
 

Higgs chameleon

Rong-Gen Cai†

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
Chinese Academy of Sciences, Beijing 100190, China

and School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study,
University of Chinese Academy of Sciences, Hangzhou 310024, China

Shao-Jiang Wang *

Tufts Institute of Cosmology, Department of Physics and Astronomy, Tufts University,
574 Boston Avenue, Medford, Massachusetts 02155, USA

(Received 11 June 2020; accepted 24 November 2020; published 4 January 2021)

The existing constraints from particle colliders reveal a suspicious but nonlethal metastability for our
current electroweak vacuum of Higgs potential in the standard model of particle physics, which is,
however, disfavored in the early Universe if the inflationary Hubble scale is larger than the instability scale
when Higgs quartic self-coupling runs into negative value. Alternative to previous trials of acquiring a
positive effective mass-squared from Higgs quadratic couplings to Ricci scalar or inflaton field, we propose
a third approach to stabilize the Higgs potential in the early Universe by regarding Higgs as chameleon
coupled to inflaton alone without conflicting to the present constraints on either Higgs or chameleon.
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I. INTRODUCTION

The state-of-art measurements [1] on Higgs mass Mh ¼
125.10� 0.14 GeV and top quark mass Mt ¼ 172.9�
0.4 GeV continue to reenforce the longstanding conspiracy
of Higgs near-criticality [2–6] (see also [7,8] for recent
reviews and references therein). The runningofHiggs quartic
self-coupling starts becoming negative around the dubbed
instability scale ΛI ¼ 9.92 × 109 GeV [9] (see also [10–13]
for its gauge dependence), where the Higgs potential devel-
ops a shallow barrier unstable against quantum fluctuations
of orderHinf=ð2πÞ during inflation if the inflationaryHubble
scale Hinf is larger than ΛI. Therefore, the survival of our
current electroweak (EW) vacuum throughout a high scale
inflation seems highly unnatural and undesirable, even
though we are temporarily safe in the EW vacuum for a
lifetime of order 10161 yrs [14] against Coleman-de Luccia
(CdL) instanton with decay rate estimated around
10−554 Gyr−1 Gpc−3 [15,16] (see also [17] for lattice sim-
ulation result and [18] for most recent results with thermal
corrections). This is known as Higgs metastability, a special

case of Higgs near-criticality, since the running of Higgs
quartic self-coupling could otherwise be fairly stable all the
way to Planck scale within the current uncertainties mainly
from top quark mass and strong coupling.
The attitude toward Higgs near-criticality could be either

desirable or deniable. In the former case, the Higgs near-
criticality could be the plausible smoking gun for the
possible ultraviolet completion of the standard model
(SM) of particle physics, for example, asymptotic safe
gravity [19,20], metastable Higgs inflation [21], dynamical
criticality [22], to name just a few. In the latter case, the
Higgs near-criticality could also be a mirage for our
ignorance of new physics, for example, the Planckian
physics with higher-order Higgs self-interactions [23–28]
or Planck-suppressed derivative operators [29], and the
extra contributions to Higgs effective mass-squared during
inflation from the quadratic coupling to inflaton field
[30–32] (see also [33]) or the nonminimal coupling to
Ricci scalar [34–37]. The corresponding postinflationary
investigations [38–47] are also crucial for the eventual fate
determination [48–50]. Although the gravitational correc-
tions to Higgs decay from EW vacuum are negligible
[51–57], the catalyzed vacuum decay by black holes
[58–66] (see [67,68] for its thermal interpretation and [69]
for its thermal extension) or other compact objects [70],
braneworld [71–73], cosmic string [74–76] and naked sin-
gularity [77] should be of special concern. Similar consid-
eration of excited initial states at false vacuum [78] could also
affect the decay rate, even possibly in real-time [79–84].
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Inspired by the chameleon mechanism [85–89] by
coupling the chameleon to ambient matter where the
effective potential of chameleon becomes heavier in the
denser environment, we propose in Sec. III to stabilize
the Higgs field in the early Universe by recognizing Higgs
as chameleon coupled to inflaton after we first generalize
the chameleon coupling for arbitrary background in Sec. II.
The idea is simple enough but has never been explored
before [90], which is also free from all the current
constraints on Higgs from particle colliders and on cha-
meleon from local gravity experiments if we restrict
ourselves to couple Higgs chameleon to inflaton alone.

II. HIGGS AS CHAMELEON

Choosing the scalar field h as the chameleon field
introduces extra interactions between h and other matter
fields ψ i with action in the Einstein frame of form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂hÞ2 − VðhÞ

�

þ
X
i

SðiÞm ½Ω2
i ðhÞgμν;ψ i�; ð1Þ

where the reduced Planck mass M2
Pl ¼ ð8πGÞ−1 and the

chameleon couplings to the metric gμν induce new metrics

g̃ðiÞμν ¼ Ω2
i ðhÞgμν for each fields ψ i that are assumed to be

independent for simplicity. The corresponding action
variation (the variations δψ i are not shown here) reads

δS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Gμν −

1

2
TðhÞ
μν

�
δgμν ð2Þ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p ð∇2h − V 0ðhÞÞδh ð3Þ

þ
X
i

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
−g̃ðiÞ

q �
−
1

2
T̃ðiÞ
μν

�
δg̃μνðiÞ ð4Þ

with the Einstein tensorGμν ≡ Rμν − 1
2
gμνR and the energy-

momentum tensors defined by

TðhÞ
μν ¼ −2ffiffiffiffiffiffi−gp δSh

δgμν
¼ −2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp

LhÞ
∂gμν

¼ ∇μh∇νhþ gμν

�
−
1

2
ð∂hÞ2 − VðhÞ

�
; ð5Þ

T̃ðiÞ
μν ¼ −2ffiffiffiffiffiffiffiffiffiffi

−g̃ðiÞ
p ∂

∂g̃μνðiÞ
ð

ffiffiffiffiffiffiffiffiffiffi
−g̃ðiÞ

q
LðiÞ
m ½g̃ðiÞμν ;ψ i�Þ; ð6Þ

where the last contribution (4) could be rewritten with
respect to the Einstein-frame metric as

X
i

Z
d4x

ffiffiffiffiffiffi
−g

p
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i

�
−
1

2
T̃ðiÞ
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��
Ω−2

i δgμν−
2Ω0
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i
gμνδh

�

¼
X
i

Z
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ffiffiffiffiffiffi
−g
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−
1

2
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μνΩ2

i δg
μνþΩ0

iðhÞΩ3
i T̃iδh

�
ð7Þ

with trace T̃i ≡ T̃ðiÞ
μν g̃

μν
ðiÞ. On the other hand, δSm could also

be expressed in terms of chain rule as

X
i

Z
d4x

�
δSðiÞm
δgμν

δgμνþδSðiÞm
δg̃μνðiÞ

δg̃μνðiÞ
δh

δh

�

¼
X
i

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

2
TðiÞ
μν δgμνþΩ0

iðhÞΩ3
i T̃iδh

�
; ð8Þ

which, after compared with (7), leads to identification

T̃ðiÞ
μνΩ2

i ¼ TðiÞ
μν ≡ −2ffiffiffiffiffiffi−gp δSðiÞm

δgμν
: ð9Þ

Thus T̃μν
ðiÞΩ

6
i ¼ Tμν

ðiÞ, T̃
μ
ðiÞνΩ

4
i ¼ Tμ

ðiÞν and T̃iΩ4
i ¼ Ti.

The energy-momentum tensor T̃μν
ðiÞ is conserved by

∇̃ðiÞ
μ T̃μν

ðiÞ ¼ 0 in Jordan framewhere ψ i is minimally coupled

to the Jordan-frame metric g̃ðiÞμν . However, the energy-
momentum tensor is not conserved as ∇μT

μν
ðiÞ ¼ 0 in

Einstein frame. In fact, note that Γ̃ρðiÞ
μν ¼ Γρ

μν þ CρðiÞ
μν with

CρðiÞ
μν ¼ Ω−1

i ðδρμ∇νΩi þ δρν∇μΩi − gμνgρλ∇λΩiÞ, we have

∇̃ðiÞ
μ T̃μν

ðiÞ ¼ Ω−6
i ∇μT

μν
ðiÞ − TiΩ−7

i ∇νΩi ¼ 0, namely,

∇μT
μ
ðiÞν ¼ TiΩ−1

i ∇νΩi; ð10Þ

For a perfect fluid ansatz for Tμ
ðiÞν ¼ diagð−ρi; pi; pi; piÞ

with equation-of-state (EoS) parameter wi defined by
pi ¼ wiρi, the ν ¼ 0 component of (10) reads ∇tρi ¼
ð1 − 3wiÞρi∇t lnΩi, which could be rearranged into

∇tðΩ3wi−1
i ρiÞ ¼ 0 ð11Þ

if EoS parameter wi is treated as a constant. This defines a
covariantly conserved density in the Einstein frame by

ρ̂i ¼ Ω3wi−1
i ρi ¼ Ω3wiþ3

i ρ̃i; ð12Þ
which is also h-independent from 0 ¼ ∇tρ̂i ¼ ρ̂0hðhÞ∇th.
Now requiring vanishing variation for the sum of (2), (3)
and (7) gives rise to the equation-of-motions (EoMs) for the
metric field gμν and scalar field h as

Gμν ¼ 8πG

�
TðhÞ
μν þ

X
i

TðiÞ
μν

�
; ð13Þ

∇2h ¼ V 0ðhÞ −
X
i

Ω0
iðhÞΩ3

i ðhÞT̃i; ð14Þ

RONG-GEN CAI and SHAO-JIANG WANG PHYS. REV. D 103, 023502 (2021)

023502-2



where the scalar EoM (14) could be rewritten as ∇2h ¼
V 0
effðhÞ with respect to an effective potential VeffðhÞ ¼

VðhÞ þP
i UiðhÞ with UiðhÞ of form

UiðhÞ ¼ Ω1−3wi
i ðhÞρ̂i

¼
8<
:

Ω4
vacρ̂vac ; i ¼ vacuum energy

ρ̂r ; i ¼ radiation;

Ωmρ̂m ; i ¼ matter:

ð15Þ

Note that for radiation domination, ρ̂ is covariantly constant
in time and hence h-independent. Hereafter, we will choose
the scalar field h as Higgs field specifically.

III. HIGGS CHAMELEON
IN THE EARLY UNIVERSE

For the sake of simplicity, the Higgs field is assumed to
have no chameleon coupling to all the other fields except
inflaton field, then the Higgs effective potential Veff only
receives its contribution of Ui from inflaton field alone as

VeffðhÞ ¼ VðhÞ þ ρ̂ϕΩ
1−3wϕ

ϕ ðhÞ: ð16Þ

The SM Higgs potential at zero temperature with higher
loop-order quantum corrections could be approximated
as [49]

VðhÞ ¼ V0ðhÞ ≈ −b log
�

h2

h2c
ffiffiffi
e

p
�
h4

4
; ð17Þ

where the Higgs quartic coupling turns negative at a
critical value hc ≃ 5 × 1010 GeV and b ≈ 0.16=ð4πÞ2. To
save Higgs from the instability developed around hc,
there are infinitely many choices for the conformal factor

Ω1−3wϕ

ϕ ðhÞ as long as it exhibits a higher power than h4.

A. Dilatonic chameleon coupling

As an illustrative example, the conformal factor could be
naturally parametrized as

ΩϕðhÞ ¼ Ωϕð0Þeβh=MPl ; β ¼ d lnΩϕ

dðh=MPlÞ
ð18Þ

One could also equivalently reparametrize (18) as

ΩϕðhÞ ¼ Ωϕð0Þeαh=hc ; α ¼ d lnΩϕ

dðh=hcÞ
; ð19Þ

as long as α≡ βhc=MPl is a small parameter due to
hierarchy hc ≪ MPl, which is indeed the case as we will
see in (27). Note that we have implicitly assumed h > 0 for
(18). For the region with h < 0, one could simply allow β to

take negative value or equivalently replacing h by its
absolute value jhj so that the rest of the paper remains
unchanged. Other even function forms (for example,
quadratic in h in the exponent) for the chameleon coupling
are also allowed, and our specific choice only serves as an
explicit illustration to manifest the mechanism.
Now the Higgs effective potential could be normalized

with respect to Vc ≡ V0ðhcÞ ¼ ðb=8Þh4c as

Veff

Vc
¼ −2 log

�
h2

h2c
ffiffiffi
e

p
�
h4

h4c
þ ceξ

h
hc ; ð20Þ

where the second term is characterized by two effective
parameters defined by

c≡ ρ̂ϕ
Vc

Ωϕð0Þ1−3wϕ ; ξ≡ ð1 − 3wϕÞα: ð21Þ

This effective potential is shown in the upper left panel of
Fig. 1, where the SMHiggs potential (red line) corrected by
the chameleon contribution from coupling to inflaton could
be easily stabilized with appearance of a second minimum
(blue lines) until its disappearance at an inflection point
(green line) with increasing ξ or c.
The second minimum hmin is one of the roots of the

extreme points h0 from V 0
effðh0Þ ¼ 0 by

ξ
h0
hc

¼ W

�
16

c
h40
h4c

log
h0
hc

�
ð22Þ

with Lambert functionWðzÞ defined by z ¼ WðzÞeWðzÞ. On
the one hand, for the second minimum being the degen-
eracy case with Veffðh0Þ ¼ Veffð0Þ ¼ cVc, it admits

ξ
h0
hc

¼ 16ðh0=hcÞ4 logðh0=hcÞ
cþ 4ðh0=hcÞ4 logðh0=hcÞ − ðh0=hcÞ4

; ð23Þ

which, after combing with (22), could solve for ξdeg from
given c as shown in red line in the right panel of Fig. 1. On
the other hand, for the second minimum being the inflec-
tion point with V 00

effðh0Þ ¼ 0, it admits

ξ
h0
hc

¼ 1þ 3 logðh0=hcÞ
logðh0=hcÞ

; ð24Þ

which, after combing with (22), could solve for ξinf from
given c as shown in blue line in the upper right panel
of Fig. 1. The difference between ξdeg and ξinf is asymp-
totically vanishing at large c limit, both of which are
decreasing with power-law at large c limit, approaching
to the green dashed line, ξ∞ ¼ 4c−1=4, determined by
first solving logðhdeg=hcÞ as a whole from (23) and then
plugging into (22) with asymptotic expansion of Lambert
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function Wðz→0Þ∼zþOðz2Þ. The corresponding hdeg=hc
in the c → ∞ limit approaches c1=4.

B. Absolutely stable region

Without the appearance of the second minimum when
ξ > ξinf , the Higgs field is absolutely stable against any
quantum fluctuations. For large enough c, the absolutely
stable region could be approximately estimated by

ξ > ξinf ≈ ξdeg ∼ ξ∞ ¼ 4c−1=4: ð25Þ

To further transform the above constraints on ðc; ξÞ into
more physical constraints on the inflationary Hubble scale
Hinf and the dimensionless conformal factor α, we could
first set the EoS parameter wϕ ¼ −1 during inflation
without loss of generality, then α ¼ ξ=4 and c is related
to Hinf by

c ¼ 3M2
PlH

2
inf

Vc
Ω4

ϕð0Þ ¼
24

b

�
MPl

hc

�
4
�
Hinf

MPl

�
2

Ω4
ϕð0Þ: ð26Þ

To ensure that the Higgs effective potential energy
Veffð0Þ=Vc ≡ c at the desirable stable vacuum h ¼ 0 is

FIG. 1. Upper left: the original unstable Higgs potential V0 (red) is stabilized by the Higgs chameleon coupling to inflaton with
appearance of a second minimum (blue curves around degeneracy case ξdeg) until its disappearance at the inflection case ξinf (green) with
increasing dimensionless chameleon coupling α≡ ξ=4 and fixed amplitude of chameleon coupling c. Upper right: the cases of
degeneracy ξdeg (red) and inflection ξinf (blue) with respect to c approach asymptotically to ξ∞ ¼ 4c−1=4 (green dashed) at large c limit.
The built-in panel in the lower left corner exhibits an asymptotically vanishing difference between ξdeg and ξinf at large c limit. The built-
in panel in the upper right corner exhibits similar asymptotic behavior of Higgs field values at degenerated minimum hdeg (red) and
inflection point hinf (blue) approaches to h∞deg ¼ c1=4hc (green dashed) at large c limit. Lower left: the region for an absolutely stable
Higgs effective potential without presence of a second minimum (green shaded) is shown above the blue lines computed from ξ > ξinf
for some illustrative values of the amplitude of Higgs chameleon coupling Ωϕð0Þ ¼ 10−1; 10−2; 10−3; 10−4 from top to below. The gray
shaded regions are ruled out by current constraint on the tensor-to-scalar ratio r < 0.06 and the UV effectiveness Hinf < Λn. The
stability analysis in the red shaded region below the blue lines with presence of a second minimum is presented in the next panel. Lower
right: for given amplitude of Higgs chameleon coupling Ωϕð0Þ (black numbers), the directions of arrows point to larger position, higher

height, and broader width of Higgs potential barrier with respect to Higgs quantum fluctuation scale, hmax=Hinf (red), V
1=4
bar =Hinf (blue),

and jV 00
barj=ð4H2

infÞ (green) as well as larger position of Higgs potential barrier at finite temperature with respect to the position of the
second minimum at zero temperature hTmax=hmin (purple).
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sub-dominated to the background Hubble expansion,
namely c ≪ 3M2

PlH
2
inf=Vc, the amplitude of conformal

factor should be small, Ωϕð0Þ ≪ 1. Now the absolute
stability condition ξ≳ ξ∞ reads

αΩϕð0Þ
1.6×10−7

≳
�

b
10−3

�1
4

�
hc

1010 GeV

��
Hinf

1013 GeV

�
−1
2

: ð27Þ

This suggests an absolute stability bound by the product
α ·Ωϕð0Þ in power law with respect to the inflationary
Hubble scale shown as the green region in the lower left
panel of Fig. 1, which, without adopting the asymptotic
form ξ∞ ¼ 4c−1=4, is precisely computed by ξ > ξinf with
respect to the inflection case (blue lines) for Ωϕð0Þ ¼
10−1; 10−2; 10−3; 10−4 from top to below. Nevertheless, for
given Ωϕð0Þ, the corresponding red shaded region below
ξ ¼ ξinf is NOT everywhere unstable as specified below.

C. UV effectiveness

To check the UV effectiveness of our Higgs chameleon
mechanism, we first expand the dilatonic coupling term as

Veff ¼ V0ðhÞ þ
X
n

1

n!

�
h
Λn

�
n−4

h4; ð28Þ

where the cutoff scale

Λn ≡
�

8

bcξn

� 1
n−4
hc; ð29Þ

after using ξ ¼ 4α ¼ 4βhc=MPl and replacing c with (26),
becomes

Λn ¼
�
1

3

� 1
n−4
�
1

4β

� n
n−4
�
Hinf

MPl

�
− 2
n−4
Ωϕð0Þ− 4

n−4MPl: ð30Þ

Further appreciating the absolute stability condition ξ≳ ξ∞
[see (27)] in terms of β, namely,

β ≳
�
b
24

�1
4

�
Hinf

MPl

�
−1
2

Ω−1
ϕ ð0Þ; ð31Þ

the cutoff scale for nonrenormalizable operators ðn > 4Þ is
close to the Planck scale suppressed by the parameter β,

Λn ≲
�

8

4nb

� 1
n−4 MPl

β
; ð32Þ

where the prefactor ½8=ð4nbÞ�1=ðn−4Þ approaches 1=4 from
above in the large n limit. Since our Higgs chameleon
mechanism is proposed to address the Higgs metastability
problem, the lowest cutoff scale Λn→∞ ¼ MPl=ð4βÞ should
at least larger than the Higgs instability scale hc. We
therefore label the maximum value of Λ∞=hc < 1=ð4αÞ in

the lower left panel of Fig. 1 for given αΩϕð0Þ with
Ωϕð0Þ < 1. It is easy to see in the green shaded region that
the cutoff scale is not that far above the Higgs instability
scale. On the other hand, to ensure the effectiveness of our
scenario during inflation, one should also impose the
condition Hinf < Λn that the cutoff scale should be larger
than the characteristic inflationary scale, namely,

β <

�
8

4nb

� 1
n−4 MPl

Hinf
: ð33Þ

Since ½8=ð4nbÞ�1=ðn−4Þ is always larger than 1=4 and
MPl ≫ Hinf , this condition could be easily fulfilled. If this
condition should be satisfied for all n, then one only needs
to require

β <
1

4

MPl

Hinf
⇔ α <

1

4

hc
Hinf

: ð34Þ

Since the background expansion is dominated by the
inflaton field by Ωϕð0Þ ≪ 1, this also puts an upper bound
on αΩϕð0Þ shown as the gray shaded region in the third
panel of Fig. 1. As an illustrative benchmark example, one
could take αΩϕð0Þ ∼ 10−5 inside the absolute stability
regime for Hinf=MPl ∼ 10−6, thus α < 5 × 10−3, and one
only needs to choose Ωϕð0Þ≳ 2 × 10−3.

D. Presence of a second minimum

The second minimum appears when ξ < ξinf , which is
higher or lower than the h ¼ 0 vacuum if ξdeg < ξ < ξinf or
ξ < ξdeg, respectively. The degeneracy cases ξ ¼ ξdeg are
shown as red lines in the lower left panel of Fig. 1 for
Ωϕð0Þ ¼ 10−1; 10−2; 10−3; 10−4 from top to below. In the
presence of a second minimum, the Higgs stability against
quantum fluctuations is guaranteed in all e3N0 Hubble
patches in our past light cone if [40,49]

hmax

Hinf
> nstab ≡

8<
:

3
ffiffiffiffi
N0

p
2π

Hinf
meff

; meff < 3
2
Hinf ;ffiffiffiffiffiffiffiffiffiffiffiffi

N0

2π2
Hinf
meff

q
; meff > 3

2
Hinf ;

ð35Þ

where hmax is the other root of (22), N0 ≈ 60 is the
e-folding number of our current Hubble scale leaving
the Hubble horizon before the end of inflation, and meff
is given by

m2
effðh ¼ 0Þ≡ V 00

effðh ¼ 0Þ ¼ bcξ2

8
h2c: ð36Þ

For givenΩϕð0Þ ¼ 10−2; 10−3; 10−4 (black numbers) in the
lower right panel of Fig. 1, we have tested the condition
(35) as red curves with red arrows pointing to a larger
value than nstab, which automatically guarantees a much
higher potential barrier Vbar ≡ VeffðhmaxÞ − Veffð0Þ > H4

inf
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(blue curves) than the inflationary Hubble scale for the
same Ωϕð0Þ. This largely suppresses the decay processes
via either CdL instanton or Hawking-Moss (HM) instanton
depending on the broadness of potential barrier estimated
by jV 00

effðhmaxÞj=ð4H2
infÞ [48] (green curves), to the upper-

left/lower-right of which are dominated by CdL/HM
instantons (if ever happened via decay channel), respec-
tively. Therefore, the Higgs stability region against the
quantum fluctuations could be extended from the abso-
lutely stable region (green shaded) into the red shaded
region in the lower left panel of Fig. 1 bounded by the red
curves in the lower right panel of Fig. 1 for given Ωϕð0Þ.
However, this is not the whole story. Even for the

parameter region to the lower-right direction of red curve
with given Ωϕð0Þ where the second minimum is acciden-
tally achieved during inflation either by the rare decay
instantons or random walks over the potential barrier in
some of the Hubble patches, there is still hope for them to
be saved by the thermal corrections to the Higgs potential
during radiation dominated era as elaborated below.

E. Thermal rescue

For an instantaneous reheating history, the reheating
temperature at the onset of radiation domination approx-
imately reads from the inflationary energy,

Treh

MPl
≈
�

90

grehπ2

�
1=4

�
Hinf

MPl

�
1=2

; ð37Þ

with the number of degrees of freedom greh ¼ 106.75 for
SM. The Higgs effective potential simply reads VeffðhÞ ¼
V0ðhÞ þ VTðhÞ þ ρ̂r with ρ̂r independent of h (ρ̂r could be
chosen as zero since the trace of energy-momentum tensor
in (14) is vanished for radiation dominance), and the
thermal corrections could be conveniently approximated
up to h≲ 2πT by VTðhÞ ≈ 1

2
M2

Th
2 with [49]

M2
T ≈

�
0.21 − 0.0071 lg

T
GeV

�
T2; ð38Þ

which pushes the potential barrier to a larger position,

hTmax ¼ MT

�
bW

�
M2

T

bh2c

��−1=2
: ð39Þ

The thermal rescue [49] occurs when the local maximum
hTmax at finite temperature Treh is large enough for the Higgs
field in the second minimum hmin achieved during inflation
could subsequently roll back to h ¼ 0 vacuum during
radiation era,

hTmaxðTrehÞ > hmin; ð40Þ

which is shown as purple curves in the lower right panel of
Fig. 1 with the direction of arrows pointing to the larger

ratio of hTmax=hmin than unity value. After the thermal
rescue, the thermal fluctuations of order temperature T have
been checked to be much smaller than the thermal potential
barrier, hTmax ≫ T.
For noninstantaneous reheating,UiðhÞ in (15) during pre/

reheating is smaller than that from inflationary era due to
smaller power 1 − 3wi < 4 with −1=3 < wi < 1=3 and
smaller ρ̂i that dissipates into radiations, which could push
the second minimum (if ever reached during inflation) to
larger and deeper values until gradually connecting to the
thermalHiggs potential in radiation era, thus invalidating the
thermal rescue mechanism. Furthermore, one still has to
avoid the broad resonance even though the positive effective
mass-squared at either h ¼ 0 vacuum or the second mini-
mum could evade the tachyonic resonant production of
Higgs during preheating. Therefore, a conservative safe
zone is that VeffðhÞ never develops a second minimum to be
ever reached during inflation and relaxed during pre/reheat-
ing, namely (27).We hope to revisit this issue inmore details
in a separate paper in future.

IV. CONCLUSION AND DISCUSSIONS

We have proposed a new mechanism to stabilize the
Higgs potential in the early Universe by regarding Higgs as
chameleon coupled to inflaton, which simply adds positive
contribution to the original Higgs potential as shown in
(16). We have tested this proposal in an illuminating
example with conformal factor of form exponential to
Higgs field as shown in (20). Other forms of this conformal
factor should also work as long as it contributes positively
to the effective potential. The absolutely stability bound
(25), or expressed in terms of inflationary Hubble scale as
(27), is analytically derived from the disappearance of
inflection point in the effective potential. We also prelimi-
narily extended the stability regime beyond the absolutely
stable region into the case with the presence of a second
minimum. Several comments are in order below.
First, our solution for the Higgs stability problem in the

early Universe only requires a chameleon coupling of
Higgs to inflaton alone, while the chameleon couplings
of Higgs to other fields are not necessarily demanded,
which buys us extra benefit of evading all the current
constraints on Higgs from either particle colliers or local
gravity experiments.
Second, our identification of Higgs boson as chameleon

field serves as a phenomenological model, whose ultraviolet
(UV) completion goes beyond the scope of current goal
for resolving SM metastability issue. Nevertheless, a UV
completion [91] of general chameleon could be realized by
identifying chameleon scalar field with a certain function of
the volume modulus of the extra dimensions. Therefore,
embedding Higgs in extra dimensions [92] is a promising
starting point for the UV completion of Higgs chameleon.
Third, we neglect the effects on the running of SM Higgs

couplings from Higgs-inflaton chameleon-like coupling,
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which, after expanding the conformal factor in power of h,
only contributes to SM Higgs couplings with terms propor-
tional to the same power of product αΩϕð0Þ, which is quite
small (δm2 ∼ 10−14, δλ ∼ 10−28) according to the typical
value of the absolute stability bound (27).
Finally, three possible traces of Higgs ever as chameleon

in the early Universe could be the isocurvature perturba-
tions and non-Gaussianity due to its chameleon coupling to
inflaton, as well as the productions of domain walls
[93–95] (see also [96]) when the second minimum is
accidentally achieved during inflation in some Hubble
patches, which merits further studies in the future.
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