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1 Introduction

Narain conformal field theories (CFTs) are a class of two-dimensional CFTs describing
the geometry of the spacetime in string theory [1, 2]. They are characterized by a set
of vertex operators whose left- and right-moving momenta span so-called Narain lattices.
Narain CFTs are bosonic, non-chiral, and modular invariant when the lattices are even,
Lorentzian, and self-dual, respectively. While they are simple theories of free compact
bosons specified by the lattices, they have a rather large continuous moduli space and
exhibit a rich structure such as symmetry enhancement and dualities [3].
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Narain CFTs have received renewed interest in recent years due to the revelation of
their relation to quantum error-correcting codes (QECs) [4]. This relation is based on
the novel construction of even self-dual Lorentzian lattices from qubit stabilizer codes [5],
which extends Construction A of even self-dual Euclidean lattices from classical error-
correcting codes [6]. The CFTs whose Narain lattices are the even self-dual Lorentzian
lattices built from qubit stabilizer codes are named Narain code CFTs. Recently, there has
been significant progress in the field of Narain code CFTs. Generalizations have been made
from qubit (binary) to qudit (non-binary) stabilizer codes [7], and a family of code CFTs
have been constructed from quantum Calderbank-Shor-Steane (CSS) codes [8, 9]. There
are also various applications of Narain code CFTs, including the modular bootstrap [10–
12], the exploration of CFTs with large spectral gaps [13, 14], and their relevance in the
context of holographic duality [15] based on ensemble average of Narain CFTs [16–18]. See
also [19–23] for relevant works.

In this paper, we further extend the constructions of Narain code CFTs from quantum
stabilizer codes over Fp with p prime [4, 7] to those from quantum stabilizer codes over
finite field Fpm with p prime and m ≥ 1 and over the ring Zk with k > 1. Following
the approach adopted in previous studies, we proceed to establish Narain code CFTs by
constructing them from quantum codes in two steps:

1. Map quantum stabilizer codes to their associated classical codes.

2. Lift the resulting classical codes to even self-dual Lorentzian lattices to Narain code
CFTs.

The first step follows immediately from the result of [24] for finite field Fpm and those
of [25, 26] for finite (Frobenius) rings. In the second step, we can leverage the construction
of Narain code CFT from classical codes over Fpm in [22] for the finite field case. To our
best knowledge, however, a similar construction appears to be missing in the literature.
Focusing on quantum stabilizer codes over Zk, we use Construction A to lift the associated
classical codes to lattices and determine the condition when the resulting lattices become
even self-dual (Theorem 4.3). Moreover, we show that certain CSS codes always satisfy
the condition (Proposition 4.4) and yield a broader class of Narain code CFTs than those
in [4, 7]. For example, focusing on CSS codes associated with classical self-dual codes,
Narain code CFTs constructed from the codes over Fp with prime p always have even
central charges irrespective of the code length. On the other hand, Narain code CFTs
constructed from the CSS codes associated with classical self-dual codes over Zk with k

odd and over Fpm with m odd can have odd central charges when the code length is
odd.1 Thus, our construction covers a larger (discrete) set of points in the moduli space
of Narain CFTs than before and paves the way toward classifying the ensembles of Narain
CFTs whose properties can be understood from those of the associated quantum codes.2

1Quantum stabilizer codes of non self-dual CSS type can yield Narain code CFTs with odd central
charges [7, 15].

2The larger moduli space covered by our Narain CFTs allows for a wider class of ensembles to average
through a finer grain (Fpm and Zk as opposed to just Fp). In the limit of large order q for Narain code
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With the general construction in hand, we examine quantum stabilizer codes of short
length and explore Narain code CFTs with small central charges. We show that Narain code
CFTs from stabilizer codes of length one over Zk give rise to a single compact boson theory
whose radius square can be any rational number, R2 = 2m1/m2 by choosing k = m1m2
where m1,m2 are coprime positive integers. Since this construction is believed to exhaust
all rational compact boson theories [27–29] by varying m1 and m2, we succeed in realizing
all rational points in the moduli space of Narain CFTs with central charge one by our
construction.3 We also consider a few examples of stabilizer codes over Zk and over Fpm of
length two and construct their Narain code CFTs with central charge two. We determine
representatives of the metric and anti-symmetric tensor describing the geometry of the
target space in Narain CFTs, and show explicitly that the Narain code CFTs with central
charge two we consider as examples are rational based on the criteria given in [29]. Note
that there are Narain code CFTs that are not rational as exemplified by [30]. We show that
the Narain code CFTs we construct in this paper are rational as their partition functions
can be written as a finite sum of a product of characters. Incidentally, a recent paper [31]
obtains sufficient conditions on the metric and B-field for Narain CFTs to be rational and
have a code construction, which is also derived from the character decomposition of the
torus partition functions. Our results are consistent with those of [31].

Another point of interest in this paper is the extension of the one-to-one correspon-
dence between (binary) quantum stabilizer codes and Narain code CFTs to a one-to-many
correspondence. In the former correspondence, the relevant stabilizer code always has zero
logical qudits. Practically useful stabilizer codes, and CSS codes in particular, have non-
zero logical qubits. We show that a CSS code with a non-zero number of qubits can be
naturally associated with a set of several Narain code CFTs. We illustrate the one-to-many
correspondence with two famous CSS codes, the Shor code [32] and the Steane code [33].

This paper is organized as follows. In section 2, we review the stabilizer formalism of
quantum codes over finite Frobenius rings with emphasis on the profound relation bridging
between quantum stabilizer codes and classical codes. We also introduce CSS codes which
provide systematic constructions of quantum stabilizer codes from a pair of classical codes
satisfying certain conditions. In section 3, we review the description of a Narain CFT in
terms of the momentum lattice and also review the rationality conditions for theories with
small central charges. In section 4, we focus on CSS codes over Zk and construct their
Narain code CFTs through Construction A of the Lorentzian lattices. We also examine
several Narain code CFTs with central charges one and two, and study their rationality.
In section 5, we turn to CSS codes over Fpm and the associated Narain code CFTs. A few
examples are worked out and shown to reduce to known CFTs. In section 6, we switch
gears and propose an extended correspondence between a quantum stabilizer code with

CFTs constructed over a ring Rq, the ensemble approaches that of all Narain CFTs [7, 14]. Averaging over
an ensemble of Narain CFTs is holographically dual to Chern-Simons theories and taking the large order
limit is expected to be equivalent to three-dimensional U(1)-gravity [16, 17].

3Any c = 1 Narain CFT can be obtained from a code CFT by acting an appropriate O(1, 1,R) trans-
formation [14], while our construction provides all c = 1 rational Narain CFTs without relying on such a
transformation.
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non-zero logical qubits and a set of Narain CFTs. Section 7 concludes with the discussion
and the implications of our results.

2 Quantum stabilizer codes over rings

The stabilizer formalism of quantum error-correcting codes was originally introduced in
the binary case [5] and it has been generalized to finite fields [34–36] and finite Frobenius
rings [25, 26, 37]. In this section, we give a brief review of finite Frobenius rings follow-
ing [38, 39] and describe the formulation of quantum stabilizer codes over Frobenius rings.
We also emphasize the relationship between quantum stabilizer codes and classical codes
and introduce Calderbank-Shor-Steane (CSS) codes as a special type of stabilizer code.

Let us define a finite ring of our interest. A ring is a set R with addition (+) and
multiplication (·) satisfying the following conditions: (a ∈ R)

• (R,+) is closed, associative, and commutative.

• R contains additive identity 0 s.t. a+0 = a and inverse elements −a s.t. a+(−a) = 0.

• (R, ·) is closed, associative, and contains multiplicative identity 1 s.t. 1 · a = a.

• Multiplication is distributive under addition.

In particular, a ring is called finite if it has a finite number of elements.
Let R be a finite ring and introduce a character of its module. For a finite abelian

group G, a character is a group homomorphism χ : G → C× and the set of all characters
form a group Ĝ = Hom(G,C×) called a character group of G. Since we can see a finite ring
R as an additive abelian group (R,+), we can similarly define a character of a finite left
R-module A. In this case, Â consists of characters of an additive group A and it becomes
an right R-module called a character module: (χr)(a) := χ(ra) for χ ∈ Â, r ∈ R, and
a ∈ A. In the same way, we can formulate a character of a right R-module A such that
(rχ)(a) := χ(ar).

In particular, for A = R, R is a left and right R-module and we can define a character
of a finite ring R. Then, a character χ ∈ R̂ induces a left and right homomorphism R→ R̂

such that R ∋ r 7→ χr ∈ R̂ and R ∋ r 7→ rχ ∈ R̂, respectively. We call χ ∈ R̂ a left (resp.,
right) generating character if R̂ = {rχ ∈ R̂ | r ∈ R} (resp., R̂ = {χr ∈ R̂ | r ∈ R}).

Frobenius rings are a special type of finite ring, which can be well characterized by the
existence of a generating character. It is known that for a finite ring R, the followings are
equivalent ([40, 41]):

• R is a Frobenius ring.

• R admits a left generating character.

• R admits a right generating character.
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Moreover, if these conditions are met, every left (right) generating character is also a
right (left) generating character. Therefore, a Frobenius ring R always has a generating
character.

We give three examples of finite Frobenius rings and their generating characters.

1. For a finite field of order q = pm denoted by Fq, a generating character is given by
χ(a) = exp(2πi tr(a)/p) where a ∈ Fq, and tr is the trace map Fq → Fp.

2. For a ring of integers modulo q denoted by Zq, a generating character is χ(a) =
exp(2πi a/q) where a ∈ Zq.

3. For a direct sum of Frobenius rings Ri (i = 1, 2, · · · , n) with a generating character
χi, a generating character is χ = ∏n

i=1 χi.

Let R be a finite Frobenius ring with q elements and B = { |x⟩ |x ∈ R } be an
orthonormal basis of Cq. For a, b ∈ R, Pauli-like operators X(a), Z(b) are defined by

X(a) |x⟩ = |x+ a⟩ , Z(b) |x⟩ = χ(bx) |x⟩ , (2.1)

where χ ∈ Hom(R,C×) is a character of the additive abelian group (R,+). For each
character χ, we have a unique function ψ ∈ Hom(R,Q/Z) such that

χ(x) = e2πiψ(x) . (2.2)

Then, a set of linear operators acting on Cq is given by

E = {X(a)Z(b) | a, b ∈ R } . (2.3)

A Frobenius ring R guarantees that the set E forms an orthonormal basis with respect to
the normalized Hilbert-Schmidt inner product ⟨A|B⟩ = 1

q tr(A†B) [37]. Here tr denotes the
trace of a matrix and A† is the adjoint of the operator A.

We can easily generalize this representation to the n quantum system. An orthonormal
basis of Cqn = Cq ⊗ · · · ⊗ Cq is the n-fold tensor products of B = { |x⟩ | x ∈ R }. Let
a = (a1, · · · , an) ∈ Rn, b = (b1, · · · , bn) ∈ Rn, and define the linear operators

X(a) ≡ X(a1)⊗ · · · ⊗X(an), Z(b) ≡ Z(b1)⊗ · · · ⊗ Z(bn) . (2.4)

We also define the error group by

Gn = {ωκX(a)Z(b) |a,b ∈ Rn, κ ∈ Z } , (2.5)

where ω = exp (2πi/p) and p the exponent of the additive group (R,+).
To simplify the notation, we denote an error operator g(u) by

g(u) ≡ X(a)Z(b) for u = (a |b) ∈ R2n . (2.6)

For u = (a |b) ∈ R2n and v = (a′ |b′) ∈ R2n, the product of two error operators satisfy
g(u) g(v) = e2πiψ(b·a

′) g(u + v) and

g(u) g(v) = e2πiψ(b·a
′−b′·a) g(v)g(u) . (2.7)

Then, the two error operators commute if and only if ψ(b · a′ − b′ · a) = 0.

– 5 –
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For an abelian subgroup S of Gn, a quantum stabilizer code VS is defined by a subspace
of Cqn fixed by every element in the abelian subgroup S

VS =
{
|ψ⟩ ∈ Cq

n
∣∣∣ g |ψ⟩ = |ψ⟩ for ∀g ∈ S

}
. (2.8)

Here, the abelian group S is called the stabilizer group of VS . The projector on code
subspace VS is given by

PS = 1
|S|

∑
g ∈S

g, (2.9)

and we can find the dimension of VS by tracing over the projector. We find from [42]

dim VS = K = 1
|S|

qn. (2.10)

While stabilizer operators leave states in the code subspace VS invariant, there exist
elements of the Pauli group that change one state in the code subspace into another but
leave the whole code subspace unchanged. These operators are not detectable and are
called logical operators. As the code subspace is invariant under the action of logical
operators, they commute with any element in the stabilizer group S. Therefore, the set of
logical operators can be written as N(S)\S where N(S) is the normalizer of the stabilizer
group

N(S) =
{
g ∈ Gn

∣∣∣ g s g† ∈ S, ∀s ∈ S
}
. (2.11)

On the other hand, the operators outside the normalizer N(S) do change a state in the
code subspace VS into a state that is not present in VS , so such an action is detectable and
called an error operator. Clearly, the set of error operators is given by Gn\N(S).

Let us characterize the error-correcting property of quantum stabilizer codes. Defining
the weight wt(g) of an operator g ∈ Gn is the number of qudits on which it acts non-
trivially, the distance d of a stabilizer code is

d = min
g ∈N(S)\S

wt(g) . (2.12)

The distance gives a measure of the error-correcting capabilities of the code. A code
with distance d can detect errors of weight d− 1 and correct errors of weight ⌊(d− 1)/2⌋.
Conventionally, a K-dimensional subspace of Cqn with distance d is called an ((n,K, d))q
quantum stabilizer code.

We will make use of an intriguing relationship between quantum stabilizer codes and
classical codes [25, 35, 43, 44]. For a finite Frobenius ring R, a classical code C is defined
as an additive subgroup of (R2n,+). Associated with a stabilizer group S ⊂ Gn, we have
a classical code

C =
{

u = (a |b) ∈ R2n
∣∣∣ g(u) ∈ S

}
. (2.13)

As the stabilizer group S forms a group under multiplication, correspondingly, the classical
code C ⊂ R2n is closed under addition.

– 6 –
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To establish the relationship between stabilizer codes and classical codes, it is natural
to introduce the form ⟨∗, ∗⟩χ : R2n ×R2n → Q/Z

⟨u,v⟩χ ≡ ψ(b · a′ − b′ · a), for u = (a |b), v = (a′ |b′) . (2.14)

For a Frobenius ring R with a generating character χ, the form ⟨u,v⟩χ becomes Z-bilinear
and left- and right-nondegenerate [25]. Then, ⟨∗, ∗⟩χ is a symplectic bilinear form.

Associated with the symplectic bilinear form, the dual code C⊥s is defined by4

C⊥s ≡
{

u ∈ R2n | ⟨v,u⟩χ = 0 for ∀v ∈ C
}
. (2.16)

For a Frobenius ring R with q elements, the cardinality of the dual code is given by
|C⊥s | = |R2n|/|C| = q2n/|C|. We call C self-orthogonal when C ⊂ C⊥s . For a self-orthogonal
code C, any pair of codewords u,v ∈ C is orthogonal, ⟨u,v⟩χ = 0. We call C self-dual if
C = C⊥s . In this case, |C| = |C⊥s | = qn.

By the abelian property of a stabilizer group S, any pair of codewords u,v ∈ C is
orthogonal with respect to the symplectic bilinear form. Accordingly, a classical code C
constructed from a stabilizer group S is always self-orthogonal. In the opposite direction,
once a self-orthogonal code is given, one can easily construct a commuting set of operators.
Hence, we have the following proposition.

Proposition 2.1 ([25, Theorem 7])
Let R be a finite Frobenius ring. A stabilizer group S ⊂ Gn exists if and only if there
exists a classical additive code self-orthogonal with respect to the symplectic bilinear form
⟨∗, ∗⟩χ.

There is an important class of quantum stabilizer codes defined by a pair of classical
linear codes, which we will heavily use in later sections. For a finite Frobenius ring R, a
left (right) linear code C of length n is a left (right) submodule of Rn. We introduce the
standard Euclidean inner product · that maps Rn×Rn into Q/Z. For a left linear code C,
the dual code with respect to the Euclidean inner product can be defined as ([41])

C⊥ = {b ∈ Rn | a · b = 0, a ∈ C } . (2.17)

In analogy with the symplectic bilinear form ⟨∗, ∗⟩χ, we call C self-orthogonal if C ⊂ C⊥

and self-dual if C = C⊥.
Let CX and CZ be classical linear codes such that C⊥

Z ⊂ CX . To construct a stabilizer
code, let us introduce a classical code C = C⊥

X × C⊥
Z ∈ R2n

C =
{

u = (cx | cz) ∈ R2n
∣∣∣ cx ∈ C⊥

X , cz ∈ C⊥
Z

}
. (2.18)

4One can define another dual code by

⊥s C ≡
{

u ∈ R2n | ⟨u, v⟩χ = 0 for ∀v ∈ C
}

. (2.15)
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For codewords u = (cx | cz), v = (c′x | c′z) ∈ C, we have

cz · c′x − c′z · cx = 0. (2.19)

Therefore, the symplectic bilinear form vanishes: ⟨u,v⟩χ = 0, so C = C⊥
X × C⊥

Z is self-
orthogonal with respect to the symplectic bilinear form. Then, Proposition 2.1 tells us
that we can construct a stabilizer group

S =
{
g(u) ∈ Gn | u = (cx | cz) ∈ C⊥

X × C⊥
Z

}
. (2.20)

This construction was first given by Calderbank, Shor, and Steane [8, 33], so such a stabi-
lizer code is called CSS type. After the development in the binary case, it was generalized
into a finite Frobenius ring [26].

3 Review of Narain CFTs

The purpose of this section is to review the basics of Narain CFTs and their lattice struc-
ture [1, 2], while summarizing our conventions. We also review the rationality of Narain
CFTs with a small central charge. The reader familiar with Narain CFTs can skim this
section and skip to the next sections.

3.1 Momentum lattices

Narain CFTs are two-dimensional theories of n compact bosons Xµ(z, z̄) whose target space
is the n torus [1, 2]:

Xµ ≃ Xµ + 2πR, µ = 1, · · · , n . (3.1)

The geometry of the n torus depends on the metric Gµν and the anti-symmetric tensor
Bµν . Let e i

µ be a vielbein with tangent space index i (i = 1, · · · , n) defined by

Gµν = e i
µ e

j
ν δij . (3.2)

We introduce the dimensionless fields X(i) ≡
√

2
α′ e i

µ X
µ, and decompose them into the

left- and right-moving parts, X(i)(z, z̄) = X
(i)
L (z) + X

(i)
R (z̄). The left- and right-moving

momenta are parametrized by integer vectors lµ, wµ ∈ Z as [3]

(pL)i = ẽ µ
i

[
lµ
r
+ r

2 (B +G)µν wν
]
,

(pR)i = ẽ µ
i

[
lµ
r
+ r

2 (B −G)µν wν
]
.

(3.3)

Here, ẽ µ
i is the inverse of the vielbein, i.e., ẽ µ

i e
j
µ = δji and r ≡ R

√
2
α′ is the dimensionless

radius.
Let η0 be the inner product for momentum vectors P = (pL, pR) defined by

η0(P, P ′) ≡ pL · p′L − pR · p′R, (3.4)

– 8 –
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where · is the standard Euclidean inner product. The set of the momentum vectors satis-
fying (3.3) forms a lattice Γ in Rn,n. Narain CFTs are bosonic if Γ is an even lattice, i.e.,
for any vector P ∈ Γ,

η0(P, P ) ∈ 2Z . (3.5)

The dual lattice Γ∗ with respect to the metric η0 is defined by

Γ∗ =
{
P ∈ Rn,n

∣∣∣∣ η0(P, P ′) = Z, P ′ ∈ Γ
}
. (3.6)

Narain CFTs are modular invariant if Γ is a self-dual lattice, i.e., Γ = Γ∗. In what follows,
we consider Narain CFTs with even self-dual momentum lattices.

To any vector P ∈ Γ in the momentum lattice, we associate the vertex operator by

VpL,pR(z, z̄) =: ei pL·XL(z)+i pR·XR(z̄) : . (3.7)

The vertex operator corresponds to the momentum state | pL, pR ⟩ via the state-operator
mapping. The Hilbert space H of a Narain CFT can be built as

H =
{
αi1−k1

. . . αir−kr
α̃j1−l1 . . . α̃

js
−ls | pL, pR ⟩

∣∣∣∣ (pL, pR) ∈ Γ
}
, (3.8)

with k1 . . . , kr ∈ Z+ and l1 . . . , ls ∈ Z+, and αik and α̃ik (i = 1, . . . , n) satisfy the algebra:

[αik, α
j
l ] = [α̃ik, α̃

j
l ] = k δk+l,0 δ

i,j , k, l ∈ Z . (3.9)

The torus partition function of the Narain CFT with a momentum lattice Γ is given
as follows:

Z(τ, τ̄) = TrH
[
qL0− n

24 q̄L̄0− n
24
]

= 1
|η(τ)|2n

∑
P ∈Γ

q
p2

L
2 q̄

p2
R
2

= ΘΓ(τ, τ̄)
|η(τ)|2n ,

(3.10)

where η(τ) is the Dedekind eta function, ΘΓ(τ, τ̄) is the lattice theta function of momentum
lattice Γ, and q = e2πiτ with τ = τ1 + i τ2.

3.2 Rationality for theories with small central charges

Rational CFTs are a special class of CFTs that have a finite number of representations of
some chiral algebras [45–48]. Here, we make some comments on the rationality of Narain
CFTs with small central charges.

Narain CFTs with central charge c = n = 1 are described by a free compact boson
Xµ=1. Switching to the dimensional field X(1), the periodicity of the boson becomes

X(1) ≃ X(1) + 2πR(1), R(1) ≡ r
√
G11 . (3.11)

– 9 –
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The theory is known to be rational when R(1) =
√

2 s
t for a pair of coprime positive integers

s, t [28].
Narain CFTs with central charge c = n = 2 consist of two compact bosons denoted by

x = Xµ=1 and y = Xµ=2. In this case, the rationality is related to the four real parameters
parametrizing the moduli space:

G =
[
G11 G12
G12 G22

]
and B =

[
0 B12

−B12 0

]
. (3.12)

However, we can rewrite these moduli parameters in terms of the complex structure mod-
ulus τ and the complexified Kähler modulus ρ defined by (see e.g., [3])

τ = τ1 + i τ2 =
G12
G11

+ i
√
detG
G11

(3.13)

ρ = ρ1 + iρ2 =
R2

α′

(
B12 + i

√
detG

)
. (3.14)

Then, it is straightforward to check that

ds2 = α′ ρ2
R2 τ2

|dx+ τ dy|2

= G11 dx2 + 2G12 dxdy +G22 dy2.
(3.15)

Note that, in the dimensionless radius r = R
√
2/α′, we obtain

ρ = r2

2
(
B12 + i

√
detG

)
. (3.16)

For a rational Narain theory, the complex parameter τ satisfies

a τ 2 + b τ + c = 0, (3.17)

with relatively prime coefficients a, b and c and is an element of the imaginary quadratic
number field (meaning the discriminant D < 0, which is the case in all relevant applications
in physics):

K = Q(
√
D) , (3.18)

τ ∈ K, where D = b2 − 4 a c. This means τ = α+ β
√
D where α, β ∈ Q and is a modulus

of the elliptic curve

E = C/(Z⊕ τ Z). (3.19)

We also obtain the same relations to the other complex parameter ρ. One result of [29]
is that a Narain CFT is rational if and only if both τ and ρ take values in the same
imaginary quadratic number field:

Rational CFT ⇐⇒ τ , ρ ∈ Q(
√
D) . (3.20)

In our constructions, up to absorption of rational coefficients into β for τ ∈ K, D = −1.

– 10 –
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4 Narain CFTs from quantum stabilizer codes over Zk

In this section, we construct Narain CFTs from quantum stabilizer codes over a finite ring
Zk = {0, 1, 2, · · · , k−1} where k is a positive integer. Our strategy is to extend the previous
construction [4, 7]. In section 4.1, we use the relationship between quantum stabilizer codes
and classical codes shown in section 2 to provide a way of constructing Lorentzian even
self-dual lattices. Then, regarding the resulting lattice as a momentum lattice of a Narain
CFT, we obtain the torus partition function of the whole Hilbert space for a Narain code
CFT in section 4.2. After section 4.3, we show various examples of Narain code CFTs with
small central charges, which allows us to identify the corresponding modulus and discuss
the rational structure of Narain code CFTs.

4.1 Lorentzian lattices via Construction A

In this section, we focus on a finite ring Zk = {0, 1, 2, · · · , k − 1} of integers modulo a
positive integer k. As the finite ring Zk is a special type of finite Frobenius ring, we can
formulate a quantum stabilizer code over Zk as in section 2. This subsection is devoted to
constructing Lorentzian even self-dual lattices from those quantum stabilizer codes.

Let S ⊂ Gn be an abelian group. Then, we obtain a quantum stabilizer code as a fixed
subspace of Ckn by any element of the stabilizer group S. From Proposition 2.1, we have
the corresponding classical code C ⊆ Z2n

k

C =
{

u = (a |b) ∈ Z2n
k

∣∣∣ g(u) ∈ S
}
. (4.1)

We introduce the off-diagonal Lorentzian inner product on Z2n
k . For u = (a,b), v =

(a′,b′) ∈ Z2n
k , we define the inner product by

η(u,v) = u η vT = a · b′ + a′ · b, η =
[

0 In
In 0

]
. (4.2)

Associated with the off-diagonal Lorentzian inner product, we define the dual code C⊥ as

C⊥ =
{

v ∈ Z2n
k

∣∣∣ η(u,v) = 0 mod k , u ∈ C
}
. (4.3)

We call C self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥. Also, we call C even if
η(u,u) ∈ 2kZ for any u ∈ C.

Note that self-orthogonality and evenness are correlated. Indeed, if C is even, then C
is self-orthogonal. To see this, suppose that C is an even code with respect to η. Then, the
norm of u + v ∈ C for u, v ∈ C is

η(u + v,u + v) = η(u,u) + η(v,v) + 2 η(u,v). (4.4)

As all the norms are in 2kZ, then we know η(u,v) ∈ kZ, which implies the self-orthogonality
of C. For an odd k ∈ 2Z+1, the opposite is also true. For k ∈ 2Z+1, if C is self-orthogonal,
then C is even. To check this, consider the norm η(u,u) = 2a ·b ∈ 2Z where u = (a,b) ∈ C.
Combining the assumption of self-orthogonality, the norm η(u,u) is even and a multiple
of k. Hence, for an odd k, we conclude η(u,u) ∈ 2kZ (evenness).

– 11 –
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The classical code C provides the associated lattice via Construction A [6, 49]. Explic-
itly, we obtain the Construction A lattice Λ(C)

Λ(C) =
{(a + km1√

k
,
b + km2√

k

)
∈ Rn × Rn

∣∣∣∣ m1,m2 ∈ Zn, (a,b) ∈ C
}
. (4.5)

The Construction A lattice Λ(C) has the off-diagonal Lorentzian inner product (4.2). In
analogy with classical codes, we define the dual lattice Λ∗ of Λ by

Λ∗ =
{
λ′ ∈ R2n

∣∣∣ η(λ, λ′) ∈ Z, λ ∈ Λ
}
. (4.6)

The lattice Λ is called self-dual if Λ = Λ∗. Also, we call Λ even if it satisfies η(λ, λ) ∈ 2Z
for any element λ ∈ Λ. Construction A relates the self-duality of C to the one of Λ(C) as
in the following proposition.

Proposition 4.1
Let C be a classical code over Zk. Then, the Construction A lattice Λ(C) is self-dual with
respect to η if and only if C is self-dual with respect to η.

Proof. We start by proving Λ(C)∗ = Λ(C⊥). Let us take lattice vectors λ = (λ1, λ2),
λ′ = (λ′1, λ′2) such that

λ1 =
a + km1√

k
, λ2 =

b + km2√
k

, (4.7)

λ′1 =
a′ + km′

1√
k

, λ′2 =
b′ + km′

2√
k

, (4.8)

where u = (a,b), v = (a′,b′) and m1,m2 ∈ Zn. Then, the inner product between them is
given by

η(λ,λ′) =
η(u,v)
k

+ (a ·m′
2 + a′ ·m2 + b ·m′

1 + b′ ·m1) + k (m1 ·m′
2 +m′

1 ·m2). (4.9)

Suppose λ ∈ Λ(C) and λ′ ∈ Λ(C⊥), then we can write λ′ as (4.8) with v ∈ C⊥. On the
other hand, any λ ∈ Λ(C) can be written as (4.7) with u ∈ C. As η(u,v) = 0 ∈ kZ for
u ∈ C and v ∈ C⊥, we obtain η(λ, λ′) ∈ Z, which concludes Λ(C⊥) ⊂ Λ(C)∗.

Suppose λ = (λ1, λ2) ∈ Λ(C) and λ′ = (λ′1, λ′2) ∈ Λ(C)∗. Let us take λ1 =
√
km1 and

λ2 =
√
km2. Then, the inner product (4.9) becomes

η(λ,λ′) =
√
km1 · λ′2 +

√
km2 · λ′1 . (4.10)

As η(λ, λ′) ∈ Z, we see that λ′ ∈ (Z/
√
k)n and may write the lattice vector λ′ ∈ Λ(C)∗ in

the form of (4.8) where v = (a′,b′) ∈ Z2n
k . For the inner product η(u,v) to be an integer

for arbitrary u ∈ C, it is implied v ∈ C⊥ and λ′ ∈ Λ(C⊥). We conclude Λ(C)∗ ⊂ Λ(C⊥).
Thus, the lattice Λ(C⊥) is the dual of lattice Λ(C): Λ(C)∗ = Λ(C⊥). For a self-dual

code, C = C⊥, the lattice is also self-dual Λ(C)∗ = Λ(C). As lattices and codes have a
one-to-one correspondence, Λ(C) = Λ(C′) if and only if C = C′. Therefore, Λ(C) is self-dual
with respect to η if and only if C is self-dual with respect to η.

– 12 –
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Additionally, the evenness of a classical code C and the Construction A lattice Λ(C)
are equivalent.

Proposition 4.2
The Construction A lattice Λ(C) is even with respect to η if and only if a classical code C
is even with respect to η.

Proof. Let λ ∈ Λ(C) be an element denoted by (4.7). From the relation

η(λ,λ) =
η(u,u)
k

+ 2 (a ·m2 + b ·m1) + 2 km1 ·m2, (4.11)

we see that the second and third terms are even. Assuming an even code C, the norm is
η(u,u) ∈ 2kZ which gives an even lattice Λ(C). If the lattice Λ(C) is even, this implies
that C is even.

Combining Proposition 4.1 and 4.2, we arrive at the following theorem essential to the
construction of Narain CFTs.

Theorem 4.3
The Construction A lattice Λ(C) is even self-dual with respect to η if and only if a classical
code C is even self-dual with respect to η.

To construct a Lorentzian even self-dual lattice, we need to prepare an even self-dual
code C. We can use the CSS construction of quantum stabilizer codes introduced in (2.18).
Let C be a classical linear code over Zk. Using the dual code C⊥ with respect to the
Euclidean inner product, we set CX = C⊥ and CZ = C. Then, the condition C⊥

Z ⊂ CX is
satisfied. Hence, we obtain the classical code C = C × C⊥ ⊂ Z2n

k

C =
{

u = (a,b) ∈ Z2n
k

∣∣∣ a ∈ C, b ∈ C⊥
}
. (4.12)

These classical codes C specify the CSS-type of quantum stabilizer codes. We can show
that the classical code C yields a Lorentzian even self-dual lattice via Construction A.

Proposition 4.4
Let C be a classical linear code over Zk and C the classical code given by the CSS con-
struction (4.12). Then, the Construction A lattice Λ(C) is even self-dual with respect to η.

Proof. From Theorem 4.3, we verify the evenness and self-duality of the classical code
C = C×C⊥. To see evenness, consider the norm η(u,u) = 2 a·b where u = (a,b) ∈ C×C⊥.
The norm is in 2 kZ because a·b ∈ kZ for a ∈ C and b ∈ C⊥. Hence, the CSS construction
C is even with respect to η. To see self-duality, we expand (4.3) as

C⊥ =
{
(a′,b′) ∈ Z2n

k

∣∣∣ a · b′ + b · a′ = 0 mod k, a ∈ C, b ∈ C⊥
}
. (4.13)

Then, by independently considering the cases a = 0 ∈ C and b = 0 ∈ C⊥, we obtain the
requirements b · a′ = 0 mod k for b ∈ C⊥ and a · b′ = 0 mod k for a ∈ C, respectively.
These conditions reduce to a′ ∈ C and b′ ∈ C⊥. Therefore, we have

C⊥ ⊂
{
(a′,b′) ∈ Z2n

k |a′ ∈ C, b′ ∈ C⊥
}
≡ C . (4.14)

On the other hand, it is straightforward to see C ⊂ C⊥, then we conclude C = C⊥.
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4.2 Narain code CFTs

By identifying the even self-dual code lattice Λ(C) from Construction A with a momentum
lattice Γ, we can construct a Narain code CFT associated with the code C. The lattice
vectors λ ∈ Λ(C) are related to the left-moving and right-moving momenta (pL, pR) as
follows:

(λ1, λ2) =
(
pL + pR√

2
,
pL − pR√

2

)
∈ Λ(C) . (4.15)

We denote the set of elements P = (pL, pR) related to (λ1, λ2) ∈ Λ(C) by (4.15) as Λ̃(C).
In the left- and right-moving momenta frame, the norm of λ with respect to η is

η(λ, λ) = p2L − p2R = η0(P, P ) . (4.16)

The torus partition function (3.10) of the Narain code CFT can be obtained by setting
Γ = Λ̃(C):

ZC(τ, τ̄) =
1

|η(τ)|2n
∑

(a,b)∈C

∑
m1,m2 ∈Zn

q
k
4 (a+b

k
+m1+m2)2

q̄
k
4 (a−b

k
+m1−m2)2

. (4.17)

As in the previous constructions [4, 7] of Narain code CFTs, we can express these partition
functions in terms of the complete weight enumerators5 of classical codes C. We define the
complete weight enumerator of C by

WC({xab}) =
∑
c∈C

∏
(a,b)∈Zk×Zk

x
wtab(c)
ab , (4.18)

where xab are variables for a, b ∈ Zk and wtab is defined as the number of components
ci = (ai,bi) ∈ Zk × Zk equal to (a, b) ∈ Zk × Zk for a codeword in C:

wtab(c) = | {i | ci = (a, b)} |. (4.19)

Then, the partition function of the Narain code CFT can be uniquely determined by
the complete weight enumerator of C as

ZC(τ, τ̄) =
1

|η(τ)|2n WC({ψab}), (4.20)

where the functions ψab(τ, τ̄) are given by

ψab(τ, τ̄) =
∑

m1,m2 ∈Zn

q
k
4 (a+b

k
+m1+m2)2

q̄
k
4 (a−b

k
+m1−m2)2

. (4.21)

It is convenient to express the function ψab in terms of the theta function as

ψab(τ, τ̄) = Θa+b,k(τ) Θ̄a−b,k(τ̄) + Θa+b−k,k(τ) Θ̄a−b−k,k(τ̄), (4.22)
5They are also called complete enumerator polynomials. We will use the two terms interchangeably in

this paper.
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where Θm,k(τ) is given by

Θm,k(τ) =
∑
n∈Z

qk(n+
m
2k )

2
. (4.23)

In particular, for k = 2, the functions ψab can also be expressed as

ψ00 =
1
2
(
θ3(τ) θ̄3(τ̄) + θ4(τ) θ̄4(τ̄)

)
,

ψ11 =
1
2
(
θ3(τ) θ̄3(τ̄)− θ4(τ) θ̄4(τ̄)

)
,

ψ01 = ψ10 =
1
2 θ2(τ) θ̄2(τ̄),

(4.24)

where θi(τ) (i = 2, 3, 4) are the Jacobi theta functions at z = 0. We note that the
combination Θm,k(τ)/η(τ) is a character of the chiral algebra corresponding to the level-2k
Chern-Simons theory U(1)2k. Thus the partition function (4.20) is a finite sum of products
of characters, and the CFT is rational.

When C is given by the CSS construction, we can read off the metric and the B-
field from the lattice as follows.6 The Construction A lattice Λ(C) for a CSS-type code
C = C × C⊥ has a product structure: Λ(C) = Λ(C × C⊥) = Λ(C)× Λ(C⊥). In general, if
a matrix GΛ is a generator matrix of a lattice Λ, i.e.,

Λ = { v GΛ ∈ Rn | v ∈ Zn } , (4.25)

then G∗
Λ := (G−1

Λ )T is that of the dual lattice Λ∗: GΛ∗ = G∗
Λ. Thus, if an n × n matrix

GΛ(C) is the generator matrix of Λ(C), then the generator matrix of the lattice Λ(C) can
be chosen as

GΛ(C) =
[
GΛ(C) 0

0 G∗
Λ(C)

]
. (4.26)

We find this to be a special case of the general generator matrix given by [22][ √
2
r γ∗ 0

− r√
2 B γ

∗ r√
2 γ

]
, (4.27)

where γµi = e i
µ is the vielbein defined in (3.2) regarded as a matrix. Thus, the Construction

A lattice with the generator matrix (4.26) describes a CFT with γ =
√
2
r G∗

Λ(C) and B = 0.
Namely, the metric and anti-symmetric tensor of the Narain code CFT can be chosen as

Gµν = 2
r2

(
G∗

Λ(C)G
−1
Λ(C)

)
µν
, Bµν = 0. (4.28)

Note that via unimodular transformation on the generator matrix, we can always switch
to equivalent points in the Narain moduli space which does have a non-trivial B field.
However, the representative (4.28) is useful to verify the rationality of our Narain code
CFTs with the complex parameters (3.13).

6The following is valid not only for codes over Zk, but also for codes over Fpm .
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4.3 Examples

We have formulated the construction of Narain CFTs from stabilizer codes over Zk. Here
we give a number of examples of CFTs constructed over various finite rings with a small
central charge. To elucidate the profile of the resultant Narain CFTs, we give a way
of computing Narain moduli from their lattice structure. In particular, for the central
charge one (n = 1), we see that all rational points of a compact boson emerge from our
construction. For n = 2, we obtain the complex parameters on the target torus to discuss
the rationality.

4.3.1 Codes over Zk with n = 1

Perhaps the simplest nontrivial example of a nontrivial ring is given by Z4 = {0, 1, 2, 3}.
We choose a classical self-dual code C = C⊥

C = {(0), (2)} . (4.29)

The classical code C will then be given by the code words

C =
{
(a,b) ∈ Z2

4 |a ∈ C, b ∈ C
}

(4.30)

= {(0, 0), (0, 2), (2, 0), (2, 2)} , (4.31)

which we can use to construct the lattice Λ(C) given by (4.5):

Λ(C) :=
{(a + 4m1

2 ,
b + 4m2

2

) ∣∣∣∣m1,m2 ∈ Z, (a,b) ∈ C
}
= Z2, (4.32)

which is just equivalent to the square lattice Z2. From here we can construct the partition
function using the complete weight enumerator.

Zk2 with k ∈ Z. Let us consider a classical code generated by k

C = {(0), (k), (2 k), · · · , (k2 − k)} . (4.33)

The classical code C becomes

C =
{
(a,b) ∈ Z2

k2 |a ∈ C, b ∈ C
}
. (4.34)

The Construction A lattice is

Λ(C) :=
{(a + k2 l1

k
,
b + k2 l2

k

) ∣∣∣∣ l1, l2 ∈ Z, (a,b) ∈ C
}
= Z2 . (4.35)

We see that for arbitrary k2, the resulting lattices, and thus CFT, are all the same.
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Zk with k = m1m2. We may also construct CFTs from initial classical codes that are
not self-dual. Consider a classical code over Z6 generated by 3. Then, the dual code with
respect to the Euclidean metric is also generated by 2 and the codewords are

C = {(0), (3)}, C⊥ = {(0), (2), (4)} . (4.36)

The classical code C becomes

C = { (0, 0), (0, 2), (3, 0), (3, 2), (0, 4), (3, 4)} ⊂ Z2
6 . (4.37)

The Construction A lattice is

Λ(C) :=
{(3 l1√

6
,
2 l2√
6

) ∣∣∣∣ l1, l2 ∈ Z
}
. (4.38)

We see that this is just a primitive rectangular lattice with lengths determined by C and
C⊥. This pattern will appear for codes over higher k such as Z12 as well.

For a ring Zm1m2 with two positive integers m1 and m2, we can easily construct a
classical code of length one as a subgroup of the cyclic group Zm1m2 . Let C ⊂ Zm1m2 be
the subgroup Zm2 of Zm1m2 :

C = { am1 ∈ Zm1m2 | a ∈ Zm2 }. (4.39)

Then, the dual code is the subgroup Zm1 of Zm1m2

C⊥ = { bm2 ∈ Zm1m2 | b ∈ Zm1 }. (4.40)

Via the CSS construction, we obtain the associated classical code C = C × C⊥

C =
{
(am1, bm2)

∣∣ a ∈ Zm2 , b ∈ Zm1

}
⊂ Z2

m1m2 . (4.41)

The Construction A lattice becomes

Λ(C) =
{(

m1 l1√
m1m2

,
m2 l2√
m1m2

) ∣∣∣∣ l1, l2 ∈ Z
}
. (4.42)

Returning to the momentum frame with (4.15), we see that the left- and right-moving
momenta are given by

pL =
√

m1
2m2

l′1 +
√

m2
2m1

l′2, (4.43)

pR =
√

m1
2m2

l′1 −
√

m2
2m1

l′2 . (4.44)

For n = 1, (3.3) simplifies to

pL = l√
G11 r

+
√
G11 r

2 w, (4.45)

pR = l√
G11 r

−
√
G11 r

2 w, (4.46)
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where l, w ∈ Z. Comparing with (4.43), we find the metric to be

G11 =
1
r2

2m2
m1

. (4.47)

We thus find the radius of the compact boson X(1) defined by (3.11):

R(1) =
√

2m2
m1

. (4.48)

Taking m1 and m2 to be coprime positive integers, we obtain all rational CFTs with
c = 1 [28].

Additionally, from T-duality, under the exchange of l′1 and l′2 and with R(1) → 2/R(1),
we find the dual radius to be:

R(1) → R′(1) = 2
R(1) =

√
2m1
m2

. (4.49)

Interestingly we have found, by considering n = 1 non-self dual codes as a starting point,
non-chiral c = 1 rational CFT constructively. As expected, if we consider self-dual codes
(m1 = m2), we find the radius to be the self-dual radius R(1) =

√
2. Additionally, this

matches with the result that all codes of length one over Zk2 give the same CFT.

4.3.2 Codes over Zm1m2 with n = 2

For codes of length n ≥ 2, there is a possibility of non-trivial B field and background
metric, but one can show that B can be chosen to vanish for our Narain code CFTs as
follows.

In what follows, we extend our construction for Zm1m2 codes with n = 1 to the n = 2
case. With a variety of codes, we can consider resultant CFTs with several different metrics.

Case 1. Consider the code generated by (m1, m2):

C = { (am1, am2) | a ∈ Zm1m2 } , (4.50)

where m1 and m2 are coprime. Then, the classical code C is

C =
{
(am1, am2, a

′m2, b
′m1)

∣∣ a, a′, b′ ∈ Zm1m2

}
⊂ Z4

m1m2 . (4.51)

The Construction A lattice becomes

Λ(C) =
{(m1 n1, m2 n2, m2 n

′
1, m1 n

′
2)√

m1m2

∣∣∣∣ n1, n2, n′1, n′2 ∈ Z
}
. (4.52)

Clearly, the generator matrix of this lattice takes the form (4.26) with

GΛ(C) =

 √m1
m2

0
0

√
m2
m1

 , (4.53)
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as expected, and the metric can be read off from (4.28) as

Gµν = 2
r2

[
m2
m1

0
0 m1

m2

]
. (4.54)

Equivalently, using (3.13), we get

τ = i m1
m2

, ρ = i. (4.55)

Of course, they are in the same imaginary quadratic number field Q(i). Thus, the Narain
code CFT is rational.

Since the metric is diagonal, we identify the CFT to be two compact c = 1 bosons
with radii dual to each other:

R(1) =
√

2m2
m1

, R(2) =
√

2m1
m2

. (4.56)

Note that considering the case m1 = m2, or in prior words, codes over k2, we obtain two
copies of c = 1 bosons at the self-dual radii R =

√
2. It is clear to see that in this case, we

obtain an enhanced symmetry of SU(2)× SU(2) [12].

Case 2. Consider the code generated by (m1, m1). Then, via CSS construction, we
obtain the classical code

C =
{
(am1, am1, a

′, b′m2 − a′)
∣∣ a, a′, b′ ∈ Zm1m2

}
⊂ Z4

m1m2 . (4.57)

The corresponding Construction A lattice is

Λ(C) =
{(m1 n1 , m1 (n1 +m2n2), n′1 , n′2m2 − n′1)√

m1m2

∣∣∣∣ n1, n2, n′1, n′2 ∈ Z
}
. (4.58)

By considering C ⊂ Z2
m1m2 generated by (m1, m1), we find the generator matrix of

the lattice Λ(C)

GΛ(C) =
1

√
m1m2

[
−m1m2 0
m1 m1

]
(4.59)

which leads to

Gµν = 2
r2

[ 2
m1m2

1
m1

1
m1

m2
m1

]
. (4.60)

In this case, we obtain

τ = m2
2 + i m2

2 , ρ = i 1
m1

, (4.61)

which concludes τ ,ρ ∈ Q(i).
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Case 3. Finally, we show from considering the same construction for the code generated
by (1, x) where x ∈ Zk=m1m2 that we obtain the classical code C

C =
{
(a , a x, −b x, b)

∣∣ a, b ∈ Zk
}
⊂ Z4

k, (4.62)

which gives us the lattice

Λ(C) =
{(n1 , n1 x− k n2, −n′2 x+ k n′1 , n

′
2)√

k

∣∣∣∣ n1, n2, n′1, n′2 ∈ Z
}
. (4.63)

We find the generator matrix of Λ(C) to be

GΛ(C) =
1√
k

[
− k 0
x 1

]
, (4.64)

and the metric

Gµν = 2
r2

[
1+x2

k x

x k

]
. (4.65)

In this case, the corresponding moduli are

τ = x k

1 + x2
+ i k

1 + x2
, ρ = i. (4.66)

Hence, τ ,ρ ∈ Q(i) and the Narain code CFT is rational.

5 Narain CFTs from quantum stabilizer codes over Fpm

In this section, we turn to quantum stabilizer codes over finite fields. We start with a brief
review of the fundamentals of finite fields. Focusing on the CSS-type quantum codes, we
give the construction of Narain code CFTs from stabilizer codes over Fpm . We find that
all Narain code CFTs we construct are rational. We illustrate our construction with a few
examples and determine their metrics on the target space.

5.1 Review of finite fields

In this section, we focus on the finite field Fq of order q. It is well known that a field of
finite order exists and is unique (up to isomorphism) only when the order is a prime power
q = pm, where p is a prime number and m ∈ N. If q = p is prime, the finite field Fp is
simply the ring of integers modulo p, Zp = {0, 1, . . . , p− 1}.

The standard notation for F4 is F4 = {0, 1, ω, ω̄} with y + y = 0 for any y ∈ F4,
1 + ω = ω̄, ω ω = ω̄ and ω ω̄ = 1. Note that F4 is distinct from Z4 and Z2 × Z2 as a ring.

More generally, with a basis {e1, . . . , em} of Fpm as a vector space over Fp, an element
in Fpm can be written as ∑m

i=1 αi ei, αi ∈ Fp. Multiplication such as ei ej should be fixed
consistently so that division can be defined.

One canonical method to construct a finite field is by the polynomial ring. Namely,
Fpm can be constructed by

Fpm = Fp[x]/(f(x)), (5.1)
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where Fp[x] is the polynomial ring over Fp, f(x) is an irreducible polynomial of degree
m, and (f(x)) is the ideal generated by f(x). Although there are several choices for f(x)
(except for F4), all of them lead to isomorphic results.

For example, when we define F9 by f(x) = x2 + 2x + 2, elements are expressed as
F9 = {α1x + α0 | α1, α0 ∈ F3} and multiplication is performed as (x + 1)(2x + 1) =
2x+ 2f(x) = 2x.

A map tr : Fpm → Fp is called a trace function if it satisfies

tr(a+ b) = tr(a) + tr(b), (5.2)
tr(αa) = α tr(a), (5.3)

for any a, b ∈ Fpm and any α ∈ Fp. For any trace functions tr1, tr2, there exists k ∈ Fpm

s.t. tr1(a) = tr2(k a) for all a ∈ Fpm . In particular, the standard trace function

Tr(a) =
m−1∑
i=0

ap
i (5.4)

satisfies both conditions.

5.2 Construction of lattices

As shown in section 2, we can build a quantum stabilizer code from a classical code C =
C⊥
X × C⊥

Z s.t. C⊥
Z ⊂ CX where the duality of codes CX/Z is defined with respect to the

Euclidean metric. In this section, we construct lattices from classical codes over Fpm to
associate stabilizer codes with Narain CFTs.

We first list our notations in this section. Let {e1, . . . , em} be a basis of Fpm over Fp.
Elements c ∈ FNpm and l ∈ RNm are denoted by

c = (c1, . . . , cN ) ∈ FNpm , ci =
m∑
t=1

ci,t et ∈ Fpm , (5.5)

for ci,t ∈ Fp and

l = (l1,1, . . . , l1,m, l2,1, . . . , lN,m) ∈ RNm, (5.6)

for li,t ∈ R, respectively. With the inclusion map ι : Fp = {0, 1, . . . , p − 1} → Z, we define
a map r : FNpm → RNm as

r : c 7→ ( ι(c1,1), . . . , ι(c1,m), ι(c2,1), . . . , ι(cN,m) ) . (5.7)

Let C ⊂ FNpm be an additive code. The dual code with respect to a bilinear form
β : FNpm × FNpm → Fp (or FNpm × FNpm → Fpm) is defined by

C⊥ =
{
c′ ∈ FNpm

∣∣∣ β(c, c′) = 0, c ∈ C
}
. (5.8)

We define a lattice corresponding to the code by

Λ(C) :=
{

1
√
p
v ∈ RNm

∣∣∣∣∣ v = r(c) mod p, c ∈ C

}
. (5.9)

Note that the map r and the lattice Λ(C) depend on the choice of the basis of Fpm .
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The self-duality and evenness of lattices and codes are closely related to each other by
the following proposition.

Proposition 5.1
Let b : RNm×RNm → R and β : FNpm ×FNpm → Fp be symmetric bilinear forms and suppose
b can be expressed as

b(λ, λ′) = λ g λ′T , (5.10)

for a symmetric and unimodular g ∈ GL(Nm,R). We write wi,t,j,s := g(i−1)m+t,(j−1)m+s
for simplicity. Suppose the following condition is satisfied:

wi,t,j,s = ι
(
β
(
(0i−1, et, 0N−i), (0j−1, es, 0N−j)

))
mod p, (5.11)

where 0l is the l-dimensional vector whose entries are all zero. Then, the following state-
ments hold:

• (Self-duality) Λ(C) is self-dual with respect to b if and only if C is self-dual with
respect to β.

• (Evenness) When p = 2, Λ(C) is even with respect to b if and only if∑
i,t,j,s

ι(ci,t) ι(cj,s)wi,t,j,s ∈ 4Z (5.12)

for any c ∈ C. When p is odd prime, Λ(C) is even with respect to b if and only if

β(c, c) = 0 (5.13)

for any c ∈ C and all diagonal elements of g are even, i.e., wi,t,i,t ∈ 2Z for any i, t.

The proof is slightly technical and deferred to appendix A.

Corollary 5.2
Suppose a basis {e1, . . . , em} of Fpm and a trace function tr : Fpm → Fp satisfy

δt,s = tr(et es), (5.14)

for any t, s ∈ {1, . . . ,m}. Let ξ : FNpm ×FNpm → Fpm be a bilinear form that can be written as

ξ(c, c′) = c h̃ c′T , h̃ ∈ GL(N,Fp), (5.15)

where h̃ satisfies the condition h = ι(h̃) mod p for some symmetric and unimodular matrix
h ∈ GL(N,R). Then a linear code C ⊂ FNpm is self-dual with respect to ξ if and only if
Λ(C) is self-dual with respect to the metric h⊗ Im.

Proof. In the previous proposition, if we set

b(λ, λ′) = λ (h⊗ Im)λ′T , β(c, c′) = tr
(
ξ(c, c′)

)
, (5.16)

then the condition (5.11) becomes (5.14). In addition, the self-duality with ξ(c, c′) implies
the self-duality with tr(ξ(c, c′)).
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To construct non-chiral CFTs, we set N = 2n and take the metric to be

h =
[

0 In
In 0

]
. (5.17)

Then, the bilinear form ξ reduces to the off-diagonal Lorentzian metric. Let us consider
a linear code C ⊂ Fnpm and define a dual code C⊥ ⊂ Fnpm with respect to the Euclidean
metric as (2.17). Then C = C × C⊥ ⊂ F2n

pm is self-dual with respect to the off-diagonal
Lorentzian metric since codewords c = (a, b), c′ = (a′, b′) ∈ C (a, a′ ∈ C, b, b′ ∈ C⊥) satisfy

ξ(c, c′) = a · b′ + a′ · b = 0 (5.18)

and |C| = |C||C⊥| = pmn. Therefore, if we can take a basis and a trace function for
Fpm that satisfy the orthonormality (5.14), the CSS-type stabilizer codes constructed from
C = C × C⊥ over Fpm always generate self-dual lattices.

Regarding the evenness, for p = 2, (5.12) is satisfied since

2
∑
i,t

ι(ci,t) ι(ci+n,t) = 2
∑
i,t

ι(ai,t) ι(bi,t) ≡ 2 ι(tr(a · b)) ≡ 0 mod 4. (5.19)

For odd prime p, all diagonal elements of the off-diagonal Lorentzian metric are even (0)
and (5.13) is satisfied when the code is self-dual. Thus, for any prime p, self-dual lattices
constructed from the CSS codes are also even, which can yield Narain CFTs.

5.3 Narain code CFTs

Once an even self-dual lattice with respect to the off-diagonal Lorentzian metric is obtained,
we can construct the corresponding CFT as in the ring case. In other words, the left- and
right-moving momenta of the states |pL, pR⟩ in the CFT are defined by(

pL + pR√
2

,
pL − pR√

2

)
∈ Λ(C), (5.20)

and the Hilbert space is built based on (3.8).
The torus partition function of the CFT corresponding to a code C = C×C⊥ ⊂ F2n

pm is

ZC(τ, τ̄) =
1

|η(τ)|2nm
∑

(a,b)∈C

∑
l1,l2 ∈Znm

q
p
4

(
r(a)+r(b)

p
+l1+l2

)2

q̄
p
4

(
r(a)−r(b)

p
+l1−l2

)2

, (5.21)

where q = e2πiτ with the torus moduli τ . As in the ring case, we can express the partition
functions in terms of the complete enumerator polynomial

WC({xab}) =
∑
c∈C

∏
(a,b)∈Fpm×Fpm

x
wtab(c)
ab , (5.22)

where wtab(c) is the number of components (ai,bi) ∈ Fpm × Fpm equal to (a, b) for a
codeword c ∈ C:

wtab(c) = | {i | (ai,bi) = (a, b), c = (a1, . . . , an,b1, . . . ,bn)} |. (5.23)
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In fact, substituting

Ψab =
∑

l1,l2 ∈Zm

q
p
4

(
r(a)+r(b)

p
+l1+l2

)2

q̄
p
4

(
r(a)−r(b)

p
+l1−l2

)2

=
m∏
s=1

ψr(a)sr(b)s
,

(5.24)

where ψ is defined in (4.21) (k = p), we get

ZC(τ, τ̄) =
1

|η(τ)|2nm WC({Ψab}). (5.25)

We note that Ψab in (5.24) can be decomposed into a finite sum involving Θm,p(τ) defined
in (4.23) and its complex conjugate, as in (4.22). Thus the partition function is a finite
sum of products of U(1)2p characters, and the CFT is rational.

5.4 Examples

We first consider whether we can take an orthonormal basis satisfying (5.14).
For F4, we use the standard notation F4 = {0, 1, ω, ω̄}. If we take e1 = ω, e2 = ω̄ as

the basis and use the standard trace Tr(x) = x + x2, the orthonormality is satisfied since
Tr(0) = Tr(1) = 0, Tr(ω) = Tr(ω̄) = 1.

For general finite fields Fpm , it is convenient to use the expression by the polynomial
ring over Fp, i.e., Fpm = Fp[x]/(f(x)). As concrete examples, we consider the case m = 2, 3.

For m = 2, we take e1 = 1, e2 = x as the basis and use the trace tr(a1 x + a0) = a0.
An orthonormal basis is given by setting

f(x) = x2 − f1 x− 1, f1 ∈ Fp , (5.26)

such that f(x) is irreducible. For example, f(x) can be chosen as

F4 : x2 + x+ 1, (5.27)
F9 : x2 + 2x+ 2, (5.28)
F25 : x2 + 2x+ 4 . (5.29)

For m = 3, we take e1 = 1, e2 = x, e3 = x2 − 1 as the basis and use the trace tr(a2 x2 +
a1 x+ a0) = a2 + a0. An orthonormal basis is given by setting

f(x) = x3 − f0 x
2 − 2x+ f0, f0 ∈ Fp, (5.30)

such that f(x) is irreducible. For example, f(x) can be chosen as

F8 : x3 + x2 + 1, (5.31)
F27 : x3 + x2 + x+ 2, (5.32)
F125 : x3 + x2 + 3x+ 4 . (5.33)

For any Fp2 ,Fp3 , there exist f1, f0 ∈ Fp in (5.26), (5.30) that make f(x) be irreducible.
To show this statement, we use the following proposition:
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Proposition 5.3
Let f(x; a) ∈ Fp[x] be a polynomial of degree 2 or 3 with a parameter a ∈ Fp. If the
conditions

(I) there exists b ∈ Fp s.t. f(b; a) ̸= 0 for any a ∈ Fp,

(II) for any b ∈ Fp, there exists at most one a ∈ Fp s.t. f(b; a) = 0,

hold, then f(x; a) ∈ Fp[x] is irreducible for some a ∈ Fp.

Proof. We assume that for any a ∈ Fp the polynomial f(x; a) ∈ Fp[x] is reducible and
derives a contradiction. When the degree is 2 or 3, the factorization of f(x; a) must include
a degree-one polynomial such as x− b, b ∈ Fp. Therefore, the assumption is equivalent to
∀a ∈ Fp, ∃b ∈ Fp, f(b; a) = 0. If the condition (I) is satisfied, since both a and b can take p
different values, there exists at least one b ∈ Fp s.t. f(b; a1) = f(b; a2) = 0 for a1 ̸= a2 ∈ Fp.
However, this contradicts condition (II).

Using the proposition, we can check that the polynomials (5.26) and (5.30) become
irreducible for some f1, f0 ∈ Fp as follows.

For f(x; f1) = x2 − f1 x− 1 ∈ Fp[x] with f1 ∈ Fp ((5.26)), b = 0 satisfies the condition
(I) since f(0; f1) = −1. The condition (II) is also satisfied since if f(b; a1) = f(b; a2) = 0
for a1 ̸= a2 ∈ Fp, then 0 = f(b; a1) − f(b; a2) = (a2 − a1) b, which can be satisfied only if
b = 0. However, f(0; f1) = −1 as we have already seen.

For f(x; f0) = x3 − f0 x
2 − 2x + f0 ∈ Fp[x] with f0 ∈ Fp ((5.30)), b = 1 satisfies the

condition (I) since f(1; f0) = −1. The condition (II) is also satisfied since if f(b; a1) =
f(b; a2) = 0 for a1 ̸= a2 ∈ Fp, then 0 = f(b; a1) − f(b; a2) = (a2 − a1)(b2 − 1), which can
be satisfied only if b2 = 1. However, in this case 0 = f(b; a1) = (b− a1)(b2 − 1)− b = −b,
which is inconsistent.

We are now in a position to examine a few examples using the above expressions. As
in the Zk case, we have Bµν = 0 as follows from (4.28).

F4 with n = 1 (c = 2). We consider a code C ⊂ F1
4:

C = {0, 1, ω, ω̄}. (5.34)

The dual code is
C⊥ = {0}. (5.35)

Since the coefficients of the basis e1 = ω, e2 = ω̄ are

r(0) = (0, 0), r(1) = (1, 1), r(ω) = (1, 0), r(ω̄) = (0, 1), (5.36)

the lattice Λ(C) for the code C = C × C⊥ ⊂ F2
4 is

Λ(C) =
{(n1, n2, 2n′1, 2n′2)√

2

∣∣∣∣ n1, n2, n′1, n′2 ∈ Z
}
. (5.37)
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From the same discussion as in the ring case, we can fix the metric and anti-symmetric
tensor for the corresponding Narain code CFT using (4.28):

Gµν = 4
r2
δµν . (5.38)

In this case, the complex parameters (3.13) are

τ = i, ρ = 2 i, (5.39)

which are in the same imaginary quadratic field, hence the theory is rational.
The complete enumerator polynomial of the code is

WC({xab}) = x00 + x10 + xω0 + xω̄0, (5.40)

and the partition function of the CFT can be expressed as

ZC(τ, τ̄) =
[

1
|η(τ)|2

θ2θ̄2 + θ3θ̄3 + θ4θ̄4
2

]2
, (5.41)

where we used (4.24). This is the partition function for a pair of Dirac fermions, each of
which is gauged by the fermion parity (GSO projection).

F4 with n = 2 (c = 4). We consider a self-dual code C ⊂ F2
4:

C = {(0, 0), (1, 1), (ω, ω), (ω̄, ω̄)} = C⊥. (5.42)

The lattice Λ(C) for the code C = C × C ⊂ F4
4 is

Λ(C) =
{(n1, n2, n1 + 2n3, n2 + 2n4, n′1, n′2, n′1 + 2n′3, n′2 + 2n′4)√

2

∣∣∣∣ ni, n′i ∈ Z
}
. (5.43)

The metric of the corresponding CFT is

Gµν = 2
r2


2 0 −1 0
0 2 0 −1
−1 0 1 0
0 −1 0 1

 . (5.44)

Using the complete enumerator polynomial of the code

WC({xab}) =
∑
a,b∈F4

x2ab, (5.45)

the partition function of the CFT can be fixed as

ZC(τ, τ̄) =
[

1
|η(τ)|4

θ22 θ̄
2
2 + θ23 θ̄

2
3 + θ24 θ̄

2
4

2

]2
. (5.46)

This is the partition function for two copies of a pair of Dirac fermions, where each copy
is gauged by the diagonal Z2 symmetry of the fermion parity (GSO projection).
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F9 with n = 2 (c = 4). We consider a self-dual code C ⊂ F2
9 generated by (1, x + 1),

i.e., the code and dual code are

C = C⊥ =
{
(0, 0), (1, x+ 1), (2, 2x+ 2), (x, 2x+ 1),
(x+ 1, 2), (x+ 2, x), (2x, x+ 2), (2x+ 1, 2x), (2x+ 2, 1)

}
.

(5.47)

For example,

r ((1, x+ 1)) = (1, 0, 1, 1), r ((x, 2x+ 1)) = (0, 1, 1, 2), (5.48)

thus the Construction A lattice Λ(C) for the code C = C ×C ⊂ F4
9 consists of the elements

1√
3
(n1, n2, n1 + n2 + 3n3, n1 + 2n2 + 3n4, n′1, n′2, n′1 + n′2 + 3n′3, n′1 + 2n′2 + 3n′4),

(5.49)
where ni, n′i ∈ Z. The metric of the corresponding CFT is

Gµν = 2
r2


3 0 −1 −1
0 3 −1 −2
−1 −1 1 1
−1 −2 1 2

 . (5.50)

Although we do not write down the complete enumerator polynomial since the number
of terms is large, we can express the partition function using it as in the previous examples.

F8 with n = 2 (c = 6). We consider a code C ⊂ F2
8 generated by (1, x), i.e., the code is

C =
{
(0, 0), (1, x), (x, x2), (x+ 1, x2 + x), (x2, x2 + 1),
(x2 + 1, x2 + x+ 1), (x2 + x, 1), (x2 + x+ 1, x+ 1)

}
.

(5.51)

The dual code is generated by (1, x2+x). Note that the basis is e1 = 1, e2 = x, e3 = x2+1
(not e3 = x2) and then for example

r ((1, x)) = (1, 0, 0, 0, 1, 0), r
(
(x, x2)

)
= (0, 1, 0, 1, 0, 1). (5.52)

The metric of the corresponding CFT is

Gµν = 2
r2



2 0 0 0 −1 0
0 2 0 −1 0 −1
0 0 2 0 −1 −1
0 −1 0 1 0 1

2
−1 0 −1 0 3

2
1
2

0 −1 −1 1
2

1
2

3
2


. (5.53)

6 Narain CFTs for CSS codes with non-zero logical qubits

In this section, we propose a slightly extended correspondence between quantum stabilizer
codes and Narain CFTs, focusing on the CSS codes in the binary (F2) case. Namely, one
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associates, to a quantum stabilizer code with non-zero logical qubits, a set of Narain CFTs.
We first explain the motivations and the general correspondence, and then give concrete
examples.

As discussed in the literature and also in this paper, we have a procedure to construct
a Narain CFT from a classical code C self-dual and doubly-even with respect to the off-
diagonal Lorentzian inner product η defined by (4.2). Although the self-duality of the
classical code is natural from the perspective of Narain CFTs because it corresponds to the
self-duality of the momentum lattice, it implies that the corresponding quantum code has a
one-dimensional code subspace and zero logical qubits. It is desirable to introduce non-zero
logical qubits into the correspondence between quantum codes and Narain CFTs. This can
be achieved as follows. Suppose that a classical code C0 is doubly-even and self-orthogonal
but not self-dual. Suppose also that there exists a self-dual doubly-even code C such that
C0 ⊂ C. For a general self-orthogonal C0, such C, even if it exists, may not be unique. We
can consider a correspondence between C0 and the set of such C’s. In other words, when the
assumptions above are satisfied, a doubly-even self-orthogonal code corresponds to a finite
set of Narain code CFTs constructed from the doubly-even self-dual codes that contain the
self-orthogonal one.7

Before going through examples, let us briefly review the check matrix representation
of CSS codes in the binary case. Suppose that a stabilizer group S is generated by (n− k)
generators g(u(1)), · · · , g(u(n−k)) where u(i) = (a(i) | b(i)) ∈ F2n

2 . Then, we can encode the
stabilizer group S into the check matrix

H =


a(1) b(1)

a(2) b(2)

...
...

a(n−k) b(n−k)

 . (6.1)

The commutativity of the stabilizer group S is represented by the orthogonality H ηHT = 0
mod 2 with respect to η. The correspondence between stabilizer generators and a check
matrix establishes an alternative representation of quantum stabilizer codes by orthogonal
geometry [44].

The formulation based on a check matrix is useful to define a CSS code from a pair of
classical linear codes. For a linear code encoding k bits into n bits, a generator matrix G

is defined as a k × n matrix of rank k that generates C:

G =
{
xG ∈ Fn2 | x ∈ Fk2

}
. (6.2)

On the other hand, a parity check matrix H is an (n−k)×n matrix of rank n−k satisfying
GHT = 0 mod 2, which generates the dual code C⊥ with respect to the Euclidean inner
product

C⊥ =
{
xH ∈ Fn2

∣∣∣ x ∈ Fn−k2

}
. (6.3)

We call a linear code [n, k] type if it encodes k bits into n bits.
7We expect that this extended correspondence will lead to a unified picture when lifted to a three-

dimensional set-up involving abelian Chern-Simons theories along the lines of [18, 50]. It is straightforward
to generalize the correspondence to qudit CSS codes.
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Suppose CX and CZ are [n, kX ] and [n, kZ ] linear codes satisfying C⊥
Z ⊂ CX . The CSS

code can be defined by the check matrix

H(CX , CZ) =
[
HX 0
0 HZ

]
, (6.4)

where the block HX (HZ) represents the parity check matrix of the binary linear code
CX (CZ). Due to the condition C⊥

Z ⊂ CX , the matrix satisfies the orthogonality relation
H(CX , CZ) ηHT

(CX , CZ) = 0 mod 2 and defines a stabilizer group S. Conventionally, a 2k-
dimensional subspace of C2n with distance d is called an [[n, k, d]] quantum stabilizer code.
We can check that the CSS code is [[n, kX + kZ − n]] type where we omit the distance d.

From the CSS code, we obtain a classical code

C0 =
{
xH(CX , CZ) ∈ F2n

2 | x ∈ F2n−kX−kZ
2

}
= C⊥

X × C⊥
Z . (6.5)

As the orthogonality relation is satisfied, the classical code C0 = C⊥
X×C⊥

Z is self-orthogonal
with respect to the off-diagonal Lorentzian metric η. If the self-orthogonal code C0 can be
extended to a finite set of doubly-even self-dual codes C, then it corresponds to a finite
set of Narain code CFTs. In what follows, we explain the correspondence by taking Shor’s
code and Steane’s code as examples.

6.1 [[9,1,3]] Shor code

Shor’s code [32] is a CSS code defined by [9, 7] and [9, 3] linear codes CX and CZ , respec-
tively, whose parity check matrices are ([51])

HX =
[
1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1

]
, (6.6)

and

HZ =



1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0
1 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1


. (6.7)

The logical codewords are

|0̄⟩ = 2−3/2(|000⟩+ |111⟩)⊗3, (6.8)
|1̄⟩ = 2−3/2(|000⟩ − |111⟩)⊗3. (6.9)

Logical operators can be represented as

X̄ = Z1 Z2 · · · Z9, (6.10)
Z̄ = X1X2 · · · X9. (6.11)
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We can introduce new stabilizers of the form iab X̄a Z̄b so that the number of logical qubits
becomes zero. Let S be a set of new stabilizers. There are two possibilities: 1) S =
S1 := {I, X̄} and 2) S = S2 := {I, Z̄}. These correspond to classical codes Ci (i = 1, 2)
generated by

Hi =

 HX 0
0 HZ

ai bi

 (6.12)

with
a1 = [19], b1 = [09], (6.13)

a2 = [09], b2 = [19]. (6.14)

Here the power xn indicates n repeated entries of x. Thus, Shor’s code corresponds to
the two Narain code CFTs constructed from Ci (i = 1, 2).8 We note that the two classical
codes give rise to CSS codes.

6.2 [[7,1,3]] Steane code

Steane’s code [33] is also a CSS code defined by two copies of a [7, 4] Hamming code
CX = CZ = C whose parity check matrix is ([52])

HX = HZ = H :=

 1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

 . (6.15)

The logical codewords are

|0̄⟩ = 2−3/2
(
|0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩ (6.16)

+ |0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩
)
,

|1̄⟩ = X1X2 · · · X7 |0̄⟩. (6.17)

Logical operators can be represented as

X̄ = X1X2 · · · X7, (6.18)
Z̄ = Z1 Z2 · · · Z7. (6.19)

Again, there are two self-dual codes Ci (i = 1, 2) that contain C0 = C⊥ × C⊥. These are
given by the generator matrices

Hi =

 H 0
0 H

ai bi

 , (6.20)

where
a1 = [17], b1 = [07], (6.21)

8The choice a3 = [19], b3 = [19] leads to a self-dual code that is not doubly-even (singly-even) and
corresponds to a fermionic CFT.
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a2 = [07], b2 = [17]. (6.22)

Thus, the Steane code corresponds to the two Narain code CFTs constructed from Ci
(i = 1, 2).9 Again, the two classical codes give rise to CSS codes.

7 Discussion

In this paper, we have considered the construction of Narain CFTs from quantum stabilizer
codes and generalized the previous construction [4, 7] to rings of integers modulo k and finite
fields of order q = pm. We exploited the general relationship between quantum stabilizer
codes and classical codes over finite Frobenius rings to provide Lorentzian even self-dual
lattices via Construction A. Using various examples of quantum codes, we examined our
construction of Narain CFTs and identified Narain moduli parameters of the resulting
theories. Also, we proposed an extension of the conventional correspondence between
quantum codes and Narain CFTs so that the new correspondence is applicable to quantum
codes with non-zero logical qubits.

A recent paper [31] studied the sufficient conditions on the metric and B-field for a
Narain CFT to have the structure of a Narain code CFT associated with a code over a
finite field Fp with p prime or a ring such as Zk with k an integer, where the information
on the code structure can be read from the character decomposition of the torus partition
function. It would be interesting to do a similar analysis allowing the Narain CFT to
correspond to a code over a more general Frobenius algebra including Fpm with m > 1.

This paper has focused on the torus partition function and found out that they can be
represented by complete weight enumerators. Generally, we can place a Narain code CFT
on a higher-genus Riemann surface. In the case of binary stabilizer codes, it is known that
a higher-genus partition function of a Narain code CFT can be computed with the help
of a higher-genus complete weight enumerator [11]. The generalization to our Narain code
CFTs is straightforward and may be useful for performing modular bootstrap.

In section 6, we proposed an extended correspondence between stabilizer codes with
a non-zero number of logical qubits and a finite set of Narain code CFTs. As examples,
we considered two famous CSS codes, the Shor code and the Steane code. It would be
interesting to see if these sets of Narain CFTs have nice physical properties.

Motivated by the works [16, 17], the authors of [4, 7, 14, 15, 21] computed the spectral
gap for the average over an ensemble of Narain CFTs. It would be interesting to generalize
these results and perform averaging over self-dual codes over a ring such as Zk or a finite
field Fpm with m > 1, and study the holographic dual of averaged Narain code CFTs.
There exist constructions of ensemble averages over Narain code CFTs over Fpm=1 and
Zk=p [7, 10, 18, 57] where the large order limit of the rings were taken and the partition
functions were derived, though not for arbitrary m > 1 and k ̸= p, as well as the large
central charge limit. It would be interesting to study the theories that arise when taking
different large order vs large central charge limits. Recently, [18] averaged over length

9As in the previous example, the choice a3 = [17], b3 = [17] gives a fermionic CFT. See also [19, 23, 50,
53–56] for constructions of fermionic CFTs from classical and quantum codes.

– 31 –



J
H
E
P
1
2
(
2
0
2
3
)
1
2
7

n Narain code CFTs constructed over Zk × Zk for prime k and showed it to be dual to
level-k (U(1) × U(1))n Chern-Simons theories on different handlebodies. Given a way to
correctly weight (and count) all the codes in a ring of set length, an ensemble average can
be extended to arbitrary k and m > 1 in a similar manner to [7, 14].10 The authors of [18]
also noted a relation between toric codes and “AB” Chern-Simons theories (dual to c = 1
compact scalar theories), which would be an interesting direction to pursue in the context
of Narain code CFTs.

Narain code CFTs have been used to construct a concrete theory with a large spectral
gap [13, 22]. In particular, the work [14] showed that Narain theories with the largest
spectral gap with central charge c ≤ 8, which was identified in [17], can be constructed
from codes. In our construction, we have a larger number of CSS codes than before, and
we can use classical self-dual codes to search for CFTs with a large spectral gap. It is
interesting to find CSS codes that give Narain CFTs with a large spectral gap by our
construction.

From (4.48), we can see that codes over rings construct a compact boson of self-
dual radius. At self-dual radius, a compact boson has been known to have the extended
symmetry SU(2) × SU(2). Although Narain code CFTs manifestly have U(1) symmetry,
it is not clear when the symmetry is enhanced. For the central charge two, we find the
SU(2)2 × SU(2)2 enhanced symmetry manifests itself in the CFTs constructed by codes
over Zk2 generated by (4.50). Naturally, a question exists whether we can find a code that
corresponds to an SU(3)×SU(3) enhanced symmetry. Recently, affine symmetry of Narain
CFTs was discussed to eliminate fake partition functions of code CFTs [12]. Their approach
would be helpful to read off the extended symmetry of Narain code CFTs. We note that
there is a manifest SU(2)n1 = U(1)n2 affine symmetry in the Narain code CFTs of [21], where
they use the identification between (pL, pR) and λ as well as the lattice metric that are
different from [4] and this paper. It would be interesting to extend their construction from
binary to more general codes.
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A Proof of Proposition 5.1

In this appendix, we give a proof of Proposition 5.1.

Proof. (Self-duality) First, we want to prove that the dual of the lattice constructed from
the code is equal to the lattice constructed from the dual code, i.e., Λ(C)∗ = Λ(C⊥). From
the definition of dual lattice and Λ(C), for λ′ = (u1,1, . . . , uN,m)/

√
p ∈ RNm,

λ′ ∈ Λ(C)∗ ⇔ ∀λ ∈ Λ(C), b(λ, λ′) ∈ Z

⇔ ∀c ∈ C, l ∈ ZNm,
N∑

i,j=1

m∑
t,s=1

(1
p
ι(ci,t) + li,t

)
uj,swi,t,j,s ∈ Z

⇔ ∀c ∈ C,
∑
i,t,j,s

ι(ci,t)uj,swi,t,j,s ∈ pZ and (A.1a)

∀l ∈ ZNm,
∑
i,t,j,s

li,t uj,swi,t,j,s ∈ Z. (A.1b)

From the unimodularity of g, (A.1b) is equivalent to ∀j, s, uj,s ∈ Z and then

∃c′ ∈ FNpm , l′ ∈ ZNm, uj,s = ι(c′j,s) + p l′j,s. (A.2)

In this notation, from the condition (5.11),∑
i,t,j,s

ι(ci,t) ι(c′j,s)wi,t,j,s ∈ pZ

⇔
∑
i,t,j,s

ι(ci,t) ι(c′j,s) ι
(
β
(
(0i−1, et, 0N−i), (0j−1, es, 0N−j)

))
∈ pZ

⇔
∑
i,t,j,s

β
(
(0i−1, ci,tet, 0N−i), (0j−1, c′j,ses, 0N−j)

)
= β(c, c′) = 0

(A.3)

and thus (A.1a) becomes c′ ∈ C⊥. Combining these results, we get

λ′ ∈ Λ(C)∗ ⇔ ∃c′ ∈ C⊥, l′ ∈ ZNm, λ′ = 1
√
p

(
ι(c′1,1) + p l′1,1, . . . , ι(c′n,m) + p l′N,m

)
⇔ λ′ ∈ Λ(C⊥),

(A.4)

which means that Λ(C)∗ = Λ(C⊥). Therefore, it follows that

Λ(C) = Λ(C)∗ ⇔ Λ(C) = Λ(C⊥) ⇔ C = C⊥. (A.5)

(Evenness) From the definition of even lattice,

Λ(C) is even ⇔ ∀λ ∈ Λ(C), b(λ, λ) ∈ 2Z

⇔ ∀c ∈ C, l ∈ ZNm,
1
p

∑
i,t,j,s

(ι(ci,t) + p li,t)(ι(cj,s) + p lj,s)wi,t,j,s ∈ 2Z.

(A.6)
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Since g is symmetric and unimodular, wi,t,j,s = wj,s,i,t ∈ Z and thus the sum of the terms
from ι(ci,t) lj,s and li,t ι(cj,s) is always even. Therefore, the evenness can be divided into
two parts as

∀c ∈ C,
1
p

∑
i,t,j,s

ι(ci,t) ι(cj,s)wi,t,j,s ∈ 2Z and (A.7a)

∀l ∈ ZNm, p
∑
i,t,j,s

li,t lj,swi,t,j,s ∈ 2Z. (A.7b)

For p = 2, (A.7b) is automatically satisfied and (A.7a) becomes (5.12) by transposing
1/p. Note that this cannot be expressed in the language of F2 since 0 and 2 (mod 4) are
indistinguishable on F2. For odd prime p, since∑

i,t,j,s

li,t lj,swi,t,j,s =
∑

(i,t) ̸=(j,s)
li,t lj,swi,t,j,s +

∑
i,t

(li,t)2wi,t,i,t (A.8)

and its first term is even from wi,t,j,s = wj,s,i,t ∈ Z, (A.7b) is equivalent to ∀i, t, wi,t,i,t ∈ 2Z.
In this case, by (A.3) and the same discussion as (A.8), (A.7a) becomes (5.13).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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