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Abstract Recently, numerous measures have been pro-
posed for quantifying the quantumness of a given system,
and the existence of intrinsic connections among quantum
resource measures has been proven. Here, we study the
unified relationship between duality, first-order coherence,
three-setting linear steering inequality, and maximum aver-
age fidelity between two masses due to gravity. Under gravi-
tational inducement, an equivalent relationship was identified
between the first-order coherence and duality. The coherence
of a system can be controlled by adjusting arm lengths and the
distance between the arms of an interferometer. In most cases,
the first-order coherence of a system cannot be maximised.
Furthermore, a trade-off relationship between gravitation-
ally induced duality and steering violations was derived. We
can adjust the arm length and distance between the arms of
the interferometer such that the steering violation reaches its
maximum at phase . The results show that the value of the
steering violation is always greater than 1; that is, the state of
the system is steerable. In addition, we explored the intrin-
sic relationship between duality and the maximal average
fidelity due to gravity. In most cases, the maximum average
fidelity of the system is greater than 2/3, indicating that the
state is useful for quantum teleportation. These results are
important for investigating the intrinsic relationships among
various quantum resources within the framework of gravity.

1 Introduction

Gravity, which is one of the four fundamental forces known
to exist in the universe, has been widely discussed in mod-
ern physics [1]. While general relativity [2—4] addresses the
macroscopic motion of matter on large spatial and tempo-
ral scales, quantum theory [5-8] effectively clarifies various
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phenomena in the microscopic domain. This accentuates the
growing prominence of the contradiction between the two
basic theories of physics — quantum mechanics and general
relativity — centring on the inconsistency between general
relativity and quantum field theory. Quantisation of grav-
ity [9-11] is a significantly challenging research topic in
theoretical physics. In particular, verifying any reasonable
prediction of quantum gravity requires energies as high as
Planck’s energy. With the current technology, such high ener-
gies are difficult to achieve. Alternatively, one could pursue
experiments at lower energies that might suggest the pos-
sibility of quantum gravity or the Planck scale [12—14]. In
2002, researchers attempted to combine general relativity
with quantum mechanics [15, 16]. The role of quantum effect
in cosmology and the origin of the universe are also discussed
and debated [17-21].

Several experimental ideas have been proposed for con-
trolling quantum gravity [22]. A good starting point is the
thought experiment proposed by Feynman during the Chapel
Hill conference on gravity [23]. It is difficult to test quantum
gravity proposals in practice because the quantum effects in
gravitational fields are very weak. Hence, developing empir-
ically feasible methods is essential for studying and testing
the quantum nature of gravity. In 2017, a table—top experi-
ment found that the quantum nature of gravity can be demon-
strated by the interaction between gravity and two massive
particles 2017 [24]. The two quantum systems were spa-
tial superpositions of two masses, and the third system was
gravity. The experiment required complete quantum control
of the two massive particles. Initially, the system was not
entangled. However, after the interaction of the two massive
particles with a gravitational field, the entanglement in the
system was proven by directly measuring the observable val-
ues of m and m, [24]. When the system was in an entangled
state, the gravitational field was quantised. If there was a van
der Waals force [25,26] or an electromagnetic [27,28] inter-
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action between the two masses, and if gravity was weaker
compared to the masses [29], it cannot be concluded that
gravity is quantised.

Bohr’s complementarity principle [30-34], a fundamental
aspect of quantum mechanics, has been controversial since
it was first proposed. It has a wide range of applications in
physics and proposes that two mutually exclusive character-
istics (wave and particle nature) cannot be simultaneously
observed [35]. This was later expressed as P2 4+V2 L1
[36], where P denotes the predictability of the particle path
information, and V represents the visibility of the interfer-
ence pattern [34]. For example, when a single photon passes
through an interferometer, the particle nature of the pho-
ton is embedded in the predictability of the photon path,
whereas the wave nature is shown in the interference pat-
tern on the screen [37]. A close relationship between entan-
glement and P2 + V2 (duality) was discovered recently; as
per this relationship, P2 + V2 4+ C? = 1 for pure states
[38—40], where C is the concurrence as a measure of two-
qubit entanglement [41-44]. This relationship was proven in
solid geometric projections [45]. However, in a general state,
they satisfy P2 4+ V2 4+ C? < 1. Quantum steering between
Bell nonlocality and entanglement is a nonlocal feature of
quantum mechanics [46]. Additionally, the set of steerable
states is a strict subset of the entangled states, as proposed
by Schrodinger [47]. Furthermore, average fidelity is a mea-
sure of the expected proximity between the input and output
states. Hence, the average fidelity shows how useful a given
entangled state is for quantum teleportation [48,49].

In this study, to explore whether gravity can be quan-
tised, we investigated the gravitationally induced first-order
coherence, steering violation, and maximal average fidelity
between two masses in the interference framework, which
are indirect indicators of the quantum nature of gravity. We
explored the equivalent relationship between duality and
first-order coherence in gravity. The square of the first-order
coherence is equivalent to the sum of the squares of the par-
ticle and wave characteristics in the pure state. Quantum
steering, which is one of the three types of nonlocal correla-
tion [50-52], can also be used to demonstrate the quantum
nature of gravity. We derived the complementary relationship
between duality and the three-setting linear steering inequal-
ity in gravity. In addition, we explored the intrinsic relation-
ship between duality and maximal average fidelity. Testing
the first-order coherence, steering violations, and maximal
average fidelity in a quantum gravity setting deepens our
understanding of the quantisation of gravity.

The remainder of this paper is organised as follows. In
Sect. 2, we review wave-particle duality, entanglement, and
gravitationally induced duality and entanglement. In Sect. 3,
we present the equivalent relationship between duality and
first-order coherence. In Sect. 4, we study the trade-off rela-
tionship between duality and three-setting linear steering
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inequality. In Sect. 5, we explore the intrinsic relationship
between duality and the maximal average fidelity. Finally,
we present our conclusions in Sect. 6.

2 Preliminaries of quantum gravity

2.1 Complementary relation between entanglement and
duality

As discussed earlier, an important feature of quantum theory
that differs from classical theory is that gravity can be repre-
sented as a superposition of different states, and all existing
schemes for quantum gravity are challenging to implement
in practice. Unlike in electromagnetic fields, the quantisation
effectin gravitational fields is very weak [24]. However, Mar-
letto and Vedral [24] recently adopted a different theoretical
approach to test quantum gravity, that is, to prove the quan-
tum nature of gravity by gravitationally induced entangle-
ment between two massive particles. The space of a two-qubit
state is the product of the Hilbert spaces of the qubits. Given
that each Hilbert space in this setting includes two orthog-
onal bases ({|0), |1)}, the four ground states of the two-
qubit Hilbert space are denoted by {|00) , |01), [10), [11)}.
Therefore, the two-qubit pure state can be expressed as
[V) = o |00) 4+ a1 [01) + a2 [10) + 3 |11).

In this study, the states of two massive particles (m and
my) get affected on passing through the Mach—Zender inter-
ferometers [53], as shown in Fig. 1. The upper and lower
arms of the Mach—Zender interferometer is represented by 0
and 1, respectively. m and m, are massive particles in the
Mach—Zender interferometers. The two Mach—Zender inter-
ferometers cause both masses to be affected by the same
gravitational field (for example, parallel to the Earth’s sur-
face). In this setting, there is no interaction between m and
my because of the distance between them. These two massive
particles can only interact with the gravitational field. Thus,
m1 and m; are only entangled in the gravitational field.

We assigned two orthogonal bases, |0) and | 1) to the states
of the upper and lower paths of the interferometer. Each
beam splitter was characterised by the reflection and trans-
mission factors in the interferometer. We assigned arbitrary
reflectance and transmittance (r; and 7;) to the first beam
splitter in the first interferometer (BS1). Similarly, the first
beam splitter of the second interferometer (BS2) had the char-
acteristics 7 and 7. These values satisfied % + 12 = 1. For
a more general setup, when the ratio of BS1 to BS2 was
50 : 50, the state of each mass was 1/ﬁ(|0) + |1)).

Therefore, the initial state of the two masses passing
through the first beam splitter can be expressed as the product
of the states of the first and second particle paths. That is, the
system at ¢ = 0 is described by the state [54],
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Do However, the wave nature of a system can be quantified based
Ml / . on the visibility of the interference pattern [45]
0
BS3 pmux _ pmin
0 a1 y=tb Db 4)
2 max + pmm
m, Pp D
° BS1 1 | .
7 M2 ph** and p7'" are the maximum and minimum probabilities
M3 dy of m1 respectively, detected by the interferometer. Therefore,
/ the visibility of the interference pattern can be expressed as
0 BS4 [45]
0 1 ~ ~
-— V =2aap + azaq] . (5)
° - BS2 1 -
[ M4 Here, «; is the complex conjugate of ;.
= L “1 This relationship can be understood by considering the
L . > reduced density matrix of the system m as
t=0 t=T

Fig. 1 Experimental settings of gravitationally induced entanglement
between two massive particles. BS1-BS4 are beam splitters, and M 1-
M4 are mirrors. 0 and 1 represent the upper and lower paths of interfer-
ometers, respectively. Taking the first mass as an example, when mass
passes through BS1, it is transmitted or reflected. D; (i = 0, 1) indicates
a detector on path 0 or 1, and d; refers to the distance between arms of
interferometers. L is the length of the lower arm of each interferometer

[W(t =0)) = (110) + 71 (1)) ® (2 10) + 12 [1))
= 1112 |00) + 172 |01) + r1# [10) +ryrp |11) .
(D

The notion of complementarity has attracted widespread
attention since its introduction. Based on the above descrip-
tion, the relationship between the duality and entanglement
in the interference frame was investigated, as shown in Fig. 1.

The path information in this system (first mass) is defined
as [45]

P:Ipo—ml’ @)
[po + pil
where po and p; are the probabilities of the first mass
detected in the upper and lower arms of the interferometer,
respectively. From Eq. (2), we get pp = |0t0|2 + |org |2 and
P11 = |012|2 + |oc3|2. Herein, g = t11, 1 = t1r, ap = rity,
and oz = ryrp are hold. o and o1 represent the probabilities
that m passes through the upper path of the interferometer

in Fig. 1. Thus, the particle nature of the system is given by
[45]

P = (laol +101P) = (1o + lesP) 3)

22 +13) nn(r? +13)
Py = . ©6)

rt (1’22 + t22) rlz(rz2 + t22)

When we consider the entanglement of the system, the duality
inequality P> + V2 < 1 can be reformulated as the comple-
mentary relationship P2 + V2 + C? = 1 in the pure state.
The concurrence can be determined in accordance with the
purity of one of the subsystems of the two-qubit system.

C=\/2[1—Tr (,ﬁ(m)], %)

where p4 and pp are the reduced-density matrices of the
system.

In the initial state of the system (¢ = 0). Using Eq. (3), we
obtain the square of the path information of the two masses
passing through BS1 or BS2 can be expressed as

2
P =i -1} @)
From Egq. (5), the square of the visibility is given by
V2= @rin)’. ©)

Att = 0, there is no interaction between the two massive par-
ticles, gravitational field, or shifting of the phase. The con-
currence of the system in initial state was calculated to be
zero from Eq. (7). The complementary relationship between
the duality and entanglement returns is P2+ V2 = 1. There-
fore, it is challenging to prove that the gravitational field has
been quantised in its initial state.

2.2 Duality and entanglement in quantum gravity

Considering the setting of an experiment in which two masses
move in the upper or lower arm of the interferometer, their
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interaction with the gravitational field causes a phase shift
in the system. The state of the composite system before the
masses enter the second beam splitter becomes

W (t = T)) = t1126'% |00) + 112 % |01) + rit2¢'?? [10)
+ rirel® [11). (10)

The four phases before the masses enter the second beam

splitter (BS3 or BS4) of each interferometer can be expressed

as

o1 =G, ¢ =G5t 5T,

$3=G™MT, ¢y =g, (11

where ¢ is the phase induced by the interaction between the
two masses and gravity, when the distance between them is
d; in the interferometer. ¢, is the phase induced by gravity,
that is, m1 moves along the upper arm of the first interfer-
ometer and my moves along the lower arm of the second
interferometer. Because m| and m interact with gravity, the
phase induced by the gravitational field is related to the posi-
tions of the masses in the interferometers. 7 = L/V, where
T is the time spent by the masses on the horizontal arm of
the interferometer, L is the length of the horizontal arm, and
V is the velocity of the masses.

Using Eqs. (3) and (10), the square of the predictability of
path information is given by

P2 = ( 2_ zf)z. (12)

This result shows that the predictability of the path infor-
mation of the mass in the first interferometer is related only
to BS1. If the transmittance and reflectivity of BS1 are the
same, thatis, r; = t] = V2 /2, then the predictability of the
path information disappears completely.

Hence, we considered the square of the visibility of the
interference pattern in the first interferometer. Using Eq. (5),
the square of the visibility of the first mass can be obtained
as follows:

V2 =4 (r1)? [rg‘ + 14+ 2 () cos (¢>)] , (13)

here, ¢ = 2¢1 — ¢» — ¢3. The visibility of the interference
pattern is related to the transmittance and reflectance of BS2,
which are also related to the phase shift.

Finally, through Eq. (7), we obtain the square of the con-
currence.

C? =8 (rirtitn)?[1 — cos (¢)]. (14)

When the phase shift is 2n7r (where n is an integer), the
distances (d; and d») between the two masses in different
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positions are the same; however, this does not occur in prac-
tice. This implies that the concurrence of the system cannot be
zero when the masses interact with gravity. As the phase shift
is nr (where n is odd), the interaction between gravity and
the two masses completely destroys the interference effect of
every mass. Therefore, this is the most entangled state. We
can change the phase by adjusting the arm length and distance
of the interferometers; simultaneously, the entanglement of
the system also gets changed.

Initially, there is no entanglement (at t = 0). m| and m
interact with the gravitational field at + = T, resulting in
entanglement. The quantisation of the field can be proven
because of the entanglement of the system. If the masses
interact with each other via van der Waals forces or other
electromagnetic forces, which are much stronger than grav-
ity, we cannot conclude that gravity is quantised [24].

If the beam splitter has a 50 : 50, the interferometer is
called a symmetric Mach—Zender interferometer [55]. In an
experiment [24], it was possible to select a BS2 of 50:50
to observe the quantisation of gravity. When the ratio of
the transmittance and reflectivity of BS1 is 50:50, that is,
ri1 = t; = 1/+/2, the interaction completely destroys the
interference effect of each mass, reducing the visibility of
the system, making it the most entangled. If we choose BS2
with a 50 : 50 beam splitter, we obtain the following simpli-
fied relationship for the first mass:

Pr= (i) (15)
V2 =2(r111)*[1 + cos (9)], (16)
C* =2 (ri1)*[1 — cos ($)]. (17)

This readily provides that
PP+Vi+Cr=1. (18)

Therefore, gravity induces a complementary relationship
between duality and entanglement. The state is entangled
because of the interaction of masses and gravity, and the
quantum nature of gravity can be proven by entanglement.

3 Gravitationally induced equivalence relation between
duality and first-order coherence

The coherence and quantum correlations are intrinsically
related [56]. Quantum resource theory opens up the possibil-
ity of establishing a quantitative relationship between coher-
ence and nonlocal correlations [57]. This possibility is critical
in quantum information processing and has inspired studies
on quantitative relationships in two-qubit systems. As men-
tioned earlier, the quantum nature of gravity can be demon-
strated by the entanglement between two masses. However,
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similar to entanglement, the first-order coherence of the sys-
tem proves the quantum nature of gravity. A widely used
measure of coherence in optical systems is the first-order
coherence [50], which is similar to the degree of polarisa-
tion coherence [58]. When two subsystems are independently
considered, the first-order coherence of p4 p is determined by
subsystems p4 and pp [50], expressed as

D? + D2
Dag :,/%. (19)

The first-order coherence of the subsystems p4 and pp in the
general state has the following form [41,50]:

Da=,/2Tt(p3) — 1, Dp=./2Tr(p3) — 1, (20)

where each subsystem of p4p is characterised by reduced-
density matrices; that is, p4 = Trp(pap) and pp =
Tr 4 (paB)- When the two subsystems are coherent, ) < D <
1. If the two subsystems are incoherent, D = 0 [41].

Similar to the relationship between the particle nature and
wave nature, the complementary relationship between the
first-order coherence and entanglement in the pure state is
given by [41,50]

Dz +Ciz=1. 1)

From Egs. (18) and (21), we obtain a relationship for the
pure state, given by

P2+ V2 =D (22)

We obtained the relationship between duality and the first-
order coherence. This relationship shows that the square of
the first-order coherence is synthetically equivalent to the
sum of the squares of the particle and wave natures in the
pure state. Because the first-order coherence of the system
cannot be directly measured, the first-order coherence of the
system can be obtained by measuring the predictability of the
path information and visibility of the interference patterns.
If the coherence of the system is not 1, the state is entangled.
Thus, the quantum nature of gravity is proven.

The coherence of the system demonstrates the quantum
nature of gravity. Taking the first mass as an example, m
passes through BS1. m does not interact with the gravi-
tational field, and the phase does not shift. When the first-
order coherence of the system is 1 and the concurrence is
0 (Eq. (21)), the system state is separable. Accordingly, we
cannot prove the quantum nature of gravity. Before m and
m1 enter BS3 or BS4, the masses interact with the gravita-
tional field and phases induced by the gravity shift (Eq. (11)).
From Egs. (19) and (20), we obtain the first-order coherence

P2+VZ e - D?
1
05¢t
0
0 0.25 0.5 0.75 1
ry

Fig. 2 Duality and coherence of a system as functions of the transmit-
tance of BS1, where a green dashed line (P? + V2 indicates the duality,
and a black straight line (D? indicates the coherence of the system

of the systematt =T

Dy = \/=8r2r2idid + 8r2rdidid cos (@) + L. (23)

The value of P2+ V? is equal to the value of the first-order
coherence D? in Fig. 2, which is in complete agreement with
Eq. (22). When the transmittance of BS1 is +/2/2, P2 +
V? and D? reach their minimum values. They satisfy the
equivalence relation at any given time. Additionally, a P> +
V2 value of less than 1 satisfies the Bohr’s complementarity
principle mentioned earlier.

From Eq. (23), the first-order coherence of the system is
not only related to the transmittance and reflectivity of the
beam splitter, but also to the phase induced by the gravi-
tational field. If the coherence is minimal, then the phase
should be nm (n is an integer), and the entanglement of the
system should be maximum. This demonstrates the quantum
nature of gravity. The values of coherence and duality can be
regulated by changing the length of the interferometer arm,
distance between the arms, and position of the masses in the
interferometer.

The results of the first-order coherence are shown in Fig. 3.
Figure 3a illustrates the dependence of coherence on the
reflectance of the first beam splitters in each interferometer,
where the gravitationally induced phase is set to ¢ = .
Because the reflectance of BS1 and BS2 is set to +/2/2,
the first-order coherence is 0. Figure 3b describes first-order
coherence of the system as a function of the reflectance of
BS1 and phase induced by the gravitational field. The sys-
tem has minimum coherence when the reflectance of BS1 is
V/2/2 and gravitationally induced phase is 7.

Considering the interaction between the masses and grav-
ity of the system, the interaction leads to a reduction in the
first-order coherence. The first-order coherence of the system

@ Springer
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0 0.5 1
r

Fig. 3 First-order coherence of a system as a function of the trans-
mittance of BS1 or BS2 and phase. a Dependence of maximal average
fidelity on the reflectance of BS1 and BS2, where the gravitationally
induced phase is set to ¢ = 7 and b dependence of coherence on the
gravitationally induced phase and transmittance of BS1, where reflec-
tivity of BS2 is set to 1/+/2

can also be adjusted by changing the arm length of the inter-
ferometer, the distance between the arms, and the transmit-
tance or reflectivity of the beam splitter. In this experiment,
the transmittance (reflectance) of both BS1 and BS2 cannot
be simultaneously set to 0.

4 Gravitationally induced trade-off relation between
duality and three-setting linear steering inequality

The concept of steering was first proposed by Schrodinger
[47] and was later recognised as a nonlocal correlation. Sub-
sequently, quantum steering has flourished as one of the three
nonlocal correlations. A three-setting linear steering inequal-
ity is used to detect the steerability of the system, and it
is considered as an exceedingly useful criterion for steer-
ing quantification. According to the hierarchical relation of
the nonlocal correlation, it lies between Bell nonlocality and
entanglement [46]. A set of steerable states is a strict subset
of entangled states [50,59]. Although steering is logically
different from quantum entanglement and Bell nonlocality,
in this study, we can still prove that the gravitational field
can be quantised by the existence of a steering violation of
the system.

Corollary 1 For a two-qubit pure-state system, the relation-
ship between duality and the three-setting linear steering
inequality is given by

2P2 +2V2 4+ 52 =3, (24)
Proof A relationship between the first-order coherence D4 p
and maximum violation of the three-setting linear steering

inequality (S4p) for an arbitrary two-qubit state is given by
[50,59]

1
Dip+5Sip = 1as, (25)
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where 145 = 2Tr (0% 5) —1/2. Inthe pure state, Tr (o3 5) =
1. Thus, D4p and S4p satisfy the new relationship
1 3

Dip+=Sip==. 26

AB T 5948 = 5 (26)
From Egs. (22) and (26), we can obtain the trade-off rela-
tionship between duality and the maximum violation of the
three-setting linear steering inequality in Eq. (24). Thus, the
proof is complete.

The maximum violation of the three-setting steering
inequality for any state of the system is given by

Sap =1 +c2+c3, 27

where ¢; (i = 1, 2, or 3) represents the eigenvalue of RTR,
and R" represents the transpose of the matrix R. R = [ri;]
is the correlation matrix, where rj; = Tr [pap (0i ® 0;)]. o7
and o; are the Pauli matrices [56].

Using Bohr’s complementarity principle and Corollary 1,
we understand that 2 P2 +2V?2 < 2 and deduce that S2 > 1.
Because the steering violation is exactly 1, we cannot prove
the quantum nature of gravity. If the steering violation of the
system is greater than 1, the system will violate the three-
setting linear steering inequality. Furthermore, the state will
become steerable, demonstrating the quantum nature of grav-
ity. Furthermore, if the square of the steering violation of the
system reaches 3, the interference effect of each mass will be
destroyed completely, and the interaction between the masses
and gravity will completely destroys the interference effect
of both masses.

From Fig. 4, the value of 2P24+2V? increases (decreases)
with a decrease (increase) in the value of $2. Furthermore, the
value of 2 is always not less than 1. Regardless of the vari-
ation in 2P? +2V?, the value of 2P% +2V? + S? remained
strictly equal to 3, which is consistent with the trade-off rela-
tionship in Eq. (24). The interference effect of both masses
was completely destroyed at 7w and 3, indicating the largest
steering violation.

As before, we consider the first mass as an example to
prove the quantum nature of gravity by steering violations.
In the initial state at + = 0, the masses pass through BS1
or BS2, and the steering violation is 1 according to Egs. (1)
and (27), which correspond to a non-steerable state. Thus,
the system is not quantised. Therefore, quantifying the grav-
ity and entanglement in the initial state is challenging. The
reasons why steering violations cannot prove the quantum
nature of gravity vary; for example, masses do not interact
with the gravitational field in the initial state or with each
other owing to the distance between them.

The value of the steering violation at t = T is differ-
ent from that in the initial state (t+ = 0). This is because
the masses interact with the gravitational field after they
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4
S2  -=--- - 2P2+2V2+§?

----- - 2P242V2

0 T 2r 3 4

Fig. 4 Duality and steering of a system as functions of the phase in
the setup. Red dotted, green straight, and black dotted lines represent
2P?42V?, 5% and 2P? 4+ 2V?% + §2. The value of 2P% +2V? 4 52 s
strictly equal to 3. No matter the variation in 2P2 4+ 2V?2, 52 is always
not less than 1

1
(@)

T

i [

Fig. 5 Steering violation of a system as a function of the transmittance
of BS1 or BS2 and phase. a Dependence of the steering violation on the
reflectance of BS1 and BS2, where the gravitationally induced phase is
set to ¢ = 7 and b steering violation of the system as a function of the
reflectivity of BS1 and gravitationally induced phase, where reflectivity
of BS2 is set to 1/4/2

pass through BS1 or BS2, causing entanglement between the
masses. If S > 1 atr = T, the state of the system is steer-
able. From Egs. (10) and (27), the steering violation before
the masses enter BS3 or BS4 (¢ = T') is given by

2
S = \/1 +16rfr313 [1 — cos (¢)] — 32r{r313 sin (%) .
(28)

From Eq. (28), the steering violation is related to the trans-
mittance, reflectivity, and gravitationally induced phase of
the beam splitter. The results of the steering violations are
shown in Fig. 5. When the reflectance of BS1 and BS2 is
near +/2/2, the steering violation of the system is high, and
itis always greater than 1 Fig. 5a. Furthermore, the states can
be steered. In Fig. 5b, as the phase shift is 7 and reflectance
of BS2 is +/2/2, the steering violation reaches the maximum.
As described above, the state is steerable, and the quantum

nature of gravity can be proven. The state of the system can
always be steered if the gravitationally induced phase is not
2nm where n is an integer. When the phase is 2nm (n is an
integer), the steering violation has a minimum value of 1,
which is impossible in practice.

As one of the three types of nonlocal correlations, quan-
tum steering is logically different from entanglement and Bell
nonlocality. Quantum nonlocality is a condition sufficient for
the quantum nature of gravity. To measure quantum steering,
we can simply measure the path information and visibility
of interference patterns from Eq. (24), when they are readily
available. Detecting nonclassical correlations such as steer-
ing violations is of great significance for demonstrating the
quantum nature of gravity.

5 Gravitationally induced intrinsic relation between
duality and maximal average fidelity

As a standard index of quantum teleportation, the average
fidelity shows the usefulness of a given entangled state for
quantum teleportation [48,49,60,61]. Average fidelity is a
measure of the expected proximity between the input and out-
put states, but it does not provide information about fluctua-
tions in the fidelity [48]. The maximum average fidelity is the
maximum value of the average fidelity that can be achieved
using standard teleportation protocols. The maximum aver-
age fidelity under all strategies for local unitary operations
and standard protocols is one of the best conditions for quan-
tum teleportation [49]. Since the upper bound for classical
teleportation is 2/3 [62], the value of the maximal average,
which is greater than 2/3, can be used to demonstrate the
quantisation of gravity.

Corollary 2 For a two-qubit pure-state system, the relation-
ship between the duality and maximal average fidelity is given
by

2P +2VZ 4+ 9Q2F — 1)* > 3. (29)

Proof The three-setting linear steering inequality and maxi-
mal average fidelity satisfy the following relationship [49]:

1 1 : 1 1 :
F= —(1+§Tr\/RTR) > —(1+5 Tr(RTR)>

2 2
_! 1+1S (30)
=3 3248 |

where ¢; (i = 1, 2, and 3) is the eigenvalue of RTR. Addi-

tionally, ,/Tr (RTR) =4/ Z?:lci’ which is always smaller
than Tro/RTR = Z?:l J/<i [491.
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12

------ L, =9(2F-1)2

L,=2P2+2V?

L3:L 1 +L2

Fig. 6 The duality and maximal average fidelity of system as functions
of the phase in the setup. The red straight line is 9(2F — 1)2, the green
straight line is 2P2 4+ 2V2, and the black straight line (L3) is 2P 4+
2V2 +9(2F — 1)2. We can see that the value of L3 is no less than 3

Based on Corollary 1, the relationship between the three-
setting linear steering inequality and duality also satisfies

Sap =3 —-2P2-2V2 3D

Substituting Eq. (31) into Eq. (30), the intrinsic relationship
between the duality and maximal average fidelity in Eq. (29)
is obtained. Thus, the proof is complete.

How can we determine the optimal two-qubit states of
quantum teleportation? Maximal average fidelity and fidelity
deviations are effective [63]. Maximal average fidelity is not
only useful for quantum teleportation, but can also be used to
prove the quantisation of gravity. Gravity is quantised when
the maximum average fidelity of the system is greater than
2/3.

In Fig. 6, the trend is the same for L and L3. The value of
duality is O; in contrast, the values of L and L3 reach their
maximums at this moment. This indicates that the interfer-
ence effect of both masses was completely destroyed at 7 and
3, and this exhibited the largest maximal average fidelity. As
per the values shown in Fig. 6, the value of duality increases
(decreases) with a decrease (increase) in the value of L; and
it is always not less than 3.

Asbefore, the first mass was used as an example to demon-
strate the quantum nature of gravity. In the initial state (at
t = 0, the masses pass through BS1 or BS2. The value of the
maximal average fidelity, calculated 2/3 using Eqgs. (1) and
(30), was which corresponds to classical teleportation. Grav-
ity, which does not interact with masses, cannot quantised in
the initial state. At t+ = T (before entering BS3 or BS4, m
and m, interact with gravity. Using Eqgs. (10) and (30), we
can calculate the maximal average fidelity of the system as
an extremely complex function, which is not only related to

@ Springer
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Fig. 7 Maximal average fidelity of a system as a function of the trans-
mittance of BS1 or BS2 and phase: a Dependence of maximal average
fidelity on the reflectance of BS1 and BS2, where the gravitationally
induced phase is set to ¢ = 7w and b maximal average fidelity of the
system as a function of the reflectivity of BS1 and phase induced by the
gravitationally field, where reflectivity of BS2 is set to 1/ V2

the phase shift induced by the gravitational field, but also to
the transmittance or reflectance of BS1 and BS2.

The results for the maximal average fidelity are shown in
Fig. 7. When the reflectance of BS1 and BS2 is near /2/2,
the maximal average fidelity of the system is high Fig. 7a.
As the reflectance of BS1 and BS2 is \/5/2, the maximal
average fidelity reaches the maximum, which is 5/6. For
quantum teleportation, the maximal average fidelity of the
system is one of the criteria for selecting the best-performing
states from a set of states. In Fig. 7b, as the phase shift 7 and
reflectance of BS1 are v/2/2, respectively, the maximal aver-
age fidelity reaches the maximum, which is 5/6. Based on
the value of the maximum average fidelity, it can be deter-
mined whether quantum teleportation can be performed and
used to prove the quantisation of gravity in this system.

6 Conclusions

In this study, we investigated the gravitationally induced
unified relationship among duality, coherence, three-setting
linear steering inequality, and maximum average fidelity
between two masses for a two-qubit pure state. The equiv-
alence relation between duality and first-order coherence,
which satisfied the relation P2 4 V2 = D? was obtained. In
this study, the coherence of the system was used to prove the
quantum nature of gravity; the smaller the first-order coher-
ence, the more obvious the quantum nature of the system.
Specifically, after two masses m and my, which interact
with the gravitational field, pass through BS1 or BS2 phase
shift occurs. The first-order coherence of the system was
calculated using the new phase, which was used to deter-
mine whether gravity was quantised. If the first-order coher-
ence of the system is 0, the interference effect of the two
masses is completely destroyed. Subsequently, the quantum
nature of gravity was proven. Under gravitational induce-
ment, a trade-off relationship between duality and steering
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violation that satisfied 2P% + 2V + 5% = 3 is obtained.
Similar to coherence and entanglement, the steering viola-
tion of the system can be used to prove the quantum nature
of gravity; the larger the value of steering violation, the
stronger the quantum characteristics of the system. After the
two masses pass through BS1 or BS2, they interact with the
gravitational field. For instance, the state is steerable when
the steering violation is greater than 1, which proves that
gravity is quantised. The intrinsic relation between duality
and maximal average fidelity, which satisfies the relation
2P2 4+ 2V2 4+ 92F — 1)2 > 3 was also obtained. As the
two masses interact with the gravitational field, the maximal
average fidelity is greater than 2/3, and quantum teleporta-
tion can be carried out. Additionally, quantisation of gravity
can be proved in this system. We can prove the quantum
nature of gravity using the coherence, steering violation, and
maximal average fidelity of the system. By detecting the first-
order coherence, steering violation, and maximal average
fidelity in the interference frame, we can explain the connec-
tion between gravity and quantum physics in a broader and
deeper discipline and help people further understand quan-
tum gravity.
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