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Abstract

Certain classical codes can be viewed isomorphically as ideals of group algebras,
while studying their algebraic structures help extracting the code properties. Research
has shown that this was remarkably efficient in the case when the code generators are
idempotents. In quantum error correction, the theory of stabilizer formalism requires
classical self-orthogonal additive codes over the finite field G F'(4), which, via the
lens of group algebras, are essentially F>-submodules over G F'(4). Therefore, this
paper provides a classification on idempotents in commutative group algebra G F (4) G,
followed by a criterion that allows idempotents to generate stabilizer subgroups. Later,
the construction of quantum stabilizer codes is done in the case when G is a cyclic
group Cp, forn = 2™ — 1 and n = 2™ + 1. Quantum bounds on their burst error
minimum distance are subsequently determined.
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1 Introduction

In 1982, Feynman proposed the idea of using quantum mechanical system to simulate
quantum phenomena to perform computations [1]. Subsequently, extensive works have
been done on the design of quantum algorithms to solve intractable classical problems
and the quantization of existing classical algorithms [2, 3]. While the research was
multi-directional, the most striking instance was the introduction of Shor’s algorithm
in 1994, a quantum algorithm suggested that prime factorization of large numbers can
be done much efficiently using a quantum computer, in which RSA cryptosystem, the
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security system of most online transactions, mainly relied on [4]. Quantum phenomena
such as quantum parallelism and superposition are core ideas when implementing
these quantum algorithms. However, their units of information, quantum bits, are
significantly more prone to errors due to decoherence caused by intrinsic noise in
quantum devices and interaction with the environment [5]. Hence, quantum error
correction is indispensable for quantum computers.

Although the earliest quantum codes, of 9-qubits and 7-qubits, were constructed by
Shor and Steane respectively [6, 7], the first notable quantum codes construction 31
framework was introduced by Gottesman [8] generalized from Shor’s codes, termed as
the stabilizer construction. Using this approach, the challenge of constructing quantum
error-correcting codes was transformed to the problem of finding classical additive
codes over the finite field GF(4) = {0, 1, «, ozz} which are self-orthogonal with
respect to the trace Hermitian inner product. The resultant codes are called stabilizer
codes [8, 9].

Most theories of quantum error correction are conventionally discussed under the
assumption that noises occur in a random manner, known as the “independent qubit
decoherence” model [10]. However, in the scenario when decoherence mechanisms
of qubits are known, it is often possible to construct quantum codes with greater
efficiency [10]. One common decoherence pattern is burst error, or loosely speaking,
errors occurred in consecutive positions. Some research has been done in constructing
quantum burst error codes such as the quantum interleaver method with no redundant
qubits used [11].

A perspective of viewing classical cyclic codes as ideals of a group algebra was
Fylx]
Fylx](x" — 1)
where F,C), is the group algebra of Cy,, the cyclic group of order n over Fy, the finite
field of ¢ elements. This had induced a more generic way of defining codes as ideal
of group algebras F,;G for finite group G, namely group codes. The rich algebraic
structures of group codes arose from the dual properties of them being submodules
and ideals, as well as having zero-divisors as generators, resulting in various inter-
esting approaches toward problems such as equivalence problem in classical coding
theory [13, 14]. Furthermore, through the lens of group algebras, classical additive
codes over G F(4) can be viewed isomorphically as F>-submodules of group alge-
bra over G F'(4). This approach was used to study dual-containing classical codes in

constructing quantum codes [15].

It is well known that cyclic codes are uniquely characterized by their generator
polynomial. For example, generator polynomials with consecutive power of primitive
elements as roots generate an important class of cyclic codes with design distance
called BCH codes. Setting certain BCH codes as underlying additive codes over G F (4)
results in quantum BCH codes having parameter specified in terms of the design
distance [16]. An alternative approach is to study cyclic codes via their idempotent
polynomials. The discussion is extendable to a more general context of group algebras.
Throughout this paper, let F,; G be the group algebra of a finite group G over the finite
field of g elements, F;;. An element e € F;G is called an idempotent if e? = e. Group
algebras F,;G with |G| being coprime to char(F,) possess semisimplicity property,
hence are expressible as a direct sum of minimal ideals generated by idempotents.

~

introduced by MacWilliam [12], via the ring isomorphism F,C,, =
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Here, the group codes are direct sum of a subset of those minimal ideals, that is,
in the form of C = @le F,Ge; for some k € ZT. Each ¢; is called a primitive
central idempotent generator of C. These primitive central idempotent generators
play a crucial role in extracting the parameters and algebraic properties of the group
codes [17, 18]. Specifically, for additive codes over G F (4), this approach was used to
construct lower bounds of codes’ minimum distance and study the duality of classes
of additive multivariable codes in [19], extended from the canonical decomposition
of additive codes over G F'(4) introduced in [20].

This paper is devoted to constructing quantum codes with stabilizers generated by
idempotents and studying their burst error-correcting abilities, based on an alternative
classification different from the primitive central idempotents approach. The outline of
this paper is as follows. In Section 2, a preliminary review of quantum error correction
is carried out in detail, followed by a brief introduction to group algebras and their
codes. Section 3 gives a classification on idempotents in the group algebra G F (4) G for
finite abelian group G. Section 4 inspects the potential of the classified idempotents in
generating self-orthogonal cyclic additive codes over G F'(4). Lastly, in Section 5, the
burst error-correcting abilities of constructed quantum codes of length n are studied
forn=2" —1landn =2"+1form € Z*.

2 Quantum error correction and stabilizer formalism

Theories of quantum error correction reviewed in this section can be found in most
textbooks and main early research works such as [8, 21]. A single qubit state is often
represented mathematically as an element of the Hilbert Space C?, having a general

form of |) = (Z), subjecting to the normalization constraint llal|*> + ||6]]> = 1

Quantum errors are modeled as linear operators on C?, or equivalently elements of
M>,>(C), in which the set of Pauli operators, P, consists of the following:

= (49 e= (0 2= (3.5 = (05)

forms a basis.
Generalizing the idea, error operators on n qubits are in the form of n-fold tensor
product of linear operators on (C2 With an overall phase of 1, i, this gives the

multiplicative group G, = {i/ ® Pilj € {0,1,2,3}, P. € P}. Moreover, every
k=1

g € Gy iseitherof order 2or4, thus either g = 1org? = —1. Sometimes, the quotient

group G, = G,/{% ® Iy, +i ® I} is considered instead, with |G, | = 2%".
=1 k=1
The weight of a quantum error € € G,, wt(e) is the total number of its tensor

component Py which are non-identity. Also, it follows from the property of Pauli
operators that for every pair of elements €1, €2 € G, either [€1, €2] = Oor{e1, €2} =0
, where [€1, €2] and {€1, €3} denote the commutator and anti-commutator of €; and €5,
respectively.
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The construction of a stabilizer code fully depends on the choice of its stabilizer
group S. A stabilizer S of a length n code C is defined to be the set of all possible
error operators in G, that fix each codeword of C. More precisely, S must be an
abelian subgroup of G,, hence it’s often termed as the stabilizer group of C. Note

2

n
that —1 & Iy ¢ S, for every error operator € € S, ord(e) # 4, otherwise €~ =
k=1

n
—1 @ I € S. Hence, we have ord(e) = 2 or e = 1. Equivalently, S must be an
k=1
elementary abelian 2-group.
The resultant code C is a subspace of c? , such that every codeword in C is invariant
under every operator in S. In other words, C is the intersection of the eigenspace of

each of the error operator in S with associated eigenvalue 1.

Definition 2.1 Let S be a stabilizer subgroup of G,. Then, C C C?" is called a
stabilizer code with stabilizer S if C = {|y) € c? | Si|¥) = |¥), VS; € S}.

A stabilizer code is called an [[n, k, d]]-stabilizer code if its length, dimension and
minimum distance are n, k and d, respectively. The dimension and minimum distance
of a stabilizer code can be determined based on the properties of its stabilizer.

Since S must be an elementary abelian 2-group, |S| = 2! for some [ € Z* and S
has a presentation of / generators, thatis, S = (51, 2, ..., Si). A stabilizer code with
|S| = 2! has dimension k = n — [.

The minimum distance of a length n stabilizer code C can be deduced from the
set of errors which are detectable or correctable by C. Note that S € N(S) € G,
where N (S) is the normalizer of S in G,. Then, G, can be partitioned into G, =
SUNG\S)U(Gp \ N(S)).

Case 1: € € S. It can be seen from Definition 2.1 that € has no effect on the codespace
C, thus those errors are correctable for C.
Case 2: € € N(S) \ S. Note that since ¢ € N(S), then we have €S = Se. This
implies that when € acts on a codeword |{) € C, then for every S € S, Si(e|¥)) =
S1e)ly) = (eSDNY) = €(S2|¥)) = €|y) for some S, € S. The fact that €|yr)
is stabilized by each §7 € § implies that €|y) is another codeword in C such that
€|¥) # |¥). Therefore, € is not detectable, hence not correctable.
Case 3: € € G, \ N(S). Then, there exists S1 € S such that € does not commute with,
then it must be {€, S} = 0, giving €S; = —S;€. This results in €|y) = €(S1|¥))
= (eSDIY) = (=Sie)|y¥) = —Si(ely)). Since €|y) = —Si(e|y)), €]y) is not
stabilized by S; € S; thus, €|v) is not a codeword in C. The error is detectable by C.
Putting all together, this leads to the following theorem and its immediate corollary.

Theorem 2.2 Let C be a stabilizer code of length n with stabilizer S. Then, C can
detect an error operator € if and only if e € S U (G, \ N(95)).

Corollary 2.3 Let C be an [[n, k, d]]-stabilizer code with stabilizer S consisting of
generators. Then, k =n — [ and d = min{wt(e) | ¢ € N(S) \ S}.

Define a group isomorphism, ¢ : G| — GF4) (GF(4) as additive group) such
that ¢(X) = o and ¢(Z) = 1. The complete mapping is depicted in Table 1. For
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Table 1 Each Pauli operator

and its corresponding field Pauli operators Elements of G F(4)
element of G F (4) 1 0

X o

Z 1

Y 1 + o or a?

convenience, in the remaining of the paper, elements € € G and ¢(€) € GF(4) will
be used interchangeably.

Note that not every subgroup S of G, can act as a stabilizer, as S must be an
elementary abelian 2-group according to previous discussion. The commutativity of
operators in G, can be formulated alternatively by the following.

Define the trace operator Tr : GF(4) — F, as Tr(B) = B + ,32 for every
B € GF(4). Note that Tr(0) = Tr(1) = 0 and Tr(a) = Tr(a?) = 1.

Definition 2.4 The trace Hermitian inner product on G F(4)" is defined by (, ), :
n

GF4)" x GF(4)" — F, such that (x, y);, = Tr (Z xkyk), for x = (x;) and
k=1
y = ()-

Proposition 2.5 Let €1, €3 € G,,. Then, €| and €3 commutes if and only if their trace
Hermitian inner product (€1, €3):, = 0.

The next corollary follows directly from Proposition 2.5.

Corollary 2.6 Consider a stabilizer S C G,,. Then, S must be self orthogonal w.r.t. the
trace Hermitian inner product.

This section is ended with a review of group algebras and their codes. Consider

GFAG = () agglag € GF(4)}, the set of all formal sums of elements in G
geG

with scalars from G F' (4), define addition, multiplication and scalar multiplication of
elements in GF (4)G as:

Zagg + Zbgg = Z(ag +by)g

geG geG geG
Z ag 81 Z bgng = Z (aglbgz)h
81€G 826G g182=heG

BO agg) =) (Bagg
geG geG

Then, G F (4) G, with the operations above is called a group algebra of G over G F (4).

For every elementu = ) ay,g € GF(4)G, its support is defined as supp(u) = {g €
geG
Glag # 0).
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With addition and multiplication defined above, G F'(4)G forms a ring. Note that
G F (4)G is acommutative ring if and only if G is abelian. On the other hand, G F (4)G
forms a vector space over G F (4) with addition and scalar multiplication defined above.

Group codes are ideals of group algebras. For G F (4)G, every group code of single
generator u € G F(4)G is in the form of GF (4)Gu = {wu|w € GF(4)G}. Below is
an example of a group code of length 6.

Example 2.7 Let G = Cg = (x). The group algebra is:
GF(4)Co = spang p(4) (1, x, x%, ..., x°)
Letu = 1 4+ x% + x*, then the resultant group code is:

GF@#)Cs(1 + x> +xH = (w1l + x> +xHw € GF(4)Cs)

= spang gy (1 + x4t x4+ x4 2%

1+x2+x* , foreveni

follows from that in GF (4)Cg, x' (1 + x2 + x*) = .
($)Ce, x'( ) x+x3+x° |, foroddi
For G with |G| = n, fix an ordered listing as G = {g1, g2, ..., g }. Define the
canonical mapping T : GF(4)G — GF(4)" to view any codeword of an additive
code over GF(4) as an element of group algebra over G F(4) and vice versa, as
follows:

n
(@)1zizn <= Y _aigi
i=1

where each a; € GF(4).

In general, a length n cyclic additive code over GF(4) with generator u € G F (4)"
can be defined as F>C,, (T~ (u)).

For example, with ordered listing C, = {1, x, x2, ..., X}, GF(4)Ce(1 +x2+x%)
from Example 2.7 can be viewed as spanGF(4)(101010, 010101). In addition, the
additive code over G F'(4), span, (101010, 010101) can be viewed isomorphically as
the group algebra F>Cg (14 x2 + x*). Readers who are interested with more details on
theories of group algebras and their applications in classical coding theory can refer
to [22] and [18], respectively.

3 Idempotents in commutative group algebra over GF(4)
This section is mainly devoted to studying the algebraic structure of the set of all
idempotents in G F(4)G for finite abelian group G, denoted by I r)(G). Since

char(GF(4)) = 2 = char(F;), the approach used in developing the result in this
session will be similar to those in [23, 24].
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Proposition 3.1 The set of all idempotents in GF(4)G, IgF4)(G) forms an additive
subgroup of GF (4)G.

Proof Letey, ez € Igr)(G),then (e; +e)? = e%—}—elez—i-ezel +e% = e%+2€1e2+
e% =e1 + er.

However, I r4)(G) need not form a vector subspace of GF(4)(G) as it’s not
always closed under scalar multiplication over G F'(4). An counterexample is given
ase=x+x>+x*e Igr4(C7) with ae ¢ IgF4)(C7).

Next, the notion of generated idempotents which forms the basic building blocks
of I F4)(G) is introduced. ]

k—1 .
Definition 3.2 Let e € Igr)(G) with [supp(e)| = k. If e = Y (Bg)* with Bg =

i=0
B g)zk for some g € supp(e) and some coefficient 8 € GF(4) \ {0}, then e is said to
be a generated idempotent in G F'(4) G with generator 8g and is denoted by (8g)14.

The explicit construction of generated idempotents is done by studying the general-
ized cyclotomic 2-cosets. Readers who are interested with the general idea can refer to
[23, 24]. Note that a generated idempotent in I r(4) (G) can have different generators.
For instance in I r(4)(C7), we have (ax) g = (x) 14 = ((1 +a)x2) g = x +x2 x4
The next proposition classifies generated idempotents according to their support sizes.

Proposition 3.3 Let (g) 14 be a generated idempotent in G F (4)G.

1. If |supp(g)ial is odd, then (Bg)1a = (g) 14 for each B € {a, 1 + a}.
2. If |supp(g) 14 is even, then (B18)1a # (B28)1a for every distinct pair of B, B2 €
GF () \ {0}. In addition, supp(B18)14 = supp{p28)1d.

Proof Let |supp{g);4| = m for some m € Z*. If m is odd, note that we can expand
as follows:

1 2 m—1 1 m—1
(Bg)ia = Bg + B> + B>+ +Bg¥  +pg+Bg* +-- +pg

m—1
=B+ ¢

k=0
m—1 B}
2!
=D 8"
k=0

If m is even, we have (8g)2" = Bg since 2" = B. Hence, for every distinct pair
of B1, B2 € GF(4) \ {0}:
21 2m71
supp(Big)1a = supp(f2g)ra ={8. 8" ,.... 8" L

In addition, (81g)14 # (B28) 14 since coefficients of g, 81 # B». O
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Proposition 3.4 Two generated idempotents (B181)14, (P282)1a € IcFr@4)(G) must
have either equal or disjoint supports.

Proof Let(B181)14. (B282)14 € I6F4)(G) with distinct supports but not disjoint, then
suppose that & € supp(B1g1)14 N supp{B2g2) 4. Then, h must generate a generated
idempotent with supp(81g1)74 = supp{h);a = supp{B2&2)14 by Proposition 3.3,
which is a contradiction.

Following from Proposition 3.3, note that for generated idempotent {(g) ;4 with even
|supp(g) 14|, we have the following equation:

(8)ia +{ag)ra = (1 +a)g)1a

Together with Proposition 3.4, this leads to the next corollary. O

Corollary 3.5 Let G be an abelian group. Suppose that the number of odd and even
weight generated idempotents in Fo G are | and m, respectively. Then, there are a total
of | + 2m generated idempotents in GF (4)G, and thus |GF (4)G| = 2l+2m,

4 Stabilizer formalism with idempotent generators

In this section, the classified idempotents will be served as generators of cyclic additive
codes over G F'(4). Recall that a stabilizer subgroup S must be abelian, or equivalently
the corresponding additive code over G F' (4), C must be self-orthogonal w.r.t. the trace
Hermitian inner product over G F (4) by Corollary 2.6.

To begin with, we introduce a special class of idempotents which can potentially
generate a stabilizer.

Definition 4.1 An idempotent e € Igr@4)(G) is said to be self-inverse if for every
h € supp(e), h~! € supp(e) with & and h~! having the same coefficients.

Throughout the remaining of this paper, unless stated otherwise, C,, = (x), the
cyclic group of order n generated by x, is always associated with the ordered listing
C, ={1, x, x2, ..., x"_l}.

Theorem 4.2 Let (x°) 14 € IgFr@)(Cy) be self-inverse. Then, the cyclic additive code
over G F(4) having generator (Bx*) 14 is self-orthogonal w.r.t. the trace Hermitian
inner product over G F (4).

Proof Define the canonical mapping T : GF(4)C,, — G F(4)".1t’s sufficient to show
that 7 ((8x°);4) and T (x' (Bx*)74) are orthogonal for every i, then orthogonality
naturally follows for T (x/(Bx*);4) and T (x*(Bx*)14) for any pair of j, k by the
cyclical property.

Let x4 € supp({Bx*)1q) N supp(x’(Bx*)14). Note that we can write a = s2*
mod (n) and a = s2¥ +i mod (n) . This implies that for each i

s28 =52 10 mod (n)
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—s2F = —s2F — i mod (n)
()2 +i = (=2 mod (n)
Let b = (—s)2k/ mod (n). Since (Bx*);4 is self-inverse, we have xb e
supp((Bx*)14). Also, since x” € supp(x’(x~);4) and as (Bx*);q is self-inverse,
xP & supp({Bx*)14) N supp(x’ (Bx*) 7).
As (Bx*)1q4 is self-inverse, the coefficient of x? in (Bx*)4 is equal to x¢ in
x'(Bx°) 14, whereas the coefficient of x? in x’ (Bx*) 4 is equal to x in (8x*) 4.
Computing ((Bx*) 74, x' (Bx*)14):1, at position a and b, the corresponding summa-
tion term in Definition 2.4 are complex conjugate, which results in the trace of their
sum to be 0. Therefore, by linearity property, we have ((8x°) 74, x' (Bx*)14)en = O.
The converse of Theorem 4.2 is generally not true, where a counterexample is
1+ (x)1a4 € I6F4)(Ci15). The next corollary is an implication of Theorem 4.2. O

Corollary 4.3 Let e € Igr4)(Cp) be self-inverse. Then, the cyclic additive code over
G F (4) having generator e is self-orthogonal w.r.t. the trace Hermitian inner product
over GF(4).

The remaining section is devoted to further studying self-inverse idempotents of
two special cases; whenn = 2" 4+ 1lorn =2" — 1, form € 7.

4.1 Case:n =2" —1

The following proposition determines the weight of certain generated idempotents in
GF4)Cy, forn =2m — 1.
Lemma4.4 Letn = 2" — 1 and (x*)14 € I;14y(Cy) such that gcd(s,n) = 1. Then,
lsupp(x*) al = m.
Proof Note that |supp(x*);4| = k if and only if k is the smallest positive integer such
that x*@) = x* or equivalently s(25) = smod (n). As ged(s, n) = 1, this results
in 2% = 1mod (n). Note that j = m is the smallest positive integer which satisfy
2/ =1mod (n) asforeach 1 < j < m,clearly 2/ — 1 < n.

Using Proposition 3.3, for the case when m is even, we have the following result. O

Corollary4.5 Let n = 2™ — 1 for some even m € 7% and consider non-trivial
(Bx*) 14 € IgF@)(Cy) with ged(s, n) = 1. Then, |supp(Bx°) 14| = m.

The next proposition gives a class of self-inverse idempotents in I r4)(C,) for
n = 2" — 1 when m is even. Before that, it’s necessarily to recall Lemma 5.6 in [13]
as follows.
Lemma 4.6 For distinct (x*') 14, (x*')1a € Igr@) (Cy). If ord(x*') = ord(x*?), then
Isupp{x**) 1a| = |supp(x*?) jal.

The next proposition introduces a class of self-inverse idempotents forn = 2" — 1.

Proposition4.7 Let n = 2™ — 1 for some m € Z%V and consider non-trivial

(Bx*)1a, (Bx™")1a € IGr4(Cn) with ged(s,n) = 1. Then, (Bx*)a + (Bx™")14
must be a self-inverse idempotent.
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Proof Firstly, (Bx*)1q + (Bx )14 € IgF4)(C,) by Proposition 3.1. To claim that it
is self-inverse, note that for each k € Z*:

(xs(zk))(x—s(zk)) _ xs(2k)—s(2k) -1

Note that ord(x*) = ord(x~*), results in |supp(x*) ;4| = |supp(x~);4| by Lemma
4.6. By Proposition 3.3, we have |supp(Bx*) 14| = [supp{B8x~*)14l. O

4.2 Case:n =2"+1

The following proposition determines the weight of certain generated idempotents in
GF@4)Cy, forn =2" + 1.

Lemma4.8 Let n = 2™ + 1 for some m € Z*V and consider non-trivial (x*);q €
16 F @) (Cy) with ged(s, n) = 1. Then, |supp(x®) 4| = 2m.

Proof Note that [supp{x*);4| = k if k is the smallest positive integer such that (x* )2k =
x*. This is equivalent to k is the smallest positive integer such that s2€ = s mod (2" +
1). Since ged(s, n) = 1, we have 2k =1 mod Qm + 1).
Note that the smallest positive integer j such that 2/ + 1 =0 mod (2" + 1) is
Jj = m and this gives
2" =—1 mod 2" +1)
Thus, the cyclotomic 2-coset containing 1,

¢ ={1,2,2%,...,2m 2+l ompa—hy

for some a € Z* such that 2"2% = 1. As a = m is the smallest positive integer such

that 2 = —1 mod (2" + 1), k = m +a = 2m is the smallest positive integer, which
is even satisfying 2¥ = 1 mod (2" + 1).
Then, it follows from Proposition 3.3 that the next corollary holds. O

Corollary 4.9 Let n = 2™ + 1 for some m € Z™ and consider non-trivial (Bx*) 4 €
I F4)(Cp) with ged(s, n) = 1. Then, |supp{Bx*)14] = 2m.

In addition, the self-inverse property of (8x*)4 is validated as follows.

Proposition 4.10 Letn = 2" 41 for some m € Z and consider non-trivial (Bx*) 14 €
IF4)(Cy). Then, (Bx*) 14 is always self-inverse.

Proof Let (Bx*);q € F>C,. For each s(2}) € €, to show (s(2)))~! € &, we show
that there exists k € Z1 such that:

s2H(2% = —s2) mod 2" +1)
s2H2K+1)=0 mod 2™ + 1)
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Table 2 Orthogonality analysis

of burst error € with chosen Components xl Xl xitsl s
stabilizers in Proposition 5.2 € €1 €) . €51 €5
x5Sy Bik
X758, Bak

Such k always exist, choose k = m or there might exist smaller k € Z*.
Lastly, an immediate consequence of Proposition 4.10 is that, when n = 2" + 1 is
prime, each non-trivial generated idempotent in /G r4)(Cy) is self-inverse. m]

5 Burst error correction

The burst length of an error € = (¢;) € G, is defined as the largest integer | <[/ <n
such that ¢; # 0 and €¢;4;—1 # 0 for some 1 < i < n, denoted by bl(e) = [. A code
C is said to be a [ burst error-correcting code if every burst error of length at most /
is correctable. An important lower bound, namely the quantum Rieger bound which
arose from the no-cloning theorem, was constructed in [25] and is given as follows:

Theorem 5.1 Given an [[n, k1] [ burst error-correcting code, then:
n—k>4l

The following proposition is required to study the burst error-correcting ability of
stabilizer codes.

Proposition 5.2 Let C be a length n stabilizer code with cyclic additive stabilizer

n—1 .

S. Consider S1,8, € S, Si = Y, Bijx! fori € {1,2} such that there exists k €
j=0

{0,1,...,n—1}:

1. Bij # B2j, both nonzero when j = k.
2. B1j = Poj =0foreach j € {k+1,k+2,....k+s}for somes e L.

Then, for every burst error € with lengthl < s, € ¢ N(S) \ S.

Proof Let the first non-trivial error of € occurs in position x!, since the stabilizer is
cyclic, we can perform cyclic shift on S; and S, by multiplying x'~*, respectively,
to obtain two stabilizer elements, x5S and x! =S5, both having s consecutive zero
coefficients from x‘*! to x/*5, as illustrated in Table 2.

Note that orthogonality between € and x5S, as well as between ¢ and x5S,
holds if and only if Tr(e;B1x) = Tr(e1Ba) = 0. Since at least one of B # 1, it
must be €] = B1x = Bok, contradicting our assumption. Hence, € ¢ N(S) \ S.

Using Proposition 5.2, the following theorem illustrates the burst error-correcting
abilities of a class of length n = 2" — 1 stabilizer codes. O
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Table 3 Orthogonality analysis

. . L am—2 iy om—2
of burst error € with chosen Components xt xitl .. PRV K2
stabilizers from X € € & o Em—2_ 0
F2Cn({Bx)1a + (Bx ™) 1q) for
n—om ] S B 0 . 0 B2
) B 0 . 0 B
Table 4 Orthogonality analysis . . . .
of burst error € with chosen Components x! xitl yit2 yit3
stabilizers from € €] € €3 0
FyCis(ax)g + (ax 1) 4) s " 0 0 o?
S5 o? 0 0 o

Theorem 5.3 Let n = 2™ — 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S = RCy(Bx)1a + (Bx ") 1a)
for some B € {a, a*}. Then, C can correct any burst errors up to length |2"~3 — %J.

Proof Let € be a burst error with burst length [ < 2m=2 _ 1, Let the first non-trivial
error of € occurs in position x/, since the stabilizer is cyclic, we can perform cyclic
shift on (Bx) 74 + (Bx~") 14 by multiplying xi=2" " and xi 2", respectively, to get
two stabilizer elements, S and S, both having 2m=2 _ 9 consecutive zero coefficients
from x'*+! to xIT2"">=2 as depicted in Table 3.

Therefore, by Proposition 5.2, € ¢ N(S) \ S, thus concludes our theorem.

The following example illustrates the case when m = 4.

Example5.4 Let m = 4 and thus n = 2* — 1 = 15. We construct the quantum
code C with stabilizer S = F>,Ci5({ax)rq + ((xx_l) 14)- The idempotent generator
(ax)1q + (@x~1) 74 can be expressed explicitly as:

ax + a2x2 + ax4 + a2x7 + a2x8 + ax” + a2x13 + ax14.

Let € be a burst error of length I < 3, where the first non-trivial error of € occurs
in position x’. Since the stabilizer is cyclic, we can perform cyclic shift on (ax);4 +
(ax~ 174 by multiplying x’~* and x'~8, respectively, to get two stabilizer elements
S1, 82 € S, as in Table 4. Note that there’s no €] € GF(4) \ {0} commute with o and
o2, respectively. Hence, € ¢ N(S) \ S.

We can motivate further by extending the claim to any ¢’ with burst length [ = 4.
Let the first non-trivial error of €’ occurs in position x’. It can be shown that g(x) =
(1 + x¥)(ax) g + (@x™ ") 4) € S has summation terms from x? to x° being:

o?x? 4+ 0x> + 0x* 4+ 0x° + o%x"
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Table 5 Further orthogonality

analysis of burst error € with Components x! xitl xit2 xit3
chosen stabilizers from € € € € €
—1
F2Cis(ox) pa + (ex™ ) 1a) S5 o? 0 0 0
Sa 0 0 0 o?

Now, perform cyclic shift on g(x) by multiplying x'~2 and x’~!, results in S3, S4 € S,
respectively, as in Table 5.

Note that orthogonality occurs precisely when Tr(eja) = Tr(eja) = 0, that
is both €], €y € GF(4) \ {0} equal to «2. However, such €’ anticommutes with S;
mentioned above. Hence, ¢’ ¢ N(S) \ S.

Additionally, it can be shown that dim(C) = 7 using MAGMA [26]. Hence, C is
a [[15, 7]] code which is capable to correct at least all burst errors of length up to 2.
This code attains the quantum Rieger bound.

The later argument in example above can be generalized into the following theorem.

Theorem 5.5 Let n = 2" — 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S = FC,((Bx)1a + (Bx ") 1a)

for some B € {a, a?}. Then, C can correct any burst errors up to length 2" 3.

Proof We extend the proof of Theorem 5.3 to the case when € has burst length [ =
2m=2 ‘When m is even, it can be shown that:

g(x) = (1 +x" " )((Bx)1a + (Bx~")1a) € S,

. m—3 m—2 m—3
has summation terms from x2"~ to x2" 12" ag follows:
2m72+2m73_1
m—3 . m—2 m—3
,32x2 + Z Ox’ + ,32x2 +2
i:2m—3+1

In a similar fashion, let the first non-trivial error of € occurs in position x!. Perform
. . . . j—pm=3 m—3+1
cyclic shift on g(x) by multiplying x
stabilizer S1 and S, as depicted in Table 6.

Note that orthogonality occurs precisely when both €1, €xn—2 € GF(4) \ {0} are
equal to /32. However, such ¢ is orthogonal to S§; mentioned in Theorem 5.3. Hence,
€e¢ N(S)\S.

Next, the case when n = 2™ + 1 is discussed as follows. O

and x' 2 , respectively, to obtain two

Theorem 5.6 Let n = 2" + 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S = FRC,({Bx)a)
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Table 6 Further orthogonality analysis of burst error € with chosen stabilizers from F>Cp ((Bx)7q +
(Bx~Yypg) forn=2" —1

Components xt xitl xit2 . x""'zmiz_2 xi+2m72_1
€ €1 € €3 e Em—2_, €m—2
Sy 82 0 0 . 0 0
Sy 0 0 0 . 0 B2
Table 7 Orthogonality analysis ] ] ] o o
of burst error € with chosen Components  x!  xfTl  xit2 o 42012
stabilizers from F C,, ((Bx)14) € & e € B 0
forn =2" +1 )

S1 B 0 0 ... 0 B

S5 g2 0 0 .0 B

for some B € {a, a®}. Then, C can correct any burst errors up to length 23,

Proof For every € with burst length / < om=1_2m=2 e can find a stabilizer element
which is orthogonal to it. Let the first non-trivial error of € occurs in position x’, since

the stabilizer is cyclic, we can perform cyclic shift on (8x);4; by multiplying xi=2"?

i—2mlyl

and x , respectively, to get two stabilizer elements, S; and Sz, both having

2"m=2 _ | consecutive zero coefficients from x'*! to x"+2M72_1, where x/ component
of S1, 8> having different coefficient in G F'(4) \ {0}. The case when m is even is
illustrated in Table 7. It follows from Proposition 5.2 that € ¢ N(S) \ S.

Note that the idempotent 1 € Igr@4)(G) is trivially self-inverse, hence for e €
IG r@4)(G)is self-inverseif and only if 14-e € I r4)(G) is self-inverse by Proposition
3.1. The below corollaries follow directly from our previous discussion. O

Corollary 5.7 Let n = 2™ — 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S = FCu(l 4 (Bx)1a + (Bx ) 1a)

for some B € {a, a®}. Then, C can correct any burst errors up to length 23,

Proof The proof works exactly the same as Theorem 5.3 and 5.5, by replacing (8x) 4+
(Bx~")1a with 1+ (Bx)1a + (Bx™") 1a. o

Corollary 5.8 Let n = 2™ + 1 for some even m > 2. Consider the quantum stabilizer
code C with stabilizer:

S = FC,(14+ (Bx)1a)

for some B € {a, a?}. Then, C can correct any burst errors up to length 23

Proof The proof works exactly the same as Theorem 5.6, by replacing (8x);4 with
L+ (Bx)1a.
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Table 8 Parameters of cyclic quantum codes of length n = 2™ £ 1 for even m > 2, up to 65, with
self-inverse idempotent as stabilizer generator

Length (n) Code generator (e) Row weight [[n, k,d]] [-burst error Result
correction

15 (Bx)ia +(Bx""a 8 (157311 =2 Theorem 5.5
15 1+ (Bx) g+ BxNya 9 [[1503]] =2 Corollary 5.7
17 (Bx) 14 8 [[17,1,5]] [1=>2 Theorem 5.6
17 14+ (Bx)1q 9 [[17.84]] =2 Corollary 5.8
63 B)a+ Bx g 12 [[63.19.71] =38 Theorem 5.5
63 L+ (Bx)pag + (BxNg 13 63871 [>8 Corollary 5.7
65 (Bx) 14 12 [[65,13,7]] [ =8 Theorem 5.6
65 1+ (Bx)1a 13 [[65,24,7]] [ =8 Corollary 5.8

Finally, this section is ended with Table 8 which summarizes the parameters of
constructed codes (up to length 65) and their burst error-correcting abilities. Results
are computed using MAGMA Calculator [26]. O

6 Conclusion and future directions

A classification of idempotents in commutative group algebras G F(4)G was intro-
duced in this paper, using the generated idempotents as basic building blocks. Viewing
cyclic additive codes equivalently as F>-submodules of group algebra over the same
finite field G F(4), we identified an essential criterion for idempotents to generate
self-orthogonal cyclic additive codes over G F'(4), that is being self-inverse. This led
to the successful construction of a few classes of quantum stabilizer codes, where
lower bounds on their burst error-correcting abilities were obtained. It was further
shown that some constructed quantum stabilizer codes did attain the lower bound.
Future directions include self-inverse idempotents in generating stabilizer codes of
other length, as well as the study of other properties which enable idempotents to
also generate stabilizer codes. Lastly, the potential of idempotents in constructing
good entanglement-assisted quantum error-correcting codes (EAQECCs) is also worth
exploring.
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