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Abstract
We develop a theory of nonlinear cosmological perturbations on superhorizon scales
for a single scalar field with a general kinetic term and a general form of the potential.
We employ the ADM formalism and the spatial gradient expansion approach and show
the nonlinear theory called the beyond δN -formalism as the next-leading order in the
expansion to the so-called δN -formalism as the leading order. We obtain the general
solution for a full nonlinear version of the curvature perturbation valid up through
the second-order in the expansion and find the solution satisfies a nonlinear second-
order differential equation as an extension of the equation for the linear curvature
perturbation on the comoving hypersurface. The formalism developed in this paper
allows us to calculate the superhorizon evolution of a primordial non-Gaussianity
beyond δN -formalism.

1 Introduction

The PLANCK satellite launched last year is expected to bring us much finer data and it is hoped that non-
Gaussianity may actually be detected. As a consequence, non-Gaussianity from inflation has been a focus
of much attention in recent years. To study possible origins of non-Gaussianity, the δN -formalism [2, 4, 5]
turned out to be a powerful tool for the estimation of non-Gaussianity. We investigate a possible origin of
non-Gaussianity, namely, non-Gaussianity due to a temporary non-slow roll stage on superhorizon scales.
In order to investigate such a case, however, the δN -formalism is not sufficient since it is equivalent to
the leading order approximation in the spatial gradient expansion. Thus, to evaluate such situation, it is
necessary to develop a nonlinear theory of cosmological perturbations valid up through the next-leading
order in the gradient expansion.

2 Beyond δN-Formalism

In this section, we will briefly review the nonlinear theory of cosmological perturbations valid up to
O(ε2) in the spatial gradient expansion and follow the previous works [6, 7], where ε is the ratio of the
Hubble length scale 1/H to the characteristic length scale of perturbations L, used as a small expansion
parameter, ε ≡ 1/(HL), of the superhorizon scales. First of all, we show the main result in our formula
for the nonlinear curvature perturbation, RNL

c ,

RNL
c
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RNL
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4
K(2)[RNL

c ] = O(ε4) , (1)

which shows two full-nonlinear effects;
1. Nonlinear variable: RNL

c including full-nonlinear curvature perturbation, δN

2. Source term: K(2)[RNL
c ] is a nonlinear function of curvature perturbations.

In (1), the prime denotes conformal time derivative and z is a well-known Mukhanov-Sasaki variable.
The explicit forms of both the definition of RNL

c and the source term K(2)[X], that is the Ricci scalar of
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the metric X, will be also seen later, in (5) and in (8), respectively. Of course, in the linear limit, it can be
reduced to the well-known equation for the curvature perturbation on comoving hypersurfaces,RLin

c
′′ +

2 z′

z R
Lin
c

′ − c2
s ∆[RLin

c ] = 0.
We will briefly summarize our formula and show the above results in the following. Through-

out this paper we consider a minimally-coupled single scalar field described by an action of the form
I =

∫
d4x

√
−gP (X,φ), where X = −gµν∂µφ∂νφ. Note that we do not assume the explicit forms of

both kinetic term and its potential, that can be given as arbitrary function of P (X, φ). We adopt
the ADM decomposition and employ the gradient expansion. In the ADM decomposition, the metric
is expressed as ds2 = −α2dt2 + γij(dxi + βidt)(dxj + βjdt), where α is the lapse function, βi is the
shift vector and Latin indices run over 1, 2, 3. We introduce the extrinsic curvature Kij defined by
Kij = − 1

2α (∂tγij − Diβj − Djβi), where D is the covariant derivative compatible with the spatial metric
γij . As a result, the basic equations are reduced to the first-order equations for the dynamical variables
(γij ,Kij), with the two constraint equations (the so-called Hamiltonian and Momentum constraint). We

further decompose them as γij = a2e2ζ γ̃ij and Kij = a2e2ζ
(

1
3Kγ̃ij + Ãij

)
where a(t) is the scale factor

of the background FRW universe and detγ̃ij = 1. Next, we will employ the gradient expansion. In this
approach we introduce a flat FRW universe (a(t), φ0(t)) as a background. As discussed, we consider
the perturbations on superhorizon scales, therefore we consider ε ≡ 1/(HL) as a small expansion pa-
rameter and systematically expand equations by ε. We assume the condition for the gradient expansion;
∂tγ̃ij = O(ε2). This corresponds to assuming the absence of any decaying modes at the leading-order in
the expansion. This is justified in most of the inflationary models.

When we focus on a contribution arising from the scalar-type perturbations, we may choose the gauge
in which γ̃ij approaches the flat metric,

γ̃ij (t → ∞) = δij , (2)

where in reality the limit t → ∞ may be reasonably interpreted as an epoch close to the end of inflation.
We take the comoving slicing, time-orthogonal gauge:

δφc(t, xi) = βi
c(t, x

i) = O(ε3), (3)

where δφ ≡ φ− φ0 denotes a fluctuation of a scalar field. The subscript c denotes this gauge throughout
this paper. Now we turn to the problem of properly defining a nonlinear curvature perturbation to O(ε2)
accuracy. Hereafter we will use the expression Rc on comoving slices to denote it. Let us consider the
linear curvature perturbation which is given as RLin =

(
HLin

L + HLin
T

3

)
Y , where, following the notation

in [1], the spatial metric in the linear limit is expressed as γij = a2(δij + 2HLin
L Y δij + 2HLin

T Yij). These
expressions in the linear theory correspond to the metric components in our notation as ζ = HLin

L Y
and γ̃ij = δij + 2HLin

T Yij . Notice that the variable ζc reduces to RLin
c at leading-order in the gradient

expansion, but not at second-order and it will be also similar to the nonlinear theory. Thus to define a
nonlinear generalization of the linear curvature perturbation, we need nonlinear generalizations of HLY
and HT Y . Our nonlinear ζ is an apparent natural generalization of HLin

L Y as HLY = ζ. As for HT Y ,
however, the generalization is non-trivial. It corresponds to the O(ε2) part of γ̃ij and we have obtained
a general solution of the dynamical equation for γ̃ij as a first-order differential equation in [6, 7] and the
time-dependent part includes the following solution; γ̃ij(t) 3 C

(2)
ij

∫
dt′

a3(t′) with the Momentum constraint:

e3`(0)∂iC
(2) = 6f jk

(0)∂j

[
e3`(0)C

(2)
ki

]
. The explicit forms of solutions can be seen in [6]. Here we attach the

superscript (m) to a quantity of O(εm), and both `(0) and f
(0)
ij will be denoted as the leading-order metric.

Our aim is to derive the scalar-type solution C(2) from the tensor C
(2)
ij by using the constraint eq. As

shown in [7], it can be done by introducing the inverse Laplacian operator ∆−1 on the flat background
and we defined the nonlinear generalization of HT Y as

HT Y = E ≡ −3
4
∆−1

[
∂ie−3`(0)∂je3`(0)(ln γ̃)ij

]
. (4)

It is easy to see that E 3 C(2) which we expected. At leading-order, the only non-trivial quantities for the
spatial metric, ζ and γ̃ij , are given by ζ = `(0)(xk)+O(ε2) and γ̃ij = f

(0)
ij (xk)+O(ε2), where `(0)(xk) is an
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arbitrary function of the spatial coordinates {xk} (k = 1, 2, 3) and f
(0)
ij (xk) is a (3 × 3)-matrix function

of the spatial coordinates with a unit determinant, respectively. Throughout this paper, we choose
f

(0)
ij = δij consistent with the gauge condition of (2). On the other hand, `(0) represents a conserved

comoving curvature perturbation, which is denoted by the so-called δN term from some final uniform
density (or comoving) hypersurface to the initial flat hypersurface at t = t∗, namely, `(0) = δN(t∗, xi).

With these definitions of HLY and HT Y , we can define the nonlinear curvature perturbation valid
up through O(ε2) as

RNL
c ≡ ζc +

Ec

3
. (5)

It is easy to show that this nonlinear quantity can be reduced to RLin
c in the linear limit. As clear from

(4), finding HT Y generally requires a spatially non-local operation, however, in the comoving slicing,
time-orthogonal gauge with the asymptotic condition on the spatial coordinates (2), we find it is possible
to obtain the explicit form of HT Y without any non-local operation as seen in [7]. Finally, we can derive
a nonlinear second-order differential equation that RNL

c (5) satisfies at O(ε2) accuracy by introducing the

conformal time η, defined by dη = dt/a(t) and the Mukhanov-Sasaki variable z = a
H

√
ρ+P
c2

s
. The result

can be reduced to a simple equation of the form (1) as a natural extension of the linear version. We also
obtain the solution of the nonlinear equation (1) as

RNL
c (η) = `(0) +

1
4
[
F (η) − F∗

]
K(2) +

[
D(η) − D∗

]
C(2) + O(ε4), (6)

where
D(η) = 3H∗

∫ 0

η

z2(η∗)
z2(η′)

dη′ , F (η) =
∫ 0

η

dη′

z2(η′)

∫ η′

η∗

z2c2
s(η

′′)dη′′ . (7)

Here D∗ = D(η∗), F∗ = F (η∗) and H∗ denotes the conformal Hubble parameter H = d ln a/dη at η = η∗
which we take the time as some after the horizon crossing. Note that t → ∞ corresponds to η → 0 in
the conformal time. Thus the functions D and F vanish asymptotically at late times, D(0) = F (0) = 0.
Deviation of the solution (6) can be easily understood as follows. The second-order differential equation
(1) contains two solutions, i.e. decaying mode and growing mode. We can find that the function D(η)
satisfies D′′ + 2 z′

z D′ = 0 in the long-wavelength limit, i.e. no source term in (1). It corresponds to the
decaying mode in the linear theory. On the other hand, the function F (η) corresponds to the source term
in (1), satisfying F ′′ + 2 z′

z F ′ + c2
s = 0, as the O(ε2) correction to a constant mode at the leading-order,

i.e. as the growing mode in the linear theory, which is taken the form 1 + F (η)K(2) + O(ε4).
Moreover the equation (1) includes two ’constants’ of integration, or arbitrary spatial functions, which

in general appear as the initial conditions. Let us consider the spatial functions; `(0), C(2) and K(2). Here
the last one is related to the Ricci scalar of the 0th-order spatial metric as

K(2)[`(0)] = R
[
e2`(0)δij

]
= −2(2∆`(0) + δij∂i`

(0)∂j`
(0))e−2`(0) . (8)

Then we have the two arbitrary spatial functions: `(0) and C(2), which are related to the number of
physical degrees of freedom for the initial conditions. Therefore they have to be determined by matching
a solution of n-th order perturbation solved inside the horizon to this superhorizon solution at η = η∗.

3 Application

In this subsection, we calculate the bispectrum of our nonlinear curvature perturbation by assuming that
RLin

c,k (ηk) is a Gaussian random variable with the horizon crossing time; ηk = − r
k ( 0 < r � 1). We

assume the leading order contribution to the bispectrum comes from the terms second order in RLin
c,k (ηk).

The final result can be obtained by

ζk = G(k) RLin
c,k (ηk) + H(k)

{∫
d3k′d3k′′

(2π)3
(4k′2 − δijk

′ik′′j)RLin
c,k′(ηk′)RLin

c,k′′(ηk′′)δ3(−k + k′ + k′′)
}

, (9)

where G(k) = 1 + D̃k

3H(ηk)
R′

c

Rc

∣∣
η=ηk
− k2F̃k, H(k) = 1

2 F̃k, D̃k = D̃(ηk) and F̃k = F̃ (ηk). Here we defined the

integrals D̃ and F̃ obtained by replacements ηk with η∗ in their definitions of (7). In particular, it can
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Figure 1: feql
NL(k) as a function of y =

√
Tk/k0 for T = 102.

deal with the case when there is a temporary violation of slow-roll conditions. As one application of our
formalism, we consider Starobinsky’s model [3], which is described by the potential having its slope’s step
as V (φ) = V0 + A+(φ − φ0) for φ > φ0 or V0 + A−(φ − φ0) for φ < φ0, where A+ > A− > 0 is assumed.
The advantage of this model is that it allows analytical treatment of linear perturbations as well as of
the background evolution, provided that V0 dominates in the potential. If A+ � A−, and for φ initially
large and positive, the slow-roll condition is violated right after φ falls below φ0. We find that a large
non-Gaussianity can be generated even on superhorizon scales due to this temporary suspension of slow-
roll inflation as shown in Fig. 1. We have found that non-Gaussianity can become large if the parameter
T ≈ A+/A−, which characterises the ratio of the slope before and after the transition, is large. For
T � 1, we have found that the non-Gaussianity parameter for the bispectrum fNL(k1, k2, k3) is peaked
at the wavenumbers forming an equilateral triangle, k = k1 = k2 = k3, denoted by feql

NL(k). It is found
to be positive and takes the maximum value feql

NL(k) ' 2T at
√

Tk/k0 ' 1.5 where k0 is the comoving
wavenumber that crosses the horizon at the time when the potential slope changes. This implies that,
even for a relatively small T , say for T = 10, it is possible to generate a fairly large non-Gaussianity
fNL ∼ 20 at wavenumber k ' 0.5k0.

4 Summary
We have developed a theory of nonlinear cosmological perturbations on superhorizon scales for a single
scalar field with a general kinetic term and a general form of the potential to the second-order in the
spatial gradient expansion. The solution to this order is necessary to evaluate correctly the final am-
plitude of the curvature perturbation for models of inflation with a temporary violation of the slow-roll
condition. We have introduced a reasonable variable that represents the nonlinear curvature perturbation
on comoving slices RNL

c , which reduces to the comoving curvature perturbation RLin
c in the linear limit.

Then we have found that RNL
c satisfies a nonlinear second-order differential equation, (1), as a natural

extension of the linear second-order differential equation. Since the evolution of superhorizon curvature
perturbations is genuinely due to the O(ε2) effect, our formulation can be used to calculate the primordial
non-Gaussianity beyond the δN formalism which is equivalent to leading order in the gradient expansion.
As one application of our formalism, we have investigated Starobinsky’s model [3] in which there is a
temporary non-slow-roll stage during inflation due to a sudden change of the potential slope. We have
found that non-Gaussianity can become large if the ratio of the slope before and after the transition is
large.
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