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Abstract

We develop a theory of nonlinear cosmological perturbations on superhorizon scales
for a single scalar field with a general kinetic term and a general form of the potential.
We employ the ADM formalism and the spatial gradient expansion approach and show
the nonlinear theory called the beyond § N-formalism as the next-leading order in the
expansion to the so-called  N-formalism as the leading order. We obtain the general
solution for a full nonlinear version of the curvature perturbation valid up through
the second-order in the expansion and find the solution satisfies a nonlinear second-
order differential equation as an extension of the equation for the linear curvature
perturbation on the comoving hypersurface. The formalism developed in this paper
allows us to calculate the superhorizon evolution of a primordial non-Gaussianity
beyond § N-formalism.

1 Introduction

The PLANCK satellite launched last year is expected to bring us much finer data and it is hoped that non-
Gaussianity may actually be detected. As a consequence, non-Gaussianity from inflation has been a focus
of much attention in recent years. To study possible origins of non-Gaussianity, the d N-formalism [2, 4, 5]
turned out to be a powerful tool for the estimation of non-Gaussianity. We investigate a possible origin of
non-Gaussianity, namely, non-Gaussianity due to a temporary non-slow roll stage on superhorizon scales.
In order to investigate such a case, however, the 0 N-formalism is not sufficient since it is equivalent to
the leading order approximation in the spatial gradient expansion. Thus, to evaluate such situation, it is
necessary to develop a nonlinear theory of cosmological perturbations valid up through the next-leading
order in the gradient expansion.

2 Beyond /N-Formalism

In this section, we will briefly review the nonlinear theory of cosmological perturbations valid up to
O(€?) in the spatial gradient expansion and follow the previous works [6, 7], where € is the ratio of the
Hubble length scale 1/H to the characteristic length scale of perturbations L, used as a small expansion
parameter, ¢ = 1/(HL), of the superhorizon scales. First of all, we show the main result in our formula
for the nonlinear curvature perturbation, RYY,

/ 2
RV 4 2= RV 4 S KO RY] = O(e"), (1)
which shows two full-nonlinear effects;

1. Nonlinear variable: RY including full-nonlinear curvature perturbation, N

2. Source term: K?[RYNV] is a nonlinear function of curvature perturbations.

In (1), the prime denotes conformal time derivative and z is a well-known Mukhanov-Sasaki variable.
The explicit forms of both the definition of RY" and the source term K (?[X], that is the Ricci scalar of
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the metric X, will be also seen later, in (5) and in (8), respectively. Of course, in the linear limit, it can be
reduced to the well-known equation for the curvature perturbation on comoving hypersurfaces,Rrgi“” +
22 R 2 A[RL™] = 0.

We will briefly summarize our formula and show the above results in the following. Through-
out this paper we consider a minimally-coupled single scalar field described by an action of the form
I = [d*az/=gP(X,¢), where X = —g"”9,,¢0,¢. Note that we do not assume the explicit forms of
both kinetic term and its potential, that can be given as arbitrary function of P(X,¢). We adopt
the ADM decomposition and employ the gradient expansion. In the ADM decomposition, the metric
is expressed as ds® = —a?dt? + ~;j(dz’ 4+ B'dt)(dz? + $7dt), where « is the lapse function, 8% is the
shift vector and Latin indices run over 1,2,3. We introduce the extrinsic curvature K;; defined by
K;; = —i (Ovyij — DiBj — D;f;), where D is the covariant derivative compatible with the spatial metric
7ij- As a result, the basic equations are reduced to the first-order equations for the dynamical variables
(7ij,K;), with the two constraint equations (the so-called Hamiltonian and Momentum constraint). We
further decompose them as v;; = a262c%j and K;; = a’e¢ (%Kﬁqj + fl”) where a(t) is the scale factor
of the background FRW universe and det?;; = 1. Next, we will employ the gradient expansion. In this
approach we introduce a flat FRW universe (a(t), ¢o(t)) as a background. As discussed, we consider
the perturbations on superhorizon scales, therefore we consider ¢ = 1/(HL) as a small expansion pa-
rameter and systematically expand equations by €. We assume the condition for the gradient expansion;
OYij = O(€?). This corresponds to assuming the absence of any decaying modes at the leading-order in
the expansion. This is justified in most of the inflationary models.

When we focus on a contribution arising from the scalar-type perturbations, we may choose the gauge
in which 7;; approaches the flat metric,

Fij (t — 00) = b5, (2)

where in reality the limit ¢ — oo may be reasonably interpreted as an epoch close to the end of inflation.
We take the comoving slicing, time-orthogonal gauge:

de(t,a') = Belt,2") = O(e?), (3)

where §¢ = ¢ — ¢ denotes a fluctuation of a scalar field. The subscript ¢ denotes this gauge throughout
this paper. Now we turn to the problem of properly defining a nonlinear curvature perturbation to O(e?)
accuracy. Hereafter we will use the expression R, on comoving slices to denote it. Let us consider the

. . Lin
linear curvature perturbation which is given as RM» = (HTLJ“ + H%) Y, where, following the notation

in [1], the spatial metric in the linear limit is expressed as 7;; = a2(6ij + QH%inYéij + 2H%inYij). These
expressions in the linear theory correspond to the metric components in our notation as { = Hlii“Y
and 9;; = &;; + 2HX"Y;;. Notice that the variable (. reduces to RI™ at leading-order in the gradient
expansion, but not at second-order and it will be also similar to the nonlinear theory. Thus to define a
nonlinear generalization of the linear curvature perturbation, we need nonlinear generalizations of HpY
and H7Y. Our nonlinear ¢ is an apparent natural generalization of HliiI‘Y as H Y = (. As for HrY,
however, the generalization is non-trivial. It corresponds to the O(e?) part of 4;; and we have obtained
a general solution of the dynamical equation for ¥;; as a first-order differential equation in [0, 7] and the

time-dependent part includes the following solution; 7,5 (t) 3 CZ(J2 ) ag(ttl,) with the Momentum constraint:

317 9,00 = Gfg:)aj [634(0)0](5)]. The explicit forms of solutions can be seen in [6]. Here we attach the

superscript (m) to a quantity of O(¢™), and both £(®) and fi(jo) will be denoted as the leading-order metric.
Our aim is to derive the scalar-type solution C® from the tensor C’Z(f ) by using the constraint eq. As
shown in [7], it can be done by introducing the inverse Laplacian operator A~! on the flat background
and we defined the nonlinear generalization of HrY as

(0)

3 ) 0) .
HyY = E=—7A7 [aze—“( i3t (ma)ij] . (4)

It is easy to see that E 3 C'®) which we expected. At leading-order, the only non-trivial quantities for the
spatial metric, ¢ and 7;;, are given by ¢ = £(0) (2¥) +O(€?) and 7;; = fi(jg) (%) +0(€?), where £ (z¥) is an
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arbitrary function of the spatial coordinates {*} (k = 1,2,3) and fi(JQ)(a:k) is a (3 x 3)-matrix function
of the spatial coordinates with a unit determinant, respectively. Throughout this paper, we choose
fi(;-)) = 0;; consistent with the gauge condition of (2). On the other hand, 09 represents a conserved
comoving curvature perturbation, which is denoted by the so-called 6 NV term from some final uniform

density (or comoving) hypersurface to the initial flat hypersurface at t = t,, namely, £(©) = §N(t,, z*).
With these definitions of HpY and H7pY, we can define the nonlinear curvature perturbation valid
up through O(€?) as E
RN = ¢, + ? (5)

It is easy to show that this nonlinear quantity can be reduced to RL™ in the linear limit. As clear from
(4), finding HrY generally requires a spatially non-local operation, however, in the comoving slicing,
time-orthogonal gauge with the asymptotic condition on the spatial coordinates (2), we find it is possible
to obtain the explicit form of HrY without any non-local operation as seen in [7]. Finally, we can derive
a nonlinear second-order differential equation that RN (5) satisfies at O(e?) accuracy by introducing the

conformal time 7, defined by dn = dt/a(t) and the Mukhanov-Sasaki variable z = /2 ';P. The result

can be reduced to a simple equation of the form (1) as a natural extension of the linear version. We also
obtain the solution of the nonlinear equation (1) as

RN (n) = 0O E[F(n) ~ FJK® + [D(n) — D.]C® + O(e*), (6)
where B 0 22(n.) 0 dy " e
oo =t | ibsan B = [ s [ dana @

Here D, = D(n.), Fx = F(n.) and H, denotes the conformal Hubble parameter H = dlna/dn at n = n.
which we take the time as some after the horizon crossing. Note that ¢ — oo corresponds to n — 0 in
the conformal time. Thus the functions D and F' vanish asymptotically at late times, D(0) = F'(0) = 0.
Deviation of the solution (6) can be easily understood as follows. The second-order differential equation
(1) contains two solutions, i.e. decaying mode and growing mode. We can find that the function D(n)
satisfies D" + Q%D’ = 0 in the long-wavelength limit, i.e. no source term in (1). It corresponds to the
decaying mode in the linear theory. On the other hand, the function F(7) corresponds to the source term
in (1), satisfying F” + 2%'F’ +¢2 = 0, as the O(e?) correction to a constant mode at the leading-order,
i.e. as the growing mode in the linear theory, which is taken the form 1+ F(n)K® 4 O(e?).

Moreover the equation (1) includes two 'constants’ of integration, or arbitrary spatial functions, which
in general appear as the initial conditions. Let us consider the spatial functions; £(9), C®) and K. Here
the last one is related to the Ricci scalar of the Oth-order spatial metric as

K@) =R [e”(”)aij} = —2(2A0©) 4 599,00 9,0) =20 (8)

Then we have the two arbitrary spatial functions: ¢(©) and C®, which are related to the number of
physical degrees of freedom for the initial conditions. Therefore they have to be determined by matching
a solution of n-th order perturbation solved inside the horizon to this superhorizon solution at n = 7,.

3 Application

In this subsection, we calculate the bispectrum of our nonlinear curvature perturbation by assuming that
REE (k) is a Gaussian random variable with the horizon crossing time; n, = —% (0 < r < 1). We
assume the leading order contribution to the bispectrum comes from the terms second order in RE‘,‘Q (k).
The final result can be obtained by

. B d3k" i i . .
G = G() R (me) + H (k) { / o = R ORI () R (e )0° (ke 4+ K+ k”)} . (9)

where G(k) =1+ %R—z n:_lek/QF]ﬁ H(k) = %ﬁ}ﬁ Dy = D(nx) and Fj, = F(n;,). Here we defined the

integrals D and F obtained by replacements 7, with 7, in their definitions of (7). In particular, it can

R
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Figure 1: f&% (k) as a function of y = v/Tk/ko for T = 10°.

deal with the case when there is a temporary violation of slow-roll conditions. As one application of our
formalism, we consider Starobinsky’s model [3], which is described by the potential having its slope’s step
as V(o) = Vo + A1 (¢ — ¢o) for ¢ > ¢g or Vo + A_(¢ — ¢o) for ¢ < ¢p, where A, > A_ > 0 is assumed.
The advantage of this model is that it allows analytical treatment of linear perturbations as well as of
the background evolution, provided that V{, dominates in the potential. If A, > A_, and for ¢ initially
large and positive, the slow-roll condition is violated right after ¢ falls below ¢y. We find that a large
non-Gaussianity can be generated even on superhorizon scales due to this temporary suspension of slow-
roll inflation as shown in Fig. 1. We have found that non-Gaussianity can become large if the parameter
T ~ A, /A_, which characterises the ratio of the slope before and after the transition, is large. For
T > 1, we have found that the non-Gaussianity parameter for the bispectrum fnr,(k1, k2, k3) is peaked
at the wavenumbers forming an equilateral triangle, k = k; = ko = k3, denoted by ff\,qé(k) It is found
to be positive and takes the maximum value f]evqé(k) ~ 2T at V/Tk/ko ~ 1.5 where kg is the comoving
wavenumber that crosses the horizon at the time when the potential slope changes. This implies that,
even for a relatively small T, say for T = 10, it is possible to generate a fairly large non-Gaussianity
fnL ~ 20 at wavenumber k ~ 0.5kg.

4 Summary

We have developed a theory of nonlinear cosmological perturbations on superhorizon scales for a single
scalar field with a general kinetic term and a general form of the potential to the second-order in the
spatial gradient expansion. The solution to this order is necessary to evaluate correctly the final am-
plitude of the curvature perturbation for models of inflation with a temporary violation of the slow-roll
condition. We have introduced a reasonable variable that represents the nonlinear curvature perturbation
on comoving slices RYY, which reduces to the comoving curvature perturbation RL™ in the linear limit.
Then we have found that RYL satisfies a nonlinear second-order differential equation, (1), as a natural
extension of the linear second-order differential equation. Since the evolution of superhorizon curvature
perturbations is genuinely due to the O(€?) effect, our formulation can be used to calculate the primordial
non-Gaussianity beyond the 6 V formalism which is equivalent to leading order in the gradient expansion.
As one application of our formalism, we have investigated Starobinsky’s model [3] in which there is a
temporary non-slow-roll stage during inflation due to a sudden change of the potential slope. We have
found that non-Gaussianity can become large if the ratio of the slope before and after the transition is
large.
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