···N8∈Z
a=0,1
b=0,1

q(N1− j
2
−a

2
)2q

1
2((N3−a

2
)2+···+(N8−a

2
)2)(−1)b(N3+···+N8−j)

=
∑

a,b∈{0,1}
ϑ[

a/2+j/2
0 ](2·)ϑ[

a/2
b/2 ]6(−1)jb.

(3.3.41)

We thus have decomposed the E8-lattice according to PE8 → P
E

(0)
7

P
A

(0)
1

+ P
E

(1)
7

P
A

(1)
1

, as

shown in Fig. 3.3. This split has already been constructed in [109]. Indeed (3.3.37) is com-
pletely equivalent to the hatting procedure for Jacobi theta functions developed in [109] for this
particular split.

a2 a3 a4 a5 a6 a7

a8

a1

Figure 3.3: E8 → E7 × SU(2)

a1 a2 a3 a4 a5 a6 a7

a8

Figure 3.4: E8 with 1 Wilson line

The same procedure applies when we split the lattice in other maximal subgroups. Namely,
we can decompose with respect to E8 ⊃ E6 × SU(3) :
∑

p∈ΓE8

q
p2

2 =
∑

j2=0,1,2

∑

n1,n2∈Z
j1∈{0,1}

q(n1− j1
2

)2+3(n2+
j1
2
− j2

3
)2

∑

n3,··· ,n8∈Z

q
2
3
(3n3−j2)2+n2

4+···+n2
8−(3n3−j2)n4−···−n6n7

=
∑

j1=0,1
j2=0,1,2

ϑ[
j1/2
0 ](2·)ϑ[

j1/2+j2/3
0 ](6·)

∑

a,b∈{0,1}
ϑ[

a/2+j2/3
b/2 ](3·)ϑ[

a/2
b/2 ]5(−1)b·j2

= P
E

(0)
6

· P
A

(0)
2

+ 2P
E

(1)
6

· P
A

(1)
2

,

(3.3.42)
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The last relation in (3.3.42) follows from

∑

n3,··· ,n8∈Z

q6(n3− j
3
)2+n2

4+···+n2
8−n3n4−···−n6n7 = q−

j2

3

∑

p∈ΓE8
(p,α1)=0
(p,α2)=j

q
p2

2 =
∑

E
(j)
6

q
p2

2 , (3.3.43)

and from the fact that E
(j=1)
6 and Ej=2

6 are equivalent. This case corresponds to 2 respectively
6 Wilson lines.
Analogously, we have lattice decompositions with respect to E8 ⊃ SO(10) × SU(4) (3 or 5
Wilson lines)

∑

p∈ΓE8

q
p2

2

=
∑

j3=0,1,2,3

∑

n1,n2,n3∈Z
j1∈{0,1}

j2∈{0,1,2}

q(n1− j1
2

)2+3(n2+
j1
2
− j2

3
)2+6(n3+

j2
3
− j3

4
)2

∑

n4,··· ,n8∈Z

q
3
8
(4n4−j3)2+···+n2

8−(4n4−j3)n5−···−n6n7

=
∑

j3=0,1,2,3

∑

j1=0,1
j2=0,1,2

ϑ[
j1/2
0 ](2·)ϑ[

j2/3−j1/2
0 ](6·)ϑ[

j3/4−j2/3
0 ](12·)

∑

a,b∈{0,1}
ϑ[

a/2+j3/4
0 ](4·)ϑ[

a/2
b/2 ]4(−1)b·j3

= P
D

(0)
5

· P
A

(0)
3

+ 2P
D

(1)
5

· P
A

(1)
3

+ P
D

(2)
5

· P
A

(2)
3

,

(3.3.44)
and for E8 ⊃ SU(5) × SU(5) (4 Wilson lines)

∑

p∈ΓE8

q
p2

2 =
∑

j4=0,··· ,4

∑

j1=0,1
j2=0,1,2
j3=0,··· ,3

ϑ[
j1/2
0 ](2·)ϑ[

j2/3−j1/2
0 ](6·)ϑ[

j3/4−j2/3
0 ](12·)ϑ[

j4/5−j3/4
0 ](20·)·

·
∑

a,B∈{0,1}
ϑ[

a/2+j4/5
B/2 ](5·)ϑ[

a/2
B/2]

3(−1)B·j4

= P
A

(0)
4

· P
A

(0)
4

+ 2P
A

(1)
4

· P
A

(1)
4

+ 2P
A

(2)
4

· P
A

(2)
4

.

(3.3.45)

Note, however, that there are many other ways to decompose the lattice under other maximal
subgroups. As an example, we can decompose E8 → SO(14) × SU(2) as shown in Fig. 3.5:

a1 a2 a3 a4 a5 a6 a7

a8

Figure 3.5: The split E8 → SO(14) × SU(2)

∑

p∈ΓE8

q
p2

2 =
∑

j=0,1

∑

n7

q(n7− j
2
)2

∑

n1,··· ,n6,n8

q
3
4
(2n6−j)2+n2

8+n2
5···+n2

1−(2n6−j)n5−n5n8···−n7n8 . (3.3.46)

Denoting the lattice sum
∑

p∈ΓE8
q

p2

2 by f(τ), the splittings (3.3.37)-(3.3.45) labeled by the

lower number of Wilson lines k = 1, · · · , 4 can be cast into the general form

f(τ) = fk
0 θ

(8−k)
0 + · · · fk

k θ
(8−k)
k , (3.3.47)
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where

θ
(k)
J :=

∑

j1=0,1
...

jk−1=0,···k−1

ϑ[
j1
2
0 ](2·)ϑ[

j2
3
− j1

2

0
](6·) · · ·ϑ[

jk−1
k

− jk−2
k−1

0
]((k−1) · k)ϑ[

J
(k+1)

− jk−1
k

0
](k · (k+1)),

(3.3.48)
and

fk
J = q

− kJ2

2(k+1)

∑

p∈ΓE8
(p,α1)=···=(p,αk−1)=0

(p,αk)=J

q
p2

2 . (3.3.49)

For the chains of models in [105], we find the explicit expressions

fk
J =

∑

a,b=0,1

ϑ[
a/2+J/(k+1)

b/2 ]((k + 1)·)ϑ[
a/2
b/2 ](7−k)(−1)b·J (3.3.50)

for k even and
fk

J =
∑

a,b=0,1

ϑ[
a/2+J/(k+1)

0 ]((k + 1)·)ϑ[
a/2
b/2 ](7−k)(−1)b·J (3.3.51)

for k odd.
We can write down the same decompositions including the shifts due to the orbifold embedding.
In the chains of models in [105], the shifts are of the form γ = (α1 + 2α2 + · · · + mαm) and

thus deform p to p+ aγ = (n1 + a)α1 + (n2 + 2a)α2 + · · ·+ (nm +m · a)αj . Therefore, θ
(k)
J gets

deformed to

θ
(k)
J,γ [ab ](q) =

∑

j1=0,1
...

jk−1=0,···k−1

ϑ[
j1
2
0 ](2·)ϑ[

j2
3
− j1

2

0
](6·) · · ·ϑ[

jm
(m+1)

− jm−1
m

−m·a
−m(m+1)b

](m · (m+ 1)) · · ·ϑ[
J

(k+1)
− jk−1

k

0
](k · (k + 1)).

(3.3.52)
Similar realizations exist for other types of shifts. On the part of the lattice denoted by fk

J , it is
more convenient to write in an orthogonal basis γ = (γ1, · · · , γ7−k, 0, · · · , 0) and we get for fk

J

with k even

fk
J,γ [ab ] =

∑

A,B=0,1

e−πi
P

i γiBaϑ[
A/2+J/(k+1)

B/2 ]((k + 1)·)
7−k∏

i=1

ϑ[
A/2+aγi

B/2+bγi
](−1)B·J , (3.3.53)

respectively for k odd,

fk
J,γ [ab ] =

∑

A,B=0,1

e−πi
P

i γiBaϑ[
A/2+J/(k+1)

0 ]((k + 1)·)
7−k∏

i=1

ϑ[
A/2+aγi

B/2+bγi
](−1)B·J . (3.3.54)

Cases with more than 7 − k non-vanishing entries in γ have to be considered separately, see
section 3.3.2.
The lattice splits derived above are the main ingredients for computing the F (g) in models with
Wilson lines. Indeed, turning on one Wilson line in the chains of [105] corresponds to preserving
a U(1) that can be enhanced to an SU(2) while Higgsing an E7, and will therefore be reflected
by a split as in (3.3.37). On the other hand, turning on seven Wilson lines Higgses an SU(2)
while preserving a U(1)7 that can be enhanced to E7 and therefore corresponds to the same
split with sides exchanged, or equivalently: the same modified Dynkin diagram (Fig. 3.3) with
circles replaced by crosses. Similarly, (3.3.42) corresponds to 2, respectively 6 and (3.3.44) to 3,
respectively 5 Wilson lines. For 4 Wilson lines, one can choose to Higgs either side of the lattice.
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a1 a2 a3 a4 a5 a6 a7

a8

Figure 3.6: E8 with 5 Wilson lines

a1 a2 a3 a4 a5 a6 a7

a8

Figure 3.7: E8 with 4 Wilson lines

3.3.2 Moduli dependence

We can now use the above to decompose the full lattice sum with torus moduli, Wilson moduli,
shifts and insertions. Note that when the vector of Wilson line moduli y is not orthogonal to
the shifts, i.e. γ · y 6= 0, we turn on Wilson line moduli corresponding to the part of the gauge
group only present in the orbifold limit. This results in freezing the vector moduli at that special
point of moduli space, and the degeneracy of vacua gets lifted: The couplings corresponding to
equivalent embeddings with different N can be different [92].
We therefore impose here γ · y = 0, restricting the Wilson lines to the part of the lattice
orthogonal to the shift. We have to distinguish the cases of less than four Wilson lines from
those with four and more. In the latter, γ · y = 0 is automatically fulfilled for the shifts given in
table 3.1, as the Wilson lines are active on the right-hand side of the Dynkin diagram while the
shifts act on the left. If we turn on less than four Wilson lines, those are active on the left-hand
side of the diagram, as explained in section 3.3.1. This means that we have to choose the shift
such that it does not interfere with the Wilson lines, and in such a way that it preserves the
part of the diagram where the Wilson lines are active. For the Z2,Z3 and Z4 embeddings on the
first E8 lattice (see table 3.1), it is sufficient to move the shift to the other end of the diagram,
redefining γ1

Z2
→ γ′1Z2

= (06,−1, 1), γ1
Z3

→ γ′1Z3
= (05,−2, 1, 1), γZ4 → γ′1Z4

= (04,−3, 1, 1, 1). In
the case of the Z6 orbifold, this does the trick for one and two Wilson lines, but if we turn
on a third one, it is not orthogonal to γ′1Z6

anymore. However, we can choose the equivalent
embedding γ′1 = (2, 2, 2, 2, 2, 03), orthogonal to y ∈ span(α1, α2, α3). In this case, this is also a
valid choice for zero, one and two Wilson lines. The Wilson lines on the second E8, unchanged
throughout the sequential Higgs mechanisms, work out similarly. Only the Z4 orbifold is slightly
more delicate, as the Wilson lines corresponding to maximal Higgsing on the second E8 preserve
an SO(8), and therefore act in the center of the diagram. The combination of theta functions
corresponding to the Higgsed lattice can however be determined using (3.3.49).

a1 a2 a3 a4 a5 a6 a7

a8

Figure 3.8: E8 with 4 Wilson lines, alternative split

83



a1 a2 a3 a4 a5 a6 a7

a8

Figure 3.9: E8 with 3 Wilson lines

For one Wilson line, we thus write

∑

p∈Γ18,2+aγ

p
(2g−2)
R q

|pL|2
2 q̄

|pR|2
2 e2πibγ·p =

∑

p∈Γ18,2+aγ

(p · u(y))(2g−2)q
p2

2 |q|(p·u(y))2e2πibγ·p

=
∑

J=0,1

∑

A,B∈{0,1}
α,β∈{0,1}

e−πi
P

i γ′
iBa

(
8∏

i=3

ϑ[
A/2+aγ′

i

B/2+bγ′
i
]

)
ϑ[

A/2+J/2
0 ](2·)(−1)BJ

· e−πia
P16

i=9 γiβ




16∏

j=9

ϑ[
α/2+aγj

β/2+bγj
]


 ·

∑

n1,n±,m±

(p · u(y))2g−2q(n1−J
2
)2−m+n−+n0m0 |q|(p·u(y))2

=
∑

J

f1
J [ab ](q)Θ̄

g
J,1(q, y),

(3.3.55)
where Θg

J,k(q, y) is defined in (3.2.36), and

f1
J [ab ](q) =

∑

A,B∈{0,1}
α,β∈{0,1}

e−πia
P8

i=3 γ′
iB

(
8∏

i=3

ϑ[
A/2+aγ′

i

B/2+bγ′
i
]

)
ϑ[

A/2+J/2
0 ](2·)(−1)BJ

· e−πia
P16

i=9 γiβ




16∏

j=9

ϑ[
α/2+aγj

β/2+bγj
]


 .

(3.3.56)

This is nothing else than (3.3.54) applied to the whole lattice of two E8 and the torus, and
including the shifts. Analogously, we get for k ≤ 4 Wilson lines

∑

p∈Γ18,2+aγ

p
(2g−2)
R q

|pL|2
2 q̄

|pR|2
2 e2πibγ·p =

∑

J

fk
J [ab ](q)Θ̄

g
J,k(q, y), (3.3.57)

where for k=3

f3
J [ab ](q) =

∑

A,B∈{0,1}
α,β∈{0,1}

e−πia
P8

i=5 γ′
iB

(
8∏

i=5

ϑ[
A/2+aγ′

i

B/2+bγ′
i
]

)
ϑ[

A/2+J/4
0 ](4·)(−1)BJ

e−πia
P16

i=9 γiβ




16∏

j=9

ϑ[
α/2+aγj

β/2+bγj
]


 ,

(3.3.58)

and for k = 2 or k = 4 Wilson lines, using (3.3.53),

fk
J [ab ](q) =

∑

A,B∈{0,1}
α,β∈{0,1}

e−πia
P8

i=k+2 γiB

(
8∏

i=k+2

ϑ[
A/2+aγ′

i

B/2+bγ′
i
]

)
ϑ[

A/2+J/(k+1)
B/2 ]((k + 1)·)(−1)BJ

e−πia
P16

i=9 γiβ




16∏

j=9

ϑ[
α/2+aγj

β/2+bγj
]


 .

(3.3.59)
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When more than four Wilson lines are turned on (k ≥ 4), we decompose analogously as

∑

p∈Γ18,2+aγ

p
(2g−2)
R q

|pL|2
2 q̄

|pR|2
2 e2πibγ·p =

∑

J

θk
J [ab ](q)Θ̄

g
J,k(q, y), (3.3.60)

where θk
J [ab ](q) is (3.3.52), supplemented by the contribution from the second E8 lattice.

Any other split for any number of Wilson lines fulfilling the constraint γ · y = 0 can be realized
similarly. In the above, we have assumed that the second E8 lattice is Higgsed completely,
without any Wilson lines. If this is not the case, as for example for the Z2,Z3 and Z4 models in
[105], the second lattice also has to be split according to the above prescription.

Note that these splits describe a “generalized hatting procedure” analogous to the 1-Wilson
line case analyzed in [109] for generalized Jacobi forms. In the 1 Wilson line STUV model, the
relevant forms are standard Jacobi forms

f(τ, V ) =
∑

n≥0
l∈Z

c(4n− l2)qnrl (3.3.61)

with q = e2πiτ , r = e2πV , admitting a decomposition

f(τ, V ) = fev(τ)θev(τ, V ) + fodd(τ)θodd(τ, V ), (3.3.62)

where θev = θ3(2τ, 2V ), θodd = θ2(2τ, 2V ). The effect of turning on a Wilson line can be
described by replacing f(τ, V ) by its hatted counterpart [109]

f̂(τ, V ) = fev(τ) + fodd(τ) (3.3.63)

In the generic, k Wilson line case considered here, we decompose the lattice sum as in (3.3.47).
When k ≤ 4, the “generalized hatting” due to the Wilson lines is

f̂ [ab ](τ, V1, · · ·Vk) = fk
0 [ab ](τ) + · · · fk

k [ab ](τ), (3.3.64)

where fk
J and fk

k+1−J are equivalent. When k ≥ 4, we have to keep the other part of the split
lattice. This yields the “complementary hatting”

f̆(τ, V1, · · ·Vn) = θ8−k
0 [ab ](τ) + · · · θ8−k

k [ab ](τ), (3.3.65)

with θ8−k
J = θ8−k

k+1−J .

3.3.3 Computation of F (g)

In the following, we will denote the number of Wilson lines by k and write the split lattice sum
as ∑

J

Φk
J [ab ](q)Θ̄

g
k,J(q), (3.3.66)

where Φk
J [ab ](q) is the function appearing in (3.2.35) and stands for fk

J [ab ] or θk
J [ab ](q), whichever

is applicable. We expand the modular function in the integrand of (3.2.35) as

P2g(q)Fk
J (q) := P2g(q)

∑

a,b

c(a, b)e2πiab(2−γ2)

η18ϑ[1+a
1+b ]ϑ[1−a

1−b ]
Φk

J [ab ](q) =
∑

n∈QJ

ckg,J(n)qn, (3.3.67)

where QJ denotes the subset of Q containing the powers of q appearing in the conjugacy class
J . Since different conjugacy classes correspond to different rational powers of q, we can sum
over J without loss of information and write

∑

n∈Q

ckg(n)qn =
∑

J

∑

n∈QJ

ckg,J(n)qn. (3.3.68)
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We can now evaluate the integral (3.2.27) using Borcherds’ technique of lattice reduction [41]
reviewed in appendix A.1. We choose the reduction vector to lie in the torus part of the lattice,
the result is therefore only valid in the chamber of the T,U torus moduli space where the
projected reduction vector z+ is small. The result looks very similar to what was obtained in

[29] for the STU-model and can be simplified to read1 F (g) = F
(g)
deg + F

(g)
nondeg where

F
(g)
deg =

(y2, y2)8π
3

T2
δg,1+

1

2(2T2)2g−3

∑

λ∈Γk,0

g∑

l=0

Li2l−2g+4(q
Re(λ̄·ȳ))ckg−l(

λ2

2
)

1

π2l+3
(− T 2

2

2y2
2

)l (3.3.69)

F
(g)
nondeg =

g−1∑

l=0

min
(l,2g−3−l)∑

C=0

∑

r∈Γk+1,1

(
2g − l − 3

C

)
1

(l − C)!2C

(−Re(r · y))l−C

(y2, y2)l
ckg−l(

r2

2
)Li3−2g+l+C(e−r·y)

+
ck1(0)

2g(g − 1)(y2, y2)g−1
+

g−2∑

l=0

ckg−l(0)

l!(2(y2, y2))l
ζ(3 + 2(l − g))

(2g − 3 − l)!

(2g − 3 − 2l)!

(3.3.70)
This can also be compared to the expressions obtained in [92] for genus one. The lattice sum
in (3.3.70) is over the so-called reduced lattice Γk+1,1. This is a sublattice of the original lattice
Γk+2,2, parametrized by (n0,m0, bi).
A highly nontrivial check of the computation is provided by the Euler characteristics of the
corresponding Calabi-Yau manifolds, respectively the difference nh − nv on the heterotic side.
Heterotic-type II duality implies [29] that it should be given by the normalized q0 coefficient of
Fk

J , namely

2(nh − nv) = χ(X) = 2
ck0(0)

ck0(−1)
. (3.3.71)

One indeed finds precisely the chains of Euler characteristics given in [105], see table 3.4. The
corresponding K3-fibrations are listed in table B.1.

Z2 92 132 168 200 304 412 612 960
Z3 120 144 164 232 312 420 624
Z4 224 288 372 528
Z6 220 264 312 372 480

Table 3.4: Euler characteristics χ for the models in [105]

3.4 Heterotic-type II duality and instanton counting

3.4.1 Moduli map

In this section, we will determine geometric quantities on the dual Calabi-Yau manifolds on the
type II side using the heterotic expressions obtained above.
The heterotic dilaton S gets mapped to the Kähler modulus t2, therefore heterotic weak cou-
pling regime corresponds to t2 → ∞. This restricts the instanton numbers accessible to our
computation to those classes where the corresponding coefficient l2 vanishes. The mapping of
the remaining heterotic moduli from the Torus and the Wilson lines (T,U, V1, · · ·Vk) to the
Kähler moduli (t1, · · · tk+3) on the type II side can be determined for models with small number

1see the appendix of [42] for details of the simplification
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of Kähler moduli comparing the classical pieces of the prepotential [109]. In order to compare
with the instanton numbers in [110], we extend the map of [109] to two Wilson lines as follows:

T → t1 + 2t4 + 3t5

U → t1 + t3 + 2t4 + 3t5

V1 → t4

V2 → t5

(3.4.72)

implying that the numbers (n0,m0, bi) in (3.2.18) map to the numbers li on the type II side as

l1 = n0 +m0 l4 = 2(n0 +m0) + b1
l2 = 0 l5 = 3(n0 +m0) + b2
l3 = n0.

(3.4.73)

For higher numbers of Wilson lines, we cannot conclusively determine the map due to lack of
information on the type II side, but it is clear that such a map exists and that it is linear. In
order to extract genus g instanton numbers from the expansion (3.3.67), we have to specify the
norm (p, p). Redefining the indices in (3.3.37)-(3.3.45) as

(n1 −
a

2
)2 → b21

4

(n1 −
a

2
)2 + 3(n2 +

a

2
− b

3
)2 → b21

4
+ 3(

b1
2

− b2
3

)2 = b21 − b1b2 +
b22
3

(n1 −
a

2
)2 + 3(n2 +

a

2
− b

3
)2 + 6(n2 +

b

3
− c

4
)2 → b21

4
+ 3(

b1
2

− b2
3

)2 + 6(
b2
3

− b3
4

)2

= b21 + b22 − b1b2 − b2b3 +
3b23
8
,

...

(3.4.74)

we find the norms given in table 3.5. We thus have for the instanton numbers

cgk(n0,m0, b1, · · · bk) = cgk(n0m0 − b21 − · · · − b2k−1 + b1b2 · · · bk−1bk − kb2k
2(k + 1)

), k ≤ 4

cgk(n0,m0, b9−k, · · · b8) = cgk(n0m0 −
(10 − k)b29−k

2(9 − k)
− b210−k − · · · − b28 + b9−kb10−k + · · · b5b8,

k ≥ 4,
(3.4.75)

confirming the conjecture made in [109]. Note that the last bp determines the conjugacy class.

3.4.2 Extracting geometric information

The topological couplings F (g) are the free energies of the A-model topological string. They
have a geometric interpretation as a sum over instanton sectors,

F (g)(t) =
∑

β

Ng,βQ
β , (3.4.76)

where Qi = e−ti , β = {ni} in a basis of H2(X) denotes a homology class, Qβ := e−tini , and Ng,β

are the Gromov-Witten invariants, in general rational numbers. With the work of Gopakumar
and Vafa [23, 24], a hidden integrality structure of the Ng,β has been uncovered. The generating
functional of the F (g),

F (t, gs) =

∞∑

g=0

F (g)(t)g2g−2
s , (3.4.77)
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k p2
het

0 n0m0

1 n0m0 − b21
4

2 n0m0 − b21 + b1b2 − b22
3

3 n0m0 − b21 − b22 + b1b2 + b2b3 − 3b23
8

4 n0m0 − b21 − b22 − b23 + b1b2 + b2b3 + b3b4 − 2b24
5

5 n0m0 − 5b24
8 − b25 − b26 − b27 − b28 + b4b5 + b5b6 + b5b8 + b6b7 + b7b8

6 n0m0 − 2b23
3 − b24 − b25 − b26 − b27 − b28 + b3b4 + b4b5 + b5b6 + b5b8 + b6b7 + b7b8

7 n0m0 − 3b22
4 − b23 − b24 − b25 − b26 − b27 − b28 + b2b3 + b3b4 + b4b5 + b5b6 + b5b8 + b6b7 + b7b8

Table 3.5: The norm (phet, phet)k for k = (0, 1, · · · 7) Wilson lines

can be written as a generalized index counting BPS states in the corresponding type IIA theory:

F (t, gs) =
∑

g=0

∑

β

∞∑

d=1

ng
β

1

d

(
2 sin

dgs

2

)2g−2

Qdβ , (3.4.78)

where the numbers ng
β are now integers called Gopakumar-Vafa invariants. Since the homology

classes β are labeled by lattice vectors p, we write the Gopakumar-Vafa invariants for models

with k Wilson lines as nk
g(p) ≡ nk

g(
p2

2 ). We also write, in terms of the instanton degrees on the

type II side, nk
g(l1, · · · , lk+3).

From the structure of the F (g), one can deduce that the coefficients ckg(
p2

2 ) appearing in (3.3.69),(3.3.70)
are related to the Gopakumar-Vafa invariants through

∑

g≥0

nk
g(p)

(
2 sin

λ

2

)2g−2

=
∑

g≥0

ckg(
p2

2
)λ2g−2. (3.4.79)

The Gopakumar-Vafa invariants can be obtained efficiently using the formula [79]

∑

p∈Pic(K3)

∞∑

g=0

nk
g(p)z

gq
p2

2 =
∑

J

Fk
J (q)ξ2(z, q), (3.4.80)

where Fk
J (q) is defined in (3.3.67), and

ξ(z, q) =
∞∏

n=1

(1 − qn)2

(1 − qn)2 + zqn
. (3.4.81)

3.4.3 Gopakumar-Vafa invariants

Table 3.6- table 3.8 show conjectural GV invariants nk
g for the K3 fibrations dual to the STU -,

the STUV -, and the STUV1V2-model. Similar tables for the other models considered in this
work can be found in appendix B.1, along with a list of the dual pairs of [105].

For comparison with [110], we give the genus 0 instanton numbers in notation
[l1 · · · lk+3] = nk

0(l1, · · · lk+3) for models with one and two Wilson lines in table 3.9, 3.10. We find
indeed perfect agreement with [110].

Another nontrivial check is provided by the requirement of consistent truncation: in [110],
the authors deduce that the following relations have to hold between instanton numbers with
3,4,and 5 moduli

n0
0(l1, l2, l3) =

∑

x

n1
0(l1, l2, l3, x) n1

0(l1, l2, l3, l4) =
∑

x

n2
0(l1, l2, l3, l4, x). (3.4.82)
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g p2

2 = −1 0 1 2 3 4 5

0 -2 480 282888 17058560 477516780 8606976768 115311621680

1 0 4 -948 -568640 -35818260 -1059654720 -20219488840

2 0 0 -6 1408 856254 55723296 1718262980

3 0 0 0 8 -1860 -1145712 -76777780

4 0 0 0 0 -10 2304 1436990

Table 3.6: nk
g(

p2

2 ) for Z6, 0 Wilson lines (STU), dual to X1,1,2,8,12

g p2

2 = −1 −1
4 0 3

4 1 7
4 2 11

4 3

0 -2 56 372 53952 174240 3737736 9234496 110601280 237737328

1 0 0 4 -112 -732 -108240 -350696 -7799632 -19517380

2 0 0 0 0 -6 168 1084 162752 528582

3 0 0 0 0 0 0 8 -224 -1428

Table 3.7: Z6,1 Wilson line (STUV), dual to X1,1,2,6,10

g p2

2 = −1 −1
3 0 2

3 1 5
3 2 8

3 3

0 -2 30 312 26664 120852 1747986 5685200 49588776 135063180

1 0 0 4 -60 -612 -53508 -243560 -3656196 -12097980

2 0 0 0 0 -6 90 904 80472 367458

3 0 0 0 0 0 0 8 -120 -1188

4 0 0 0 0 0 0 0 0 -10

Table 3.8: Z6, 2 Wilson lines (STUV1V2), dual to X1,1,2,6,8

[0001] 56 [1001] 56 [1003] 56 [3014] 174240
[0002] -2 [1002] 372 [1000] -2 [1011] 56
[1004] -2 [2012] 372 [0003] 0 [2013] 53952

Table 3.9: Numbers of rational curves of degree [l1, 0, l2, l3, l4] on X1,1,2,6,10 (dual to Z6,1 WL)

[00001] 30 [10011] 30 [00002] 0 [10023] 312
[00010] -2 [10022] 30 [00012] 30 [10010] -2
[00023] -2 [20101] 26664 [00011] 30 [20169] 312
[00101] 0 [30141] 0 [00013] -2 [30144] 30
[30145] 26664 [30146] 120852 [30147] 26664 [30148] 30

Table 3.10: Numbers of rational curves of degree [l1, 0, l3, l4, l5] on X1,1,2,6,8 (dual to Z6, 2 WL)

Our numbers indeed fulfill this constraint, as for example

n2
0(0, 0, 0, 1, 0) + · · · + n2

0(0, 0, 0, 1, 3) = −2 + 30 + 30 − 2 = 56 = n1
0(0, 0, 0, 1), (3.4.83)

n1
0(0, 0, 0, 0) + · · · + n1

0(0, 0, 0, 4) = −2 + 56 + 372 + 56 − 2 = 480 = n0
0(0, 0, 0), (3.4.84)

and
n2

0(3, 0, 1, 4, 0) + · · · + n2
0(3, 0, 1, 4, 8) = 174240 = n1

0(3, 0, 1, 4). (3.4.85)
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This relation should also hold at higher genus and for higher numbers of Kähler moduli [97],
namely we expect

nk
g(l1, l2, · · · lk+3) =

∑

x

nk+1
g (l1, l2, · · · lk+3, x). (3.4.86)

Indeed, we have for example for truncation from 2 to 1 Wilson line (tables 3.7, 3.8) 4−60−60+4 =
−112, −6 + 90 + 90 − 6 = 168, and 90 + 904 + 90 = 1084. All instanton numbers produced,
including those in tables B.2-B.15, fulfill the truncation identities

n0
g(1) = 2

(
n1

g(0) + n1
g(

3

4
)

)
+ n1

g(1) n0
g(2) = 2

(
n1

g(−
1

4
) + n1

g(1) + n1
g(

7

4
)

)
+ n1

g(2)

n1
g(1) = 2

(
n2

g(−
1

3
) + n2

g(
2

3
)

)
+ n2

g(1) n1
g(2) = 2

(
n2

g(−1) + n2
g(

2

3
) + n2

g(
5

3
)

)
+ n2

g(2)

n2
g(1) = 2

(
n3

g(−
1

2
) + n3

g(
5

8
)

)
+ n3

g(1) n2
g(2) = 2

(
n3

g(
1

2
) + n3

g(
13

8
)

)
+ n3

g(2)

n2
g(

2

3
) = n3

g(−
3

8
) + n3

g(0) + n3
g(

1

2
) + n3

g(
5

8
) n3

g(0) = n4
g(−

2

5
) + n4

g(0).

(3.4.87)
Note that these identities hold –as far as we can verify– at general genus and independently of
the specific chain, as expected. Again, this provides a non-trivial check of our results.

Conclusion

In this chapter, we have shown how to compute higher derivative couplings for general symmetric
ZN , N = 2 orbifold compactifications of the heterotic string with any number of Wilson lines.
In particular, this provides conjectural instanton numbers for each of the models in the chains
of heterotic-type II duals of [105]. Unfortunately, our results can so far only be checked for
up to two Wilson lines, since for higher numbers of vector multiplets the type II computation
becomes very involved. They do however fulfill nontrivial constraints coming from the geometric
transitions on the type II side [110].
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Part III

INSTANTONS IN MATRIX MODELS AND

TOPOLOGICAL STRINGS
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It is a well-known fact that the 1/N expansion of gauge theories has nonperturbative correc-
tions which behave as e−N [116, 48]. Physically, these corrections are due to instantons in the
collective field theory describing the large N limit. In cases where the gauge theory has a string
dual, they typically correspond to D–brane instanton effects. Based on general arguments, one
should expect that these e−N effects are in turn related to the large–order behavior of the 1/N
expansion, as in standard field theory [117].

Perhaps the simplest class of large N gauge theories with dual string theories are matrix
models. These dual pairs fall in two classes. One is noncritical string theory, i.e. whose conformal
algebra has central charge c < 1, corresponding to matrix models in a certain double-scaling
limit near the critical point (see [118] for a review). The second class is the B-model topological
string, corresponding to matrix models off criticality. This duality, mentioned in chapter 1 and
to be reviewed in more detail in section 4.2, was first proposed for some geometries in [32] and
has recently been extended to the mirrors of toric manifolds [29, 36]. In these examples, the
matrix model is evaluated at generic values of the couplings, corresponding to generic complex
structure moduli. If one further tunes the couplings to the critical point taking a double-scaling
limit, one finds that the free energies near this point of moduli space satisfy the Painlevé I
equation describing two-dimensional gravity, see, e.g., [119].

The instanton configurations in the 1/N expansion have been identified long ago in terms of
eigenvalue tunneling [48, 120, 121], and they have been studied in great detail in the double–
scaling limit. In [120, 121], David derived the action of the instanton configuration corresponding
to the tunneling of a single matrix eigenvalue across the well of the unstable effective potential.
This is a one–instanton effect; we refer to tunneling of several eigenvalues as multi–instanton
effects. David explicitly showed that, near the critical point, this one–instanton action correctly
predicts the large–genus behaviour of the free energy of the matrix model in the double–scaling
limit, where the latter is obtained independently of the instanton computation via a solution
to the so–called string equation. In the dual non-critical string theory, the instanton effects
considered by David were later identified as D–instanton effects [122, 123] due to the so–called
ZZ branes [124], and it was shown in [122, 51] that a direct D–brane calculation reproduces
the instanton action obtained from the double–scaled matrix model. This line of research thus
made explicit the connection between D–instantons in string theory and eigenvalue tunneling in
the matrix model dual. Quantum fluctuations around this one–instanton configuration, again
restricted to the double–scaling limit, were further analyzed in [125], and more recently in
[126, 127], but the connection to the large–order behavior of perturbation theory was never
explicitly addressed in any of those papers. In fact, it is surprising that to this date there has
been no detailed study of instanton configurations in the matrix model off–criticality, nor of
their connection to the large–order behaviour of the 1/N expansion. In [126, 127] a general
setting for this study was presented but the results of these papers are incorrect once we move
away from the critical point.

The main goal of this part is to fill this gap. In chapter 4, we review the relevant material
about matrix models, the duality with topological string theory and the connection between
instantons and large-order behaviour. We then present a computation of the instanton amplitude
in generic one-cut hermitian matrix models up to two loops, published in [71], in chapter 5. We
test our results with the large-order asymptotics of both matrix models and their proposed dual
topological string theories, obtaining excellent agreement [71]. This is not only a check of the
duality beyond perturbation theory, but also shows that the matrix model description contains
nonperturbative information about the topological string that is difficult to define let alone
compute directly. Chapter 6 extends the computation to multi-cut respectively multi-instanton
models [72].
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Chapter 4

Topological Strings at Large Order

from Matrix Model Instantons

This chapter contains an introduction to the main concepts relevant for the rest of this part.
The organization is as follows. Section 4.1 contains a review of hermitian matrix models and
their instanton configurations. In section 4.2, we review the relation between matrix models
and topological strings, focusing on the Dijkgraaf-Vafa conjecture and its recent generalization.
Section 4.3 reviews how instantons determine large-order behaviour in field theory and quantum
mechanics.

4.1 Matrix Models

4.1.1 The 1/N expansion and the Eynard-Orantin recursion

Matrix models are quantum gauge theories in zero dimensions, and thus in a sense the simplest
examples of quantum field theories. Nevertheless, they are surprisingly complex and share many
features with ordinary QFTs, such as nonperturbative effects and a nontrivial phase structure.
Much of the magic of matrix models lies in their large-N expansion, where N is the rank of the
gauge group respectively the size of the matrices. This expansion, also known as topological, is
known to have enumerative content [128, 129], and is therefore the one we are interested in. We
will summarize in the following some of the main properties of matrix models at large N . For
a more detailed introduction to the subject, see e.g. [118, 9].

A matrix model is defined by the partition function

Z =
1

vol(U(N))

∫
dMe

− 1
gs

TrV (M)
, (4.1.1)

where the integration is over some ensemble of random matrices, in the cases considered here,
hermitian matrices. V (M) is a polynomial potential of the form

M2 +
∑

p

gpM
p, (4.1.2)

therefore the action has the obvious gauge symmetry

M → UMU †. (4.1.3)

Integrating over eigenvalues instead of matrix elements, we obtain

ZN =
1

N !(2π)N

∫ N∏

i=1

dλi ∆
2(λ) e

− 1
gs

PN
i=1 V (λi), (4.1.4)
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Figure 4.1: cubic vertex in double-line notation

where ∆(λ) =
∏

i<j(λi − λj) is the familiar Vandermonde determinant. Note that this can also
be written as

ZN =
1

N !

∫ N∏

i=1

dzi
2π

e
− 1

gs
Veff (zi) (4.1.5)

with the effective potential

Veff(zi) = V (zi) − 2gs

∑

i6=j

log |zi − zj |. (4.1.6)

In the above expression, Veff contains an effective Coulomb repulsion, resulting in eigenvalues
spreading out over an interval C. This correlation of eigenvalues is due to the constraint from the
matrix ensemble; even though the matrices are random, their eigenvalues are not. This property
of matrix models has led to various applications in statistics, ranging from the distribution of
mexican buses to financial data [130, 131].

In the ordinary perturbative expansion, each Feynman diagram will generically give rise
to several terms with different powers of N . In order to resum the perturbative expansion
collecting powers of N , we introduce the double-line notation due to ’t Hooft [5]. Since the
fundamental field Mij is in the adjoint representation which is the tensor product of fundamental
and antifundamental representation, we can consider the indices i, j separately as indices of the
(anti-)fundamental representations N, N̄ , and replace the ordinary, single-line propagator by a
double-line propagator keeping track of these indices. In this notation, the cubic vertex

TrM3 =
∑

ijk

MijMjkMki (4.1.7)

is represented as shown in Fig. 4.1. The propagator of the theory reads

〈MijMkl〉 = gsδilδjk (4.1.8)

In the fatgraph notation, there are now two ways of joining two cubic vertices together by three
propagators, shown in Fig. 4.2. Both correspond to the same Feynman diagram in the ordinary,
perturbative expansion, but give rise to different factors of N , depending on how the lines are
glued together. The first one contributes

∑

ijkmno

〈MijMnm〉〈MjkMon〉〈MkiMmo〉 = g3
sN

3. (4.1.9)

The second one contributes
∑

ijkmno

〈MijMnm〉〈MjkMmo〉〈MkiMon〉 = g3
sN. (4.1.10)

Obviously, the power of N corresponding to a given fatgraph is equal to the number of closed
loops that it contains.
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Figure 4.2: two cubic vertices

What if we try to draw the fatgraphs in Fig. 4.2 on a Riemann surface without letting any
lines cross, such that the lines can be seen as edges of holes in the surface? It is easy to see that
this is possible on a sphere for the graph on the left, while it takes at least a torus for the one
on the right. We thus define the genus of a fatgraph as the minimal genus of such a surface,
given by the standard topological relation

2g − 2 = P − V − h, (4.1.11)

where P is the number of double-line propagators, V the number of vertices and h the number
of closed loops, or holes in the surface. Each fatgraph then comes with a factor

gP−V
s Nh

∏

p

g
Vp
p = g2g−2

s th
∏

p

g
Vp
p = t2g−2+hN2−2g

∏

p

g
Vp
p , (4.1.12)

where we have introduced the ’t Hooft parameter

t = Ngs. (4.1.13)

This is a crucial step. In the seminal paper [128], it has been shown that the infinite number
of fatgraphs of genus 0, called ”planar”, can be summed up to obtain the genus 0 partition
function in closed form. In [132] the analysis has been extended to higher-genus quantities.
Note also that at fixed ’t Hooft parameter, the genus expansion in gs is completely equivalent
to an expansion in 1

N . In the large–N limit, the distribution of eigenvalues becomes continuous
and one can write

Veff(λ) = V (λ) − 2t

∫
ρ(λ′) log |λ− λ′|dλ′, (4.1.14)

Here, ρ(z) is the density of eigenvalues. Due to their mutual Coulomb repulsion, they are
equally distributed over an interval C, the ”cut”. This density is completely determined by the
requirement that the effective potential be constant along the cut,

Veff(λ) = tξ(t), λ ∈ C. (4.1.15)

A fundamental quantity at large N is the so-called resolvent, defined by the correlator

ω(λ) =
1

N
〈Tr

1

λ−M
〉 =

∑

g

g2g
s ωg(λ). (4.1.16)

The discontinuity of its genus zero piece across the cut encodes the density of eigenvalues,

ρ(λ) = − 1

2πi
(ω0(λ+ iǫ) − ω0(λ− iǫ)) . (4.1.17)

A convenient way to encode the genus-0 solution is to define the so-called spectral curve

y(λ) = W ′(λ) − 2tω0(λ), (4.1.18)
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where we have introduced

W ′(λ) = −t (ω0(λ+ iǫ) + ω0(λ− iǫ)) . (4.1.19)

The spectral curve y(z) is a hyperelliptic curve that will play a fundamental role in the next
section when we discuss the connection with topological string theory. It has a branch cut along
C and can also be written as

y(p) = M(p)
√

(p− a)(p− b), (4.1.20)

where M(p), known as the moment function, is given by

M(p) =

∮

∞

dz

2πi

V ′(z)
z − p

1√
(z − a)(z − b)

, (4.1.21)

with the contour of integration being around the point at ∞. The endpoints of the cut follow
from the equations ∮

C

dz

2πi

V ′(z)√
(z − a)(z − b)

= 0,

∮

C

dz

2πi

zV ′(z)√
(z − a)(z − b)

= 2t.

(4.1.22)

There is also a useful formula for the moments of the function M(p), which are defined as

M
(k)
a,b =

1

(k − 1)!

dk−1

dpk−1
M(p)

∣∣∣∣
p=a,b

, k ≥ 1, (4.1.23)

given in terms of contour integrals [45]:

M (k)
a =

∮

C

dz

2πi

V ′(z)

(z − a)k+ 1
2 (z − b)

1
2

, M
(k)
b =

∮

C

dz

2πi

V ′(z)

(z − a)
1
2 (z − b)k+ 1

2

. (4.1.24)

The object we will mainly be interested in in the following is the normalized free energy,
defined by

F = log
ZN

ZG
N

, (4.1.25)

where ZG
N is the partition function of the Gaussian matrix model, defined by the potential

V (M) = 1
2M

2. The free energy has a perturbative genus expansion

F (t) = logZ =
∑

g≥0

Fg(t)g
2g−2
s . (4.1.26)

Another important set of quantities in a matrix model are the connected correlation functions

Wh(p1, . . . , ph) =

〈
Tr

1

p1 −M
· · ·Tr

1

ph −M

〉

(c)

, (4.1.27)

where the subscript (c) means connected. These correlation functions are generating functions
for multi–trace correlators of the form

Wh(p1, . . . , ph) =
∑

ni≥1

1

pn1+1
1 · · · pnh+1

h

〈TrMn1 · · ·TrMnh〉(c) , (4.1.28)

and they further have a gs expansion of the form

Wh(p1, . . . , ph) =
+∞∑

g=0

g2g+h−2
s Wg,h(p1, . . . , ph; t). (4.1.29)
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Eynard-Orantin recursion

It turns out that the quantities Fg(t) and Wg,h(p1, . . . , ph; t) can be computed in terms of the
spectral curve alone. More precisely, knowledge of the endpoints of the cut, a and b, and of
the moments (4.1.23), is all one needs in order to compute them. This was first made clear in
[45] and later culminated in the geometric formalism of [133, 134, 33]. The central quantities in
this formalism are meromorphic differentials Wg,k(p1, · · · , pk) on the curve. If the spectral curve
happens to correspond to a matrix model, these are just the correlation functions of the matrix
model as defined in (4.1.29). However, the crucial insight of Eynard and Orantin was that these
objects could be constructed on any affine curve, even if it is not connected to a matrix model at
all. Given such an affine curve, which we will denote by C = {(x, y) ∈ C2|Σ(x, y) = 0} ⊂ C2, the
matrix model recursion relations of [33] then proceed as follows, as is very clearly summarized
in [35]. The necessary ingredients are

• the meromorphic differential Φ(p) = y(p)dx(p) on C

• the ramification points qi, defined by ∂yΣ(qi) = 0

• the Bergmann kernel B(p, q), uniquely defined as the meromorphic differential on C with
a double pole at p = q with no residue, and no other pole, normalized to have vanishing
integral on the AI–cycles of a chosen canonical symplectic basis AI , B

I on C. Note that
modular transformations correspond to changes in this basis (recall section 2.1) and thus
transform the Bergmann kernel. This is crucial since it turns out that the Bergmann
kernel alone is enough to promote the Fg from holomorphic to modular invariant, non-
holomorphic topological string amplitudes.

• the prime form differential dEq(p) =
∫ q̄
q B(p, ξ)dξ.

The recursion relation of [33] then reads

Wg,h+1(p, p1, · · · ph) =
∑

qi

Resq=qi

dEq(p)

Φ(q) − Φ(q̄)
·

·
(
Wg−1,h+2(q, q̄, p1, · · · , ph) +

g∑

ℓ=0

∑

J⊂H

Wg−ℓ,|J |+1(q, pJ)Wℓ,h−|J |+1(q̄, pH\J)

)
,

(4.1.30)
where H = 1, · · · , h and pJ ≡ pi1 , · · · pij for any subset J = {i1, · · · ij} ⊂ H. The recursion
starts with

W0,1(p1) = 0, W0,2(p1, p2) = B(p1, p2). (4.1.31)

Note that these are not the resolvent and annulus amplitudes as the notation suggests, and
as it is true for any genera and numbers of holes (g, h) 6= (0, 1), (0, 2), but artificial, auxiliary
quantities just defined to generate the higher correlators [33]. Indeed, the resolvent and the
genus zero free energy are the only quantities not completely determined by the spectral curve
alone. The genus zero free energy is given by

F0(t) = − t

2

∫

C
dλ ρ(λ)V (λ) − 1

2
t2ξ(t). (4.1.32)

The free energies for g > 1 are then generated by

Fg =
1

2 − 2g

∑

qi

Resq=qiφ(q)Wg,1(q), (4.1.33)

for any φ(p) fulfilling dφ(p) = Φ(p).
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In terms of the moment function (4.1.21), one finds in this way for the genus–one free energy
[45]

F1 = − 1

24
log
[
M(a)M(b)(a− b)4

]
. (4.1.34)

The two and three–point correlators at genus zero are given by [135]

W0,2(p, q) =
1

2(p− q)2

(
pq − 1

2(p+ q)(a+ b) + ab√
(p− a)(p− b)(q − a)(q − b)

− 1

)
,

W0,3(p, q, r) =
1

8
√

(p− a)(p− b)(q − a)(q − b)(r − a)(r − b)
·

·
(
a− b

M(a)

1

(p− a)(q − a)(r − a)
+
b− a

M(b)

1

(p− b)(q − b)(r − b)

)
,

(4.1.35)

while the one–point function at genus one is given by [45]

W1,1(p) =
1

16M(a)(p− a)
√

(p− a)(p− b)

(
2p+ b− 3a

(p− a)(b− a)
− M ′(a)
M(a)

)
+

+
1

16M(b)(p− b)
√

(p− a)(p− b)

(
2p+ a− 3b

(p− b)(a− b)
− M ′(b)
M(b)

)
.

4.1.2 Critical behaviour

If one takes the limit N → ∞ in a standard matrix model, only planar surfaces are retained,
since all others are suppressed by powers of 1

N . However, at the same time there is generally a
specific, critical value of the coupling λc where the free energy diverges as

Fg ∼ (λ− λc)
(2−γ)(1−g), (4.1.36)

where γ is some critical exponent. If we see the matrix model as describing random triangulations
of surfaces, this is the limit where the total area of the surface diverges. We can then rescale
the area of the individual triangles to zero to produce a continuum surface of finite area, and
therefore this limit is called the continuum limit. Note that higher-genus contributions have
poles of higher order at this point in moduli space, so they are enhanced with respect to the
lower genus amplitudes. If one now takes a combined, so called double-scaling limit, where N
is taken to ∞ while simultaneously tuning the coupling to its critical value, the large-genus
suppression and enhancement can compensate each other and one gets coherent contributions
from continuum surfaces at any genus. Explicitly, this double-scaling limit is

z = − 1

λc
(λ− λc)

(
t

N

) 1
γ/2−1

, N → ∞, g → gc, z fixed, (4.1.37)

with t = gsN the usual ’t Hooft parameter. The critical exponent γ here can be determined by
standard methods. In particular, it doesn’t depend on the details of the matrix model under
consideration, but only on the universality class of the critical point. The critical behaviour
we will be interested in corresponds to a critical exponent γ = −1

2 or equivalently, a critical
point of order 2. It seems natural from the discussion above that in the double-scaling limit, the
theory is described by two-dimensional pure gravity. Indeed, it turns out that as a function of
the new, double-scaled variable z the second derivative of the free energy u = −F ′′(z) satisfies
the Painlevé I equation

z = u2 − u′′

6
, (4.1.38)

controlling nonperturbative 2d gravity.
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4.1.3 Instantons

One of the nice, nontrivial features of matrix models is that they admit instanton transitions.
We consider here cases where the potential has at least two extrema. For concreteness, let

us first focus on the one-cut case. The effective potential (4.1.14) is constant along the cut and
has a saddle point at some value λ0, as shown in Fig. 4.3.

Figure 4.3: Instanton configuration: an eigenvalue from the endpoint of the cut moves to the
saddle of the effective potential barrier

The instanton transition consists in one eigenvalue moving from the endpoint of the cut to
this saddle. The corresponding instanton action is given by the integral over the spectral curve
[120, 48]:

Ainst =

∫ x0

a
y(z)dz. (4.1.39)

Geometrically, the spectral curve is a curve of genus zero pinched at x0 (Fig. 4.4). This was
observed in [136] in the context of spectral curves for double–scaled matrix models, and their
relation with minimal strings.

Ainst can be seen as a contour integral from the endpoint of the cut to the singularity of the
spectral curve, as shown in Fig. 4.4.

a b

Figure 4.4: The instanton configuration as a contour integral on the spectral curve

The standard 1/N expansion is computed by considering the saddle–point configuration
in which all of the N eigenvalues have support in the cut C. As was first pointed out in
[120, 121, 48], a k–instanton configuration corresponds to a distinct saddle–point, in which
N − k of the eigenvalues remain in the interval C, while k eigenvalues are placed at the local
maximum x0.

The matrix integral for the one–instanton sector is given by [126]

Z
(1)
N =

N

N !(2π)N

∫

x∈I
dx e

− 1
gs

V (x)
∫

λ∈I0

N−1∏

i=1

dλi ∆2(x, λ1, . . . , λN−1) e
− 1

gs

PN−1
i=1 V (λi), (4.1.40)

where the first integral in x is over the nontrivial saddle–point contour, which we have denoted
by x ∈ I, while the rest of the N−1 eigenvalues are integrated around the standard saddle–point
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contour I0. The overall factor of N in front of the integral is a symmetry factor, counting the N
possible distinct ways of choosing one eigenvalue out of a set of N . One can easily write similar
integrals for the k–instanton contribution (see [126]).

In the one–instanton computation that we will perform in the next chapter, we will need
some derivatives with respect to t of various quantities that characterize the large N solution.
A result we need is (see [118])

∂(tω0(p))

∂t
=

1√
(p− a)(p− b)

(4.1.41)

together with the following derivatives, which follow from the defining relations (4.1.22) and
(4.1.24),

∂a

∂t
=

4

a− b

1

M(a)
,

∂b

∂t
=

4

b− a

1

M(b)
. (4.1.42)

Using these formulae one finds,

∂ty(z) = − 2√
(z − a)(z − b)

,

∂tM(z) =
2

(z − a)(z − b)

(
(z − b)M(z)

(a− b)M(a)
+

(z − a)M(z)

(b− a)M(b)
− 1

)
,

(4.1.43)

as well as

∂tM(a) =
6

a− b

M ′(a)
M(a)

+
2

(a− b)2

(
1 − M(a)

M(b)

)
,

∂tM(b) =
6

b− a

M ′(b)
M(b)

+
2

(b− a)2

(
1 − M(b)

M(a)

)
.

(4.1.44)

Finally, we will also need derivatives of the free energies. One finds1 [127]

∂tF0(t) = −tξ(t) = −Veff(b),

∂2
t F0(t) = −∂tVeff(b) = 2 log (b− a) − 2 log 4,

(4.1.45)

while higher derivatives with respect to t follow from (4.1.42).

4.2 The B-model as a Matrix Model

As early as 1973, ’t Hooft suggested that the large N limit of a U(N) gauge theory could be
interpreted as a closed string theory [5]. This deep idea had been around for over 20 years
before it could celebrate a huge success with the AdS/CFT-conjecture due to Maldacena [4],
and the discovery by Gopakumar and Vafa that Chern-Simons theory at large N is dual to the
topological A-model [27]. Since then, large N limits of gauge theories and their (string) duals
have been studied more extensively than ever before.

4.2.1 Geometric transitions and Dijkgraaf-Vafa conjecture

In 2002, Dijkgraaf and Vafa put forward a duality between the B-model topological string on
certain local Calabi-Yau geometries and the large-N expansion of a matrix model. Their work
builds on the somewhat analogous duality of the A-model with Chern-Simons theory2, and on
the previously developed geometric transitions between open and closed backgrounds [137].

1Notice that ∂tVeff(b) can be obtained by integrating ∂ty(z) from −∞ to b, an integral which diverges logarith-
mically. Sensible results are obtained [127] by always considering its regulated version, where one simply drops
the divergent log z term.

2Note that this is not a mirror of the B-model setup
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The concept of geometric transitions was originally developed in the context of type IIB
superstrings [137, 138, 139, 140]. Let us briefly review this construction. Consider the so-called
deformed conifold, with defining equation

x2 + y2 + u2 + v2 = µ. (4.2.46)

Replacing the coordinates x, y, u, v by xj +ivj , j = 1, · · · , 4, one can see that this is nothing else
than the tangent bundle of the three-sphere T ∗S3: the above defining equation takes the form

∑

i

x2
i − v2

i = µ, xivi = 0. (4.2.47)

Hence, xi parametrize the three-sphere as can be seen from the first equation at vi = 0, and vi its
tangent space, according to the second. The so-called conifold singularity arises as µ→ 0. There
is another way to smooth out this singularity, apart from keeping µ 6= 0. This option, referred to
as resolution of a singularity, consists of replacing the singular point by a P1. For the conifold,
this is done as follows. Introduce new coordinates X,Y, U, V defined as x+iy, x−iy, u+iv, u−iv.
The conifold singularity is then at XY = UV or equivalently

det

(
Y U
V X

)
= 0. (4.2.48)

Now introduce two new parameters λ1, λ2 ∈ C and consider the subspace of C4 × P1 defined by
Y λ1 = −Uλ2 and V λ1 = −Xλ2. This can also be written as

(
Y U
V X

)(
λ1

λ2

)
= 0, (4.2.49)

therefore it implies the previous equation. Note that the eigenvector equation determines λ1, λ2

only up to scaling, that’s why they are coordinates on P1. At (Y, U,X, V ) 6= (0, 0, 0, 0), the
point (λ1, λ2) ∈ P1 is fixed, while at the origin of C4, it can move freely all over P1. Thus, the
singularity has been resolved by blowing up the origin to a sphere. It turns out that the new
space can be described in a different way. It can be parametrized by two overlapping charts, for
the two regions where λi 6= 0. Then for the first region, we have Y = −λ2

λ1
U, V = −λ2

λ1
X and

coordinates are (λ = λ2
λ1
, U,X). Similarly, the second chart leads to coordinates ( 1

λ = λ1
λ2
, Y, V ),

and on the overlap, we get U = − 1
λY, X = − 1

λV . These are precisely the transition functions
for two O(−1)-bundles over P1, and the above resolution of the conifold is nothing else than the
total space of the bundle3

O(−1) ⊕O(−1) → P1. (4.2.50)

Geometrically, we have started with the deformed conifold, passed through the singularity at
the origin by letting the radius of the S3 shrink to zero, then blown up the singularity by letting
grow an S2. This procedure is the principle behind what is called geometric transitions. This
construction actually applies to a larger class of geometries, of the form

uv +W ′(x)2 + y2 = 0. (4.2.51)

The special case W ′(x) = x is the conifold geometry. Indeed, we get conifold-like singularities at
any point W ′′(x) = 0. Now resolve the singularity as we have done above by letting grow two-
spheres at all the singular points, and consider stacks of space-filling D5-branes wrapped over
these S2’s. In the limit where the number of branes N gets large, gaugino condensation takes
place, and the S2’s are ”blown down” and get replaced by ”blown up” S3’s without any branes,
resulting in a closed string theory on a deformed geometry similar to (4.2.46) [137, 139]. This

3see also appendix C.3
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transition can be naturally lifted to a transition between open and closed topological strings, as
one should expect, and one finds that at large N , the open topological B-model on geometries
with resolved conifold singularities is equivalent to the closed B-model on deformed conifolds.

At the same time, deforming the geometry corresponds to turning on a superpotential in the
string field theory description of the open string, and the resulting action can be shown to be a
matrix model with potential W (Φ).

Summarizing, we thus have a two-fold result: there is a string field description of the open
topological B-model on the resolved conifold in terms of a matrix model, and in the limit of
large N , the latter is dual to closed B-model topological strings on the deformed conifold.

4.2.2 Remodeling the B-model

The main drawback of the beautiful duality found by Dijkgraaf and Vafa is that the geometries
they consider in the original and subsequent papers [32, 141, 142] are highly restrictive, and
in particular exclude the myriad of Calabi-Yau manifolds with toric mirrors. However, a new
development on the matrix model side has enabled a new point of view of the connection between
matrix models and topological strings, leading to a reformulation and generalization of the
Dijkgraaf-Vafa setup. The starting point was the work of Eynard and Orantin [33], where the
authors develop a recursive formalism to solve matrix models based on an algebraic-geometric
point of view. Starting from the spectral curve introduced above, this formalism allows one
to compute all higher matrix amplitudes recursively. The crucial point is that one completely
circumvents the potential of the matrix model: all that is needed to define the amplitudes is some
geometric input in the form of the spectral curve. This implies that its scope goes far beyond
ordinary matrix models. In [34], Mariño made use of this fact to define a general, matrix-model
inspired formalism to compute open string amplitudes. The key point is that the spectral curve,
a Riemann surface, has an analogous counterpart in the topological string, namely the curve
determining the mirror geometry. The formalism has been extended and generalized in [35],
leading to a complete reformulation of the open B-model in terms of matrix models.

For the reader not familiar with mirror symmetry for toric Calabi-Yau manifolds, the main
ideas are reviewed in appendix C.3. Here, we just state that the mirror of a toric Calabi-Yau
can be constructed and generically takes the form of a bundle over C∗ × C∗

xz = Σt(u, v), (4.2.52)

where Σt(u, v) = 0 determines a family of Riemann surfaces, parametrized by the Kähler pa-
rameter t. It is of crucial importance that Σt(u, v) is embedded in C∗×C∗ rather than in C×C,
since the variables u, v are exponentials. The matrix model recursion relations of [33] that we
have summarized at the end of section 4.1.1 thus have to be adapted to apply to the C∗ × C∗–
case, as it has been done in [35]. The main modification concerns the meromorphic differential
dΦ(p) = y(p)dx(p), where y(p) is the spectral curve. In the original setup, this is related to
the standard symplectic form dx ∧ dy on C2. On (C∗)2, it is replaced by the symplectic form
dx
x ∧ dy

y , which can in turn be integrated to the new meromorphic differential, appropriate for

(C∗)2, θ(P ) = log(y(p))dx(p)
x(p) . The recursion then proceeds essentially as in [33], and produces a

set of amplitudes and correlation functions Fg, Wg,h.
The interpretation of these quantities is most conveniently stated in A-model terms. Namely,

the free energies Fg correspond, after plugging in the closed mirror map, to the A-model closed
string amplitudes, as we have advertised above. However, this is not yet the end. In [143], it
has been observed that D-branes show the so-called framing phenomenon, that is, they depend
on the parametrisation of the mirror curve. This information has to be somehow contained in
the open string amplitudes. In fact, it turns out that once one has chosen a parametrisation of
the mirror curve, the correlation functions Wg,h(p1, · · · , pk) can be integrated and mapped to
the A-model by open and closed mirror maps to yield A-model open string amplitudes on the
mirror threefold [35].
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In chapter 5, we perform a nonperturbative check of this identification for the closed ampli-
tudes, by showing that a nonperturbative matrix computation correctly predicts the large-order
asymptotics of the topological string. This is not only a highly nontrivial check of the matrix
model approach to the B-model, but also indicates that the matrix model can be useful in finding
a nonperturbative completion of the topological string.

As we have mentioned briefly in section 1.5, the matrix formulation of the B-model puts
several issues in a new light. In a sense, the matrix model recursion relations can be seen as a
generalization of the holomorphic anomaly equations of [19]. Indeed, the latter can be derived
from the former [144], but the matrix model version differs from its traditional counterpart in
two important aspects. One is that the non-holomorphicity of the matrix amplitudes only comes
in almost trivially through the Bergmann Kernel [144, 35], in order to promote the originally
holomorphic amplitudes to modular invariant topological string amplitudes. Thus, the equations
are completely determined and there is no holomorphic ambiguity. This setting fits well in
the picture advertised in [73], where the mutually exclusive properties of holomorphicity and
modularity appeared as essentially a matter of choice of polarization. The other difference
between the original holomorphic anomaly equations and the matrix model equations is that
the matrix model equations naturally involve both open and closed amplitudes, purely closed
amplitudes are never more than a special case. This implies that open amplitudes should
be seen as more fundamental than closed amplitudes, in that they contain considerably more
information.

4.3 Instantons and Large Order in Field Theory

In this section we review the connection between instantons and the large–order behavior of
perturbation theory. Good references on this subject include [117, 145, 50, 146].

Standard, stable potentials in field theory and quantum mechanics show an obvious vacuum
instability at negative coupling, where particles can tunnel away from the original vacuum to
states of lower energy. According to an old argument due to Dyson, we should therefore not a
priori expect the perturbation series to have a nonzero radius of convergence, as this will be in
many cases impossible4.

This is a sign of a fundamental connection between vacuum instability due to instanton effects
and large-order behaviour of the perturbative expansion. The method of Borel resummation
provides a way to make sense of the (divergent) perturbation series via analytic continuation:
To a perturbative series

S =
∑

n

anz
n, (4.3.53)

we associate a Borel sum
Bβ

S =
∑

n

an

(βn!)
wn, (4.3.54)

where β is related to the large-order behaviour of an as an ∝ (nβ)!. Using

(βn)! =

∫ ∞

0
dte−ttβn, (4.3.55)

it is now easy to see that

f(z) =

∫ ∞

0
dte−tBβ

S(tβz) (4.3.56)

defines an analytic continuation of S(z). This may however be ambiguous, in many cases, there
will be a nonperturbative ambiguity. We distinguish the following three special cases:

• S has finite radius of convergence r: BS will be analytic everywhere and f(z) = S|z<r.

4This argument should be applied carefully, as there exist loopholes
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• S has zero r.o.c., but BS has a finite radius of convergence, an analytic continuation to an
ǫ-tube around the positive real axis, and f(z) is absolutely convergent: S is called Borel

summable.

• BS does have singularities on the positive real axis: In this case, S is not Borel summable,
and there is a nonperturbative ambiguity related to the choice of integration contour
around the singularities.

The Borel transform provides a link between instantons and large order behaviour. Namely, if
a QFT admits an instanton configuration φ with finite action S(φ), BS will be singular at S(φ).
In turn, the singularities of B control the large-order behaviour of the perturbation series. f(z)
can acquire an imaginary part when integrating around a pole of BS , this reflects an instability

of the theory which is not seen in its perturbative expansion.
As an example, let us start by considering a quantum mechanical or field theoretical model

which depends on a coupling constant, g, in such a way that for g > 0 the theory has an unstable
vacuum and that this vacuum gets stabilized for g < 0. A simple example of such a situation is
the familiar quartic anharmonic oscillator with potential

V =
1

2
x2 − gx4. (4.3.57)

Due to the instability, there will be instanton solutions (sometimes called bounces in this context)

g > 0

g < 0

Figure 4.5: The potential for the quartic anharmonic oscillator. When g > 0 the theory has
an unstable vacuum at the origin, which decays via instanton tunneling. This vacuum gets
stabilized when g < 0.

which mediate the decay of the false vacuum. This is illustrated in Fig. 4.5. As one analytically
continues the coupling constant to the full complex plane, one finds that the partition function
will have a branch cut along the real, positive g axis, with a discontinuity which is purely
imaginary. In particular, one may write for the full partition function [147]

Z(g ± iǫ) = Z(0)(g) ± 1

2
discZ(g), (4.3.58)

defining both Z(0) and the discontinuity across the branch cut discZ(g) = Z(g+ iǫ)−Z(g− iǫ).
A careful analysis of the physics of this problem, in the particular example of the anharmonic
oscillator [147, 148, 145], shows that Z(0) is given by the path integral around the perturbative
vacuum (or zero–instanton configuration), while the leading contribution to discZ(g) turns out
to be given by the path integral calculated around the one–instanton configuration, i.e. the
instanton configuration with the lowest action in absolute value. We denote this path integral
by Z(1)(g).
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Let us be slightly more precise on this point. If we want the partition function to remain
meaningful, as one performs the analytical continuation in the coupling constant from the stable
to the unstable case, it is required that the contour of integration is also rotated, in a compen-
sating way [147] (e.g., in the quartic oscillator as one continues −g to −g exp(±iπ) one must
rotate x to x exp(∓iπ/4)). The rotated integration contours are illustrated in Fig. 4.6. What
the analysis in [147, 148, 145] shows is that Z(0) is computed as the integral over the sum of
both contours, C+ + C−. In particular, if one is to compute the path integral in a saddle–point
approximation, the contribution to Z(0) arises from the saddle–point at the origin. On the other
hand, the discontinuity discZ(g) is computed on the difference of the two rotated contours,
C+ −C−. This immediately implies that the saddle–point at the origin cancels, between the two
contours. One thus needs to consider the sub–leading saddle–points, which correspond to the
one–instanton configuration. These sub–leading saddle–point contributions are also illustrated
in Fig. 4.6. In particular, notice that

C+ C−

S1 S2

Figure 4.6: The complex plane for the functional integration. Here, C+ and C− are the rotated
contours one needs to consider for g > 0. Their sum may be evaluated by the contribution of the
saddle–point at the origin. Their difference is evaluated by the contribution of the sub–leading
saddle–points, here denoted as S1 and S2.

Z(1)(g) ∼ e−1/g (4.3.59)

and it is exponentially suppressed for small g as compared to Z(0). This is exactly as one should
expect from the discussion above. If we now consider the free energy, defined by F = logZ, we
similarly have

F (g ± iǫ) = F (0)(g) ± 1

2
discF (g), (4.3.60)

where F (0)(g) = logZ(0)(g) and

discF (g) = log
Z(g + iǫ)

Z(g − iǫ)
=
Z(1)(g)

Z(0)(g)
+ · · · , (4.3.61)

at leading order in e−1/gs . We will denote by

F (1)(g) =
Z(1)(g)

Z(0)(g)
(4.3.62)
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the one–instanton contribution to the discontinuity. The zero–instanton sector has a perturba-
tive expansion around g = 0 given by

F (0)(g) =
+∞∑

k=0

akg
k, (4.3.63)

while the contribution from the one–instanton sector to the discontinuity discF (g) turns out to
have an expansion of the form

F (1)(g) = ig−be−A/g
+∞∑

n=0

cng
n. (4.3.64)

In this equation, A is the action of the single instanton, b is a characteristic exponent, and cn is
the (n+ 1)–loop contribution around the instanton configuration.

If one now assumes analyticity of F (g) in the g–plane, except for the branch cut along the
positive real axis which we alluded to before, as well as some suitable conditions on the g → ∞
behavior, one can deduce the following relation between the coefficients of the perturbative
expansion around the zero–instanton sector and the discontinuity across the cut

ak =
1

2πi

∫ ∞

0
dz

F (1)(z)

zk+1
. (4.3.65)

Plugging the expansion for F (1) (4.3.64) in the above formula (4.3.65) we find an asymptotic
expansion for large k,

ak ∼ 1

2π

+∞∑

n=0

cnA
−k−b+nΓ(k + b− n). (4.3.66)

This can be equivalently written as

ak ∼ A−b−k

2π
Γ(k + b)

[
c0 +

c1A

k + b− 1
+

c2A
2

(k + b− 2)(k + b− 1)
+ · · ·

]
. (4.3.67)

What one learns from this analysis is that the computation of the one–instanton partition func-
tion, at one–loop, determines the leading order of the asymptotic expansion for the perturbative
coefficients of the zero–instanton partition function, while higher–loop corrections yield the 1/k
corrections. Notice that instanton configurations with an action A′ > A (in particular, multi–
instanton configurations with action nA, n ≥ 2) give corrections to the asymptotics of ak which
are exponentially suppressed in k, and will not be considered in here. The relation between
a nonperturbative instanton computation and the large–order behavior of perturbation theory
was first implemented by Bender and Wu in the case of the quartic anharmonic oscillator in
quantum mechanics [149]. They used the WKB method in order to perform a two–loop compu-
tation around the bounce, and thus obtain precise numerical values for c0 and c1. Furthermore,
they performed accurate numerical tests of their prediction (4.3.65) for the large–order behavior
of the ak coefficients. Their results were later reproduced in path integral language [147].

In this quantum mechanical example the analyticity conditions for the free energy can be
justified rigorously (see [150] for a review). In more general situations (such as in quantum field
theory) one cannot justify these same assumptions; however the relation (4.3.65) can be tested
in a number of examples with surprising numerical precision (see, e.g., [145, 50] for a review of
these tests).
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Chapter 5

Instantons in One-Cut Models and

Large Order

In this chapter, we study in detail the perturbative expansion around a one–instanton configu-
ration in a generic, one–cut matrix model, and apply it to predict the large-order behaviour of
both matrix models and the topological string, along the lines of what has been explained in
the previous chapter. The material presented is based on the publication [71] with M. Mariño
and R. Schiappa.

We will give explicit formulae for both the one– and two–loop contributions to the instanton
amplitude in terms of geometric data of the spectral curve associated to the matrix model. This
is a crucial aspect of our analysis, since it allows one to apply the results not only to full-fledged
matrix models but also to topological strings via the formalism of [29, 35]. Using this description,
we deduce that the nonperturbative completion of the topological string theories considered in
this chapter includes an infinite number of nontrivial topological sectors, corresponding to the
different instanton sectors of the matrix model. Geometrically, we interpret these nonpertur-
bative effects as due to domain walls interpolating between D–brane configurations, as it had
already been anticipated in [32].

We test our results against the large-order behaviour of the perturbative amplitudes in the
quartic matrix model, topological strings on local curves, Hurwitz theory, and 2d gravity. We
confirm and improve the predictions of [29] about the large–order behavior of these models,
and we will also consider a special limit of topological strings on local curves which describes
simple Hurwitz numbers (studied in [151]). All of these models have a critical point, describing
pure 2d gravity, which is controlled by the Painlevé I equation. The double–scaling limit of our
instanton calculations provides results for the large–order behavior of 2d gravity which refine
those obtained [119, 152] and agree with the analysis of the asymptotics in [153]. In fact,
with the help of the Painlevé I equation one can derive the full perturbative expansion around
the one–instanton sector, and in this way we provide a further check of our explicit two–loop
calculation.

Mathematically, our results are highly nontrivial predictions for the asymptotics of the 1/N
expansion of a one–cut matrix model, and they provide some clues concerning the analytic
structure of the total free energy of topological string theory, as a function of the string cou-
pling constant. In the case of topological strings, our tests of large–order behavior provide a
further check of the conjecture in [29], as well as new conjectures about asymptotic properties
of enumerative invariants that have not been explored so far.

This chapter is organized as follows. In section 5.1, we explain why instantons are expected
to control the large-order asymptotics of the string perturbation series just as in the field the-
ory case discussed in the last chapter. In section 5.2, we apply the technology developed in
chapter 4 explicitly to the analysis of one–instanton effects in matrix models. We present com-
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plete formulae for both the one–loop and the two–loop corrections around the one–instanton
configuration, in generic one–cut matrix models, following the general strategy put forward in
[126, 127]. Section 5.3 reviews the numerical techniques used to extrapolate low-genus results
to high genus. The following sections contain applications of these results. In section 5.4, we
consider the quartic matrix model both off–criticality and in the double–scaling limit where it
becomes pure 2d gravity. We further present numerical tests of the predictions given by the
instanton calculation, by analyzing the large–order behavior of both the quartic matrix model
and the Painlevé I equation. In section 5.5 we consider topological string theory on local curves,
verifying and extending the predictions of [29], and we discuss the spacetime interpretation of
the instanton effects in terms of domain walls. Then, in section 5.6, we analyze in detail the
large–order behavior of the generating functionals for simple Hurwitz numbers as a further ex-
ample of our formalism. In all cases, we find impressive agreement between theoretical and
numerical results.

5.1 The 1/N Expansion and String Theory

The existence of a connection between instantons and large–order behavior has also been ad-
dressed in the context of the 1/N expansion; for example in [154] where one considers vector
models in low dimension. In the case of matrix models and their double–scaling limit, such a
connection was used in [120, 121, 119] in order to infer on the large–order behavior of pure 2d
gravity, by computing the instanton action directly in the matrix model (see [118] for a review).
However, precise tests at one–loop or higher (the cn coefficients in the expressions above) have
not been performed to date, and we fill such a gap in the present work. In order to proceed
to loop–level, one first needs a generalization of both the dispersion relation (4.3.65) and the
expression for the perturbation theory asymptotics (4.3.66), to the present setting.

We will proceed in a heuristic way. Let us first consider the perturbative series in the
zero–instanton sector of a closed string theory or its matrix model dual,

F (0)(gs) =
+∞∑

g=0

Fg(t) g
2g−2
s . (5.1.1)

In this equation the sum is over all genera, gs is the string coupling constant and t is the
’t Hooft coupling t = gsN in the context of matrix models, or a geometric modulus in string
theory. Observe that while in the previous case of the anharmonic oscillator one wanted to study
the asymptotics of a standard numerical series, one now wants to address the asymptotics of a
series of functions, naturally enlarging the complexity of the problem [154]. In order to have a
perturbative series with standard structure, we consider instead

F(gs) = g2
s F (gs). (5.1.2)

In this case, the one–instanton path integral yields a series of the form

F (1)(z) = iz−b/2e
− A√

z

+∞∑

n=0

cnz
n/2, (5.1.3)

where z = g2
s . This is an important feature distinguishing matrix models and string theory

from field theory: the action of an instanton goes like 1/
√
z, and not as 1/z. Similarly, the

perturbation series around the instanton sector is a series in powers of
√
z, and not a series in

powers of z. As such, we may now write

F (0)(z) =

+∞∑

g=0

Fg(t) z
g. (5.1.4)
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Our basic assumption is that a dispersion relation of the form (4.3.65) holds in here, as it did
in field theory. In this case, one finds

Fg =
1

2π

∫ ∞

0

dz

zg+1
z−b/2e

− A√
z

+∞∑

n=0

cnz
n/2 ∼ 1

π

+∞∑

n=0

cnA
−2g−b+nΓ(2g + b− n), (5.1.5)

which may be explicitly written as

Fg ∼ A−2g−b

π
Γ(2g + b)µ1

[
1 +

µ2A

2g + b− 1
+

µ3A
2

(2g + b− 2)(2g + b− 1)
+ · · ·

]
, (5.1.6)

where we have introduced for later convenience

µ1 = c0, µi+1 =
ci
c0
, i ≥ 1. (5.1.7)

The series inside the brackets in (5.1.6) must be understood as an asymptotic expansion in
powers of 1/g, therefore up to two loops we can write it as

Fg ∼ A−2g−b

π
Γ(2g + b)µ1

[
1 +

µ2A

2g
+ · · ·

]
. (5.1.8)

Justifying that the dispersion relation (4.3.65) holds in the present context is more delicate. The
underlying reason is that g2

s or 1/N2 appear naturally as coupling constants only in a collective
field treatment of the problem (or, equivalently, in a formulation in terms of a closed string
field theory). In spite of this, one could still present a heuristic derivation of (5.1.5) by making
use of the Lipatov approach to the large–order behavior, and applying it within the context of
collective/string field theory. In this approach one does not use the analyticity properties of
the free energy, but instead performs a saddle–point evaluation in both field space and coupling
space [155]. Another heuristic derivation of (5.1.5) can be done by using Borel transforms [118].
Instead of trying to provide a more rigorous foundation for (5.1.5), we proceed to test it in
various examples, also in the spirit of the many tests performed in field theory.

In writing (5.1.6) we have implicitly assumed that there is a single instanton solution that
contributes to the asymptotic behavior. In general there might be various instanton configura-
tions in the system, with the same action in absolute value, and in this case F (1) will denote the
sum of all these contributions. For example, in the quartic matrix model, which we will analyze
in section 5.4, due to the symmetry of the potential there are two instantons which contribute
equally. It is also common to have complex instanton solutions which give complex conjugate
contributions to F (1), and in this case the asymptotic behavior of Fg is again obtained by adding
their contributions [156]. If we write

A = |A|eiθA , µ1 = |µ1|eiθµ1 , (5.1.9)

the leading asymptotics will read in this case

Fg ∼ |A|−2g−b

π
Γ(2g + b) |µ1| cos

(
(2g + b)θA + θµ1

)
. (5.1.10)

We also find examples of this situation in the models studied in the next chapter.

5.2 One–Instanton Computation for Matrix Models

We now compute the “path” integral around the one–instanton configuration of the matrix
model. In this process, we will adopt the framework put forward in [126], but we use saddle–
point technology rather than the approach based on orthogonal polynomials. Such a strategy
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has been considered before, as the approach of [126] was first rephrased in terms of the saddle–
point perspective in [127] (for a third point of view, based on collective field theory, see [157]).
At this stage, it is important to point out that our calculation will improve on the calculations
in [126, 127] in three different ways. First of all, we fully exploit the saddle–point technology
in order to present a much more succinct derivation of the final results. Secondly, we compute
explicit formulae for the quantum expansion around the one–instanton solution up to two loops.
Thirdly, and more importantly, we correct both the approach and the one–loop result in [126, 127]
which, as they stand, are incorrect once one moves away from criticality. Taking all normalization
factors into careful account, one finds for (4.1.40) [126]

Z
(1)
N =

N

N !(2π)N
(2π)N−1(N − 1)!Z

(0)
N−1

∫

x∈I
dx
〈
det(x1 −M ′)2

〉(0)
N−1

e
− 1

gs
V (x)

≡ 1

2π
Z

(0)
N−1

∫

x∈I
dx f(x).

(5.2.11)

The notation in this equation is as follows. Z
(0)
N is the partition function evaluated around the

standard saddle–point, and within the standard 1/N expansion. M ′ is an (N − 1) × (N − 1)
hermitian matrix, and all of its eigenvalues are still integrated around the standard saddle–

point. 〈O〉(0)N is the normalized vacuum expectation value of the gauge–invariant operator O,
again computed around the standard saddle–point,

〈O〉(0)N =

∫
λ∈I0

∏N
i=1 dλi ∆

2(λ)O(λ) e
− 1

gs

PN
i=1 V (λi)

∫
λ∈I0

∏N
i=1 dλi ∆2(λ) e

− 1
gs

PN
i=1 V (λi)

. (5.2.12)

Finally, we have also defined

f(x) =
〈
det(x1 −M ′)2

〉(0)
N−1

e−
1
gs

V (x). (5.2.13)

As we have seen in (4.3.61), the one–instanton contribution to the free energy may be expressed
in terms of the partition function, at leading order in e−1/g, by

F (1) =
Z

(1)
N

Z
(0)
N

=
1

2π

Z
(0)
N−1

Z
(0)
N

∫

x∈I
dx f(x). (5.2.14)

In the rest of this section we present a careful computation of this quantity.
In order to calculate the instanton contribution (5.2.14), we first compute f(x), as defined

above in (5.2.13). Making use of the familiar relation det(x1 −M) = exp (tr ln(x1 −M)) we
obtain,

〈
det(x1 −M)2

〉
= exp

[
+∞∑

s=1

2s

s!
〈(tr ln(x1 −M))s〉(c)

]
, (5.2.15)

which is written in terms of connected correlation functions (recall that the cumulant expansion
precisely relates the generating functional of standard correlation functions to the generating
functional of connected correlation functions as in this equality). The correlation functions
appearing in (5.2.15) are nothing but integrated versions of the Wh correlators in (4.1.27),
evaluated at coincident points. Let us define

Ag,h(x; t) =

∫ x1

dp1 · · ·
∫ xh

dphWg,h(p1, · · · , ph)

∣∣∣∣
x1=···=xh=x

,

An(x; t) =

[n
2 ]∑

k=0

2n−2k+1

(n− 2k + 1)!
Ak,n−2k+1(x; t), n ≥ 1.

(5.2.16)
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In this notation, the general perturbative formula for the determinant follows as

〈
det(x1 −M)2

〉
= exp

(
+∞∑

n=0

gn−1
s An(x; t)

)
, (5.2.17)

where An(x; t) is the n–loop contribution. We have, for example,

A0(x; t) = 2A0,1(x; t),

A1(x; t) = 2A0,2(x; t),

A2(x; t) =
4

3
A0,3(x; t) + 2A1,1(x; t),

A3(x; t) =
2

3
A0,4(x; t) + 2A1,2(x; t).

(5.2.18)

One observes that in order to compute the determinant at n–loops, one would require analytic
expressions for the Wg,h with (g, h) = (0, n+1), (1, n−1), (2, n−3), . . . , (n

2 , 1). Let us also point
out that the integration constants involved in the integrations in (5.2.16) may be simply fixed
by the large x expansion of the correlators. Indeed, we have the expansion

〈(tr ln(x1 −M))s〉(c) =
∑

ni≥1

(−1)s

∏s
i=1 ni

〈TrMn1 · · ·TrMns〉(c) x−
Ps

i=1 ni . (5.2.19)

Next, we define the holomorphic effective potential, which combines the matrix model potential
together with A0(x; t), as

Vh,eff(x; t) = V (x) − 2t

∫ x

dpω0(p) = V (x) − 2t

∫
dp ρ(p) log(x− p), (5.2.20)

which satisfies
V ′

h,eff(x; t) = y(x) (5.2.21)

as well as
ReVh,eff(x; t) = Veff(x), (5.2.22)

where Veff(x) was earlier defined in (4.1.14). Altogether, one finally has for the integrand

f(x) = exp

(
− 1

gs
Vh,eff(x; t′) +

+∞∑

n=1

gn−1
s An(x; t′)

)
, (5.2.23)

where
t′ = gs(N − 1) = t− gs. (5.2.24)

This shift in the ’t Hooft parameter is due to the fact that the correlation function involved in
(5.2.13) is computed in a matrix model with N−1 eigenvalues (recall we removed one eigenvalue
from the single–cut). Since we are computing the one–instanton contribution in the theory with
N eigenvalues, we thus have to expand (5.2.23) around t. This gives further corrections in gs,
which we make explicit as

f(x) = exp

(
−

+∞∑

k=0

gk−1
s

(−1)k

k!
∂k

t Vh,eff(x; t) +
+∞∑

n=1

+∞∑

k=0

gn+k−1
s

(−1)k

k!
∂k

t An(x; t)

)
. (5.2.25)

We write this expression as

f(x) = exp

(
− 1

gs
Vh,eff(x) + Φ(x)

)
, (5.2.26)
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where we define

Φ(x) ≡
+∞∑

n=1

gn−1
s Φn(x) ≡

+∞∑

n=1

gn−1
s

[
(−1)n−1

n!
∂n

t Vh,eff(x) +

n−1∑

k=0

(−1)k

k!
∂k

t An−k(x)

]
. (5.2.27)

One finds, for example,

Φ1(x) = A1(x) + ∂tVh,eff(x),

Φ2(x) = A2(x) − ∂tA1(x) −
1

2!
∂2

t Vh,eff(x),

Φ3(x) = A3(x) − ∂tA2(x) +
1

2!
∂2

t A1(x) +
1

3!
∂3

t Vh,eff(x).

(5.2.28)

In expression (5.2.26) all quantities now depend on the standard ’t Hooft parameter t for the
model with N eigenvalues, and we have thus dropped the explicit dependence on t. The deriva-
tives with respect to t can be performed by using the formulae we presented at the end of the
last subsection.

One may now proceed with the integration of f(x),

∫

x∈I
dx exp

(
− 1

gs
Vh,eff(x) + Φ(x)

)
. (5.2.29)

If we wish to evaluate this integral as a perturbative expansion around small string coupling,
gs, we can do it using a saddle–point evaluation [126, 127]. The integration contour is over
the nontrivial saddle characterizing the one–instanton sector, which is defined by the usual
saddle–point requirement

V ′
h,eff(x0) = 0 ⇒ y(x0) = 0, (5.2.30)

with x0 located outside of the cut. If we use the explicit form of the spectral curve (4.1.20) we
find the equivalent condition

M(x0) = 0. (5.2.31)

The saddle–point x0 is typically a local maximum of the effective potential, as depicted in
Fig. 4.3. Of course, it can happen that there is more than one solution to (5.2.31). In this case,
there will be various instantons and we will have to add up their contributions (the leading con-
tribution arising from the instanton with the highest action, in absolute value). The calculation
of (5.2.29) is now completely standard, and it reduces to Gaussian integrations. The result is

∫

x∈I
dx f(x) =

√
2πgs

V ′′
h,eff(x0)

exp

(
− 1

gs
Vh,eff(x0) + Φ1(x0)

)(
1 +

+∞∑

n=2

gn
s fn

)
, (5.2.32)

where the fn can be systematically computed in terms of the functions Φn(x) and their deriva-
tives, evaluated at the saddle–point x0, by making use of the Gaussian integral and the Gaussian
moments. This is a long and tedious process, where one should be very careful with factors of
gs. In particular, one splits the integrand into the standard Gaussian integrand plus the rest,
where the rest should be power–series expanded in order to produce Gaussian moments. This
process is source to some extra factors of gs that must be properly considered. In any case,
there are no conceptual difficulties in taking this calculation to arbitrary order. In order to find
an explicit expression for the two–loop contribution to the one–instanton path integral, we will
need

f2 = Φ2(x0) +
1

2V ′′
eff(x0)

{
∂2

xΦ1(x0) + (∂xΦ1(x0))
2
}
−

− 1

2
(
V ′′

h,eff(x0)
)2

{
1

4
∂4

xVh,eff(x0) + ∂3
xVh,eff(x0)∂xΦ1(x0)

}
+

5
(
∂3

xVh,eff(x0)
)2

24
(
V ′′

h,eff(x0)
)3 .

(5.2.33)
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Observe that the required evaluation of derivatives at x0, in the expression above, is a rather
straightforward exercise as we are dealing in this case with rational functions.

The last ingredient needed to compute the one–instanton contribution is the quotient of
partition functions in the expression for discF , (5.2.14). This quotient can be written in terms
of the standard, perturbative free energies, since

Z
(0)
N−1

Z
(0)
N

= exp
(
F (t′) − F (t)

)
. (5.2.34)

In the rest of this section both F (t) and Fg(t) denote the unnormalized free energies, i.e.,
F = log ZN . If one explicitly expands in gs, by both writing the above expression in terms of
the standard ’t Hooft parameter t alone, and further expanding the free energy in its perturbative
genus expansion (4.1.26), it follows

Z
(0)
N−1

Z
(0)
N

= exp

(
+∞∑

n=0

gn−1
s Gn

)
, Gn ≡

[n
2 ]∑

k=0

(−1)n−2k+1

(n− 2k + 1)!
∂n−2k+1

t Fk(t). (5.2.35)

One has, for example,
G0 = −∂tF0(t),

G1 =
1

2
∂2

t F0(t),

G2 = − 1

3!
∂3

t F0(t) − ∂tF1(t).

(5.2.36)

Putting together (5.2.32) and (5.2.35) above, we finally find that F (1) has the structure

F (1) = i g
1
2
s µ1 exp

(
−A

gs

){
1 +

+∞∑

n=1

µn+1g
n
s

}
. (5.2.37)

Collecting results above we obtain the following contributions to F (1), up to two loops:

A = Vh,eff(x0) − G0(t),

µ1 = −i

√
1

2πV ′′
h,eff(x0)

exp
(
Φ1(x0) + G1(t)

)
,

µ2 = f2 + G2(t).

(5.2.38)

Let us now give explicit expressions for these quantities in terms of data associated to the
spectral curve (4.1.20). First of all, by using (5.2.36), (4.1.45) and (5.2.21) we find

A = Vh,eff(x0) − Vh,eff(b) =

∫ x0

b
dz y(z), (5.2.39)

which is the instanton action (here, we use the fact that Vh,eff(b) = Veff(b)). Notice that, as
pointed out in [136], this expression also has a geometric interpretation as the contour integral
of the one–form y(z) dz, from the endpoint of the cut C to the singular point x0 (recall Fig. 4.4).

We next move to the one–loop contribution, and begin with the computation of Φ1(x). One
can find the result for A0,2(x; t) (which enters in the expression of A1) simply by integrating the
first formula in (4.1.35) [127]

A0,2(x; t) = log

(
1 +

x− (a+ b)/2√
(x− a)(x− b)

)
− log 2. (5.2.40)
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Using (4.1.41) one further finds,

∂tVh,eff(x) = −4 log
[√

x− a+
√
x− b

]
+ 4 log 2, (5.2.41)

and both these results together is all one requires to obtain

Φ1(x) = − log
[
(x− a)(x− b)

]
. (5.2.42)

Adding to Φ1(x) the result for G1(t), which follows from (4.1.45), it is simple to put all expressions
together and obtain the contribution, µ1, of the one–loop fluctuations around the one–instanton
configuration,

µ1 = −i
b− a

4

√√√√
1

2πM ′(x0)
[
(x0 − a)(x0 − b)

] 5
2

. (5.2.43)

This formula is valid for any one–cut matrix model with an unstable potential. Notice that if
x0 is a local maximum of Veff(x), one will have that M ′(x0) < 0, and hence µ1 will be real. It
is also important to point out that our result (5.2.43) is different from the result obtained in
[126, 127]. The reason is that, in these references, no distinction is made between correlation
functions computed at t′ and those computed at t. Correspondingly, the contribution of (5.2.41)
is never taken into account. While this contribution vanishes at the critical point, it is non–zero
for generic values of the parameters, making it crucial in order to obtain a generic result. In
this chapter we present substantial evidence that (5.2.43) is the correct result, by using the
connection to the large–order behavior of perturbation theory explained in the last section.

The computation at two loops does not present any conceptual difficulty, but it is much more
involved. One needs the explicit expressions

A0,3(x; t) =

(√
x− a−

√
x− b

)3

(a− b)2

(
1

M(a)(x− a)
3
2

− 1

M(b)(x− b)
3
2

)
,

A1,1(x; t) = − 1

12(a− b)2

(
1

M(a)
+

1

M(b)

)
+

+
1

24(a− b)2

(
(2(x− a) + (b− a))

√
x− b

M(a) (x− a)
3
2

+
(2(x− b) + (a− b))

√
x− a

M(b) (x− b)
3
2

)
−

−
√
x− a−

√
x− b

8(a− b)2

(
2M(a) + (a− b)M ′(a)

M2(a)
√
x− a

− 2M(b) + (b− a)M ′(b)

M2(b)
√
x− b

)
.

(5.2.44)
After very long but straightforward computations, one finally obtains the two–loop coefficient
as

µ2 =
1

4(a− b)
√

(x0 − a)(x0 − b)

(
(x0 − b)M ′(a)

M2(a)
− (x0 − a)M ′(b)

M2(b)

)
−

−
√

(x0 − a)(x0 − b)

12(a− b)2

(
8(x0 − a) + 17(a− b)

(x0 − a)2M(a)
+

8(x0 − b) + 17(b− a)

(x0 − b)2M(b)

)
+

+
5 (M ′′(x0))

2 − 3M ′(x0)M
(3)(x0)

24 (M ′(x0))
3
√

(x0 − a)(x0 − b)
+

35 (2x0 − (a+ b))M ′′(x0)

48 (M ′(x0))
2 ((x0 − a)(x0 − b))

3
2

+

+
140 (2x0 − (a+ b))2 + 33(a− b)2

96M ′(x0) ((x0 − a)(x0 − b))
5
2

.

(5.2.45)

As one immediately realizes from the explicit expressions above, both µ1 and µ2 depend uniquely
on data specified by the spectral curve. More precisely, they depend on the endpoints of the
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cut, a and b, the position of the saddle–point, x0, and on the moments of the function M(p),
evaluated at a, b or x0. It is not hard to convince oneself that the rest of the coefficients
µn in (5.2.37) must also share this property. This has two important consequences. First of
all, it displays the universality of the results, in the sense that two matrix models which lead
to the same spectral curve will also share the same discontinuity, discF . In particular, since
taking the double–scaling limit commutes with the geometric computation of the amplitudes,
different models that lead to the same critical theory will also lead to the same one–instanton
contribution at criticality [126, 127]. Secondly, since the description of the B–model on mirrors
of toric manifolds in [29, 36] only depends on the geometry of the spectral curve, we may also
compute nonperturbative effects in these models by simple application of the formulae above
for F (1): one just has to apply them to the spectral curves described in [29, 36]. Notice that in
this chapter we restrict ourselves to the one–cut case, therefore our formalism will only apply
to the mirrors of local curves, worked out in [29]. The multi-cut case is discussed in chapter 6.

5.3 Numerical Methods and Richardson Transforms

The instanton computations we perform in this work yield predictions for the quantities A, b,
µ1 and µ2 appearing in (5.1.6) above. In order to test these predictions, one has to extract
these quantities from the asymptotics of the sequence {Fg}g≥0. However, computation of the
amplitudes Fg is, in most cases, rather involved and therefore they will typically only be available
at low genus, of order g < 20. This will also be the case for our examples, apart from 2d gravity
where the Painlevé I equation allows for a computation to arbitrarily high genus. We therefore
use a standard numerical technique known as Richardson extrapolation (see, e.g., [158]), in
order to be able to extract the asymptotic behavior more accurately from the very first terms
of the series. This method removes the first terms of the subleading tail and thus accelerates
convergence towards the leading asymptotics.

The basic idea of Richardson extrapolation is as follows. Given a sequence

S(g) = s0 +
s1
g

+
s2
g2

+ · · · , (5.3.46)

its Richardson transform is defined as

AS(g,N) =
∑

k≥0

S(g + k)(g + k)N (−1)k+N

k!(N − k)!
. (5.3.47)

This cancels the sub–leading terms in S(g) up to order g−N . Indeed, one can show that if S(g)
truncates at order g−N , the Richardson transform gives exactly the leading term s0.

The first quantity that one may extract from the sequence {Fg}g≥0, assuming it is of the form
(5.1.6), is the instanton action. In order to apply the Richardson method, we need a sequence
with large g asymptotics of the form (5.3.46). This is achieved by considering the sequence

Qg =
Fg+1

4g2Fg
=

1

A2

(
1 +

1 + 2b

2g
+ O

(
1

g2

))
. (5.3.48)

Once A has been found, one can then simply extract the parameter b from the new sequence

2g

(
A2 Fg+1

4g2Fg
− 1

)
= 1 + 2b+ O

(
1

g

)
. (5.3.49)

Finally, one obtains the coefficients µ1 and µ2 from the sequences

πA2g+bFg

Γ(2g + b)
= µ1

(
1 +

µ2A

2g
+ O

(
1

g2

))
(5.3.50)
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and
2g

A

(
πA2g+bFg

µ1Γ(2g + b)
− 1

)
= µ2 + O

(
1

g

)
, (5.3.51)

whose asymptotics are already of the form (5.3.46), with leading terms µ1 and µ2, respectively.
This is the basic picture behind most of our numerical work.

The situation is slightly more complicated when we have to deal with two complex conjugate
instantons. In this case, the ansatz for Fg is given by (5.1.10). If the absolute value of the
instanton action is known, its phase θA can be checked using the sequence

|A|2g+2Fg+1

(2g + b+ 1)(2g + b)Fg
− |A|2g−2Fg−1(2g + b− 2)(2g + b− 1)

Fg
= 2 cos(2θA)

(
1 + O

(
1

g2

))
.

(5.3.52)

5.4 Application I: Quartic Matrix Model and 2d Gravity

Before proceeding towards the realm of topological string theory, we test our results in the case
of a rather familiar matrix model, the quartic matrix model both off and at criticality.

5.4.1 The Quartic Matrix Model

The quartic matrix model is defined by the potential

V (z) =
1

2
z2 + λz4, (5.4.53)

with λ the quartic coupling constant. The properties of this model at largeN were addressed long
ago in [128, 132]. The density of eigenvalues has support on the single cut C = [a, b] ≡ [−2α, 2α],
where α is a function of λ and the ’t Hooft parameter t, as

α2 =
1

24λ

(
−1 +

√
1 + 48λt

)
. (5.4.54)

The spectral curve follows as

y(z) = M(z)
√
z2 − 4α2, (5.4.55)

with
M(z) = 1 + 8λα2 + 4λz2. (5.4.56)

This function has two zeros which give two non–trivial saddle–points, namely ±x0 with

x2
0 = − 1

4λ

(
1 + 8λα2

)
. (5.4.57)

These two saddle–points are evident in Fig. 5.1, where we have displayed the effective potential
for the quartic matrix model. If we wish to compare the large–order prediction of our formulae
with the real behavior of the perturbation theory in this model, one is required to actually
compute the free energies at high genera. The set–up for such a calculation was first described
in [132], but the calculation was only carried out in that paper up to genus g = 2. We have
extended this computation to genus g = 10 and we review in the following how to compute Fg

in the quartic matrix model at large g.
The calculation of the 1/N expansion of the free energy in the quartic matrix model was

set up in [132] using the method of orthogonal polynomials. A review of such method and
subsequent calculation would lead us too far apart from the main line of this work, so that in
the following we restrict ourselves to presenting an algorithmic prescription to compute Fg which
summarizes the results of [132]. The interested reader should consult the original reference [132]
for full details. Also, for simplicity, we set t = 1 in the following and will follow the exact same
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Figure 5.1: The effective potential Veff(x) for the quartic matrix model. There are two saddle–
points located at x0 and −x0.

conventions as in [132]. In particular, in this section our convention for the free energy, following
[132], is that F = − logZ. There are several components that make up the calculation of Fg. It
starts with the so–called pre–string equation

Rn

{
1 + 4λ (Rn +Rn−1 +Rn+1)

}
= ngs, (5.4.58)

for the coefficients Rn which determine the partition function in the orthogonal polynomial
formalism. One then considers a continuous version of these coefficients, corresponding to a
family of polynomials, r2s(x;λ), which, in light of the pre–string equation (5.4.58), satisfy a
simple algebraic, recursive relation. For s = 0

r0(x;λ) =
1

24λ

(
−1 +

√
1 + 48λx

)
, (5.4.59)

while for s > 0 the pre–string equation yields the recursive expression

r2s(x;λ) + 4λ
∑

m+n=s

r2m(x;λ)


r2n(x;λ) + 2

∑

k+p=n

r
(2p)
2k (x;λ)

(2p)!


 = 0. (5.4.60)

In this way it is rather simple to compute the polynomials r2s(x;λ) to very high s. These
polynomials are crucial in other to find Fg. Indeed, the general formula for the total free energy
is [132]

g2
sF (λ) = −

∫ 1

0
dx (1 − x) log Ξ(x;λ) + H(λ)−

−
+∞∑

p=1

g2p
s

B2p

(2p)!

d2p−1

dx2p−1

(
(1 − x) log Ξ(x;λ)

)∣∣∣∣
x=1

x=0

,

(5.4.61)

where the function Ξ(x;λ) is precisely built using the r2s(x;λ) polynomials as

Ξ(x;λ) =
+∞∑

s=0

g2s
s

r2s(x;λ)

x
. (5.4.62)

In the expression above, B2p are Bernoulli numbers and H(λ) is the function

H(λ) = −1

2
gs

[
log

∫ +∞

−∞
dµ e−

1
2
µ2−gsλµ4 − log

∫ +∞

−∞
dµ e−

1
2
µ2+gsλµ4

]
. (5.4.63)
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An expansion of (5.4.61) in powers of gs then yields explicit expressions for Fg. Moreover, this
is an algorithmic prescription of calculation, which may be simply implemented with a symbolic
computation program. This calculation was carried out analytically up to g = 2 in [132] and
we have implemented it in a computer program, obtaining in this way explicit results up to
g = 10. A partial list of our Fg can be found in appendix B.2.1. Here, let us just recall that
[132] conjectured that, for genus g ≥ 2, the general structure should be of the form

Fg(α
2) =

(
1 − α2

)2g−1

(2 − α2)5(g−1)
Pg(α

2), (5.4.64)

with Pg(α
2) a polynomial in α2 such that

Pg(α
2 = 1) =

1

2 · 62g−1

(4g − 3)!

g!(g − 1)!
. (5.4.65)

We have checked this conjecture up to genus g = 10 and further found that the polynomial
Pg(α

2) is of order 3g − 4 in α2.

5.4.2 Instanton Effects and Large–Order Behavior

Let us now present explicit formulae for the terms contributing to the one–instanton sector, in
the quartic matrix model. As we did before, in the following we will set t = 1 for simplicity. The
first thing to notice is that, since the potential is symmetric, there are two instanton solutions,
corresponding to eigenvalue tunneling from C to the two saddles ±x0 (see Fig. 5.1). Both
instantons have the same action, which is computed via direct integration of the spectral curve

A = −
√

3α2

4 (1 − α2)

√
4 − α4 − 2 log

[√
3
√
−2 + α2 +

√
−2 − α2

]
+ log 4

(
1 − α2

)
, (5.4.66)

and therefore contribute equally to the large–order behavior. The one–loop contribution µ1 can
be easily obtained from the general formula we derived before, but it has an extra factor of 2 in
order to account for the two instantons. It reads,

µ1 = − 1

3
3
4
√
π

1 − α2

(2 − α2)
5
4 (2 + α2)

1
4

. (5.4.67)

After some tedious but straightforward analysis, one likewise obtains for the two–loop contribu-
tion µ2

µ2 =
1

4
√

3

1

(2 − α2)
5
2 (2 + α2)

3
2

(
40 − 12α2 − 21α4 − 10α6

)
. (5.4.68)

Using these formulae, we see that b = −5/2 in (5.1.3), and the asymptotics of Fg(λ) is then
given by

Fg(λ) ∼ µ1

π
A−2g+5/2 Γ

(
2g − 5

2

)[
1 +

µ2A

2g
+ O

(
1

g2

)]
. (5.4.69)

The goal is now to compare this “theoretical” large–order prediction with the actual, “exper-
imental” behavior of the 1/N expansion, using the results we have obtained for the free energies
Fg up to g = 10, in the quartic matrix model. We first focus on the range of values of λ where
the instanton action, as well as the Fg, are real. This is precisely the interval between λ = 0 and
the critical point λ = − 1

48 (we will come back to this critical point in the next subsection). In
Fig. 5.2–Fig. 5.4 we have displayed the asymptotic values of the instanton action as well as the
one and two–loop results for the quartic potential. This is done at specific values of the coupling.
The graphs include results extracted from the original sequence Fg (the uppermost sequence of
data), and its Richardson transforms, alongside with the prediction from instanton calculus. In
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Fig. 5.5 we have plotted the asymptotic values of µ1 and µ2, obtained as a function of λ from the
third Richardson transform, divided by the corresponding prediction from instanton calculus.
It is rather clear that this quotient is very close to 1, with a small error of roughly 0.1% over
most of moduli space. The larger error found at λ ≈ 0 is due to numerical difficulties related to
the divergence of the instanton action in this region. Indeed, at very small λ, the Richardson
transformations converge too slowly to fall on a horizontal line at low genus—in this case, we
would need higher–genus data to obtain better agreement with the predictions. In any case, the
complete set of displayed numerical results strongly supports our analytical predictions.
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Figure 5.2: The sequence
√

1/Qg with Qg as defined in (5.3.48) and the corresponding Richard-
son transforms for the quartic matrix model, at fixed values λ = −0.005 (left) and λ = −0.01
(right). The prediction for the leading asymptotics is given by the instanton action A(λ), shown
as a straight line. The error for g = 10 is 0.01% at λ = −0.005, respectively 0.0047% at
λ = −0.01.
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Figure 5.3: The sequence πFgA
2g− 5

2 /Γ(2g − 5
2) and its Richardson transforms for the quartic

matrix model, at fixed values λ = −0.005 (left) and λ = −0.01 (right). The prediction for the
asymptotic value is the one–loop result µ1 (straight line). The error is 0.003% at λ = −0.005,
respectively 0.002% at λ = −0.01.

Let us now consider the range of moduli space where λ > 0. In this region the amplitudes
Fg are still real, as are the endpoints of the cut ±2α. However, the saddle–points x0 given in
(5.4.57) now become purely imaginary and conjugate to each other. This implies that there are
now four instanton solutions, corresponding to eigenvalues tunneling from both endpoints of the
cut to both of the saddle–points, as depicted in Fig. 5.6. The corresponding instanton actions
are complex conjugate by a constant shift of ±iπ. We therefore expect the leading asymptotics
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Figure 5.4: The sequence (5.3.51) and its Richardson transforms for the quartic matrix model,
at λ = −0.005 (left) and λ = −0.01 (right). The prediction for the leading asymptotics is given
by the two–loop result µ2. The error is 0.05% at λ = −0.005, respectively 0.016% at λ = −0.01.
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Figure 5.5: The left figure shows the asymptotic value of πFgA
2g− 5

2 /Γ(2g − 5
2) for the quartic

matrix model, as extracted as a function of λ by the third Richardson transform, divided by
the analytic prediction µ1. The figure on the right shows the analogous quotient for µ2. For
λ < −0.004 the error is always less than 0.06%.

to be of the form (5.1.10), implying that

πFg|A|2g− 5
2

|µ1|Γ(2g − 5
2)

= 2 cos

(
(2g − 5

2
)θA + θµ1

)(
1 + O

(
1

g

))
, (5.4.70)

where θA and θµ1 have been defined in (5.1.9). This is indeed the case, as one can see from
Fig. 5.7 showing the quotient in the left hand side of (5.4.70) together with the prediction for
2 cos

(
(2g − 5

2)θA + θµ1

)
, at two positive values λ = 0.004 and λ = 3.

5.4.3 2d Gravity and the Painlevé I Equation

A rather well–known result (see [118] for an excellent review) is that the quartic matrix model
has a critical point at

λc = − 1

48
. (5.4.71)

At this critical value of λ, the saddles ±x0 collide with the two endpoints of the cut ±2α. One
may further use the matrix model near this point in order to define two–dimensional gravity by
means of a double–scaling limit. In this specific limit, one takes

λ→ λc, gs → 0, (5.4.72)
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ba

Figure 5.6: This figure shows the instanton effects for the quartic matrix model at positive

coupling λ. The endpoints of the cut, a and b, are real while the two saddle–points of the
effective potential are purely imaginary and complex conjugate to each other. There are two
pairs of complex conjugate instantons, corresponding to eigenvalues tunneling from either end
of the cut to the saddles x0 and x∗0.

in such a way that the variable

z = − 1

λc
(λ− λc) g

−4/5
s (5.4.73)

is kept fixed. In this limit it follows that the total, perturbative free energy of the matrix model
becomes the free energy of pure 2d gravity

F (gs, λ) → Fds(z). (5.4.74)

Furthermore, in this limit, the pre–string equation of the quartic matrix model (5.4.58) precisely
becomes the Painlevé I equation

u2 − 1

3
u′′ = z, (5.4.75)

governing the specific heat of the model

u(z) = −F ′′
ds(z). (5.4.76)

These results may be used to obtain the perturbative expansion of Fds(z), at any given order. It
turns out that the free energy obtained in this way is actually doubled, since it gets contributions
from the two collisions at ±x0. This is of course due to the symmetry of the potential, which we
have discussed before. In order to remove the doubling it is enough to change the normalization
of the quantities appearing above, by

z → 2
2
5 z, u→ 2

1
5u, Fds → 2Fds. (5.4.77)

Proceeding in this way one is led to the Painlevé I equation with the normalization

u2 − 1

6
u′′ = z, (5.4.78)

while the double–scaled free energy still satisfies (5.4.76). The perturbative expansion of the
specific heat has the form

u(z) = z
1
2

+∞∑

g=0

ug z
−5g/2, (5.4.79)
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for the quartic matrix model, together
with the prediction for the leading asymptotics 2 cos
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2)θA(λ) + θµ1(λ)
)

(thin black line),
at λ = 0.004 (left), respectively λ = 3 (right). At the highest depicted values of g the error is of
the order of 2% (λ = 0.004), respectively 5% (λ = 3).

so that the Painlevé I equation becomes equivalent to the following difference equation for the
coefficients ug

ug =
25(g − 1)2 − 1

48
ug−1 −

1

2

g−1∑

ℓ=1

uℓug−ℓ, u0 = 1. (5.4.80)

The coefficients ag, which appear in the perturbative expansion of the double–scaled free energy
as

Fds(z) = − 4

15
z5/2 − 1

48
log z +

∑

g≥2

ag z
−5(g−1)/2, (5.4.81)

can then be obtained from ug through the simple relation

ag = − 4

(5g − 5)(5g − 3)
ug. (5.4.82)

As a result one finds, for example,

Fds(z) = − 4

15
z

5
2 − 1

48
log z +

7

5760
z−

5
2 +

245

331776
z−5 + · · · . (5.4.83)

We are now in a position where we may obtain a prediction for the asymptotics of the coefficients
of this series, ag, by simply evaluating the expressions we obtained for the quartic matrix model
near the critical point, and taking into account the change of normalization in (5.4.77). In this
way we find

A

gs
=

8
√

3

5
z

5
4 . (5.4.84)

Moreover, for µ1 we obtain
√
gs µ1 =

1

8 · 3 3
4
√
π
z−

5
8 , (5.4.85)

while at two loops we get the result

gs µ2 = − 37

64
√

3
z−

5
4 . (5.4.86)

Altogether, this means that the one–instanton contribution to the double–scaled free energy, up
to two–loop order, is

F
(1)
ds =

i

8 · 3 3
4
√
π
z−

5
8 exp

(
−8

√
3

5
z

5
4

){
1 − 37

64
√

3
z−

5
4 + · · ·

}
. (5.4.87)
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The result for the one–loop coefficient, µ1, was first obtained by David in [125] and later re–
derived in [126]. We have obtained µ2 directly from an instanton computation in the matrix
model, but we may also verify our result by computing the one–loop instanton expansion directly
from the Painlevé I equation. This expansion has been studied in detail in [153], where it has been
used to analyze the asymptotics of the perturbative answer. The calculation of this expansion
goes as follows. As noticed in [152, 118], the discontinuity of the double–scaled free energy
(5.4.87) can be computed by linearizing the string equation (5.4.78) around the perturbative,
asymptotic solution. If we denote

ǫ(z) = discu(z), F
(1)
ds = −ǫ′′(z), (5.4.88)

one finds the linear and homogeneous differential equation

ǫ′′(z) − 12u0(z)ǫ(z) = 0, (5.4.89)

where

u0(z) = z
1
2

(
1 − 1

48
z−

5
2 − 49

4608
z−5 − 1225

55296
z−

15
2 + · · ·

)
. (5.4.90)

It is easy to solve (5.4.89) at z → ∞ after “peeling off” the exponential piece,

ǫ(z) = c z−
1
8 exp

(
−8

√
3

5
z

5
4

)(
1 +

∞∑

k=1

ǫkz
− 5k

4

)
. (5.4.91)

The overall coefficient c cannot be deduced from the differential equation (5.4.89) due to its
homogeneity, but the ǫk can be easily found in terms of the coefficients of the asymptotic
expansion of u0. One finds, for the very first terms,

ǫ(z) = c z−
1
8 exp

(
−8

√
3

5
z

5
4

)(
1− 5

64
√

3
z−

5
4 +

75

8192
z−

5
2 − 341329

23592960
√

3
z−

15
4 + · · ·

)
. (5.4.92)

Of course, the coefficient c may still be fixed with the explicit result for the one–loop coefficient
µ1. Assembling all together, one finds the full perturbative expansion of the free energy around
the one–instanton configuration,

F
(1)
ds =

1

8 · 3 3
4
√
π
z−

5
8 exp

(
−8

√
3

5
z

5
4

){
1 − 37

64
√

3
z−

5
4 +

6433

24576
z−

5
2 − 12741169

23592960
√

3
z−

15
4 + · · ·

}
.

(5.4.93)
We can now use (5.4.87), together with (5.1.6), in order to obtain a prediction concerning

the large–order behavior of the perturbative coefficients of the double–scaled free energy, as

ag ∼ 16
√

30

125π
3
2

(
25

192

)g

Γ

(
2g − 5

2

)[
1 − 37

80g
− 3927

12800g2
− 3618769

15360000g3
+ · · ·

]
. (5.4.94)

Since one can compute these coefficients up to very large order, by using the Painlevé I equation,
we can now perform truly precise tests of some of our proposals. In Fig. 5.8 we show numerical
checks for both the one and two–loop predictions, up to genus 400. Indeed both leading and
subleading asymptotics of the coefficients ag clearly agree, to a very high degree of precision,
with our prediction (5.4.94). This also leads us to an important point. It is sometimes stated
in the literature, e.g., [126, 127], that the one–instanton amplitude (5.4.87) cannot be deduced
from the Painlevé I equation. The reason for this assertion is simply that the linearized equation
(5.4.89) for ǫ does not allow the calculation of µ1. But it is clear, in view of the connection
between large–order behavior and instanton effects, that there is a more subtle relation between
the one–instanton amplitude and the perturbative result. In fact, one could instead have derived
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this amplitude from the asymptotics of the coefficients ag, themselves derived from Painlevé I.
It is easy to see that from the difference equation (5.4.80) one may obtain

ag ∼
(

25

192

)g

(2g)!, (5.4.95)

a result which at leading order precisely agrees with (5.4.94). A careful study of the difference
equation (5.4.80) beyond (5.4.95) [153] confirms indeed the result (5.4.94) for the asymptotics
of ag, and in particular makes possible to extract the one–instanton amplitude directly from
large order. In the next chapter, we will come back to the study of the Painlevé equation and
show that the formalism of orthogonal polynomials allows one to compute solutions for arbitrary
instanton numbers.
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Figure 5.8: The left figure shows the sequence agA
(2g−5/2)/Γ(2g − 5/2) for 2d gravity alongside

with its Richardson transforms, up to g = 400, clearly converging to the one–loop prediction
1/(8 · 33/4π3/2) = 0.009847. The right figure shows the modified sequence (5.3.51) and its
Richardson transforms for ag, converging towards the two–loop result −37/(64

√
3) = −0.33378,

again up to g = 400. The error at this genus is of order 10−9%.

5.5 Application II: Topological Strings on Local Curves

We now proceed into the realm of topological string theory, beginning with the case of topological
strings on local curves. In the previous section we have computed one–instanton effects in one–
cut matrix models in terms of data associated to the spectral curve. We can then use the
correspondence of [29, 36] to apply our results to topological string theories described by this
class of matrix models. The restriction to the one–cut case still leaves a rather general class of
CY backgrounds to explore, the so–called local curves. A special limit of the theory of local
curves gives the theory of simple Hurwitz numbers studied for example in [151], which will be
addressed in the next section.

5.5.1 Topological Strings on Local Curves

Local curves are toric CY manifolds of the form

Xp = O(p− 2) ⊕O(−p) → P1, p ∈ Z. (5.5.96)

Topological string theory on Xp has received a lot of recent attention (see, e.g., [159] and
references therein). As explained in [160], the A–model on Xp has to be defined equivariantly,
and the most natural choice (the equivariant CY case) corresponds to the antidiagonal action
on the bundle (we refer the reader to [160] for further details). Of more interest to us in

the present work is that the free energies at genus g on this geometry, F
Xp
g (t), depend on a
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single complexified Kähler parameter t, associated to the complexified area of P1. They can be
computed in both the A and B–models.

In the A–model, the total partition function is given by

ZXp = exp
(
FXp(gs, t)

)
, FXp(gs, t) =

+∞∑

g=0

g2g−2
s F

Xp
g (t), (5.5.97)

and near t→ ∞, F
Xp
g (t) has the expansion

F
Xp
g (t) =

∞∑

d=1

Ng,d e−dt, (5.5.98)

where Ng,d are the Gromov–Witten invariants of the CY manifold Xp at genus g and degree d.
The total partition function ZXp can be computed as a sum over partitions, by making use

of the topological vertex formalism as described in [31]. In order to write the explicit resulting
formula, we first have to introduce some notation. To begin with, define the q–number [n] as

[n] = qn/2 − q−n/2, q = egs . (5.5.99)

A representation, R, of U(∞) is encoded by a Young tableau, labeled by the lengths of its rows
{li}. The quantity

ℓ(R) =
∑

i

li (5.5.100)

is the total number of boxes in the tableau. Another important quantity associated to a given
tableau is

zR =
∑

i

li(li − 2i+ 1). (5.5.101)

We finally introduce the quantity

WR = q−zR/4
∏

∈R

1

[hook( )]
, (5.5.102)

with hook( ) the hook–length. With all this notation at hand, we may finally write the explicit
expression for the topological string partition function on Xp, which is given by

ZXp =
∑

R

WRWRtq(p−1)zR/2Qℓ(R), Q = (−1)pe−t, (5.5.103)

where Rt denotes the transposed Young tableau (i.e., the tableau where we have exchanged the
rows with the columns).

Although (5.5.103) gives an all–genus expression, it is effectively an expansion in powers of

Q. In order to obtain an expression for each F
Xp
g (t) to all orders in Q, one usually appeals to

mirror symmetry and the B–model. However, standard techniques of mirror symmetry do not
work well when applied to local curves. The Riemann surface encoding the mirror geometry
for local curves was proposed in [29] based on the direct analysis of the sum over partitions
presented in [161], and later on some aspects of this mirror construction where confirmed from a
more mathematical point of view [162]. The B–model geometry is encoded in the spectral curve

y(λ) =
2

λ

(
tanh−1

[√
(λ− a)(λ− b)

λ− a+b
2

]
− p tanh−1

[√
(λ− a)(λ− b)

λ+
√
ab

])
, (5.5.104)

which has genus zero. Although this curve is not algebraic, it is easy to see that when written
in terms of the variables X = λ, Y = ey one obtains an algebraic equation for the C∗ variables
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X,Y , which leads to the mirror CY threefold (5.5.96). The advantage of writing the curve in
the nonalgebraic form (5.5.104) is that, as explained in [29, 36], one can apply verbatim the
standard matrix model technology that we use in this paper. The curve (5.5.104) may also be
written in the form (4.1.20), with a moment function M(λ) which has various nontrivial zeroes
where the spectral curve is singular. The endpoints of the cut, a and b, are given by

a = (1 − ζ)−p(1 − ζ
1
2 )2, b = (1 − ζ)−p(1 + ζ

1
2 )2, (5.5.105)

where ζ is related to Q by the mirror map [161, 162]

Q = (1 − ζ)−p(p−2)ζ. (5.5.106)

It was further conjectured in [29] that the free energies F
Xp
g (t) can be obtained as the standard

genus g free energies of a matrix model with spectral curve (5.5.104). And it was conjectured
in [161] that, for g ≥ 2, these free energies may be written as

F
Xp
g (t) =

Pg(ζ, p)

(ζ − ζc)5(g−1)
, Pg(ζ, p) =

5(g−1)∑

i=1

ag,i(p) ζ
i, (5.5.107)

where

ζc =
1

(p− 1)2
(5.5.108)

is a critical point of the model. In fact, at this point, a zero x0 of M(λ) collides with the endpoint
of the cut b, and we are left with a critical theory in the universality class of pure 2d gravity
[161]. If one further takes the double–scaling limit,

ζ → ζc, gs → 0, z fixed, (5.5.109)

where

z5/2 = g−2
s

(p− 1)8

4(1 − ζc)3
(ζc − ζ)5, (5.5.110)

then the total free energy (5.5.97) becomes the free energy of pure 2d gravity.

5.5.2 Instanton Effects and Large–Order Behavior

In [29] the matrix model description, based on the spectral curve (5.5.104), was used to study
nonperturbative effects in this topological string theory. The spectral curve (5.5.104) has a
nontrivial saddle x0, which is the solution to

M(x0) = 0. (5.5.111)

For the cases p = 3 and p = 4 the relevant solutions have been determined in [34]; they are given
by

x0 =
4ab

(
√
a−

√
b)2

, p = 3, (5.5.112)

and

x0 =
2
√
ab

√
a−

√
b
, p = 4. (5.5.113)

In [34] it was argued that this saddle controls the large–order behavior of F
Xp
g (t), at any value

of t. We now show that this is indeed the case, and that the one and two–loop results µ1,2

computed in terms of the spectral curve (5.5.104) control the subleading large g asymptotics.
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The instanton action for an eigenvalue tunneling from b to x0 has already been computed in
[34]; it is given by the rather formidable expression

A(Q) = F (x0) − F (a), (5.5.114)

where

F (x) = − log (f1(x))

(
log (f1(x)) − 2 log

(
1 +

2f1(x)

(
√
a−

√
b)2

)
+ log

(
1 +

2f1(x)

(
√
a+

√
b)2

))
−

− 2Li2

(
− 2f1(x)

(
√
a−

√
b)2

)
− 2Li2

(
− 2f1(x)

(
√
a+

√
b)2

)
− log

(a− b)2

4
log x−

− p log (f2(x))

(
log (f2(x)) + 2 log

(
1 − f2(x)

2
√
ab

)
− log

(
1 − 2f2(x)

(
√
a+

√
b)2

))
−

− 2pLi2

(
−f2(x)

2
√
ab

)
+ 2pLi2

( 2f2(x)

(
√
a+

√
b)2

)
+
p

2
(log x)2 + p log(

√
a+

√
b)2 log x,

(5.5.115)
and

f1(x) =
√

(x− a)(x− b) + x− a+ b

2
,

f2(x) =
√

(x− a)(x− b) + x+
√
ab.

(5.5.116)

In these expressions a and b are the endpoints of the cut as usual, given in (5.5.105).
The one and two–loop coefficients are again given by the general expressions (5.2.43) and

(5.2.45), as in the previous section. We now compare the analytic results to the large–order
behavior of the perturbation series for the case of the local curve X3 (p = 3). The leading
and subleading asymptotic behavior of Fg should be given by the same structure found for
the quartic matrix model (5.4.69). As explained in section 5.3, we can independently test the
predictions for the instanton action, as well as the one and the two–loop results, by applying
Richardson transformations to the modified sequences (5.3.48)–(5.3.51). Notice that all these
quantities depend on the B–model modulus ζ. For simplicity, we restrict our analysis to the
range 0 < ζ < ζc = 1

4 , where the endpoints of the cut, as well as the instanton action, are
real. Fig. 5.9 shows the inverse square root of the sequence Qg in (5.3.48) and its first three
Richardson transforms, at two specific values of ζ. The straight line is the prediction for the
instanton action, A. As is evident from the plot, and even though we only use data up to genus
g = 8, the third Richardson transform already falls on the straight line. The mismatch between
numerical extrapolation and the prediction is of order 0.02%. Analogously, we may check the
one and two–loop results. In Fig. 5.10 and Fig. 5.11 we plot the modified sequences, (5.3.50)
and (5.3.51), together with the corresponding Richardson transforms, again at two fixed values
of the Kähler modulus. As explained in section 5.3, the predictions for their leading asymptotics
are µ1, respectively µ2, which are shown in the figures as straight lines. Again, this is confirmed
by the Richardson transforms, clearly converging to the prediction from instanton calculus. The
error in here is of order 1%.

Similar graphs can be produced at any other point in moduli space. Fig. 5.12 shows the
asymptotic value of the instanton action, as approximated by the third Richardson transform,
divided by the corresponding analytical prediction, and plotted as a function of the modulus
over 0 < ζ < 1/4. This quotient is indeed very close to one, as it should be from our discussion.
Similarly, in Fig. 5.13 we plot the asymptotic results for µ1 and µ2, divided by the corresponding
analytic predictions, as functions of ζ. Notice that while the agreement is excellent over most
of moduli space, as one approaches ζ ∼ 0 the deviation from the predicted value increases. This
is again due to the divergence of the instanton action at this particular point of moduli space.
Indeed in this region, the Richardson transforms converge too slowly to fall on one line, at low
genus g < 10. In order to obtain full agreement one would need higher–genus data, which is out
of our scope in this paper.
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We have performed similar checks of our predictions for the local curve X4, also obtaining
agreement to very high precision, and further strengthening our analytical results.
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Figure 5.9: The sequence
√

1/Qg and the corresponding Richardson transforms for the local
curve X3, at fixed values ζ = 0.24 (left) and ζ = 0.15 (right). The leading asymptotics are
predicted to be given by the instanton action A(ζ), shown as a straight line. The error for the
available degree g = 8 is 0.014% at ζ = 0.24, respectively 0.025% at ζ = 0.15.
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Figure 5.10: The sequence πFgA
2g− 5

2 /Γ(2g − 5
2) and its Richardson transforms for the local

curve X3, at fixed values ζ = 0.24 (left) and ζ = 0.15 (right). The prediction for the asymptotic
value is the one–loop result µ1, shown as a straight line. The error is 0.49% at ζ = 0.24,
respectively 0.58% at ζ = 0.15.

5.5.3 Spacetime Interpretation of the Instanton Effects

As we have seen in (5.2.39), the instanton action can be computed as a contour integral from
the endpoint of the cut to the saddle x0. This contour integral measures the potential difference
between the cut C and x0. When the spectral curve corresponds to a double–scaled matrix
model, this instanton action should correspond to the disk amplitude for a D–instanton in
noncritical string theory. These D–instanton configurations have been identified in terms of ZZ
branes, and it has also been verified that indeed the matrix model computation agrees with the
disk amplitude for a ZZ brane [51]. Equivalently, the ZZ disk amplitude can be calculated as
the difference between the disk amplitudes for two FZZT branes located, respectively, at the
branch cut of the curve and at the pinched point of the curve. It turns out that, for topological
string theory on local curves, there is a similar interpretation of the instanton action in terms
of D–branes, as well as a spacetime interpretation in terms of domain walls.

The natural branes for the A–model on a toric CY manifold are the Harvey–Lawson branes,
first studied in this context in [163]. The mirrors of these branes are just points in the spectral
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Figure 5.11: The sequence (5.3.51) for the local curve X3 and its Richardson transforms, at
ζ = 0.24 (left) and ζ = 0.15 (right), with leading asymptotics predicted to be given by the
two–loop result µ2. The error is 1.38% at ζ = 0.24, respectively 1.04% at ζ = 0.15.
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Figure 5.12: The asymptotic value of
√

1/Qg for the local curve X3 as extracted from the third
Richardson transform as a function of ζ, divided by the analytic prediction for the instanton
action. For ζ > 0.05, the error is always less than 0.03%.

curve of the B–model. Two branes located at points z0 and z1 define an interpolating domain
wall in the underlying type II theory. The tension of this domain wall is given by the difference
of D–brane superpotentials [163]

W (z1) −W (z0) =

∫ z1

z0

dz y(z). (5.5.117)

When z0 and z1 correspond, respectively, to the endpoint of the cut and the saddle x0, (5.5.117)
is exactly the instanton action computed in (5.2.39). The connection between instanton actions
in the matrix model and tensions of domain walls was already made in [32] for the backgrounds
considered therein. At the same time, (5.5.117) can be regarded as the difference between two
disk amplitudes for D–branes located at z1 and z0. We then see that the role of FZZT branes
in noncritical string theory is played by the Harvey–Lawson branes in topological string theory
on local CY threefolds. Indeed, it can be easily seen [34] that, in the case of local curves, the
toric branes become FZZT branes near the critical point describing 2d gravity. On the other
hand, the saddle x0 that we have been considering (and which leads to an extremum of the
superpotential) gives a topological string analogue of the ZZ brane.

A more invariant way of writing (5.5.117), by taking into account the full six–dimensional
geometry of the CY, is

A =

∫

Γ
Ω, Γ = [C1 − C0], (5.5.118)

where Ω is the holomorphic (3, 0) form on the CY, and Γ is a three–cycle interpolating between
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Figure 5.13: The left figure shows µ1 for the local curve as extracted from the perturbative series
using the third Richardson transform of the sequence (5.3.50), divided by the corresponding
analytical prediction, and plotted over the range 0 < ζ < 1/4. Similarly, the second figure
shows the asymptotic result for µ2 as obtained from the perturbative series using (5.3.51), again
divided by the corresponding analytic prediction. The typical error is about 1.5%.

the two–cycles C0,1 associated to z0,1 in the full geometry. This is indeed the general form for
disk amplitudes of B–branes presented in [164].

It is interesting to notice that usually the nonperturbative effects due to B–branes considered
in the literature involve the hypermultiplet moduli, since a B–brane supported on a curve will
couple to the Kähler form, and not to Ω [28, 49]. This type of D–instanton effects (which in some
cases can be computed exactly [165]) cannot however be related to the large–order behavior of
the topological string amplitudes, which depend on the vector multiplet moduli. On the other
hand, domain walls interpolating between two B–branes can couple to Ω and therefore have the
right structure to control the large–order behavior of topological string perturbation theory. In
this paper we have checked this for a restricted class of toric geometries, but we expect this fact
to be true in the more general case, for an appropriate choice of the domain wall.

5.6 Application III: Hurwitz Theory

We finally proceed to our last example, Hurwitz theory.

5.6.1 Hurwitz Theory

Hurwitz theory studies branched covers of Riemann surfaces. Here, we restrict ourselves to
the coverings of a sphere P1 (the “target”) by surfaces of genus g (the “worldsheets”). The
covering maps will be restricted to have only simple branch points. The number of disconnected
coverings of degree d with these topological characteristics is counted by the so–called simple
Hurwitz number, which we denote by HP1

g,d(1
d). It can be computed, in classical Hurwitz theory,

in terms of representation theory of the symmetric group:

HP1

g,d(1
d) =

∑

ℓ(R)=d

(
dR

ℓ(R)!

)2

(zR/2)2g−2+2d. (5.6.119)

Here the sum is over Young tableaux R, with a fixed number of boxes ℓ(R) equal to the degree
d, and dR is the dimension of R regarded as a representation of the symmetric group Sd. The
quantity zR was defined in (5.5.101).

We can now define the total partition function of Hurwitz theory as a generating functional
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for simple Hurwitz numbers,

ZH(tH , gH) =
∑

g≥0

g2g−2
H

∑

d≥0

HP1

g,d(1
d)

(2g − 2 + 2d)!
Qd, (5.6.120)

where Q = e−tH and gH can be regarded as formal parameters keeping track of the degree and
the genus, respectively. This partition function can be written as

ZH(tH , gH) =
∑

R

(
dR

|ℓ(R)|!

)2

g
−2ℓ(R)
H egHzR/2Qℓ(R). (5.6.121)

The free energy log ZH describes connected, simple Hurwitz numbers HP1

g,d(1
d)•,

FH = logZH =
∑

g≥0

g2g−2
H

∑

d≥0

HP1

g,d(1
d)•

(2g − 2 + 2d)!
Qd, (5.6.122)

and it has the genus expansion

FH(gH , tH) =
∞∑

g=0

g2g−2
H FH

g (QH). (5.6.123)

This theory is in fact a topological string theory in disguise. It can be realized as a special limit
of the type–A theory on local curves Xp with Kähler parameter t that we studied in the previous
section [161], namely the limit

p→ ∞, t→ ∞, gs → 0, (5.6.124)

while the new parameters gH and tH , which are defined by

gH = pgs, e−tH = (−1)pp2e−t, (5.6.125)

are kept fixed. As in the case of the theory on local curves, there is a B–model mirror to this
theory. Its natural coordinate χ is related to the A–model coordinate Q = e−tH by the mirror
map

χe−χ = Q, (5.6.126)

which can indeed be understood as an appropriate limit of (5.5.106) for p → ∞ [161]. The
inverse mirror map is provided by Lambert’s W function [166],

χ = −W (−Q) =
∞∑

k=1

kk−1

k!
Qk, (5.6.127)

which has convergence radius Qc = e−1 or χ = 1. The large–radius region corresponds to Q→ 0
(and also to χ→ 0). The spectral curve characterizing the B–model is of the form

y(h) = 2 tanh−1

[
2

√
(a− h)(b− h)

2h− (a+ b)

]
−
√

(a− h)(b− h), (5.6.128)

where the endpoints of the cut are given by

b =
(
1 + χ

1
2
)2
, a =

(
1 − χ

1
2
)2
. (5.6.129)

The above spectral curve can also be read from the saddle–point description of the sum over
partitions (5.6.121) given in [167, 151].
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Hurwitz theory has been extensively studied in the mathematical literature, and these studies
have unveiled interesting properties. As shown in [168], the higher–genus free energies FH

g (Q),
when expressed in terms of the mirror coordinate χ, have a very simple structure, namely

FH
0 (χ) =

χ3

6
− 3χ2

4
+ χ,

FH
1 (χ) = − 1

24

(
log(1 − χ) + χ

)
,

FH
g (χ) =

Pg(χ)

(1 − χ)5(g−1)
, Pg(χ) =

3g−3∑

i=2

cg,i χ
i, g ≥ 2.

(5.6.130)

Moreover, the polynomials Pg(χ) have the property

Pg(1) = 4g−1ag, g ≥ 2, (5.6.131)

where ag is the genus g free energy of 2d gravity appearing in (5.4.81). Therefore, in the
double–scaling limit

χ→ 1, gH → 0, g−2
H (1 − χ)5 = 4z

5
2 , (5.6.132)

the total free energy of Hurwitz theory becomes (5.4.81)

FH(gH , tH) → Fds(z), (5.6.133)

and one recovers 2d gravity at the critical point. This was first pointed out at genus zero in
[151] and then established at all genera in [161], using the results of [168].

Another interesting result concerning Hurwitz theory was obtained in [169], where the total
free energy was shown to satisfy the Toda equation,

exp
(
FH(gH , tH + gH) + FH(gH , tH − gH) − 2FH(gH , tH)

)
= g2

Het∂2
tH
FH(gH , tH). (5.6.134)

This equation is the analogue for this model of the pre–string equation (5.4.58) for the quartic
matrix model. One can directly derive from (5.6.134) that the double–scaled specific heat
satisfies the Painlevé I equation (5.4.78), providing in this way yet another derivation of the
result in [161]. We have used the Toda equation to compute Hurwitz amplitudes up to genus
16, and some of these results are presented in appendix B.2.2.

5.6.2 Instanton Effects and Large–Order Behavior

Let us now turn to the computation of the one–instanton quantities. From the curve (5.6.128)
we find the moment function,

M(h) =
2√

(a− h)(b− h)
tanh−1

[
2

√
(a− h)(b− h)

2h− (a+ b)

]
− 1, (5.6.135)

where the nontrivial saddle–point is defined by

M(h0) = 0, (5.6.136)

or
2√

(a− h0)(b− h0)
tanh−1

[
2

√
(a− h0)(b− h0)

2h0 − (a+ b)

]
= 1. (5.6.137)

This equation can be written in a simpler way by defining w as

h0 = 4
√
χ cosh2

(w
2

)
+ (1 −√

χ)2. (5.6.138)
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In terms of these variables, equation (5.6.137) simply reads

w

sinh(w)
=

√
χ. (5.6.139)

Even though we cannot solve analytically for h0(χ), we can solve (5.6.137) to find h0(χ) near
χ = 0, 1 as a power series. Near the critical point χ = 1, it is easy to see that h0(χ) has a Taylor
series expansions in powers of ξ = 1 − χ

h0(χ) = 4 + ξ +
4

5
ξ2 + · · · . (5.6.140)

Near χ = 0, the power series solution is more complicated. At leading order it is easy to find
that

w ∼ −1

2
log(χ) + log(− log(χ)), (5.6.141)

which yields
h0(χ) ∼ − log χ+ 2 log(− log χ), χ→ 0. (5.6.142)

The corrections to the leading asymptotics (5.6.141) can be obtained following a method exposed,
for example, in [170]. The full solution can be written as

w = log(− log(

√
χ

2
)) − 1

2
log(χ) + v, (5.6.143)

where v is a power series

v =
∑

j,k,m

cjkmµ
jσkτm (5.6.144)

in the variables

σ =
1

log(χ)
, τ =

log(− log(χ))

log(χ)
, µ =

(
χ

log(χ)

)2

. (5.6.145)

The coefficients cjkm can be explicitly written as

cjkm = −
∮

dz

2πi

e(j−1)zzk+1(−1)m

(e−z − 1)j+k+m+1

(j + k +m)!

j!k!m!
+

+

∮
dz

2πi

ejzzk(−1)m

(e−z − 1)j+k+m

(j + k +m− 1)!

j!(k − 1)!m!
.

(5.6.146)

The instanton action

A(χ) =

∫ h0(χ)

b
dh y(h) (5.6.147)

can now be computed explicitly as a function of h0 as

A(χ) = (b− a)
(
γ cosh−1(γ) −

√
γ2 − 1

)
− (a− b)2

8

(
γ
√
γ2 − 1 − cosh−1(γ)

)
, (5.6.148)

where

γ =
1

b− a
(2h0(χ) − a− b). (5.6.149)

Using the above results for the behavior of h0 near χ = 0, 1, we can also find the behavior of
the instanton action near these points. At the critical point, one finds

1

gH
A(χ) → 8

√
3

5
z5/4 + · · · , χ→ 1, (5.6.150)
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Figure 5.14: The moduli space of Hurwitz theory.

where z is the double–scaled variable introduced in (5.6.132). Of course, this is the expected
universal, double–scaled result of (5.4.84). Near χ = 0, we find

A(χ) ∼ 1

2
(log χ)2, χ→ 0. (5.6.151)

We may now compare our predictions with the numerical asymptotics of Fg. The moduli
space of χ can be divided into the six segments shown in Fig. 5.14, and we have tested our
predictions in each of them. They have the following characteristics:

• The simplest case to study is the real interval 0 < χ < 1. Here, there is one single instanton
with real action, corresponding to an eigenvalue tunneling from b to the saddle x0 on the
right of the cut, and all Fg are also real.

• As χ moves to the right of [0, 1], beyond the critical point at χ = 1, the only solutions to
M(h) = 0 are located inside the cut and the instanton action becomes purely imaginary
while µ1,2 remain real. The Fg oscillate in sign.

• It turns out that there is no systematic difference between the regions I–VI away from the
real axis. The instanton action as well as µ1,2 and of course Fg are generically complex,
in spite of which our predictions continue to hold.

• When χ lies on the negative real line, the endpoints of the cut move away from the real
axis and become complex conjugate. There are now two saddle–point solutions, x0 and x∗0,
complex conjugate to each other, and accordingly two instanton solutions with conjugate
actions, one corresponding to an eigenvalue tunneling from b to x0 and another from
a = b∗ to x∗0, as shown in Fig. 5.14. Therefore the Fg are real, with asymptotics of the
form (5.1.10) involving a cosine. Notice that this is very similar to a mechanism for the
local curve, first observed in [34].

As before, the one and two–loop coefficients are given by (5.2.43) and (5.2.45), evaluated for
the moment function (5.6.135). The saddle–point solution has to be evaluated numerically. The
instanton action, as well as µ1 and µ2, are well–defined over the whole complex plane of the
modulus χ. Fig. 5.15 and Fig. 5.16 show the inverse square root of the sequenceQg in (5.3.48) and
of the corresponding Richardson transforms, alongside with the prediction of instanton calculus
for the instanton action, at values of the modulus χ = 0.5, χ = 1.5 + i, and χ = −1 − 0.5i. In
Fig. 5.17 we compare the sequence πFg|A|2g−5/2/(Γ(2g − 5

2)|µ1|) for Hurwitz theory, together
with the prediction 2 cos

((
2g − 5

2

)
θA + θµ1

)
, at χ = −0.5 and χ = −3. Fig. 5.18 and Fig. 5.19

show the modified sequences, (5.3.50) and (5.3.51), with leading asymptotics given by the one
and two–loop fluctuations around the one–instanton configuration, together with the analytic
prediction. Indeed, the agreement is again quite spectacular.
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Figure 5.15: The left figure shows the sequence (Re(Q−1
g ))1/2 for Hurwitz theory, together with

its Richardson transforms. The straight line shows the corresponding prediction (Re(A2))1/2,
at χ = 0.5. On the right, the same for χ = 1.5 + i. The available degree is g = 16, the error is
4 × 10−6% at χ = 0.5, and 7 × 10−6% at χ = 1.5 + i.
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Figure 5.16: On the left, the sequences (Re(Q−1
g ))1/2 with its Richardson transforms and the

prediction (Re(A2))1/2, at χ = −1− 0.5i (straight line). On the right, we show the same for the
imaginary parts. The errors at g = 16 are 0.01% and 0.08%, respectively.

Conclusion

In this chapter we have extended classical results on the connection between instanton effects
and the large–order behavior of perturbation theory to general, one–cut matrix models and
topological strings. We have tested our one–instanton computation up to two loops in both the
standard quartic matrix model off–criticality and in its double–scaled limit, 2d gravity. If correct,
the matrix model description of the topological string on toric backgrounds [34, 35] implies that
our computation also applies to nonperturbative effects in topological string theory. This is
indeed the case, as we have verified testing our predictions with the large–order behavior of the
perturbative amplitudes. This is a strong check of the proposal of [34, 35], as the asymptotics
of the amplitudes capture information beyond perturbation theory.

From the mathematical point of view, we have presented precise conjectures for the large–
order behavior of Hurwitz theory and 2d gravity.

136



0 5 10 15
g

-2

-1

1

2

0 5 10 15
g

-2

-1

1

2

Figure 5.17: The sequence πFg|A|2g−5/2/(Γ(2g − 5
2)|µ1|) for Hurwitz theory, together with the

prediction 2 cos
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)
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)
, at χ = −0.5 (left) and χ = −3 (right). The error at genus

16 is of order 3%.
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Figure 5.18: The left figure shows πA2g− 5
2Fg/Γ(2g − 5

2) for Hurwitz theory, and its Richardson
transforms, at χ = 0.5. The leading asymptotics are predicted by µ1, shown as a straight
line. On the right, we plot the analogous sequence (5.3.51), together with the expected leading
asymptotic value µ2 (straight line). The error at g = 16 is 0.009% for µ1, and 0.012% for µ2.
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Figure 5.19: The left figure shows µ1 as a function of χ for Hurwitz theory, as extracted from the
perturbative series using the third Richardson transform of the sequence (5.3.50), divided by the
corresponding analytical prediction. Similarly, the second figure shows the asymptotic result for
µ2 as obtained from the perturbative series using (5.3.51), again divided by the corresponding
analytic prediction. For χ > 0.01, the error is of order 0.1%.
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Chapter 6

Multi-Instantons and Multi-Cuts

In the last chapter, we have assumed that the eigenvalues are distributed over a single interval C
around a minimum of the potential. However, this is a very special configuration, as the potential
may have many extrema and eigenvalues around each of them, i.e. a multi-cut configuration.
In this chapter, we will see that this can also be interpreted as a multi-instanton configuration,
where many eigenvalues have been moved to the next extremum via instanton transitions. The
presented results will appear in a publication with M. Mariño and R. Schiappa [72].

For an n-cut solution, the spectral curve has genus n − 1. Indeed, the pinched spectral
curve that we considered in the one-cut case with one instanton is precisely at the transition
point between a one-cut and a two-cut solution, as can also be seen from figures 6.1, 6.2 for a
more general potential. Configurations with different filling numbers of the intervals around the
extrema of the potential are related by instanton and anti-instanton transitions. Since not only
minima, but also maxima of the potential can accommodate eigenvalues, instantons and anti-
instantons act with opposite signs, depending on whether the transition moves an eigenvalue
from a minimum to a maximum and thus a more stable to a less stable configuration, or the
reverse. Hence, there are exponentially suppressed transitions that we refer to as instantons,
and exponentially enhanced anti-instanton transitions. The full partition sum can always be
written down as an infinite Laurent expansion over instanton sectors with respect to a reference
configuration, and it can be resummed as a theta function [171, 172]. The choice of the reference
configuration is irrelevant, as the partition sum does not depend on it [171]. This is related to the
problem of quantum background independence in string theory and the holomorphic anomaly
equation [173].

For concrete applications, we avoid the subtleties related to enhanced anti-instanton tran-
sitions by picking as a reference configuration the most stable one, where all eigenvalues are
centered around the absolute minimum of the potential, i.e. a one-cut solution. The general
partition function is then a sum over possible filling numbers of this minimum and its neighbour-
ing maximum, that is, two-cut solutions which can equivalently be viewed as multi-instanton
configurations with respect to the reference one-cut configuration. The resulting expressions
have to be carefully regularized, since the 1

N expansion becomes singular as the numbers of
eigenvalues in the second cut becomes small compared to N . We obtain in this way explicit,
regular results for multi-instanton amplitudes of the one-cut model in terms of the free energies
of the two-cut model.

We put these expressions through a number of highly nontrivial tests. They are shown
to reproduce the one-instanton formulae that we found in the previous chapter following an
entirely different approach. Furthermore, we compute the one- and two instanton amplitudes
for the cubic matrix model up to two loops independently using a transseries formalism devised
in [174] based on orthogonal polynomials, finding perfect agreement with our general formula.
We perform two further checks of the multi-instanton formula in the double-scaling limit at
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Figure 6.1: Spectral curves corresponding to one-cut respectively two-cut solutions

the critical point, where the cubic matrix model describes two-dimensional gravity. As we have
seen in the previous chapter and in the introduction to matrix models in chapter 4, this regime
is controlled by the Painlevé I equation. Again using the transseries formalism, this equation
can be solved recursively for arbitrary loops and instanton sectors, and we check up to high
instanton numbers that the double-scaling limit of the multi-instanton expressions that our
master formula yields for the cubic matrix model off criticality reproduces this solution. Based
on the connection to multicut models, we conjecture a nontrivial integrality structure of solutions
to the Painlevé I equation, namely, the partition sum at fixed order in the coupling constant
should be a polynomial rather than rational function of the instanton expansion parameter. This
is indeed confirmed by the expressions we find.

This chapter is organized as follows. We start with a general review of multicut models in
section 6.1, where we also derive some explicit results for two-cut models. In section 6.2, we
derive an expression for the ℓ–instanton amplitude of a generic two-cut model. We show that
the full partition sum of the two-cut model can be naturally reorganized as an instanton/anti-
instanton expansion with respect to an arbitrary reference configuration. We then specialize to
the stable reference configuration and derive regular expressions for the ℓ–instanton amplitude
in generic one-cut models using the two-cut free energies. We test the result against the low-
instanton number amplitudes for the cubic matrix model, computed by the method of orthogonal
polynomials. In section 6.3, we test our prediction for the ℓ–instanton amplitude in the double-
scaling limit, where we recursively solve the Painlevé I equation for higher instanton sectors
using the transseries formalism.

6.1 Review of multicut matrix models

In this chapter we will consider Hermitian matrix models involving one single matrix, but we
will extend some of the results of [71] by studying multi-cut configurations. In the following, we
will give a brief review of multi-cut matrix models, following [125, 172, 175, 9].

We recall that the one–matrix model partition function is

ZN =
1

vol [U(N)]

∫
dM exp

(
− 1

gs
TrV (M)

)
, (6.1.1)

where V (x) is a potential which we will take to be a polynomial. This can be written in terms
of eigenvalues as

ZN =
1

N !

∫ N∏

i=1

dλi

2π
∆2(λ) exp

(
− 1

gs

N∑

i=1

V (λi)

)
(6.1.2)

where ∆(λ) is the Vandermonde determinant. As in the last chapter, we are interested in
studying the model at large N but keeping the ’t Hooft coupling

t = Ngs (6.1.3)
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fixed. In this limit the model can be described by the density of eigenvalues

ρ(λ) =
1

N
〈Tr δ(λ−M)〉. (6.1.4)

A1 A2 A3

N3
N2

N1

Figure 6.2: An example of a potential leading to a three-cut solution. The N eigenvalues split
into three sets, NI , I = 1, 2, 3, and they sit around the extrema of the potential. The support
of the density of eigenvalues is the union of the intervals AI , I = 1, 2, 3.

Let us assume that the potential V (x) has s extrema. The most general saddle point of
the model will be characterized by a density of eigenvalues supported on a disjoint union of s
intervals

C =
s⋃

I=1

AI , (6.1.5)

where AI = [x2I−1, x2I ] are the s cuts and x1 < x2 < · · · < x2s. If s > 1 we call this saddle point
a multi-cut solution of the Hermitian matrix model. A potential leading to a three-cut solution
is depicted in Fig. 6.2. This multicut saddle-point can be described in terms of integration over
eigenvalues as follows. In the s-cut configuration described above the N eigenvalues split into s
sets of NI eigenvalues, I = 1, · · · , s. Let us denote each of these s sets by

{λ(I)
kI

}kI=1,··· ,NI
, I = 1, · · · , s. (6.1.6)

The eigenvalues in the I-th set sit in the interval AI around the I-th extremum. Along this
interval, the effective potential

Veff(λ) = V (λ) − t

∫
dλ′ρ(λ′) log |λ− λ′| (6.1.7)

is constant. It is possible to choose s integration contours CI in the complex plane, I = 1, · · · , s,
going to infinity in directions where the integrand decays exponentially, and in such a way that
each of them passes through exactly one of the s critical points (see for example [176]). The
resulting matrix integral is convergent and can be written as

Z(N1, · · · , Ns) =
1

N1! · · ·Ns!

∫

λ
(1)
k1

∈C1

· · ·
∫

λ
(s)
ks

∈Cs

N∏

i=1

dλi

2π
∆2(λ)e

− 1
gs

PN
i=1 V (λi). (6.1.8)

The overall combinatorial factor in this expression, as compared to the one in (6.1.1), is due to
the fact that there are

N !

N1! · · ·Ns!
(6.1.9)

ways to choose the s sets of NI eigenvalues. Of course, when the integrand is written out in
detail, it splits into s sets of eigenvalues which interact among them through the Vandermonde
determinant (see for example [177]).
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In order to solve for the density of eigenvalues we introduce, as in the one-cut case, the
resolvent

ω(z) =
1

N

〈
Tr

1

z −M

〉
=

1

N

+∞∑

k=0

1

zk+1

〈
TrMk

〉
, (6.1.10)

which has a standard genus expansion ω(z) =
∑+∞

g=0 g
2g
s ωg(z) with

ω0(z) =

∫

C
dλ

ρ(λ)

z − λ
. (6.1.11)

The normalization of the eigenvalue density

∫

C
dλ ρ(λ) = 1 (6.1.12)

implies that

ω0(z) ∼
1

z
(6.1.13)

as z → +∞. Notice that the genus zero resolvent determines the eigenvalue density as

ρ(z) = − 1

2πi
(ω0(z + iǫ) − ω0(z − iǫ)) . (6.1.14)

In (6.1.11), C denotes a closed contour enclosing the union of intervals. One may compute ω0(z)
by making use of the large N saddle–point equations of motion of the matrix model,

ω0(z + iǫ) + ω0(z − iǫ) =
1

t
V ′(z) = 2P

∫

C
dλ

ρ(λ)

z − λ
. (6.1.15)

For a generic multi–cut solution, the large N resolvent is given by

ω0(z) =
1

2t

∮

C

dw

2πi

V ′(w)

z − w

√
σ(z)

σ(w)
, (6.1.16)

where we have introduced the notation

σ(x) =
2s∏

k=1

(x− xk). (6.1.17)

As in the one-cut case, an equivalent way to describe the large N solution is via the spectral

curve y(z), which is given by

y(z) = V ′(z) − 2t ω0(z) = M(z)
√
σ(z) (6.1.18)

where

M(z) =

∮

C∞

dw

2πi

V ′(w)

(w − z)
√
σ(w)

, (6.1.19)

is the moment function. The moments of this function, which are defined by [175]

M
(k)
i =

∮

C

dw

2πi

V ′(w)

(w − xi)k
√
σ(w)

(6.1.20)

can be easily calculated to be

M
(k)
i =

1

(k − 1)!

dk−1

dzk−1
M(z)

∣∣∣
z=xi

(6.1.21)
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and will play an important role in the following. We will denote

Mi ≡M
(1)
i = M(xi). (6.1.22)

In order to fully determine the large N solution one still needs to specify the endpoints of
the s cuts, {xk}. The large z asymptotics of the genus zero resolvent immediately yield s + 1
conditions for these 2s unknowns. They are

∮

C

dw

2πi

wnV ′(w)√∏2s
k=1(w − xk)

= 2t δns, (6.1.23)

for n = 0, 1, . . . , s. In order to fully solve the problem, one still requires s− 1 extra conditions.
These will be fixed in our case by fixing the filling fractions,

ǫI ≡ NI

N
=

∫

AI

dλ ρ(λ), I = 1, 2, . . . , s, (6.1.24)

as parameters, or moduli, of the problem under scrutiny. Since
∑s

I=1 ǫI = 1, equation (6.1.24)
leads to s − 1 conditions, as we required. One may also use as moduli the partial ’t Hooft
couplings tI = tǫI = gsNI , which can be written as

tI =
1

4πi

∮

AI

dz y(z), (6.1.25)

with
∑s

I=1 t
I = t. Notice that in general the saddle point we are considering will be an unstable

one. This is the generic situation we find in the applications of matrix models to topological
string theory [32, 29, 35]. Indeed, as we will see in this chapter, the fact that we consider general
unstable saddle-points will allow us to extract multi-instanton amplitudes from multi-cut matrix
models.

The free energy of the multi-cut matrix model has a genus expansion of the form

F = logZ =
∞∑

g=0

Fg(tI)g
2g−2
s . (6.1.26)

The planar free energy F0(tI) can be computed from the spectral curve by using the special
geometry relation [178]

∂F0(t)

∂tI
=

∮

BI
Λ

y(λ)dλ, I = 1, · · · , s, (6.1.27)

where BI
Λ is a path which goes from the endpoint of the AI cycle to the point Λ. This point is

then taken to infinity after removing the divergent pieces of the integral.
We will need later on explicit expressions for the derivatives of the endpoints of the cuts, xj ,

with respect to the ’t Hooft parameters tj . These are obtained as solutions to a linear system
which we now write down. From (6.1.23) we immediately obtain,

2s∑

i=1

Mix
k
i

∂xi

∂tj
= 4δks, k = 0, · · · , s. (6.1.28)

For fixed j, this gives s + 1 conditions for 2s quantities. The remaining conditions can be
obtained from

tk =
1

2π

∫ x2k

x2k−1

dλM(λ)
√
σ(λ) (6.1.29)
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by taking derivatives w.r.t. tj . A similar calculation is done in [175], Appendix A. By deforming
the contour away from infinity, we can write the moment function as

M(λ) = −
∮

C∪Cλ

dw

2πi

V ′(w)

(w − λ)
√
σ(w)

, (6.1.30)

where Cλ is a small contour around w = λ. Therefore, by taking derivatives w.r.t. tj in (6.1.29)
we obtain

δjk = − 1

4π

2s∑

i=1

∂xi

∂tj

∫ x2k

x2k−1

dλ

∮

C∪Cλ

dω

2πi

V ′(ω)

(ω − λ)

( 1

ω − xi
− 1

λ− xi

)√σ(λ)√
σ(ω)

, (6.1.31)

where the derivative acted on σ(λ), σ(ω). Since

1

ω − xi
− 1

λ− xi
=

λ− ω

(ω − xi)(λ− xi)
, (6.1.32)

we finally obtain

∮

C∪Cλ

dω

2πi

V ′(ω)

(ω − λ)

( 1

ω − xi
− 1

λ− xi

)√σ(λ)√
σ(ω)

= −
√
σ(λ)

λ− xi
Mi. (6.1.33)

Notice that the integrand has no longer a pole at ω = λ, hence only the integral around C
contributes. We then end up with the equations

1

4π

2s∑

i=1

∂xi

∂tj
Mi

∫ x2k

x2k−1

dλ

√
σ(λ)

λ− xi
= δjk, k = 1, · · · , s. (6.1.34)

If we introduce the integrals [175]

Ki,k =

∫ x2k

x2k−1

dλ

√
σ(λ)

λ− xi
. (6.1.35)

We can write
1

4π

2s∑

i=1

MiKi,k
∂xi

∂tj
= δjk, k = 1, · · · , s. (6.1.36)

These equations, together with (6.1.28), determine the derivatives ∂xi/∂tj . Other derivatives
with respect to the ’t Hooft parameters can be also expressed in terms of the derivatives of the
branch points. For example, it is easy to find that

∂Mi

∂tj
=

3

2
M

(2)
i

∂xi

∂tj
+

1

2

∑

k 6=i

Mi −Mk

xi − xk

∂xk

∂tj
. (6.1.37)

In the two-cut case, these quantities can be conveniently expressed in terms of elliptic functions,
since the spectral curve is elliptic. We define as in [172]

K =

∫ x2

x1

dz√
|σ(z)|

=
2√

(x1 − x3)(x2 − x4)
K(k), k2 =

(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
, (6.1.38)

and introduce the variables

t = t1 + t2, s =
1

2
(t1 − t2). (6.1.39)

One then finds for the derivatives of the endpoints xi of the cuts, solving the system of equations
(6.1.36)

∂xi

∂s
=

4π

MiK
1∏

j 6=i(xi − xj)
. (6.1.40)
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Another quantity which can be easily computed in the two-cut case in terms of elliptic functions
is F1(t1, t2) [175, 177]. It is given by

F (1) = − 1

24

4∑

i=1

lnMi−
1

2
lnK(k)− 1

12

∑

i<j

ln(xi−xj)
2+

1

8
ln(x1−x3)

2+
1

8
ln(x2−x4)

2. (6.1.41)

We can now apply the quantities assembled above to compute instanton amplitudes in multicut
models.

6.2 Multi-cut solutions as multi-instanton configurations

In this section, we derive expressions for multi-instanton configurations in terms of multi-cut
solutions. If one regards (6.1.8) as the matrix integral in a topological sector characterized by
the fillings N1, · · · , Ns, it is natural to consider the general partition function [120, 125, 172, 171]

Z =
∑

N1+···+Ns=N

ζN1
1 · · · ζNs

s Z(N1, · · · , Ns). (6.2.42)

The coefficients ζk can be regarded as θ parameters which lead to different θ vacua [125]. The
sum (6.2.42) can also be regarded as a matrix integral where the N eigenvalues are integrated
along the contour

C =
s∑

k=1

ζkCk, (6.2.43)

therefore the θ parameters give the relative weight of the different contours Ck [125, 171].
The different sectors appearing in (6.2.42) can be regarded as instanton sectors of the mul-

ticut matrix model. Indeed, let Z(N1, · · · , Ns) the partition function in one sector with filling
fractions NI , and Z(N ′

1, · · · , N ′
d) the partition function corresponding to a different choice of

filling fractions N ′
I . Then we have that

Z(N ′
1, · · · , N ′

d)

Z(N1, · · · , Nd)
∼ exp

[
− 1

gs

s∑

I=1

(NI −N ′
I)
∂F0(tI)

∂tI

]
(6.2.44)

This means that, if we pick a set of filling fractions (N1, · · · , Ns) as our reference point, the
other sectors can not be seen in gs perturbation theory. It is then natural to regard them as
different instanton sectors of the matrix model.

6.2.1 General structure

Notice that, depending on the value of the real part of the exponent appearing in (6.2.44),
the sectors with filling fractions (N ′

1, · · · , N ′
s) will be exponentially suppressed or exponentially

enhanced with respect to the reference configuration (N1, · · · , Ns). Let us consider for example
a cubic potential where N1 eigenvalues sit at the minimum of the potential and N2 eigenvalues
sit at the maximum. The sector with fillings (N1 − 1, N2 + 1), which can be regarded as the
one-instanton sector, will be more unstable than our reference configuration, and typically it will
be exponentially suppressed. However, the anti-instanton sector with fillings (N1 + 1, N2 − 1) is
more stable and it will be exponentially enhanced. Therefore, in multi-cut matrix models (and
in contrast to most field theories) instantons and anti-instantons have actions with opposite
signs. As we will see, this leads to some subtleties.

Let us then consider a reference configuration characterized by arbitrary filling fractions NI ,
I = 1, · · · , s, and then regard any other set of filling fractions N ′

I as instanton configurations.
In this case, the determination of the instanton expansion of the partition function amounts to
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a Taylor expansion around the configuration with tI = gsNI . For simplicity we will write down
the formulae in the two-cut case, and refer to [171] for the formal, general expressions. We start
from a reference configuration (N1, N2) and we write

Z =

N1∑

ℓ=−N2

ζnZ(N1 − ℓ,N2 + ℓ) = Z(0)(N1, N2)

N1∑

ℓ=−N2

ζℓZ(ℓ), (6.2.45)

where we denoted Z(0)(N1, N2) = Z(N1, N2), and

Z(ℓ) =
Z(N1 − ℓ,N2 + ℓ)

Z(0)(N1, N2)
(6.2.46)

Let us now assume that NI 6= 0, I = 1, 2. If we recall that tI = gsNI , and that

Z(N1, N2) = exp

[ ∞∑

g=0

g2g−2
s Fg(t1, t2)

]
(6.2.47)

we immediately find

Z(ℓ) = ζℓqℓ2/2e
−ℓ A

gs

[
1 − gs

(
ℓ∂sF1 +

ℓ3

6
∂3

sF0

)
+ O(g2

s)
]
. (6.2.48)

In this equation

A(tI) = ∂sF0(tI), q = exp
(
∂2

sF0

)
. (6.2.49)

A corresponds to the action of an instanton obtained by eigenvalue tunneling. Notice that, due
to (6.1.27), we can write A as an integral over the spectral curve,

A =

∫ x3

x2

y(x)dx. (6.2.50)

Since ℓ can be positive or negative, the expansion in (6.2.45) will be a Laurent expansion, in
which both positive and negative powers of ξ = exp(−A/gs) appear. The free energy will be as
well a Laurent series in ξ and ξ−1, but each coefficient in this series will be given by an infinite
sum of terms. This is the subtlety we were referring to.

6.2.2 Theta function resummation and background independence

It turns out that there is a rather natural way to resum these terms by using theta functions,
as has been done in a similar context in [172, 171]. As we mentioned above, in the general
case the partition function is a Laurent series in ξ = exp(−A/gs) and one has to be careful in
order to write the free energy as an instanton expansion, since the coefficient of ξℓ to the free
energy is the sum of an infinite number of contributions from the partition function, involving
all possible Z(n). Here we point out that one can actually resum this series by rewriting the
partition function as a theta series, as in [172, 171].

At large N1, N2, one can extend the sum of (6.2.45) from −∞ to ∞, and we obtain

Z = Z(0)(t1, t2)

∞∑

ℓ=−∞
ζℓqℓ2/2ξℓ

[
1 − gs

(
ℓ∂sF1 +

ℓ3

6
∂3

sF0

)
+ O(g2

s)
]
. (6.2.51)

If we exchange the sum over ℓ with the expansion in gs, we can write Z in terms of the theta
function

ϑ3(τ |z) =
∞∑

ℓ=−∞
qℓ2/2zℓ (6.2.52)
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where z = ζξ, as

Z = Z(0)(t1, t2)

{
ϑ3(τ |z) − gs

(
z∂zϑ3(τ |z) ∂sF1 +

1

6
(z∂z)

3ϑ3(τ |z) ∂3
sF0

)
+ O(g2

s)

}
. (6.2.53)

This theta function is well defined due to the fact that τ is indeed the modulus of an elliptic
curve, hence |q| < 1. We can now use Jacobi’s triple identity

ϑ3(τ |z) =
∞∏

n=1

(1 − qn)
∞∏

n=1

(1 + zqn−1/2)
∞∏

n=1

(1 + z−1qn−1/2) (6.2.54)

to write

log ϑ3(τ |z) = log φ(q) +
∞∑

ℓ=1

(−1)ℓ

ℓ

zℓ + z−ℓ

q
ℓ
2 − q−

ℓ
2

(6.2.55)

where

φ(q) =
∞∏

n=1

(1 − qn). (6.2.56)

The last two terms can also be written in terms of the quantum dilogarithm,

Liq2(z) =
∞∑

ℓ=1

(−1)ℓ

ℓ

zℓ

q
ℓ
2 − q−

ℓ
2

. (6.2.57)

This reorganization allows us to express the total free energy F = logZ in terms of an infinite
series which has formally the structure of an instanton/anti-instanton expansion,

F = F (0)(t1, t2) + log φ(q) +
∑

ℓ6=0

(−1)ℓ

ℓ(q
ℓ
2 − q−

ℓ
2 )
ζℓe−ℓA/gs

(
1 + O(gs)

)
. (6.2.58)

It is of course possible to write the gs corrections in a similar way. Notice that logφ(q) gives a
contribution to F1 coming from instanton/anti-instanton interactions in the partition function.
It would be interesting to verify that this expansion provides indeed the right instanton expansion
of the free energy in the two-cut case when we consider an arbitrary reference configuration, in
the same way that we check in the following sections the multi-instanton expansion around the
one-cut case.

6.2.3 Stabilizing multi-instantons

One way to avoid the subtleties related to exponentially enhanced transitions is to choose as a
reference configuration the most stable one, suppressing in this way anti-instanton configura-
tions. This is the natural choice if we are interested in computing a convergent matrix integral
in terms of a perturbative series in gs plus exponentially small corrections, since every other
configuration is exponentially suppressed. Let us consider for example the case in which the po-
tential has a unique minimum (like in Fig. 6.2). If we call A1 the cut surrounding this minimum,
the most stable configuration has filling fractions

(N, 0, · · · , 0) (6.2.59)

and it is a one-cut solution of the model. Any other configuration will be exponentially sup-
pressed with respect to this one, and a convergent matrix integral can be computed at large N
by considering the partition function Z(N, 0, · · · , 0) and then adding exponentially suppressed
contributions from the other configurations. In this way we compute a multi-cut configuration
as a sum of multi-instantons in the one-cut matrix model. This produces in particular general
formulae for multi-instanton amplitudes in the one-cut matrix model.
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Let us then calculate the partition function in this way, starting from a generic two-cut
matrix model. The total partition function is

Z =
N∑

ℓ=0

ζℓZ(N − ℓ, ℓ). (6.2.60)

We are interested in the ’t Hooft limit in which N → ∞ with t = gsN fixed, and ℓ≪ N . In this
limit the finite sum in (6.2.60) becomes an infinite sum and we can write

Z = Z(0)(t)
[
1 +

∞∑

ℓ=1

ζℓẐ(ℓ)
]
, (6.2.61)

where Z(0)(t) = Z(N, 0) is the total partition function of the one-cut matrix model, i.e. the
model in which the N eigenvalues sit at the minimum. and

Z(ℓ) =
Z(t− ℓgs, ℓgs)

Z(0)
. (6.2.62)

Like before, we can try to evaluate Z(ℓ) by expanding the numerator around gs = 0. There is
a subtlety, however, since the free energies Fg(t1, t2) are not analytic at t2 = 0. To understand
the origin of this nonanalyticity, we write

Fg(t1, t2) = FG
g (t2) + F̂g(t1, t2), (6.2.63)

where FG
g (t) are the genus g free energies of the Gaussian matrix model with ’t Hooft parameter

t, i.e.

FG
0 (t) =

1

2
t2
(
log t− 3

2

)
, FG

1 (t) = − 1

12
log t, · · · (6.2.64)

It is easy to see that F̂g(t1, t2) is analytic at t2 = 0, so the lack of analyticity of the matrix model
at t2 = 0 is due to FG(t2). This issue has been discussed in [55] in a slightly different context:
the Gaussian part of the matrix model free energy comes from the measure and it is not analytic
when the ’t Hooft parameter vanishes. The “regularized” F̂g(t1, t2) comes from resumming the
perturbation theory double-line diagrams with genus g and it is an analytic function.

Physically, the reason for the appearance of this singularity is that in this problem t2 = ℓgs

and ℓ is small compared to N . Therefore, it is not appropriate to treat the integration over the ℓ
eigenvalues from the point of view of the large N expansion. They should be integrated exactly.
This argument suggests that in order to regularize the computation we should subtract FG(t2)
from the total free energy and at the same time we multiply Z(ℓ) by the exact partition function
ZG

ℓ for the Gaussian matrix model with ℓ eigenvalues,

ZG
ℓ =

g
ℓ2/2
s

(2π)ℓ/2
G2(ℓ+ 1), (6.2.65)

where G2(ℓ+ 1) is the Barnes function,

G2(ℓ+ 1) =
ℓ−1∏

i=0

i!. (6.2.66)

The appropriate expression for the partition function around the ℓ-instanton configuration is
then

Z(ℓ) = ZG
ℓ exp

[∑

g≥0

g2g−2
s (F̂g(t− ℓgs, ℓgs) − Fg(t))

]
(6.2.67)
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We can now expand the exponent appearing in (6.2.67) around gs = 0, since it is analytic, and
we obtain, up to two-loops,

Z(ℓ) =
g

ℓ2/2
s

(2π)ℓ/2
G2(ℓ+ 1)ζℓq̂ℓ2/2e−ℓ bA/gs

{
1 − gs

(
ℓ∂sF̂1(t) +

ℓ3

6
∂3

s F̂0(t)
)

+ O(g2
s)

}
. (6.2.68)

In this equation

Â(t) = ∂sF̂0, q̂ = exp
(
∂2

s F̂0

)
. (6.2.69)

All the derivatives appearing in (6.2.68) and (6.2.69) are evaluated at t2 = 0, t1 = t.
Expression (6.2.68) is crucial for the rest of this paper. Notice that it is very similar to its

counterpart (6.2.48) in the arbitrary unstable configuration, but for the Gaussian prefactor and
the fact that F̂g is now regularized. Furthermore, notice that it gives a precise prediction for
amplitudes corresponding to arbitrary instanton number, with only input besides the instanton
action the regularized, two-cut free energies F̂g. Of course, this simply reflects our philosophy
that multi-instanton configurations can be expressed by multi-cut solutions. Another aspect of
Z(ℓ) is that it is not typical of a dilute instanton gas. In a dilute instanton gas one has that, at
leading order in the coupling constant,

Z(ℓ) ≈ 1

ℓ!

(
Z(1)

)ℓ
. (6.2.70)

If this was the case here, Zℓ would scale like g
ℓ/2
s , but it is clear from (6.2.68) that this is not

true: Zℓ scales like g
ℓ2/2
s . It is easy to see that this is due to the presence of the Vandermonde

determinant, and this in turn can be easily understood from a simple scaling argument. The
ℓ-instanton integral is roughly of the form

Z(ℓ) ≈
∫ ℓ∏

i=1

dxi∆
2(xi) exp

[
− 1

2gs
V ′′

eff(x0)
ℓ∑

i=1

(xi − x0)
2

]
. (6.2.71)

If we set ui = (xi − x0)/g
1/2
s we see immediately that the measure for the ℓ eigenvalues leads to

the factor g
ℓ/2
s typical of a dilute instanton gas. However, the Vandermonde determinant leads

to an extra power of g
ℓ(ℓ−1)/2
s . The instanton gas in a matrix model should be rather regarded

as a ultra-diluted instanton gas, since for small gs the partition function for ℓ instantons is even
more suppressed than in the usual instanton gas. Physically, the ultra-diluteness is of course
due to the eigenvalue repulsion.

In particular, we disagree with the analysis of multi-instantons in the one-cut matrix model
proposed in section 2 of [126]. In that paper the Vandermonde interaction between the instantons
is set to one, and the resulting integral factorized. This cannot be done without jeopardizing
the very scaling of Zℓ with gs.

Since we are expanding around the most stable configuration, Z has now a Taylor series in

ξ̂ = e−
bA/gs , (6.2.72)

and F will be well-defined as a formal series in powers of ξ̂. We can now compute the free energy
as

F = logZ =

∞∑

ℓ=0

ξ̂ℓF (ℓ)(z, gs), (6.2.73)

where

F (ℓ)(z, gs) = F
(ℓ)
0

(
1 +

∑

n

F (ℓ)
n gn

s

)
. (6.2.74)
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This series is appropriately written in terms of “connected” contributions

log
(
1 +

∑

ℓ≥1

ζℓZ(ℓ)
)

=
∑

ℓ≥1

ζℓZ
(ℓ)
(c) , (6.2.75)

where

Z
(ℓ)
(c) =

∑

s≥1

(−1)s−1

s

∑

k1+···+ks=ℓ

Z(k1) · · ·Z(ks) = Z(ℓ) − 1

2

ℓ−1∑

k=1

Z(ℓ−k)Z(k) + · · · . (6.2.76)

We then deduce that the ℓ-instanton contribution to the free energy of a one-cut matrix model
is given as

F (ℓ) = ζℓZ
(ℓ)
(c) . (6.2.77)

The explicit expression of F (ℓ) at two loops is

F (1) =
g
1/2
s√
2π
ζq̂1/2

{
1 − gs

(
∂sF̂1 +

1

6
∂3

s F̂0

)
+ O(g2

s)

}
,

F (ℓ) =
(−1)ℓ−1g

ℓ/2
s

ℓ(2π)
ℓ
2

ζℓq̂ℓ/2

{
1 − ℓgs

(
∂sF̂1 +

1

6
∂3

s F̂0 − q̂
)

+ O(g2
s)

}
, ℓ ≥ 2

(6.2.78)

This gives formulae for the ℓ-instanton free energy, up to two loop order, in an arbitrary one-cut
matrix model.

6.2.4 Recovering the one-instanton amplitude from the two-cut solution

We will now test our formulae (6.2.68) and (6.2.78) against other techniques for computing
multi-instanton effects. A first, obvious test that equation (6.2.78) has to pass is that at ℓ = 1,
it has to reproduce our result for the one-instanton amplitude found in the last chapter, (5.2.45).

The formula (6.2.78) involves the computation of derivatives of two-cut free energies, in the
limit in which one of the cuts shrinks down to zero size, i.e. t2 → 0. We will now derive explicit
expressions for these derivatives, and in particular we will check that the expression obtained for
F (1) agrees with the result of [71]. The limit t2 → 0 corresponds geometrically to a degeneration
of the curve in which the A2 cut shrinks to zero size, i.e. x3 → x4 = x0. The spectral curve of
the two-cut problem becomes

y(x) →M(x)(x− x0)
√

(x− x1)(x− x2) (6.2.79)

Notice that here M(x) is the moment function of the two-cut problem. The moment function
of the one-cut problem is then given by

M1(x) = M(x)(x− x0). (6.2.80)

We can now compute the quantities appearing in (6.2.78). First of all, the instanton action is
given by

Â(t) = lim
t2→0

(
∂sF0(t, t2) − ∂t2F

G
0 (t2)

)
. (6.2.81)

Both quantities appearing here are regular at t2 = 0, and from (6.1.27) one immediately finds

Â =

∫ x0

x2

M1(x)
√

(x− x1)(x− x2)dx, (6.2.82)

which is indeed the right formula in the one-cut case.
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We next compute

1

2
∂2

s F̂0(t, 0) =
1

2
lim
t2→0

(
∂2

sF0(t, t2) − ∂2
t2F

G
0 (t2)

)
= lim

x4→x3

(
πiτ − 1

2
log t2

)
. (6.2.83)

In the limit x4 → x3 the elliptic modulus appearing in (6.1.38) vanishes and both τ and log t2
diverge. In order to calculate this limit, as well as similar ones, we will set

ǫ = x4 − x3. (6.2.84)

As ǫ→ 0 the leading behavior of the elliptic modulus is given by

πiτ ∼ log
k2

16
, (6.2.85)

i.e. it diverges as log(ǫ). According to our general argument above, this divergence should
be removed by subtracting (log t2)/2. We computed the expansion of t2 in powers of ǫ. In
particular, we find that at leading order t2 ∼ ǫ2, so indeed the cancellation takes place. The
subleading order implies

q̂1/2 = lim
ǫ→0

k2

16
√
t2

=
x1 − x2

4

1√
M(x0)[(x1 − x0)(x2 − x0)]

5
2

. (6.2.86)

where we have set x3 = x0. Since
M(x0) = M ′

1(x0), (6.2.87)

(6.2.86) is in complete agreement with the formula obtained in [71] for the one-loop contribution
to F (1) (the factor 1/

√
2π appearing in the formula of [71] is already included in (6.2.78)).

We now proceed with the calculation of the quantities appearing at two-loops. This is more
involved, but leads to a highly nontrivial check of our expressions. We will first calculate ∂3

s F̂0.
This can be computed, in the full two-cut matrix model, as

∂3
sF0 = 2πi

∂τ

∂k2

∂k2

∂s
, (6.2.88)

where k2 is the elliptic modulus defined in (6.1.38). The first factor in the r.h.s can be immedi-
ately computed with the identities

dK

dk2
=

1

2k2k′2
(E − k′2K),

dK ′

dk2
= − 1

2k2k′2
(E′ − k2K ′),

(6.2.89)

where E(k) is the complete elliptic integral of the second kind (see Appendix C.1), and

k′2 = 1 − k2, K ′ = K(k′), E′ = E(k′). (6.2.90)

The second factor is more involved and can be computed from (6.1.40). The result, for a generic
two-cut matrix model, is

∂k2

∂s
=

2π
√

(x4 − x2)(x3 − x1)

K(k)

1

(x1 − x3)2(x2 − x4)2
1

M1 · · ·M4
∏

i<j(xi − xj)

·
(
M1M2M3(x1 − x2)

2(x1 − x3)
2(x2 − x3)

2

+M1M2M4(x1 − x2)
2(x1 − x4)

2(x2 − x4)
2 +M1M3M4(x1 − x3)

2(x1 − x4)
2(x3 − x4)

2

+M2M3M4(x1 − x3)
2(x1 − x4)

2(x3 − x4)
2
)

(6.2.91)
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Putting everything together we obtain

1

6

∂3F0

∂s3
=

π3
√

(x4 − x2)(x3 − x1)

6(x1 − x2)(x2 − x3)(x1 − x4)(x3 − x4)K3(k)

1

M1 · · ·M4
∏

i<j(xi − xj)

·
(
M1M2M3(x1 − x2)

2(x1 − x3)
2(x2 − x3)

2

+M1M2M4(x1 − x2)
2(x1 − x4)

2(x2 − x4)
2 +M1M3M4(x1 − x3)

2(x1 − x4)
2(x3 − x4)

2

+M2M3M4(x1 − x3)
2(x1 − x4)

2(x3 − x4)
2
)

(6.2.92)
This has a pole of order two in ǫ = x4 − x3. The divergent pieces in ǫ−2 and ǫ−1 should be
removed by subtracting −1/(6t2). Indeed, using again the ǫ–expansion of t2, we check that this
is the case, and we obtain the final limit

1

6
∂3

s F̂0(t, 0) = lim
ǫ→0

(
1

6
∂3

sF0(t, t2) −
1

6t2

)

=
1√

(x1 − x0)(x2 − x0)

{
8(x1 − x0)

2

(x1 − x2)2(x2 − x0)2M(x2)
+

8(x2 − x0)
2

(x1 − x2)2M(x1)(x1 − x0)2

+
4M ′(x0)

2

M(x0)3
− 3M ′′(x0)

2M(x0)2
− 17(x1 + x2 − 2x0)M

′(x0)

2(x2 − x0)M(x0)2(x1 − x0)

+
77x2

1 + 118x2x1 − 272x0x1 + 77x2
2 + 272x2

0 − 272x2x0

8M(x0)(x0 − x2)2(x1 − x0)2

}

(6.2.93)

A similar computation can be done in the case of F1. Explicit formulae for ∂sF1 in the full
two-cut model can be easily obtained with the results collected in the previous section. Again,
this is singular as ǫ→ 0, but the following limit turns out to be regular, as expected

∂sF̂1(t, 0) = lim
ǫ→0

(
∂sF1(t, t2) +

1

12t2

)

=
1√

(x1 − x0)(x2 − x0)

{
M ′(x0)

2

6M(x0)3
− (x1 + x2 − 2x0)M

′(x0)

24(x1 − x0)(x2 − x0)M(x0)2

+
19(x2

1 + x2
2) − 22x2x1 + 16x0(x0 − x1 − x2)

96(x1 − x0)2(x0 − x2)2M(x0)
− (3x1 − x2 − 2x0)(x2 − x0)

3(x1 − x2)2(x1 − x0)2M(x1)

+
(x1 − x0)(x1 − 3x2 + 2x0)

3(x1 − x2)2(x2 − x0)2M(x2)
− (x2 − x0)M

′(x1)

4(x1 − x2)(x1 − x0)M(x1)2

+
(x1 − x0)M

′(x2)

4(x1 − x2)(x2 − x0)M(x2)2
− M ′′(x0)

8M(x0)2

}
.

(6.2.94)

One can now easily check that
1

6
∂3

s F̂0(t, 0) + ∂sF̂1(t, 0) (6.2.95)

is precisely the two-loop contribution to F (1) (5.2.45) computed in [71] by different means.

6.2.5 Multi-instanton amplitudes from the transseries formalism

An alternative, independent method to derive multi-instanton amplitudes has been put forward
in [174]. It is based on the so-called transseries formalism, applied to the solution of the matrix
model in terms of orthogonal polynomials.
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Transseries formalism

Recall the formalism of orthogonal polynomials pn(λ), explained in detail e.g. in [118]. For a
matrix model with potential V (λ), the orthogonal polynomials pn are defined by

∫
dλ

2π
e
−V (λ)

gs pn(λ)pm(λ) = hnδnm, n > 0, (6.2.96)

where pn are normalized by requiring that pn ∼ λn+ · · · . It turns out that the partition function
(6.1.1) of the matrix model can be expressed in terms of orthogonal polynomials as

ZN =
N−1∏

i=0

hi = hN
0

N∏

i=1

rN−i
i . (6.2.97)

The coefficients

rn =
hn

hn−1
(6.2.98)

satisfy recursion relations depending on the shape of the potential. They also obviously satisfy

rn =
Zn−1Zn+1

Z2
n

. (6.2.99)

In the limit N → ∞, gs
n
N becomes a continuous variable that we will call z, and rn is promoted

to a function R(z, gs), for which we have the multi-instanton transseries ansatz

R(z, gs) =
∞∑

ℓ=0

CℓR(ℓ)(z, gs)e
−ℓA(z)/gs , (6.2.100)

where the ℓ-instanton coefficient can be written as

R(ℓ)(z, gs) = R
(ℓ)
0 (z)

(
1 +

∞∑

n=1

gn
sR

(ℓ)
n (z)

)
. (6.2.101)

The coefficients R
(ℓ)
n (z, gs) can be computed from the so-called pre-string equation, a difference

equation which can be derived as the continuum limit of the recursion relations satisfied by
the coefficients rn. For any polynomial potential, the pre-string equation can be written down
explicitly [118]. Once (6.2.100) found, we can extract the normalized free energy F̂ (z, gs) =
logZ − logZG from the continuum limit of (6.2.99), namely

e
bF (z+gs,gs)+ bF (z−gs,gs)−2 bF (z,gs) =

R(z, gs)

z
, (6.2.102)

or equivalently

F̂ (z + gs, gs) + F̂ (z − gs, gs) − 2F̂ (z, gs) = log(
R(z, gs)

z
). (6.2.103)

This implies for the coefficients F (ℓ)

e
−ℓ

bA(z+gs)
gs F̂ ℓ(z + gs, gs) + e

−ℓ
bA(z−gs)

gs F̂ ℓ(z − gs, gs) − 2e
−ℓ

bA(z)
gs F̂ ℓ(z, gs) = e

−ℓ
bA(z)
gs

[
R(ℓ)(z, gs)

R(0)(z, gs)

]

c

,

(6.2.104)

where
[

R(ℓ)(z,gs)

R(0)(z,gs)

]

c
is the connected piece

[
R(ℓ)(z, gs)

R(0)(z, gs)

]

c

=
∑

s≥1

(−1)s−1

s

∑

l1+···ls=l

R(ℓ1)(z, gs)

R(0)(z, gs)
· · · R

(ℓs)(z, gs)

R(0)(z, gs)

= cℓ,0(z)

(
1 +

∞∑

n=1

gn
s cℓ,n(z)

)
.

(6.2.105)
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Plugging (6.2.100),(6.2.101),(6.2.105) in (6.2.104) and expanding in gs, we obtain the follow-
ing relations:

F̂
(ℓ)
0 (z) =

1

4
cℓ,0(z)csch

2
(ℓA′(z)

2

)
,

F̂
(ℓ)
1 (z) = cℓ,1(z) +

c′ℓ(z)

cℓ(z)
coth

(
ℓA′(z)

2

)
− ℓA′′(z)

(
ℓ

2
coth2

(ℓA′(z)
2

)
+

1

4
csch2

(ℓA′(z)
2

))
,

F̂
(ℓ)
2 (z) = cℓ,2 +

c′ℓ,0
cℓ,0


cℓ,1 coth

(
ℓA′(z)

2

)
− ℓA′′(z)




coth
(

ℓA′′(z)
2

)

2
+

3 cosh
(

ℓA′′(z)
2

)

2 sinh3
(

ℓA′′(z)
2

)






− ℓA′′(z)cℓ,1

[
1

2
+

3

4
csch2

(
ℓA′′(z)

2

)]
+ c′ℓ,1 coth

(
ℓA′′(z)

2

)
+
c′′ℓ,0
cℓ,0




coth2
(

ℓA′′(z)
2

)

2
+

csch2
(

ℓA′′(z)
2

)

4




− ℓA(3)
coth

(
ℓA′′(z)

2

)

6

(
1 + 3csch2

(
ℓA′′(z)

2

))

+ ℓ2(A′′(z))2




coth2
(

ℓA′′(z)
2

)

8
+

13csch2
(

ℓA′′(z)
2

)

16
+

15csch4
(

ℓA′′(z)
2

)

16


 .

(6.2.106)

6.2.6 An explicit example: The cubic matrix model

We now use the above transseries formalism to compute the amplitudes Z(ℓ) independently for
the cubic matrix model off criticality, in order to test our results about multi-instantons from
section 6.2.3. A similar computation has been performed in [174] for the quartic model.

Consider the cubic matrix model with potential

V (M) = −M +
M3

3
. (6.2.107)

The recursion relation for the coefficients rn reads [118]

rn

(√
1 − rn − rn+1 +

√
1 − rn − rn−1

)
= gs

n

N
. (6.2.108)

The continuum limit of equation (6.2.108) is

R(t, gs)
(√

1 −R(t, gs) −R(t+ gs, gs) +
√

1 −R(t, gs) −R(t− gs)
)

= t. (6.2.109)

At lowest order, we find

2R
(0)
0 (t)

√
1 − 2R

(0)
0 (t) = t. (6.2.110)

It turns out to be convenient to express everything in terms of a new variable R0,0(t) ≡ r.
Expanding eqn. (6.2.109) and solving recursively, we can compute in this way the coefficients
Rl,n(r(t)). The first few read

R
(0)
2 (t) = − (9r − 5)

32(1 − 3r)4
R

(0)
4 (t) = −3

(
162r3 + 1017r2 − 1316r + 385

)

2048(3r − 1)9

R
(1)
0 (t) =

√
r

4
√

3r − 1
R

(1)
1 (t) =

9r2 − 12r + 8

192(1 − 3r)
5
2

.

(6.2.111)
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With these functions at hand, we can compute the free energies using (6.2.106) and compare
to our prediction (6.2.78). We find

F (1) = −
√
r

4(3r − 1)
5
4

(
1 − gs

8 + 228r − 423r2

192r(1 − 3r)
5
2

+ O(g2
s)

)

F (2) = − r

32(3r − 1)
5
2

(
1 + gs

−8 − 228r + 429r2

96r(1 − 3r)
5
2

+ O(g2
s)

)

F (3) = − r
3
2

192(3r − 1)
15
4

(
1 + gs

−8 − 228r + 429r2

64r(1 − 3r)
5
2

+ O(g2
s)

)
.

(6.2.112)

Indeed, these results show the predicted structure

F
(ℓ)
0 = (−1)ℓ−1

(
F

(1)
0

)ℓ

ℓ

F
(ℓ)
1

ℓ
= const., ℓ ≥ 2. (6.2.113)

In order to explicitly verify (6.2.78), we take it as an ansatz for the one-and two instanton

expressions F (1), F (2) and thereby extract the supposed quantities ∂sF̂1(t)+
1
6∂

3
s F̂0 and q̂ = e∂2

s
bF0 .

We find from the above expressions

q̂ = − r

32 (1 − 3r)
5
2

, (6.2.114)

(∂t2 − ∂t1) F̂1 =
−57r2 + 60r − 8

192r(1 − 3r)
5
2

(6.2.115)

and
(
∂3

t2 − 3∂t1∂
2
t2 + 3∂2

t1∂t2 − ∂3
t1

)
F̂0 =

−183r2 + 84r + 8

16r(1 − 3r)
5
2

(6.2.116)

which is precisely what one finds from our analytical expressions (6.2.86),(6.2.93) and (6.2.94),
specialized to the cubic model. This is a highly non-trivial test of of the formula (6.2.68).

6.3 Multi-instantons in 2d gravity

We can also test the formula (6.2.68) for the multi-instanton expansion against the double
scaling limit of the cubic matrix model. Along the way, we will state a prediction about a
hidden structure in solutions of the Painlevé I equation that is implicit in the multicut formula,
and check it against the loop expansion around higher-instanton solutions of Painlevé I obtained
by the transseries formalism.

The critical point of the cubic model is at

gs → 0, t→ tc =
2

3
√

3
, r → 1

3
. (6.3.117)

At this point, the functions R(ℓ) diverge, but the double-scaled variable

z
5
4 = (tc − t)

5
4 3

5
8 g−1

s (6.3.118)

is kept finite, and in this limit,

u(z) = (3R(z) − 1) g
− 2

5
s (6.3.119)

satisfies the Painlevé I equation

u(z)2 − 1

6
u′′(z) = z, (6.3.120)

as can be deduced from the difference equation (6.2.109).
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6.3.1 An all-instanton solution to the Painlevé I equation

In this case, the multi-instanton contributions can be obtained by finding a trans-series solution

u(z) =
∑

ℓ≥0

ζℓu(ℓ)(z). (6.3.121)

to the Painlevé I equation. One obtains a set of recursion equations for the u(ℓ)(z) of the form,

−1

6
(u(ℓ))′′ +

ℓ∑

k=0

u(k)u(ℓ−k) = 0. (6.3.122)

We will change variables to

z−
5
4 =

√
3x. (6.3.123)

Each u(ℓ)(x) has the structure

u(ℓ)(x) = u
(ℓ)
0 x

ℓ
2
− 2

5 e−ℓA/xǫ(ℓ)(x), (6.3.124)

where

A =
8

5
, ǫ(ℓ)(x) = 1 +

∞∑

k=1

u
(ℓ)
k xk. (6.3.125)

In (6.3.121) ζ parametrizes the nonperturbative ambiguity. In principle the value of u
(1)
0 is not

fixed by the recursion and it could be absorbed in ζ. However, if we choose ζ to be identical

to the nonperturbative ambiguity appearing in the matrix model, then the value of u
(1)
0 is fixed

and will be derived below.
It is convenient to reorganize the series in a different form [148]. We write

u =
∞∑

n=0

ǫn =
∞∑

n=0

xn/2−2/5e−nA/x
∞∑

k=0

u
(n)
k xk

= x−
2
5

∞∑

n=0

∞∑

k=0

ξnu
(n)
k xk

= u
(0)
k xk− 2

5 + unp(x, ξ),

(6.3.126)

where
ξ = x

1
2 e−A/x, (6.3.127)

and we have split u into the zero-instanton solution and the non-perturbative part unp(x, ξ).
This can be plugged into the string equation (6.3.121) and one finds the recursion relation

u
(n)
k =

3
1
5

2(1 − n2)

[
25

64

{(
n

2
− 12

5
+ k

)(
n

2
− 8

5
+ k

)
u

(n)
k−2 + (n− 3 + 2k)nAu

(n)
k−1

}

−
n−1∑

n′=1

∑

k′≥0

u
(n−n′)
k−k′ u

(n′)
k′ − 2

k−1∑

k′≥0

u
(n)
k′ u

(0)
k−k′

]
.

(6.3.128)

For the leading coefficients u
(n)
0 , n > 1, we find the recursion

u
(n)
0 =

3
1
5

2n2 − 2

n−1∑

n′=1

u
(n′)
0 u

(n−n′)
0 , (6.3.129)

with explicit solution

u
(n)
0 =

12n

4n3
4n+1

5

(u
(1)
0 )n. (6.3.130)
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The recursion (6.3.128) easily produces u(x, ξ) to very high orders in both loops and instantons.

From the coefficients u
(n)
k we can then obtain the free energy. It has the structure

Fds(z) = F (0)(z) + F np(z) =
∞∑

ℓ=0

ζℓF
(ℓ)
ds (z), (6.3.131)

where the F
(ℓ)
ds are functions of x of the form

F
(ℓ)
ds (x) = dℓx

ℓ/2e−ℓA/x
(
1 + fℓ,1x+ · · ·

)
, (6.3.132)

and

dℓ = −31/5u
(ℓ)
0

12ℓ2
, fℓ,1 = u

(ℓ)
1 − 5

8
+

1

8ℓ
. (6.3.133)

However, the Painlevé I equation can also be analyzed analytically, as it has been done in
[148]. One can write

unp(x, ξ) = x−
2
5

∞∑

k=0

xkfk(ξ). (6.3.134)

The differential equations for unp can then be translated in a series of differential equations for
the fk(ξ), and it turns out that these functions are rational [148]. We find for example

f0(ξ) =
12d1ξ

(1 + d1ξ)2
, f1(ξ) =

−3
2d1ξ + 35

2 d
2
1ξ

2 − 3d3
1ξ

3 − 1
5d

4
1ξ

4

(1 + d1ξ)3
. (6.3.135)

From unp = −∂2
zF

np, we find using the transseries ansatz F np(x, ξ) =
∑

k x
kF np

k (ξ)

f0(ξ) = −4 3
4
5 ξ∂ξ (ξ∂ξF

np
0 (ξ))

f1(ξ) = −1

2
3

4
5 ξ
(
4∂ξF

np
0 (ξ) + 5ξ∂2

ξF
np
0 (ξ) + 8∂ξ (ξ∂ξF

np
1 (ξ))

) (6.3.136)

and accordingly

F np
0 (ξ) = log (1 + d1ξ) , F np

1 (ξ) = −d1ξ(2d1ξ + 111)

192(d1ξ + 1)
, (6.3.137)

and so on.

6.3.2 Comparison with the multicut prediction

We now analyse the predictions the multicut matrix model makes for these solutions of the
string equation. The structure (6.2.68) leads, in the double scaling limit, to

Z
(ℓ)
ds =

xℓ2/2

(2π)
ℓ
2

G2(ℓ+ 1)ζℓCℓ2e−ℓA/x
[
1 − x

(
ℓφ1,1 +

ℓ3

6
φ0,3

)
+ O(g2

s)
]
. (6.3.138)

In this equation, C, φ1,1 and φ0,3 are numbers which can be obtained from the double-scaling
limit of th quantities q̂1/2, ∂sF̂1 and ∂3

s F̂0 that we computed in section 6.2.4. We find

C =
−i

√
2

8
√

3
, φ1,1 =

17

192
, φ0,3 =

47

16
. (6.3.139)

Notice that
C√
2π

= − 1

3
3
4 · 4

S (6.3.140)
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where

S = i
3

1
4

2
√
π

(6.3.141)

is the Stokes parameter for the Painlevé I equation (6.3.121) across the Stokes line arg z = 0. This
is precisely what we obtain from comparing the transseries solution at one and two instantons to
the ansatz (6.3.138) and solving for the unknowns C, φ1,1 and φ0,3. All higher instanton sectors
confirm this structure.

One thing that we can verify with little effort is the value of C. Indeed, we can see that the
recursion relations obtained from Painlevé I, together with the structure (6.3.138) coming from
the multicut analysis, fix the value of C, and in particular the value of the Stokes parameter.
This is not something to be expected, since the Stokes parameter encodes nontrivial information
about the differential equation (see for example [179]). Let us see how this works. Looking at

Z
(1)
ds and comparing (6.3.138) with (6.3.132) and (6.3.133) we find,

C = −
√

2π
31/5

12
u

(1)
0 . (6.3.142)

Let us now look at Z
(2)
ds . The string equation gives,

Z
(2)
ds = e−2A/xx2(d2f2 + d2

1f1) + O(x3) = −

(
u

(1)
0

)2

4608 · 33/5
e−2A/xx2 + O(x3). (6.3.143)

On the other hand, from (6.3.138) we find that the coefficient of x2 in Z
(2)
ds should be

1

2π
C4. (6.3.144)

Comparing both values and using (6.3.142) we obtain an equation for
(
u

(1)
0

)2
which gives

(
u

(1)
0

)2
= −33/5

4π
. (6.3.145)

This determines C, and in turn S, in perfect agreement with the result obtained from the
double-scaling limit of the cubic matrix model.

The structure (6.3.138) predicted by the multi-cut analysis of the multi-instanton amplitude
is not at all manifest from the analysis we have made of the string equation. By exponentiating
the free energies, we find for the total partition function

1 +
∑

ℓ≥1

ζℓZ
(ℓ)
ds = exp

[ ∞∑

ℓ=1

ζℓF
(ℓ)
ds

]
, (6.3.146)

or, more explicitly,

Z
(ℓ)
ds =

∑

s≥1

1

s!

∑

ℓ1+···+ℓs=ℓ

F
(ℓ1)
ds · · ·F (ℓs)

ds (6.3.147)

Since F
(ℓ)
ds goes like xℓ/2, one expects from (6.3.147) that the Z

(ℓ)
ds are generically proportional

to xℓ/2. But (6.3.138) implies that in fact Z
(ℓ)
ds goes like xℓ2/2. This is because, as we explained

above, the instanton gas is ultra-dilute. Hence there must be nontrivial cancellations among the
first ℓ(ℓ − 1)/2 coefficients of the right-hand side of (6.3.147). We can now check this against
the trans-series solution of the string equation.

The first thing one can verify analytically is that the term of order xℓ/2 in Z
(ℓ)
ds vanishes. But

this is in fact a consequence of

uℓ
0 =

(−1)ℓ−1

n
(u1

0)
ℓ, (6.3.148)
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which follows from the explicit solution to the recursion (6.3.129).
Furthermore, consider the nonperturbative partition sum

Znp = exp F np, (6.3.149)

which we write as
Znp =

∑

k≥0

xkZk(ξ) = 1 +
∑

k≥0

∑

n≥1

xkξnzk,n. (6.3.150)

Based on the multicut prediction (6.3.138), we have the conjecture that for each n, the starting
power of x is n2/2. But the total power of x in the expression above, for each fixed n, is

xk+n/2 (6.3.151)

Our conjecture says that zk,n must vanish for

k +
n

2
<
n2

2
⇒ k <

n(n− 1)

2
. (6.3.152)

Therefore, for fixed k, as soon as n is such that the above inequality holds, zk,n vanish. In other
words, zk,n is only different from zero for the finite number of ns such that

n(n− 1)

2
≤ k. (6.3.153)

Let us denote by nm(k) the maximum number satisfying this bound. We have, for example

nm(0) = 1, nm(1) = 2, nm(2) = 2, · · · . (6.3.154)

We then conclude that

Zk(ξ) = δk0 +
∑

n≥1

zk,nξ
n = δk0 +

nm(k)∑

n=1

zk,nξ
n (6.3.155)

is a polynomial whose degree is nm(k). Since

Z0 = eF0 = 1 + d1ξ (6.3.156)

which is indeed a polynomial of degree 1, we confirm the conjecture for k = 0. Similarly, we find
using the F np(ξ) computed above,

Z1 = − 1

192
d1ξ(2d1ξ + 111)

Z2 =
d1ξ(1048d1ξ + 19299)

24576

Z3 = −d1ξ
(
160d2

1ξ
2 + 11705160d1ξ + 114670521

)

70778880

Z4 =
d1ξ

(
552320d2

1ξ
2 + 12466492352d1ξ + 79686828333

)

18119393280

Z5 = −d1ξ
(
331932480d2

1ξ
2 + 3646348240864d1ξ + 17179325749341

)

1159641169920
.

(6.3.157)

The above Zk are polynomials in ξ of the right order nm(k). Furthermore, one can easily recover
from these expansions in ξ at fixed order in gs the converse expansions in gs at fixed instanton
number and check that they reproduce the form involving the Barnes function (6.2.68).
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Conclusion

In this chapter, we have extended some of the results of the previous one to the multi-cut/multi-
instanton case. We have found a generic expression for the ℓ–instanton amplitude based on the
identification of the higher instanton sectors with multicut solutions with the appropriate filling
fractions. We performed several highly nontrivial checks of our general formula. In particular,
it is correct for the cubic matrix model and in the double-scaling limit at the critical point.
In both these cases, we compute higher-instanton amplitudes independently using a transseries
formalism put forward in [174].
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Part IV

CONCLUSION
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In this thesis, we have shed some light on various aspects of topological string theory. How-
ever, much remains yet to be done.

Over the last years, there have been many important new developments concerning the com-
putational accessibility of topological amplitudes. The method of direct integration presented
in chapter 2 has contributed to simplifying the task. Furthermore, in a remarkable tour de force
the amplitudes have been computed on the quintic up to genus 51 [69]. Yet, the problem of
completely solving the topological string even on simple compact Calabi-Yau manifolds remains
open. A promising approach might be extending the formalism of [73] to exploit the full diffeo-
morphism symmetry group to constrain the solution, analogously to the approach that led to
the full solution in the open case [180]. Along the way, this should also lead to a better under-
standing of nonperturbative aspects. It may also well be possible to push further the formalism
developed in chapter 2. In section 2.5 we have introduced a set of holomorphic automorphic
forms on the Enriques moduli space which might be enough to parametrize the holomorphic
ambiguity. Using these forms, the boundary conditions obtained from the field theory and the
fiber limits, and some extra information coming for example from Gromov–Witten theory, one
might be able to obtain the topological string amplitudes at higher genus.

The results in chapter 2 have in the meantime been applied to the microscopic counting
of degrees of freedom for 5d spinning black holes [181], as suggested in [182]. Furthermore, as
we have explained in section 4.2, the holomorphic anomaly equations can be rigorously derived
within the matrix model. It would therefore be interesting to combine the results of chapter 2
with those of chapters 5 and 6. One main advantage of the matrix model formulation of the
B-model is that the full recursive equations for the matrix model amplitudes –even though they
imply the holomorphic anomaly equations– are completely determined and don’t give rise to
any holomorphic ambiguities. Hence, the two approaches combined could provide an efficient,
completely determined method to solve the topological string anywhere in moduli space.

From a mathematical point of view, a concrete proof of the generalized integrality conjec-
tures related to Gromov-Witten, Gopakumar-Vafa and Donaldson-Thomas invariants would be
desirable, as proofs are generally rare treats in string theory and would put many ideas on
firmer ground. Also, proving these conjectures beyond the string motivated cases would proba-
bly involve a deeper understanding of the corresponding duality web. A rigorous mathematical
framework for computing Gromov-Witten invariants along the fiber of certain K3-fibrations has
been established in [62, 183]. With these techniques, one might be able to prove some of the
physical predictions made in chapter 3 for Calabi-Yau manifolds of this type.

The matrix model formulation of the B-model and the implications for nonperturbative
computations offer many fascinating directions of future research. For instance, one model
with a known matrix model description which we have not studied in chapter 5 is topological
string theory on the resolved conifold. This theory can be described by a Hermitian matrix
model with a potential of the form (log x)2, which has a global minimum at x = 1 and no
saddles [184]. In principle, the way to address the large–order behavior in such cases is to
deform the model, in order to obtain an unstable potential with a calculable one–instanton
amplitude. The original potential is then recovered by analytic continuation [156, 50]. However,
we have not found a suitable deformation which allows one to find the large–order behavior
for this potential. In fact, we would face the same problems if we were to address the large–
order behavior of the perturbation series for the ground–state energy of a (log x)2 potential
in quantum mechanics. This is a situation which, to the best of our knowledge, has also not
been addressed in the literature. Furthermore, a more geometric formulation of the instanton
contribution computed in this paper, along the lines of the approach in [33], would be desirable.
Although our expressions only depend on the form of the spectral curve, in principle they are
only suitable for a genus–zero curve written in the form (4.1.20).

The most pressing problem is to extend the large-order analysis in chapter 5 to more com-
plicated topological string models, with multi-cut matrix model descriptions. As we have shown
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explicitly in chapter 6, the general multi–cut model with fixed filling fractions can be regarded
as a matrix model in a generic, fixed multi–instanton sector, and by studying nearby filling
fractions one obtains a general framework to address multi–instanton effects in matrix models.
Some aspects of this framework were already discussed in [172], albeit in a different context.
These results should now be applied to topological string theory. The effects we computed in
chapter 6 should obviously correspond to nonperturbative effects in string theories that have
already been found to admit a matrix model description, such as local P2 or local P1 ×P1, both
studied in [34]. In particular, the latter geometry has a special limit where it leads to pure SU(2)
Seiberg-Witten theory [88]. It has already been observed in [185] that SU(2) Seiberg-Witten
theory should indeed admit a matrix model description. As we have done in the previous chap-
ter, the results of the instanton computation could be compared to the asymptotic behaviour of
these theories. This would allow for computation of nonperturbative effects on new and inter-
esting toric backgrounds, such as the case of local P2, and would also be an important step in
further strengthening our understanding of nonperturbative effects in topological string theory.
It might even give hints for the future study of these effects in compact backgrounds.

A related aspect is that the topological string models we have studied in chapter 5 are not
very conventional, since they correspond to toric diagrams with intersecting lines, and this is
reflected in the fact that their spectral curve is pinched. One could smooth out these models by
resolving the singularity, obtaining in this way a spectral curve of genus one with two cuts. In
the context of noncritical string theory, this process is interpreted as adding ZZ branes to the
background [136]. It would be very interesting to see if this leads to some geometric transition
from the local curve backgrounds to other topological string backgrounds.

Nonperturbative effects of order e−N can also be found in models defined by sums over
partitions, such as two–dimensional Yang–Mills theory [186, 187]. These effects have been used
in holographic descriptions of topological string theory [188, 189]. It would be interesting to
see if there is any relation between this description and the one we have proposed in terms of
matrix models.

Most of all, it would be desirable to promote the matrix-model inspired formalism to a full
duality, in the sense of associating not only a spectral curve and a formalism to generate am-
plitudes, but a well-defined matrix model –including a potential– to a given B-model geometry.
It is however not yet clear if such a potential always exists and if it is unique. Furthermore,
the nonperturbative effects that we identified in the one-cut case from the traces they leave in
the asymptotics of the perturbation series deserve further investigation. Eventually, one should
find a full nonperturbative description of the topological string, possibly involving hypermul-
tiplets. This might imply merging our study with the effects investigated by [165]. For the
more complicated geometries described by two-cut matrix models, the precise asymptotics and
corresponding nonperturbative effects have yet to be identified.

Another puzzling issue related to the multicut models is the interplay between background
independence, holomorphic anomaly and modularity. As Witten has observed a long time ago
[173], there is a close analogy between background independence and the holomorphic anomaly.
In turn, as we have seen in chapter 2, the topological string free energies are modular functions.
This structure is again related to the holomorphic anomaly, since modularity or holomorphicity
is but a matter of polarization [73]. It would be interesting to check explicitly that our multi-
cut/multiinstanton formalism in the theta-resummation satisfies background independence, and
to understand the implications for the modular structure of the amplitudes.

The issue of nonperturbative definitions in terms of gauge theories is obviously central not
only in topological strings, but in string theory as a whole. If the AdS-CFT conjecture could
be proved, possibly along the lines of [190, 55], one could comfortably take the well-defined
holographic gauge theory as a nonperturbative definition of string theory. However, even then
a better understanding of the full duality map would still be necessary, and one would need to
find holographic descriptions for more general backgrounds.
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Summarizing, many aspects of the delicate interplay of topological strings, matrix models and
gauge theories clearly remain to be understood. Still, in spite of all these unsolved problems,
the topological string has been a source of much challenge, surprise and joy; at least for the
author, who personally believes it can yet provide many more hints and clues about the sense
in which string theory is a theory of nature.
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Appendix A

Heterotic techniques

A.1 Lattice reduction

In [41], Borcherds developed the technique of lattice reduction to compute integrals of the form

ΦΓ =

∫

F

d2τ

τ2
2

FM (τ)ΘM (τ, γ1, γ2;P, φ), (A.1.1)

where M is a lattice of signature (b+, b−), ΘM (τ, γ1, γ2;P, φ) is the generalized Siegel theta
function with projection P and polynomial insertion φ as defined in appendix C.1 and FM is a
(quasi) modular form of weight (− b−

2 −m−,− b+

2 −m+) that can be constructed from a (quasi)

modular form F with weights ( b+

2 +m+ − b−
2 −m−, 0) as FM = τ

b+

2
+m+

2 F . The integral (A.1.1)
can be decomposed into a sum over a reduced lattice K of signature (b+ − 1, b− − 1) and a new
integral ΦK involving K instead of M ([41], Theorem 7.1). Iterating this procedure, on arrives
at an integral ΦKf

with a lattice Kf of signature (b+ − b−, 0) respectively (0, b− − b+) that can
in principle be solved using standard methods.
The reduction steps proceed as follows. Choose two vectors z, z′ in M with z primitive and
(z, z) = 0, (z, z′) = 1. The reduced lattice is then defined as K = M ∩ z⊥

Zz
. We also define

reduced projections P̃ in a natural way:

P̃±(λ) = P±(λ) − (P±(λ), z±)

z2
±

z±. (A.1.2)

We can then expand the polynomial φ in terms of (λ, z±) as

φ(P (λ)) =
∑

h+,h−

= (λ, z+)h+
(λ, z−)h−

φh+,h−(P̃ (λ)). (A.1.3)

The statement of Borcherds’ theorem is then that with these conventions, z2
+ sufficiently small

and P̃+(λK) 6= 0, ΦM is given by

√
2

|z+|
∑

h≥0

∑

h+,h−

h!(−z2
+/π)h

(2i)h++h−

(
h+

h

)(
h−

h

)∑

j

∑

λK∈K

(−∆)j(φ̄h+,h−)(P̃ (λ))

(8π)jj!

·
∑

l,t

q
l(λK ,(−z′+

z+

2z2
+

+
z−
2z2

−
))
c(λ2

K , t)l
h++h−−2h

(
l

2|z+||P̃+(λK)|

)h−h+−h−−j−t+ b+

2
+m+−3/2

Kh−h+−h−−j−t−b+/2+m+−3/2

(
2πl|P̃+(λK)|

|z+|

)
.

(A.1.4)
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For P̃+(λ) = 0, the last two factors have to be replaced by the analytic continuation at ǫ = 0 of

(
πl2

2z2
+

)h−h+−h−−j−t+b+/2+m+−3/2−ǫ

Γ(−h+ h+ + h− + j + t− b+/2 −m+ + 3/2 + ǫ). (A.1.5)

A.2 The antiholomorphic dependence of the heterotic F (g)

In this appendix we discuss the antiholomorphic dependence of F (g)(t, t̄) in heterotic theories.
In section A.2.1, we show how the complicated result of the heterotic computation of the F (g)

in the STU-model given in [29] can be simplified, along the lines of [41]. In section A.2.2 we

write down the result for F
(g)
E on the Enriques Calabi-Yau and derive (2.4.110).

A.2.1 A simple form for F (g) in the STU-model

In [29], an explicit expression for the holomorphic and antiholomorphic dependence of the
topological amplitudes in the fiber limit of the STU-model was found. This expression is
obtained from a one–loop computation in the dual heterotic theory, given by the integral
(2.4.94), which is then performed by using the technique of lattice reduction [41]. One finds

that F (g) = F
(g)
deg + F

(g)
ndeg, where [29]

F
(g)
deg = 4π2U1δg,1 +

22g−1π4g−3

T 2g−3
1

g∑

l=0

cg(0, l)
l!

πl+3

(
T1

U1

)l

ζ(2(2 + l − g)), (A.2.6)

F
(g>1)
ndeg = 4π2g−2(−1)g−1

∑

r 6=0

g∑

l=0

2g−2∑

h=0

[g−1−h/2]∑

j=0

s∑

a=0

cg(r
2/2, l)

(2π)l(2g − 2)!

j!h!(2g − h− 2j − 2)!

× (−1)j+h

2j+a

(s+ a)!

a!(s− a)!
(sgn (Re(r · y))h 1

(T1U1)l
(Re(r̂·y))l−j−a Li3+a+j+l−2g(e

−r̂·y)

+
2π3g−3cg(0, g − 1)

(T1U1)g−1

g−1∑

s=0

(−1)s (2g − 2)!

s!(g − 1 − s)!
ψ(

1

2
+ s)

+

g∑

l=0
l 6=g−1

4l+gπ2g+l−5/2cg(0, l)
ζ(3 + 2(l − g))

(T1U1)l

×
g−1∑

s=0

(−1)s22(s−2g)+5 (2g − 2)!

(2s)!(g − 1 − s)!
Γ
(3

2
+ s+ l − g

)
.

(A.2.7)

We refer to F
(g)
deg, F

(g)
ndeg as the degenerate and nondegenerate contributions, respectively. Also,

s := |2g− 2− h− j − l− 1/2| − 1/2; y = (T,U), the complex norm is defined as r2 = 2r1r2,
and r̂·y ≡ |Re(r · y)| + iIm(r · y). The coefficients cg(m, l) can be obtained from the expansion

E4E6

η24
P̂g =

∑

m∈Q

∑

l≥0

cg(m, l)q
mτ−l

2 , (A.2.8)

where P̂g are defined by

(
2πη3λ

ϑ1(λ|τ)

)2

e
−πλ2

τ2 =
∞∑

g=0

(2πλ)2gP̂g(τ, τ̄). (A.2.9)
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Note that these P̂g(τ, τ̄) are the modular, almost holomorphic extensions of the Pg(τ) defined

in (2.4.99), that is, P̂g is obtained from Pg by replacing E2 → Ê2. The only antiholomorphic

dependence in P̂g thus lies in the Ê2(τ, τ̄). Using the explicit expressions for P̂g given in [79],
one can show that independently of the specific model,

cg(m, l) =
(−1)l

l!(4π)l
cg−l(m), (A.2.10)

where cg(m) are defined analogously to (2.4.98), that is

∑

n

cg(n)qn = Pg(q)
E4E6

η24
. (A.2.11)

In what follows, we will systematically express everything in terms of the coefficients cg(m).
It turns out that (A.2.7) can be dramatically simplified. We will need the identity:

∑

j

(−1)j

(
C

j

)(
A− 2j + C −B − 1

A− 2j

)
=
∑

j

(−1)j

(
C

A− j

)(
B

j

)
(A.2.12)

This is valid for any A,B,C ∈ Z, see [41] for a proof. A special case of the above formula is the
following. Let C, l and m+ − h+ be integers such that 0 ≤ l < C < m+ − h+ − l. Then,

∑

j

(−1)j(m+ − h+ + C − 2j − 1 − l)!

j!(m+ − h+ − 2j)!(C − j)!
= 0.

The proof of this statement is easy. Set B = l, A = m+ − h+ in (A.2.12) to obtain

∑

j

(−1)j (m+ − h+ + C − 2j − 1 − l)!C!

j!(m+ − h+ − 2j)!(C − j)!(C − 1 − l)!
=
∑

j

(
C

m+ − h+ − j

)(
l

j

)
. (A.2.13)

Since C > l ≥ 0, any non-vanishing term on the right-hand side must fulfill m+−h+−C ≤ j ≤ l,
in contradiction with the assumption C < m+ − h+ − l.

We also have the following three additional nontrivial identities. First of all, let s := |2g −
2 − h− j − l − 1/2| − 1/2. Then,

2g−2∑

h=0

C∑

j=0

(2g − 2)!

22g−2

(s+ C − j)!(−1)C−j

l!h!j!(2g − 2 − h− 2j)!(s− C + j)!(C − j)!
(A.2.14)

=

{ (
2g−3−l

C

)
1

(l−C)! C ≤ min(l, 2g − 3 − l)

0 otherwise.
(A.2.15)

This is valid for any pair of positive integers g, l. The second identity reads,

g−1∑

s=0

(−1)s (2g − 2)!

s!(g − 1 − s)!
ψ
(
s+

1

2

)
= −2(2g−2)(g − 2)!. (A.2.16)

The final identity we will need is

g−1∑

s=0

(−1)l+s22(s−2g)+5 (2g − 2)!

(2s)!(g − 1 − s)!
Γ
(3

2
+ s+ l− g

)
=

(−1)g−1(2g − 3 − l)!

(2g − 3 − 2l)!

√
π4−l. (A.2.17)

which is valid for any l ∈ N, l < g − 1. Making use of (A.2.13) and (A.2.15), we can convert
the sums over h, j, a in (A.2.7) into a single one over C = j + a = {0, · · · , l}. Then, (A.2.16)
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and (A.2.17) can be used to simplify the second respectively third term in (A.2.7). The sum
over r can be restricted for all g ≥ 3 to a sum over r for which Re(r · y) < 0, or equivalently to
a sum over positive r and a finite number of boundary cases. At genus 2, however, there is a
contribution from Re(r · y) > 0, it reads [29]

c0(r
2/2)

16T1U1
Li3(e

−r·y). (A.2.18)

We can then write down a simplified expression for the nondegenerate part of F (g) in the STU
model:

F
(g>1)
nd,STU

=

g−1∑

l=0

min(l,2g−3−l)∑

C=0

∑

r>0

(
2g−l−3

C

)

(l − C)!2C

(−Re(r · y))l−C

(2T1U1)l
cg−l(

r2

2
)Li3−2g+l+C(e−r·y)

+
22

2g(g − 1)

1

(2T1U1)g−1
+

g−2∑

l=0

cg−l(0)

l!(4T1U1)l
ζ(3 + 2(l − g))

(2g − 3 − l)!

(2g − 3 − 2l)!
,

(A.2.19)

where we also have used the fact that in the STU model, c1(0) = −22, and we have removed
an overall prefactor of 4(2πi)2g−2 to agree with the normalization of the topological string
amplitudes.

A.2.2 Application to the Enriques Calabi-Yau

The above expressions have to be adapted slightly for the Enriques Calabi-Yau. We only consider
here the geometric reduction suited to the large radius limit. As shown in [79], the polylogarithm

is replaced by Lim(x) → 2mLim(x
1
2 ) − Lim(x), and the norm of the reduced lattice is doubled.

We also replace the quantity 2T1U1 appearing in the STU-model by Y = e−K as in (2.4.81),
and the coefficients cg(m) are now defined by (2.4.98). There is a new important simplification:
c0(r

2) and cg>1(0) vanish, and thus there is no contribution from negative r at any genus g > 1,
since (A.2.18) becomes

c0(r
2)

8Y

(
8Li3(e

−r·y) − Li3(e
−2r·y)

)
= 0. (A.2.20)

Furthermore, the degenerate contribution (A.2.6) and the last term in (A.2.7) vanish for all

g > 1, while c1(0) = 4, and the full F
(g)
E (t, t̄) for the Enriques reads

F
(g>1)
E (t, t̄) =

g−1∑

l=0

min(l,2g−3−l)∑

C=0

∑

r>0

(
2g−l−3

C

)

(l − C)!2C

(−2Re(r · t))l−C

Y l
cg−l(r

2)

·
(
23−2g+l+CLi3−2g+l+C(e−r·t) − Li3−2g+l+C(e−2r·t)

)
− 1

2g−2(g − 1)

1

Y g−1
.

(A.2.21)

Using
Re(ta)∂taLin(e−r·t) = −Re(r · t)Lin−1(e

−r·t), (A.2.22)

this can be cast into the following recursive form:

F
(g)
E (t, t̄)

=

g−1∑

l=0

min
(l,2g−3−l)∑

C=0

(2g − 3 − l)!

(2g − 3 − l − C)!(l − C)!C!2l

(ta1 + t̄a1) · · · (tal−C + t̄al−C )∂a1 · · · ∂al−C
F (g−l)(t)

Y l

− 1

2g−2(g − 1)Y g−1
.

(A.2.23)
Notice that this exhibits the structure of the antiholomorphic amplitudes written down in [73].
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Appendix B

Worldsheet instanton tables and

topological amplitudes

B.1 Instanton tables and heterotic-type II duals

Table B.1 lists the dual K3-fibrations for the ZN -orbifolds defined in table 3.1 [105]. Tables

Type Group (nh, nv) CY weights

Z2, 3 + 8 WL SU(4) × E′
8 × U(1)4 (167, 15) (1, 1, 12, 16, 18, 20)

Z2, 2 + 8 WL SU(3) × E′
8 × U(1)4 (230, 14) (1, 1, 12, 16, 18)

Z2, 1 + 8 WL SU(2) × E′
8 × U(1)4 (319, 13) (1, 1, 12, 16, 30)

Z2, 0 + 8 WL E′
8 × U(1)4 (492, 12) (1, 1, 12, 28, 42)

Z3, 3 + 6 WL SU(4) × E′
6 × U(1)4 (129, 13) (1, 1, 6, 10, 12, 14)

Z3, 2 + 6 WL SU(3) × E′
6 × U(1)4 (168, 12) (1, 1, 6, 10, 12)

Z3, 1 + 6 WL SU(2) × E′
6 × U(1)4 (221, 11) (1, 1, 6, 10, 18)

Z3, 0 + 6 WL E′
6 × U(1)4 (322, 10) (1, 1, 6, 16, 24)

Z4, 3 + 4 WL SU(4) × SO(8)′ × U(1)4 (123, 11) (1, 1, 4, 8, 10, 12)
Z4, 2 + 4 WL SU(3) × SO(8)′ × U(1)4 (154, 10) (1, 1, 4, 8, 10)
Z4, 1 + 4 WL SU(2) × SO(8)′ × U(1)4 (195, 9) (1, 1, 4, 8, 14)
Z4, 0 + 4 WL SO(8)′ × U(1)4 (272, 8) (1, 1, 4, 12, 18)

Z6, 3 + 0 WL SU(4) × E′
6 × U(1)4 (139, 7) (1, 1, 2, 6, 8, 10)

Z6, 2 + 0 WL SU(3) × E′
6 × U(1)4 (162, 6) (1, 1, 2, 6, 8)

Z6, 1 + 0 WL SU(2) × E′
6 × U(1)4 (191, 5) (1, 1, 2, 6, 10)

Z6, 0 + 0 WL E′
6 × U(1)4 (244, 4) (1, 1, 2, 8, 12)

Table B.1: The chains of heterotic-type II duals studied in [105]

B.2–B.15 give instanton numbers at g = 0, · · · 4 for the Z2,3,4,6 orbifolds defined in table 3.1.

g p2

2 = −1 0 1 2 3 4 5 6

0 -2 960 56808 1364480 20920140 240357888 2244734960 17884219392

1 0 4 -1908 -119360 -3077460 -50495040 -617959240 -6118785792

2 0 0 -6 2848 185694 5045376 87240260 1122823296

3 0 0 0 8 -3780 -255792 -7276660 -131766240

4 0 0 0 0 -10 4704 329630 9782592

Table B.2: Z2, 8 Wilson lines, dual to X1,1,12,28,42

170



g p2

2 = −1 −1
4 0 3

4 1 7
4 2 11

4 3 15
4

0 -2 176 612 12672 30240 320976 661696 5031040 9509328 58372272

1 0 0 4 -352 -1212 -26400 -64136 -719392 -1509700 -12091776

2 0 0 0 0 -6 528 1804 40832 100422 1173600

3 0 0 0 0 0 0 8 -704 -2388 -55968

4 0 0 0 0 0 0 0 0 -10 880

Table B.3: Z2, 8+1 Wilson lines, dual to X1,1,12,16,30

g p2

2 = −1 −1
3 0 2

3 1 5
3 2 8

3 3 11
3

0 -2 90 432 5904 18252 142146 365600 2144016 4936140 24107760

1 0 0 4 -180 -852 -12348 -39080 -320436 -844140 -5189400

2 0 0 0 0 -6 270 1264 19152 61578 524952

3 0 0 0 0 0 0 8 -360 -1668 -26316

4 0 0 0 0 0 0 0 0 -10 450

Table B.4: Z2, 8+2 Wilson lines, dual to X1,1,12,16,30

g p2

2 = −1 −1
2 −3

8 0 1
2

5
8 1 3

2
13
8 2 5

2

0 -2 28 64 304 2144 3392 11412 52144 75136 211040 781312

1 0 0 0 4 -56 -128 -596 -4456 -7168 -24632 -117376

2 0 0 0 0 0 0 -6 84 192 880 6880

3 0 0 0 0 0 0 0 0 0 8 -112

Table B.5: Z2, 8+3 Wilson lines, dual to X1,1,12,16,18

g p2

2 = −1 −3
5 −2

5 0 2
5

3
5 1 7

5
8
5 2 12

5

0 -2 14 52 200 1020 2158 7068 23916 43080 122840 347376

1 0 0 0 4 -28 -104 -388 -2124 -4628 -15320 -54064

2 0 0 0 0 0 0 -6 42 156 568 3284

3 0 0 0 0 0 0 0 0 0 8 -56

Table B.6: Z2, 8+4 Wilson lines, dual to X1,1,12,16,18,20

g p2

2 = −1 −1
2 −3

8 0 1
2

5
8 1 3

2
13
8 2

0 -2 8 24 264 9104 17272 86292 634464 1009936 3647120

1 0 0 0 4 -16 -48 -516 -18256 -34688 -174152

2 0 0 0 0 0 0 -6 72 760 27440

3 0 0 0 0 0 0 0 0 0 8

Table B.7: Z6, 3 Wilson lines, dual to X1,1,2,6,8,10
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g p2

2 = −1 0 1 2 3 4 5 6

0 -2 624 54792 1609088 28265184 360251424 3659578208 31296575232

1 0 4 -1236 -113312 -3551892 -66631944 -903741184 -9729986112

2 0 0 -6 1840 174270 5731824 113066144 1610777952

3 0 0 0 8 -2436 -237648 -8154292 -168125136

4 0 0 0 0 -10 3024 303422 10826544

Table B.8: Z3, 6 Wilson lines, dual to X1,1,6,16,24

g p2

2 = −1 −1
4 0 3

4 1 7
4 2 11

4 3

0 -2 104 420 11856 30240 373464 801472 6750016 13138500

1 0 0 4 -208 -828 -24336 -62984 -818896 -1787716

2 0 0 0 0 -6 312 1228 37232 97350

3 0 0 0 0 0 0 8 -416 -1620

Table B.9: Z3, 6+1 Wilson lines, dual to X1,1,6,10,18

g p2

2 = −1 −1
3 0 2

3 1 5
3 2 8

3 3

0 -2 54 312 5616 18900 167778 454688 2914704 6972912

1 0 0 4 -108 -612 -11556 -39656 -369684 -1025244

2 0 0 0 0 -6 162 904 17712 61602

3 0 0 0 0 0 0 8 -216 -1188

Table B.10: Z3, 6+2 Wilson lines, dual to X1,1,6,10,12

g p2

2 = −1 −1
2 −3

8 0 1
2

5
8 1 3

2
13
8 2 5

2

0 -2 16 40 232 2024 3320 12228 61600 90592 269456 1065784

1 0 0 0 4 -32 -80 -452 -4144 -6880 -25832 -135472

2 0 0 0 0 0 0 -6 48 120 664 6328

3 0 0 0 0 0 0 0 0 0 8 -64

Table B.11: Z3, 6+3 Wilson lines, dual to X1,1,6,10,12

g p2

2 = −1 0 1 2 3 4 5

0 -2 528 90036 3679520 80559180 1212246784 14073864648

1 0 4 -1044 -183224 -7903452 -183923136 -2938551600

2 0 0 -6 1552 278466 12502704 304651808

3 0 0 0 8 -2052 -375744 -17481820

4 0 0 0 0 -10 2544 475034

Table B.12: Z4, 4 Wilson lines, dual to X1,1,4,12,18

g p2

2 = −1 −1
4 0 3

4 1 7
4 2 11

4 3

0 -2 80 372 18432 52428 832848 1908808 18982912 38738880

1 0 0 4 -160 -732 -37344 -107072 -1776928 -4135132

2 0 0 0 0 -6 240 1084 56576 163146

3 0 0 0 0 0 0 8 -320 -1428

Table B.13: Z4, 4+1 Wilson lines, dual to X1,1,4,8,14

172



g p2

2 = −1 −1
3 0 2

3 1 5
3 2 8

3 3

0 -2 42 288 8928 34488 381894 1127168 8355360 21263796

1 0 0 4 -84 -564 -18108 -70688 -817692 -2463540

2 0 0 0 0 -6 126 832 27456 107982

3 0 0 0 0 0 0 8 -168 -1092

Table B.14: Z4, 4+2 Wilson lines, dual to X1,1,4,8,10

g p2

2 = −1 −1
2 −3

8 0 1
2

5
8 1 3

2
13
8 2 5

2

0 -2 12 32 224 3136 5536 23392 139688 213248 694400 3063424

1 0 0 0 4 -24 -64 -436 -6344 -11264 -48112 -298288

2 0 0 0 0 0 0 -6 36 96 640 9600

3 0 0 0 0 0 0 0 0 0 8 -48

Table B.15: Z4, 4+3 Wilson lines, dual to X1,1,4,8,10,12

B.2 Explicit Higher–Genus Formulae

In this appendix we present some explicit expressions for free energies at high genera, in both
the quartic matrix model and Hurwitz theory. This is just a partial list of our results, as most
formulae quickly become too intricate to put in print. In spite of this, we hope these explicit
expressions may be of future interest (and, as far as we know, have never been computed before).

B.2.1 Quartic Matrix Model

As we have reviewed in section 4, an algorithm for computing free energies in the quartic matrix
model was put forward in [132], and we have applied it up to genus g = 10. Here, we present
a partial list of our final results. In [132], the quartic free energies were computed up to genus
two, with the result (here t = 1)

F0(α
2) = −1

2
log
(
α2
)
− 1

24

(
1 − α2

) (
9 − α2

)
, (B.2.1)

F1(α
2) =

1

12
log
(
2 − α2

)
, (B.2.2)

F2(α
2) =

1

6!

(
1 − α2

)3

(2 − α2)5
(
82 + 21α2 − 3α4

)
. (B.2.3)

It was further conjectured that, for genus g ≥ 2, the general structure of the free energies should
be of the form

Fg(α
2) =

(
1 − α2

)2g−1

(2 − α2)5(g−1)
Pg(α

2), (B.2.4)

with Pg(α
2) a polynomial in α2 such that

Pg(α
2 = 1) =

1

2 · 62g−1

(4g − 3)!

g!(g − 1)!
. (B.2.5)

Using the exact same procedure as in [132], we have extended the analysis up to genus ten,
verifying both conjectures above. In particular, we have obtained at genus three

P3(α
2) = − 1

9072

(
17260 + α2

(
−32704 + 9α2

(
−325 + 95α2 − 15α4 + α6

)))
, (B.2.6)
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which can be explicitly compared to another genus three calculation performed in [191, 192],
with both results in complete agreement. At genus four, we obtained

P4(α
2) = − 1

38880

(
−1421392 + α2

(
12438536 + α2

(
−13719796 + 27α2 (−15694+

+5810α2 − 1456α4 + 238α6 − 23α8 + α10
))))

, (B.2.7)

and at genus five

P5(α
2) = − 1

85536

(
−383964880 + α2

(
−1573981616 + α2 (7592114712+

+α2
(
−6114807776 + 81α2

(
−781725 + 326811α2 − 101961α4 + 23535α6+

−3915α8 + 445α10 − 31α12 + α14
)))))

. (B.2.8)

Finally, at genus six the free energy follows from the polynomial

P6(α
2) = − 1

79606800

(
139728961867968 + α2 (−369974786833952+

+α2
(
−955888270184512 + 3α2

(
1037832523698416 + α2 (−662581722466844+

+55971α2
(
−39761282 + 17910398α2 − 6371112α4 + 1787698α6 − 392007α8+

+65901α10 − 8214α12 + 716α14 − 39α16 + α18
))))))

. (B.2.9)

Although we have extended this calculation up to genus ten, the expressions quickly get too
messy and little illuminating, therefore we do not display any further polynomials. Our results
further allow us to conclude that the polynomial Pg(α

2) is of order 3g − 4 in α2. One final
consistency check concerns the case of α2 = 2, corresponding to the critical point of the quartic
model. In this situation it must be the case that

Pg(α
2 = 2) = (−1)g 25(g−1) ag, (B.2.10)

where ag are the coefficients appearing in the expansion of the double–scaled free energy (ob-
tained from Painlevé I in the 1/3 normalization; see section 4 for details). Again, our results
pass the test.

B.2.2 Hurwitz Theory

If we expand (5.6.134) in gH , and use that [151, 161]

∂2FH
0

∂t2H
= χ =

∞∑

k=1

kk−1

k!
e−tHk, (B.2.11)

we obtain the recursion relation

FH
g (e−tH ) =

χ

1 − χ
exp




g−1∑

l≥1

g2l
H∂

2
tH
FH

l (e−tH ) + 2
∑

k≥2

g−1∑

l≥0

1

2k!
∂2k

tH
FH

l (e−tH )g2k+2l−2
H




∣∣∣∣∣∣
g2g

H

,

(B.2.12)
where we keep the coefficient of g2g

H in the right hand side. If we combine this recursion with the
general form of Hurwitz numbers (5.6.130), we can obtain explicit expressions for the polynomials
appearing in (5.6.130) up to high genus. The first few are,

P2(χ) =
χ3

240
+

χ2

1440
, (B.2.13)

P3(χ) =
χ6

1008
+

53χ5

10080
+

1741χ4

362880
+

137χ3

181440
+

χ2

80640
, (B.2.14)
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P4(χ) =
χ9

1440
+

6079χ8

604800
+

42419χ7

1209600
+

87739χ6

2177280
+

280603χ5

17418240
+

109χ4

53760
+

1291χ3

21772800
+

χ2

7257600
,

(B.2.15)

P5(χ) =
χ12

1056
+

17387χ11

665280
+

67289χ10

345600
+

44696593χ9

79833600
+

193701347χ8

273715200
+

37315313χ7

91238400
+

+
8679559χ6

82114560
+

2295119χ5

205286400
+

1525901χ4

3832012800
+

23χ3

7603200
+

χ2

958003200
. (B.2.16)
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Appendix C

Mathematical Background

C.1 Theta functions and modular forms

Properties

In our conventions, the theta functions are defined as follows:

ϑ[ab ](v|τ) =
∑

n∈Z

q
1
2
(n−a)2e2πi(v−b)(n−a) (C.1.1)

where a, b are rational numbers and q = e2πiτ . They show the following periodicity properties:

ϑ[a+1
b ](v|τ) = ϑ[ab ](v|τ), ϑ[ a

b+1](v|τ) = e2iπaϑ[ab ](v|τ)

ϑ[−a
−b ](v|τ) = ϑ[ab ](−v|τ), ϑ[ab ](−v|τ) = e4iπabϑ[ab ](v|τ) (a, b ∈ 1

2
Z)

(C.1.2)

We use a modified Jacobi/Erderlyi notation where ϑ1 = ϑ[
1/2
1/2], ϑ2 = ϑ[

1/2
0 ], ϑ3 = ϑ[00],

ϑ4 = ϑ[01/2].

Under modular transformations, the theta functions transform according to

ϑ[ab ](v|τ + 1) = e−iπa(a−1) ϑ[ a
a+b−1/2](v|τ)

ϑ[ab ]

(
v

τ
| − 1

τ

)
=

√
−iτ e2iπab+iπ v2

τ ϑ[ b
−a](v|τ)

(C.1.3)

The Dedekind η-function of weight 1
2 is related to the v-derivative of ϑ1:

η(τ) = q
1
24

∞∏

n=1

(1 − qn), (C.1.4)

∂

∂v
ϑ1(v)|v=0 ≡ ϑ′1 = 2πη3(τ). (C.1.5)

We can always set the variable v to zero by changing the shifts (a, b) appropriately:

ϑ[ab ] (v + ǫ1τ + ǫ2|τ) = e−iπτǫ21−iπǫ1(2v−b)−2iπǫ1ǫ2 ϑ[a−ǫ1
b−ǫ2

](v|τ) . (C.1.6)

In our conventions, we will systematically use shifts rather than the variable v. We also note
the following identities

ϑ2(0|τ)ϑ3(0|τ)ϑ4(0|τ) = 2 η3 , (C.1.7)
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ϑ4
2(v|τ) − ϑ4

1(v|τ) = ϑ4
3(v|τ) − ϑ4

4(v|τ) , (C.1.8)

We have the following identities for the derivatives of ϑ-functions

∂τ (
ϑ2

η
) =

iπ

12η

(
ϑ4

3 + ϑ4
4

)
(C.1.9)

∂τ (
ϑ3

η
) =

iπ

12η

(
ϑ4

2 − ϑ4
4

)
(C.1.10)

∂τ (
ϑ4

η
) =

iπ

12η

(
−ϑ4

2 − ϑ4
3

)
(C.1.11)

Note that the above is valid for all rational values of a,b,h,g. The case h, g ∈ {0, 1/2}can be
seen as a special case, relevant for Z2-orbifolds, while h, g ∈ {0, 1/n, · · · (n − 1)/n} arise in the
Zn-case (see, e.g., [193] or [194]).
We also use the short-hand notation

ϑ[ab ](τ) := ϑ[ab ](0|τ) (C.1.12)

as well as
ϑ[ab ](m·) := ϑ[ab ](0|mτ) (C.1.13)

The following formulae for doubling the τ–modulus hold:

ϑ2
2(2τ) =

1

2

(
ϑ2

3(τ) − ϑ2
4(τ)

)

ϑ2
3(2τ) =

1

2

(
ϑ2

3(τ) + ϑ2
4(τ)

)

ϑ2
4(2τ) = ϑ3(τ)ϑ4(τ).

(C.1.14)

Eisenstein series

The Eisenstein series E2n are defined as

E2n = 1 − 4n

B2n

∑

k≥1

k2n−1qk

1 − qk
. (C.1.15)

E2n with n > 1 are holomorphic modular forms of weight 2n. The Eisenstein series E2 is often
called quasi–modular since under modular transformations, it transforms with a shift

E2(−
1

τ
) = τ2

(
E2(τ) +

6

πiτ

)
. (C.1.16)

Adding a term that compensates this shift yields the modular, but only “almost holomorphic”
form of weight two Ê2

Ê2 = E2 −
3

πτ2
. (C.1.17)

The ring of almost holomorphic modular forms is generated by Ê2 and the next two Eisenstein
series

E4 = 1 + 240
∑

k≥1

k3qk

1 − qk
=

1

2

(
ϑ8

2 + ϑ8
3 + ϑ8

4

)

E6 = 1 − 504
∑

k≥1

k5qk

1 − qk
=

1

2

(
ϑ4

2 + ϑ4
3

) (
ϑ4

3 + ϑ4
4

) (
ϑ4

4 − ϑ4
2

)
.

(C.1.18)
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For derivatives of Eisenstein series, we have

q
d

dq
log η =

1

24
E2(τ) (C.1.19)

and the Ramanujan identities

q
d

dq
E2(q) =

1

12
(E2

2(q) − E4(q)),

q
d

dq
E4(q) =

1

3
(E2(q)E4(q) − E6(q)),

q
d

dq
E6(q) =

1

2
(E2(q)E6(q) − E2

4(q)).

(C.1.20)

Lie algebra lattice sums

Any shifted lattice sum over E8 can be written in terms of theta functions as

∑

p∈ΓE8
+aγ

q
p2

2 e2πibp·γ =
∑

α,β

8∏

i=1

ϑ[α+aγi

β+bγi
]e−πi

P
i γiβa (C.1.21)

In particular,

E4 =
1

2

∑

p∈ΓE8

q
p2

2 (C.1.22)

and E6 is related to the E8 lattice shifted by any modular invariant embedding γ

E6 =
∑

(a,b) 6=(0,0)

c(a, b)

2ϑ[
1
2
+a

1
2
+b

]ϑ[
1
2
−a

1
2
−b

]

∑

p∈ΓE8
+aγ

q
p2

2 e2πibp·γ , (C.1.23)

with c(a, b) as defined in section 3.2.
An obvious generalization of (C.1.21) is the modified Siegel-Narain Theta function over a general
shifted lattice Γ of signature (b+, b−) with an insertion of (pR)2g−2

Θg
Γ(τ, γ, a, b) =

∑

p∈Γ+aγ

(pR)2g−2q
|pL|2

2 q̄
|pR|2

2 e2πibγ·p. (C.1.24)

We also use the notation

ΘΓ(τ, γ1, γ2;P, φ) =
∑

p∈Γ+γ1

exp(− ∆

8πτ2
)φ(P (p))q

|pL|2
2 q̄

|pR|2
2 e2πiγ2·p, (C.1.25)

where γ1, γ2 are shifts, P is an isometry from Γ×R to Rb+,b− , φ is a polynomial on Rb+,b− of degree
m+ in the first b+ variables and of degree m− in the others, and ∆ is the Euclidean Laplacian
on Rb+,b− . The isometry P defines projections on R+,R− written as P+(p) = pR, P−(p) = pL.
We will here only consider cases where the shifts are proportional, γ1 = aγ ∼ γ2 = bγ.

Elliptic Identities

We use the following conventions for the elliptic integrals of the first, second and third kind:

F (ϕ, k) =

∫ ϕ

0

dt√
1 − k sin2(t)

, F (
π

2
, k) ≡ K(k), (C.1.26)
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E(ϕ, k) =

∫ ϕ

0

√
1 − k sin2(t)dt, E(

π

2
, k) ≡ E(k), (C.1.27)

Π(n, ϕ, k) =

∫ ϕ

0

dt

(1 − n sin2(t))
√

1 − k sin2(t)
, Π(n,

π

2
, k) ≡ Π(n, k). (C.1.28)

A key relation is due to Legendre;

E(k)k(1 − k) + E(1 − k)K(k) −K(k)k(1 − k) =
π

2
. (C.1.29)

Furthermore, we have the following elliptic identities for the ”circular” case k < n < 1 [195]:

Π(n, k) = K(k) +
π

2
δ(n, k) (1 − Λ0(ǫ(n, k), k)) , (C.1.30)

where

δ(n, k) =

√
n

(1 − n)(n− k)
, ǫ(n, k) =

1 − n

1 − k
, (C.1.31)

and Λ0 is Heuman’s Lambda-function

Λ0 =
2

π
{K(k)E(ǫ(n, k), 1 − k) − (K(k) − E(k))F (ǫ(n, k), 1 − k)} . (C.1.32)

Furthermore, if (1 − k) n1
1−n1

n2
1−n2

= 1 [195],

F (n1, k) + F (n2, k) = K(k), E(n1, k) + E(n2, k) = E(k) +
√
n1n2k. (C.1.33)

Theta functions and Eisenstein series can be expressed in terms of elliptic functions as follows:

ϑ4
2 = − 4

π2
kK(k)2

ϑ4
3 = − 4

π2
K(k)2

ϑ4
4 = − 4

π2
(1 − k)K(k)2

E2(q) =
4

π2

(
3K(k)E(k) + (k − 2)K(k)2

)

E4(q) =
16

π4

(
k2 − k + 1

)
K(k)4

E6(q) = −64

π6
(k + 1)(k − 2)(k − 1

2
)K(k)6,

(C.1.34)

where

k =
ϑ4

2

ϑ4
3

. (C.1.35)

C.2 Cohomology and characteristic classes

In this section, we summarize some basic concepts of differential and algebraic topology used
throughout this thesis. For more details and further reading, see the classic book [196].

Cohomology

Let M be a differentiable manifold, and Ωp(M) the space of p-forms on M . Then the ordinary
exterior derivative of forms d, defined by

df :=
∂f

∂xi
dxi, d(ω ∧ ρ) := dω ∧ ρ) + (−1)|ω|ω ∧ dρ, (C.2.36)
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is a map from Ωp(M) to Ωp+1 inducing the complex

0
d→ Ω0 d→ Ω1 → · · · → Ωn d→ 0. (C.2.37)

Let Zp(M) ⊂ Ωp(M) denote the subspace of closed p-forms. Since d2 = 0, dΩp−1(M) ⊂ Zp(M).
The de Rham cohomology groups of M are defined by

Hp
DR(M) =

Zp(M)

dΩp−1(M)
=

Ker d

Im d
|Ωp . (C.2.38)

If M is a complex manifold, the complex structure induces a split of the tangent spaces at each
point as

T ∗
C,z(M) = T ∗

z (M) ⊕ T̄ ∗
z (M) (C.2.39)

and we can define

Ωp,q(M) = {φ ∈ Ωp+q(M) : φ(z) ∈ ∧pT ∗
z (M) ⊗ ∧qT̄ ∗

z (M)∀z ∈M}. (C.2.40)

Similarly, the operator d breaks up into two parts, d = ∂ + ∂̄. Denoting the space of ∂̄–closed
forms as Zp,q

∂̄
(M), we can define the Dolbeault cohomology as

Hp,q

∂̄
(M) =

Zp,q

∂̄
(M)

∂̄Ωp,q−1(M)
. (C.2.41)

The Dolbeault theorem says that for any complex manifold M

Hq(M,Ωp) ∼= Hp,q

∂̄
(M). (C.2.42)

We also have the following famous lemma:
Lemma (Poincaré).
Every closed form on Rn is exact.

This fact simply means that the de Rham cohomology groups on reasonable real manifolds
are locally trivial. There is also a ∂̄–Poincaré lemma for the Dolbeault cohomology, stating that
the same is true for ∂̄–closed forms on environments in Cn. Another central fact is the following
Theorem (de Rham).
Let M be a real C∞ manifold. Then, the de Rham cohomology is isomorphic to the singular
homology, in fact, the cohomology groups H∗(M) and the (singular) homology groups H∗(M)
are –as notation and naming suggest– dual vector spaces.

To put it otherwise, there is a direct correspondence between closed modulo exact forms and
cycles modulo boundaries. This is also encoded in Stokes’ theorem: given a real manifold M , a
p-form A and a (p+ 1)–chain N, recall that Stokes theorem states

∫

N
dA =

∫

∂N
A. (C.2.43)

This induces a map from Hp(M) to Hd−p(M), associating to each closed p-form A a (d−p)–cycle
N with the property ∫

M
A ∧B =

∫

N
B ∀B ∈ Zd−p(M). (C.2.44)

Poincaré duality states that this map is an isomorphism.
Definition.

The Betti number bn of a manifold M is the dimension of the n-th de Rham cohomology Hn(M).
For complex manifolds, the Hodge number hp,q gives the dimension of the Dolbeault cohomology
Hp,q(M), and we have

bn =
∑

p+q=n

hp,q. (C.2.45)

If M is Kähler, complex conjugation and Poincaré duality imply

hp,q = hn−q,n−p = hq,p. (C.2.46)
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Characteristic classes

Consider a bundle E with fibre F and structure group G over a base space M . The characteristic

classes of E encode the non-triviality of E, i.e. ”how much” E differs from the trivial bundle
F×M . They are subsets of the cohomology classes of M . By extension, we call the characteristic
class of a manifold the characteristic class of its tangent bundle. For us, the most relevant
characteristic classes are the Chern classes, defined as follows.

Let F = dA+A∧A be the curvature of the connection A on E. The total Chern class c(E)
is then defined as

c(E) = det

(
1 +

iF

2π

)
= 1 +

i

2π
TrF + · · ·

= 1 + c1(E) + · · · ∈ H0(M,R) ⊕H2(M,R) ⊕ · · · .
(C.2.47)

A Calabi-Yau manifold is defined as a Kähler manifold with c1 = 0. The theorem conjectured
by Calabi and proved by Yau (1977) states that any compact Kähler n-fold with c1 = 0 admits
a metric of SU(n) holonomy. Such a metric can be shown to allow for a covariantly constant
spinor field and is therefore necessarily Ricci flat.

C.3 Toric Geometry, local Calabi Yau manifolds and mirror

symmetry

Many of the backgrounds considered in this thesis are local Calabi-Yau’s. We now briefly review
the main ideas about this class of geometries, focusing on the toric case and following the
approach of [31]. For more details, see [31, 197, 198]. Recall that the tautological line bundle
J over the projective space Pn is the obvious bundle where the fiber over a point in Pn is just
the corresponding line in Cn+1. Maps from this fiber to C are sections of its dual line bundle
H = Hom(J,C). More general line bundles can be generated as direct products of these two
basic ones, and we get the bundles O(d) = H⊗d and O(−d) = J⊗d.

Now consider a Riemann surface, holomorphically embedded in a Calabi-Yau manifold X.
The holomorphic tangent bundle of X at Σg can be decomposed as the direct sum of the tangent
bundle of Σg and its component normal to Σg

TX|Σg = TΣg ⊕NΣg . (C.3.48)

The normal bundle NΣg is a holomorphic rank two complex bundle, and its first Chern class
precisely cancels the one of TΣg due to the Calabi-Yau condition, thus

c1(NΣg) = 2g − 2. (C.3.49)

Locally, X can then be described as the total space of the normal bundle over Σ, and we obtain
the noncompact, local Calabi-Yau threefold

N → Σg. (C.3.50)

A general lemma (for a proof, see [196], p.516) says that any holomorphic line bundle over P1 is
decomposable into a direct sum of line bundles, therefore, local Calabi-Yau’s with the two-sphere
as a base can always be written as

O(p− 2) ⊕O(−p) → P1. (C.3.51)

The special case where p = 1 is our old friend, the resolved conifold.
As explained in [199, 163, 143, 31], many local Calabi-Yaus admit a toric construction as

patches of C3 glued together. In terms of toric geometry, this procedure can be described as
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(1,0)

(0,1)

(−1,−1)

Figure C.1: a patch of C3

follows. We want to describe a Calabi-Yau threefold as a T 2 × R fibration over a base R3. The
geometry of this fibration is completely determined by its degeneration loci where one or several
cycles shrink to zero, and these can be represented by a planar graph in a subspace of R3. Each
edge v points to a vector (p, q) ∈ Z, which labels the cycle degenerating along this edge, fulfilling
prα + qrβ = const.. The Calabi-Yau condition can be translated to

∑

i

vi = 0, (C.3.52)

smoothness is ensured by demanding

|vi ∧ vj | = 1, (C.3.53)

and C3-patches correspond to trivalent vertices. Let us see explicitly how C3 patches are con-
structed. We introduce the moment map

ρ : C3 → R3

(z1, z2, z3) → (rα, rβ , rγ) = (|z1|2 − |z3|2, |z2|2 − |z3|2, Im(z1z2z3)).
(C.3.54)

The fibers are then generated by the rι via the Poisson brackets ∂ǫz = {ǫ · r, zi} with respect to
the standard symplectic form ω = i

∑
i dzi ∧ dz̄i on C3. With our choice of basis, rγ generates

the line R and the T2-fiber is generated by the circle actions

eiαrα+iβrβ : (z1, z2, z3) → (eiαz1, e
iβz2, e

−i(α+β)z3). (C.3.55)

Labeling the cycles generated by rα, rβ by (0, 1) respectively (1, 0), the degeneration loci of this
fibration in the rι-base can be graphically represented as shown in Fig. C.1. More complicated
geometries can be represented gluing different C3–patches together.

Generally, the geometry that we want to describe by a toric diagram is given by a set of k
D-term constraint equations

∑

i

QA
i |zi|2 = tA, A = 1, · · · , k, (C.3.56)

where QA
i are integral charges summing to zero, and the toric manifold is obtained after dividing

out the toric symmetry group1

G : zi → eiQA
i ǫAzi. (C.3.57)

Each C3–patch is naturally described by a different set of three coordinates among z1, · · · zN+3.
Let us illustrate this procedure of constructing a toric diagram from a given geometry with the
standard example of O(−3) → P2. This geometry is described as a hypersurface in C4 by the
constraint equation

|z1|2 + |z2|2 + |z3|2 − 3|z0|2 = t. (C.3.58)

1see [31] for a physical interpretation of this construction
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The coordinates are labeled such that z1, · · · z3 parameterize the P2–base and z0 the C–fiber.
There are three patches labeled by zi 6= 0 for i = 1, · · · 3, since the base is not allowed to shrink
completely. Each of them locally looks like C3, since zi can be chosen to ensure the constraint
(C.3.58) and the remaining three coordinates are unconstrained. In the patch z3 6= 0, we can
choose the same Hamiltonians as above,

rα = |z1|2 − |z0|2

rβ = |z2|2 − |z0|2,
(C.3.59)

and the degeneration loci are again as shown in Fig. C.1. However, in the patch where the
constrained coordinate is e.g. z1, we have to replace z1 in rα and write rα = t+2|z0|2−|z2|2−|z3|2.
Accordingly, the T2 is on this patch generated by

eiαrα+iβrβ : (z1, z2, z3) → (ei(2α−β)z0, e
−i(α−β)z2, e

−iαz3), (C.3.60)

and one can read off that the degenerating cycles are a (2,−1), a (−1, 1) and a (−1, 0)–cycle,
corresponding to rα + rβ = const., rα + 2rβ = const., and rα = 0. Hence, the C3–patch looks
like the lower right corner of Fig. C.2. The full picture shown is obtained after adding the third
patch and gluing the three patches together, connecting parallel edges.

Now we need to add branes in order to obtain the full, open string picture. In this thesis, we
consider Harvey-Lawson-branes wrapping special Lagrangian submanifolds [200, 163, 143]. They
are specified by their location on the edges of the toric diagram, and therefore have topology
C × S1, since one circle is degenerate. In the toric diagram, they appear as lines. What does

(1,0)

(0,1)

(−1,−1)

(−1,0)

(−1,1)

(1,−1)

(−1,2)

(2,−1)

(0,−1)

Figure C.2: The toric diagram of O(−3) → P2

the mirror of a toric Calabi-Yau manifold with branes look like? It turns out that the effect of
mirror symmetry is thickening the lines in the diagram such that one obtains a Riemann surface.
The B-model geometry is then a fibration over this surface. It is obtained from the mirror of
the D-term constraint, reading

Qa
1y1 + · · ·Qa

k+3yk+3 = −t̃a, (C.3.61)

where yi are the C∗-fields dual to zi, and t̃a = ta + iθa is the complexified Kähler parameter.
Here, θa are the θ-angles of the gauge group U(1)a. The corresponding mirror geometry is then

xz = ey1(u,v,t) + · · · + eyk+3(u,v,t) ≡ Σt(U, V ). (C.3.62)

where U = eu, V = ev are variables in C∗ parametrizing the solutions {yi(U, V )} to (C.3.61),
and Σt(U, V ) = 0 describes a family of Riemann surfaces, parameterized by t. A-branes wrapping
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Figure C.3: The local P2-geometry with A-branes and its mirror with B-branes appearing as
points

special Lagrangian submanifolds map to B-branes on holomorphic submanifolds in the mirror
geometry. These submanifolds are defined by x = 0 in the above geometry, thus, they are
parameterized by z and can occur at any point on the Riemann surface. Accordingly, their
moduli space is parametrized by (u, v) satisfying Σ(u, v) = 0. This mirror picture is illustrated
in Fig. C.3. The mirror curve is thus visualized as a thickened version of the one-dimensional
toric diagram. In particular, this regularizes the geometry, as branes can now move smoothly
from positions at the outer edges to positions on the inner edges without any singularities. This
regularization effect is due to A-model world-sheet instantons ”absorbed” in the geometry. Note
also that the mirror curve is punctured and therefore non-compact.
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