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Abstract
Certain classical codes can be viewed isomorphically as ideals of group algebras,
while studying their algebraic structures help extracting the code properties. Research
has shown that this was remarkably efficient in the case when the code generators are
idempotents. In quantum error correction, the theory of stabilizer formalism requires
classical self-orthogonal additive codes over the finite field GF(4), which, via the
lens of group algebras, are essentially F2-submodules over GF(4). Therefore, this
paper provides a classification on idempotents in commutative group algebraGF(4)G,
followed by a criterion that allows idempotents to generate stabilizer subgroups. Later,
the construction of quantum stabilizer codes is done in the case when G is a cyclic
group Cn , for n = 2m − 1 and n = 2m + 1. Quantum bounds on their burst error
minimum distance are subsequently determined.
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1 Introduction

In 1982, Feynman proposed the idea of using quantum mechanical system to simulate
quantumphenomena to performcomputations [1]. Subsequently, extensiveworks have
been done on the design of quantum algorithms to solve intractable classical problems
and the quantization of existing classical algorithms [2, 3]. While the research was
multi-directional, the most striking instance was the introduction of Shor’s algorithm
in 1994, a quantum algorithm suggested that prime factorization of large numbers can
be done much efficiently using a quantum computer, in which RSA cryptosystem, the
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security systemofmost online transactions,mainly relied on [4].Quantumphenomena
such as quantum parallelism and superposition are core ideas when implementing
these quantum algorithms. However, their units of information, quantum bits, are
significantly more prone to errors due to decoherence caused by intrinsic noise in
quantum devices and interaction with the environment [5]. Hence, quantum error
correction is indispensable for quantum computers.

Although the earliest quantum codes, of 9-qubits and 7-qubits, were constructed by
Shor and Steane respectively [6, 7], the first notable quantum codes construction 31
frameworkwas introduced byGottesman [8] generalized from Shor’s codes, termed as
the stabilizer construction. Using this approach, the challenge of constructing quantum
error-correcting codes was transformed to the problem of finding classical additive
codes over the finite field GF(4) = {0, 1, α, α2} which are self-orthogonal with
respect to the trace Hermitian inner product. The resultant codes are called stabilizer
codes [8, 9].

Most theories of quantum error correction are conventionally discussed under the
assumption that noises occur in a random manner, known as the “independent qubit
decoherence” model [10]. However, in the scenario when decoherence mechanisms
of qubits are known, it is often possible to construct quantum codes with greater
efficiency [10]. One common decoherence pattern is burst error, or loosely speaking,
errors occurred in consecutive positions. Some research has been done in constructing
quantum burst error codes such as the quantum interleaver method with no redundant
qubits used [11].

A perspective of viewing classical cyclic codes as ideals of a group algebra was

introduced by MacWilliam [12], via the ring isomorphism FqCn ∼= Fq [x]
Fq [x](xn − 1)

where FqCn is the group algebra of Cn , the cyclic group of order n over Fq , the finite
field of q elements. This had induced a more generic way of defining codes as ideal
of group algebras FqG for finite group G, namely group codes. The rich algebraic
structures of group codes arose from the dual properties of them being submodules
and ideals, as well as having zero-divisors as generators, resulting in various inter-
esting approaches toward problems such as equivalence problem in classical coding
theory [13, 14]. Furthermore, through the lens of group algebras, classical additive
codes over GF(4) can be viewed isomorphically as F2-submodules of group alge-
bra over GF(4). This approach was used to study dual-containing classical codes in
constructing quantum codes [15].

It is well known that cyclic codes are uniquely characterized by their generator
polynomial. For example, generator polynomials with consecutive power of primitive
elements as roots generate an important class of cyclic codes with design distance
calledBCHcodes. Setting certainBCHcodes as underlying additive codes overGF(4)
results in quantum BCH codes having parameter specified in terms of the design
distance [16]. An alternative approach is to study cyclic codes via their idempotent
polynomials. The discussion is extendable to amore general context of group algebras.
Throughout this paper, let FqG be the group algebra of a finite group G over the finite
field of q elements, Fq . An element e ∈ FqG is called an idempotent if e2 = e. Group
algebras FqG with |G| being coprime to char(Fq) possess semisimplicity property,
hence are expressible as a direct sum of minimal ideals generated by idempotents.

123



Burst error-correcting quantum stabilizer codes designed… Page 3 of 17   158 

Here, the group codes are direct sum of a subset of those minimal ideals, that is,
in the form of C = ⊕k

i=1 FqGei for some k ∈ Z
+. Each ei is called a primitive

central idempotent generator of C . These primitive central idempotent generators
play a crucial role in extracting the parameters and algebraic properties of the group
codes [17, 18]. Specifically, for additive codes over GF(4), this approach was used to
construct lower bounds of codes’ minimum distance and study the duality of classes
of additive multivariable codes in [19], extended from the canonical decomposition
of additive codes over GF(4) introduced in [20].

This paper is devoted to constructing quantum codes with stabilizers generated by
idempotents and studying their burst error-correcting abilities, based on an alternative
classification different from the primitive central idempotents approach. The outline of
this paper is as follows. In Section 2, a preliminary review of quantum error correction
is carried out in detail, followed by a brief introduction to group algebras and their
codes. Section 3 gives a classification on idempotents in the group algebraGF(4)G for
finite abelian group G. Section 4 inspects the potential of the classified idempotents in
generating self-orthogonal cyclic additive codes over GF(4). Lastly, in Section 5, the
burst error-correcting abilities of constructed quantum codes of length n are studied
for n = 2m − 1 and n = 2m + 1 for m ∈ Z

+.

2 Quantum error correction and stabilizer formalism

Theories of quantum error correction reviewed in this section can be found in most
textbooks and main early research works such as [8, 21]. A single qubit state is often
represented mathematically as an element of the Hilbert Space C2, having a general

form of |ψ〉 =
(
a
b

)

, subjecting to the normalization constraint ||a||2 + ||b||2 = 1.

Quantum errors are modeled as linear operators on C
2, or equivalently elements of

M2×2(C), in which the set of Pauli operators, P , consists of the following:

I =
(
1 0
0 1

)

, X =
(
0 1
1 0

)

, Z =
(
1 0
0 −1

)

,Y =
(
0 −i
i 0

)

forms a basis.
Generalizing the idea, error operators on n qubits are in the form of n-fold tensor

product of linear operators on C
2. With an overall phase of ±1,±i , this gives the

multiplicative group Gn = {i j
n⊗

k=1
Pk | j ∈ {0, 1, 2, 3}, Pk ∈ P}. Moreover, every

g ∈ Gn is either of order 2 or 4, thus either g2 = 1or g2 = −1. Sometimes, the quotient

group Ḡn = Gn/{±
n⊗

k=1
Ik,±i

n⊗

k=1
Ik} is considered instead, with |Ḡn| = 22n .

The weight of a quantum error ε ∈ Gn , wt(ε) is the total number of its tensor
component Pk which are non-identity. Also, it follows from the property of Pauli
operators that for every pair of elements ε1, ε2 ∈ Gn , either [ε1, ε2] = 0 or {ε1, ε2} = 0
, where [ε1, ε2] and {ε1, ε2} denote the commutator and anti-commutator of ε1 and ε2,
respectively.
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The construction of a stabilizer code fully depends on the choice of its stabilizer
group S. A stabilizer S of a length n code C is defined to be the set of all possible
error operators in Gn that fix each codeword of C . More precisely, S must be an
abelian subgroup of Gn , hence it’s often termed as the stabilizer group of C . Note

that −1
n⊗

k=1
Ik /∈ S, for every error operator ε ∈ S, ord(ε) �= 4, otherwise ε2 =

−1
n⊗

k=1
Ik ∈ S. Hence, we have ord(ε) = 2 or ε2 = 1. Equivalently, S must be an

elementary abelian 2-group.
The resultant codeC is a subspace ofC2n , such that every codeword inC is invariant

under every operator in S. In other words, C is the intersection of the eigenspace of
each of the error operator in S with associated eigenvalue 1.

Definition 2.1 Let S be a stabilizer subgroup of Gn . Then, C ⊆ C
2n is called a

stabilizer code with stabilizer S if C = {|ψ〉 ∈ C
2n | Si |ψ〉 = |ψ〉,∀Si ∈ S}.

A stabilizer code is called an [[n, k, d]]-stabilizer code if its length, dimension and
minimum distance are n, k and d, respectively. The dimension and minimum distance
of a stabilizer code can be determined based on the properties of its stabilizer.

Since S must be an elementary abelian 2-group, |S| = 2l for some l ∈ Z
+ and S

has a presentation of l generators, that is, S = 〈S1, S2, . . . , Sl〉. A stabilizer code with
|S| = 2l has dimension k = n − l.

The minimum distance of a length n stabilizer code C can be deduced from the
set of errors which are detectable or correctable by C . Note that S ⊆ N (S) ⊆ Gn ,
where N (S) is the normalizer of S in Gn . Then, Gn can be partitioned into Gn =
S ∪ (N (S) \ S) ∪ (Gn \ N (S)).
Case 1: ε ∈ S. It can be seen from Definition 2.1 that ε has no effect on the codespace
C , thus those errors are correctable for C .
Case 2: ε ∈ N (S) \ S. Note that since ε ∈ N (S), then we have εS = Sε. This
implies that when ε acts on a codeword |ψ〉 ∈ C , then for every S1 ∈ S, S1(ε|ψ〉) =
(S1ε)|ψ〉 = (εS2)|ψ〉 = ε(S2|ψ〉) = ε|ψ〉 for some S2 ∈ S. The fact that ε|ψ〉
is stabilized by each S1 ∈ S implies that ε|ψ〉 is another codeword in C such that
ε|ψ〉 �= |ψ〉. Therefore, ε is not detectable, hence not correctable.
Case 3: ε ∈ Gn \ N (S). Then, there exists S1 ∈ S such that ε does not commute with,
then it must be {ε, S1} = 0, giving εS1 = −S1ε. This results in ε|ψ〉 = ε(S1|ψ〉)
= (εS1)|ψ〉 = (−S1ε)|ψ〉 = −S1(ε|ψ〉). Since ε|ψ〉 = −S1(ε|ψ〉), ε|ψ〉 is not
stabilized by S1 ∈ S; thus, ε|ψ〉 is not a codeword in C . The error is detectable by C .

Putting all together, this leads to the following theorem and its immediate corollary.

Theorem 2.2 Let C be a stabilizer code of length n with stabilizer S. Then, C can
detect an error operator ε if and only if ε ∈ S ∪ (Gn \ N (S)).

Corollary 2.3 Let C be an [[n, k, d]]-stabilizer code with stabilizer S consisting of l
generators. Then, k = n − l and d = min{wt(ε) | ε ∈ N (S) \ S}.

Define a group isomorphism, ϕ : Ḡ1 → GF(4) (GF(4) as additive group) such
that ϕ(X) = α and ϕ(Z) = 1. The complete mapping is depicted in Table 1 . For
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Table 1 Each Pauli operator
and its corresponding field
element of GF(4)

Pauli operators Elements of GF(4)

I 0

X α

Z 1

Y 1 + α or α2

convenience, in the remaining of the paper, elements ε ∈ Ḡ1 and ϕ(ε) ∈ GF(4) will
be used interchangeably.

Note that not every subgroup S of Gn can act as a stabilizer, as S must be an
elementary abelian 2-group according to previous discussion. The commutativity of
operators in Gn can be formulated alternatively by the following.

Define the trace operator Tr : GF(4) → F2 as Tr(β) = β + β2 for every
β ∈ GF(4). Note that Tr(0) = Tr(1) = 0 and Tr(α) = Tr(α2) = 1.

Definition 2.4 The trace Hermitian inner product on GF(4)n is defined by (, )th :
GF(4)n × GF(4)n → F2 such that (x, y)th = Tr

(
n∑

k=1
xk ȳk

)

, for x = (xk) and

y = (yk).

Proposition 2.5 Let ε1, ε2 ∈ Gn. Then, ε1 and ε2 commutes if and only if their trace
Hermitian inner product (ε1, ε2)th = 0.

The next corollary follows directly from Proposition 2.5.

Corollary 2.6 Consider a stabilizer S ⊆ Gn. Then, S must be self orthogonal w.r.t. the
trace Hermitian inner product.

This section is ended with a review of group algebras and their codes. Consider
GF(4)G = { ∑

g∈G
agg|ag ∈ GF(4)}, the set of all formal sums of elements in G

with scalars from GF(4), define addition, multiplication and scalar multiplication of
elements in GF(4)G as:

∑

g∈G
agg +

∑

g∈G
bgg =

∑

g∈G
(ag + bg)g

⎛

⎝
∑

g1∈G
ag1g1

⎞

⎠

⎛

⎝
∑

g2∈G
bg2g2

⎞

⎠ =
∑

g1g2=h∈G
(ag1bg2)h

β(
∑

g∈G
agg) =

∑

g∈G
(βag)g

Then, GF(4)G, with the operations above is called a group algebra of G over GF(4).
For every element u = ∑

g∈G
agg ∈ GF(4)G, its support is defined as supp(u) = {g ∈

G|ag �= 0}.
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With addition and multiplication defined above, GF(4)G forms a ring. Note that
GF(4)G is a commutative ring if and only ifG is abelian. On the other hand,GF(4)G
forms a vector space overGF(4)with addition and scalarmultiplication defined above.

Group codes are ideals of group algebras. For GF(4)G, every group code of single
generator u ∈ GF(4)G is in the form of GF(4)Gu = {wu|w ∈ GF(4)G}. Below is
an example of a group code of length 6.

Example 2.7 Let G = C6 = 〈x〉. The group algebra is:

GF(4)C6 = spanGF(4)(1, x, x
2, . . . , x5)

Let u = 1 + x2 + x4, then the resultant group code is:

GF(4)C6(1 + x2 + x4) = {w(1 + x2 + x4)|w ∈ GF(4)C6}
= spanGF(4)(1 + x2 + x4, x + x3 + x5)

follows from that in GF(4)C6, xi (1 + x2 + x4) =
{
1 + x2 + x4 , for even i

x + x3 + x5 , for odd i
.

For G with |G| = n, fix an ordered listing as G = {g1, g2, . . . , gn}. Define the
canonical mapping T : GF(4)G → GF(4)n to view any codeword of an additive
code over GF(4) as an element of group algebra over GF(4) and vice versa, as
follows:

(ai )1≤i≤n ⇐⇒
n∑

i=1

ai gi

where each ai ∈ GF(4).
In general, a length n cyclic additive code over GF(4) with generator u ∈ GF(4)n

can be defined as F2Cn(T−1(u)).
For example, with ordered listing Cn = {1, x, x2, . . . , x5}, GF(4)C6(1+ x2 + x4)

from Example 2.7 can be viewed as spanGF(4)(101010, 010101). In addition, the
additive code over GF(4), spanF2(101010, 010101) can be viewed isomorphically as
the group algebra F2C6(1+ x2+ x4). Readers who are interested with more details on
theories of group algebras and their applications in classical coding theory can refer
to [22] and [18], respectively.

3 Idempotents in commutative group algebra overGF(4)

This section is mainly devoted to studying the algebraic structure of the set of all
idempotents in GF(4)G for finite abelian group G, denoted by IGF(4)(G). Since
char(GF(4)) = 2 = char(F2), the approach used in developing the result in this
session will be similar to those in [23, 24].
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Proposition 3.1 The set of all idempotents in GF(4)G, IGF(4)(G) forms an additive
subgroup of GF(4)G.

Proof Let e1, e2 ∈ IGF(4)(G), then (e1+e2)2 = e21+e1e2+e2e1+e22 = e21+2e1e2+
e22 = e1 + e2.

However, IGF(4)(G) need not form a vector subspace of GF(4)(G) as it’s not
always closed under scalar multiplication over GF(4). An counterexample is given
as e = x + x2 + x4 ∈ IGF(4)(C7) with αe /∈ IGF(4)(C7).

Next, the notion of generated idempotents which forms the basic building blocks
of IGF(4)(G) is introduced. ��

Definition 3.2 Let e ∈ IGF(4)(G) with |supp(e)| = k. If e =
k−1∑

i=0
(βg)2

i
with βg =

(βg)2
k
for some g ∈ supp(e) and some coefficient β ∈ GF(4) \ {0}, then e is said to

be a generated idempotent in GF(4)G with generator βg and is denoted by 〈βg〉I d .
The explicit construction of generated idempotents is done by studying the general-

ized cyclotomic 2-cosets. Readers who are interested with the general idea can refer to
[23, 24]. Note that a generated idempotent in IGF(4)(G) can have different generators.
For instance in IGF(4)(C7), we have 〈αx〉I d = 〈x〉I d = 〈(1+α)x2〉I d = x + x2 + x4.
The next proposition classifies generated idempotents according to their support sizes.

Proposition 3.3 Let 〈g〉I d be a generated idempotent in GF(4)G.

1. If |supp〈g〉I d | is odd, then 〈βg〉I d = 〈g〉I d for each β ∈ {α, 1 + α}.
2. If |supp〈g〉I d | is even, then 〈β1g〉I d �= 〈β2g〉I d for every distinct pair of β1, β2 ∈

GF(4) \ {0}. In addition, supp〈β1g〉I d = supp〈β2g〉I d .
Proof Let |supp〈g〉I d | = m for some m ∈ Z

+. If m is odd, note that we can expand
as follows:

〈βg〉I d = βg + β2g2
1 + βg2

2 + · · · + βg2
m−1 + β2g + βg2

1 + · · · + β2g2
m−1

= (β + β2)

m−1∑

k=0

g2
k

=
m−1∑

k=0

g2
k
.

If m is even, we have (βg)2
m = βg since β2m = β. Hence, for every distinct pair

of β1, β2 ∈ GF(4) \ {0}:

supp〈β1g〉I d = supp〈β2g〉I d = {g, g21, . . . , g2m−1}.

In addition, 〈β1g〉I d �= 〈β2g〉I d since coefficients of g, β1 �= β2. ��
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Proposition 3.4 Two generated idempotents 〈β1g1〉I d , 〈β2g2〉I d ∈ IGF(4)(G) must
have either equal or disjoint supports.

Proof Let 〈β1g1〉I d , 〈β2g2〉I d ∈ IGF(4)(G)with distinct supports but not disjoint, then
suppose that h ∈ supp〈β1g1〉I d ∩ supp〈β2g2〉I d . Then, h must generate a generated
idempotent with supp〈β1g1〉I d = supp〈h〉I d = supp〈β2g2〉I d by Proposition 3.3,
which is a contradiction.

Following from Proposition 3.3, note that for generated idempotent 〈g〉I d with even
|supp〈g〉I d |, we have the following equation:

〈g〉I d + 〈αg〉I d = 〈(1 + α)g〉I d
Together with Proposition 3.4, this leads to the next corollary. ��

Corollary 3.5 Let G be an abelian group. Suppose that the number of odd and even
weight generated idempotents in F2G are l and m, respectively. Then, there are a total
of l + 2m generated idempotents in GF(4)G, and thus |GF(4)G| = 2l+2m.

4 Stabilizer formalismwith idempotent generators

In this section, the classified idempotents will be served as generators of cyclic additive
codes overGF(4). Recall that a stabilizer subgroup S must be abelian, or equivalently
the corresponding additive code overGF(4),C must be self-orthogonal w.r.t. the trace
Hermitian inner product over GF(4) by Corollary 2.6.

To begin with, we introduce a special class of idempotents which can potentially
generate a stabilizer.

Definition 4.1 An idempotent e ∈ IGF(4)(G) is said to be self-inverse if for every
h ∈ supp(e), h−1 ∈ supp(e) with h and h−1 having the same coefficients.

Throughout the remaining of this paper, unless stated otherwise, Cn = 〈x〉, the
cyclic group of order n generated by x , is always associated with the ordered listing
Cn = {1, x, x2, . . . , xn−1}.
Theorem 4.2 Let 〈βxs〉I d ∈ IGF(4)(Cn) be self-inverse. Then, the cyclic additive code
over GF(4) having generator 〈βxs〉I d is self-orthogonal w.r.t. the trace Hermitian
inner product over GF(4).

Proof Define the canonical mapping T : GF(4)Cn → GF(4)n . It’s sufficient to show
that T (〈βxs〉I d) and T (xi 〈βxs〉I d) are orthogonal for every i , then orthogonality
naturally follows for T (x j 〈βxs〉I d) and T (xk〈βxs〉I d) for any pair of j, k by the
cyclical property.

Let xa ∈ supp(〈βxs〉I d) ∩ supp(xi 〈βxs〉I d). Note that we can write a ≡ s2k

mod (n) and a ≡ s2k
′ + i mod (n) . This implies that for each i :

s2k ≡ s2k
′ + i mod (n)
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−s2k ≡ −s2k
′ − i mod (n)

(−s)2k + i ≡ (−s)2k
′

mod (n)

Let b ≡ (−s)2k
′
mod (n). Since 〈βxs〉I d is self-inverse, we have xb ∈

supp(〈βxs〉I d). Also, since xb ∈ supp(xi 〈x−s〉I d) and as 〈βxs〉I d is self-inverse,
xb ∈ supp(〈βxs〉I d) ∩ supp(xi 〈βxs〉I d).

As 〈βxs〉I d is self-inverse, the coefficient of xb in 〈βxs〉I d is equal to xa in
xi 〈βxs〉I d , whereas the coefficient of xb in xi 〈βxs〉I d is equal to xa in 〈βxs〉I d .

Computing 〈〈βxs〉I d , xi 〈βxs〉I d〉th , at position a and b, the corresponding summa-
tion term in Definition 2.4 are complex conjugate, which results in the trace of their
sum to be 0. Therefore, by linearity property, we have 〈〈βxs〉I d , xi 〈βxs〉I d〉th = 0.

The converse of Theorem 4.2 is generally not true, where a counterexample is
1 + 〈x〉I d ∈ IGF(4)(C15). The next corollary is an implication of Theorem 4.2. ��
Corollary 4.3 Let e ∈ IGF(4)(Cn) be self-inverse. Then, the cyclic additive code over
GF(4) having generator e is self-orthogonal w.r.t. the trace Hermitian inner product
over GF(4).

The remaining section is devoted to further studying self-inverse idempotents of
two special cases; when n = 2m + 1 or n = 2m − 1, for m ∈ Z

+.

4.1 Case: n = 2m − 1

The following proposition determines the weight of certain generated idempotents in
GF(4)Cn for n = 2m − 1.

Lemma 4.4 Let n = 2m − 1 and 〈xs〉I d ∈ I〈I d〉(Cn) such that gcd(s, n) = 1. Then,
|supp〈xs〉I d | = m.

Proof Note that |supp〈xs〉I d | = k if and only if k is the smallest positive integer such
that xs(2

k ) = xs or equivalently s(2k) ≡ smod (n). As gcd(s, n) = 1, this results
in 2k ≡ 1mod (n). Note that j = m is the smallest positive integer which satisfy
2 j ≡ 1mod (n) as for each 1 ≤ j < m, clearly 2 j − 1 < n.

Using Proposition 3.3, for the case whenm is even, we have the following result. ��
Corollary 4.5 Let n = 2m − 1 for some even m ∈ Z

+ and consider non-trivial
〈βxs〉I d ∈ IGF(4)(Cn) with gcd(s, n) = 1. Then, |supp〈βxs〉I d | = m.

The next proposition gives a class of self-inverse idempotents in IGF(4)(Cn) for
n = 2m − 1 when m is even. Before that, it’s necessarily to recall Lemma 5.6 in [13]
as follows.

Lemma 4.6 For distinct 〈xs1〉I d , 〈xs1〉I d ∈ IGF(4)(Cn). If ord(xs1) = ord(xs2), then
|supp〈xs1〉I d | = |supp〈xs2〉I d |.

The next proposition introduces a class of self-inverse idempotents for n = 2m −1.

Proposition 4.7 Let n = 2m − 1 for some m ∈ Z
+ and consider non-trivial

〈βxs〉I d , 〈βx−s〉I d ∈ IGF(4)(Cn) with gcd(s, n) = 1. Then, 〈βxs〉I d + 〈βx−s〉I d
must be a self-inverse idempotent.
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Proof Firstly, 〈βxs〉I d + 〈βx−s〉I d ∈ IGF(4)(Cn) by Proposition 3.1. To claim that it
is self-inverse, note that for each k ∈ Z

+:

(xs(2
k ))(x−s(2k )) = xs(2

k )−s(2k ) = 1.

Note that ord(xs) = ord(x−s), results in |supp〈xs〉I d | = |supp〈x−s〉I d | by Lemma
4.6. By Proposition 3.3, we have |supp〈βxs〉I d | = |supp〈βx−s〉I d |. ��

4.2 Case: n = 2m + 1

The following proposition determines the weight of certain generated idempotents in
GF(4)Cn for n = 2m + 1.

Lemma 4.8 Let n = 2m + 1 for some m ∈ Z
+ and consider non-trivial 〈xs〉I d ∈

IGF(4)(Cn) with gcd(s, n) = 1. Then, |supp〈xs〉I d | = 2m.

Proof Note that |supp〈xs〉I d | = k if k is the smallest positive integer such that (xs)2
k =

xs . This is equivalent to k is the smallest positive integer such that s2k ≡ s mod (2m+
1). Since gcd(s, n) = 1, we have 2k ≡ 1 mod (2m + 1).

Note that the smallest positive integer j such that 2 j + 1 ≡ 0 mod (2m + 1) is
j = m and this gives

2m ≡ −1 mod (2m + 1)

Thus, the cyclotomic 2-coset containing 1,

C1 = {1, 2, 22, . . . , 2m, 2m+1, . . . , 2m2a−1}

for some a ∈ Z
+ such that 2m2a = 1. As a = m is the smallest positive integer such

that 2a ≡ −1 mod (2m +1), k = m+a = 2m is the smallest positive integer, which
is even satisfying 2k ≡ 1 mod (2m + 1).

Then, it follows from Proposition 3.3 that the next corollary holds. ��
Corollary 4.9 Let n = 2m + 1 for some m ∈ Z

+ and consider non-trivial 〈βxs〉I d ∈
IGF(4)(Cn) with gcd(s, n) = 1. Then, |supp〈βxs〉I d | = 2m.

In addition, the self-inverse property of 〈βxs〉I d is validated as follows.

Proposition 4.10 Let n = 2m+1 for somem ∈ Z
+ and consider non-trivial 〈βxs〉I d ∈

IGF(4)(Cn). Then, 〈βxs〉I d is always self-inverse.

Proof Let 〈βxs〉I d ∈ F2Cn . For each s(2i ) ∈ Cs , to show (s(2i ))−1 ∈ Cs , we show
that there exists k ∈ Z

+ such that:

s(2i )(2k) ≡ −s(2i ) mod (2m + 1)

s(2i )(2k + 1) ≡ 0 mod (2m + 1)
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Table 2 Orthogonality analysis
of burst error ε with chosen
stabilizers in Proposition 5.2

Components xi xi+1 . . . xi+s−1 xi+s

ε ε1 ε2 . . . εs−1 εs

xi−s S1 β1k 0 . . . 0 0

xi−s S2 β2k 0 . . . 0 0

Such k always exist, choose k = m or there might exist smaller k ∈ Z
+.

Lastly, an immediate consequence of Proposition 4.10 is that, when n = 2m + 1 is
prime, each non-trivial generated idempotent in IGF(4)(Cn) is self-inverse. ��

5 Burst error correction

The burst length of an error ε = (εi ) ∈ Gn is defined as the largest integer 1 ≤ l ≤ n
such that εi �= 0 and εi+l−1 �= 0 for some 1 ≤ i ≤ n, denoted by bl(ε) = l. A code
C is said to be a l burst error-correcting code if every burst error of length at most l
is correctable. An important lower bound, namely the quantum Rieger bound which
arose from the no-cloning theorem, was constructed in [25] and is given as follows:

Theorem 5.1 Given an [[n, k]] l burst error-correcting code, then:

n − k ≥ 4l

The following proposition is required to study the burst error-correcting ability of
stabilizer codes.

Proposition 5.2 Let C be a length n stabilizer code with cyclic additive stabilizer

S. Consider S1, S2 ∈ S, Si =
n−1∑

j=0
βi j x j for i ∈ {1, 2} such that there exists k ∈

{0, 1, . . . , n − 1}:
1. β1 j �= β2 j , both nonzero when j = k.
2. β1 j = β2 j = 0 for each j ∈ {k + 1, k + 2, . . . , k + s} for some s ∈ Z

+.

Then, for every burst error ε with length l ≤ s, ε /∈ N (S) \ S.

Proof Let the first non-trivial error of ε occurs in position xi , since the stabilizer is
cyclic, we can perform cyclic shift on S1 and S2 by multiplying xi−s , respectively,
to obtain two stabilizer elements, xi−s S1 and xi−s S2, both having s consecutive zero
coefficients from xi+1 to xi+s , as illustrated in Table 2.

Note that orthogonality between ε and xi−s S1, as well as between ε and xi−s S2,
holds if and only if Tr(ε1β̄1k) = Tr(ε1β̄2k) = 0. Since at least one of β̄ik �= 1, it
must be ε1 = β1k = β2k , contradicting our assumption. Hence, ε /∈ N (S) \ S.

Using Proposition 5.2, the following theorem illustrates the burst error-correcting
abilities of a class of length n = 2m − 1 stabilizer codes. ��
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Table 3 Orthogonality analysis
of burst error ε with chosen
stabilizers from
F2Cn(〈βx〉I d + 〈βx−1〉I d ) for
n = 2m − 1

Components xi xi+1 . . . xi+2m−2−1 xi+2m−2

ε ε1 ε2 . . . ε2m−2−1 0

S1 β 0 . . . 0 β2

S2 β2 0 . . . 0 β

Table 4 Orthogonality analysis
of burst error ε with chosen
stabilizers from
F2C15(〈αx〉I d + 〈αx−1〉I d )

Components xi xi+1 xi+2 xi+3

ε ε1 ε2 ε3 0

S1 α 0 0 α2

S2 α2 0 0 α

Theorem 5.3 Let n = 2m − 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S ∼= F2Cn(〈βx〉I d + 〈βx−1〉I d)

for some β ∈ {α, α2}. Then, C can correct any burst errors up to length �2m−3 − 1
2�.

Proof Let ε be a burst error with burst length l ≤ 2m−2 − 1. Let the first non-trivial
error of ε occurs in position xi , since the stabilizer is cyclic, we can perform cyclic
shift on 〈βx〉I d + 〈βx−1〉I d by multiplying xi−2m−2

and xi−2m−1
, respectively, to get

two stabilizer elements, S1 and S2, both having 2m−2−2 consecutive zero coefficients
from xi+1 to xi+2m−2−2 as depicted in Table 3.

Therefore, by Proposition 5.2, ε /∈ N (S) \ S, thus concludes our theorem.
The following example illustrates the case when m = 4.

Example 5.4 Let m = 4 and thus n = 24 − 1 = 15. We construct the quantum
code C with stabilizer S ∼= F2C15(〈αx〉I d + 〈αx−1〉I d). The idempotent generator
〈αx〉I d + 〈αx−1〉I d can be expressed explicitly as:

αx + α2x2 + αx4 + α2x7 + α2x8 + αx11 + α2x13 + αx14.

Let ε be a burst error of length l ≤ 3, where the first non-trivial error of ε occurs
in position xi . Since the stabilizer is cyclic, we can perform cyclic shift on 〈αx〉I d +
〈αx−1〉I d by multiplying xi−4 and xi−8, respectively, to get two stabilizer elements
S1, S2 ∈ S, as in Table 4. Note that there’s no ε1 ∈ GF(4) \ {0} commute with α and
α2, respectively. Hence, ε /∈ N (S) \ S.

We can motivate further by extending the claim to any ε′ with burst length l = 4.
Let the first non-trivial error of ε′ occurs in position xi . It can be shown that g(x) =
(1 + x8)(〈αx〉I d + 〈αx−1〉I d) ∈ S has summation terms from x2 to x6 being:

α2x2 + 0x3 + 0x4 + 0x5 + α2x6
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Table 5 Further orthogonality
analysis of burst error ε with
chosen stabilizers from
F2C15(〈αx〉I d + 〈αx−1〉I d )

Components xi xi+1 xi+2 xi+3

ε′ ε′
1 ε′

2 ε′
3 ε′

4

S3 α2 0 0 0

S4 0 0 0 α2

Now, perform cyclic shift on g(x) by multiplying xi−2 and xi−1, results in S3, S4 ∈ S,
respectively, as in Table 5.

Note that orthogonality occurs precisely when Tr(ε′
1α) = Tr(ε′

4α) = 0, that
is both ε′

1, ε
′
4 ∈ GF(4) \ {0} equal to α2. However, such ε′ anticommutes with S1

mentioned above. Hence, ε′ /∈ N (S) \ S.
Additionally, it can be shown that dim(C) = 7 using MAGMA [26]. Hence, C is

a [[15, 7]] code which is capable to correct at least all burst errors of length up to 2.
This code attains the quantum Rieger bound.

The later argument in example above can be generalized into the following theorem.

Theorem 5.5 Let n = 2m − 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S ∼= F2Cn(〈βx〉I d + 〈βx−1〉I d)

for some β ∈ {α, α2}. Then, C can correct any burst errors up to length 2m−3.

Proof We extend the proof of Theorem 5.3 to the case when ε has burst length l =
2m−2. When m is even, it can be shown that:

g(x) = (1 + x2
m−1

)(〈βx〉I d + 〈βx−1〉I d) ∈ S,

has summation terms from x2
m−3

to x2
m−2+2m−3

as follows:

β2x2
m−3 +

2m−2+2m−3−1∑

i=2m−3+1

0xi + β2x2
m−2+2m−3

In a similar fashion, let the first non-trivial error of ε occurs in position xi . Perform
cyclic shift on g(x) by multiplying xi−2m−3

and xi−2m−3+1, respectively, to obtain two
stabilizer S1 and S2, as depicted in Table 6.

Note that orthogonality occurs precisely when both ε1, ε2m−2 ∈ GF(4) \ {0} are
equal to β2. However, such ε is orthogonal to S1 mentioned in Theorem 5.3. Hence,
ε /∈ N (S) \ S.

Next, the case when n = 2m + 1 is discussed as follows. ��
Theorem 5.6 Let n = 2m + 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S ∼= F2Cn(〈βx〉I d)
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Table 6 Further orthogonality analysis of burst error ε with chosen stabilizers from F2Cn(〈βx〉I d +
〈βx−1〉I d ) for n = 2m − 1

Components xi xi+1 xi+2 . . . xi+2m−2−2 xi+2m−2−1

ε ε1 ε2 ε3 . . . ε2m−2−1 ε2m−2

S1 β2 0 0 . . . 0 0

S2 0 0 0 . . . 0 β2

Table 7 Orthogonality analysis
of burst error ε with chosen
stabilizers from F2Cn(〈βx〉I d )

for n = 2m + 1

Components xi xi+1 xi+2 . . . xi+2m−2−1 xi+2m−2

ε ε1 ε2 ε3 . . . ε2m−2−1 0

S1 β 0 0 . . . 0 β2

S2 β2 0 0 . . . 0 β

for some β ∈ {α, α2}. Then, C can correct any burst errors up to length 2m−3.

Proof For every ε with burst length l ≤ 2m−1−2m−2, we can find a stabilizer element
which is orthogonal to it. Let the first non-trivial error of ε occurs in position xi , since
the stabilizer is cyclic, we can perform cyclic shift on 〈βx〉I d by multiplying xi−2m−2

and xi−2m−1+1, respectively, to get two stabilizer elements, S1 and S2, both having
2m−2 − 1 consecutive zero coefficients from xi+1 to xi+2m−2−1, where xi component
of S1, S2 having different coefficient in GF(4) \ {0}. The case when m is even is
illustrated in Table 7. It follows from Proposition 5.2 that ε /∈ N (S) \ S.

Note that the idempotent 1 ∈ IGF(4)(G) is trivially self-inverse, hence for e ∈
IGF(4)(G) is self-inverse if and only if 1+e ∈ IGF(4)(G) is self-inverse by Proposition
3.1. The below corollaries follow directly from our previous discussion. ��
Corollary 5.7 Let n = 2m − 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S ∼= F2Cn(1 + 〈βx〉I d + 〈βx−1〉I d)

for some β ∈ {α, α2}. Then, C can correct any burst errors up to length 2m−3.

Proof The proofworks exactly the same asTheorem5.3 and 5.5, by replacing 〈βx〉I d+
〈βx−1〉I d with 1 + 〈βx〉I d + 〈βx−1〉I d . ��
Corollary 5.8 Let n = 2m + 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S ∼= F2Cn(1 + 〈βx〉I d)

for some β ∈ {α, α2}. Then, C can correct any burst errors up to length 2m−3.

Proof The proof works exactly the same as Theorem 5.6, by replacing 〈βx〉I d with
1 + 〈βx〉I d .
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Table 8 Parameters of cyclic quantum codes of length n = 2m ± 1 for even m > 2, up to 65, with
self-inverse idempotent as stabilizer generator

Length (n) Code generator (e) Row weight [[n, k, d]] l-burst error
correction

Result

15 〈βx〉I d + 〈βx−1〉I d 8 [[15,7,3]] l ≥ 2 Theorem 5.5

15 1 + 〈βx〉I d + 〈βx−1〉I d 9 [[15,0,3]] l ≥ 2 Corollary 5.7

17 〈βx〉I d 8 [[17,1,5]] l ≥ 2 Theorem 5.6

17 1 + 〈βx〉I d 9 [[17,8,4]] l ≥ 2 Corollary 5.8

63 〈βx〉I d + 〈βx−1〉I d 12 [[63,19,7]] l ≥ 8 Theorem 5.5

63 1 + 〈βx〉I d + 〈βx−1〉I d 13 [[63,8,7]] l ≥ 8 Corollary 5.7

65 〈βx〉I d 12 [[65,13,7]] l ≥ 8 Theorem 5.6

65 1 + 〈βx〉I d 13 [[65,24,?]] l ≥ 8 Corollary 5.8

Finally, this section is ended with Table 8which summarizes the parameters of
constructed codes (up to length 65) and their burst error-correcting abilities. Results
are computed using MAGMA Calculator [26]. ��

6 Conclusion and future directions

A classification of idempotents in commutative group algebras GF(4)G was intro-
duced in this paper, using the generated idempotents as basic building blocks. Viewing
cyclic additive codes equivalently as F2-submodules of group algebra over the same
finite field GF(4), we identified an essential criterion for idempotents to generate
self-orthogonal cyclic additive codes over GF(4), that is being self-inverse. This led
to the successful construction of a few classes of quantum stabilizer codes, where
lower bounds on their burst error-correcting abilities were obtained. It was further
shown that some constructed quantum stabilizer codes did attain the lower bound.
Future directions include self-inverse idempotents in generating stabilizer codes of
other length, as well as the study of other properties which enable idempotents to
also generate stabilizer codes. Lastly, the potential of idempotents in constructing
good entanglement-assisted quantum error-correcting codes (EAQECCs) is alsoworth
exploring.

Acknowledgements This research was supported by EmPOWER Research Grant Scheme (EmRGS) 2022
(MACS/EmRGS/2022/03) provided by School of Mathematical and Computer Sciences, Heriot-Watt
University Malaysia (HWUM).

Data availability Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.

Declarations

Conflict of interest The authors declare that they have no conflict of interest. The authors have no relevant
financial or non-financial interests to disclose.

123



  158 Page 16 of 17 K. L. Ong

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982). https://
doi.org/10.1007/BF02650179

2. Grover, L.: A fast quantum mechanical algorithm for database search. In: Annual ACM Symposium
on Theory of Computing, Philadelphia, 2–4 May (1996)

3. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9),
631–633 (2014)

4. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26(5), 1484–1509 (1995)

5. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Berlin (2007).
https://doi.org/10.1007/978-3-540-35775-9

6. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52(4), 2493–2496
(1995)

7. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)
8. Gottesman, D.: Stabilizer Codes and Quantum Error Correction (1997)
9. Calderbank, A., Rains, E., Shor, P., Sloane, N.: Quantum error correction via codes over GF(4). IEEE

Trans. Inf. Theory 44(4), 1369–1387 (1998)
10. Vatan, F., Roychowdhury, V.P., Anantram, M.: Spatially correlated qubit errors and burst-correcting

quantum codes. IEEE Trans. Inf. Theory 45(5), 1703–1708 (1999)
11. Kawabata, S.: Quantum interleaver: quantum error correction for burst error. J. Phys. Soc. Jpn. 69(11),

3540–3543 (2000)
12. MacWilliams, M.F.: Binary codes which are ideals in the group algebra of an abelian group. Bell Syst.

Tech. J. 49(6), 987–1011 (1970). https://doi.org/10.1002/j.1538-7305.1970.tb01812.x
13. Ong, K.L., Ang,M.H.: On equivalency of zero-divisor codes via classifying their idempotent generator.

Des. Codes Cryptogr. 88, 2051–2065 (2020). https://doi.org/10.1007/s10623-020-00762-7
14. Ong, K.L., Ang, M.H.: On equivalence of cyclic and dihedral zero-divisor codes having nilpotents of

nilpotency degree two as generators. Des. Codes Cryptogr. 90, 1127–1138 (2022). https://doi.org/10.
1007/s10623-022-01025-3

15. Hurley, T.: Self-dual, dual-containing and related quantum codes from group rings. arXiv:0711.3983
(2007)

16. Aly, S.A., Klappenecker, A., Sarvepalli, P.: On quantum and classical BCH codes. IEEE Trans. Inf.
Theory 53, 1183–1188 (2007). https://doi.org/10.1109/TIT.2006.890730

17. Arora, S.K., Pruthi, M.: Minimal cyclic codes of length 2pn. Finite Fields Appl. 5(2), 177–188 (1999).
https://doi.org/10.1006/ffta.1998.0238

18. Guerreiro, M.: Group algebras and coding theory. São Paulo J. Math. Sci. 10, 346–371 (2016). https://
doi.org/10.1007/s40863-016-0040-x

19. Martínez-Moro, E., Nicolás, A., Rúa, I.: Additive semisimple multivariable codes over F4. Designs
Codes Cryptogr. 69 (2013)

20. Huffman, W.C.: Additive cyclic codes over F4. Adv. Math. Commun. 1(4), 427–459 (2007)
21. Lidar, D., Brun, T. (Eds.).: Quantum Error Correction. Cambridge: Cambridge University Press (2013)

https://doi.org/10.1017/CBO9781139034807
22. Milies, C.P., Sehgal, S.K.: An Introduction to Group Rings. Springer, Berlin (2002)
23. Ong, K.L., Ang, M.H.: Full identification of idempotents in binary Abelian group rings. J. Indones.

Math. Soc. 23, 67–75 (2017)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/978-3-540-35775-9
https://doi.org/10.1002/j.1538-7305.1970.tb01812.x
https://doi.org/10.1007/s10623-020-00762-7
https://doi.org/10.1007/s10623-022-01025-3
https://doi.org/10.1007/s10623-022-01025-3
http://arxiv.org/abs/0711.3983
https://doi.org/10.1109/TIT.2006.890730
https://doi.org/10.1006/ffta.1998.0238
https://doi.org/10.1007/s40863-016-0040-x
https://doi.org/10.1007/s40863-016-0040-x
https://doi.org/10.1017/CBO9781139034807


Burst error-correcting quantum stabilizer codes designed… Page 17 of 17   158 

24. Ong, K.L., Ang, M.H.: Study of idempotents in cyclic group rings over F2. In: AIP Conference
Proceedings 1739 (2016)

25. Fan, J., Hsieh, M., Chen, H., Chen, H.H., Li, Y.: Construction and performance of quantum burst error
correction codes for correlated errors. In: 2018 IEEE International Symposium on Information Theory
(ISIT), pp. 2336–2340 (2018)

26. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb.
Comput. 24, 235–265 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Burst error-correcting quantum stabilizer codes designed from idempotents
	Abstract
	1 Introduction
	2 Quantum error correction and stabilizer formalism
	3 Idempotents in commutative group algebra over GF(4)
	4 Stabilizer formalism with idempotent generators
	4.1 Case: n=2m-1
	4.2 Case: n=2m+1

	5 Burst error correction
	6 Conclusion and future directions
	Acknowledgements
	References


