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Introduction

The random multipole errors of the SSC dipole magnets are expected to
occur with a Gaussian distribution p,. In the case of the sextupole error, for
example, the error distribution has a ¢, which is larger than desired, and a
correction winding will be added to the dipole to cancel this error. Instead of
powering every correction winding separately, the proposal has been made to
provide power supplies in evenly spaced increments of correction strength. Then
eich corrector would be connected to whichever power supply came closest to
bringing the residual sextupole error to zero. This method is called binning of
the errors, and each correction power supply corresponds to a “bin” to which a
given corrector may be assigned. The result is a “binned” distribution p;. The
object of this note is to calculate the moments of the binned distribution, where

the moments xn of any distribution p are defined as
oo
Xn = / dz =™ p(z) . (1)
—c0

If the corrector supplies are assigned strengths of 0, £2A, +4A, ..., then
the bins have a half width of A. Let z, be the initial error for some particular
magnet. Then the residual error z is given by z = z, — 2nA, where |z, —2nrA| is
the minimum for integers n. If each error is assigned to the correct bin then the
residual error will have a maximum magnitude of A. This would result in a new
error distribution pp which is zero for residual errors z with |z} > A. In practice,
however, there are not an infinite number of bins available, and also there is an

error in the measurement of z,.




The case with an infinite number of bins lends itself to analytical solution,
even when there is a Gaussian distribution of measurement error. However, the
real figure of merit of the binning technique is the number of bins necessary
to achieve a given result. The effect of a finite number of bins is to produce
tails extending from the ideal binned distribution, and their effect can be treated

approximately.

Analysis

The Fourier transform of the distribution p(z) provides a generating function

for the moments x,. The Fourier transform of p(z) is
[+ ]
p6) = [ dz e o), (2)
_m '
and the transform of z® is 27" §(*}(k). Substituting these into equation (1),

o= (= [ 6O) a(h)
N ®

— o | a(n)
g [p (k)] o’
Hence, the problem can be simplified by finding the ¥ourier transform of the

actual distribution and differentiating the necessary number of times.

First consider the case with an infinite number of bins. Assume henceforth
that all dimensions are scaled to the o, of the original error distribution. The

original normalized distribution is

po(z) = (27)73 3%, (4)
and the ideal binned distribution may be represented as

(2r)"3 T emil=2mA" 51 <A,
Pb(z) = n

[z] > A . &)



The binned distribution p; may be represented conveniently by the Fourier series:
For |z| < A,

po(2) =D pom £TmEA (6)
m

A
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From equation (6), the Fourier transform of py can be found:
- in(Ak — mm)
3y (k) = i(rmjay* Sin(A _
By (k) ;‘ Ak 7 (7

If the distribution has been smeared by Gaussian measurement error in z,,

then the smeared distribution p is given by

A 1y L=1s%k? —Lxm/a) Sin(Ak — wm)
po(k) = 73K Y emalrm/AY = —— (8)

m

where s is the RMS measurement error of z,, in units of o,.

Now consider the case with a finite number of bins N. In general, N is an odd
integer, and when N = 1 the result is the unmodified Gaussian. The correction

to p(z) can be represented approximately as

-5 erfe(¥2 2l < A,
pr(z) = (9)
(27)5 e 3(=HN-DA)? 15 5 A

The correction is approximated as constant for [z| < A in order to normalize the

distribution. This approximation is good when either N or A is large. For the
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trivial case of N = 1, the error in calculating ¢ using equations (7), (10), and
(3) is at most 4%, and this also represents the worst case for the approximation.
The Fourier transform of (9) is then

NAY\ sin{Ak)
V2 Ak

pe(k) = — erfc (

s %C_%kz [ SN-1Ak e (-JY—A\/%'—&) + e HN-DAk erfe (%’%ﬁ)] '
(10)

Results

The moments x, can be separated into a value for N = oo calculated from
generating function (8), and a contribution from the tails when N < oo, calcu-

lated from generating function (10):
Xn(N) = Xnb + Xnt(N) . (11)

The moment xz = 0°

is calculated as a function of A for fixed N. For a given
number of bins N, the result will have a minimum for some bin width A. The

result for an infinite number of bins is

xu= (G +an®) a1+, (12
where f3 is defined by
fa(B) = E(__l)m (ﬂ;)n e—i(mm/a)* (13)
m=1

The correction is

xat(N) = [((N ~1)% - %) A? + 1] erfc (—IY\/—;) +\/§(2—N)Ae'%(’“)’ . (14)

Note that the measurement smear s contributes to ¢ in quadrature, so this can
be ignored for the present. o(N) is plotted in Figure 1 versus A for s = 0 and
N =3,5,7,9,11, and co.




The moment x4 has also been calculated. For N = oo,
Xab = (% + 8f2(A) — 48f4(A)) At + (24£2(A) +2) A%s® + 354, (15)

and the tail correction is
xat(N) = [((N 1)t - 1) A* + 6(N - 1)2A% + 3] exfc (-1‘-’3)

5 V2
(16)

+ \/EA [(2 - N)(N? — 2N +2)A% ~ 5N + 8] e 3(V8)°

1
The quantity x{ is plotted versus A in Figure 2, for s = 0 and the same values

of N as were used above.

The values of A which optimize o for a given number of bins N, and the
corresponding values of x2 and x4 are summarized below in Table 1:
Table 1.

1

N A o x3 X2 X4

3 062 044 062 0194  0.1478
5 043 029 044 0084  0.0375
7 034 022 034 0048  0.0134
9 026 0.18 032 0032 00105
11 023 015 027 0023  0.0053

Note that the minima of y; and x4 do not coincide, and so the values of x4 given

here are not the minima.

A program has also been written by E. Forest [1] to calculate o for a distri-
bution which is originally cut off at o,z and then is binned with A = 042 /N.
The resuits for opmg; = 2 exactly coincide with the N = oo graph of Figure 1, for
all values of N > 1. The results are also fitted by the curve o = A/y/3. This is

summarized in Table 2:



Table 2.

N A o A/V3E
3 0.67 0.38 0.39
5 0.40 0.23 0.23
7 0.29 0.16 0.16

Comparing Tables 1 and 2 shows a smalil contribution of the tail of the distribu-

tion beyond omaz = 2.
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Figure 1.
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Figure 2.
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