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An Algebraic Approach to Light—Matter Interactions

Ivan Fernandez-Corbaton

Abstract: A theoretical and computational framework for the study and
engineering of light-matter interactions is reviewed in here. The framework
rests on the invariance properties of electromagnetism, and is formalized in a
Hilbert space whose conformally invariant scalar product provides
connections to physical quantities, such as the energy or momentum of a
given field, or the outcome of measurements. The light-matter interaction is
modeled by the polychromatic scattering operator, which establishes a natural
connection to a popular computational formalism, the transition matrix, or
T-matrix. This review contains a succinct yet comprehensive description of
the main theoretical ideas, and illustrates some of the practical benefits of

the approach.

1. Prologue

From nano physics to cosmology, and from computer chips to
radiation therapy, Maxwell equations are central in our scientific
and technological development. The more we master the theory
and engineering of light-matter interactions, the deeper we un-
derstand fundamental physics, and the better the technologies
that we develop. New fabrication techniques developed in the last
few decades, such as for example,['* feature an exquisite control
of the microscale and therewith provide us with many exciting de-
sign possibilities. At the same time, substantial theoretical and
computational challenges arise regarding the optimal exploita-
tion of such new capabilities. In this context, the development
of theoretical and computational tools with increasing generality
and efficiency is important.

This review explains recent developments>~!!] that have taken
atheory of free fields, extended it for modeling linear light-matter
interactions, and connected the extended theory to a popular
computational approach by upgrading the latter from its typical
monochromatic setting to a general polychromatic one. The the-
ory is based on invariance properties of electromagnetism, which
guide the formalism in a Hilbert space. The Hilbert space is the
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arena where the physical effects of light—
matter interaction are modeled using the
scattering operator, and where they be-
come computationally accessible. The al-
gebraic setting affords a compact nota-
tion which facilitates theoretical devel-
opments and computer implementation.
Examples of such computations are scat-
tering, absorption, and the changes in the
fundamental quantities of the field upon
interaction with matter, such as energy or
momentum. The vast toolbox of matrix
algebra becomes available for the study
and engineering of light-matter interac-
tions. For example, the generalized eigen-
value decomposition of two Hermitian
matrices can be used to readily obtain the pulse of light that exerts
the maximum torque per unit of energy onto a given object. The
setting provides a unified framework where the same fundamen-
tal tools can be effectively applied to diverse questions, which are
currently addressed using diverse methodologies, such as calcu-
lation and optimization of optical forces and optical torques,['271%]
faithful simulation of single photon fields,['*!” computation
of light-matter interaction at relativistic speeds,*?° quantifica-
tion of symmetry breaking, 218! including chirality,?*%¢ and the
study of optical helicity and its corresponding electromagnetic
duality symmetry.’’8] Some theoretical and computational lim-
itations and challenges are identified as targets for further re-
search, such as the treatment of quantum light and non-linear
light-matter interactions. In the view of the present author, it is
worth exploring the limits of this algebraic approach: The general
theoretical basis and the compact notation allow one to conve-
niently develop new theoretical ideas, which can be readily imple-
mented and tested numerically, thanks to the tight connections
to popular computational tools.

2. Introduction: Context and Summary

During the first decades of the twentieth century, Einstein
brought the concepts of symmetry and invariance to the fore-
front of theoretical physics. First with the special theory of rel-
ativity, and later with the general theory of relativity. According to
GrossP®! “Einstein’s great advance in 1905 was to put symmetry
first, to regard the symmetry principle as the primary feature of
nature that constrains the allowable dynamical laws.”

In 1939, Wigner established the foundations of the stan-
dard model with a simple yet powerful idea based on invari-
ance: A particle is an object with properties such as mass and
spin that take the same values in all inertial reference frames,
that is, under all the transformations of the Poincaré group of
special relativity. Such group is composed by space and time
translations, spatial rotations, and Lorentz boosts. The latter are
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transformations between inertial reference frames. In particular,
Wigner defined a photon as an object with zero mass and helic-
ity +1 or -1, which correspond to left or right circular polariza-
tion handedness, respectively. Such values fix the way in which a
photon will transform under the Poincaré group by fixing what
is known as a unitary irreducible representation of such group,
that is, an elementary representation [60, Chap. 10].

The seminal work about the invariance of Maxwell equa-
tions and of the speed of light under Lorentz boosts had been
done by Lorentz himself in 1904, and it was understood very
soon thereafter that the Poincaré group does not exhaust the
invariance of electromagnetism. In 1910, Bateman and Cun-
ningham showed that the largest group of transformations that
leave Maxwell equations with sources invariant is the fifteen-
parameter conformal group in 341 Minkowski spacetime.[6263]
The Poincaré group is a subgroup of such conformal group. The
same result was also obtained later by Dirac.[® That sources
are included in the invariance deserves further discussion. Even
though the conformal invariance of Maxwell equations with
sources is often explicitly recognized in the literature; e.g., see
(6] Section 3.1], or,[%®] one may however reach the incorrect con-
clusion that Maxwell equations are conformally invariant only
in the source-free case, because fixed mass parameters break
the scale invariance. In this respect, it is important to note that
Maxwell equations including electric charge—current densities
[o(r, t), J(r, t)], and magnetization and polarization densities [M(r,
t), P(r, t)] do not feature any fixed mass parameter. The confor-
mal invariance follows from the way in which the sources trans-
form. The conformal transformations of p(r, t) and J(r, ) can be
found in ref. [65, Eqs. 3.40ab]. While in the work of Diracl®! the
sources were electric charge—current densities, both Bateman!®?!
and Cunningham!®*! included magnetization and polarization
densities as well. The bottom line is that when both fields and
sources are transformed, the form of the dynamic Maxwell equa-
tions with sources remains invariant. Even for equations with
fixed mass parameters, such as the Dirac equation, conformal
invariance can be maintained if one allows the mass to change
as well,[*”] which is arguably not unlike the change of the New-
tonian mass in different reference frames. Besides the Poincaré
group, the conformal group contains spacetime scalings and spe-
cial conformal transformations.[®®! Scalings can be understood as
a global change of measurement units, and the special confor-
mal transformations as spacetime-dependent changes of mea-
surement units.[%%] The latter were sometimes confused with
changes to accelerating reference frames. The conformal sym-
metry, its role in theoretical physics, and their historical evolution
are comprehensively explained in the review by Kastrup.[®!

Powerful as it is, the concept of invariance is by itself far from
practical use. A large step towards practicality is taken when a
Hilbert space is identified. The Hilbert space of physical states,
in this case electromagnetic fields, where invariance can be made
explicit as the invariance of physical quantities upon transforma-
tions by the operators that represent the relevant symmetries in
the Hilbert space. In his important 1964 paper,!®! Gross iden-
tified such Hilbert space for free fields, that is, for fields that
are not interacting with matter. Gross showed that a scalar prod-
uct that was known to be invariant under the Poincaré group
is also invariant under the conformal group, and that the pho-
tonic representation of the Poincaré group identified by Wigner
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Figure 1. An electromagnetic field interacts with a material object during
the grayed-out period. In the algebraic approach to light-matter interac-
tions, the incoming field |[f)™ and the outgoing field |g)°“* belong to the
Hilbert space of solutions of Maxwell equations M. The incoming and out-
going fields are connected by the scattering operator S, which defines the
action of the object on the fields.

bijectively determines an irreducible representation of the con-
formal group. The Hilbert space from Gross is composed by the
electromagnetic fields whose norm under the scalar product is fi-
nite. These results were given an even deeper physical meaning
by Zeldovich in 1965,7% who proved that the norm squared of a
given field is actually the number of photons in such field. More-
over, fundamental quantities of the field, such as energy, linear
momentum, or angular momentum, can be computed by means
of scalar products.I’!l Several works on electromagnetic Hilbert
spaces that considered the Poincaré and/or the conformal groups
appeared in the late 1960s and early 1970s."27°] Unfortunately,
continuations have been scarce.[6671.8081]

Even with the appropriate Hilbert space in place, the practi-
cal use of these algebraic tools for modeling light-matter interac-
tion is not clear. One difficulty is that the scalar product and the
Hilbert space apply to free fields. This difficulty is solved by the
scattering operator.[#283] The scattering operator of a given object
maps the free fields before the light-matter interaction to the free
fields after the light-matter interaction. There is a period which is
left out: From the time when the illumination first “touches” the
material object, until the time when the object has finished re-
radiating. This is illustrated in Figure 1. The scattering operator
is hence an operator in the Hilbert space of free Maxwell fields.
During the excluded time period, one cannot use the scalar prod-
uct to compute the number of photons, energy, or other funda-
mental quantities. However, it is always theoretically possible to
use the scattered free fields to obtain the near fields up to the sur-
face of the object, because the relationship between near and far
fields is bijective [84, Chap. 9] [85, §§2-3,Chap. 5,Eqs. 2.12(a,b)].

Many of the elements necessary for computer implementation
are now ready. The crucial connection between abstract algebra
and computer calculations is made through the concept of or-
thogonality inherent to a Hilbert space. With orthogonality comes
the ability to expand any element of the Hilbert space as a unique
linear superposition of the elements of a basis set. The computer
calculations are then performed using the expansion coefficients,
which are typically arranged as a column vector for convenience.
Operators are then represented by basis-dependent matrices, and
the light-matter interaction is modeled by the multiplication of
the vector representing the illumination with the matrix repre-
senting the scattering operator. The resulting column vector con-
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tains the expansion coefficients of the resulting field. There is an
approach to computational electromagnetism in physics and en-
gineering that has used the matrix-vector paradigm for decades,
namely the transition matrix, or T-matrix approach. The T-matrix
is a popular and powerful formalism for computing light-matter
interactions whose origin can be pinpointed to the seminal 1965
paper by Waterman.[®] The T-matrix encodes the full linear elec-
tromagnetic response of a given object upon arbitrary illumina-
tions, and is bijectively connected to the scattering operator. This
provides the natural framework for the algebraic approach. In
contrast to research on abstract algebra for electromagnetism, the
T-matrix has enjoyed plenty of attention, as the hundreds of ref-
erences collected in databases show.®7#8]

One obstacle remained until recently, however: The T-matrix
formalism was originally defined and has been developed sys-
tematically assuming that the illuminating and scattered fields
are monochromatic. Monochromatic fields feature the harmonic
time dependence exp (— iw,t) for some fixed frequency w,, and
have no beginning or end in time. It is clear that the linearity
of Maxwell equations permits the computation of the response
of an object to any given polychromatic illumination by super-
posing the responses to many monochromatic fields with dif-
ferent frequencies,® and there exist general works on time-
domain scattering.®*!] However, a systematic development of
the polychromatic T-matrix did not exist, which in particular pre-
vented the direct treatment of the interaction of objects with light
pulses, and the computation of light-matter interactions for ob-
jects moving at constant speeds with respect to the source and/or
measurement device. While the source could be approximately
monochromatic in its frame, new frequencies appear after con-
sidering the light in the reference frame of the moving object.
The remaining obstacle has been recently removed by Maxim
Vavilin and the present author,!'% by following the guidelines pro-
vided by Wigner in the Poincaré group to generalize the usual
monochromatic formalism to the case of polychromatic light—
matter interaction. Following Wigner forces one to consider poly-
chromatic fields from the start because Lorentz boosts change the
frequency and therefore render any monochromatic approach
immediately obsolete. Group theory had already been used for
extending the applicability of the T-matrix. Waterman’s single-
object formalism!®! was extended to multiple coupled objects by
Peterson and Strém.[*?] They used the theory of the 3D Euclidean
group, which is sufficient for the monochromatic case, for con-
veniently formulating the translations and rotations of individual
T-matrices that are needed when computing the T-matrix of the
composite object.

The computational convenience of the framework, mostly due
to its tight connection to the T-matrix formalism, deserves to be
highlighted. The electromagnetic response of macroscopic ob-
jects, such as silicon disks or metallic helices can be modeled by
their T-matrices. The same is true for microscopic objects such as
molecules.”] The T-matrix affords numerically efficient compu-
tations of the response of composite objects,!**¢! in particular for
periodic arrangements!®’- such as metasurfaces. It seems clear
that the T-matrix will keep attracting attention because of its gen-
erality and computational efficiency. The formalism has been de-
veloped and improved over many decades, resulting in a very sub-
stantial body of literature, %] and a continuously growing list
of publicly available computer codes!'%1%! produced by a vibrant
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research community. One salient advantage of publicly available
open-source codes is that they make reproducibility and scrutiny
much easier that when closed source software is used instead.
The recently released treams Python package,[®>19219] which is
publicly available at https://github.com/tfp-photonics/treams ,
has been used in some of the works reviewed here. Such articles
provide all the extra python code necessary to reproduce their re-
sults. In effect, treams provides the basis for implementing the
computational side of the algebraic approach.

In addition to computational convenience, the algebraic frame-
work also provides tools and guidance for deriving new results,
which sometimes lead to new research questions, and to con-
nections to other fields of physics. For example, an extension
of the formalism to matter has lead to the identification of a
new scalar product for computing fundamental quantities in
static matter,®! and to showing that the electromagnetic helic-
ity of the free electromagnetic field and the screwiness of the
static magnetization density in matter are two embodiments of
the same quantity.®] The connection establishes the theoreti-
cal basis for studying the conversion between the two embodi-
ments, and motivates its further theoretical, numerical and ex-
perimental investigation. In particular, because the said screwi-
ness of the static magnetization density is essentially the mag-
netic helicity,1%1%] a concept relevant in diverse areas of physics
such as cosmology, 1% solar physics,!'*! fusion physics,[11%111]
magneto-hydrodynamics,[!'2115] and condensed matter.[116-120]

The rest of the article is organized as follows. The electromag-
netic Hilbert space and scalar product are reviewed in Section 3.
The members of the Hilbert space are polychromatic fields with
a finite number of photons and finite energy. The latter condi-
tion ensures that incoming fields finish and outgoing fields start,
which make them perfectly suited for modeling absorption and
emission from matter, respectively. Some emphasis is placed on
the conventions that are used for integrals in the frequency and
momentum spaces, and in the definitions of basis vectors such
as plane waves and multipolar fields.[') Such conventions have
several benefits. One is that both the basis vectors and the expan-
sion coefficient functions transform unitarily under the Poincaré
group, following the prescription from Wigner. This means in
particular that they transform unitarily under changes of iner-
tial reference frame, which significantly facilitates the computa-
tion of the interaction of electromagnetic pulses with material
objects moving at relativistic speeds with respect to the source of
light.[12!] Another benefit is the extension of the scalar product to
outgoing and incoming fields, that is, fields with outwards and in-
wards fluxes at spatial infinity, respectively. Such extension is nec-
essary because typical expressions for the scalar product apply to
stationary fields with zero net flux at spatial infinity. A third ben-
efit is the simplicity of the expressions for the scalar product as
a function of the expansion coefficient functions corresponding
to plane waves and multipoles. On the one hand, such simplic-
ity facilitates the implementation of the expressions in computer
codes, and on the other hand, the conventions result in units
of meters for such coefficient functions, which eases the con-
sistency checks during analytical derivations. Emphasis is also
placed on two important uses of the scalar product. One is the
computation of fundamental quantities of a given field, such as
energy, helicity or momentum, by “sandwiching” the correspond-
ing self-adjoint operator representing the quantity between the
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bra and ket versions of the field. The other is the consistent mod-
eling of physical measurements,’) whose results are required to
be invariant under all the allowed changes of reference frame,
which in this case means under all the transformations in the
conformal group.

Section 4 reviews two connections between the algebraic for-
malism and popular computational strategies in light-matter in-
teraction: The T-matrix, and generic Maxwell solvers such as
COMSOL, MEEP, JCMsuite, CST, or Lumerical. Section 4.1 ex-
plains how the T-matrix is the natural computational comple-
ment of the abstract algebraic formalism. The power of this con-
nection is shown by reviewing an example where the optical force
exerted by a light pulse onto a silicon sphere is computed for a
wide range of relativistic speeds of the sphere.['?!] The possibil-
ity to write down and solve optimization problems is discussed,
as for example, for finding out the most energy efficient poly-
chromatic field for exerting torque on a given object. Section 4.2
reviews a recent result that allows one to compute scalar prod-
ucts between pairs of outgoing or incoming fields using only the
values of the fields on a closed spatial surface.l'!] The capabilities
of popular Maxwell solvers are thereby augmented, for example,
by a robust and simple method for normalizing emitted fields so
that they contain a single photon.

The convenient and effective way in which symmetries and se-
lection rules can be treated in the Hilbert space is reviewed in Sec-
tion 5. In particular, selection rules arise because the interaction
of light with a symmetric object does not couple the electromag-
netic eigenstates of the symmetry with different eigenvalue. The
selection rules that control the coupling of electric or magnetic
emitters onto waveguides are presented as an example. Besides
selection rules that apply when the object is symmetric, the defi-
nitions of quantitative measures of symmetry breaking by a given
object,l% and the electromagnetic chirality of a given object!*>122]
are also discussed.

Section 6 reviews the extension of the algebraic approach to
matter in the sense that fundamental quantities of static matter
can be computed using scalar products.! Static matter is repre-
sented by its electric charge p(r) and magnetization M(r) densi-
ties, and an appropriate scalar product and group of invariance
are reviewed. The group of invariance turns out to be also a con-
formal group, but this time for the Euclidean space with three
spatial dimensions, instead of the 3+1 Minkowski spacetime.
The possibility of extending definitions of fundamental quanti-
ties that exist for the fields onto matter is exemplified for the case
of the helicity operator in Section 6.1. This particular extension
allows one to define helicity in matter, a possibility that has been
debated in the literature. The definition that one obtains in this
way, which can be seen as a measure of the degree of twisted-
ness of the static magnetization, is essentially equivalent to the
magnetic helicity, a well-known quantity relevant in many fields
of physics.

Finally, Section 7 concludes the article with a discussion about
some immediate applications of the formulism, and some future
research directions.

3. The Hilbert Space

Figure 1 depicts a light-matter interaction sequence. An incom-
ing electromagnetic field approaches a material object. Then, the
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field and the object interact for a finite period of time, gray in the
figure. After the interaction has finished, there is a resulting out-
going field. Incoming and outgoing fields feature inwards and
outwards fluxes at spatial infinity, respectively.

Before the field reaches the object and after all the re-radiation
Dby the object has finished, the electromagnetic fields are free, that
is, they are solutions of Maxwell equations without sources. The
set of such solutions is the vector space that, together with the
appropriate scalar product, constitute our Hilbert space M. Sec-
tion 3.1 is dedicated to the scalar product, and highlights its use-
ful connections to physical quantities. For example, with such
scalar product, the norm squared of |f), (f|f), is the number of
photons in the field. This was shown by Zeldovich in 1965.17°]
Since all the members of a Hilbert space must have finite norms,
it follows that the members of M have finite numbers of photons.
A finite energy must also be required on physical grounds.

In this setting, the effect of a given object on the fields is mod-
eled by a linear operator S, which maps any incoming field |f)™

out,

into its corresponding outgoing field |g)°"":

lg)*" = S|f)" (1)

Symmetries and their generators are also represented by opera-
tors that act on the states in M, and map them back to M. The gen-
erators of continuous symmetries represent fundamental quan-
tities of the electromagnetic field, such as energy or angular mo-
mentum. Section 5 reviews how symmetries and their conse-
quences are formalized in M.

The multipolar fields, also known as spherical waves, provide
a convenient way of expanding the incoming and outgoing fields
of Figure 1:

0 J 0
Bt = 3 X X [ dkkh @ lgma ?)

d=%1 j=1 m=—j

where the f,; (k) are scalar complex functions, and the incoming
and outgoing multipoles |kjm)™/°*" are defined as [10, Eq. (92)]:

; n .
|kjmaAa)y™/ ot = —% UL SR exp(—ikc,t)

o Vi 0

% [Nj.:om(klﬂ’f) + j,M]i_;/Out(klrl,r)]

where ¢, is the speed of light, # the reduced Planck constant, €,
the permittivity of vacuum, k = |k| = w/c, is the wavenumber,
and the N and M are the usual “electric” and “magnetic” multi-
poles (see e.g., [123, Sec. 9.7], [10, Egs. (50,51)]). SI units will be
used throughout the article. The incoming or outgoing character
of the multipoles is determined by the kind of the spherical Han-
kel functions contained in N and M: The first kind h; (kr) defines
outgoing waves, and the second kind h} (kr) incoming waves. The
reason for using the integration measure dk k in Equation (2) is
explained at the end of this section.

The electric field in Equation (2) is complex-valued since only
positive frequencies w = kc, > 0 are included. The negative fre-
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quencies do not contain additional information. The correspond-
ing real-valued field can be obtained as:

E(r,t) = 2R{E(r, 1)} (4)

This relationship is readily obtained by taking E(r, t) to be the
inverse Fourier transform of the positive-frequency spectrum of
E(r,1).

The |kjma)"™/°* are eigenstates of four operators, the energy H,
the total angular momentum squared J* = J2 + ]; + ]2, the angu-
lar momentum along the z-axis J,, and the helicity A:

H [kjmA)™*" = hkc, |kjmA)™*"

IZ |kjml>in/out — 712](] + 1) |kjmﬂ,>in/0m ,
. : (%)
I, 1kmAY™" = am | kjmA)™*" , and

A ijm)’)in/out =hi |kjmﬁ>in/out

where j = 1 corresponds to the dipoles, j = 2 to the quadrupoles,
andsoon, m=—j, —j+1,..,j—1,j, and A = +1(— 1) corre-
sponds to left(right) polarization handedness: The helicity of the
field.l71:124-130] The helicity operator is the projection of the angu-
lar momentum vector onto the direction of the linear momentum
vector [60, Eq. 8.4-5]:

P

A .
P

(©)

Recent works reveal the benefits of using helicity for describing
polarization, in particular at microscopic scales.[37-46:49:50:52-56]

The choice of helicity multipoles instead of the more common
parity multipoles carries theoretical and practical advantages in
some cases. A salient advantage is that the helicity multipoles
contain a single polarization handedness, also in the near field.
Actually, the helicity multipoles defined in Equation (3), split
the electromagnetic field into its left and right circular polariza-
tion handedness for A = +1 and A = —1, respectively. This is a
property of all the eigenstates of the helicity operator, which can
generally be represented by the F,(r, t) fields defined in Equa-
tion (21). Such separation holds generally for any kind of field, far
fields, modal fields, and near fields, which is particularly useful
for describing the handedness of light nearby microstructures.
Another difference with respect to parity eigenstates, is that he-
licity eigenstates do not mix upon the transformations of the
Poincaré group of special relativity. That is, a left-handed field
remains a left-handed field in any inertial reference frame. Ac-
tually, helicity eigenstates do not mix upon the transformations
of a bigger group, the conformal group, which will be reviewed
later. The separation of helicity eigenstates simplifies many ex-
pressions and avoids having to consider mixing rules, as for ex-
ample, when a mere translation of the spatial origin of coordi-
nates produces fields whose parity differs from the original one.
It is worth mentioning that this separation does produce orthog-
onal functions with respect to the dot product in C?, that is, for
example [N, (k|r|,#) + M, (k|r], §)] " [N, (klr], ?) — M, (k|r|, #)] is
not zero in general.
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When the parity multipoles are needed, they can be obtained
as the linear combinations

Ikjmz) = %(|kjmi=+1)+f|kjmi=—1)), 7)
2

with 7 = 1 for the “electric” kind and = = —1 for the “mag-

netic” kind.

For Equation (2) to have the common meaning of an expansion
in a Hilbert space, we should have that (Amjk|f) = f,,,(k), which
then results in the condition:

P 8k —
CAmibland) = 658,,0,, 22 ®

where 6, are Kronecker deltas and 5(k — g) a Dirac delta. The lat-
ter implies that the norm of any given |kjmA)™*"" diverges and
is not well-defined. And this means that they do not fit in M,
since all the members of a Hilbert space must have finite norms.
The origin of the divergence is that the |kjmA)™/*" are monochro-
matic fields, and divergences appear as soon as monochromatic-
ity is assumed.3! Incidentally, this means that they have no be-
ginning or end: They are eternal. In reality, monochromatic fields
do not exist, and, in particular, they are not suitable for describ-
ing the sequence in Figure 1 because there are no outgoing fields
before the interaction, and there are no incoming fields after the
interaction. While all the members of M are polychromatic, their
spectra can, however, be very localized around a given frequency.
The fact that the [kjmA)™°" do not belong in M raises two ques-
tions: Why can they be used at all, and what are their benefits.
The [kjmA)™°" can be used inside integrals such as the one in
Equation (2) to define polychromatic fields of finite norm, where
the f;,,, (k) meet that (f|f) < co with the expression of the scalar

product in Equation (15). 3.1Additionally, the |kjma)™*" have
simple transformation properties under rotations, which makes
them very useful for the study of the interaction of light with
rotationally-symmetric objects. Moreover, the interaction of light
with optically small objects such as molecules and nanostruc-
tures, can typically be well approximated by using only the first
few multipolar orders.

Similar considerations apply to monochromatic plane and
cylindrical waves, which also feature divergent norms. Both al-
low, however, the definition of fields in M through the use of
appropriate integrals. Plane waves have simple transformations
properties under translations, and are beneficial for the study of
translationally symmetric systems, such as metasurfaces. Cylin-
drical waves, also known as Bessel beams, are adapted to systems
with cylindrical symmetry, in particular to situations including
collimated and focused beams with high angular momentum.
A very practical reason for using monochromatic fields is that
non-monochromatic basis in M have not yet been developed for
practical use.

The integral in Equation (2) can define light pulses that ei-
ther start or end in time. This can be first intuitively grasped
from the fact that the exponentials exp (— iwt) are a complete
basis for square-integrable functions of time, including those
with a start or an end. More precisely, this connects with causal-
ity analysis[!3? that rely on the Paley-Wiener theorem (see e.g.,
Ref. [90, p. 641]) to show that, for finite energy pulses, incoming
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Figure 2. Adapted from Ref. [10]. Absolute values of the electric field in the zx-plane at four different points in time for the incoming, outgoing, and
regular versions of the pulse in Equation (9). The z-axis points horizontally to the right, and the x-axis - vertically to the top. The incoming field in the
first row is seen to be zero after some point in time, and can be thought of as having been absorbed in the singularity of the multipolar fields at the
origin of coordinates. Conversely, the outgoing field in the second row is zero before some point in time, and can be though of as being emitted from the
singularity. The sum of the two, E,, (r, t) = E;g“ (rt) + E;“‘(r, t), produces a regular field without singularities, whose absolute value is shown in the third

row.

fields have an end and outgoing fields have a beginning. A nu-
merical illustration of this notable property can be found in Ref.
[10]. Figure 2 is a modified version of Ref. [10, Figure 1]. The first
and second rows of Figure 2 depict the absolute value of the in-
coming and outgoing versions, respectively, of the following light
pulse:

2 .
E)/" 1, 1) / dkk exp ( (k ZAZO) ) lkj=1m=14=1)n/°n
©)

where A is some normalization constant with units of length,
2r [k, = 400 nm, and A~! = 300" nm.

Figure 2 shows that the incoming field in the first row is
zero after some time instance, and that the outgoing field in the
second row is zero before some time instance. Incoming poly-
chromatic fields are therefore perfectly suited for modeling ab-
sorption by matter, and outgoing polychromatic fields are per-
fectly suited for modeling emission from matter. For example,
the emission upon a particular transition between energy levels
of a molecule or a quantum dot can be suitably modeled by an out-
going pulse whose total energy, as computed with Equation (16),

Adv. Physics Res. 2025, 4, 2400083 2400088 (6 of 21)

is equal to the difference in energy between the two levels. The
shape of the pulse, in either frequency or time domain, can be
adjusted to reflect theoretical expectations and/or experimental
measurements of, for example, the emission linewidth.

The third row of Figure 2 corresponds to the sum of the in-
coming and outgoing fields E, (r, 1) = E;n (r, 1) + EX*(r, £), which is
a regular field because the singularities of the spherical Hankel
functions in E;n(r, t) and E>(r, t) cancel each other out. Clearly,
the incoming and regular fields are equal before the emission of
the outgoing field starts, and the outgoing and regular fields are
equal after the absorption of the incoming field has finished. The
regular multipolar fields |kjmA) are defined as in Equation (3),
except that the spherical Hankel functions in N and M are sub-
stituted by spherical Bessel functions, and the first factor of 1/2
on the right hand side is removed. With such definition, it holds
that:

[kjmAY = [kimA)™ + |kjmA)y*™ 10
j j j

We can use the same coefficients f,,,; (k) in a expansion such as
Equation (2) and change the kind of multipolar fields to obtain the

© 2024 The Author(s). Advanced Physics Research published by Wiley-VCH GmbH
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three different behaviors, and the general relation [f) = |f)" +
lf‘)()llt.

The connection between regular, incoming, and outgoing
fields overcomes an important obstacle that prevented the Hilbert
space formulation of the light-matter interaction processes illus-
trated in Figure 1. The obstacle was that the scalar product in M
had been defined for regular fields without singularities.[*”] The
scalar product in Ref. [69] can be written as:

_ i
=3 [ Fhwem (1)

where the complex coefficient functions are the weights of the
expansion of the field into plane waves of well-defined helicity
[kA):

d’k
E(r, 1) = X £l kA 12
=3 [ 12

and the plane waves are defined as:

©h 11
“ V2V

with e, (k) defined as in Ref. [133, Sec. 1.1.4]. The plane waves
meet:

ki) = ke, (k) exp(—ikc,t) exp(ik - r) (13)

P, |kA) = hk, |kA), for a € {x,y,z},
H [kA) = Ake, [kA), (14)
AlkAY = 7A [kA),
where the P, are the linear momentum operators.

The units of f;,,; (k) and f; (k) are meters. Such simple units are
very helpful when performing sanity checks in derivations.

The expression of the scalar product in the multipolar basis

can then be readily obtained using the relationship between plane
waves and regular multipoles (see e.g., Ref. [10, Egs. (40,41)]):

o o
GEEDIDID Y BT (15)

A=%1 j=1 m=—j

The number of photons and energy of a given field |f) can then
be computed as:

3
Number of photons {f|f) = Z /R3 o d—kk If, (®)1?
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Since, as explained above, the coefficients are the same for the
regular, outgoing, and incoming versions of a field, we can extend
the use of Equation (15) to incoming and outgoing fields:

(flg) —out (f|g)out =in (f|g>m (17)

The extension is physically consistent, since it ensures that the
value of fundamental quantities defined with Equation (19) by
scalar products, such as energy (f|H|(f), helicity (f|A|f), linear
momentum (f|P,|f), and angular momentum (f1],|f), is the
same for the three kinds of fields when the expansion coefficients
are the same. This is the case for Figure 2, where there is no light-
matter interaction, in contrast to Figure 1. In the absence of inter-
action, the energy of the incoming field in the distant past must
be equal to the energy of the outgoing field in the distant future,
and also equal to the of energy of the regular field.

Additionally, Equation (17) allows one to compute scalar prod-
ucts between pairs of outgoing or incoming fields using their
regular versions and corresponding expressions, such as Equa-
tion (15).

Before the extended discussion about the scalar product, it is
worth briefly mentioning that the algebraic formalism is nat-
urally adapted for studying and engineering the interaction of
pulses of electromagnetic radiation with material objects, in-
cluding scenarios where the object, the source, and the detector
are moving at constant relativistic speeds with respect to each
other. The origin of such capability is that the definitions in the
polychromatic setting are adapted to Wigner’s idea that photons
transform as unitary irreducible representations of the group of
special relativity, the Poincaré group. This is achieved by using
the Poincaré invariant integration measure d*k/k in expressions
related to plane waves, and its result dk k in expressions related to
multipoles, together with the extra factors of k in the correspond-
ing definitions in Equation (13) and Equation (3). Then, both the
basis vectors and the corresponding coefficient functions, f; (k)
and f,,,, (k), transform unitarily under the Poincaré group in well-
defined ways.[1] The Lorentz boosts, which transform systems to
different inertial reference frames, are part of the Poincaré group.

3.1. The Electromagnetic Scalar Product

A central element of any Hilbert space is its scalar product. A
scalar product establishes an immediate connection to geome-
try, and enables crucial concepts, such as for example orthogo-
nality: Two states are orthogonal when their scalar product van-
ishes. The notion of orthogonality is needed for the definition
of complete orthonormal sets of vectors, that is, basis sets. The
possibility of expressing any element of the Hilbert space as a
unique linear superposition of the elements of a basis set, e.g.,
Equations (2, 12), is what connects the abstract algebra to com-
puter calculations. Such connection is one of the strengths of the
algebraic approach to light-matter interaction, as reviewed in Sec-
tion 4.1.

In physics, Hilbert spaces are most commonly used in quan-
tum mechanics. One of the key roles that scalar products play
in quantum mechanics is in the definition of average values of a
given observable on a given state. Another key role is in the defini-
tion of projective measurements.['**! Both connections between
physics and mathematics work also in M, as follows.
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Fundamental quantities of the field are represented by self-
adjoint operators, such as for example energy H, or the linear
momentum along the z-axis P,. The “sandwiches” (f|['|f) are the
total value of the quantity represented by I" contained in the field
[79, Chap. 3,{9]. That is, for example, the values of (f|H|f) and
(fIP,|f) coincide with the values that result from the typical in-
tegrals

(fIHf) = %/ dr (605-5+lB-B),and
R3

Ho
{fIP,|f) = 50/ dr & x B) , respectively. (18)
R3 z

That (f|['[f) is the value of T in |f) results from the interpretation
that an observable property is represented by a self-adjoint opera-
tor I', and that the value of such property in a ket is computed by
the trace rule, which for a pure state |f) leads to the “sandwiches”

in (f|T|f):
Trace{I' [f) (fI} = (FIT1F) - (19)

WhenT =1, the norm squared of |f), (f|f), is the number of pho-
tons in the field,!”) that is, the number of photons in a given nor-
malized polychromatic mode [f) = |f) /v/{(f[f). More precisely,
(flf) is the average number of photons. While, for a Fock state,
(flf) would produce an integer equal to the actual number of
photons, for a coherent state it would be in general a non-integer
value equal to the actual average number of photons of the coher-
ent state. Statistical mixtures of different modes are not covered
by Equation (19).

Equation 19 is valid for any self-adjoint operator mapping ele-
ments in M back onto M, that is, for any self-adjoint operator that
maps any solution of Maxwell equations into another solution.
Examples of operators that do not meet such requirement and
can hence not be considered proper operators in M are the posi-
tion operator r [71, § 14], or the spin-1 matrices.['**] In particular,
the latter break the transversality of the fields [42, Chap. 3].

With respect to measurements: The invariance properties of
the scalar product underpin the consistent definition of projec-
tive measurements. The outcomes of rather general electromag-
netic measurement setups can be modeled as | {(d|f) |2, where
|f) is the field and |d) the mode of the detector. In Figure 3, |d)
is well approximated by a plane wave. One can readily envision
models for single mode fibers followed by power detectors, (chi-
ral) spectrometers, and so on. The | (d|f) |? are unitless numbers
that represent the measurement outcome, for example the num-
ber of “clicks” in a photodetector.

A fundamental property of the scalar product in M is that it is
conformally invariant:[®) That is, the value of (f|g) is identical
to the scalar product between X |f) and X |g), for any transfor-
mation X in the conformal group in 3+1 Minkowski spacetime,
Cis(3, 1)

(X10) (X1g) = (fIX'XIg) = (flg) (20)

The second equality is the manifestation of the invariance.
The 15-parameter conformal group consists of [65, 136]: Space-
time scalings, four special conformal transformations, and the
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Figure 3. The outcome of an apparatus for measuring the field |f) can be
modeled as | (d|f) |?, that is, the modulus square of the projection of the
field onto the electromagnetic mode of the detector |d).

Poincaré group, which consists of four spacetime translations,
three Lorentz boosts, and three spatial rotations. The conformal
group is the largest group of invariance of Maxwell equations in-
cluding sources as spacetime densities. Matter models such as charge
densities and magnetization densities appear already in the sem-
inal works of Bateman and Cunnigham!(®2%] when they showed
the conformal invariance of electrodynamics. One may then con-
sider conformal invariance similarly as Einstein considered the
special-relativistic invariance under the Poincaré group. If one
imposes that measurement outcomes must be independent of
the reference frame, it follows that | (d|f) | must be invariant
under all the transformations in Cj5(3, 1), since those are valid
changes of reference frame. The value of | (d|f) |* must be equal
to the value obtained when transforming both the field and the
measurement device | (d|X"X|f) |?, because otherwise the mea-
surement outcomes would depend on the reference frame. The
non-Poincaré members of C;5(3, 1) can be understood as changes
of measurements units, %% which arguably makes the name
“change of measurement frame” better than “change of reference
frame” for Cj5(3, 1).

The conformal invariance of the scalar product also ensures
that a single photon (f|f) = 1, remains a single photon in all pos-
sible measurement frames. Such quantization is hence a confor-
mally invariant concept.

Finally, it is important for completeness and future reference
to include here two expressions for the scalar product that appear
in the seminal papers of Gross and Zeldovich,[%%7] in the coordi-
nate (r, t) and Fourier k representations, respectively. Instead of
using electric and magnetic fields, it is more convenient here to
write them a function of the helical combinations with 4 = +1:

= .
F(r,t) =4/ > [E(r, t) + iAc,B(r, 1)]
d’k . .
o gy R -1
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The F, (r, t) are the positive frequency restriction of the Riemann—
Silberstein vectors,”!] and its monochromatic components are
also known as Beltrami fields.[®) As discussed above, the F,(r,
t) split any electromagnetic field into its left and right circular
polarization handedness. The restriction to positive frequencies
makes E(r, t) and B(r, t) necessarily complex valued, and is crucial
for achieving the handedness splitting: If E(r, t) and B(r, t) are
real-valued, then |F_(r, t)| = |[F_{(r, t)| follows from the first line of
Equation (21), which negates the handedness separation.

The expression of the scalar product used by Gross!® can be
written as:

(k) +(k)
“'g>=/ 0 hco|k| [F k] [ k] e

and the one used by Zeldovich!”% as:

_ - Fnt)G (5 +F () G (51
27r2hc0(f|g)—/ dr/ dr T
(23)

4. The Computational Side

This section reviews two connections between the algebraic for-
malism and popular computational strategies in light-matter in-
teraction: The T-matrix, and generic Maxwell solvers such as
COMSOL, MEEP, JCMsuite, CST, or Lumerical.

4.1. The T-Matrix

The abstract Hilbert space formalism has a natural compu-
tational complement: The T-matrix. The T-matrix is a popu-
lar and powerful approach to the computation of light-matter
interactions.[888137] The T-matrix encodes the full linear electro-
magnetic response of a given object upon arbitrary illuminations.
The connection with the Hilbert space formalism is the simple
bijective relationship that exist between the T-matrix and the scat-
tering operator S:

S=1+T, (24)

where [ is the identity operator. The relationship is different from
the typical S =1+ 2T of the monochromatic case, because of the
conventions in Sections 3 and 3.1, which are more convenient for
the polychromatic formalism. The T in Equation (24) should be
called the T-operator for consistency, however, the name T-matrix
is kept to avoid enlarging the terminology.

In computer calculations, the T-matrix is an actual matrix
whose size and underlying basis are chosen with regard to robust-
ness and convenience. For example, the multipolar basis is used
in nanophotonics for describing molecules, microstructures, or
small clusters thereof. The elements of the T-matrix are then:
7 (g, = Ciral Tlkjma), (25)
where the largest multipolar order j, . inj€[1, 2, ..., j..J, and
the range of the wavenumber k(q) € [k,,;,, k., must be chosen

‘min’ Ymax.
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so that the excluded terms do not affect the results significantly.
Additionally, the k(g) interval must be discretized with enough
resolution. Equation (25) can be interpreted as follows: The T-
matrix is applied to the multipolar state |kjmA), and the resulting
state is projected onto a different multipolar state, namely |gjmA).
In the multipolar basis, the result of |g)°" = S |f)™, that s, the
coefficients g;;;(q) that determine |g)°", are computed as:

Jmax

) / k75,1

J==%1 j=1 m=—j / Kmin
(20)

Jrmax

=f@+ D ) 2 / dkkTJ’“ (4, k)fy (R)

A==%1 j=1 m=—j

where the second equality follows from Equation (24), and the
integrals can be implemented as Riemann sums over the discrete
values of k and g.
In many cases, the matrices gmj(q, k) and fmj(q, k) are di-
—_lm. —jm.

agonal in frequency. Then, they cJan be obtained from the typ-
ical monochromatic T-matrices computed across the desired
spectral range. Such explicit connection [10, Sec. 3.1-3.2] al-
lows one to implement the polychromatic setting using the vast
literature®1%] and the many public resources for monochro-
matic T-matrices.[1%101] The formulas in Ref. [10, Sec. 3.1-3.2]
assume that the monochromatic T-matrices are computed with
the conventions in treams.[*"]

The plane wave basis is preferred for extended objects such as
periodic metasurfaces. Then:

T'(q.K) = (ZqITlka), 27)

and the discretization of k(q) in momentum space must be cho-
sen carefully, particularly in diffracting systems. Section 7 con-
tains a brief discussion about polychromatic basis vectors defined
by four discrete indexes, which would simplify the formalism.

There are many publicly available T-matrix codes!*°1] that
use Maxwell solvers to obtain T-matrices of objects such as di-
electric disks and metallic helices. In the case of molecules, T-
matrices in the dipolar approximation (j,,,, = 1) can be obtained
using quantum chemical simulations.(**]

The following discussion illustrates the power and conve-
nience of the combination of the algebraic formalism and the
T-matrix. Let us consider the difference between the momentum
of the fields along the z axis, before and after the interaction in

Figure 1, which can be readily written down using scalar products
(5.

(AP2> — in(](“)zlf)in _ out<g|PZ|g>out
="™(f|P, - S'P_S|f)" (28)
=f|-P,T-TP, - T'P,T|f)"

The second and third equalities follow from Equation (1) and
Equation (24), respectively. The last two expressions represent the
momentum lost or gained by the object, computed as a function
of the scattering operator and the T-matrix, respectively.

© 2024 The Author(s). Advanced Physics Research published by Wiley-VCH GmbH
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Figure 4. Adapted from Ref. [121]. The red line shows the transfer of momentum P, from a light pulse to a silicon sphere moving with constant speed v
along the z direction, either away or towards the light source, where positive v denotes movement away from the source. The gray line is the scattering

cross-section. The results pertain to the reference frame of the sphere.

As with many other fundamental quantities, the change (AP,)
of the momentum in the field is transferred to the material ob-
ject. That is, Equation (28) is a way to compute the z-component
of the optical force experienced by the object. Equations similar
to Equation (28), albeit for the monochromatic case, are an im-
portant application of the T-matrix in optical traps and optical
tweezers.[1213] While the results are identical to flux integrals of
the Maxwell stress tensor and tensors derived from it, the scalar
product expressions are arguably comparatively simpler. Once
the T-matrix of a given object is known, the optical forces and
torques exerted by any polychromatic field onto the object can be
computed without solving Maxwell equations anymore.

The polychromatic setting allows one to treat similarly the
case where the object is moving at relativistic speeds away or
toward the light source with speed v = +vb, where the + signs
corresponds to movement away from the light source. For the
transfer of momentum in the frame of reference of the object,
Equation (28) is unchanged, however the incoming field is now
a boosted version of the field |f,)" emitted by the source [f)" =
L) lfy)", where d = 2 is assumed without loss of generality. The
calculations can be readily carried out.['!] Figure 4 is an exam-
ple thereof.

Adv. Physics Res. 2025, 4, 2400083 2400088 (10 of 21)

Expressions such as Equation (28) can also be used for opti-
mization purposes. For example, to find out the most energy ef-
ficient polychromatic state for transferring angular momentum
to a given object, that is, maximizing the optical torque per unit
of energy:

in(f”z B S%]z‘slfyn
RAETHD

whose solution is the generalized eigenstate of J, — S'],S and H
with the largest generalized eigenvalue (see e.g., Ref. [138]). Gen-
eralized eigenstates are tightly related to the optical eigenstates
introduced by Mazilu,['*1%] which also facilitate optimization.

Similarly, one can obtain the most energy efficient pulse for
maximizing the photon absorption, which could be useful ine.g.,
spectroscopy:

[f)" that maximizes , (29)

in(fll _ S+Slf>in
KIEE

Such kind of optimizations are done in a computer over the fi-
nite set of coefficients f;,,, (k), or f; (k). The generalized eigenvalue

If)™ that maximizes (30)
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decomposition problem is solved in several software packages,
such as octave, matlab, and python (scipylinalg).

4.2. The Electromagnetic Scalar Product in Spatially-Bounded
Domains

This section explains how scalar products between pairs of out-
going or incoming fields can be computed when the fields are
known only in spatially-bounded domains.

Quite often, generic Maxwell solvers are used for the study and
optimization of photonic systems. Typically, a given photonic sys-
tem is excited by a specified illumination, and the electromag-
netic fields resulting from the light-matter interaction are ob-
tained numerically. The benefits of the scalar product in this set-
ting are manifold. For example, the knowledge of the number of
photons of a given field in a simulation can be used to re-scale
such field so that it contains one photon. Single-photon fields are
needed in quantum nanophotonics for modeling single photon
emitters, or for the photonic modes of objects such as nanoparti-
cles or cavities.l'”] In another example, the total number of pho-
tons and the helicity of the field radiated by an emitter nearby a
(chiral) nanostructure is a quantity of interest in the study of lu-
minescence enhancement, in particular in chiral luminescence
enhancement.[3*] However, none of the expressions of the scalar
product that have appeared so far in here, namely Equations (11,
15, 22, 23), are directly applicable when the fields are known only
in a spatially-bounded domain, which is the information avail-
able when using for example COMSOL, MEEP, JCMsuite, CST,
or Lumerical. It is worth highlighting that laser interactions are
very often studied within focal point interaction volumes. This
problem is solved in Ref. [11] for incoming and outgoing fields
by a new expression of the scalar product that only involves the
values of the fields on any piecewise smooth surface 0D enclosing
a compact volume D containing the object, and is hence directly
applicable to fields computed in a spatially-bounded domain (see
Figure 5). The expression of the scalar product reads:

. * dk
= - — d - |Fi(y, k Lk
(9= 3 it [ g [ as-[Fi k<Gt
61

where 7 = 1 for outgoing fields, T = —1 for incoming fields, dS(y)
is the unit vector perpendicular to the surface at point y € aD,
and Fourier transforms of the fields on the surface are used. For
example:

F,(y, k)= /_ iFl(y, t) exp (i(:okt) (32)

o \ 21

In single-frequency simulations, fields such as F,(y, k) are ob-
tained directly. In time-domain simulations they can be obtained
as integrals such as Equation (32), albeit with finite time integra-
tion limits because the fields on the surface will only be non-zero
during a bounded period of time.

For outgoing(incoming) fields, the integral can be performed
over any piecewise smooth surface dD enclosing a compact vol-
ume containing(excluding) the sources of radiation.
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(a)

Figure 5. Figure from Ref. [11] Equations (33, 34, 35) can be used to com-
pute the number of photons, energy, and helicity of the pulse emitted by
the object in a first simulation (a), by means of integrals over the surface
0D;. Then, the field can be scaled so that it contains a single photon, and
used in a second simulation (b) as the emission that interacts with other
objects. Integrals on the dD, surface provide the same quantities for the
total outgoing field.

Using Equation (31), the number of photons, helicity, and en-
ergy of a given outgoing (z = 1) or incoming (r = —1) field can be
computed as:

Number of photons (f|f)

= Yoo [ e [ st [k xFob] 63

J=+1 o hey

helicity (f|A|f)
. / 0 % / asp)- [ xR b 6
A==+1 > yEID

and energy (f|H|f)

= ) (-7)id /> dk /yeaDdS(y)-[Fj(y,k)xFA«(y, ) (35)

J=+1 0
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Similar formulas can be obtained for the change in the number
of photons, energy, and helicity of the field upon light-matter in-
teraction in scattering simulations [11, Eqs.(30,31,32)].

Besides augmenting the capabilities of the aforementioned
numerical codes, which feature computations in spatial volumes,
and are based on finite-difference time-domain, finite-element,
or finite-difference frequency-domain methods, the computation
of scalar products using the fields on spatial boundaries' is
perfectly adapted for boundary element methods.['*0141] Similar
formulas for the energy and helicity have been published very
recently.l142]

5. Symmetries, Selection Rules, and Quantitative
Measures of Broken Symmetry

5.1. Symmetry in the Hilbert Space

Symmetry is one of the most general and useful concepts in
physics. The symmetries of a physical system impose constraints,
such as selection rules and conservation laws.['*] When an effect
observed in a particular system can be explained only by symme-
try arguments, such as “the effect happens when the system has
symmetry X and lacks symmetry Y,” the explanation is then valid
and predictive in general: Systems that are vastly different from
the original one will also exhibit the effect if they meet the sym-
metry requirements.

The algebraic setting for light-matter interactions allows one
to treat symmetries and their consequences in a convenient and
effective manner. Symmetry transformations are represented by
unitary operators that act on the states in M, mapping them back
to M. There are two kinds of symmetries, continuous such as
translations, rotations, and electromagnetic duality, or discrete,
such as parity or time reversal. Continuous symmetries depend
on a real continuous parameter, called 8 below, and are generated
by exponentiating a self-adjoint operator, which ensures that the
resulting symmetry operator is unitary:

« (=ilr)
X(0) = exp (—i%r) = IZ (11—:;)
-0 :

with T = T thenX'(9) = X (6) (36)

Some self-adjoint generators represent fundamental quantities
such as energy, linear momentum, angular momentum and he-
licity. For example, the angular momentum operator ], gener-
ates rotations along the z axis, R,(6) = exp(—i2].), and helicity
A generates the electromagnetic duality transformation D) =
exp(—i%/\), whose action on the fields is:

D(O)F, (r,t) = exp (—i0)F (r,1),
D(0)F_(r,t) = exp (i0)F_(r, t),
(37)
D(Q)E(r, t) = E(r, t) cos @ — c,B(r, t) sin 6,
D(0)cyB(r, t) = E(r, t) sin 6 + c,B(r, t) cos #

It is well-known that, besides C;5(3, 1), Maxwell equation with-
out sources are also invariant under the duality transformation,

Adv. Physics Res. 2025, 4, 2400088 2400088 (12 of 21)

www.advphysicsres.com

which implies that the optical helicity in Equation (54) is a con-
stant of the motion of free fields.

The action of a given continuous symmetry is particularly sim-
ple on eigenstates of its generator, for example:

R,(0)|kjmA) = exp (—imb) |kjmA). (38)

When an object is symmetric under a given unitary operator X,
it means that the object is identical after transformation by X,
which implies the following for its scattering operator S:

XSX1=S < [$,X]=0 < [X,[]=0, (39)

where the first equivalence follows from the unitary character of
X and the second, which only applies to continuous symmetries,
can be readily shown by using the first line of Equation (36).

5.2. Selection Rules

Equation (39) leads immediately to the main consequence of
symmetry in the algebraic setting: Light-matter interaction with
a symmetric object does not couple eigenstates of the symmetry with
different eigenvalue. This can be seen assuming that the incom-
ing field is an eigenstate of X, X |y) =y |y), and projecting the
outgoing field onto another eigenstate X |7) =7 |7):

(7ISly) = (FIXSX[y) = (X" 17)) 'SX " Iy)
(40)

= (X'17) S(X 1) = 77" 71l

where the first equality follows from Equation (39), and the im-
plication follows from the unitary condition of the symmetry op-
erator: Xi = X~!. Equation (40) implies that (¥|S|y) = 0 unless
yy* = 1. Since |7| = |y| = 1 because X is unitary, it follows that
only y = 7 avoids the otherwise forceful zero.

The statement in italics above and Equation (40) is the precise
formulation of what is commonly known as selection rules. Se-
lection rules are extremely useful to understand what can and
cannot happen in light-matter interactions a priori. Selection
rules apply much independently of other aspects of the systems
in question, such as for example whether far-field or near field ef-
fects are considered. For example, discrete rotational symmetries
and helicity preservation upon on-axis illumination are sufficient
conditions for ensuring zero backscattering in the far field,!1*!
and so is a combined simultaneous discrete rotational-duality
symmetry.l'*) Such conditions guide the design of anti-reflection
coatings.['*] A near-field example follows.

An emitter on top of a waveguide, as depicted in Figure 6, pro-
duces an electric (z = 1) or magnetic (z = —1) multipolar emission
with well defined j and m [see Equation (7)]:

) = / bk, (0 i) (41)

Since the waveguide is symmetric upon the mirror reflection M,
z — —z, its modes can be classified according to the eigenvalues
of such symmetry, which are = 1 for transverse magnetic (TM)
modes, and = —1 for transverse electric (TE) modes. When the
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Figure 6. Selection rules can provide valuable a priori information with minimal effort. A waveguide (brown) on top of a substrate (blue) is invariant
upon reflection z — —z across the XY plane, denoted by M, . An electric or magnetic emitter (green) that is placed on the plane of symmetry on top of the
waveguide will couple into the waveguide only when the M, eigenvalues of the emission and the waveguide mode coincide. This results in the coupling
selection rules for electric and magnetic dipolar and quadrupolar emissions onto TE or TM modes shown in Table 1.

emitter is placed on the plane of symmetry, its emission is also
an eigenstate of M,

ML) = [ kg, M, ) = (<177 1), “)
>0
where the third equality follows from

M, [kjmz) = IR, () [ljmz) = (~1)"I1 [kjmz)
| (43)
= 7(~1)*" [kjmr),

where I1 is the parity operator. The last equality follows from Ref.
[121, App. D.1]
Then, the selection rule obtained from the M, symmetry is:

n= (-1, (44)

which predicts which electric or magnetic multipolar emissions
can couple to which kind of waveguide modes, as seen in Table 1.

Table 1 is consistent with the “surface selection rule” where
an emitter on an extended metal surface will have electric-dipole
transitions quenched for transition moments parallel to the sur-
face, but amplified for those perpendicular to it. According to the
Table, the m = 0 parallel dipole component (along the z direction)
can only couple to TE modes. However, the surface plasmons are
TM modes. In contrast, The TM modes allow coupling to the m
= +1 electric dipoles, which contain y components perpendicular
to the surface.

Table 1. Each combination of multipolar order j, angular momentum m,
and electric/magnetic character of the emission can only couple to either
a TE mode or a TM mode of the waveguide.

j=1 j=2
m -1 0 1T 2 1 o 12

(electric) 7 = 1 ™M TE TM TM TE TM TE TM
(magneti)r=-1 TE TM TE TE TM TE TM TE
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It is remarkable that such detailed information can be ob-
tained so easily, and without any numerical simulation. Similar
considerations!'*] reveal the intricacies of the directional cou-
pling of emitters onto waveguides.['*¥-15] Understanding the ori-
gin of the selection rule also reveals ways for avoiding it by break-
ing the responsible symmetry. In the case of the system depicted
in Figure 6, one can displace the emitter out of the plane of sym-
metry, or use a non-mirror symmetric waveguide.[1*°]

5.3. Measures of Symmetry-Breaking

Symmetry-breaking is also an important concept in physics,
which is relevant in phase transitions, chirality, and the Higgs
boson, for example. While broken symmetries are often only
qualitatively considered, the question How much does the system
break the symmetry? can be quantitatively answered. Different
symmetry-breaking measures have been defined for understand-
ing spectra of nuclei and atoms,>*'>7] and for searching for hid-
den symmetries in the apparent disorder of liquids and colloidal
glasses.[?122] Symmetry breaking measures are being studied in
a more general sense,[*28158] which has shown their usefulness
in quantifying quantum resources, studying quantum state evo-
lution and estimation, analyzing accidental degeneracies, and
quantifying spontaneous symmetry breaking. Due to the gener-
ality of symmetry considerations, it is reasonable to expect many
more areas of application, including currently unforeseen ones.

There is a rather straightforward way to measure symmetry
breaking in the algebraic setting, which arises from the condition
in Equation (39) that a symmetry operator X, and the scattering
operator of a symmetric object meet: S = XSX~!. An expression
for the quantitative measurement of the breaking of any given
symmetry X by any given object with scattering operator S was
given in Ref. [6]:

1S — XSX'I?

(S X) = s

e[0,1], (45)
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Breaking of rotational symmetry (x103)
3 T T T T T

- —2r/3 —w/3 0 @/3 2n/3 7

Rotation angle 6 (radians)

Figure 7. Figure from [6]. Dimensionless measure of the breaking of rota-
tional symmetry by each of the three systems displayed inside the figure as
a function of the rotation angle 6. The measure is computed using Equa-
tion (45), particularized to rotations with X = R,(6), and for a single fre-
quency. In units of the wavelength, the big spheres have a radius of 0.5, the
small spheres a radius of 0.1, and the minimal separation between spheres
is 0.01. A relative permittivity equal to 10 was assumed for the material of
all spheres. The fact that the green long-dashed line is always above the
continuous red line agrees with the intuition that the system with three
stacked small spheres should be more asymmetric than the system with
one small sphere. The zeros at 0 = +27/3 of the blue short-dashed line
reflect the discrete rotational symmetry of the corresponding system.

whose value is zero when the object is symmetric, and is upper
bounded by 1, which denotes the maximum possible breaking of
the symmetry. For a particular choice of the operator norm ||A||,
the quantity in Equation (45) can be obtained from experimen-
tal measurements.

Figure 7 shows the breaking of rotational symmetry that small
spheres cause when placed around a bigger sphere. The calcu-
lations are, however, for a single frequency, since the polychro-
matic generalization was not available at the time. For the case of
rotations by an angle 6, the denominator in Equation (45), ||S —
R,(9)SRZ'(0)]1%, is a squared distance between the original scat-
tering operator S, and the rotated version of itself R,(6)SR;'(6).
For the case of a cylindrically symmetric system, such distance is
zero for all 6, otherwise, it measures how different are the origi-
nal and rotated operators.

5.3.1. Electromagnetic Chirality

A discussion about symmetry breaking without addressing chi-
rality misses an important aspect. Arguably, chirality is the most
pervasive symmetry breaking in physics: From the left-right
asymmetry of the weak interaction in particle physics, through
the different response of chiral molecules to the two polarization
handedness of light, to chiral magnetic fields of galactic scale.
For an object to be chiral, it must lack parity symmetry, all mir-
ror symmetries, and all rotation-reflection symmetries.[**! While
such definition is simple and intuitive, it is binary, and questions
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of how chiral is a given object, or how to assign a handedness to
it are much much more difficult to answer that it may initially ap-
pear. The problems that such questions pose have been studied
for many decades,!?*3%] and are clearly summarized by Fowler in
Ref. [160]. For example, it is remarkable that, despite their broad
use, the left and right-handed labels can not be appropriately as-
signed to all chiral objects.[****] Such questions can, however, be
answered in the context of light-matter interactions by scalar,**]
and multidimensional measures!'??! of the electromagnetic chi-
rality of an object. Such measures are continuous upon contin-
uous changes of the object in question, avoid false chiral zeros
and unhanded chiral states, and allow one to continuously dis-
tinguish any pair of enantiomers. The electromagnetic chirality
measures are derived from the T-matrix of an object and, impor-
tantly, enjoy the highest possibly degree of invariance in electro-
magnetism: Conformal invariance.['??]

Both the scalar and the multidimensional electromagnetic chi-
rality measures are obtained from the singular values of the sub-
operators T4, that is, the four restrictions of the T-matrix that
map states of helicity 4 to states of helicity A. The ability to use
powerful tools from the spectral theory of operators, such as the
singular value decomposition, is a benefit of the algebraic ap-
proach.

6. Extension to Matter

The formalism outlined so far covers the “light-” part of the light-
matter interaction, which motivates the following question: Can
this algebraic approach be used for the material object? In this sec-
tion, we review how it is possible to obtain expressions for funda-
mental quantities in matter using scalar products. This requires
an appropriate mathematical representation of matter, an appro-
priate group of transformations, and a scalar product that is in-
variant under all the transformations of such group.

The representation of matter can be obtain by considering a
version of Maxwell equations with sources [161, Sec. 5]:

V.B(r, ) =0, VxE(r, ) + 9,B(r) = 0, and

= & (46)

¢’V x B(r, 1) — 9,E(r, 1) = gl[](r, 1)+ 0,P(r, 1) + V X M(r, 1)|
0

where the sources are the electric current four-vector containing
p(r, t) and J(r, t), and an antisymmetric tensor X(r, t) which con-
tains both magnetization density M(r, t), and polarization density
P(r, t):

oo _ P )
o= [un t)} ’

0 —CoPi(t, 1)  —cyP,(t, 1) —cyPs(t 1) (47)
sie g = |Pi(ED) 0 —M,(t,r) M)
EO=1 by M) 0 —M,(t,T)
o Ps(t 1) —M,(t 1) M, (t. 1) 0

Before the interaction starts and some time after the interaction
finishes in Figure 1, the object is in static equilibrium, where the
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time derivatives of all macroscopic quantities vanish. The sources
are then assumed to be:

0 0 0 0
o= z0=l0 g 60 S| e
0 —-M,(r) M) 0

that is: Static sources can have electric charge and magnetization
densities, but not magnetic charge or electric polarization den-
sities. This is consistent with the fact that matter seems to fea-
ture electric charge and magnetic spin, but not its counterparts.
Static electric polarization observed in ferroelectric materials or
polar molecules can still be described by an appropriate distri-
bution of the charge density p(r). The movement of p(r) results
in the dynamic j(r, t), and the movement of M(r) results in X(r,
t). Both kinds of dynamic sources can eventually radiate through
Equation (46). The densities P(r, t) and M(r, t) are considered in
recent works on fundamental quantities in matter.!%%8]

Therefore, matter in static equilibrium can be represented by
its charge density p(r) and its magnetization density M(r), which
are assumed to be contained in a finite volume. The similarity to
the case of light is increased by using the static field E(r) produced
by p(r) instead of p(r). The two are bijectively connected through
the electrostatic equations:

voEm =" vxEm=o, (49)

€9

obtained as the static limits of equations in (46) by setting all time
derivatives to zero, and removing P(r, t). Static matter can hence
be represented by the static field E(r) produced by its charge den-
sity, together with the static magnetization density M(r) produced
by its magnetic spin texture: |®,_,) = {E(r), M(r)}.

The next step is to find an appropriate group of invariance.
To such end, one starts from the group of invariance of the dy-
namic equations, the conformal group C;5(3, 1), and removes all
the transformations that do not preserve the static w = 0 con-
dition. Namely, Lorentz boosts and the time component of the
special conformal transformations four-vector. Since time is not
relevant anymore in the static case, the time translations can
also be removed because, while preserving the @ = 0 condition,
any time-translations will just degenerate into the identity op-
erator for the static case. Ten kinds of transformations are left:
Space scalings, three spatial rotations, three spatial translations,
and three special conformal transformations. Importantly, the
remaining transformations also form a group: The conformal
group in three-dimensional Euclidean space [162, Chapter 24],
denoted by C,,(3). It is rather remarkable and not at all a priori
expected that removing transformations from a group results in
another group. But in this case, the static restriction of the confor-
mal group in 3+1 spacetime dimensions results in the conformal
group in three spatial dimensions. Accordingly, C;,(3) is taken as
the group of transformations relevant for the static case.

The next step is to find a scalar product for material states
|®@,,_o) = {E(r), M(r)}, invariant under such group. It is shown in
Ref. [9] that the following expression meets the invariance condi-
tion:
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o )= Ik [ve E'k) ] [ /20 E2(K)
<q>w Ol w:0>_/R} hCo|k| I:\/H_OMl ] I:\/H_O MZ(k):| . (50)

The Fourier transforms of the fields are used in Equation (50):

MEk) = | —— M(r) exp(—ik - r), and
(51)
_ -ik _ ik d’r o
B =S N = S, g e

where Vis the finite volume occupied by the sources, and the first
equality in the second line of Equation (51) follows from Equa-
tion (49). We note that both E(r) and M(r) are real-valued.
Self-adjoint operators such as the generators of C;,(3) can now
be “sandwiched” to obtain their value for a given |®,_,). Consis-
tent with the assumption of static matter, is the fact that the values
of linear and angular momentum vanish !
0 =(D,oPu|Pyg) = (Pyeol]a|Pymo) » @ € {x,7, 2} (52)
However, the value of some functions of those same operators do
notvanish. For example, assuming that M(r) =0, and considering
the operator ¢,|P| for a charge density, one obtains that:

<c1>w:0|c0|p||c1>m:0>=go/d3k|E(k)|2=50/d3r|E(r)|2, (53)
A%

which is the expression for the electrostatic energy. Note that
¢,|P| is also one possible way to write the energy operator for
Maxwell fields.

Even though their frequency content is different, light and
matter are similarly represented in the Fourier k domain. All the
information is contained in {E(k), B(k)} for Maxwell fields, and in
{E(k), M(k)} for matter. Such similarity allows one to extend to-
wards the matter side some operators defined for Maxwell fields.
The helicity operator in Equation (6) is one example. Helicity is a
particularly interesting example because it encodes the chirality
of Maxwell fields, and (f|A[f) is the difference between the num-
ber of left- and right-handed photons of a given field |f). This
quantity is known as the optical helicity, whose most common
expression is [124125];

dr B(r,t) - A(r,t) — E(r,1) - C(1,1) (54)
R3

where £(r, 1) [C(r,1)] and B(r, t) [A(r, t)] are the real-valued elec-
tric and magnetic fields[potentials], respectively. The use of two
potentials is a common strategy in this context.['?>13%] In partic-
ular, it allows one to obtain an integrand which is local in r, con-
trary to the case when only the fields are used. The value of Equa-
tion (54) coincides’! with the “sandwich” (f[T|f), which can be
computed as:

&’k
- el k 2 k 2
(fIrIf) /RL{O} i 101 = I (] (55)

or with any of the other expressions for the scalar product.
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6.1. Helicity in Static Matter

The question of whether helicity is well defined in matter has

been debated in the literature.[**1%3] The algebraic setting pro-

vides an affirmative answer, and an important connection:(®!
d’k

(@l A@ug) = | = oMY [ik x M(k)]

d’r

= /. 52 B0 AW (56)
where ikx is the form of the helicity operator A in the k domain,
Zy = \/}o/€, is the impedance of vacuum, B(r) is the magnetic
field produced by the magnetization density, defined by V - B(r)
=0and V x B(r) = p,V X M(r), and A(r) is a vector potential such
that V x A(r) = B(r). The last expression in Equation (56) is es-
sentially the magnetic helicity,'%1% which is typically defined

as:
/d% B(r) - A(1). (57)

The magnetic helicity is relevant in diverse areas of physics
such as cosmology,[1971%] solar physics,!*%! fusion physics,110-111]
magneto-hydrodynamics,[''21"%] and condensed matter.!116-120]

The helicity in static matter (®,_,|A|D,_,) can be seen as a
measure of the degree of twistedness of the static magnetiza-
tion. The reason why the E(r) field does not contribute in Equa-
tion (56) is that ik x E(k) = 0, because the static field produced by
any charge density distribution has zero curl [Equation (49)]. That
means that the charge density does not contribute to the storage
of helicity in static matter.

In this context, it is important to understand that the trans-
formation generated by helicity, electromagnetic duality D(6) =
exp (— i0A), has different effects in the static and dynamic cases.
Instead of mixing the dynamic electric and magnetic fields as in
Equation (37), duality acts on the static fields as follows:

D(O)M(k) = D(6) M, (k) + M_(k) + M, (k)| (58)
= exp(—if)M, (k) + exp(i9)M_(k) + M, (k),

where 37, c (1 1yM, (k) is the decomposition of M(k) into he-
licity eigenstates. As opposed to the dynamic case where A only
takes the values -1 and +1, the eigenvalue 0 is possible in the
static case.

The different action of duality is important, because if Equa-
tion (37) is assumed for the static case, then the expression of
the magnetic helicity is not invariant under the transformation
because there are no electric terms in it, which leads to the ex-
clusion of the magnetic helicity as the material counterpart of
the optical helicity.'%3] When the correct transformation in Equa-
tion (58) is considered, it readily follows that (®,_y|A|D,_,) is
invariant under it, since:

M(k)" [ik x M(k)| = M(k)"[M, (k) - M_(k)| 59
= M, (W]* - IM_(Kk)|”
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Table 2. Adapted form [9] Helicity A, and
angular momentum squared )? stored in a
Hopfion. An analytical approximation of the
Hopfion in a chiral FeGe magnet of cylindri-
cal shapel’® was used in the calculations.
The height of the cylinder is equal to the
magnetic helical period L=90nm, and the di-
ameter is equal to 3L. A magnetization den-
sity saturation value of M;=384kA/m is as-
sumed. The charge density p(r), and hence
its electric field, is assumed to be zero:
1@, —0) = {E() = 0, M(r)}. While a p(r) #
0 can affect the value of J?, it does not affect
the value of A.

(@, —olA|D, o) (@, = ol)?1®,, = 0)

1.30% 10° A?

-129.1n

which is obviously invariant under duality, as seen from the last
line of Equation (58). The longitudinal component of the magne-
tization does not store helicity because ik x M, (k) = 0.

Equation (50) provides a means to compute fundamental
quantities in matter for analytically derived,'®*] numerically
obtained,!'®®! or experimentally measured three-dimensional
chargel'%] and magnetization density distributions.['”! For com-
puter calculations, it is possible to use the same sets of basis
vectors that appear in Section 3, except that they must be com-
plemented by adding their longitudinal counterparts, in other
words, basis vectors that are eigenstates of helicity with eigen-
value zero. For example, adding a third kind of plane waves in
Equation (13) with &,(k) = k.

In an example of application, the helicity and total angular mo-
mentum squared of a given magnetic Hopfion can be computed,
and are shown in Table 2. A magnetic Hopfion is a chiral mag-
netization configuration!!*+18-171] that can appear in chiral mag-
netic systems. Its magnetization vector forms a complex, knot-
ted structure. Let us now consider the possibility of switching the
handedness of the Hopfion by shining light on it. The connection
between the optical helicity of the dynamic field, and the static
helicity of the magnetization density suggests a lower bound for
the number of circularly polarized photons that would be needed
for switching the Hopfion onto its mirror image of opposite he-
licity: [129.1 x 2] = 259. Additionally, -129.1% would also bound
the helicity that can be radiated by the Hopfion as it loses its chi-
rality, for example by the action of a large magnetic bias align-
ing its magnetization density vector along the same direction at
all points. It is however yet to be demonstrated by either experi-
ments or dynamic simulations of Maxwell fields interacting with
2(r, t) that helicity can be transferred between fields and mat-
ter. Connected to this is the question of whether a conservation
law for the sum of the optical and magnetic helicities exist, al-
beit possibly under some restrictions. This open question is one
of the differences between the transfer of angular momentum
and the transfer of helicity. It is well-known that the isotropy of
space-time implies the existence of a global conservation law for
angular momentum, and that the transfer of angular momentum
from light to matter imparts torque onto the material object. In
contrast, the transfer of helicity, changing the degree of twisted-
ness of the static magnetization, is a new subject for study. An-
other difference is that, while non-magnetic materials are not be
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able to permanently store static helicity coming from the light
field, the lack of static magnetization does not prevent light from
exerting torque onto a given object. Differences are to be expected
because, at the fundamental level and despite the fact that their
units coincide, helicity and angular momentum are two different
quantities, connected to two different symmetries, namely dual-
ity and rotational symmetry, respectively.

7. Conclusion and Outlook

This review has summarized an algebraic approach to light-
matter interactions that is theoretically powerful and computa-
tionally friendly. Theoretical expressions can be developed and
manipulated conveniently thanks to the generality of the basis
on which the approach rests, and a compact notation. The tight
connections to popular computational tools allow one to readily
perform numerical calculations. After briefly indicating potential
applications of the current framework, the article finishes with
some research directions related to challenges and extensions.

The current setting is particularly suited for the computation
of optical forces and torques, which can benefit experiments fea-
turing optical levitation and manipulation of nanoparticles and
molecules, specially when pulsed lasers are used. The ability to
systematically handle changes of inertial reference framel'?! can
be applied to the prediction and understanding of electromag-
netic measurements in astrophysics, such as radiation from pul-
sars, or spectroscopic measurements taken by a satellite orbit-
ing a planet. Classical and quantum nanophotonics simulations
using common Maxwell solvers can benefit from the properties
of incoming and outgoing polychromatic fields for modeling ab-
sorption and emission by matter, respectively. For example, the
photon emission of a molecule or a quantum dot, which has a
definite start in time, can be constructed as an outgoing poly-
chromatic field containing exactly one photon.

7.1. Outlook

The formalism would become simpler if orthonormal basis
whose basis vectors were polychromatic fields in M would be
available for practical use. One such basis can be defined by ex-
tending a scalar result into M [9, App. A]. Any such inherently
polychromatic basis would allow one to write expansions with
four discrete indexes, for example:

)

=222 D s Injmay, with

A=x1 n  j=1 m=—j

o
Z Z Z Z |Cpjmal* < o0, and

A=x1 n  j=1 m=—j

(60)

(Al BmAY = 61,816,065

These polychromatic basis would simplify the formalism by
avoiding the use of monochromatic basis, whose members are
outside of M, and would replace the corresponding wavenumber
integrals by discrete sums that are easier to implement. For ex-
ample, the discretization of the wavenumber is specially compli-
cated when treating Lorentz boosts.!'?!] The questions regarding
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discretization of the wavenumber would be replaced by questions
of how many terms to take in the sum over n. From the mathe-
matical point of view, Equation (60) would establishing a clean
isomorphism between M and #2, the Hilbert space of square-
summable sequences, and give access to results demonstrated
for 2.

The computational side of the framework would benefit from
the resolution of an infamously outstanding issue in the T-matrix
formalism: The region of validity of the scattered near-field com-
puted as the last term of Equation (26). On the one hand, the
expansion in spherical waves ensures accuracy only up to the sur-
face of the smallest circumscribing sphere that contains the ob-
ject. Such boundary is often violated in systems of interest such
as a quantum dot nearby a nano-antenna. As a consequence, the
computation of the electromagnetic coupling between the two
objects is compromised. On the other hand, there seems to be
enough information in the T-matrix for computing the electro-
magnetic fields up to the surface of the object, as the existence
of several different techniques shows.[**%>172-177] The existing so-
lutions are based on rather involved theoretical and numerical
strategies. One can argue that the problem has not been fully
solved in general, and hope for a simpler solution that would
avoid the inconvenience and computational costs of the conver-
gence checks that must be performed, for example, when com-
puting the T-matrix of crystals when one unit cell invades the
circumscribing sphere of the next unit cell.

It seems possible to extend the algebraic approach to bipar-
tite states of light,['78] such as biphoton entangled states,['7°-182]
or the states involved in non-linear effects!'#-*%7] such as second
harmonic generation (SHG). The extension is based on the ten-
sor product of two copies of the Hilbert space M, M, = M ® M,
restricted by the bosonic permutation. The extension of theories
from a Hilbert space onto the tensor product of two copies of
such Hilbert space, which is sometimes called “the double copy”,
has already been used in the study of photonic bipartite entangle-
ment, formulations of gravity, and analogies between light and
gravitation, in particular mapping bipartite states of light to grav-
itational waves.[188-192] Benefits of the extension to bipartite states
are, for example, the computation of fundamental properties us-
ing scalar products, and the easy treatment of symmetries and
their consequences for such states.

It is interesting to investigate potential connections between
the Hilbert space formalism and the formalism of quasi-normal
modes (QNMs), where the natural damped resonances of realis-
tic nanophotonic systems are used for the study and engineering
of light-matter interactions.['>1] The approach connects with
the physics of resonators, and software packages implementing
the QNM formalism are available.['>}] In one research direction,
the orthogonality, normalization, and completeness properties of
the QNMs can be studied using the conformally invariant scalar
product. Additionally, a connection between the T-matrix of an
object and its QNMs would create synergies between both ap-
proaches. For example, the computation of T-matrices would be-
come more efficient if the response of the object can be described
to good approximation with only a few QNMs, at least in limited
frequency ranges.

One can argue that the conformal group should receive more
research attention, for example regarding a systematic consid-
eration of the inequivalent irreducible representations of the
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conformal groups Cis(3, 1) and Cy,(3) for describing radiation
and matter, respectively, and also regarding the decomposition of
the product group Ci5(3, 1) X Cy,(3) into its irreducible represen-
tations. Such product group is a plausible structure for describing
hybrid light-matter entities such as “dressed” material states, /1%
and polaritons.

Finally, the transfer of helicity between light and matter dis-
cussed in Section 6.1 is an intriguing possibility. Such pos-
sibility is, however, yet to be demonstrated in either experi-
ments or dynamic simulations. The dynamic simulations should
consider the interactions between the fields, the current four-
vector, and the magnetization-polarization tensor, including self-
interactions. The question of whether a conservation law for the
sum of the optical and static helicities exist, albeit possibly under
some restrictions, is related to the transfer of helicity between
light and matter. The potential impact of these research ques-
tions reaches different areas of physics and technology. For exam-
ple, micromagnetics, regarding the all optical switching of mag-
netization with circularly polarized radiation,!''”! fusion physics,
where the injection of magnetic helicity is considered for control-
ling the plasma,['!%M1] and cosmology, where helical magnetic
fields with galactic-scale coherent lengths are studied.!*?7:1%8]

Acknowledgements

Thanks go to many people that | have worked withduring the last decade
while being employed at the Karlsruhe Institute of Technology (KIT). In
particular, | am very glad to acknowledge the continuous support of
Prof. Dr. Carsten Rockstuhl, and the support of and long-term collabora-
tion with Prof. Dr. Martin Wegener. | also wish to highlight the collabora-
tions with Dr. Maxim Vavilin, to whom | wish a successful scientific career,
and Drs. Dominik Beutel and Benedikt Zerulla, who have left Academia.
My position in the Institute of Nanotechnology of the KIT is funded by
the Helmholtz Association via the Helmholtz program “Materials Sys-
tems Engineering” (MSE). Parts of the work reviewed in this article have
been funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation)—Project-1D 258734477 — SFB 1173.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

conformal symmetry, hilbert space, light-matter interactions, T-matrix

Received: June 18, 2024
Revised: September 9, 2024
Published online: October 17, 2024

[1] V. Hahn, F. Mayer, M. Thiel, M. Wegener, Opt. Photon. News 2019,
30, 28.

[2] L.Yang, F. Mayer, U. H. F. Bunz, E. Blasco, M. Wegener, Light: Adv.
Mfg. 2021, 2, 296.

[3] S.L.James, Chem. Soc. Rev. 2003, 32, 276.

[4] ).-L. Zhuang, A. Terfort, C. Woll, Coord. Chem. Rev. 2016, 307, 391.

[5] 1. Fernandez-Corbaton, C. Rockstuhl, Phys. Rev. A 2017, 95, 053829.

[6] I. Fernandez-Corbaton, J. Phys. Commun. 2018, 2, 095002.

Adv. Physics Res. 2025, 4, 2400083 2400088 (18 of 21)

7]
8]
[
(10]
(1]

(12]

(13]

(14]
[15]

[16]
(17]
(18]

(19]
(20]
(21]

(22]

(23]
(24]
(23]

(26]
(27]

(28]

(29]
(3]
(31]
(32]
33]
(34]
35]
(36]
(37]
(38]

(39

[40]
(41]
(42]
(43]
(44]

(45]

46]
(47]

www.advphysicsres.com

I. Fernandez-Corbaton, Symmetry 2019, 11, 1427.

I. Fernandez-Corbaton, Phys. Rev. B 2021, 103, 054406.

I. Fernandez-Corbaton, M. Vavilin, Symmetry 2023, 15, 10.

M. Vavilin, |. Fernandez-Corbaton, JQSRT 2024, 314, 108853.

M. Vavilin, C. Rockstuhl, I. Fernandez-Corbaton, Phys. Rev. A 2024,
109, 043506.

T.A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knéner, A. M. Branhczyk,
N. R. Heckenberg, H. Rubinsztein-Dunlop, J. Opt. A: Pure Appl. Opt.
2007, 9, S196.

T. A. Nieminen, N. du Preez-Wilkinson, A. B. Stilgoe, V. L. Loke, A.
A. Bui, H. Rubinsztein-Dunlop, J. Quant. Spectrosc. Radiat. Transfer
2014, 146, 59.

M. Mazilu, ). Baumgartl, S. Kosmeier, K. Dholakia, Opt. Express
2011, 79, 933.

A. C. De Luca, S. Kosmeier, K. Dholakia, M. Mazilu, Phys. Rev. A
2011, 84, 021803.

S. Savasta, O. Di Stefano, R. Girlanda, Phys. Rev. A 2002, 65,043801.
E. Waks, D. Sridharan, Phys. Rev. A 2010, 82, 043845.

C. C. Handapangoda, M. Premaratne, P. N. Pathirana, Progr. Electro-
magn. Res.-pier 2011, 112, 349.

T.). Garner, A. Lakhtakia, J. K. Breakall, C. F. Bohren, J. Opt. Soc. Am.
A 2017, 34, 270.

M. R. Whittam, A. G. Lamprianidis, Y. Augenstein, C. Rockstuhl,
Phys. Rev. A 2023, 108, 043510.

H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimaki, T.
Lippmann, G. Reiter, Nature 2000, 408, 839.

P. Wochner, C. Gutt, T. Autenrieth, T. Demmer, V. Bugaev, A. D.
Ortiz, A. Duri, F. Zontone, G. Griibel, H. Dosch, Proc. Natl. Acad.
Sci. 2009, 7106, 11511.

|. Marvian Mashhad, Ph.D. Thesis, 2012.

I. Marvian, R. W. Spekkens, Nat. Commun. 2014, 5, 3821.

Y.-N. Fang, G.-H. Dong, D.-L. Zhou, C.-P. Sun, Commun. Theor. Phys.
2016, 65, 423.

I. Marvian, R. W. Spekkens, P. Zanardi, Phys. Rev. A2016, 93,052331.
G.-H. Dong, Y.-N. Fang, C.-P. Sun, Commun. Theor. Phys. 2017, 68,
405.

G. H. Dong, Z. W. Zhang, C. P. Sun, Z. R. Gong, Sci. Rep. 2017, 7,
12947.

E. Ruch, Acc. Chem. Res. 5, 49.

A. B. Buda, K. Mislow, J. Am. Chem. Soc. 1992, 114, 6006.

P. Mezey, J. Math. Chem. 1995, 17, 185.

N. Weinberg, K. Mislow, Theoret. Chim. Acta 1997, 95, 63.

N. Weinberg, K. Mislow, Can. J. Chem. 2000, 78, 41.

D. A.Y. Pinto, Enantiomer 2001, 211.

M. Petitjean, Entropy 2003, 5, 271.

A. Rassat, P. W. Fowler, Chem.: Eur. | 2004, 10, 6575.

M. M. Coles, D. L. Andrews, Phys. Rev. A 2012, 85, 063810.

I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, X.
Vidal, M. L. Juan, G. Molina-Terriza, Phys. Rev. Lett. 2013, 111,
060401.

R. P. Cameron, S. M. Barnett, A. M. Yao, New J. Phys. 2012, 14,
053050.

K. Y. Bliokh, A. Y. Bekshaev, F. Nori, New J. Phys. 2013, 15, 033026.
R. P. Cameron, J. Opt. 2013, 16, 015708.

|. Fernandez-Corbaton, Ph.D. Thesis, Macquarie University, 2014.
M. Nieto-Vesperinas, Phys. Rev. A 2015, 92, 023813.

P. Gutsche, L. V. Poulikakos, M. Hammerschmidt, S. Burger, F.
Schmidt, in Photonic and Phononic Properties of Engineered Nanos-
tructures VI, vol. 9756, International Society for Optics and Photon-
ics, 2016, 97560X.

I. Fernandez-Corbaton, M. Fruhnert, C. Rockstuhl, Phys. Rev. X 2016,
6,031013.

M. Elbistan, P. Horvéthy, P.-M. Zhang, Phys. Lett. A 2017, 387, 2375.
I. Agullo, A. del Rio, J. Navarro-Salas, Phys. Rev. Lett. 2017, 118,
111301.

© 2024 The Author(s). Advanced Physics Research published by Wiley-VCH GmbH

85UB0 17 SUOWIWOD BAITeRID 9|edi[dde au Ag peusenob ae sejile YO ‘8sn JO SN o) Akelq i auljuQ 481 UO (SUOIIPUOD-pUe-SLLBWoo" A8 IM°Afelq U1 UO//SANY) SUONIPUCD pUe SWe | 8yl 88S *[SZ0zZ/T0/yT] uo Akeiqiauluo A1 ‘880007202 1xde/z00T 0T/I0p/wod" A8 |im Arelq i jpul|uo//sdny wouy pepeojumod ‘T ‘S20Z ‘002TTS.Z


http://www.advancedsciencenews.com
http://www.advphysicsres.com

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

(48]
(49]
(5]
(51]

[52]
(53]

[54]
[55]

[56]
[57)
(58]

[59]
(60]

(67]
(62]
(63]
64]
(65]

(66]
(67]
(68]
(69]
(7]

(71]
(72]
[73]
(74]
[75]
(78]
[77]
(78]
[79]

(80]
(81]
(82]

(83]

(84]
(85]
(86]
(87]
(88]
(89]

[50]

(51

Adv. Physics Res. 2025, 4, 2400088

ADVANCED
PHYSICS
RESEARCH

Open Access,

I. Agullo, A. del Rio, J. Navarro-Salas, Phys. Rev. D 2018, 98, 125001.
D. L. Andrews, Symmetry 2018, 10, 298.

J. E. Vazquez-Lozano, A. Martinez, Phys. Rev. Lett. 2018, 127,043901.
|. Fernandez-Corbaton, C. Rockstuhl, P. Ziemke, P. Gumbsch, A.
Albiez, R. Schwaiger, T. Frenzel, M. Kadic, M. Wegener, Adv. Mater.
2019, 317, 1807742.

M. Hanifeh, M. Albooyeh, F. Capolino, ACS Photonics 2020, 7, 2682.
F. Crimin, N. Mackinnon, ). B. Gétte, S. M. Barnett, J. Opt. 2019, 21,
094003.

M. F. Guasti, Phys. Lett. A 2019, 383, 3180.

L. V. Poulikakos, J. A. Dionne, A. Garcia-Etxarri, Symmetry 2019, 11,
1113.

J. Bernabeu, ). Navarro-Salas, Symmetry 2019, 11, 10.

M. Ferndndez-Guasti, Phys. Scr. 2023, 98, 105511.

N. Mackinnon, J. B. Gétte, S. M. Barnett, N. Westerberg,
arXiv:2405.08086 2024.

D. J. Gross, Phys. Today 1995, 48, 46.

W.-K. Tung, Group Theory in Physics, World Scientific, Singapore
1985.

H. A. Lorentz, Proc. Royal Netherlands Acad. Arts Sci. 1904, 6, 809.
H. Bateman, Proc. London Mathemat. Soc. 1910, s2-8, 223.

E. Cunningham, Proc. London Mathemat. Soc. 1910, s2-8, 77.

P. A. M. Dirac, Ann. Math. 1936, 37, 429.

W. Fuschchich, A. Nikitin, Symmetries of Equations of Quantum Me-
chanics, Allerton Press, New York 1994.

H. Kastrup, Ann. Phys. 2008, 520, 631.

A. Barut, R. B. Haugen, Ann. Phys. 1972, 71, 519.

H. A. Kastrup, Ann. Phys. 1962, 464, 388.

L. Gross, J. Math. Phys. 1964, 5, 687.

Y. B. Zel'dovich, Doklady Akademii Nauk SSSR (USSR) English trans-
lation currently published in a number of subject-oriented journals 1965,
163.

I. Bialynicki-Birula, Prog. Optics 1996, 36, 245.

J. S. Lomont, H. E. Moses, J. Math. Phys. 1964, 5, 294.

H. A. Kastrup, Phys. Rev. 1965, 140, B183.

H. E. Moses, J. Math. Phys. 1965, 6, 928.

H. E. Moses, J. Math. Phys. 1965, 6, 1244.

H. E. Moses, Ann. Phys. 1967, 41, 158.

G. Mack, I. Todorov, J. Math. Phys. 1969, 10, 2078.

H. E. Moses, Phys. Rev. A1973, 8, 1710.

I. Bialynicki-Birula, Z. Bialynicka-Birula, Quantum Electrodynamics,
Pergamon, Oxford, UK 1975.

H. E. Moses, J. Math. Phys. 2004, 45, 1887.

|. Todorov, Bulg. J. Phys. 2019, 16, 117.

). Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic
Collisions, Dover Books on Engineering. Dover Publications, 2012.
R. G. N. (auth.), Scattering Theory of Waves and Particles, Texts and
Monographs in Physics, 2nd edition, Springer-Verlag, Berlin Heidel-
berg 1982.

D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering
Theory, vol. 93, Springer Science & Business Media, New York 2012.
A. Lakhtakia, Beltrami Fields in Chiral Media, World Scientific, 1994.
P. C. Waterman, Proc. IEEE 1965, 53, 805.

G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 2019, 230, 247.
M. 1. Mishchenko, J. Quant. Spectrosc. Radiat. Transfer 2020, 242,
106692.

N. du Preez-Wilkinson, A. B. Stilgoe, T. Alzaidi, H. Rubinsztein-
Dunlop, T. A. Nieminen, Opt. Express 2015, 23, 7190.

G. Kristensson, Scattering of Electromagnetic Waves by Obstacles,
Mario Boella Series on Electromagnetism in Information and Com-
munication. The Institution of Engineering and Technology, Steve-
nage 2016.

P. A. Martin, Time-Domain Scattering, Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 2021.

2400088 (19 of 21)

[92]
(93]

[94]

[95]

[96]

[97]

98]

[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]

[117]

[118]
[119]

[120]
[121]

[122]
[123]
[124]
[125]
[126]
[127]

[128]

[129]
[130]
[131]
[132]
[133]

www.advphysicsres.com

B. Peterson, S. Strém, Phys. Rev. D 1973, 8, 3661.

|. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W.
Klopper, ChemPhysChem 2020, 21, 878.

A. Egel, L. Pattelli, G. Mazzamuto, D. S. Wiersma, U. Lemmer, J.
Quant. Spectrosc. Radiat. Transfer 2017, 199, 103.

D. Theobald, A. Egel, G. Gomard, U. Lemmer, Phys. Rev. A 2017, 96,
033822.

A. Egel, K. M. Czajkowski, D. Theobald, K. Ladutenko, A. S.
Kuznetsov, L. Pattelli, J. Quant. Spectrosc. Radiat. Transfer 2021, 273,
107846.

M. Netada, P. Té6rmi, Commun. Computat. Physics 2021, 30, 357.
A. Shalev, K. Ladutenko, I. Lobanov, V. Yannopapas, A. Moroz, Com-
put. Phys. Commun. 2024, 301, 109218.

D. Beutel, I. Fernandez-Corbaton, C. Rockstuhl, Comput. Phys. Com-
mun. 2024, 297, 109076.

T. Wriedt, J. Hellmers, J. Quant. Spectrosc. Radiat. Transfer 2008, 109,
1536.

J. Hellmers, T. Wriedt, J. Quant. Spectrosc. Radiat. Transfer 2009, 110,
1511,

D. Beutel, A. Groner, C. Rockstuhl, I. Fernandez-Corbaton, J. Opt.
Soc. Am. B 2021, 38, 1782.

D. Beutel, I. Fernandez-Corbaton, C. Rockstuhl, Phys. Rev. A 2023,
107, 013508.

L. Woltjer, PNAS 1958, 44, 489.

H. K. Moffatt, J. Fluid Mechan. 1969, 35, 117.

A. F. Ranada, Eur. J. Phys. 1992, 13, 70.

T. Vachaspati, Phys. Rev. Lett. 2001, 87, 251302.

C. Caprini, R. Durrer, T. Kahniashvili, Phys. Rev. D 2004, 69, 063006.
M. A. Berger, Plasma Phys. Controll. Fusion 1999, 41, B167.

T. R. Jarboe, I. Henins, A. R. Sherwood, C. W. Barnes, H. W. Hoida,
Phys. Rev. Lett. 1983, 57, 39.

T. R. Jarboe, Fusion Technol. 1989, 15, 7.

Y. Hirono, D. E. Kharzeev, Y. Yin, Phys. Rev. D 2015, 92, 125031.

A. Avdoshkin, V. Kirilin, A. Sadofyev, V. Zakharov, Phys. Lett. B 2016,
755, 1.

M. Mace, N. Mueller, S. Schlichting, S. Sharma, Phys. Rev. Lett. 2020,
124, 191604.

D. G. Figueroa, A. Florio, M. Shaposhnikov, J. High Energy Phys.
2019, 2079, 142.

E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot, Phys. Rev. Lett.
1996, 76, 4250.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A.
Itoh, T. Rasing, Phys. Rev. Lett. 2007, 99, 047601.

N. Nagaosa, Y. Tokura, Nat. Nanotechnol. 2013, 8, 899.

M. Garst, J. Waizner, D. Grundler, J. Phys. D: Appl. Phys. 2017, 50,
293002.

S. Kaushik, D. E. Kharzeev, E. |. Philip, Phys. Rev. B2019, 99, 075150.
M. Vavilin, J. D. Mazo-Vé4squez, |. Fernandez-Corbaton, Under re-
view. arXiv: 2404.05117 2024.

M. Vavilin, I. Fernandez-Corbaton, New J. Phys. 2022, 24, 033022.
J. D. Jackson, Classical Electrodynamics, Wiley, New York City 1998.
M. G. Calkin, Am. J. Phys. 1965, 33, 958.

D. Zwanziger, Phys. Rev. 1968, 176, 1489.

S. Deser, C. Teitelboim, Phys. Rev. D 1976, 13, 1592.

I. Bialynicki-Birula, E. T. Newman, |. Porter, |. Winicour, B. Lukacs,
Z. Perjes, A. Sebestyen, J. Math. Phys. 1981, 22, 2530.

G. Afanasiev, Y. Stepanovsky, Il Nuovo Cimento A (1971-1996) 1996,
109, 271.

J. L. Trueba, A. F. Rafiada, Eur. J. Phys. 1996, 17, 141.

P. D. Drummond, Phys. Rev. A 1999, 60, R3331.

D. L. Andrews, K. A. Forbes, Opt. Lett. 2018, 43, 3249.

N. G. van Kampen, Phys. Rev. 1953, 89, 1072.

D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum The-
ory of Angular Momentum, World Scientific, Singapore 1988.

© 2024 The Author(s). Advanced Physics Research published by Wiley-VCH GmbH

85UB0 17 SUOWIWOD BAITeRID 9|edi[dde au Ag peusenob ae sejile YO ‘8sn JO SN o) Akelq i auljuQ 481 UO (SUOIIPUOD-pUe-SLLBWoo" A8 IM°Afelq U1 UO//SANY) SUONIPUCD pUe SWe | 8yl 88S *[SZ0zZ/T0/yT] uo Akeiqiauluo A1 ‘880007202 1xde/z00T 0T/I0p/wod" A8 |im Arelq i jpul|uo//sdny wouy pepeojumod ‘T ‘S20Z ‘002TTS.Z


http://www.advancedsciencenews.com
http://www.advphysicsres.com

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

[134]

[135]
[136]
[137]
[138]
[139]
[140]
[147]

[142]
[143]
[144]
[145]
[146]
[147]
[148]

[149]

[150]

[151]

[152]
[153]

[154]
[155]

[156]
[157]

[158]
[159]
[160]
[161]
[162]

[163]

[164]
[165]

[166]
[167]

[168]

Adv. Physics Res. 2025, 4, 2400088

ADVANCED
PHYSICS
RESEARCH

J. J. Sakurai, Modern Quantum Mechanics (Revised Edition), 1st edi-
tion, Addison Wesley, 1993.

S. ). v. Enk, G. Nienhuis, EPL (Europhys. Lett.) 1994, 25, 497.

P. Budinich, R. Raczka, Found. Phys. 1993, 23, 599.

G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 2024, 322, 109015.
D. Cheng, F. Tseng, IEEE Trans. Antennas Propagat. 1965, 13, 973.
X. Zambrana-Puyalto, N. Bonod, Nanoscale. 2016, 8, 10441.

U. Hohenester, A. Triigler, Comput. Phys. Commun. 2012, 183, 370.
U. Hohenester, N. Reichelt, G. Unger, Comput. Phys. Commun.
2022, 276, 108337.

P. Acebal, L. Carretero, S. Blaya, IEEE Trans. Antenn. Propag. 2024, 1.
E. Noether, Nachr. v. d. Ges. d. Wiss. zu Géttingen 1918, 1918, 235.
I. Fernandez-Corbaton, Opt. Express 2013, 21, 29885.

Q. Yang, W. Chen, Y. Chen, W. Liu, ACS Photonics 2020, 7, 1830.

P. M. Piechulla, E. Slivina, D. Bétzner, |. Fernandez-Corbaton, P.
Dhawan, R. B. Wehrspohn, A. N. Sprafke, C. Rockstuhl, ACS Pho-
tonics 2021.

A. G. Lamprianidis, X. Zambrana-Puyalto, C. Rockstuhl, I.
Fernandez-Corbaton, Laser Photonics Rev. 2022, 16, 2000516.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel,
Nat. Commun. 2014, 5, 1.

I. Séllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi, G.
Kirsanske, T. Pregnolato, H. El-Ella, E. H. Lee, ). D. Song, S. Stobbe,
P. Lodahl, Nat. Nanotechnol. 2015, 10, 775.

R. ). Coles, D. M. Price, ). E. Dixon, B. Royall, E. Clarke, P. Kok, M. S.
Skolnick, A. M. Fox, M. N. Makhonin, Nat. Commun. 2016, 7, 11183.
L. Scarpelli, B. Lang, F. Masia, D. M. Beggs, E. A. Muljarov, A. B.
Young, R. Oulton, M. Kamp, S. Héfling, C. Schneider, W. Langbein,
Phys. Rev. B 2019, 100, 035311.

P.-l. Mrowiriski, P. Schnauber, P. Gutsche, A. Kaganskiy, J. Schall, S.
Burger, S. Rodt, S. Reitzenstein, ACS Photonics 2019, 6, 2231.

L. Fang, H.-Z. Luo, X.-P. Cao, S. Zheng, X.-L. Cai, J. Wang, Optica
2019, 6, 61.

). Petersen, J. Volz, A. Rauschenbeutel, Science 2014, 346, 67.

F. ). Rodriguez-Fortufio, |. Barber-Sanz, D. Puerto, A. Griol, A.
Martinez, ACS Photonics 2014, 1, 762.

J. French, Phys. Lett. B 1967, 26, 75.

T. A. Brody, |. Flores, ). B. French, P. A. Mello, A. Pandey, S. S. M.
Wong, Rev. Mod. Phys. 1981, 53, 385.

G. Philipp, N.-V. Manuel, Sci. Rep. 2018, 8, 9416.

D. Bishop, Group Theory and Chemistry, Dover, New York 1993.

P. W. Fowler, Symmetry: Culture and Science 2005, 16, 321.

J. van Holten, Nucl. Phys. B 1991, 356, 3.

E. W. Grafarend, F. W. Krumm, Map projections, Springer:
Berlin/Heidelber, Germany 2014.

S. M. Barnett, R. P. Cameron, A. M. Yao, Phys. Rev. A 2012, 86,
013845.

P. Sutcliffe, J. Phys. A: Math. Theor. 2018, 51, 375401.

J. E. Peralta, G. E. Scuseria, M. |. Frisch, Phys. Rev. B 2007, 75,
125119.

P. Coppens, Angew. Chem., Int. Ed. 2005, 44, 6810.

C. Donnelly, M. Guizar-Sicairos, V. Scagnoli, S. Gliga, M. Holler, J.
Raabe, L. ). Heyderman, Nature 2017, 547, 328.

Y. Liu, R. K. Lake, J. Zang, Phys. Rev. B 2018, 98, 174437.

2400088 (20 of 21)

[169]
[170]

71
[172]

[173]
[174]

[175]
[176]

1177]

[178]

[179]
[180]
[181]
[182]
[183]

[184]
[185]

[186]
[187]
[188]
[189]
[190]
[191]

[192]
[193]

[194]

[195]
[196]

[197]
[198]

www.advphysicsres.com

J.-S. B. Tai, I. I. Smalyukh, Phys. Rev. Lett. 2018, 121, 187201.

N. Kent, N. Reynolds, D. Raftrey, I. T. G. Campbell, S. Virasawmy,
S. Dhuey, R. V. Chopdekar, A. Hierro-Rodriguez, A. Sorrentino, E.
Pereiro, S. Ferrer, F. Hellman, P. Sutcliffe, P. Fischer, Nat. Commun.
2021, 12, 1562.

Z. Khodzhaev, E. Turgut, J. Phys.: Condens. Matter 2022, 34, 225805.
B. Auguié, W. R. C. Somerville, S. Roache, E. C. L. Ru, J. Opt. 2016,
18, 075007.

T. Martin, J. Quant. Spectrosc. Radiat. Transfer 2019, 234, 40.

D. Schebarchov, E. C. L. Ru, ). Grand, B. Auguié, Opt. Express 2019,
27,35750.

T. Rother, S. C. Hawkins, J. Acoust. Soc. Am. 2021, 149, 2179.

J. Barkhan, M. Ganesh, S. Hawkins, J. Computat. Appl. Math. 2022,
401, 113769.

A. G. Lamprianidis, C. Rockstuhl, I. Fernandez-Corbaton, J. Quant.
Spectrosc. Radiat. Transfer 2023, 296, 108455.

L. Freter, B. Zerulla, M. Krsti¢, C. Holzer, C. Rockstuhl, I. Fernandez-
Corbaton, Accepted for publication in Phys. Rev. A. arXiv:2404.18498
2024.

A. Bise, M. L. Juan, N. Tischler, V. D’Ambrosio, F. Sciarrino, L.
Marrucci, G. Molina-Terriza, Phys. Rev. Lett. 2018, 121, 173901.

J. Lasa-Alonso, M. Molezuelas-Ferreras, J. . M. Varga, A. Garcia-
Etxarri, G. Giedke, G. Molina-Terriza, New J. Phys. 2020, 22, 123010.
N. Tischler, Ph.D. Thesis, Macquarie University, 2022.

J. C. Schotland, A. Cazé, T. B. Norris, Opt. Lett. 2016, 41, 444.

K. Frizyuk, I. Volkovskaya, D. Smirnova, A. Poddubny, M. Petrov,
Phys. Rev. B 2019, 99, 075425.

K. Frizyuk, J. Opt. Soc. Am. B 2019, 36, F32.

R. Sarma, J. Xu, D. de Ceglia, L. Carletti, S. Campione, |. Klem, M. B.
Sinclair, M. A. Belkin, |. Brener, Nano Lett. 2022, 22, 896.

A. Fedotova, M. Younesi, M. Weissflog, D. Arslan, T. Pertsch, I.
Staude, F. Setzpfandt, Photon. Res. 2023, 11, 252.

M. Sharma, M. Tal, C. McDonnell, T. Ellenbogen, Sci. Adv. 2023, 9,
eadh2353.

Z. Bern, T. Dennen, Y. Huang, M. Kiermaier, Phys. Rev. D 2010, 82,
065003.

Z. Bern, . J. M. Carrasco, H. Johansson, Phys. Rev. Lett. 2010, 105,
061602.

|. Fernandez-Corbaton, M. Cirio, A. Biise, L. Lamata, E. Solano, G.
Molina-Terriza, Sci. Rep. 2015, 5, 11538.

C. Cheung, G. N. Remmen, J. High Energy Phys. 2020, 2020, 100.
C. D. White, J. Opt. Soc. Am. B 2021, 38, 3319.

P. Lalanne, W. Yan, A. Gras, C. Sauvan, |.-P. Hugonin, M. Besbes, G.
Demésy, M. D. Truong, B. Gralak, F. Zolla, A. Nicolet, F. Binkowski,
L. Zschiedrich, S. Burger, J. Zimmerling, R. Remis, P. Urbach, H. T.
Liu, T. Weiss, J. Opt. Soc. Am. A 2019, 36, 686.

C. Sauvan, T. Wu, R. Zarouf, E. A. Muljarov, P. Lalanne, Opt. Express
2022, 30, 6846.

R.-C. Ge, S. Hughes, Phys. Rev. B 2015, 92, 205420.

F. Binkowski, F. Betz, R. Colom, M. Hammerschmidt, L. Zschiedrich,
S. Burger, Phys. Rev. B 2020, 102, 035432.

T. Wu, M. Gurioli, P. Lalanne, ACS Photonics 2021, 8, 1522.

M. Cirio, S. De Liberato, N. Lambert, F. Nori, Phys. Rev. Lett. 2016,
116, 113601.

© 2024 The Author(s). Advanced Physics Research published by Wiley-VCH GmbH

85UB0 17 SUOWIWOD BAITeRID 9|edi[dde au Ag peusenob ae sejile YO ‘8sn JO SN o) Akelq i auljuQ 481 UO (SUOIIPUOD-pUe-SLLBWoo" A8 IM°Afelq U1 UO//SANY) SUONIPUCD pUe SWe | 8yl 88S *[SZ0zZ/T0/yT] uo Akeiqiauluo A1 ‘880007202 1xde/z00T 0T/I0p/wod" A8 |im Arelq i jpul|uo//sdny wouy pepeojumod ‘T ‘S20Z ‘002TTS.Z


http://www.advancedsciencenews.com
http://www.advphysicsres.com

ADVANCED

ADVANCED NS
SCIENCE NEWS RESEA
www.advancedsciencenews.com www.advphysicsres.com

Adv. Physics Res. 2025, 4, 2400088

Ivan Fernandez-Corbaton got his electrical engineering degree from the Polytechnic University of
Catalonia (Barcelona) in 1998, and his M.Sc. in mobile communications from the Eurecom Institute
(Sophia Antipolis, France). From 1998 to 2010 he worked as a research engineer, mostly in the design
of signal processing algorithms for cellphone chips. He went back to academia as a Ph.D. studentin
2010.In 2014 he obtained his Ph.D. in physics from Macquarie University (Sydney, Australia). Since
2014, Ivan works at the Karlsruhe Institute of Technology (Karlsruhe, Germany), where he develops
theory for understanding and engineering light-matter interactions.

2400088 (21 of 21) © 2024 The Author(s). Advanced Physics Research published by Wiley-VCH GmbH

85UB0 17 SUOWIWOD BAITeRID 9|edi[dde au Ag peusenob ae sejile YO ‘8sn JO SN o) Akelq i auljuQ 481 UO (SUOIIPUOD-pUe-SLLBWoo" A8 IM°Afelq U1 UO//SANY) SUONIPUCD pUe SWe | 8yl 88S *[SZ0zZ/T0/yT] uo Akeiqiauluo A1 ‘880007202 1xde/z00T 0T/I0p/wod" A8 |im Arelq i jpul|uo//sdny wouy pepeojumod ‘T ‘S20Z ‘002TTS.Z


http://www.advancedsciencenews.com
http://www.advphysicsres.com

	An Algebraic Approach to Light9040�Matter Interactions
	1. Prologue
	2. Introduction: Context and Summary
	3. The Hilbert Space
	3.1. The Electromagnetic Scalar Product

	4. The Computational Side
	4.1. The T-Matrix
	4.2. The Electromagnetic Scalar Product in Spatially-Bounded Domains

	5. Symmetries, Selection Rules, and Quantitative Measures of Broken Symmetry
	5.1. Symmetry in the Hilbert Space
	5.2. Selection Rules
	5.3. Measures of Symmetry-Breaking
	5.3.1. Electromagnetic Chirality


	6. Extension to Matter
	6.1. Helicity in Static Matter

	7. Conclusion and Outlook
	7.1. Outlook

	Acknowledgements
	Conflict of Interest
	Keywords


