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Abstract

In this work, we extend loop quantum gravity (LQG) both, to higher di-
mensions and supersymmetry (i.e. supergravity theories), thus overcoming
the current limitation to 3+1 dimensions with standard model matter fields.
On the one hand, this gives a proof of principle that LQG is in accordance
with these two theoretical concepts, and on the other hand hopefully allows
contact with superstring/M - theory, which necessarily is supersymmetric
and formulated in ten or eleven spacetime dimensions. Symmetry argu-
ments suggest that supergravity theories in the corresponding dimensions
constitute the low energy effective field theory limit of superstring/M - the-
ory. This makes a study of the loop quantisation thereof, which we start

here, a promising endeavour at the border between the two approaches.

In more detail, our findings are the following: firstly, a new canonical for-
mulation for general relativity in D 4 1 spacetime dimensions (D > 2) on
a Yang Mills theory phase space is presented for the first time, with the
core properties that 1. the canonical variables encoding the metric informa-
tion are a real connection and its real conjugate momentum, in particular
satisfying the standard canonical Poisson bracket relations, 2. the gauge
group can be chosen to be a compact group (namely SO(D + 1)) for both,
Lorentzian and Euclidean signature spacetimes, and 3. the system of con-
straints is first class (in Dirac’s terminology). Up to now, such a formulation
was only known for D = 3 (and D = 2), corresponding to Ashtekar Barbero
variables, constituting the classical foundation of the loop quantisation pro-

gramme.

The quantisation procedure itself is formulated almost independently of the

number of spacetime dimensions and the choice of compact gauge group, and
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therefore the lack of higher dimensional analogues of LQG only was caused
by the missing classical canonical formulation satisfying 1. - 3. Thus it is not
surprising and we show explicitly that the new formulation we present can
be quantised using the methods developed in the loop community straight-

forwardly to obtain LQG theories in higher dimensions.

The formulation which we present is genuinely new in that it does not
reduce to the Ashtekar Barbero formulation for D = 3, and furthermore for
D > 2 comes with an additional set of constraints, the so called simplicity
constraints, which pose the only conceptually new challenge when quantis-
ing. Interestingly, these constraints are not at all unknown in (quantum)
gravity research, and in particular are a standard ingredient in the covariant
approach to LQG called spin foam models. The formulation in this sense
builds a novel bridge between the covariant and canonical approaches to
LQG. The quantum anomalies known for this constraint from spin foams
are recovered, which lead to problems when implementing it at the quantum

level. We present some new proposals of how to deal with these problems.

In the second part of this work, we give an extension of the above framework
to the loop quantisation of a large class of Lorentzian signature supergrav-
ities, including in particular the D +1 =4 N =8, D+1=11 N =1 and
D +1 =10 N =1 theories. Concretely, we incorporate standard and also
non-standard matter fields, which appear in supergravity theories due to
the requirement of supersymmetry, into the afore developed framework of

higher dimensional LQG.

Coupling to standard model matter fields has already been achieved in
usual LQG and the results obtained there carry over to the case at hand.
The only exception is the treatment of Dirac fermions, which needs slight
adjustment: coming from an action principle, the Dirac field transforms in
the spinor representation of the gauge group SO(1, D) for the physically rel-
evant Lorentzian theory, but due to the strong similarity of the Lorentzian

and the Euclidean Clifford algebras, the gauge group can be exchanged for
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SO(D + 1) to fit in with the gravitational degrees of freedom.

Typical non-standard fields appearing in supergravity theories are the spin
3/2 Rarita Schwinger field (“gravitino”) on the fermionic side, and (Abelian)
higher p-form fields as novel bosonic fields (i.e. generalisations of the

Maxwell field to higher form degree).

The former usually is a Majorana fermion (i.e. it is its own antiparticle)
and therefore belongs to a real representation space of SO(1, D). In order
to formulate supergravities in terms of SO(D + 1) gauge theories, we again
have to exchange the gauge group SO(1, D) with SO(D + 1), but there is
no action of SO(D + 1) on these real representation spaces, which hugely
complicates the passage when compared to the case of Dirac fermions. We
present a solution to this problem and for the first time, to the best of the
author’s knowledge, provide a background independent Hilbert space rep-

resentation for the gravitino field.

Concerning novel bosonic fields, we exemplarily treat the three-form field
(“three index photon”) of D + 1 = 11 N = 1 supergravity. Due to an
additional Chern Simons term in the action, this field is not a simple gen-
eralisation of the Maxwell field to three-forms, but actually becomes self
interacting and the equivalent of the electric field is not gauge invariant. We
propose a reduced phase space quantisation with respect to the equivalent
of the Gauf} constraint, and the background independent representation we
use is given by a state of Narnhofer-Thirring type, which already has been
used in the loop literature in Thiemann’s treatment of the closed bosonic

string.

In the third part of this work, as a first application of the new variables, we
extend the isolated horizon treatment (a quasi-local notion of black holes)
in LQG to higher dimensions. In D = 3, the use of Ashtekar Barbero vari-
ables induces a Chern Simons theory on the horizon and the quantisation

thereof and subsequent state counting led to the derivation of the famous



Bekenstein Hawking entropy formula for black holes from LQG. Here, we
study (non-distorted) isolated horizons in 2(n + 1) dimensional spacetimes
and find that using the new variables induces an SO(2(n+1)) Chern Simons
theory thereon. Since this theory, unlike its D = 3 counterpart, has local
degrees of freedom, the quantisation and finally rederivation of the entropy

formula become significantly more intricate and are left for further research.

We want to stress that several aspects of both, the higher dimensional
as well as the supersymmetric extension, definitely deserve further study
to actually catch up with the current status of usual canonical LQG. In
the non-supersymmetric case, this concerns mainly the implementation of
the simplicity constraint and its interplay with the dynamics. In the su-
persymmetric case, of course the supersymmetry constraint needs intensive
study, in particular its role in the quantum super Dirac algebra. We hope
that the generalisation of LQG to higher dimensions and supersymmetry
achieved in this work will spark further development to clarify the men-
tioned open problems and finally lead to new interrelations between LQG

and superstring/M - theory.
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Zusammenfassung

In dieser Arbeit verallgemeinern wir Schleifenquantengravitation (LQG) so-
wohl auf hohere Dimensionen als auch auf Supersymmetrie (d.h. Supergra-
vitationstheorien). Damit wird die bestehende Limitation der LQG auf 3+1
Dimensionen und Materiefelder des Standardmodells aufgehoben. Dies be-
weist einerseits, dass LQG prinzipiell mit diesen beiden theoretischen Kon-
zepten in Einklang gebracht werden kann. Andererseits weckt es Hoffnung,
dass neue Ankniipfungspunkte zu Superstring- und M - Theorie erméglicht
werden, da diese Theorien notwendigerweise supersymmetrisch sind und in
zehn beziehungsweise elf Raumzeitdimensionen formuliert werden miissen.
Symmetrieargumente legen nahe, dass sich diese Theorien im Niederenergie-
limes effektiv durch Supergravitationstheorien in eben diesen Dimensionen
beschreiben lassen. Die Untersuchung der Schleifenquantisierung der ent-
sprechenden Supergravitationstheorien, mit der wir in dieser Arbeit begin-
nen, stellt daher ein vielversprechendes Unterfangen an der Grenze zwischen

den beiden Ansatzen dar.

Préziser formuliert lauten unsere Ergebnisse wie folgt: Wir présentieren
erstmalig eine kanonische Formulierung der allgemeinen Relativitétstheorie
in D + 1 Raumzeitdimensionen (D > 2) auf einem Yang Mills Phasenraum
mit den zentralen Eigenschaften: 1. Die kanonischen Variablen, die die me-
trische Information tragen, sind ein reeller Zusammenhang und ein dazu
konjugierter reeller Impuls, die insbesondere die kanonischen Poissonklam-
merrelationen erfiillen. 2. Als Fichgruppe kann sowohl fiir die lorentzsche
als auch die euklidische Theorie eine kompakte Gruppe gewiilt werden (in
unserem Fall SO(D + 1)). 3. Die Zwangsbedingungen sind alle von erster
Klasse (in Diracs Terminologie). Eine solche Formulierung war bisher nur

in drei und vier Dimensionen bekannt, die Ashtekar Barbero Formulierung,

ix



welche die klassische Basis fiir LQG darstellt.

Das Programm der Schleifenquantisierung selbst ist fast génzlich unabhéngig
von der Anzahl der Raumzeitdimensionen und der Wahl der kompakten
Eichgruppe formuliert, weswegen das Fehlen von hoherdimensionalen Ana-
loga der LQG alleine dem Nichtvorhandensein der klassischen kanonischen
Formulierung zuzuschreiben ist, welche die obigen Anforderungen 1. - 3.
erfiillt. Darum ist es nicht verwunderlich, dass die Methoden der Schlei-
fenquantisierung direkt auf die hier prisentierte Formulierung anwendbar
sind, um hoherdimensionale Schleifenquantengravitationstheorien zu erhal-

ten. Dies arbeiten wir explizit aus.

Die Formulierung, die wir prisentieren, ist insofern wirklich neu, als dass
sie sich fiir die Wahl D = 3 nicht auf die bekannte Ashtekar Barbero For-
mulierung reduziert. Stattdessen finden wir fiir D > 2 eine zusétzliche
Zwangsbedingung, die sogenannte , Simplicity“ Zwangsbedingung, die die
einzige konzeptionell neue Herausforderung bei der Quantisierung darstellt.
Diese Zwangsbedingung ist interessanterweise keineswegs unbekannt in der
(Quanten-) Gravitationsforschung und taucht insbesondere generell in Spin-
schaummodellen auf, die auch kovarianter Ansatz zur LQG genannt werden.
In diesem Sinne stellt unsere Formulierung eine neue Verbindung zwischen
kovarianter und kanonischer LQG her. Fiir diese Zwangsbedingung treten
Quantenanomalien auf, die schon von den Spinschaummodellen her bekannt
sind und die zu Problemen bei der Implementierung der Zwangsbedingung
auf Quantenebene fithren. Wir stellen einige neue Losungsansitze hierfiir

Vvor.

Den zweiten Teil dieser Arbeit stellt die Erweiterung des obigen Rahmen-
werks auf die Schleifenquatisierung einer ganzen Klasse von lorentzschen
Supergravitationstheorien dar, die insbesondere die D +1 =4 N = &, die
D+1=11 N=1unddie D+1=10 N =1 Theorien umfasst. Konkreter
untersuchen wir dazu die Kopplung von Standard- und auflergew6hnlichen

Materiefeldern an die bis dahin untersuchte Vakuumgravitationstheorie, die



in Supergravitationstheorien wegen den Anforderungen der Supersymmetrie

vorkommen.

Die Kopplung von Standardmaterie wurde fiir die LQG bereits erforscht
und die Ergebnisse aus der vierdimensionalen Theorie sind auch auf die
neue Formulierung anwendbar. Die einzige Ausnahme bilden Diracfermio-
nen, bei denen nachgebessert werden muss: Ausgehend von einer Wirkung
transformieren sie in der Spinordarstellung der Eichgruppe SO(1, D), aber
wegen der starken Ahnlichkeit der lorentzschen und euklidischen Clifford
Algebren kann die Eichgruppe gegen SO(D + 1) getauscht werden. Das Di-
racfeld fiigt sich so in die Behandlung des gravitativen Anteils der Theorie

ein.

Beziiglich der auflergewohnlichen Materiefelder tritt in Supergravitations-
theorien im fermionischen Sektor typischerweise das Spin 3/2 Rarita Schwin-
ger Feld (,Gravitino“) auf und auf bosonischer Seite sind hohere p-Form
Felder (d.h. Verallgemeinerungen des Maxwellfeldes auf hohere Formgrade)

zu finden.

Ersteres ist normalerweise ein Majoranafermion (d.h. es ist sein eigenes An-
titeilchen) und gehort damit zu einem reellen Darstellungsraum der SO(1, D).
Um nun auch Supergravitationstheorien als SO(D + 1) Eichtheorien zu for-
mulieren, muss die Eichgruppe SO(1, D) erneut gegen SO(D + 1) getauscht
werden. Aber auf den reellen Darstellungsraumen existiert keine Wirkung
der Gruppe SO(D + 1), was den Eichgruppenwechsel verglichen mit dem
Fall des Diracfeldes enorm erschwert. Wir finden eine Losung fiir dieses
Problem und konstruieren, nach bestem Wissen des Autors erstmalig, eine

hintergrundunabhéngige Hilbertraumdarstellung fiir das Gravitino.

Als Beispiel fiir die neuartigen bosonischen Felder betrachten wir das Drei-
formfeld (,,Dreiindexphoton®) der D +1 = 11 N = 1 Supergravitation.
Dieses Feld stellt keine triviale Erweiterung des Maxwellfeldes auf Dreifor-

men dar, da es wegen eines zusétzlichen Chern Simons Terms in der Wir-
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kung selbstwechselwirkend ist. Das fiihrt unter anderem auch dazu, dass das
Aquivalent des elektrischen Feldes nicht eichinvariant ist. Wir fithren eine
Quantisierung des beziiglich des Pendants der Gaufl Zwangsbedingung re-
duzierten Phasenraumes durch. Eine hintergrundunabhéngige Darstellung
erhalten wir durch Verwendung eines Zustandes vom Narnhofer-Thirring
Typ, wie er in der Literatur zur Schleifenquantisierung bereits von Thie-
mann in seiner Behandlung des geschlossenen bosonischen Strings benutzt

wurde.

Im dritten Teil der Arbeit erweitern wir schliefflich als erste Anwendung
der neuen Variablen die Behandlung von isolierten Horizonten (einer quasi-
lokalen Beschreibung schwarzer Locher) in der LQG auf hohere Dimen-
sionen. In vier Raumzeitdimensionen induziert der Gebrauch der Ashte-
kar Barbero Variablen eine Chern Simons Theorie auf dem Horizont. Ei-
ne Quantisierung der entsprechenden Horizontfreiheitsgrade und anschlie-
Bendes Zahlen der Mikrozustéinde fithrte zur Herleitung von Bekensteins
und Hawkings beriihmter Entropieformel fiir schwarze Locher innerhalb der
LQG. In dieser Arbeit untersuchen wir (nicht-deformierte) isolierte Horizon-
te in 2(n+1)-dimensionalen Raumzeiten und finden, dass aus dem Gebrauch
der neuen Variablen eine SO(D+1) Chern Simons Theorie auf dem Horizont
resultiert. Diese hat jedoch, im Gegensatz zu ihrem dreidimensionalen Ge-
genstiick, lokale Freiheitsgrade, was die Quantisierung und Herleitung der
Entropieformel signifikant erschwert. Beide Punkte miissen in zukiinftiger

Forschungsarbeit weiter untersucht werden.

Es ist zu betonen, dass einige Aspekte sowohl von der hoherdimensionalen
als auch von der supersymmetrischen Erweiterung weiterer Forschung bediir-
fen, um den gleichen Stand wie die aktuelle vierdimensionale LQG zu er-
reichen. Im nicht supersymmetrischen Fall betrifft dies hauptséchlich die
Implementierung der Simplicity-Zwangsbedingung und sein Zusammenspiel
mit der Dynamik. Im supersymmetrischen Fall werfen vor allem die Super-
symmetrie Zwangsbedingung und insbesondere ihre Rolle in der Quanten-

Super-Diracalgebra neue Fragen auf. Wir hoffen, dass die in dieser Arbeit

xil



erzielte Verallgemeinerung der LQG auf hohere Dimensionen und Supersym-
metrie weitere Forschung zur Kléarung dieser Fragen anregt und schliellich
zu neuen Ankniipfungspunkten zwischen LQG und Superstring/M - Theorie
fiihrt.
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Introduction

1.1 A very brief history of (canonical) loop quantum grav-
ity

More than 25 years have passed since Ashtekar introduced his nowadays famous vari-
ables [13, [14] for classical and quantum gravity in 1986. In these papers, extending
seminal work by Sen [15], not only did Ashtekar succeed in giving a canonical descrip-
tion of four dimensional general relativity on a Yang Mills phase space, at the same
time he found the formulation which up to now features the most simple version of one
of the Achilles’ heels of quantum gravity research, the so-called Hamiltonian constraint.
This usually very complicated initial value constraint of general relativity turns out to
be a polynomial function in terms of Ashtekar’s variables. However, for the physically
relevant Lorentzian signature space times, Ashtekar’s original Yang Mills connection
takes values in non compact S1(2,C) rather than in a compact gauge group and is fur-
thermore subject to complicated reality conditions, and up to now no one succeeded in

giving a Hilbert space representation due to these two problems.

Nine years afterwards, Barbero and later Immirzi [I6-19] gave a slight generalisation of
Ashtekar’s original proposal by introducing a free parameter =y, the so called Barbero
Immirzi parameter (or often just Immirzi parameter), into the theory. Upon choosing
v = i, Ashtekar’s original proposal is recovered, while for v € R/{0}, the resulting Yang
Mills connection turns out to be real and valued in the compact SU(2). However, this

comes at the cost of a more complicated, non-polynomial Hamiltonian constraint.
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In the mean while, enormous progress had been made in giving a mathematically rigor-
ous kinematical framework for background independent quantisation of gauge theories
of compact structure groups [20-26], which now could be applied to the SU(2) Ashtekar
Barbero formulation to obtain what nowadays is called canonical loop quantum grav-
ity (LQG). In particular, the general quantum solution to two of the three (families
of) initial value constraints, the Gauf§ and spatial diffeomorphism constraints, could
be obtained [27], and later on, it was proven that the chosen representation actually
is unique (under mild assumptions) [28, 29]. Thiemann finally made groundbreaking
progress in giving a mathematically well defined Hamiltonian constraint operator de-

spite the non-polynomiality of the classical constraint [30} [31].

Approximately in the same period of time, the probably most popular results were
derived: Riemannian geometric operators like area and volume in LQG were found to
have discrete spectrum [32-36], that is, a result of LQG is that spacetime at a funda-
mental level is discrete; in applications of the LQG framework to cosmological models,
so called loop quantum cosmology (LQC), a natural resolution of the big bang singu-
larity was found [37]; and the famous Bekenstein Hawking formula for the black hole
entropy was derived from first principles in LQG [38440]. The latter two, LQC and

black holes in LQG, continue to be subject to intense study also nowadays.

The mentioned results have been considerably strengthened since then and new ones
were obtained. In LQC, a resolution of various singularities of the classical theory
was found in a variety of models and there are results that the LQC effective dynamics
favours inflation (cf. [41}, 42] and references therein). A mathematically rigorous frame-
work for the derivation of the black hole entropy and a sophisticated counting method
were introduced, and also logarithmic corrections to the black hole entropy could be re-
covered (cf. [43, [44] and references therein). Coupling to standard model matter fields
was achieved in [45, 46] and recently the framework was extended to metric theories

beyond general relativity [47].

Major open problems are for example the quantum dynamics and recovering of semi-

classical physics from the theory as well as a lack of proof that the constraint algebra is
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faithfully represented at the quantum level. To attack the first problem, a completely
new research branch, the so-called spin foam models, was launched, which tries to give
loop quantum dynamics using a path integral approach (see e.g. [48, [49] for recent
reviews and [50] for a basic introduction). We want to stress the importance of this
covariant research branch of LQG, which is at least as active as the canonical line of
research we outlined so far, but due to the canonical focus of this thesis will not play

the role it deserves.

On the canonical side, recently the focus shifted from Dirac to reduced phase space
quantisation and several deparametrised models were introduced [51-54], matter cou-
pled models which, instead of a Hamiltonian constraint, feature a true Hamiltonian and
give direct access to the physical Hilbert space. Powerful semiclassical techniques have
been introduced ([55] and references therein) in order to extract perturbative quantum
field theory on Minkowski (or curved) space time physics from the background inde-

pendent and non-perturbative quantum theory, but still this task is far from completed.

Finally, regarding the last of the above mentioned major open problems, the quan-
tum constraint algebra has been proven to be non anomalous by Thiemann [56] in the
sense that the commutator of two Hamiltonian constraints vanishes on diffeomorphism
invariant states, but if the hypersurface deformation algebra actually can be faithfully
represented remains to be unclear, see [57-59] for recent literature towards an improve-
ment on this issue. However, in principle this problem can be avoided using the Master

constraint method developed in [60].

Of course, this short exposition of LQG cannot be comprehensive and many important
aspects of the theory and its development were left unmentioned. For more details, we
refer the interested reader to the textbooks [61H63] and references therein or [64] for an

introductory textbook suitable for undergraduate students, or to the reviews [65-68].

1.2 Motivation

The quantisation procedure developed in the LQG literature is of very general nature,

and does neither depend on the spacetime dimension under consideration nor on the
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compact gauge group chosen, and moreover has been extended to coupling of all matter
fields of the standard model[45, 46]. It thus might surprise the unfamiliar reader that
LQG was restricted to four spacetime dimensions up to now. However, the problem
prohibiting generalisations of LQG to higher dimensions lies not in the quantum theory,
but instead appears already at the classical level: the classical canonical formulation
of general relativity in Yang Mills type variables suitable for loop quantisation was
known for four spacetime dimensions, namely Ashtekar’s variables, but not in higher

dimensiond]

Of course, up to now there is no experimental evidence neither for higher dimensions
nor for supersymmetry. This justifies the question: should we not be content with the
restrictions the theory seems to impose, that up to now extensions to higher dimensions
and inclusion of supersymmetry were not possible (see section for attempts in both
directions)? Should we regard these facts more as a feature than a flaw, perhaps even

that “good old” four spacetime dimensions are a prediction of LQG?

We will argue that this is not the case, and that the endeavour of searching for both,
the higher dimensional as well as the supersymmetric generalisation, is worth being
pursued, out of the following two reasons: Firstly, they constitute a step towards con-
vergence of different approaches in the multi-branched field of quantum gravity research.
Secondly, of course the ambition of theoretical physics is not only to give theoretical
explanation of experimental data, but also to deduce experimentally falsifiable predic-
tions from a so far untested set of theoretical ideas to gear the development of future
experiments. Higher dimensions and supersymmetry are an arguably interesting set
of such theoretical ideas and therefore worth studying in their own right. These two

relevant reasons will be laid out in more detail in the following.

Today’s quantum gravity research is split into several branches, many of which are
seemingly unrelated both at a conceptual and technical level. This is generally consid-

ered as a problem hindering progress of the field in total, which is underlined by the call

! A Yang Mills formulation for general relativity and loop quantisation thereof exists also in three

spacetime dimensions, which can be used as a testbed for the four dimensional theory (cf. e.g. [69]).
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for convergence appearing regularly in the scope of present-day conferences on (quan-
tum) gravitation (e.g. |Spanish Relativity Meeting: ERFE2010, Sept. 2010, Granda,
Spain [70] and Quantum Theory and Gravitation), June 2011, Zurich, Switzerland [71]).

Actually, this fact is no novelty at all and seems to be almost as old as quantum
gravity research. Already in the early sixties, Peter Bergmann stated regarding the
research at his time [72]: “In view of the great difficulties of this program, I consider
it a very positive thing that so many different approaches are being brought to bear on

the problem. To be sure, the approaches, we hope, will converge to one goal.”

Since then, instead of converging, the field seems to have drifted even further apart. At
that time, the followed lines of research were mainly the perturbative approach, trying
to quantise the metric fluctuations over Minkowski (or another background) spacetime,
and the canonical approach which aimed at unravelling and quantising the Hamiltonian
theory underlying general relativity. These early approaches known in the sixties were
all shortly afterwards shown to fail due to non-renormalisability [73, [74] of general rel-
ativity and ill-definedness of the Wheeler-DeWitt equation among other problems (cf.
e.g. [75] for an account on the historical development of the field of quantum gravity).
To cope with these, very different proposals were made where to modify the existing
routes towards quantum gravity, which further fanned out the research branches. Su-
pergravities in diverse dimensions were introduced in the hope of mending the problem
of perturbative non-renormalisability, but failed to do so [T6-78] (with the possible
exception of d = 4, N = 8 supergravity [79, [80]). Superstring theories [81} 82] and M
- theory [83], [84] were introduced, mainly perturbatively defined approaches to quan-
tum gravity which aim at giving a unified description of all forces. Not only do they
require spacetime to be ten (superstring theory) or eleven (M - theory) dimensional,

they furthermore are necessarily supersymmetric and predict infinitely many new fields.

Almost simultaneously, LQG was developed, following a different philosophy from the
outset. It treats the quantisation of the self interacting theory of gravity non pertur-
batively, and takes the lessons from general relativity seriously, namely that spacetime
itself becomes dynamical. This leads to the belief that, at the quantum level, a fun-

damental theory cannot be a fixed background spacetime and fields on it, but the


http://iopscience.iop.org/1742-6596/314/1/011001
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spacetime itself must be quantised. Spacetime as we perceive it should be an emerg-
ing concept, probably only recovered semi-classically. To implement this concept of
background independence, new, background independent quantisation techniques were
developed. While the quantisation procedure itself is changed in LQG, as we already
heard, the approach is rather conservative regarding number of space time dimensions,
supersymmetry is no necessary ingredient and therefore was mostly not considered (see,
however, section for an account on prior work on supersymmetry in LQG), and it

also aims not at giving a unified description of the forces.

Of course, there are many more approaches, like non-commutative geometry, regular-
isation group techniques, twistor theory, causal dynamical triangulations and discrete
approaches to quantum gravity, but we will restrict our discussion to the two main
lines of research, strings and loops. As we have seen, their respective conceptual basis
is fundamentally different. The lack of convergence between these routes to quantum
gravity and, in a sense, these “different languages” one speaks make communication of
researchers from different branches complicated, and hinders fruitful cross fertilisations.
Just to name an example, one of the most astonishing conjectures in string theory in
the past years, the AdS/CFT correspondence [85-87] (see also [88] for a basic introduc-
tion and [89} [90] for a more recent review on AdS/CFT and its integrability structure),
has lead to new developments in other areas like solid state physics and QCD (cf. e.g.
[01L ©2]), but had, to the best of the author’s knowledge, no influence at all on LQG.
On the other hand, findings like Thiemann’s quantisation of the string [93] with LQG
methods, which indicates that the critical dimensions (10, 11 or 26) possibly can be
avoided, is hardly acknowledged in the string community (see, e.g. [94] and section.

In order to stimulate scientific exchange, it would be desirable to conduct research
on the boarder between superstring/M - theory and LQG, but the literature on this
topic is rather sparse (cf. again section |1.3). To make contact, three different routes

suggest themselves.

One possibility is to dimensionally reduce superstring/M - theory down to four di-
mensions and to break supersymmetry, and to compare the resulting effective theory

with an appropriately chosen sector of LQG. However, in order to arrive from a ten
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at a four dimensional model from string theory, many choices have to be made and
associated is a “landscape of string vacua”, and it seems that at least currently there
is no preferred model we could compare to (see [95] for a recent review of string theory

phenomenology).

The second route then of course is to compare the two approaches directly in ten
or eleven dimensions, the natural ones for superstring/M - theory, and to this end, our
generalisations of LQG to higher dimensions and supersymmetry are necessary. More
concretely, what we propose is to study the loop quantisation of supergravity theories
in ten and eleven dimensions, which by symmetry arguments are expected to be the

low energy effective field theory limits of superstring/M - theory.

Thirdly, symmetry reduced sectors like cosmology and black holes suggest themselves
for the comparison, since cosmological models are well studied [41}, [42], 96, 7] and a
microscopic derivation of the Bekenstein Hawking entropy formula for black holes is
available [43, 44} 08, [99] in both fields. Also to this end, our extensions are interesting,
since e.g. in string theory, typically also black holes in higher dimensions are studied,

which so far was not possible within LQG.

But irrespective of a possible connection to superstring/M - theory, we believe that
higher dimensional and supersymmetric extensions of LQG are of interest because it
is thinkable that higher dimensionality and supersymmetry describe real properties of
nature. Indications thereof might be about to be found in current experiments like the
LHC, and then call for a theoretical explanation. Even if not, they should have their
imprint at least in quantum gravity effects and if there is the chance to predict mea-
surable indications of the presence of supersymmetry or higher dimensions in future

experiments, this definitely is a subject worth studying in its own right.

Of course, this is a long term project: First, one has to deduce how to break su-
persymmetry or compactify the excess dimensions at the quantum level, and one might
encounter the same problems found in string theory when doing so. Even if this is

achieved, obtaining falsifiable predictions in quantum gravity research doubtlessly is
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an arduous task. Because it was unthinkable for decades to obtain experimental in-
formation testing the Planck scale where quantum gravity effects originate from, the
only lead for quantum gravity research was conceptual appeal, mathematical rigor, and

sticking to well-established theoretical frameworks.

Today, this situation has changed significantly. Thanks to enormous advances in ex-
perimental particle and astroparticle physics as well as astronomy, we are about to
learn from the Planck scale. Moreover, during the last decade, especially in quan-
tum gravity phenomenological models, experimentally testable quantum gravity effects
were thought up (see e.g. [100] for a recent review of LQG phenomenology), although
the rigorous derivation of these observable phenomena from a full-fledged proposal for

quantum gravity are still mostly missing.

We want to point out one tentative application we have in mind for the LQG gen-
eralisations we provide: in a LQG extension of the inflationary scenario all the way
down to the Planck scale, it has recently been shown that for generic initial conditions
at the big bounce, which is predicted by LQC instead of a big bang, the theory predicts
a cosmic microwave background compatible with the seven year WMAP data, with a
small window for a quantum gravity imprint on the data which will be measurable by
future satellites (see [I0I] and literature therein). It would be particularly interesting
to reexamining this derivation in a higher dimensional and/or supersymmetric model
and to see if these predictions deviate. Incidentally, there also have been found first
indications that LQC, up to now being a loop quantisation of cosmological models,
actually can be obtained from full LQG [102]. A rigorous proof thereof would lift these

microwave background imprints to testable predictions from the full theory.

After having motivated the task at hand, we will continue with an outline of the existing

literature on higher dimensional Ashtekar variables and supersymmetric extensions.

1.3 Position in the existing literature

Despite these promises, the existing literature on higher dimensional extensions of

Ashtekar’s variables is rather scarce. Peldan [L03] sketched a general programme for the



1.3 Position in the existing literature

extension of Ashtekar’s formulation to higher dimensions and for the study of unified
theories of general relativity and Yang Mills theory, but only provided further results on
the latter [L04-106]. Still, we want to remark that the article [L03] was rather influential
for the work presented here. Later, there was work by Nieto towards an extension of
the original complex Ashtekar variables to 7+1 dimensions using octonions [107], and
further to dimensions 1042, 242 and 8+0 [I08, [109], which however do not (at least
straightforwardly) allow for application of the loop quantisation programme. With the
extension to higher dimensions which we will present in this work, we therefore enter

uncharted territory.

The literature on loop quantisation of supergravity theories is considerably richer. Ja-
cobson was the first to extend the original complex Ashtekar variables tod =4 N =1
supergravity [I10]. A similar formulation for d = 4 N = 2 supergravity was given in
[I11]. Shortly afterwards, Fiilop realised that in Jacobson’s formulation of the d = 4
N =1 theory, when splitting the supersymmetry generators into its chiral parts, one
chirality can be absorbed into the Gaufl constraint to recast the theory in terms of
Ashtekar variables for the gauge group Osp(1]|2) [I12]. Doing this, both, bosonic and
fermionic degrees of freedom are combined into a single connection, a feature which
is very appealing for a supersymmetric theory in the author’s opinion. Based on this
work, Osp(1]2) Wilson loops were introduced and a representation through loop vari-
ables was discussed [113,[114]. Ling and Smolin introduced spin networks for the groups
Osp(1|2n) and calculated the spectrum of the area operator for the four dimensional
theory [115, [116]. However, these results are only formal since no inner product and
therefore no Hilbert space was defined, although some of the necessary mathematical

structures for the group Osp(1|2) have been probed [117, [11§].

The first canonical formulations of the d = 4 N = 1 theory in terms of real Ashtekar
Barbero variables were given in [119, 120]. At the Lagrangian level, supergravity ver-
sions of the Holst action for d = 4 N = 1 were introduced in [I19] [12I]. Curiously,
while the studies of the loop quantisation of supergravity theories in complex Ashtekar
variables we mentioned before were lacking mathematical rigor, the real formulations,
which immediately allow for loop quantisation at least in the bosonic sector, were not

further studied to the best of the author’s knowledge. This is probably related with
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the reality condition the Rarita Schwinger field (“gravitino”) is subject to, being a Ma-
jorana fermion. As we will see, they are the core problem when quantising this field,
and in particular, prevent it from being treated like the Dirac fermion. This work will

succeed in solving the mentioned problems.

Finally, since one of the long term goals is to make contact to string theory, we want
to outline the research efforts undertaken in both, the loop and the string community
to this end. Firstly, basically all the loop supergravity research we already mentioned
contributes to these efforts, but also the work of Nieto on higher dimensions is clearly
influenced by superstring/M - theory. Thiemann gave a loop quantisation of the closed
bosonic string in [93], which points towards a possible avoidance of a critical dimen-
sion and supersymmetry in string theories when using loop methods. This work was
criticised in [94] and also in the outside view on LQG [122]. Thiemann answered to
both of these papers in [I123]. For a recent view on string theory from within the LQG
community, see [124]. Similar results regarding the avoidance of a fixed ambient space’s
dimension were also obtained using different quantisation schemes in [125-127]. Contin-
uing Thiemann’s line of research on the loop string, in [128, [129] the canonical analysis
of the algebraic string was performed and its relation to the Nambu Goto string was
studied. The algebraic formulation of the bosonic string has a lot of similarities with
the Ashtekar Barbero formulation, leading to a first class Hamiltonian formulation and
allowing for a Barbero Immirzi like parameter. Further studies of this theory at the
quantum level were announced in the latter, but did not appear until now. Melosch
and Nicolai proposed Ashtekar variables for d = 11 N = 1 supergravity [130], the con-
jectured low energy effective field theory of M - theory. Further connections of LQG to
M - theory were drawn in [I31}, 132].

Reference to further literature, of course, will be provided in the main text.

1.4 Results in a nutshell

In this thesis, we present a Hamiltonian formulation for Lorentzian and Euclidean
general relativity in any spacetime dimension D + 1 (D > 2) which has the following

core properties:

10



1.4 Results in a nutshell

1. one of the canonical variables is a connection, in particular Poisson self commut-

ing; this field and its canonically conjugate are real,
2. the gauge group is compact,
3. the theory is free of second class constraints.

It therefore can be loop quantised. Furthermore, various standard and non-standard
matter fields can be coupled, which ultimately allows for a loop quantisation of a wide
class of supergravity theories in various dimensions. As a first application, combining
the new variables with the framework of higher dimensional isolated horizons, we take
first steps towards a deduction of Bekenstein’s and Hawking’s famous entropy formula

for black holes also in higher dimensional LQG.

In more detail, we will show that a canonical analysis of the Palatini action in any
dimension leads naturally to a formulation which satisfies property 1., but has second
class constraints and, in the Lorentzian case, the non-compact gauge group SO(1, D).
We can take care of 3. by means of gauge unfixing, a procedure to turn a second class
constraint system into a physically equivalent first class system which we will review in
detail. But still we cannot circumvent the non-compactness problem. However, when
starting directly from the ADM phase space and enlarging it to the new formulation
obtained after gauge unfixing, we will find that actually, the extension is independent of
the internal signature, i.e. we can work with the compact gauge group SO(D + 1) irre-
spective of the spacetime signature. In summary, general relativity for both, Lorentzian
and Euclidean spacetimes, in any dimension D + 1 can be formulated as SO(D + 1)
gauge theory with properties 1. - 3. It is, like Ashtekar’s theory, subject to Gauf3,
spatial diffeomorphism and Hamiltonian constraint. Additionally, for D > iﬂ a new
first class constraint, the simplicity constraint already familiar from Plebanski theory

and covariant LQG in D = 3, arises in the canonical theory.

The properties 1. - 3. are all crucial for the applicability of the loop quantisation

procedure: second class constraints (3.) should not be quantised and have to be dealt

!The case D = 2 plays a special role, since the simplicity constraints do not exists in that dimensions
and our formulation, unlike in the case D = 3, actually coincides with the D = 2 Ashtekar formulation

(for corresponding choice of internal signature).

11



1. INTRODUCTION

with classically, e.g. using the Dirac bracket, which usually spoils property 1., the
self-commutativity of the connection. Since the connection acts by multiplication in
the representation chosen for loop quantisation, this self-commutativity is crucial. Ac-
tually, 1. lies at the heart of the construction of the holonomy flux algebra, on which
the quantisation is based. The compactness of the gauge group 2. implies that the
holonomies of the connection are valued in a compact set and the probability measure
thereon is central when constructing the Ashtekar Lewandowski measure on the space

of generalised connections.

Having all these properties fulfilled, the application of the loop quantisation programme,
being formulated independent of the number of spacetime dimensions or the compact
gauge group, is straightforward, as we will show explicitly, and the rigorous mathe-
matical basis for quantisation carries over to the SO(D + 1) theory. The Hamiltonian
constraint is, when compared with the constraint in the Ashtekar Barbero theory, more
complicated, since it obtains an extra contribution when applying gauge unfixing, and
even more additional terms when choosing the internal and external signature to differ,
but these terms can be dealt with at the quantum level. As a new ingredient, we also
have to treat the simplicity constraint in the quantum theory. Both, the implementa-
tion of the linear and the quadratic version of this constraint will be discussed. We did
not succeed in finding a completely satisfactory prescription for the implementation,
but give several new ideas how the problem can be attacked and we discuss several

ideas of how one could proceed with further research.

Coupling matter to the SO(D + 1) theory is, like in the SU(2) case, possible for various
matter fields. Inclusion of Yang Mills fields and scalar fields works in completely anal-
ogy to the four dimensional case. Dealing with Dirac fields is slightly more involved.
They transform in the spinor representation of the gauge group SO(1, D), which seems
at first sight in conflict with the gauge group SO(D + 1) we have to use for the gravita-
tional degrees of freedom. Therefore, like in D = 3, in the Hamiltonian theory we first
break the gauge group down from SO(1, D) to SO(D) by choosing time gauge. But
then, unlike the D = 3 case, a second step is necessary, namely, we have to enlarge the
gauge group again to SO(D+1). The Dirac matrices for the SO(1, D) and SO(D + 1)

Clifford algebras differ, for our sign conventions, by a factor of 4i in the matrix 7°.

12



1.4 Results in a nutshell

That they can be exchanged ultimately is tied to the fact that SO(D +1) and SO(1, D)
act on the same complex representation spaces. The Hilbert space representation for
the fermions then can again be directly taken over from the treatment in D = 3. The
enlargement to SO(D + 1) furthermore leads to extra terms in the Hamiltonian con-
straint, which however are unproblematic both in the classical and in the quantum

theory.

While standard matter therefore can be included just like in the case of usual Ashtekar
Barbero variables, in order to treat supergravity theories, we need to consider also
non-standard matter fields, most prominently, the Rarita-Schwinger field (“gravitino”).
This field differs from the Dirac field not only in that it has spin 3/2, but moreover,
usually it is a Majorana fermion and therefore its own antiparticle. In particular,
for D + 1 = 4,10,11, when choosing a real representations of the Lorentzian Clifford
algebra, it is a real ﬁeldﬂ Since the Lorentzian Dirac matrices are real in this repre-
sentation, the real vector space of the Majorana fermions is preserved under the action
of SO(1, D), but when switching the internal signature and using the internal gauge
group SO(D + 1) instead (with necessarily complex Dirac matrices), this no longer is
the case. However, it is possible to introduce an additional internal unit vector field
NT to keep track of the complex components the fermionic fields obtain under internal
rotations. One can use this field to construct a combined object of both, the fermionic
and unit vector field, such that there is an action of SO(D+1) which respects the reality
conditions of the Majorana fermions. Interestingly, the additional, unphysical degrees
of freedom introduced by the field N! and its conjugate momentum can be removed by
using the linear simplicity constraint, which interweaves them with the gravitational
degrees of freedom. When trying to quantise, one immediately finds that the Hilbert
space representation known for Dirac fermions from D = 3 cannot be applied in this
case. The reason is that the Majorana reality condition the fermions are subject to
gives rise to second class constraints which lead to a non-trivial Dirac antibracket. A

corresponding Hilbert space representation will be given.

1This does not hold in dimensions where there are no real (or imaginary) representations of the
Clifford algebra; then, the role of the gravitino is played by anti- or symplectic Majorana fermions,
which satisfy a more complicated reality condition. Sometimes, the role of the gravitino is also played
by Weyl or Majorana Weyl spinors (cf. [133| [134]).

13



1. INTRODUCTION

Having included the gravitino and standard matter already opens the road to loop
quantise the easiest supergravity theories, like d = 4 N = 1 supergravity. However, in
many supergravity theories also new bosonic matter fields appear, e.g. Abelian higher
p-form fields, like the Kalb Ramond two-form field of d = 10 supergravities and the
three-form field (three index photon) of d = 11 N = 1 supergravity. As an arguably
interesting example, we will treat the latter. Due to an additional Chern Simons term
in the corresponding supergravity action [I135], this field is not simply a three-form
equivalent of the Maxwell field in higher dimensions, but becomes self-interacting and,
in particular, the equivalent of the electric field transforms non-trivial under the ac-
tion of the (equivalent of the) Gaufl constraint. We propose a reduced phase space
quantisation based on the Weyl algebra generated by the exponentials of certain Dirac
observables with respect to the Gaufl constraint. Due to the non-standard action of
the Gaufl constraint, the observable corresponding to the electric field gets an addi-
tional contribution proportional to the level of the Chern-Simons theory, which then
also shows up in the Weyl relations. These twisted Weyl relations can be computed
in closed form and a Hilbert space representation can by given by using a state of
Narnhofer-Thirring type [136], which in the LQG literature already appeared in Thie-

mann’s treatment of the closed bosonic string [93].

Finally, as a first application of the variables for higher dimensional LQG, we will
take first steps towards the derivation of the famous Bekenstein Hawking formula for
the black hole entropy also in higher dimensions. The reproduction of this formula is
considered as one of the “benchmarks” of any quantum theory of gravity and already
has been met by D = 3 LQG (see [43, 44] and references therein). We will work out in
detail the boundary symplectic structure arising on (2n + 1)-dimensional undistorted
non-rotating isolated horizons when using the new variables, which turns out to be
the symplectic structure of a higher dimensional SO(2(n + 1)) Chern Simons theory,
and provide an appropriate boundary condition connecting bulk and horizon degrees of
freedom. However, since Chern Simons theory in higher dimensions, unlike in the three
dimensional case, has local degrees of freedom in general [I37, [13§], its quantisation and
the counting of horizon degrees of freedoms done to determine the black hole entropy

need further intensive studies.
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1.5 Outline of the thesis

1.5 Outline of the thesis

This thesis is organised as follows: it consists of five parts. Part [[] is introductory in
nature, reviews several Lagrangian and Hamiltonian formulations of general relativity
and the relations between them, with an emphasis on those formulations which are
relevant for the construction of the new variables. We made an effort to streamline
the analysis such that one is lead step by step to the later introduction of the new
variables, on the one hand to facilitate access to this work for readers less familiar with
canonical formulations of general relativity, and on the other hand to make apparent
the various interrelations between them and the new variables and to point out that
the new formulation follows rather naturally from existing canonical formulations. The
review material is well-known and the familiar reader might directly jump to part [[}
where we finally will introduce the new variables both from a Hamiltonian (chapter [7))
and Lagrangian (chapter |8) point of view. Some extra material on possible extensions
of the formulation in terms of the new variables are collected in chapter [0 In part
MM we will turn to the quantisation of this theory using LQG methods. A central
object of this study is the simplicity constraint. In part [V] we will extend the up
to now considered vacuum theory to incorporate (super)matter fields both, at the
classical and quantum level. Due to certain properties of the new variables, mainly
the inclusion of fermionic fields needs to be revisited thoroughly. We will discuss Dirac
fermions in detail, and comment more briefly on Majorana fermions and the three
index photon of eleven dimensional supergravity as an example for a higher p-form
field, the latter two paving the way to treat various supergravity theories. Part [V] will
be dedicated to a first application of the developed framework of higher dimensional
LQG, namely black holes in higher dimensions. Concretely, we will derive the isolated
horizon boundary degrees of freedom when using the new variables, which constitutes
the first step in checking if the famous black hole entropy formula can be derived from
LQG also in higher dimensions. FEach one of the parts mentioned so far again comes
with an introduction and outline of its own, which is the reason why we keep this
outline brief. Finally, we will conclude and give an outlook on further research in
chapter In the appendices, we provide variational formulae which will be helpful
in various calculation throughout this thesis (appendix |A]), we give details on spatial

- temporal decomposition of various tensors used when going from Lagrangian to the
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Hamiltonian formulations (appendix , introduce in detail the vielbein compatible
spin connection and generalisations thereof (appendix , give some details on the
Lie algebras so(D + 1) and so(1, D) relevant for this work (appendix D)), summarise
relations satisfied by the Gamma matrices (appendix [E]), shortly introduce the higher
dimensional Newman Penrose formalism (appendix , and finally in appendix |G| give

calculational details for several lengthy derivations from part [V}
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Part 1

Preliminaries: Actions for gravity
and corresponding Hamiltonian

formulations
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We will start with the basics of Lagrangian and Hamiltonian formulations of general
relativity. Even if the whole dynamical content of general relativity is encoded in

Einstein’s famous field equations

Guw +Aguw = &;TGTW, (1.1)
formulating the theory in Lagrangian or Hamiltonian terms gives deeper insight into
the theory and, as the reader will notice, increases its aesthetic appeal. Moreover,
the passage from a classical to a quantum theory is usually based on Lagrangian or
Hamiltonian formulations. Path integral quantisation usually starts from a classical
action principle, and canonical quantisation has a classical Hamiltonian formulation as
its foundation. Thus, for the aim of quantising gravity, the study of these formulations
may be crucial. In , G, and g, denote the Einstein and metric tensor, respec-
tively, A the cosmological constant, G is Newton’s constant, ¢ the speed of light and
T}, the energy momentum tensor of the matter fields under consideration. A precise

definition of G, will be given shortly.

If not made explicit otherwise, we will leave the spacetime dimensions under consider-
ation unspecified except for the requirement D + 1 > 2, where D denotes the spatial
dimension. Since the focus of the first part of this work lies on a reformulation of the
gravitational sector, we will here and in the following only deal with the matter free
case, i.e. we choose vanishing energy momentum tensor 7). Matter fields will be
introduced later on in part [[V] We will also stick to the case of vanishing cosmological
constant A = 0. Moreover, we will neglect boundary terms for the time being, but want
to stress that a careful treatment thereof is needed and refer the unfamiliar reader to the
standard literature [I39-141]. We will treat simultaneously Lorentzian and Euclidean
gravity, denoting the spacetime signature by s = +1. We will furthermore denote the
signature of the internal space with ( = £1. Starting from an action principle, internal
and spacetime signature coincide, ( = s. However, in the Hamiltonian picture, we
have the freedom to choose s # (. Finally, we want to recommend also the excellent
overview over actions for gravity with particular emphasis on 3 and 4 dimensions given

in [103].

There are several actions known for general relativity which differ in form and/or
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in (kinematical) field content, but basically by definition all have to share the same
physical degrees of freedom satisfying the same equations of motion, namely Einstein’s
vacuum field equations . We will make a distinction between metric and vielbein
formulations. A formulation in terms of a vielbein becomes mandatory as soon as one
is dealing with fermionic matter, but as we will see, it might also be convenient when
working without fermions. A vielbein was, to the best of the author’s knowledge, first
considered in [142], precisely when coupling spinor fields to general relativity, although
the field there is not called vielbein and denoted by ,/g”,/, primed indices being inter-

nal ones.

We furthermore differentiate between first and second order actions of gravity depend-
ing on whether the actions are of first or second order in the derivatives of the fields.
Typically, in first order formulations, the connection and the metric (or vielbein) are
independent kinematical fields, but varying the action with respect to the connection,
one obtains equations of motion which require the connection to be metric compatible.
Palatini is usually credited for first observing this, and therefore, first order actions are
often named after him. Thus, Wald [143] names the first order action depending on a
metric and an affine connection “Palatini action”, while the first order action depending
on a vielbein and a spin connection is called either called “Palatini action” in Ashtekar’s
book [144] or “Hilbert-Palatini action” in [103] 145} 146]. However, in his 1919 paper
[147] (English translation [148]), Palatini is actually not varying with respect to the
connection independently. Aiming at unifying general relativity and electromagnetic
phenomena, it is Einstein who did this in his 1925 paper [149], and according to [150],
where this issue is discussed, no one did before. Despite this comment, we will stick to
the nomenclature used by Ashtekar and call the action depending on a vielbein and an
independent spin connection “Palatini action” in the following. This also is consistent

with [2], one of the articles this thesis is based on.

The first action ever written down for general relativity, however, is a second order
one, the Einstein Hilbert action [I5I]. Surprisingly, this arguably simplest non-trivial,
generally covariant action one could possibly write down, the integral over spacetime
of the densitised scalar curvature of the Levi-Civita connection, yields Einstein’s field

equations as Lagrangian equations of motion. We will briefly review this action in
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section The very basic formulas in this and the following sections are supposed to
acquaint the reader with the notation and conventions used in this thesis and to lead
even the non-experts step by step from the Einstein Hilbert action to the Hamiltonian
formulation in terms of the new variables which lies at the heart of this thesis. The

experienced reader might want to jump directly to part [[I] and, if needed, consult the

[list of tables| and [conventions| section at the beginning of this thesis.

After deriving Einstein’s field equations by varying the Einstein Hilbert action, we
will turn to the corresponding Hamiltonian formulation. Actually, the first Hamilto-
nian descriptions of general relativity date back to the 1950’s [I52-155], based on the
pioneering methods developed by Dirac [156, 157] and Bergmann and collaborators
[I58-160] for Hamiltonian formulations of gauge theories like general relativity. We
strongly encourage the unfamiliar reader to consult the excellent exposures [I57] and
[62] section 24], or [161] for a very detailed account on this so-called “Dirac algorithm”,

which nowadays has become a standard technique in the relativist’s toolbox.

In 1960, Arnowitt, Deser and Misner introduced a certain decomposition of the space-
time metric [162, [163], which leads to a very convenient and nowadays frequently used
Hamiltonian formulation of general relativity. It is named after its inventors: ADM
formulation. We will give the derivation of the ADM formulation starting from the
Einstein Hilbert action and discuss it in some detail, since the methods will be needed

in any Hamiltonian formulation of general relativity.

After this, we will turn to a neatly related action, by introducing the vielbein and
using it instead of the spacetime metric as fundamental degree of freedom in the Ein-
stein Hilbert action. Consequently, when performing the canonical analysis, also in the
corresponding Hamiltonian formulation the fundamental role now is played by the spa-
tial co vielbein instead of the spatial metric. We will furthermore present the canonical
transformation from the co vielbein to a densitised vielbein, which is related to both,
the Ashtekar Barbero formulation and the new formulation of [I}, 2]. In this work, we

will refer to all of these formulation as extended ADM (eADM) formulatiorﬂ

!Note that in some references, these formulations are also just called ADM formulation (cf. e.g.
[103]).
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Thereafter, we will turn to the already mentioned Palatini action. While it is straight-
forward to see that the variation leads to Einstein’s vacuum field equations, the singular
Legendre transformation to the corresponding Hamiltonian formulation is much more
intricate and was first derived in full generality for arbitrary dimensions d > 2 in
[2, 164, 165] (results for spacetime dimensions 3 and 4 are given in [I03], and for ar-
bitrary dimensions d > 2 in so called time gauge in [166]. Choosing this gauge fixing
simplifies the analysis considerably.). We will find that, after solving all second class

constraints, we are lead back to the eADM formulation.

In continuation, we will turn to the (real version of the) Plebanski formulation [167]
of general relativity. Its importance for the LQG community is based on the fact that
this action is the starting point for the spin foam models [49, [168]. The Plebariski for-
mulation exists for all dimensions D > ﬂ We refrain from displaying the full, rather
lengthy canonical analysis of the (real) Plebariski action, and refer the interested reader
to [I70]. Instead, we give the canonical analysis of a certain hybrid version of Plebariski
and Palatini gravity, which will be the basis for our later Lagrangian access to the new

variables in chapter

Finally, we will study some actions peculiar to D = 3 which lead to Ashtekar or
Ashtekar Barbero variables when passing to the canonical theory. Firstly, in section
m, we modify the Palatini action by adding the so-called Holst term [145], which only
exists in four spacetime dimensions. We will perform a canonical analysis of this ac-
tion in section This does not directly lead to Ashtekar Barbero variables, but the
canonical formulation obtained in this way will be helpful in section [9.3| when reintro-
ducing the Barbero Immirzi parameter v into the framework of the new variables for
D = 3. Only after solving all second class constraints and choosing time gauge in sec-
tion we obtain the famous Ashtekar Barbero formulation [13, [14], which the loop
quantisation approach is based on. In section [6.3] we will also describe the canonical
transformation which relates this formulation to the ADM formulation, since this route

will be mimicked when obtaining the new variables following the Hamiltonian route.

'"While Plebariski worked in D = 3, a more general version for D > 2 was given in [169].
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Secondly, in section we will shortly comment on the CDJ [171] action. Like the
Ashtekar Barbero formulation on the Hamiltonian side, the CDJ Lagrangian only ex-
ists in D = 2,3 dimensiond’] but we will restrict to the D = 3 case here. It is an
almost pure Lagrangian connection formulation (the metric can be eliminated up to
the denisitised lapse function) of general relativity, which for nonzero cosmological con-
stant or certain matter coupling can even be turned into a pure connection formulation
[I73]. Its Hamiltonian formulation coincides with Ashtekar’s original complex (in the

Lorentzian case) formulation, i.e. the choice 72 = s.

There are several other actions for gravity, partly particular for four dimensions. Just
to name a few, there is a formulation in terms of an affine connection solely, the La-
grangian being the square root of the determinant of the Ricci curvature, which is
due to Schrodinger [I74]; in another action for vacuum gravity, the fundamental ge-
ometrical object is neither the metric nor the vielbein, but the curved space gamma
matrices [I75]; a formulation by 't Hooft [176] with internal SL(3) or SU(3) symme-
try, respectively, for Euclidean or Lorentzian signature, where, instead of a vielbein, a
“cube root” of the metric constitutes the metric degrees of freedom; a formulation by
Faddeev where Einstein’s equations are derived employing the embedding of the space-
time into 10-dimensional linear space [I77]; and for some of the Lagrangians we will
discuss, there are related complex or self-dual versions, or modifications by topological
terms. The selection of actions and Hamiltonian formulations which are going to be
presented should by no means indicate that the others do not deserve intense study.
Classically, different actions or Hamiltonian formulations are equivalent, but from the
quantum gravity perspective, the right classical starting point might be crucial for
the endeavour of quantising general relativity. In fact, the successes when quantising
general relativity using Ashtekar’s variables when compared to the older Wheeler -
DeWitt approach [I78{I80] are an indication in this direction. The fact that some of
the formulations mentioned above are rather recent, as is the Hamiltonian connection
formulation central to this thesis, shows that this field of research is an active one and

it might well be that the right classical starting point still has to be found.

A last comment concerning the expression corresponding Hamiltonian formulation in

'The extension to D = 2 dimensions was achieved in [I72].
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the title of this part of the thesis: since all actions as well as Hamiltonian formulations
of general relativity are physically equivalent, any Hamiltonian formulation in a sense
corresponds to any Lagrangian formulation. Corresponding in the title therefore only
refers to the fact that the Hamiltonian formulations are obtained from the actions un-
der consideration by applying Dirac’s standard method in a straightforward way, which

will be made more explicit in the following sections.
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Einstein Hilbert action and ADM

formulation

2.1 Einstein Hilbert action

The Einstein Hilbert action in D 4 1 dimensions is given by

Sgwlgl == 2‘2/% dPH X /| det g(X)| PTUR(X). (2.1)

Here, .# denotes a (D + 1) - dimensional spacetime manifold, g,, the metric tensor,
4
(&

v, ... € {0, ..., D}, PtV R the Ricci scalar and & := 5s.c- In the Lorentzian case, we

will restrict to globally hyperbolic spacetimes. The restriction to globally hyperbolic

spacetimes is demanded by causality and assures by a theorem due to Geroch [I81] that
the manifold (., g) is topologically isomorphic to R x ¢ for some spatial manifold o.
Quite recently, these results where strengthened by showing that globally hyperbolic
manifolds are actually isometric to (R x o, —3dt? + g*) for a smooth family (o, g*) of
Riemannian manifolds and smooth function 8 on .# [182]. In the Euclidean case, we

will as well restrict to manifolds of topology R x o.

We will choose units such that x = 1. The remaining factor of J also appeared in
front of the Palatini action in [2], and in order to simplify comparison, we will intro-
duce it for most action we will consider. In the following, we will use the short hand
notation ¢ := det g and drop the superscript indicating the dimension from curvature

tensors for the time being. Our conventions for the curvature tensors are as followd}

LCf. also the
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2. EINSTEIN HILBERT ACTION AND ADM FORMULATION

for one-forms u,, we define the Riemann tensor R,,,,° to be
[vu, Vl/] Up = R;wpgum (2.2)

where [A, B] := AB— BA denotes the commutator and V the unique torsion flreeﬂ7 met-
ric compatible connection, V,u, := d,u, —Thuu,. Ty = 3977 (8u9uo + Ougve — Ooguw)
denote the Christoffel symbols. The Ricci tensor is defined by R, := R, ” and the
Ricci scalar by R := R, g"".

It is straightforward to see that the variation of this action yields

S 1
0SeH = 5 /ﬂ dPrx /g [(RW — 29;wR> 5g" + g“”(%w] : (2.3)

and using the formulas given in appendix [A] for the variation of the Riemann tensor,

the contribution from the last summand
g" R, = V' (VY09 — 9"V 10gup) (2.4)

gives only a boundary term by Stoke’s theorem and thus will be neglectedﬂ The

remaining integrand yields Einstein’s famous (vacuum) field equations

1
guwR =0, (2.5)

Guy = R/“, — 5

and any other action we will write down in the following has to reproduce them.

2.2 Canonical analysis: ADM formulation

2.2.1 D+ 1 split

While general relativity inherently is a theory of spacetime, in order to obtain a Hamil-
tonian formulation, one has to make a split in “space” and “time”, the so-called
D+1 splitﬂ To this end, we first introduce a foliation of .# = R x ¢ by a family
Yy = Xi(o) of spacelike hypersurfaces labelled by ¢ = const., where X; : 0 — #

'In the following, we assume all affine connections to be torsion free and refer the interested reader

to the review [I83] for a discussion of the inclusion of torsion.
2Note, however, that for this term to vanish, it does not suffice to demand &gls.sr = 0, one fur-

thermore has to demand that the derivates of g vanish at the boundary, or, alternatively, modify the

action by a boundary term, which is discussed e.g. in [143] appendix EJ.
30ur exposition will follow [62].
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2.2 Canonical analysis: ADM formulation

denotes a one-parameter family of embeddings defined by X;(x) := X(¢,x). Here,
X* and z% (a,b,... € {1,...,D}) denote local coordinates on .# and o, respectively.
The freedom of choice of foliation can be parametrised by the deformation vector field
T .= Mgigt,x)‘ X=X(t,z)- Lhis vector field describes the flow of “time”, and we will in-
terpret Lie derivatives along this vector field as time derivatives. Introducing the future
pointing unit normal field n* to the spatial slices 3, g, n#n” = s, we can decompose

the deformation vector field according to
TH = Nn* + N#, (2.6)

where N is called lapse function, and N* denotes the shift vector field, which is tan-
gential to the spatial slices, g,,n*N" = 0. We will call tensor fields with the property
that their contraction with n vanishes “spatial”. For a visualisation, see fig. The

A
Zt+6t
X
X ot
Zt
Nn* ot
X
N ot
>Q< b

Figure 2.1: Visualisation of the D + 1 split - Foliation of the spacetime manifold .#
into (spatial) leaves 3; labelled by the value of the time function ¢ on these leaves. The

figure illustrates furthermore the meaning of the lapse function N and the shift vector N*.

induced spatial metric on ¥; is given by

Quv = Guv — SNy, (2.7)

also called first fundamental form. For a Hamiltonian formulation of general relativity,

it is convenient to use g, N, and N* as fundamental fields, which in turn encode the
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2. EINSTEIN HILBERT ACTION AND ADM FORMULATION

whole information of g*”. To obtain the ADM action, we have to express the Einstein
Hilbert action in terms of these fields and their derivatives. We first introduce the
torsion free covariant spatial derivative compatible with g,,. For scalar fields ¢ and

spatial one forms u, on X, it is defined by

Dué = qi¥V,9,
Dyu, = nggvpao, (2.8)

and extended to general tensor fields by linearity and Leibnitz’ ruleﬂ

It by definition preserves spatial tensors and it is easy to check that D,q,, = 0. The
Ricci scalar in the Einstein Hilbert action can be reexpressed using the famous Gauf3-

Codacci equation (see appendix |B| for a derivation)
DO+hp - DPIR 5 [KWKW — Kz] + 25V, (n"V,nt —ntV,n"), (2.9)
where we introduced the extrinsic curvature or second fundamental form
K = 44y Voo, (2.10)

and denoted its trace by K := K, ¢"”. The final split form of the action is obtained
by pulling back (spatial) tensor fields to o using the D spatial vector fields X} (X) :=
Xla(2,t) | x@p=x (8 qa(z,t) = (X4 X qu)(X(2,t)) etc., cf. [62, section 1.1] for
more details). Neglecting the surface term due to the last term in , we obtain

S = ;/dt/adDatN\/a (PR~ s [KaK™” - K?]). (2.11)

Here, we again denote the determinant of the spatial metric by ¢ := det ¢ and further-
more used that g = sN?q and therefore \/|g| = |N|\/g. However, since we chose T*

future pointing timelike, N > 0 classically and we have therefore dropped the absolute

value sign in (2.11)).

1(2) and 4, here denote smooth extensions to a neighbourhood of ¥; in .#. Note that D, is

insensitive to the chosen extension. We will drop the tilde in what follows.
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2.2 Canonical analysis: ADM formulation

2.2.2 Legendre transformation

Following Dirac [I57], we start the canonical analysis by calculating the momenta
conjugate to the spatial metric, which we will denote by P®. By Frobenius’ theorem,

K, is a symmetric (0,2)-tensor. Using this, one can reexpress K, as follows

1
K[,LV - *(gnQ)uu

5 Lr NQ v (2.12)

1
=N
from which we see that it is related to the time derivative of the spatial metric. In the
last step above, we used that n*q,, = 0 and therefore, terms oc N vanish. Pulling
back to o, we obtain

1

Kgp=—
ab IN

(dab — (LNQab) - (2.13)

Using this, a short calculation shows that

oS
POt z) = —2
( ) 5Qab(t7x)
s oS

T AN(t,7) 6K (L, 2)
= Sl 2) [Kt ) — K ()t )

- —%\/a(t,$)Gab6d(t,l’)ch(t,$), (2.14)

where
Gabcd — qa(c|qb\d) _ qachd‘ (215)

Since the inverse of G®°? is easily found to b

1
-1
G obed = a(c|Tb|d) — D1 dabded; (2.16)
we find solving ([2.14) for gy
2 2 1
Kyl P)=——G;t Pd=_" (P, — ——quP 2.17
ab<q7 ) \/a abcd \/(j < ab _D _ 1qab ) 9 ( )
dav(q, P, N,N) = 2NKa(q, P) + (LN Q) abs (2.18)

'G.), is sometimes referred to as the DeWitt “supermetric”, introduced in [I78] as a metric in

the “superspace” of spatial Riemannian metrics.
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2. EINSTEIN HILBERT ACTION AND ADM FORMULATION

where P := P%gq,, denotes the trace of P®. For the momenta conjugate to lapse and

shift, we immediately find

PWN(t,z) := _5 0, (2.19)
ON(t,x)

PO ()= — 5 (2.20)
SNa(t, x)

It is obvious that we cannot solve for the velocities N, N® in terms of ¢gp, P, N, POV,
N, PCEN), and therefore, we see that the Lagrangian we are dealing with is singular.
The equations ([2.19} [2.20) constitute primary constraints according to Bergmann’s

terminology,

C(t,z) = PM(tz) =0, E,(t,z):=PN(tz)=0. (2.21)

Now it is straightforward, using (2.13}[2.14} [2.17] [2.18]), to obtain the action in canonical

forml]

S = / dt / dPx (PN + PNINa 4 pabg, — \g — \G,
- (Pabqab ~ fN\/cj <<D>R - sGabchachd)) (P,q,N, J\?)}
= / dt / dPz P<N N+ PMNe 4 pabg — \g — )\,
(P“b OINKup + (Lnq)ap) — fN\f R — NP“bKab) (P,q, N, 1\7)}

/ dt / dPz P MN 4+ PNVINe 4 pabg, — \G — \9E,

2 1 s
—-N(——= (PP, — P?) - 2 /qPR) — N (—2qacDy P>
(ﬁ(bD—1>2ﬁR (207"

—20, (NaqaCPbCﬂ . (2.22)

Dropping the surface term in the last line, we can easily read off the non-vanishing

Poisson brackets

{gas(w), P(y)} = 5,6 67 (z — ), (2.23)
{N(z), PN (y)} = 6Pz — y), (2.24)
(N (@), BV ()} = o 6Pz — ), (2.25)

Note that the undetermined velocities N, N appear in the Hamiltonian as Lagrange multipliers
A, A* according to Dirac’s procedure.

30



2.2 Canonical analysis: ADM formulation

and the Hamiltonian

—/ T [XC + X6, + N + NI
=: G\ + Cu[\"] + H[N] + A, [N°]. (2.26)
Note the notation %[c] we introduced for smeared versions of constraints ¥ with a

Lagrange multiplier field ¢. This notation will be used extensively throughout this

thesis. We furthermore defined

2 1 s
H = — PPy — P ) — (DIR 2.27
S, = —2qa.Dp P, (2.28)

which are called Hamiltonian constraint and spatial diffeomorphism constraint, respec-
tively.
2.2.3 Constraint analysis

More precisely, (2.27} [2.28)) are secondary constraints which arise when we demand that
the primary constraints 4, %, be preserved by the time evolution generated by H,

0=%¢ ={¢,H} ={PWY) H) =7, (2.29)
0=, = {€ Hy = (PN, H} = . (2.30)

These secondary constraints satisfy the Dirac or hypersurface deformation algebra

{ AN, AM)y = — ] (L M),
{AUN, A M)} = —H[(ZNn M),
{AIN], H M} = —sHala™ (NOM — MO,N)], (2.31)

and in particular trivially Poisson commute with the primary constraints. Thus, they
are preserved by the time evolution and the stability analysis ends here. To verify

(2.31]), note that .7, generates spatial diffeomorphisms on all phase space variables,

{qau[f*], A [N°T} = ( Nq)ab[f‘”’] (2.32)
(PP Fo), 2N} = (L5 P)™ [Fa), (2.33)
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2. EINSTEIN HILBERT ACTION AND ADM FORMULATION

which readily explains the first two lines in (2.31)). Here, the notation indicates the
smearing of gu, P® with smearing field f®, F,; that we already introduced for con-

straints earlier.

Calculating the Poisson bracket between two Hamilton constraints above is more com-
plicated, but the calculation simplifies if we apply the formula for 6(?) R given in ap-
pendix [A] and furthermore use that, since the expression is antisymmetric in M, N, all
terms without derivatives acting on the multipliers vanish. The Hamiltonian constraint
can be shown to generate diffeomorphisms in time on shell, i.e. if the equations of mo-

tion hold. The derivation thereof is cumbersome and we refer the reader to e.g. [62]

section 1.3].
Variable ‘ Dof H 15% cl. constraints ‘ Dof (count twice)
qab w H 1
pab D(D2+1) I, D
Sum: ‘ D?+D H Sum: ‘ 2D + 2

Table 2.1: ADM phase space: counting of degrees of freedom

As one expects for a generally covariant theory like general relativity, we see that the
Hamiltonian is constrained to vanish. All constraints are first class in Dirac’s termi-
nology, as shows (the remaining Poisson brackets are trivial). Again following
Dirac’s programme, we introduce the extended Hamiltonian, which amounts to adding
all secondary first class constraints (in this case, 5 and 7,) to the Hamiltonian with
arbitrary Lagrange multipliers, say N’ and N*. But J# and .7, are already present in
the Hamiltonian, and thus get multiplied by N” := N+ N’ and N* := N*+ N in H.
But N” and N still are completely arbitrary multipliers. Now we can trivially solve
the constraints € and %, by demanding these equations strongly and gauge fixing NV
and N One obtains the canonical ADM action and the ADM Hamiltonian [162), [163]

S = / dt / dPz [Pabqab — N# — N, (2.34)

H= / dPx [N + N . (2.35)
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2.2 Canonical analysis: ADM formulation

Finally, counting degrees of freedom (cf. table 2.1)), we find (D + 1)(D — 2) phase space

degrees of freedom, which have to be reproduced by any of the following formulations.
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2. EINSTEIN HILBERT ACTION AND ADM FORMULATION
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3

Einstein Hilbert action with

vielbein and eADM formulation

3.1 Einstein Hilbert vielbein formulation

In this section, we will consider an action closely related to the Einstein Hilbert action.
To this end, we introduce the “square root” of the metric, the co - vielbein eMI satisfying
g = eu' e 1y, (3.1)

and the action we want to consider is given by

s
Sk = 3 //// dPTIX dete ety Ry, =

:s/ dPTIX s (ene)rs AR, (3.2)
M

Here, et denotes the vielbein, e,re*; = nry, n := diag(¢,+1,...,+1), and dete the
determinant of the co - vielbein. Of course the internal signature here is dictated by
the space time signature, ¢ = s, i.e. the gauge group is SO(D + 1) for Euclidean and

(D+1)

SO(1, D) for Lorentzian general relativity. In the following, we will use e :=dete.

We furthermore introduced the vielbein compatible spin connection: The equation
0=V}e'r:=0ue"+T%,e’1+Tu’e", (3.3)
can be solved uniquely for

P}LIJ = e”mVﬂeym, (34)
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3. EINSTEIN HILBERT ACTION WITH VIELBEIN AND EADM FORMULATION

and RW” = 20,I'y U—i—?F[mIKF‘,,]KJ above denotes its curvature. Using the formulas

in appendix [A] we easily find for the variation of this action
1
§Sty = 3//// dP+ix (P I:(QVJRpVKJ — erKe“[e”JRWU> oef i
+ e“le”JV[I;LéFV]U} . (3.5)

Since Vg annihilates e';, the term in the last line obviously only contributes a boundary

term which we drop, and the field equations read
v KJ 1 K _p v 1J
0 = e JRpl/ — §€p e"re JR#V

1
= 7K (Rp(, - 2gp0R)
=e"%G,0, (3.6)

where we used RWI J = Rw,paepl e’ (cf. appendix. Since we only consider invertible

e (otherwise, the metric would be degenerate), G = 0 is a necessary consequence,

and sufficient to solve the field equations.

This is not too surprising, since the action S%j coincides with the Einstein Hilbert
action considered as a function of the vielbein up to sgn ((P*1e). Using the results in

appendix [C| we have

Spnle] = ;/ﬂ JPHlx [\/E(D—H)R] (e)

=2 / dPTIX |dete| e're Ry, (3.7)
2

—

since \/|g| = |dete| and R = R, "/ etre” ;. Variation of (3.7) yields trivially (only
using 6g,, = 26(u|15ey)1 in (2.3)) the field equations ([3.6).
3.2 Canonical Analysis: eADM formulation

3.2.1 D +1 split and Legendre transformation

The Hamiltonian formulation corresponding to this action will be called extended ADM
formulation (eADM). To obtain it, we perform the D + 1 split analogously to the
treatment in section Using the (future pointing unit) normal to the spatial slices
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3.2 Canonical Analysis: eADM formulation

n*, we construct é*, = (g, — sn¥n,) + snfn, =: ¢*, + sn*n, and decompose the
vielbein according to e/ = ¢, e} + seyn,n* =: lle} + snn#. By construction, lef is

the spatial part of the vielbein, ”e‘; n, = 0. From appendix (B, we have
e“le”JRMVIJ = ”e“l”e”JRHW” -5 (KWK“” — KQ) , (3.8)

where RHWU is the curvature of FHMU = He”[]DuHe,,J} + sn[IDunJ} and K,, =
%(fnq),w = He(u‘l(.ﬂn”eu))[. Pulling back to the spatial manifold o like in section

we obtain
S = ;/dt/ dPx N(Ple [ealebJRHabU -5 (KabKab — KQ)} , (3.9)

where e* denotes the hybrid vielbein and RY ;77 is the curvature of the hybrid spin

connection annihilating the hybrid vielbein introduced by Peldan [103],

= U Dyey”t + snlf Dynl, (3.10)

D(Ijebl = Daebl + FHaljebJ = 0. (3.11)

For more details, see appendix [C] Actually, we could have used a shortcut to arrive
here: Starting with the action (3.7), we already know its split form using that this
action is equal to Sgple]. The result is given by (2.11), where (D)R and \/q are now

considered as a function of e,! via

Gab = €a’ ey’ 17, (3.12)

and K, as a function of e,’, N and N¢.

Since (3.7)) only differs from the action we used above by a factor of sgn((P+Ve), the
split form we arrived at has the same property. In what follows, we will neglect this
subtle difference, i.e. effectively continue with the split form of the action (3.7)), in

order to facilitate comparison with the ADM case.
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3. EINSTEIN HILBERT ACTION WITH VIELBEIN AND EADM FORMULATION

Instead of P, we now calculate the momenta k?; conjugate to e,’,
)
Kyt o) i= ———
1(6,7) Seal(t, )

_ / 4P Spe(t,y) 0S8
oV seI(t, ) ddpelt, y)
= 25?665)1(75@)Pbc(t795)
= _\/a(ty-r)ebl(tax)Gade(tax)ch(tax)
=G5 (& — (ZLnek?), (3.13)

where

q
Gy = *%echadeedJ

_ \/a cla d] J sb
= _ﬁq e Ie(c 5d)’ (314)

and G is defined in ([2.15)). Solvability of (3.13)) for é,! depends on the invertibility

of this matrix, and therefore, the primary constraints can be obtained from it. That

G°; 7 is not invertible is already clear from the fact that K4 in the second to last line

of (3.13]) only depends on
ab = 2€(a1éb)17 (3.15)

and thus we cannot hope for solving for the other components of ¢,’. Contracting the

third to last line with e,; and symmetrising / antisymmetrising in the index pair I, J,
we obtain

k{r€als) = 2ey(1€q).5) P, (3.16)

g[J = Qk&QG‘J] = 4€b[[€a|J]Pba = 0, (3.17)

where the factor of 2 in the definition of 47 is inserted in order to fit with later results.

Contracting the first line with e(“el)7 we obtain
kelleld)  — g ped, (3.18)

which can be solved for ¢u = Ze(a[éb)" in analogy to 1 . Note that in this
section, P of course is given in terms of e, é via (2.13}[2.14)) and (3.12}[3.15). The anal-

ysis of N, N* and their momenta is completely the same as before. We can decompose
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3.2 Canonical Analysis: eADM formulation

koré,t according to

Kréa' = K repse®éq”

e, D 4 ke ecl/le, 1)

=k repse”
1 1
= §k;b[eal(jab + 56‘1[‘]' (éaﬂ + snl]nKéaK> Y
1
= Paanb + iea[‘” <éal] + Snl]nKéaK) gIJ‘ (319)

Adding and subtracting k%7é,! in (2.11]) and correspondingly for N, N¢, and introduc-
ing the Lagrange multiplier A7 = e@l/| (éaI I+ snflnKe, K) for the velocities we cannot

solve for, we obtain
S = / dt / dPzx [PUV)N + PMINa 4 k91¢,] — NG — A,

1 B
_ <P“bq’ab 4 ?IJ% S gN\/a (<D>R _ sG“deKachd)>(k, e, N, N)] .
(3.20)

Clearly, after performing the same manipulations as in the metric case and eliminating

N, N® and their momenta, the final form of the action will be
S = /dt/ngx [ka,éaf — %A”g” —N# — N“%] , (3.21)
with the non-vanishing Poisson brackets
{ea’ (@), K1 (y)} = 56" (2 — y). (3.22)

In (3.21)), %;; is given by (3.17) and 42, £, as in (2.27] 2.28)) with gu,, P°? replaced
by e.!, k%7 using ([3.12)) and (3.18)),

1
I, = —Db(kb‘]ea]) + §Db(g1J€b]€a])

~ —Db(kb‘]eaj), (3.23)
1 1 1 S
_ pal pbd _ kol gl 4 —gETgb el | o _ 2 /=(D)
H 2\/@( 51 +2€f 'K €aJepl 2\/5 R
1 1 S
=~ —27\/6 (kalka — D-lka]kbl> €aJEb] — Qﬁ(D)R, (324)

where it is understood that ¢ and (P) R are expressed using eq;. ¢ is called the GauB

constraint.
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3. EINSTEIN HILBERT ACTION WITH VIELBEIN AND EADM FORMULATION

3.2.2 Constraint analysis

It is easy to convince oneself (and it is made explicit below in section [3.2.3|) that the
Gauf} constraint (3.17) generates internal SO(D+ 1) or SO(1, D) transformations. The

commutation relations of the corresponding Lie algebra
1 ry 1 KL 1 MN
{59 X7] S9klw™ 7]} = S9un A w7, (3.25)

follow. Since 4!/ also strongly Poisson commutes with J#, %, which transform as
scalars under internal rotations, it is a first class constraint. Moreover, with the re-
placements , it is easy to show that the ADM Poisson brackets and
therefore also the hypersurface deformation algebra are reproduced weakly, i.e.
up to terms o< 97y (cf. e.g. [62 section 4.2.1] for calculational details), i.e. we again

obtain a first class system.

Interestingly, while we will see shortly that the Gaufl constraint arises in the first
order formulation as a secondary constraint, here it is a primary constraint. Counting
of degrees of freedom results in (D + 1)(D — 2) coinciding with the ADM counting in

the previous section.

Variable ‘ Dof H 15% cl. constraints ‘ Dof (count twice!)
eq’ D(D +1) H 1
kb; | D(D+1) H, D
Sum: ‘ 2D? 42D H Sum: D? +3D +2

Table 3.1: eADM phase space: counting of degrees of freedom

3.2.3 From the co vielbein to the densitised vielbein

In later chapters, we will exclusively use the canonical variables Ko7, E*/. These are

related to the ones used here by {e,!, kb;} —

1 1
{Kal = % <6b1€aJ —p _qCaltJ Sqabnmj) kM Bl = ﬁqabebl} . (3.26)
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3.2 Canonical Analysis: eADM formulation

which can be easily shown to be a canonical transformation (The above matrix in

dep(x)
SEal (y) 9

from the fact that we switched momenta and configuration variables). Solving for

the definition of K,; is the non-singular part of —

and the minus sign stems

kb = \/6(26“[‘] el — sq®nn’)K,;, we can rewrite the set of constraints in terms of

these variables,

gl — opl g V], (3.27)
A, ~ —D, (KQIEM — 0K B ) , (3.28)
1 S
~—— (KK, — K, K, B R — S D) 9
NG ( b o) 2\/5 R, (3.29)

where in the last two expressions we dropped terms proportional to 2Kl ;Fd —
%Ed E4%; ; and, of course, V4 and (D)R are now understood as functions of E%L.
Since this formulation will be more relevant for the rest of this work than the one we
had before the canonical transformation, we will at this point shortly discuss the ac-
tion of these constraints on the phase space variables. The Gaufl constraint of course

generates internal SO(D + 1) or SO(1, D) transformations,
1
{Kar(z), §gKLP\KL]} =\ Ka, (3.30)
1
(B (@), 59" Perly = M B, (3.31)

€, in this form not only generates spatial diffeomorphisms, but also internal rotations.

We have
AN = / dPx NO [—8b(Ebf Kor) + TS, EY K, + (DY, EY ) Ky
+E (9K — TS Ko + FHaIJKbJ)}
— /G dPz N@ [—a,,(E“KaI) + E9,Kyr + %FHM Jsﬁ”}
= /U dPx {E“ (L K)or + %N“FHGI 9! J} : (3.32)

where in the first step, we only wrote out all terms appearing in 7, and in the second
noted that the terms containing Christoffel symbols cancel due to their symmetry and
the hybrid spin connection annihilates E%!. In the last step, we dropped a surface term.

Therefore, introducing 5%, = ., — %I‘}f] J%I 7. we find that this linear combination
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3. EINSTEIN HILBERT ACTION WITH VIELBEIN AND EADM FORMULATION

generates spatial diffeomorphisms

{Karlf*"], AN} = (LK) arlf*), (3.33)
(B [F,), [N} = (L3 E) “ [Fall, (3.34)

from which we can easily deduce the action of J7;. This implies that, on rotationally
invariant observables (i.e. observables w.r.t. %), the action of J7, still is that of
spatial diffeomorphisms. Of course, it can also be worked out that the action of 2 on
rotationally invariant observables is the same as in the ADM case. The discussion is

more intricate and we leave it to the interested reader to work out the details.

3.2.4 Time gauge

One often encounters a formulation in the literature similar to the one we considered
in section which, however, only has a SO(D) gauge symmetry. In D = 3, when
going from the ADM formulation to the Ashtekar Barbero variables, this formulation
usually arises at an intermediate step, as we will see in section It can be obtained
from the SO(D + 1) or SO(1,D) formulation we considered in the first remark by
choosing time gauge (the time gauge is a canonical gauge, see, for instance, [161]), i.e.
setting n! = 56 or equivalently £ = 0. Furthermore, this requirement is second class
with the boost part of the Gaufl constraint, which we therefore also have to solve if
we do not want to retain second class constraints. After a straightforward symplectic
reduction, we obtain a phase space coordinatised by the canonical pair {ij,E“i},

i,7,... € {1,..., D}, subject to the constraints

@i = 9pli g, I, (3.35)
S, ~ —D, (Km-E’”' - 53Km-Eci> : (3.36)
1 o g
~——— (K Ky — KJK) BEYEY — 2 /PR, :
A~ 7 ( b b) 5Vad R (3.37)

3.3 eADM via extension of the ADM phase space

Of course, as the name already suggests, the same Hamiltonian formulation can also
be obtained via an extension of the ADM phase space. We will be rather brief here

and refer the interested reader to [62] section 4.2.1] for a detailed treatment.
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3.3 eADM via extension of the ADM phase space

We introduce a larger phase space coordinatised by a densitised (hybrid) vielbein
Eol = \/aeal and its conjugate K,j, and postulate the non-vanishing Poisson brackets
{Kar(z), B (y)} = 62675P)(x — y). Note that, since we are just adding internal de-
grees of freedom, we can choose to work with a (D + 1)-dimensional internal space with
signature ( = 41 irrespective of the space time signature s. Moreover, we have another
possibility, namely to work with a D-dimensional internal space, i.e. a genuine D-bein
of which the spatial metric is constructed. To treat all three cases at the same time, it
will be convenient to use ( = 0 in the third case and, only in this section, use indices
1, J, ... also for D-dimensional internal space. We define the map from the extended to

the ADM phase space by:

qq™[E] := EYE’;, KulE, K] := —\}aECI G@@Kyr,  PUIE, K] = —%\/&G“dech.

(3.38)
Now we impose constraints demanding that those parts of K,; which do not contribute
to K, vanish. If these constraints define a coisotropic constraint surface (i.e., first
class constraints), we expect that modding out by the corresponding gauge orbits will
account for the additionally introduced degrees of freedom in the vielbein. The parts
which do not contribute are 4, := E¢! e[ K1 and ¢ n’ K. The requirement that both
of them vanish can be conveniently combined into the constraint ¥// = 2B K, 171,
that we already encountered in the last sections. It generates SO(D + 1), SO(1, D) or
SO(D) transformations and therefore, as we expected, removes the “rotational” degrees
of freedom which the vielbein has in addition to the information on the spatial metric.
Obviously, the ADM variables as given in are Dirac observables with respect to
this constraint. If the ADM Poisson brackets are reproduced on the extended phase
space, we know that we have a first class algebra of constraints (using the map (3.38)) to
rewrite the ADM constraints in terms of the coordinates on the extended phase space)
and that symplectic reduction with respect to ¢!” leads back to the ADM phase space.
Therefore, what is left to check is

{4a[E](2), P[E, K(y)} = 6(,55)0") (z — y), (3.39)
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3. EINSTEIN HILBERT ACTION WITH VIELBEIN AND EADM FORMULATION

which follows in one line using and
SPUE, K] = chdef E. 0K " (3.40)
i [;chef5§ + LllG—le(d|ngc)JEgI _ ;G—l cdthhIEeJ] K,J5E! ;.
To derive , the formulas in appendix [A| might be helpful.

Similarly, we find

SP®E, K|(z) 6 PY[E, K](y)
3K 1(2) SET1(2)

{P®E, K](z), P“[E,K](y)} = /UdDz [ —ab & cd]

1
_ %GabfocdeszlKelé(D) (.%‘ o y) + 5Gabngfl e(d|ngc)JKeJ5(D) (1, o y)
1
- iGabth_IthfEe‘]Kejé(D) (x — y)} —ab <+ cd
— %Gabfocdefgxe + é <q(b|dgc\a) + q(b|cgd|a)) 5(D) (x _ y) ~ 0. (3.41)

From the first to the second line, we only inserted to obtain three terms. Due
to the antisymmetry in ab, cd, the first term obviously is antisymmetric in x,e and
therefore proportional to ¢, which gives the first term in the fourth line. In the
second summand, we only have to contract the matrices, which is trivial since they are
inverse to each other, and then rearrange the terms exploiting again the antisymmetry
in ab, cd to obtain the remaining terms in the fourth line. The third summand of the
second step obviously is symmetric in the exchange of ab, cd and therefore drops out.
As we have seen before, since ¥, = —%Ebl E.’%;; is proportional to (a part of) the
Gauf} constraint, it vanishes weakly, and therefore the ADM Poisson bracket is weakly
fulfilled. Note that the remaining Poisson bracket between two metrics is trivially
fulfilled. This ends the proof that the symplectic reduction of the eADM constrained
Hamiltonian system with respect to the constraint 4/ gives back the ADM phase

space. The explicit form of 7%, 7 when expressed in terms of {K,7, E®’} of course is

the same as in (3.28] [3.29).
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4

Palatini action and corresponding

20d (lass constraint system

4.1 Palatini action

The action we want to study in this section is a first order action in D + 1 dimensions,
which we will call “Palatini action” as we commented on in the introduction to this
chapter. It is given by

S

Sple, A] 5

/ dPTtx ee”leVJFWU. (4.1)
M

The notation is as before, e*! denotes the vielbein and e the determinant of the co-
vielbein, and Fj,, 1y := 20, 4,15 + 2A[#|IKA|Z,}KJ is the field strength of the SO(1, D)
or SO(D + 1) connection A,ry for Lorentzian and Euclidean spacetimes respectively.
Using 0F), "7 = 2VA 64,17 = 20,64, + 441, )11K5A, 171 (cf. appendix |A), we

obtain, up to a boundary term, the field equations

V;‘(ee[“'[el”]‘]) =0, (4.2)

1
BVJFM,[J - iepICUJFpo-[JGM[ =0. (43)

The first of these can be easily shown to be the torsion freeness condition VA[Me,,]I =0,
which is solved by A,;; = I';17, and inserting this into the second field equation and

using the relations is appendix [C| Einstein’s field equations are reproduced.
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4. PALATINI ACTION AND CORRESPONDING 2P CLASS CONSTRAINT SYSTEM

In the following, we will obtain two different Hamiltonian formulations from this ac-

tion, one strictly following Dirac’s procedure (here), and one where we introduce the

so-called quadratic simplicity constraints (section [5.2]).

4.2 Canonical analysis

4.2.1 D + 1 split and Legendre transformation

The canonical analysis presented here was firstly given in [2, [164, [165]. In our pre-

sentation, we will follow [2] and several parts were taken from there with only minor

modifications.

The D + 1 split is performed analogous to section [3.2.1] using
e“Ie”JFWU = He“IHe”JFW[J + 23nln“”el’JFW1J,

and rewriting the terms according to

1
N(D)e“e“ln‘]n”qu = —§w/“IJ(T” — N")Eurg
1 1
= o LAy + (T Avr )9 — NP

Nt By = N,
where we introduced

/= opll prld] .= o(D)enlTl enl 1.

N := N/Ple,
gll] = DA'LL'HJHIJ = auﬂ_lp,[]_+_ [AM,W/M]IJ,
1
W = _§7TI“IK7T/VJKFNVIJ7
1
jful = §7T/VIJFMV[J.

The split is completed by pulling back all spatially projected quantities to the spatial
manifold o. Note that we changed the lapse function according to (4.8), but we will

still refer to N simply as lapse function (of density weight -1). Introducing the nota-

tion A\;j = —(T - A);; and adding and subtracting all momenta multiplied with the
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4.2 Canonical analysis

corresponding velocities, the action reads
1 . 1
S = / dt / dPz <27r'“UAa1 g — N — N° A — M M”)
g
g [ g (a1 4 (EVI fra ) (V) a4 L pV 27
= t T §7T alJ + P E1+P~Jy+Pa N +§PIJ

1 N o1
- LCWya” +¢PET aP™ 4 a®PN) + iaIJPI(y

1
+NA' + N + M 59" JD , (4.12)
from which we read off the total Hamiltonian
H _ dD N%, N(l%/ 1 )\ g/IJ P(]’Y) (ZP(N) 1 IJP()‘)
T = x| N + a+§ IJ +a +a +§a TJ

1
+§Caijau + ’Y?PéE)I>’
(4.13)

Here, the Ps denote the canonically conjugate momenta to the variables indicated
in brackets and 7%/ is the momentum to A,; JE We furthermore replaced all the
velocities which could not be solved for in the Hamiltonian by Lagrange multipliers,
a = ]y, at = N“, ary = /'\U, Cary = Aqry and VP = Eoy. Furthermore, we introduced
a factor of 1/2 in front of term with a trace over the Lie algebra indices. Note that,
of course, PéE)I , P(]M)7 Péﬁ) and PI(;) constitute primary constraints, but unlike the
case of other constraints, we refrain from introducing calligraphic letters € = P ~ 0

for them, in order not to keep notation simpler. There is one more primary constraint,
yal(] _ ﬂ_(zIJ o 7_‘_/a,IJ (414)

called the simplicity constraint. Using it, we can replace all 7/%//s by 7’5 in the
primed constraint #”, 2 and 9’7 (this being equivalent to a redefinition of the La-
grange multiplier of the simplicity constraint) and will call the resulting expressions .7,
A, and 9!V in the following. The requirement of conservation under the Hamiltonian
time evolution of the constraints P(M, Péﬁ) and Pl(ﬁ) shows that ¢, #, and 9!’

are constraints and that the total Hamiltonian is a linear combination of constraints

1To avoid confusion, we want to remark that we here break with our previous convention, calling
the conjugate variable to E CEE)I and not K, like before. This is because later, after solving second
class constraints, we will find that we are lead back to the eADM phase space, but P will not

exactly coincide with the eADM conjugate momentum K,;.
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4. PALATINI ACTION AND CORRESPONDING 2P CLASS CONSTRAINT SYSTEM

as expected. We take a shortcut at this point and solve P(N), PéN) and P](}\) strongly

at this point, and will treat lapse, shift and A7 in the following as Lagrange multipliers.

Note that the (timelike in the Lorentzian case) unit normal n! appearing in (4.7)

I — 5. However,

1

is determined (up to sign) by the requirements E%n; = 0 and nrn
we will see in the following that the constraint analysis is simplified if we introduce n

)

together with its conjugate momenta Pl(n as additional phase space degree of freedom,
and add the constraints E*/n; ~ 0 and n/n;—s ~ 0 as well as the requirement Pl(n) =0

to the total Hamiltonian with Lagrange multipliers p and p, and 4/, respectively.

The final ingredient we want to introduce before starting with the constraint anal-
ysis of this theory are certain projectors. We define the projection transversal to n! by

Ins (in the Lorentzian theory, one could speak of rotational components

iy =nly—sn
as opposed to boost components along n!, which we, in slight abuse of terminology,
will also use in the Euclidean case). Using it, we can decompose Lie algebra valued

tensors X7 s according to
Xry =20 X+ X7, (4.15)

where we defined X7y := 7% 7% ;X1 and X; := —sXyn’. Applying this decomposi-
tion to the Lagrange multiplier of the simplicity constraint, we can split it into a boost

and a non-boost part,

1 1 _ 1
§Ca1J§’aU =0 <« §5a1J<7aU = §5a1J7_Ta” =0,
$Car.S " 1= —Cqr (7"ny + s ET) = 0. (4.16)

This set of constraints is of course equivalent to the full simplicity constraint: solving
Z) — 0, we have 797 = 0 and hence 77 = 2pll BeY] for some B*/. % then

demands that B = E9/,

We will decompose the rotational components of the simplicity constraint even further
into trace and trace free parts with respect to E*/. To this end, we define the inverse
of E¥ B, := %qabEbI, satisfying Fq;EY = (52 and F,;E®; = 07y and introduce the

decomposition of tensors of the index structure X, as

_ _ 9 .
Xary = X7+ ﬁEa[IXfﬂ? (4.17)
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4.2 Canonical analysis

where X := E“ X, 1. The superscripts “tr” and “tf” here of course stand for “trace”

and “trace free”, and indeed one easily verifies that
_ 2 _ S
Xory = Pur, M Xk = (S — an[Ing]EbK>XbKL (4.18)

is trace free with respect to E/. P here denotes the projector on the tracefree part.
Applying this decomposition to %7 we can as well project the corresponding La-

grange multipliers accordingly.

After these considerations, the total Hamiltonian reads

1
Hr = / dPz (Njf + N, + N9 + -;fuyaU

1 —tr o J
2 _lcf]xr

t5Cq1. 7Y 442 PET | VIPI(”) + p(nfny —s) + pa(E“In1)>. (4.19)
The non-vanishing Poisson-brackets can be read off from (4.12)),

{Aalj(x>77rbKL(y)} — 267 [K L]5(D)( —1),
{E@). P )} = dgn5s P (@ —y),
{n'@). P )} =05 (@ —y). (4:20)

4.2.2 Constraint analysis

In order to perform the constraint analysis of the Hamiltonian Hy given in (4.19)), we
introduce smeared constraints €[f] := [ dPz f - €, where the smearing function mir-
rors the index structure of the constraint 4 under consideration, and, following Dirac,
check if they are either (at least weakly) preserved by the time evolution generated by
Hr, or fix some Lagrange multipliers of the set {N, N¢, )\IJ,EZfIJ,EI,EaI,W?,W,P,pa},
or lead to new, secondary constraints. We already obtained the secondary constraints
A, 7, and Yy in the last section from evolving P(M, PCS V) and P( ). In the following,

we will investigate the evolution of the remaining primary constraints.

For the constraint demanding that n! be a (timelike) unit vector, we find

Oé/def {n )—s HT}—Z/dent'y[, (4.21)
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4. PALATINI ACTION AND CORRESPONDING 2P CLASS CONSTRAINT SYSTEM

and therefore, ¥/ = 4. Since ! multiplies the momenta conjugate to n!, the Hamilto-
nian flow is such that it does not change the length of n/, exactly as expected. Stability

of /% requires
| _ _
0~ {Y“I[fal],HT} = / dPx far(z) {—877“”(:5)71](96) — Eal(x),HT}
= / dPx for (—s{x*" Hr}ny — sn7~y; — 5. (4.22)

Notice that in the last term, only the rotational parts of v/ survive since f, is projected
accordingly. We will not detail the computation of the left-over Poisson bracket between
77 and the total Hamiltonian, which is however straightforward. One finds that .7%

is stable under the time evolution if we choose

:)/al — —(()ZI — XIJE(ZJ _ 2(DbN[a)Eb]I +Nbﬁ§DAbEaJ - N <qqabﬁ§ _ EaIEbJ> DAbTLJ.

(4.23)
Similarly,
0~ / 4Pz fu(x) {E* (@) (x), Hy)
- / dPz f. (V! +~'E%Y) (4.24)
can be solved by choosing
v =58 = —"E;. (4.25)

For the constraint demanding the vanishing of the momenta conjugate to E%;, we have
|
0~ / dPxf (x) {Péf)(m),HT} = / dPx Y (sGar — pani). (4.26)
g g

Decomposing f* into boost and rotational components, we find that both, é,; = 0 =

pa- With the same method, we find p = 0 = €', since

0 é/de f(x) {P}n)(x),HT} z/de fH(=2n1p—¢f). (4.27)

Finally, we come to the trace and trace free parts of the simplicity constraint. It
is helpful to notice that we actually never have to calculate the derivatives of the

projections we introduced when calculating Poisson brackets, since e.g.

(L, =Py AR, Y+ PIEHPYY ke, R Py AR, L
(4.28)
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4.2 Canonical analysis

Therefore, it is sufficient to calculate the time evolution of .#%Y and decompose its

multiplier after calculating the Poisson bracket,
0~ {57 furs) Hr} = [ 4P G s (@) {5 0). )
~ / APz furs (—NDAI, (Wb[[\Kﬂ_aU]K)
+ Bl (w” — g AFI — s(DyN)EM 4 N DAan]))
~ / dPy <—5Jy fars EP DA, )
+ far BV (—W” —ng AW — s(D,N)EY 4 NP DAbn”>>
~ / dP <_5]yﬁ§1;JEb[IDAbEa|J] — AT~ KT - S(Db]y)EbI

sN
+Nb DA n 4= (51) EbIECJ)DAbECJ

5= ) (4.29)

where we have used the simplicity constraint several times and in the last step separated
trace and trace free components of the multiplier f,7;. The corresponding terms have

to vanish separately. For the trace components, we simply fix

' =75 = —ng AT — s(DyN)E" + N D4yn' + (850t — EM E, ;) DAYy EY

(4.30)

D-1

The trace free part cannot be dealt with by fixing multipliers, since we know that the
only possible choice, N = 0, is physically not viable, corresponding to a degenerate

spacetime metric. Therefore, we have to introduce an additional constraint,
987 = —9sPul o BN DA B (4.31)

Note that this transversal and trace free projection of the term in (4.29) is sufficient,

since the smearing field is projected accordingly.

This ends the stability analysis of the primary constraints. The total Hamiltonian

is reduced to

1 n
Hy = / iz <N% + N+ A9 + *Ezfuya” ¥ PP + 4L P )>, (4.32)

51



4. PALATINI ACTION AND CORRESPONDING 2P CLASS CONSTRAINT SYSTEM

where 73! and 4 are fixed functions of phase space variables and the remaining free

Lagrange multipliers as given in (4.23] [4.25| [4.30)). The secondary constraints are .7¢,

H,, 4917 and 9&1 7 and the next step consists of analyzing their stability under the
Hamiltonian time evolution. As we will see, 5%‘;1 7 and .@taf[ 7 form a second class pair
and the remaining secondary constraints are (or better, can be made) first class and
correspond to the first class constraints we already encountered in section the

Hamiltonian, spatial diffeomorphism and Gauf} constraint.

Starting with ¢!/, it is easy to verify that its action on the phase space variables

Aqary, 7KL is given by so(1, D) or so(D + 1) transformations,
1
{Aau, ngL[fKL]} =D f11, (4.33)
1
{9, 20 M ra) | = ) (4.3

It satisfies the commutation relations of the so(1, D) or so(D + 1) Lie algebra and

Poisson commutes with 7 and %%, since they have no free internal indices,

{39710 39 bwal | = 39 ] (1.89
{;gw[fuL %”a[Na]} =0, (4.36)
{;g”[ fu],%uy]} — 0, (4.37)

It trivially Poisson commutes with all constraints which do neither depend on A, s nor
7KL but not with the simplicity constraints. However, since both, Péf) and P](n) are
constraints, we can introduce a linear combination of constraints which we will call the

“improved” Gauf} constraint
gj] = DAaTra[J + 2P{§5)Eaﬂ + 2P [nJ); (4.38)

which now generates SO(1, D) or SO(D + 1) transformations on all phase space vari-
ables, and therefore weakly Poisson commutes with all constraints, in particular is
stable under the Hamiltonian time evolution. Since the constraints we added were
already stable, we know that also the original constraint ¢!7 is, which can also be

verified by direct calculation. Since the diffeomorphism constraint J#, as we defined
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4.2 Canonical analysis

it here generates spatial diffeomorphisms mixed with internal SO(1, D) or SO(D + 1)

bKL

transformations on A,;; and 7°**, it is convenient to introduce

_ 1 1 1
A= Ay = S Aars 9" = S0, gy = 50y (wb”Aal J) : (4.39)

A, now acts on Agry and KL by generating spatial diffeomorphisms solely,

{Aau, «%%[fb]} = PO Aars + (0uf’) Avrs = Ly Aats, (4.40)
{WGIJ,%[]CI;]} _ fbabﬂ'aIJ _ (8bfa)7TbIJ + (abfb)ﬂ_aIJ —_ gfﬂ_aIJ' (441)

From this and , we can deduce
[ AL AN = Aa(ZpNY) — S N Foa ], (142
{Aals ), AN = HLLN] + G [N F70 5 i), (4.43)

where (ZyN)® = fo0,N® — N%9,f* and (£ N) = fP0,N — NOyf? (note that N is a
scalar density of weight —1). Like in the case of 4!/, A, trivially Poisson commutes
with all other constraints except the simplicity constraints, which we can rectify by
introducing the “improved” spatial diffeomorphism generator

1

Ha =5

7 1 E E n
7 bl 8aAb1J — *ab <7TbIJAa]J> - E”@aJDb(I ) + 8{, ('PG(,I )EbI) + PI( )8an1,

E|WhiCh is, upon smearing the constraint and partially integrating, again a linear com-

bination of constraints, and now generates spatial diffeomorphisms on all constraints.

Like ¢17 , it is therefore first class and in particular stable, and implies stability of

;. The Hamiltonian constraint at this point already commutes with most of the con-

straints present in Hr, and what is left to study is its Poisson bracket with itself and

the transversal trace part of the simplicity constraints. For the former, we have
[M), AN} = 3.0 [(MOLN — NoyM)zt x|

3
+ / dPx 5 (M0, N — No,M)rf; s LR
g

~ —s o [(MO,N — NoyM)aq™) (4.45)

!The sign difference in the terms containing the hybrid vielbein when compared to of course
are due to the fact that here, although E%! is a density of weight one, we still treat P;f) as momenta,
whereas K,; in constituted the configuration variable. The same difference in sign of course
appeared already in 47 when compared to .
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4. PALATINI ACTION AND CORRESPONDING 2P CLASS CONSTRAINT SYSTEM

which is reminiscent of , except that M, IV here are densities of weight -1. Again,
it is helpful for this calculation that, due to the antisymmetry in M, N, only terms
x MOyN — NOpM are non-vanishing, and furthermore, a relation satisfied by the con-
traction of so(1, D) or so(D + 1) structure constants was used, cf. appendix [D| The

term in the second line vanishes when using the simplicity constraints.

For the Poisson bracket with the total Hamiltonian, we now find in analogy to (4.29)
{21f], Hr} = {Xf], 5 L FaTel ) ~ “”[fcau] ~ 0. (4.46)

The Hamiltonian constraint therefore is also preserved.

Finally, the last secondary constraint to investigate is .@“I 7. We find

1
{3700 A} = [ Pa Jrs ety an
with
FOIIOKL _ gg palK gL olJ) (4.48)

Any contraction of this matrix with n! vanishes, it is symmetric in the exchange of the
first set of indices with the second set, and although it is not trace free, it preserves
the property of trace freeness, in the sense that ngl Sy FPELeMNE o — 0. Most

importantly, it is invertible, and its inverse is given by

(F_l)aIJ,bKL = —sEqaalpp (ﬁABﬁK[IﬁJ}L - Qﬁﬁﬁj][Kﬁf}) : (4.49)
L el JpKL (1 A 7
SFE(F )bKL,cMN = 2057 » (4.50)

2

which shows that .7 7alJ and @é’fK L are a second class pair. Therefore, to stabilize @bK L

we can fix the Lagrange multiplier 625 7, because
1-
{ bKL[ FE 1 Hy) = /de 2f;§]< 2FaIJbKL att +EaIJ> ~0, (4.51)

where we denoted all contributions which do not stem from the .74/ [ct!, ] term in Hr

with Z“I 7 after partially integrating terms where derivatives acted on fa 17+ Of course,
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4.2 Canonical analysis

trace or boost components of the resulting terms contributing to E“I 7 vanish because

of the projection of the multiplier. Choosing

Cars = Catr = (F ) arsrcr S0 s (4.52)

@bK L

the constraint is stabilized. Finally, the total Hamiltonian reads

Hry = / Pz (N%” + NI, + /\U%” - g—gf[ww Y PP + %PI(")>

= /dDm<]y<%Z+Na<%%+ 2(A[J+NaAa]J)EéIJ>. (4.53)

In the last step, we noted that the only free Lagrange multipliers left are N, N® and A/,
i.e. upon inserting (4.23} |4.25} 4.30} 4.52)), Hp must be of the displayed form. Moreover,

by general arguments, at the end of the stability analysis the total Hamiltonian is a
linear combination of first class constraints. Explicit calculation shows that, indeed,
the “improved” generators of spatial diffecomorphisms 5%, and SO(1, D) or SO(D + 1)
transformations ¢! given in appear, as well as a first class Hamiltonian
constraint J# , whose form is rather complicated and we refrain from displaying it
explicitly. At this point, we could already by counting degrees of freedom deduce that
all other constraints have to be second class. We will work out the second class pairs
in the following explicitly and postpone counting of degrees of freedom to the end of

the next section.

4.2.3 Second class pairs and degrees of freedom

We already found the first class constraints A, H,, 917 at the end of the last section,
and in the following will decompose the remaining constraints into second class pairs,
i.e. block-diagonalise the Dirac matrix. We expect that Z‘%I 7 and foK L are a second
class pair since the corresponding part of the Dirac matrix is invertible. Indeed,
since all constraints except @ffKL Poisson commute with Z‘EI 7, we can substitute all

remaining constraints by

v /jt%w <{9tf’ ‘%f}A)aIJ,bKL {'@tbeL’ Cg} ’ (4.54)

which then Poisson commute also with @bK L. This notation is symbolic (notice that

the pointwise Poisson brackets are distributional): the matrix {Zy, .7} is ultralocal
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4. PALATINI ACTION AND CORRESPONDING 2P CLASS CONSTRAINT SYSTEM

and what is meant is its non distributional factor.

A further set of pairs is given by

(PP, =7 (Gur) + sE milgal | = { B[], (=77 + sE*/n ) [gui] |
= { PP B lgur]}

— [ @Pa et -3 g (4.55)
g
Another set of second class pairs is obtained realising that

PR = PR + P o) (4.56)

Poisson commutes with all the above constraints, and its second class partner is given
by

1 ST
D_lytl{[gﬂ} =

{
- {P’ﬁ")[ff}, <S(nKnK —s)n? + Dl_lj{r]) [QJ}}

P, S (n7ny = 9)[g) +

= { PP (g} = / dPx fr [-n}] o”. (4.57)

For the last two sets, the Dirac matrix (indicated by square brackets) is trivially invert-
ible, and constraints from different sets Poisson commute with each other. Therefore,
the determinant of the whole Dirac matrix, being block-diagonal, is given by the prod-
uct of the three subdeterminants corresponding to the three sets of second class pairs,
and since all of them are non-zero, the whole Dirac matrix is invertible. The structure
of the Dirac matrix is summarized in table and the counting of the degrees of free-
dom is given in table As expected for general relativity, we find (D — 2)(D + 1)

phase space degrees of freedom.

4.2.4 Solution of the second class constraints: e ADM formulation

The solution of the second class constraints is done analogously to the treatment by

Peldan [I03]. To solve the second class constraints, we use the ansatz

Agry =Tars+ Karg, (4.58)
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4.2 Canonical analysis

H P/gn) 1 Péf) Fral jt%u @tafu
POl o om0 0 0 0
n'E ) —nK 0 0 0 0 0
PPl o o] o @ omk 0 0
E'PE 0 0 | =&k 0 0 0
ZE%KL 0 0 0 0 0 FaIJ,bKL
_tbe(L 0 0 0 0 _FbKL,aIJ 0

Table 4.1: Palatini theory: structure of the Dirac matrix.

Variable Dof H Constraint ‘ Number
Aary D2(§+1) First class (count twice!)
1J D?*(D+1) 7
T —a t%f 1
n! D+1 H, D
Ea[ D(D + 1) gf]] D(D2+1)
Pl(n) D+1 Second class
PCEIE) D(D + 1) yaIJ D2(€+1)
> D?(D-1
alJ (2 ) _p
Epn; D
niny —s 1
E
2 D(D +1)
P D+1
Sum: | D3+3D?+4D +2 H Sum \ D3 +2D?+5D+4

Table 4.2: Palatini theory: counting of degrees of freedom
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4. PALATINI ACTION AND CORRESPONDING 2P CLASS CONSTRAINT SYSTEM

where T';; denotes the hybrid spin connection annihilating %! (cf. appendix. Fur-
ther, we decompose K,rs into K,y and Qn[If(a‘ 7] and solve the simplicity constraints
strongly, 797 = 2nll E*J] Solving the constraints demanding that n! is orthogonal to

E%l and has unit length leads to

IJ1...JDEL11 B

€ . €

J Jp-ai...ap

nl = - 2 , (4.59)

D!y/det B¢ E®

and in the following, it will be understood that n; = n;(E®/), and thus that the

constraints nin; — s ~ 0, E*n; ~ 0, and P,, ~ 0 are solved strongly. The boost

(longitudinal) part of the Gaufl constraint becomes using the above ansatz for A,rs

n[IAJ]DAaﬂ'a” = s\ KSR = sA KL, (4.60)

Again using this ansatz, we find for 9&1 J

1. - _
Sl 7§ = —sfi BV DY B
1., 1

= —§f<§1}JFaU’bKL§K1§§<L- (4.61)

We see that .@tafl 7 demands the vanishing of the transversal trace part of Koy, and
together with the boost part of the Gauf} constraint, we see that Ka.r; ~ 2n;1 K, -

The latter, however, we will not solve strongly.

Since we solved second class constraints, we have to perform a symplectic reduction
and determine the new symplectic structure, which is analogous to the symplectic re-
duction of the 3+1 Palatini action in [I03]. In addition to the above considerations, we

set PLEIE) = 0. The symplectic potential now reads

%WQUAGU = pll pal/} (fau + KaIJ)
= ! ((D"aBgy = DV oBf + B Koy
= —0,(n'E%) + n'EY K15
=—E“nK, ;-2 EY K,

= BEY(—nyEIKY — sK,j)

— BYE, (4.62)
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4.2 Canonical analysis

where we have dropped total time derivatives and divergences, and in the second be-
fore the last step we used that n! is transversal, ie. n! = 7//n; = E,/E%n; =
—E, n JE“ Notice also that we keep the trace part of K,rs since we do not solve

first class constraints at this point.

In the last step, we have to express the remaining constraints #, ., and 4!/ in
terms of the new canonical variables. Note that we do not need to consider their hat-
ted versions, since the difference is a linear combination of second class constraints

which are now all solved strongly. The calculation yields

@' = 2E{ K, ), (4.63)
My ~ —2D, EY Ky 5, (4.64)
H =S BT EY RN 15+ EVEM K Ky, (4.65)

which coincides with the constraints (3.27} [3.28] [3.29)) up to the subtlety that J# now

has density weight two. We have neglected terms proportional to the Gaufl constraint
in the expressions for %, and .#. RH ;7 denotes the field strength of the hybrid spin

connection. Thus, we arrive at the extended ADM formulation considered before.

Finally, we want to remark that one does not necessarily need to solve all second
class constraints: one could also try to only solve one or two of the three sets in table
The possibility to only solve P’ (In) and n’ indicates that one can also perform
the analysis without introducing n! as an independent field in the beginning, but it
probably becomes more complicated. Furthermore, expressing E*/ and n! appearing
in LVZ?K L and .@tbe L by 717 and then solving all but this set of second class pairs leads

to the formulation we will encounter in the next section.

"'We also used D' ,n! = 0 which follows from E?nl =nin; —s = DFEE? = 0: we have for the
longitudinal part ny D" on! = DV, (nrn’/2) = 0 and for the transversal part E2D" ,n' = DT, (Ebn') =
0.
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Plebanski and related

formulations

5.1 BF theory and Plebanski action

Before coming to the Plebanski formulation, we will shortly introduce BF theory. BF
theory is a topological field theory in any dimensions, and its name stems from the
form of its action, being

Spr|A, B] = /ﬁ Te(B A F), (5.1)

where F' is the so(D + 1) or so(1, D) valued curvature two-form of a connection A in
the Euclidean and Lorentzian case respectively, and B is a so(D + 1) or so(1, D) valued
(D — 1)-form field. The trace is taken in the Lie algebra. The field equations are easily
found to be

F =0, (5.2)
daB =0, (5.3)

from which immediately follows that there are no local degrees of freedom. Actually, for
D = 2, general relativity in first order form coincides with D = 2 BF theory. The fact
that general relativity is topological in D = 2 allows the use of a variety of techniques
from TQFT and ultimately is the basis for the successes made with its quantisation

[184].
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5. PLEBANSKI AND RELATED FORMULATIONS

In D = 3, a basic object in BF theory is thus a two-form field By,. Plebaiiski [167]
was the first to consider not the metric or vielbein as a fundamental object in D = 3
general relativity, but instead (self-dual) two-forms, and wrote down conditions needed
in order that the vielbein can be recovered from these two-forms. These conditions are
now often called “simplicity constraints”. He also wrote down an action principle using
these two-forms, and remarkably, it is neatly related with BF theory. In essence, gravity
in D = 3 is “almost” the topological BF theory, more precisely, it can be formulated as
BF theory subject to these additional simplicity constraints. This deformation of BF
theory is also the classical starting point of spin foam models [I85HI91], the path inte-
gral or “covariant” approach to LQG. The formulation we will present here actually is
not due to Plebanski, but a generalisation of his ansatz. In slight abuse of terminology,
we still named this section “Plebariski action” since the idea originates from his work.
The two-forms are not assumed to be self-dual, the formulation exists in any D > 2,

and was introduced by Freidel, Krasnov and Puzio in [169].

The action we want to consider is, in D + 1 dimensions, given by [169]
Srkpl[A, B, @] := / [Tr(BAF)+Te(BA®(B)), (5.4)
M
where ® is a certain Lagrange multiplier filed which can be contracted with the B field
in a certain way to yield a (D — 1)-form denoted by ®(B). It is constructed such that

the variation of Spgp with respect to the ® field results in the field equations

eUKLMB%BfgL = e“”paxcxﬁ (5.5)
for some coefficients CXM. The indices which are overlined denote totally antisymmetric
(D — 3) multiindices and B!/ = 2!(1)171)!e“"pl""’Dle[I)fmpD_l is the rank two anti-

symmetric contravariant tensor density (often called “bivector” in the literature) dual
to B,,. The equations define the simplicity constraints in Lagrangian form. The
name simplicity constraints stems from the fact that in the corresponding literature, a
bivector which is the exterior product of two vectors is called “simple”. This is exactly
what the constraint ensures. Namely, one of the central results of [169] is Theorem 1,

stating that (5.5) demands that B comes from a co-vielbein e,

B=+x(eNe), (5.6)
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5.2 Palatini formulation with BF type simplicity constraints

plus an additional degenerate sector of solutions in D > 3. Substituting back into the
action, we obtain (up to sign) the first order vielbein action of general relativity we
considered in chapter 4} Note that the sign ambiguity in is of relevance, it leads
to opposite sign of the cosmological constant in the corresponding solution sectors. For

D = 3, two additional, topological solution sectors are present,
B=+eAe. (5.7)

Since, as we already stated, spin foam models are based on the D = 3 deformed BF
theory, even modern models like the EPRL model [186, [189] suffer from these unwanted
(or even unphysical) sectors in that that their semiclassical limit is not given by (the
discrete equivalent of) e?>#H solely (see, however, [192] and references therein for a up

to date discussion and possible resolution of this problem using projectors).

As we already stated, we refrain from displaying the rather lengthy canonical anal-
ysis of the Plebanski action and refer the interested reader to [I70]. However, we will
perform the analysis of a related formulation, which one could call “Palatini formu-
lation with BF type simplicity constraints”. The BF simplicity constraints (or more
precisely, a slightly simpler version thereof) will play a central role, and are, in fact, at

the heart of the new variables we will introduce.

5.2 Palatini formulation with BF type simplicity constraints

We will start with the split form of the Palatini action before performing the Legendre

transform (cf. (4.12)),
1 . 1
S = /dt/dDZL‘ <27T/aIJAaIJ 7{\]%/ o Na%/ o 2)\]nglj> 7 (58)

where the notation is the same as in section We already know that N, N® and
Arg will become Lagrange multipliers and we can treat them accordingly already at
this point. We have to introduce conjugate momenta for A,y and E, 7%/ and Péf),
together with the constraints enforcing that Péf) = 0 and the simplicity constraints
demanding 7%/ = 2pl/E]. We can free all other constraints of the dependence
of B¢l as we did in section by using the simplicity constraint. Note that if we

wrote a simplicity constraint solely in terms of 7%/, the action would not depend on
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5. PLEBANSKI AND RELATED FORMULATIONS

E*l anymore and we could trivially solve the constraint PéIE) by simply dropping E*
and Pé}E) completely. But this is exactly what the simplicity constraints achieve in
BF theory, being formulated a priori without vielbeins. In our Hamiltonian setting,
actually a subset of the BF simplicity constraints suffices, since the variables n%j;

correspond only to the spatial-temporal components B‘}f] of the B field.
5.2.1 BF type simplicity constraints
Following this line of thought, the action we want to consider is given by

1 , 1 7
S = / dt / dPz (27T“IJAa1J — NA# — N, — img” — c%y;;> . (5.9
R o

where c% is a Lagrange multiplier field, symmetric in the index pair a, b, which enforces

the BF-type simplicity constraints

1 1
yﬁb = §(M* 1)yt = ZeUKLHﬂ'“UﬁbKL. (5.10)

The other constraints are the same as in section

gl7 .= DA77 = gm7 + (A, 7, (5.11)
1
H = —TGIKW”JKF&W, (5.12)
1
% = §7Tb[JFab[J. (513)

The action is motivated by [169], but as we already noted, we can also arrive at it by
taking the action from the previous chapter, dropping the variables E*/, n;, and all
constraints containing them, and introducing the BF-type simplicity constraint. The
theorem which relates 7%/ solving 5”%’ = 0 with the vielbein is a special case of

Theorem 1 from [169] for the full BF simplicity constraint,

Theorem 1.

In dimension D > 3 a generic field 717 satisfies the constraints
b
S =0 (5.14)

if and only if it comes from a frame field. In other words, a non-degenerate w7

satisfies the constraints if and only if there exist € such that

717 = 49, /qnlleal]] (5.15)
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5.2 Palatini formulation with BF type simplicity constraints

where q is the determinant of the inverse matriz of ¢*® = e e’;.

Like for the full BF simplicity constraint, the theorem also holds for D = 3 with the
additional appearance of a topological sector which we will neglect in the following.
We will provide a short sketch of the proof of this theorem. This proof as well is a
special case of the proof given in [I69] and we refer the interested reader to the original

literature for more details.

The constraints are divided into the categories

simplicity: 7% ;77 =0 (no summation),

intersection: 7Ta[]J7TbKL] =0 for a, b distinct.

We find it convenient for the following considerations to look at 7¢; as a two form

W?Jda:l A dz’. Tt can be shown that for a two-form By
B[IJBKL] =0 & Byy = uvg); (516)

which corresponds to the “simplicity” part of the simplicity constraints. Therefore, all
7¢; factor into uflvf}] (no summation). To complete the proof, we have to relate the
different u§ to each other. For this purpose, it is proved in [I69] that for two two-forms

B[J and B}J,
B[IJB}(L} =0 & B[J:’U/[I'U']} and B}JZU[IwJ], (5.17)

meaning that the two two-forms share a common factor which is unique up to scaling.
This relation is ensured by the intersection constraint. Combining these two arguments,
we realise that 77 ; factors into one-forms with a common factor. Introducing the correct

density weight and a suitable normalisation, we obtain

The sign can be absorbed into n! for D + 1 even, the otherwise appearing signs can
be absorbed into the Lagrange multipliers in the Hamiltonian. We remark that in the
general case discussed in [I69], additional normalisation constraints are necessary and

the proof becomes considerably longer.
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5. PLEBANSKI AND RELATED FORMULATIONS

The property of n! being time-like in the Lorentzian case will be enforced by another
constraint. Namely, since we want the metric to be positive definite, we impose the

constraint
st 7l ~ 29 > 0, (5.19)

where the greater sign means positive definiteness of matrices. In the Lorentzian case,
the relation is only satisfied if n! is time-like, because E%! E}’ would be indefinite other-

wise. This non-holonomic constraint of course does not reduce the degrees of freedom.

5.2.2 Constraint analysis

From the above action (5.9) we “read off” the non-vanishing Poisson brackets as
{Aarg, KL} = 2(525{1( (55}. Most of the canonical analysis is the same as in the previous
chapter and we will only describe the differences. The Poisson bracket

{7, 21N} = - {(% N — NoyM );ﬂ“”ﬂ‘b}

s J—

+ .7 [(%aajy — N9, M) M 7€), JngJ] (5.20)

~'2(D-3)!
of two Hamiltonian constraints reproduces exactly the BF-simplicity constraint and
shows that the theory would be inconsistent without this constraint. The BF-simplicity
constraint is stable under spatial diffeomorphisms and internal rotations as reflected by

the Poisson brackets

{AalNe), 2hled)} =~ | (Lwe)ad] (5.21)
and
1 e = My...M;_y M!Miyy...M
{2g1J[A1J],yﬁ[c%}} _ y%b Z /\MiM{Cablm i—1 M Mg 1.e D—3] , (5_22)
i=1

and trivially commutes with itself. As in the previous chapter, the Poisson bracket

with the Hamiltonian constraint
{F1ci), # N} = 732 [Nelf | + 721 (5.23)
imposes a new constraint

7% = 2(M 4 7€)y K DA 7D (5.24)
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5.2 Palatini formulation with BF type simplicity constraints

To show its stability, we have to show that the Poisson bracket of this new constraint
with the BF-simplicity is invertible. Irrespective of this, we emphasise that @aﬁb is

stable under internal rotations, reflected by

D-3
{;g”[m], @gj[d%]} = 9% [Z At MMM Moss |5 95
i=1
Concerning the diffeomorphism constraint, it is easy to see that we can extend the co-
variant derivative in .@aﬁb to act on spatial indices via the Christoffel symbols. Namely,
adding the corresponding terms to the constraint, we see that, due to the symmetry of
the Christoffel symbols in their lower indices, the added terms are proportional to sim-
plicity constraints. @“Mb therefore transforms like a scalar density of weight +3 under
spatial diffeomorphisms and the Poisson bracket with the diffeomorphism constraint
has to be proportional to the _@aﬁb. Another easy way to do this calculation is to use the
Jacobi identity after expressing Qaﬁb as a Poisson bracket. We do not know of any nice

way to express the Poisson bracket of _@aﬁb with the Hamiltonian constraint and will

leave the discussion of this bracket open, as its value is not important in the following.

A counting of the degrees of freedom which are reduced by the BF-simplicity constraint
(i.e. 717 — B4l yields D?(D —1)/2 — D which is for D > 3 less than the number of
components of the BF-simplicity %D(D +1) (Dzl)' The BF-simplicity constraints are
therefore not independent and the matrix formed by calculating the Poisson bracket
with @aﬁb cannot be invertible. The solution to this problem is to find an independent
set of BF-simplicity and & constraints which still enforce the same constraint surface.
The constraints of section do have this property and lead us to the following ansatz:
We choose some internal time-like vector n! with n/n; = s which may vary as a function

of the spatial coordinates and decompose 7/ as

7_‘_aIJ — ,ﬁ_aIJ + 2n[IElZ|J] (526)

as in the previous chapter. We also define E,; by E, B = 53 and n'E,; = 0. To-

In; = s this means that n! = n/[E] can

gether with the normalisation condition n
be considered as a function of Ef only and thus does not count as independent de-
gree of freedom. The BF-simplicity constraints plus the non-holonomic constraint are

equivalent with 7%// = 0 and n; being time-like in the Lorentzian case. However,

67



5. PLEBANSKI AND RELATED FORMULATIONS

7417 has D*(D — 1)/2 degrees of freedom and E¢ has D(D + 1) which together yields
D%(D +1)/2 + D degrees of freedom while 7%/ has only D?(D + 1)/2 degrees of
freedom. It follows that 7%/” and Ef cannot be considered as independent degrees of

freedom, there must be D additional relations among them. Indeed, in section [7.1.2]

we will argueﬂ that it is always possible to arrange that 7%/ = ﬁgfl 7 is automatically

trace free with respect to E,;. These would be the missing D relations and now the

BF-Simplicity constraints are equivalent with the D?(D—1)/2— D constraints 73/ =

which in number match with the constraints K ;fl 7 = 0 to which the constraints .@“Mb =0

reduce as we will now show below. At the moment we have no proof of this for D > 3

J

thus we will make the assumption that 7%/ can always be decomposed in this way. In

alJ

other words, we will only allow 7%/ of the following form: There is a tensor F%! with

qq® = nryEY EY positive definite. Let n/[E] be the unique normal vector satisfying

En; =0, n'n; = s. Take any tensor t*// and construct from it t%//[t, E] using
E,n[E]. Then 77 := ¢alJ 4 2nll E2/1 and automatically E4 = —sx®/n ;. For m!/

constructed in this way, we derived a fixed point equation in [2] which has obviously

J

non trivial solutions and the question is whether such 7®7 are generic.

Concerning the @% constraint, we make the same ansatz as in the previous chapter

and set
Aary =Targ + Karg + 201 Kq))- (5.27)

A short calculation yields

7 IJKLM@(II)
M

AB_(a|C A _b)DE
J(al1 ™0 KLE 7G5 DA )

= JF(a|IJ7T|b)KLGUKLMEABCDM”C
~ —(D = 3)/(D — 1) Kor s F'7 5 E fipep, (5.28)

where FAI7PKL denotes the same matrix as in (4.48). As before, we defined myrr, 1=

¢ Yqum K1, where ¢ gy is the inverse matrix of %ﬂauﬂbu, such that 77wy, =

250y . We notice that fars can be chosen traceless with respect to E%!, since any trace

IJKLM

part would drop out in the combination f(a| 1T KLE modulo the BF-Simplicity

constraint. The subset of Z constraints parametrised by f,r; = fg— 7 as above thus sets

!This is not trivial: For D > 3 one cannot use closed formulas for a proof. It is apparently necessary

to make use of fixed point theorems.
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5.2 Palatini formulation with BF type simplicity constraints

the trace free part of K,r; to zero. When inserting the solution of the BF-simplicity
constraint into the full .@aﬁb constraint, we get

@aﬁb =~ QSGABCDM’I’LAECBE(alch)EKCED (5.29)

and immediately verify that the solution I_(;fl 7 = O solves all the 2 constraints because

the trace part of K.gp drops out in the above combination.

From these considerations, we realise that it is legitimate to use the Lagrange mul-
tipliers displayed in and therefore only a subset of the & constraints. It follows
that we only have to check the stability of this subset of constraints. To form the Dirac
matrix, we choose similarly a subset of BF-simplicity constraints equivalent to ﬁgfl T =0

and calculate

[ @ [ Pyl58 e @) { £, 7580 i unmaor YO w)

~ 4D —-1)%((D - 3)!)2/ dPx fit ol JOKLGtE (5.30)

We can therefore adjust the multiplier of the BF-simplicity such that the indepen-
dent subset of & constraints is stable under time evolution and finish the canoni-
cal analysis. Since the Dirac matrix is invertible, the chosen subset of BF-simplicity
constraints has to be independent. The number of BF-simplicities in this subset is
equivalent to the number of degrees of freedom in a transverse trace free matrix, i.e.
D?*(D—1)/2—D = D(D+1)(D—2)/2 and matches the degrees of freedom which are to
be taken out of the system by the full BF-simplicity constraints and all BF-simplicity

constraints can thus be derived by taking the linear span of this subset.

The solution of the constraints proceeds analogously to the previous chapter, the only
difference being that we do not need to solve the momenta associated with E! and n!.
The two formulations presented are therefore equivalent.

5.2.3 Degrees of freedom

As in the previous chapter, we check the degrees of freedom of the Hamiltonian system

derived using the BF-simplicity constraint. For J# to become a first class constraint,
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5. PLEBANSKI AND RELATED FORMULATIONS

we construct the linear combination (using the same abuse of notation as before)

A=~ | T (D T} ) {AE ) 5.31
| 7 ({90 7a)7) e {9 (5.31)

Since the Dirac matrix between the independent BF-simplicity and .@aﬁb constraints is

invertible, they are of the second class. The rest of the constraints is of the first class.

The difference between the degrees of freedom and the weighted sum of the constraints

Variable DoF H Constraint ‘ DoF
Aary % First class | (count twice!)
IJ D2(D+1) 7
¢ —3 W 4 1
I, D
IJ D(D+1)
Y 2
Second class
b D?(D-1)
5”% D2(12) 1) b
b —
QCLM —5—-D
Sum: D? + D? H Sum: D3+ D+2

Table 5.1: Palatini theory with BF simplicity constraints: counting of degrees of freedom.

is again (D + 1)(D — 2) and matches those of general relativity. Solution of the second
class constraints is in analogy to the treatment in section[4.2.4)and leads to the extended
ADM phase space. Note that, instead of solving the second class constraints, one could
as well work with the Dirac bracket, but then the connection A,;; is not Poisson
self-commuting and the loop quantisation programme at least not directly applicable.
For research in this direction, which however usually considers D = 3 and the Holst

modification of the action we will introduce in section [6.1] cf. [193H196].
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D = 3: Holst and CDJ action,

Ashtekar (Barbero) formulation

6.1 Holst action

Holst [145] was the first to write down an action for Ashtekar Barbero variables, and he
also gave a canonical analysis using time gauge. Like the Ashtekar Barbero variables,
this action only exists in D = 3. Barros e S& [146] reconsidered the analysis without
choosing any gauge fixing. We will follow his work and, only after having solved the

second class constraints, choose time gauge to obtain the Ashtekar Barbero formulation.

Holst’s action is given by

)
SHolst = ;/ d4X QQNIGVJFW,IJ, (6.1)
M

where the notation is the same as in the previous chapters. We additionally introduced

) ™)
the notation X!/ := .#17 ; XKL where the matrix .# is given by

(7) (1

J
///IJKL = 77K77L]

1 1J
— 6.2
+ 275 KL, ( )

and v denotes the Barbero Immirzi parameter [16-19]. This action coincides with
the Palatini action we studied in chapter [ except for this additional matrix, which
amounts to an additional term o % While the Palatini action, as we have seen, in any

dimensions yields general relativity, the additional, so called Holst term only exists for
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6. D =3: HoLsT AND CDJ ACTION, ASHTEKAR (BARBERO) FORMULATION

™)
D = 3. The matrix .#!7 g is invertible if 42 # ¢, and its inverse is then given by

™) 2 1
(ﬂfl)UKL = VQV_C (77%77;} - %YGIJKL> . (6.3)

In the following, we will restrict to the invertible case for convenience, but want to

remark that the cases we excluded, 42 = (, of course can also be dealt with and, in
fact, correspond to Ashtekar’s original variables. The corresponding action, which then
only depends on the self-dual part of the connection, was written down by Jacobson
and Smolin [I97] and, in fact, was the first action known to yield (complex) Ashtekar
variables when passing to the Hamiltonian picture. Furthermore, the internal signature
¢ of course here coincides with the space time signature s = , but for later convenience,

we use to define .#Z 1 as above.

To see that this is a valid action for gravity, it is instructive to vary the action with
respect to the so(4) or so(1, 3) connection A,!7. The calculation is analogous to section
using 5FWU = QVA[M(SAV}” we easily obtain

1
dSHolst = ;/ d*X eetre” ; <5FWU + 276UKL5FWKL>
Vi

()
= —s/ d*X (VAuee“Ie”J) A, (6.4)
M

Here and in following calculations, it is useful to note that

() ™)

Te(XY) = Te(X Y), (6.5)
(7) () )

TH(XYZ) = TH(XY Z) = TH(XY 2), (6.6)

Ko — xS = v, (6.7

™)
Because of the invertibility of .#!7 for 42 # s, one immediately finds the field
equation VA# (ee“[le”m) = 0. The solution is given by Au” = FH”, as we already
have seen in the Palatini theory. Reinserting into the action, we find that the term

proportional to % vanishes due to the first Bianchi identity,
eIJKLee“Ie”JRWKL =P Ryype =0, (6.8)

and the action thus reduces to the second order vielbein formulation we considered in

section [3.11
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6.2 Canonical analysis: Ashtekar Barbero formulation

6.2 Canonical analysis: Ashtekar Barbero formulation

6.2.1 3+41 split and Legendre transformation

The 3 + 1 split and canonical analysis of the Holst action is performed analogous to
section 5.2l We find

()
SHolst = ;/ d*X Ne (He“l‘leyj—i-an“n["e”J) FWU
M

() 25, M
_ 3 / d*X Ne [6“1'6% Fu'l+ Ns(n[l”eyﬂ) (ZrA =D, At = NUEL)
M

S () ™) . A
:/dt/ 3z §N€€a[6bJFabIJ + (en[[ebj]) (AbI‘] — D4 AT — N“Fab”)

Y

1 () 1 .
:/dt/ P LJYWaIKWbJK F ol i(%'_)blj (AbIJ _ DA A NaFabIJ)

(6.9)

1J IoalJ].

where 797 := 2enl Holst proceeds by choosing time gauge, but we refrain from
doing so. We have three possibilities of how to proceed without choosing any gauge
fixing: a) following Dirac, introduce momenta conjugate to e, A and treat all of them
as independent phase space degrees of freedom like in section b) partially integrate
the kinetic term 7A — 7#A = éK’ and to treat only e, K’ as phase space coordinates,
c) drop e and instead, introduce the BF type quadratic simplicity constraint of section
and work on a phase space coordinatised by A and its momenta 7. The easiest is
b) and leads to Ashtekar Barbero variables after choosing time gauge. c) reproduces
b) after solving the simplicity constraint and its arising second class partner. a) leads

to a much larger phase space, which also can be reduced to b). We will follow route c),

and can read off from the non-vanishing Poisson brackets
(2]
{Aars (@), 7" (y)} = 277{1(775}525(3)(95 - ) (6.10)
and the Hamiltonian

1
H— / B NA + NGy + N+ ™, (6.11)
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where
H = —;W%KW%K(JZ)M”, (6.12)
Ho, = %(%)bIJFabIJy (6.13)
Y1 = DAb(%)bIJa (6.14)
b = %(*W“)Iﬂrb” = ieUKLW“UﬂbKL. (6.15)

6.2.2 Constraint analysis

The constraint algebra is easily obtained using the details on the derivation of the
constraint algebra in section [5.2.2] The calculations are equal up to the appearance
of the matrices 9/} , #~', which, however, can be easily included using .
%1y and J7, again ge’rylerate internal SO(4) or SO(1,3) transformations and spatial
diffeomorphisms (mixed with internal transformations) respectively, and .7 trivially

Poisson commutes with itself, so we will only display the remaining Poisson brackets.

We find

{%”[M],%”[N]} — A, [(% ON — NoyM )iw””w%]

+ 5.7 [(%&Jy — No.M );(*WC)IJ%)cbIJ : (6.16)
{7 [ca), [N} = 2™ [New), (6.17)

where
2% = 2(sxm®) 1y e DA 7 (6.18)

exactly coincides with (5.24)) for D = 3. Like before, they form a second class pair,

{yab[cab]’ gcd[dcd]} — / dgl‘ CabFabcddcd

4’y2

72_

+

85’ ab [5” “U(Capled — Ca(edayy)

1
- ;qud(caded — Ca(elayp — Co(cdaya + Ceadab) |,

(6.19)
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6.2 Canonical analysis: Ashtekar Barbero formulation

where we defined Febed .= —%qQG“b @ and from (2.16)) we know that this matrix is
invertible. Like in section we can therefore stabilise 2% by fixing the Lagrange

multiplier ¢, in the action and end the stability analysis.

Variable ‘ DoF H Constraint ‘ DoF
Aurg 18 First class | (count twice!)
alJ 5
oL 18 V% !
I,
g[]
Second class
yab
7% 6
Sum: ‘ 36 H Sum: 32

Table 6.1: Holst with BF simplicity constraints: counting of degrees of freedom.

6.2.3 Solution of the second class constraints, time gauge

To solve the second class constraints, we make the ansatz A5 = Larg+ (K) alj- Inserting
¥

this into the 2 constraint and using the solution of the simplicity constraint =/ =

2nl E9lY] we find that again the transversal trace free part of K,r; is fixed, and this

time does not have to vanish but is given by

_ 1 _ 1 _

KctlfIJ = §PZfIJbKL€KLMNTLMKbN [ ;EIJMNTLMKGN. (6.20)
Note that the last expression is weakly trace free since its trace part is proportional to
the rotational components of the Gaufl constraint expressed in the reduced variables,

which we will give below. For the symplectic reduction and the constraints expressed

in the reduced variables, we will only give the results. More details on the calculations
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6. D =3: HoLsT AND CDJ ACTION, ASHTEKAR (BARBERO) FORMULATION

can be found in section [9.3] where very similar considerations can be found. We find

1 . . — 1
7(7'_‘)/_)aIJAaIJ — _paJ (SKaJ + 56”KLnIFaKL

- 1
—nyE! <—K}r + MGIKLMEbKFbLM>)

[\

_ BA,, (6.21)
1

gl =2 <E“UA§ + EEUKLaa <nKEg)> : (6.22)

A~ BP0, A — O (E“Aa[) . (6.23)
1 1

A ~ Elll gl <AaI - 25MIKLnMPaKL> (AbJ - €NJABnNPbAB>
Y 2y
S
- iEaIEbJRabIJa (6.24)

where in the expression for .77, we dropped the term +%Aa1 791 In A, we used
(6.20) and the fact that K/, being proportional to the the boost part of the GauB

") _
constraint, weakly vanishes, and therefore K,7; ~ 2.4 1;MVnyK,n. Note that Agr
cannot transform as a connection under 477 at this point. Only after introducing time

gauge n! = 55 & E% = 0 and solving its second class partner, the boost part of the

GauB constraint G% = —E%AY we finally arrive at the Ashtekar Barbero formulation
EYA, — EYAL, (6.25)
G — %ei’fﬂ'c:ij = 0, B + M ALE'Y, (6.26)
S, = Hy = B9, AL, — 0, (E'biAgu.) : (6.27)

H — A = Elli gl <Am- - ;eﬁlrakl> (Abj - ;yejm"rbmn) - gEaiEbjRabij
~ %eiij(;bkE’“iE’bj — % (1 — s7?) €ijiRap B B, (6.28)

where terms proportional to the Gaufl constraint have been dropped in the expression

for the Hamilton constraint. Here, we introduced the primed variables A/ := —syAg;
and E'% .= —%Ebj and used the notation F;bij = e F, k.

Let us very briefly point out the special features of this formulation:
1.) For the choice 42 = s, the (density weight 2) Hamiltonian constraint ([6.28)) takes a

very simple form. However, for the physically relevant Lorentzian spacetime signature,
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6.3 From ADM to Ashtekar Barbero variables: Integrability of the spin connection

the corresponding connection variable is necessarily complex.

2.) For v € R/{0}, the connection and its conjugate momentum are real. They satisfy
standard Poisson bracket relations and the gauge group is compact. These properties
lie at the heart of the loop quantisation programme, as we will see later. The cost is a

more complicated Hamiltonian constraint, which however can be dealt with [30].

Variable ‘ Dof H 15% ¢l. constraints ‘ Dof (count twice!)

EY; 9 W 1
Ay’ 9 H, 3
G 3

Sum: ‘ 18 H Sum: 14

Table 6.2: Ashtekar Barbero formulation: counting of degrees of freedom

6.3 From ADM to Ashtekar Barbero variables: Integra-

bility of the spin connection

Of course, this formulation also can be obtained starting from the ADM phase space,
which we want to comment on briefly. Following [62] where this issue is nicely discussed,

the passage can be nicely separated in three steps:

1. {qup, P4, 5} — {Ky, EY; 0, 5,49} : Extend the ADM constrained Hamil-

tonian system by introducing a densitised vielbein, i.e. an SO(3) gauge symmetry.

2. {Kai, E%} = {()Kai (MEY}: Perfom a constant Weyl rescaling with the Bar-
bero Immirzi parameter v, M Eb = '7Ebj and (V)Km = %Km’. This transforma-

tion is, of course, canonical.

3. {(y) Kais MEYY — {Ag, WEY}: Perform a canonical transformation to so(3)

connection variables, where

1 .
Aai = Fai + (W)Kai = §€jikr‘a]k + (V)Kai- (629)

Note that the this last step is clearly singling out D = 3: To define A,;, we take a lin-

ear combination of the variable conjugate to the vielbein with the spin connection I'y;;.
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6. D =3: HoLsT AND CDJ ACTION, ASHTEKAR (BARBERO) FORMULATION

Now, (,)Kai, like the vielbein, transforms in the defining representation of so(D) while

7)
I'yi; transforms in the adjoint representation. Only for D = 3, the defining and the

adjoint representation of so(D) are equivalent, which enables us to define A,; like above.

Step 1. has already been discussed in section and the second is trivial. There-
fore, what is left to check is if the transformation in step 3. really is canonical. Since
the spin connection I'y;; (cf. appendix |C)) is a function of E% and its derivatives, what
is non trivial is the Poisson self commutativity of the newly introduced so(3) connec-
tion Ag;. As we will see later when quantising, this self commutativity is central to the
LQG programme, since A,; (or, more precisely, the holonomies) will be represented as

multiplication operators, which would be inconsistent otherwise. We have

{Aui(2), Apj(y)} = / B [5,4@1 x)  0Ay(y) §Agi(z)  6Au(y)

(’Y ( ) 18] ECk(Z) (5(7)E6k(z) (5(7)ch(2)

|: 5Fbj (y) 5Fai (l’) :|
0E“(x)  SEY(y)]’

(6.30)

which is the integrability condition for I'y;. In the following, we will prove that
F := [ d*aT4E™ indeed is a generating functional for Tgi, 6F = [ d®aT'4;6 E*, and
therefore (6.30)) vanishes. To this end, consider

. 1 A ,
/ d*s B0 = 5 / @ \/aejine™ 8 (7 Daey”)
g g
1

5 / 3z VEjik (eaiebjéDaebk + em(5ebj)Daebk)

1 o . .
=5 / d3x VEjik (e‘“eb]DacSebk + e‘”(&ed)eqekaaebl)
(o

1 3 \/> abc k
=3 /ad . (e wDader + + (deck)Daey >

1
=3 / A3z €°9, (sgne ebkéeck> , (6.31)

where in the first step, we just used the definition of T'y; and E%, and in the second
step wrote out the two terms stemming from the variation. Note that in the first
summand, due to the antisymmetry in a, b, the covariant derivative D, commutes with
0, which explains the first summand in the third line. In the second summand, we
used to rewrite 6e% and (Dgep’)e? = —(Dgep!)eb* due to D,0* = 0 and metric
aighk — 1ecab

compatibility. Finally, we used €j;e“e and that sgne classically is a
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6.3 From ADM to Ashtekar Barbero variables: Integrability of the spin connection

constant. Neglecting the appearing boundary term, we see that the the transformation
in step 3 indeed is canonical. Note that if the boundary of ¢ is non-empty, we have to
improve the generating functional F, cf. e.g. [62, section 4.2] for details. Finally, let
us have a look at the constraints (3.35] [3.36] [3.37) when expressed in terms of the new

variables. For the Gauf} constraint, we have

1 . . 4
ieikjgw = €ikj () gai () Ko

= €ikj (W)Eai(,y)[(aj + (Da(v) E% + epjils’ 2 E‘”>
= D,VEY, + erjida’ (v) gai
= DA, VEY, = 9, (6.32)

where we added 0 = DY, E%, in the second step. A,; now transforms as a connection,

{Aui, 9% [N]} = =D\, (6.33)
{PE, GF M} = ey ANV EY. (6.34)
Concerning the spatial diffeomorphism constraint, we already know that it can be

rewritten as %, = (V)Ebiaa(,y)Kb,» — 8b((7)Kai(V)Ebi) up to terms proportional to the
GauB constraint from (3.32)). Replacing (,)Ka; by Aq;, we find

A~ VEY9,(A =Ty — (A — T EY)

= B9, Ap; — Op(AgiV EY) — 20V EY 9, Ty); + L4050, B
= EY8, Ay — 0p(AgiV EY) — l(w)Eb.ejikR yoE
7 al 2 (2 a
= VEY9, Ay — 0(Ag VW EY) =: 7, (6.35)

where in the last line, we used that e®;¢/** R,;,7% = 0 due to the first Bianchi identity.
It is easy to see that it generates spatial diffeomorphisms solely. Another form of

displaying this constraint often encountered in the literature is
A = DEYE — Ay =~ OV EY Fy,. (6.36)
Finally, using
%(”E‘“‘(”E’” Fapij = %”)E“M)Ebj (Rabis + 265 D ) Ky + 20 Kl K )

1 . ) .
= 5 B EY (Rabij + 200 Kjalj () Kjpjs) + DoV E“), (6.37)
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6. D =3: HoLsT AND CDJ ACTION, ASHTEKAR (BARBERO) FORMULATION

where Fypi; = eikj(Qﬁ[aAb]k + e¥m A ) Ay ) denotes the curvature tensor of Agy;, we find

for the Hamiltonian constraint

1 . 1 . s
~ e, MpeMpbip k.~ (Ve gbi (1 - 2 k. )
T 2\/aemk ab 2\/§ewk 72 Ry (6 38)

Of course, the constraints (6.32] [6.35] [6.38]) coincide with (6.26] [6.27] [6.28) up to the

different density weight of J# and inversion of the Barbero Immirzi parameter, v < %

6.4 CDJ action and the original Ashtekar variables

The successes with Ashtekar’s Yang-Mills type variables on the Hamiltonian side nour-
ished interest in formulations of general relativity in terms of a connection, and culmi-
nated on the Lagrangian side in the CDJ formulation [I71], a formulation restricted to
D = 2, 3, but almost purely in terms of a connection. In D = 3, it is given by
SopJ[A,n) = é ///, d*x QG;jlleUQ“, (6.39)
where Qi := etvro FMVinUj, wa is the curvature tensor of the so(3,C) connection
ALl 7 is a scalar densit of weight —1, and Gi_jlkl = 0;(k01)j — %51';'51@1 coincidently has
the same form as for D = 3 and therefore, the form of its inverse is given in
. Like the self-dual Palatini action, this action leads directly to a Hamiltonian
formulation in terms of complex Ashtekar variables and is therefore an action of general
relativity. Treating z° as time coordinate, we find using Q% = 4(Aa(i — DA, Ay B9,

Baj — €achbcja
Lo aby i iN( AT j
Sy = [ d'X GaGH(A = DY) (A7 — DY) (6.40)

where G;’;’ = 4Gi_klle“kal. The canonical momenta are given by

Py =0, (6.41)
m =0, (6.42)
T = nGE(Ay — DA AD). (6.43)

'Tn presence of a cosmological constant, this degree of freedom can be eliminated [I73]) and one is

left with a formulation solely in terms of a connection.
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6.4 CDJ action and the original Ashtekar variables

and, restricting to non-degenerate B-fields and denoting A% := AéBaj, the last equa-

tion can be solved for the 6 components corresponding to the symmetric part

A(zy) _ %GZJ lea—kl,]Tla + Ba(lDAaAé)7 (644)

whereas €. B constitute the three zero Eigenvectors of the matrix G?jl»’. In total, we

thus have 7 primary constraints

1 .
A, = ieabcwﬁ’B“ =0, (6.45)
€ :=py =0, (6.46)
€ :=m =0. (6.47)

We will denote the corresponding velocities which cannot be eliminated in the Hamilto-
nian and have to be treated as Lagrange multipliers with \¥ := Al] ) .= 7, A= A6

The action in Hamiltonian form is given by

Scpg = /dt/ d*x |:p7777+7ri140i + 7% Ay,

1 .. 1 . 4
— | 27 AL + Z7E DAY + NG+ \E (6.48)
2 2 A=A(m,A)
For the first term in the second line, we find
m Al (m, A)
= W?Ba_lebjAé(ﬂ,A)
= nB,} ( A (r, A) + A[z‘jl)
1 .. 4 . g
= n¢B; ! %G” B lxb 4 B4, A7) 4 NI
=B | 4 (B 16) — 61 Bla%) 4 BY DA, Al — B DA, A + X
= n¢B;} o (Bb_l[%rb"] - 251[33,;17#“@) + BY DA, AL — B DA, A 4 NI
B T 0 ‘ , g N
— FﬁBaUl'] %Bb l[JﬂbM _ Bb[]DAbAB] EESYA N IS TF;IDAQAB + %ﬂ'mﬂ-b]Ba[]l'Bbﬁﬁ
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6. D =3: HoLsT AND CDJ ACTION, ASHTEKAR (BARBERO) FORMULATION

1

=N, + DA AL — — —
ot a0 = 9 B

W“iﬁbjeijkeachCk. (6.49)
In the third line, we used ([6.44)) and afterwards only reorganised terms until, in the last
step, we used (%Bbl[jwbi] - BbUDAbAé] + )\ij) B, ‘]1} = 2N®,. Here, we intro-
duced three new Lagrange multiplier fields N equivalent to A (note that both have

three independent components), explicitly given by B Higbld — bl DAbAg + AT =
—eijkB;klN @, and furthermore made use of B(; = meabceijkB“iBbj . Thus, the

Hamiltonian is given by
H:= / B Wﬂ Wbl ipeape B + O DAAL + NOAG, + NG+ X6 | . (6.50)

The stability analysis for €, 6; immediately yields the secondary constraints

& .= DAr¢ =0, (6.51)
1
I = 47T‘”7rbjewkeachCk =0. (6.52)
Analogous to the ADM case, we can solve ¢, €; and treat A}, n as Lagrange multipliers.

Using N :=

Hamiltonian is

—m, Al := — A} and dropping a boundary term, the final form of the

H= / Py [N,%” TN N (6.53)

and the constraints (6.51} |6.45} [6.52]) exactly coincide with those of Ashtekar’s original

(complex in the Lorentzian case) formulation, i.e. with (6.32} [6.36}, |6.38]) for the choice

7?2 = 5 (up to the density weight of 7).

Several actions we considered here as well as corresponding Hamiltonian formulations
with their interrelations and their connection to the new variables are given systemat-
ically in figure with which we will end the first part of this thesisﬂ

'To simplify the diagram, always just one direction of the relation of the formulations is indicated.

E.g., gauge unfixing can be reversed by gauge fixing, and similarly can all other arrows be reversed.
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Figure 6.1

actions and Hamiltonian formulations which we studied and relations between them are

displayed. In particular, the connection to the new variables are shown. The correspond-

ing canonical variables and constraints are given. First class connection formulations are

displayed in a red box, while actions are in a blue background. Formulations restricted to

3 are coloured in yellow. SO((, D) here means SO(D + 1) for ¢ =1 and SO(1, D) for

D =
—1.

¢
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Part 11

Extension to higher dimensions:

The new variables
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The following content is taken from [I 2] with only slight modifications. In chapter |§|,

some new parts were added.

Let us shortly summarise what we learned so far: As we heard in the introduction
the programme of loop quantisation (see e.g. [62] and references therein) requires
the gravity theory to be formulated in terms of a gauge theory. The reason for that
is that only for theories based on connections and conjugate momenta background in-
dependent Hilbert space representations have been found so far, which also support
the constraints of the theory as densely defined and closable operators. Of course, a
connection formulation is also forced on us if we want to treat fermionic matter as well.
A connection formulation for gravity in D + 1 > 4 that can be satisfactorily quantised,
even in the vacuum case, has not been given so far. For the case D + 1 = 4, it was
only in 1986 that Ashtekar discovered his new variables for general relativity [13, [14].
The most important property of these variables is that the connection A used has a
canonically conjugate momentum F such that (A, E) have standard canonical brack-
ets, in particular the connection Poisson commutes with itself (cf. section . This
is not trivial. Indeed, the naive connection that one would expect from the first order
Palatini formulation does not have this crucial property, because the canonical formu-
lation of Palatini gravity suffers from second class constraints as we have seen in section

and the Palatini connection then has non trivial corresponding Dirac brackets [193].

This prohibited so far to find Hilbert space representations, in particular those of
LQG type in which the connection is represented as a multiplication operator, for the
Palatini connection (see, however, [194, 198]). The Ashtekar connection does not suf-
fer from this problem because it is the self-dual part of the Palatini connection (or
spin connection in the absence of torsion terms). Unfortunately, for the only physi-
cally interesting case of Lorentzian signature this Ashtekar connection takes values in
the non compact S1(2,C) rather than a compact group and again it is very difficult to

find Hilbert space representations of gauge theories with non compact structure groups.
As observed by Barbero [16} [I7], a possible strategy to deal with this non compactness

problem is to use the time gauge and to gauge fix the boost part of SO(1,3). The

resulting connection, which can be seen as the self dual part of the spin connection for
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Euclidean signature, is then an SU(2) connection. The price to pay is that the Hamilto-
nian constraint for Lorentzian signature in terms of these variables is more complicated
than in terms of the complex valued ones (cf. section . However, this does not
pose any problems in its quantisation [30]. Using these variables (which also allow a
one parameter freedom related to the Barbero Immirzi parameter [I6-19]) a rigorous
quantisation of general relativity with a unique Hilbert space representation could be
derived [20, 21, 28, 29].

A different way to arrive at the same formulation is to start from the geometrody-
namics phase space coordinatised by the ADM variables (three metric and extrinsic
curvature) and to expand it by introducing (densitised) triads E and conjugate mo-
menta K (basically the extrinsic curvature contracted with the triad, cf. section .
The connection is then the triad spin connection I' plus this conjugate momentum,
that is, A = I' +~vK where ~ is the real valued Barbero Immirzi parameter (cf. section
. The first miracle that happens in 3 spatial dimensions is that this is at all possi-
ble: While K transforms in the defining representation of SO(3), I' transforms in the
adjoint representation of SO(3). But for the case of SO(3), these are isomorphic and
enable to define the object A. The second miracle that happens in 3 spatial dimensions
is that this connection is Poisson self commuting which is entirely non trivial. Notice
that in three spatial dimensions, the expansion of the phase space alters the number
of configuration degrees of freedom from six per spatial point (described by the three
metric tensor) to nine (described by the co-triad). To get back to the original ADM
phase space, one therefore has to add three constraints and these turn out to comprise

precisely an SU(2) Gau$ constraints just as in Yang Mills theory.

It is clear that this strategy can work only in D = 3 spatial dimensions: A metric
in D spatial dimensions has D(D + 1)/2 configuration degrees of freedom per spatial
point while a D-bein has D?. We therefore need D? — D(D +1)/2 = D(D — 1)/2
constraints which is precisely the dimensionality of SO(D). However, an SO(D) con-
nection has D?(D —1)/2 degrees of freedom. Requiring that connection and triad have
equal amount of degrees of freedom leads to the unique solution D = 3. Thus in higher
dimensions we need a generalisation of the procedure that works in D = 3. Attempts

to construct a higher dimensional connection formulation have been undertaken, but
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few results are available (cf. section .

In this part, we will derive a connection formulation for higher dimensional general
relativity. In the first chapter [7 this will be achieved by using a different extension
of the ADM phase space than the one employed in [I3, 14]. This new extension of
the ADM phase space does not require the time gauge and generalises to any dimen-
sion D > 1. The result is a Yang Mills theory phase space subject to Gauf, spatial
diffeomorphism and Hamiltonian constraint as well as one additional constraint, the
simplicity constraint which we already encountered before. The structure group can
be chosen to be SO(1, D) or SO(D + 1) and the latter choice is preferred for purposes
of quantisation. Furthermore, like in the case of Ashtekar Barbero variables, there is a
one parameter freedom in choosing the variables. However, in D = 3, the new variables
and the Ashtekar Barbero variables differ and we will show that the new parameter

does not play the role of the Barbero Immirzi parameter.

In chapter [§] we will present how this theory was derived for the first time, which
was not by an extension of the ADM phase space but rather by applying the machin-
ery of gauge unfixing [199-202] to the second class constraint system we encountered in
section [5.2| when studying the Palatini formulation. Following this line, we can map the
second class system to an equivalent first class system which turns out to be identical
to the one we obtained following the Hamiltonian route in chapter [7]] However, this
action based approach has limitations compared to the Hamiltonian approach: There
is no Barbero Immirzi like freedom and the structure group is tied to the space time
signature, i.e. SO(1, D) for the physically relevant Lorentzian signature, which makes

the approach less favourable with an eye towards quantisation.

Finally, in chapter 0] we will present several possible extensions of the framework we
outlined so far: We will show in section that the quadratic version of the simplicity
constraints can be replaced by the linear version known from spin foam models, which
will turn out to be important for supergravity theories later in part in section [9.2| we
point out that the theory can be extended to the gauge groups SO(p, D + q) (p,q > 0,
p+ q # 0) which might be interesting for unified models, in section reintroduce the

Barbero Immirzi parameter in D = 3 to obtain a two parameter family of theories, in
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section study gauge fixing conditions for the simplicity constraints and finally in
section [9.5|introduce a first class Hamiltonian formulation with arbitrary internal space

and comment on the possibility of turning it into a connection formulation.
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7

The new variables - Hamiltonian

picture

This chapter is based in part on Pelddn’s seminal work [I03] on the possibility of using
higher dimensional gauge groups for gravity as well as on his concept of a hybrid spin
connection which naturally appears in the connection formulation of 2+ 1 gravity [203].
The idea how to construct a connection formulation also in higher dimensions is the

following.

If one starts from the Palatini formulation in D + 1 spacetime dimensions, then the
natural gauge group to consider is SO(1, D) or SO(D + 1) respectively for Lorentzian
or Euclidean gravity respectively. Both groups have dimension D(D + 1)/2. This
motivates to look for a connection formulation of the Hamiltonian framework with a
connection Aqry, a = 1,..,D; I,J = 0,..,D. Such a connection has D?(D + 1)/2
degrees of freedom. The corresponding Gaufl constraint removes D(D + 1)/2 degrees
of freedom, leaving us with (D — 1)D(D + 1)/2 degrees of freedom. However, a metric
in D spatial dimensions has only D(D +1)/2 degrees of freedom, which means that we
need D?(D —1)/2— D additional constraints which together with the ADM constraints
and the Gaufl constraint form a first class system. To discover this constraint, we need
an object that transforms in the defining representation of the gauge group. It is given

by the spatial (co) vielbein el, g = 71 J€£€E)] where 1 has Lorentzian or Euclidean

1

-, are linearly independent, we can

signature respectively. Since the D internal vectors e

complete them to a uniquely defined (D + 1)-bein by the unit vector eé = n! where
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nryeln? = 0. Now the momentum 7%/ conjugate to A,;; is supposed to be entirely
determined by e!, that is, 7%/ o \/det(q)q®nl! e;)]]. In other words, 7 is “simple” as in

chapters 4] and [5] and we call these constraints therefore simplicity constraints. Since

€, has + egrees of freedom while 7 as + these present precise
I'has D(D+1) deg f freed hile 7%/ has D?(D+1)/2, these p precisely

I

, one can construct

the required D?(D — 1)/2 — D constraints. Furthermore, from e
the hybrid spin connection I'y;; which annihilates el and the idea, as for Ashtekar’s
variables, is that A — I is related to the extrinsic curvature. In order to show that
the symplectic reduction of this extension of the ADM phase is given by the ADM
phase space, similar to what happens in case of Ashtekar’s variables, we need that I is

integrable at least modulo the simplicity constraints which we show to be the case.

It should be stressed that even in D 4 1 = 4 this extension of the ADM phase space is

different from the one employed in LQG: In LQG the Ashtekar-Barbero connection is

aL]%G — Dyjr o ejleé, 1,7,k = 1,..., D, while in our case in the time gauge
NEW

ajk

given by A
n! = 6§ we have A — L'y is pure gauge. Here I'yj; is the spin connection of the
corresponding triad. Thus, in the new formulation the information about the extrinsic
curvature sits in the A,p; component which is absent in the LQG formulation. We also
emphasise that it is possible to have gauge group SO(D + 1) even for the Lorentzian
ADM phase space. While a Lagrangian formulation is only available when spacetime
and internal signature match (cf. [8|or [2]), this opens the possibility to quantise grav-

ity in D + 1 spacetime dimensions using LQG methods albeit with structure group

SO(D + 1) and additional (simplicity) constraints.

The chapter is is organised as follows: in section [7.1] we will define the required kine-
matical structure of a (D + 1)-dimensional connection formulation of general relativity.
We will study in detail the properties of the simplicity constraint and the hybrid spin

connection.

In section we will postulate an extension of the ADM phase space in terms of
a connection and its conjugate momentum subject to the corresponding Gaufl con-
straint and the simplicity constraint discussed before. We will then prove that the
symplectic reduction of this extension with respect to both constraints recovers the

ADM phase space. There is a one parameter freedom in this extension, similar to but
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different from the Barbero Immirzi parameter of standard LQG [18].

In section [7.3] we express the spatial diffeomorphism constraint and the Hamiltonian
constraint in terms of the new variables and prove that the full set of four types of con-
straints, namely Gauf}, simplicity, spatial diffeomorphism and Hamiltonian constraints,
is of first class. This can be done for either choice of SO(1, D) or SO(D + 1) indepen-
dently of the spacetime signature. Similar to the situation with standard LQG, the
Hamiltonian simplifies when spacetime signature and internal signature match and if
one chooses unit Barbero Immirzi like parameter. There is an additional correction
term present which accounts for the removal of the pure gauge degrees of freedom

affected by the gauge transformations generated by the simplicity constraint.

7.1 Kinematical structure of (D+1)-dimensional canonical

gravity

This section is subdivided into three parts. In the first part we show that simple
dimensional counting and natural considerations lead to a unique candidate connection
formulation that works in any spacetime dimension D + 1 and has underlying structure
group SO(D + 1) or SO(1, D) respectively. We also identify the simplicity constraints
additional to the Gauf} constraint that such a formulation requires and show that, while
there is no D-bein and no spin connection in such a formulation, there is a generalised
D-bein and a hybrid connection. The latter is required in order to express the ADM
variables in terms of the connection and its conjugate momentum. In the second part
we formulate an equivalent expression for the simplicity constraint already known from
section [5.2] and discuss its properties and some subtleties. Since we do not assume that
the reader necessarily went through part [[ on preliminaries, we will be rather explicit
here. Finally, in the third part we prove a key property of the hybrid connection,
namely its integrability modulo simplicity constraints. This will be key to proving in
the next section that the symplectic reduction of the extended phase space by Gaufl

and simplicity constraints recovers the ADM phase space.

93



7. THE NEW VARIABLES - HAMILTONIAN PICTURE

7.1.1 Preliminaries

Similar to the formulation of standard LQG in D 4+ 1 = 4 dimensions, we would like to
arrive at a connection formulation of the ADM constrained system which then can be
quantised using standard LQG techniques. This requires the corresponding structure

group to be compact.

To obtain such a formulation, following Peldan [103], the idea is to extend the ADM
phase space by additional degrees of freedom and then to impose additional first class
constraints in such a way that the symplectic reduction of the extended system with

respect to these constraints coincides with the original ADM phase space. In practical

[0}

*, i.e. a Lie algebra valued one

terms, this means that one considers a connection A
form with a Lie algebra of dimension N and a conjugate momentum 7% which is a Lie
algebra valued vector density. Here o, 8,.. = 1,.., N. Such a Yang-Mills phase space is

subject to a Gaufl constraint
Go = DAl = 0ume + fop 7 AD 78, (7.1)

where f,3 7 denote the structure constants of the corresponding gauge group. The re-
quirement is then that there is a reduction (A, ) +— qup := qup|A, 7], P := P®[A 7]
such that the Poisson brackets of the ADM phase space are reproduced modulo the
GauB constraint and possible additional first class constraints that maybe necessary in

order that the correct dimensionality of the reduced phase space is achieved.

The question is of course which group should be chosen depending on D and how
to express ¢up, P in terms of A%, 4. Furthermore, one may ask whether the Gaufl
constraint is sufficient in order to reduce to the correct number of degrees of freedom
or whether there should be additional constraints. Consider first the case that the
GauB constraint is sufficient. Then the extended phase space has DN configuration
degrees of freedom of which the Gaufl constraint removes N. This has to agree with
the dimension of the ADM configuration degrees of freedom which in D spatial di-
mensions is D(D + 1)/2. It follows N(D — 1) = D(D + 1)/2. Next we need to relate
(A2, 72) to (qap, P?™). There may be many possibilities for doing so but here we will

follow a strategy that is similar to the strategy of standard LQG. We consider some
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7.1 Kinematical structure of (D + 1)-dimensional canonical gravity

representation p of the corresponding Lie group G of dimension M > D and introduce
generalised D-beins eé, I,J,K,... = 1,.., M taking values in this representation with
Qab = e{lm Je;,] . The requirement M > D is needed in order that ¢, can be chosen to
be non degenerate and we furthermore require that it is positive definite. Here 1 is a
G-invariant tensor, i.e. p(g)%nrsp(9)7 = nxr. The existence of such a tensor already
severely restricts the possible choices of G and typically G is simply defined in this way
whence p will typically be the defining representation of G. We extend the covariant
derivative D, to p valued objects by asking that D, annihilates the co-D-bein

Dgeé = &lei - ngeg + Iy [Xg]ljeb‘] =0, (7.2)

with the Levi-Civita connection I'¢,. This equation defines the hybrid (or generalised)
spin connection I'Y (cf. appendix . Here the X/ denote the generators of the Lie

algebra of GG in the representation p.

The idea is now that K,” := —%[Ag — TI'?Y]7? is the expression for the ADM extrin-
sic curvature /det(q)K.’, P’ = —1./det(q)[K,> — 6JK.], in terms of the new

variables. However, there are several caveats. First of all, it is not clear that has
a non-trivial solution: These are D?M equations for DN coefficients I'? and thus the
system could be overdetermined. Secondly, even if a solution exists, I'S will be
a function of ef while we need to express it in terms of the momentum 7¢ conjugate
to AY. If there is no other constraint than the Gaufl constraint, then 7§ itself must
be already determined in terms of el which implies that M = N: The representation
p has the same dimension as the adjoint representation of the Lie group. If one scans
the classical Lie groups, then the only case where the defining representation and the
adjoint representation have the same dimension (and are in fact isomorphic) is SO(3) or
SO(1, 2) respectively, whence N = 3. In this case, the equation N(D—1) = D(D+1)/2
has the solutions D = 2 and D = 3 which can be shown to be the only solutions to this

equation on the positive integers.

In order to go beyond D = 3, we therefore need more constraints. We consider now
the case of the choice G = SO(M + 1) or G = SO(1, M) which is motivated by the fact
that these Lie groups underly the Palatini formulation of general relativity in M + 1

spacetime dimensions. Following Peldan’s programme, other choices may be leading,
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conceivably, to canonical formulations of GUT theories (cf. section [0.2)). For this
choice, we obtain N = M (M + 1)/2 and thus (7.2) presents D?(M + 1) equations for
DM (M + 1)/2 coefficients. Explicitly,

daeh — Topet + 107 eny =0, (7.3)

where all internal indices are moved with 7. Since I'y(77) = 0, we obtain the consistency

condition
e(dé?aei) — F(c|a|b) = 0, (74)

where q., = eéebl was used. It is not difficult to see that is in fact identically
satisfied. Therefore the D?(M + 1) equations are not all independent, there are
D?(D + 1)/2 identities (7.4) among them, reducing the number of independent equa-
tions to D2 [M +1—3(D+1)] for DM (M +1)/2 coefficients I'y;. Equating the number
of independent equations to the number of equations yields a quadratic equation for
M with the two possible roots M = D and M = D — 1. In the second case el is an

ordinary D-bein and I',r; its ordinary spin connection. In the former case we obtain

the hybrid spin connection mentioned before.

Let us discuss the cases SO(D) and SO(D + 1) separately (the discussion is analo-
gous for SO(1,D — 1) and SO(1, D) except that SO(1,D — 1) does not allow for a
positive definite D metric and therefore must be excluded anyway). In the case of
SO(D) we have D?(D — 1)/2 configuration degrees of freedom and D(D — 1)/2 Gauf
constraints. In order to match the number of ADM degrees of freedom, we therefore
need S = D*(D —1)/2 - D(D —1)/2 — D(D + 1)/2 = D*(D — 3)/2 additional con-
IJ conjugate to A,y and require
J

straints. These must be imposed on the momentum 7
that 7%/ is already determined by el. Now el has D? degrees of freedom while 7%/
has D?(D — 1)/2 so that exactly S degrees of freedom are superfluous. However, there

a(ld) — 0 from eé: In order to match the

is no way to to build an object 77 with =
density weight we can consider E¢ = det(q)q“beg , but we cannot algebraically build

another object v’ from el without tensor index in order to define 7%/ = vl gal/l,

The only solution is that there are no superfluous degrees of freedom, which leads
back to D = 3. Now consider SO(D + 1). In this case we have D?(D + 1)/2
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7.1 Kinematical structure of (D + 1)-dimensional canonical gravity

configuration degrees of freedom and D(D + 1)/2 GauB} constraints requiring S =
D*(D+1)/2—-D(D+1)/2—D(D +1)/2 = D*(D —1)/2 — D additional constraints.

17 as compared to el is now also

The number of superfluous degrees of freedom in 7
precisely S = D?(D+1)/2 — D(D +1). In contrast to the previous case, however, now

it is possible to construct an object without tensor indices: If we assume that the D

internal vectors eg, a =1,.., D are linearly independent then we construct the common
normal
1 1
— . J J
ny = € Merg gpar - €42, (7.5)

Dl \/det(q)

which satisfies eln; = 0, nyn! = ¢ where ¢ = 1 for SO(D+1) and ¢ = —1 for SO(1, D).

Notice that n; is uniquely (up to sign) determined by el. We may now require that
x) =9 det(q)q“bnue;)]] =: 2nll pol], (7.6)

These are the searched for constraints on 7%/ and constitutes our candidate connection
formulation for general relativity in arbitrary spacetime dimensions D + 1 > 3. Since
they require 7 to come from a generalised D-bein, we call them simplicity constraints.
These are indeed exactly the constraints we found in the Palatini theory in chapter
Notice that D?(D —1)/2 — D = 0 for D = 2. Indeed, 2 + 1 gravity is naturally defined
as an SO(1,2) or SO(3) gauge theory.

7.1.2 Properties of the simplicity constraints

The form of the constraint is not yet satisfactory because the constraint should
be formulated purely in terms of 7*/7. The same requirement applies to the hybrid
connection to which we will turn in the next subsection. Of course, the simplicity con-
straint which we construct here will coincide with the one from section but we will

give a slightly different view here.

1 7.‘.aIJ

Given 7/ and any unit vector n; we may define E*[r,n] := — ny. This object
then automatically satisfies E*/n; = 0. Furthermore we may define the transversal

projector

ﬁﬁ[n] = 5§ —¢(nfng = 17§ n’ =0 (7.7)
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and define

7i_aIJ : —~J

_1 KL
= N [n] 7 [n] 775 (7.8)
As before, all tensors with purely transversal components will carry an overbar. We

obtain the decomposition
qold = galt 4 opll el (7.9)

It appears that the simplicity constraint now is equivalent to 7%/ = 0. However, there
are two subtleties: First, at this point n! is an extra structure next to 7Y which
is required to define . Therefore the decomposition is not intrinsic and n!
appears as an extra degree of freedom. It is therefore necessary to give an intrinsic

1J

definition of n!. Next, suppose that we have achieved to do so, then 7%/ constitute

D?(D — 1)/2 degrees of freedom rather than the required D?(D — 1)/2 — D while due
to E¢n! = 0 the E¢ constitute only D? degrees of freedom rather than D(D + 1).

To remove these subtleties, it is cleaner to adopt the following point of view: we consider
D + 1 vector densities EY to begin with such that the corresponding D(D + 1)-matrix

has maximal rank. From these we can construct the densitised inverse metric
b b1
qq™[E] := E{E'm", (7.10)

which we require to have Euclidean signature as well as their common normal

1
nr[E] := €a1..ap eUl,.JDE“lJl..E“DJD, (7.11)

D! \/det(q[E])" "

which is now considered as a function of E. Notice that nyn! = ¢. Therefore, also

ﬁ§ = ﬁ§ [E] is a function of E. We can again apply the decomposition and now
have cleanly deposited the searched for degrees of freedom into EY. However, while
n! is now intrinsically defined via Ef, the constraints 77 = 0 are still D to many.
We should remove D additional degrees of freedom from 7%/, To do so we impose a

tracefree condition. Consider the object

1
El.= 6qab[E]EbI . (7.12)
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It follows easily from the definitions that
E,E] =6, EEj =1 (7.13)

Consider the tracefree, transverse projector

2

- _J
Pel i L[E] = 63l — ﬁEW Eyjic 777)- (7.14)
Then for any tensor 77 we have with 7’7&1 J = f;ff Ty KL that
7l = Eg7i’ =0 (7.15)

and 7% n; = 0. Notice that 747 has only D*(D —1)/2 — D degrees of freedom inde-
pendent of Ef.

alJ

We therefore consider in what follows tensors 7% of the following form

7 E, Sy := 84 + 20l [E] BV, (7.16)

where Sy and E are considered as independent parameters for 7. Notice that S can
be constructed as P - S from an arbitrary tensor S%/7. Such tensors can be intrinsically
described as follows: given 7, there exists a normal ny[r] such that the following holds:

Define E¢[r,n] = —(7%7n; and 7%/ [r,n] as above. Then automatically
7 [r,n] == 771, n]Qup [, n] EL[m,n] = 0. (7.17)

This is a set of D independent (since automatically #7n; = 0 no matter what n'! is),
non-linear equations for the D independent (due to the normalisation nyn! = ¢) com-
ponents of n!. In the original work [2], we studied this non trivial system of equations
further and showed that it can possibly be solved by fixed point methods. At present
we do not know whether at least tensors 7%/ subject to the condition that (74774, /2
is positive definite always allow for such a solution n!, however, we know that the num-
ber of possible solutions is always finite because we can transform into a system
of polynomial equations. In what follows, we will assume that the solution n! [7] is in
fact unique by suitably restricting the set of allowed tensors 7%//. This could imply
that the set of such tensors no longer has the structure of a vector space which however
does not pose any problems for what follows.

On the other hand, we can prove the following for general 7¢/7:
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Theorem 2.
Let D >3 ancﬂ

1
5”%’ = EGUKLMWGUWZ’KL, (7.18)

where M is any totally skew (D — 3)-tuple of indices in {0,1,..,D}. Then

S =0V M, a, b < PYygp[r,n] x5 =0 (7.19)
for any unit vector n where P?fIJbKL[ﬂ',TL] = ?fJbKL[EHEzE[w,n] and EY[w,n] =

—(r™In; and where P[E] is defined in . Here we assume that qq®[r,n] =

g EgbI g ingeng is non degenerate for any (timelike for ¢ = —1) vector ny.

This result implies that although 5”%’ are D(D +1)/2 (D Il) equations which exceeds
D*(D—1)/2— D for D > 3 only D?(D —1)/2 of them are independent. The constraint
Y%’ = 0 does not fix n! and makes no statement about the trace part 7”/[m,n] =
741 n]Eyf[m,n]. Given that the theorem holds for any n it is natural to fix n
such that the trace part vanishes simultaneously as otherwise we would have only that
7ol) = 9pellzJ/l /(D —1) and not 77 = 0 or 77 = 2nl! 9] on the constraint surface

of the simplicity constraint.

Proof.
Obviously
Given m, consider any unit vector n and decompose as in
7 = 7 [x ) + 20l B4 [z ). (7.21)
Inserting into , we obtain
g0l pbKL) — zallJ2bKL] | g [T plalJ20)KL) _ (7.22)

Contracting with ny yields
Bl KL — ¢, (7.23)

Contracting further with F,; yields

2
(D —1) [z*KL — ﬁEb[KﬁGJlL}Ea 7= (D —=1) PYEL psm,n]ndt = 0. (7.24)

We conclude 77 = 29l paldl T — (n! — ﬁﬁb‘] 'Ey7) and inserting back into l)

we see that it is identically satisfied. O

'For D = 2 no simplicity constraints are needed since D*(D —1)/2 — D = 0.
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The theorem therefore says that on the constraint surface 797 = 20l B4Vl for some
vector v which is not necessarily normalised and not necessarily normal to E*/ but
such that E* v! constitute D + 1 linearly independent internal vectors. We can
however draw, for ( = —1, some additional conclusion from the requirement that
qq®® = 717 xh 7/(2¢) should have Euclidean signature. First of all, v/ cannot be null
since otherwise gg® oc (E%v!)(EYv”7) would be degenerate. If v! would be spacelike then
consider EY = E¢ — E%7vr/(v5vg). Tt follows 7%7 = 20l B4/l and ¢q® o E*TEL.
Since v’ E~}’ constitutes a (D + 1)-bein and v! is spacelike while 7 is Lorentzian, also

I

qq® would need to be Lorentzian. Hence v! must in fact be timelike for ¢ = —1.

We may therefore absorb for either signature the normalisation of v into E{ and de-
fine ny == vr/\/Cvgv’ as well as EY = \/CogvK B/ L. Then 20l Bl = opll palV]
with E%n; = 0, n'n; = ¢. Therefore, the constraint surface defined via is the
same as the one given by ﬁgfl 7 above, where we assumed that 7 is of the form
and constitutes the unique decomposition of 7%/ with no trace part. In what follows,
we will use the simplicity constraint in the form . However, it will be convenient
to have the presentation at one’s disposal when we work off the constraint surface.

Notice that the proof given above also in the case D = 3 does not allow for a “topo-

logical sector” 77 = el JELpK pal

or “degenerate sector” due to the non degeneracy
assumption. This assumption is dropped in the alternative proof in [2] which is based

on [169] which is why the topological sector does appear there.

7.1.3 Integrability of the hybrid connection modulo simplicity con-
straint

The hybrid connection is defined via on the constraint surface 5”%’ = 0. We want
to define an extension off the constraint surface such that the resulting expression is
integrable, i.e. is the functional derivative I'q;; = 6F/6n%!/ of a generating functional
F = F[r]. To that end, we need the explicit expression of I'y7; in terms of ef, which is

given in appendix [C] Here, we will provide a detailed derivation thereof.

To begin with, we notice that DHn! = 0. To see this we consider its D + 1 inde-

pendent components nyDHn! = LDH(nln;) = 0 and e/ DEn! = —n/Dllel = 0. We
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decompose
Tary =Tars + 204 Tar = —(Targn’ (7.25)
and further
Tars = Capeete, Tar = Tavel, (7.26)
where, as before, ¢} = ¢®eyr, ¢*qey = 6%, qap = eLepr. We find
Loy = —Cnidaef, Tape = Thac — enr0ael, (7.27)

where 'y = qbdfgc is the Levi-Civita connection. Combining these formulae, we obtain

Lars[E] = —[nki + Cni nyglelydae + Thcenred
= Cn[lﬁanJ] + ebuaaebj] + cmeb[lef,], (728)
where we used here and will also use frequently later nx 9, E?X = —E*50,ni, n® 0,ngx =

0 and n[lﬁff] = n[mf]{].

To write T'yzy in terms of 7%/, we notice the following weak identities modulo the
simplicity constraint, that is 7¢// ~ onll palJl
77t~ anll pal] nEY = 20E* E} = 2¢qq™
1
*qabWaKIﬂ'b b~ [ KEaI IEaK] [nKEaJ _ nJEaK]
q
= Dn'ny + ¢y = (D = Dn'ny + ¢nf,

Ea[InJ] _ _Cﬂ_a[ﬂL TLJ}TLL,

1
ngd’ﬂ'd [[ 7TK|J] [TL Eb[[ — Eb [ ] [Eﬁ]nK — TZJ}E%] = C Eb[]Eff] = C eb[jef]},

1
?chﬂ'bK [Iaaﬂ-;('U] ~ [nKEc[I - Eg(n[[] Oa [Eﬁ]nK - nJ]E;(]

= —n By [n5)(0aE%) — (0aE))nk]

+ Efny [(0ang) B — E5(9ank)]

= (D = D)n(;(0ang) + Eepng Eg (9an™) + CEr(0aEY)
= (D = 2)nj1(0any)) + CE1(0aEG))

= (D = 2)ni1(0any)) + Cecr(Oa€ly),

nfﬁ?j]deﬂdM & Oamag n) = il 15 eor Ouch

= Ceb[Iﬁaef’,] —nr0an ). (7.29)
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Consider the quantities
Turg = mox(10am’™ g, Tiry := morpm™ g, (7.30)
where m,77 = %qabﬂ? ;- Then
(D = DnyOang) = Targ — Targ, (D — 1)ceb[laaej‘,] =Tors+ (D —2)T,y. (7.31)

Inserting ([7.30]) and (|7.31)) into ((7.28)) then leads to the explicit expression

2¢ ¢(D—3) = ¢
Carsln] = 5= Tors + 5 —"Tars + (e T ;. (7.32)

Expressing T, in terms of qq® = 7%/ 7Y 7/(2€), this determines I'y7; completely in
terms of 7/ if we simply replace the ~ signs in ((7.29) by = signs and take the left
hand sides as definitions for the right hand sides.

It transpires that I'y;; is a rational, homogeneous function of degree zero of m and
its first derivatives which vanishes at m = 0. Therefore, if I',77[7] has a generating

functional, then it is given byE|
Plr] = / Pz 77 Ty [, (7.33)
Variation of F’ with respect to 7%/ yields

SF' = / dPx (57r“” Corg[m] + 7ra”(5FaIJ[7T])

/ dPx (67 Topg(n] + 77 [6T o1 [E) + 6721 5])
- 5[/ dPan? 7!, ] +/ Py (57ra” Turs[m] + 20l B2 5Fa,J[E]>
- / dPx (S 6Tors[E] - 6717 71, 5)., (7.34)

where .7/ .= galJ _opll palll and .7/, ;= T'u1[7] — T a1 E] both vanish on the con-
straint surface of the simplicity constraint. We see that F” itself cannot be a generating

functional but rather

F= F’—/ dPzxr ! 7!, (7.35)

If a one form T’y is exact, i.e. has potential U with T'as = U,pr then U(n) — U(mo) = fw I for
mo
any path vr,,» between mp and w. If I' is defined at mo = O to vanish then choosing the straight path

t — tm yields U(m) = const. + fol dtn™M T s (t).
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i.e. F’ has to be corrected by a term that vanishes on the constraint surface of the sim-
plicity constraint, however, its variation does not necessarily vanish on that constraint
surface. It follows that 6F /67 =T,r; + o1y for some %1 which vanishes on the

constraint surface of the simplicity constraint provided that

/ dPz nll BT 15| E dPz+/det(q)nl e?16T 1 |E] = (7.36)

This is the key identity that one has to prove. It is the counterpart to the key identity
that is responsible for the fact that the Ashtekar connection is Poisson commuting in
D+1 = 4. The reason for the correction F’ — F' is that Iy 7[7] is not strictly integrable

but only modulo terms that vanish on the constraint surface of the simplicity constraint.

We proceed with the proof of . It is easiest to use - . We have,
using nygon’ =0, nK(Se,f{ = —eg(énK and that fa(bc) =0,
n[]ea‘J](S(Qn[If‘am) = 20l e [n;(6T0y) + Cayony)]
= (e (6Tqr) = —e5(ny(9uef)eh)
= e§(ef (Bany)eh) = e 6(777 Dany)
= e D, (6ny), (7.37)
nedIsT, ) = nleajé(fabcel}ef])
= nl e T yees (0€h) = ¢*Tyepel (on!)
= —[eﬁ(aaeb‘]) - ab]€1(5” )
= _[63[8a(61}€g) — % i (Dach) — Fabel] (on')
= —[e50a(777) — (DaeD))(0n") = [Daef] [on"], (7.38)

where D, is the torsion free covariant differential annihilating g, as before (it acts only

on tensor indices, not on internal ones). We conclude

/ dPz n! BV 61,1 5[] dPz \/det(q)Dy| / dPzd,(E$ont) =0
(7.39)

for suitable boundary conditions on Ef and its variationsﬂ

!For instance one could impose that n; deviates from a constant by a function of rapid decrease at
spatial infinity. Note that the final expression in (7.39) will not vanish but play a central role in part

™
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7.2 New variables and equivalence with ADM formulation

We therefore have established:

Theorem 3.
There exists a functional F[r] such that for én' vanishing sufficiently fast at spatial

infinity, we have
SF[n] /67 (2) = Tarsm; ) + Farg[m; ), (7.40)

where S,15 vanishes on the constraint surface of the simplicity constraint, depending
at most on its first partial derivatives and Tqry[m] is the hybrid connection .

7.2 New variables and equivalence with ADM formulation

We want to construct a G = SO(D + 1) or G = SO(1, D) canonical gauge theory over
o with connection A,r; and conjugate momentum 77, In analogy to the treatment

in [6.3], we will present the passage in three steps:

1. {qup, P4 0, ) — {Kup5, 7KL %,%,%”,Y%}: Extend the ADM phase

17 and conjugate variable

space to be coordinatized by a denistized “vielbein” 7
K, transforming in the adjoint of G = SO(D + 1) or G = SO(1, D), subject to

additional Gaufl and simplicity constraints.

2. {Kury, w5} — {(‘Ig)au, (g)bKL}: Perform a constant Weyl rescaling with a free

parameter 3 € R/{0}.

3. {quy, PY A, ) — {AQIJ,(g)bKL; %,%,gIJ,y%’}: Note that, up to now,

each step was in close analogy to the ones of section [6.3] Thus, in the third

step, we would like to perform a canonical transformation {([B() ol J,(fr)bKL} N

{Aa1J, (g)bKL} to connection variables A,;; = Tarslm] + Iﬂ( alJ, where Tyry[n] is
the hybrid connection constructed from . Howe\(/ei, as we will see, due
problems arising since I'y7[7] is integrable only up to the simplicity constraint,
it is hard to prove that this transformation is canonical. Instead, we will give a
proof that the symplectic reduction of this Yang Mills phase space with respect
to Gaufl and simplicity constraint again leads back to the ADM phase space, and

therefore the Yang Mills formulation is valid.
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bK

Step 1: We introduce the variables K,;;, 7?%% subject to the canonical brackets

{Kars(@), 7" (y)} = 265615655 @ — ),

{Kars(2), Ko (y)} = {x" (2), 7" (y)} = 0, (7.41)
as well as to the Gauf} constraint
g1 = [K,, 7 = 2Kl j 7olK1] (7.42)
and the simplicity constraint
5”%’ = ieIJKLMW“UWbKL. (7.43)

Internal indices as before are moved by the internal metric  which is just the Euclidean
metric for SO(D + 1) (¢ = 1) and the Minkowski metric for SO(1,D) (¢ = —1). We
have for g € SO(1, D) or SO(D + 1) that ¢/ ¢%ngr = n'/, det((¢g"/)) = 1. We define

aIJ)

a map from this extended phase space with coordinates (K77, ™ to the coordinates

(qap, P?) of the ADM phase space by the following formulas

1
det(q)q™ = iﬂau w1, (7.44)
1
pab . 1 (qa[cKcIJﬂ'b]IJ + qb[cKc]JWaHJ>
1
= ZGabchcIﬂdU, (7.45)

which should be compared with (3.38). The central result of this section is:

Theorem 4.
i. Gauf$ and simplicity constraints obey a first class constraint algebra.
1. The symplectic reduction of the extended phase space defined above with respect to

Gauf$ and simplicity constraints coincides with the ADM phase space. More in detail,

the functions qu|r], P®[K, x| defined in are (weak) Dirac observables

with respect to Gaufl and simplicity constraints and (weakly) obey the standard Poisson

brackets

{QQb($)7PCd(y)} = 6(6(15[6)[) 6(D)($ - y)v {Qab(x)vqw(y)} = {Pab($)7pcd(y)} =0

on the constraint surface defined by simplicity and Gaufl constraints.
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7.2 New variables and equivalence with ADM formulation

Proof.
i

alJ it Poisson commutes with itself. The Gauf} constraint

Since 5”%’ only depends on 7
of course generates G gauge transformations under which 7 transforms as a section in
an associated vector bundle under the adjoint representation of G and K accordingly.
The Poisson algebra of the smeared Gaufl constraints is therefore (anti-)isomorphic

with the Lie algebra of G

1 1 1
971 57 Ml = 5211 £1s) (7.46)
Under finite Gaufl transformations we have
717 s [grtg™ 1. (7.47)

Since G = SO(1, D) or SO(D + 1) is unimodular, we obtain
B D=3
S Cop VL g N =1 9™ (7.48)
i=1

It follows the first class structure {¢,9} x ¢, {¥,.7} x ., {,} =0. This is,
of course, what we expected from section [5.2

ii.

Since both 77, K,r; transform in the adjoint representation of G it is clear that
Q™ « Tr(rn?), K’ o« Tr(K,m) are in fact GauB invariant, possibly modulo the
simplicity constraint, and thus are ¢, P Since Y%’ and g, are both constructed

alJ

from 7/ alone it is clear that they strictly Poisson commute. As for P we notice

that it is a linear combination of the objects
1
K, b= o aIJWbIJa (749)

with coefficients that depend only on ¢,. While the notation already suggests that

K, Y is related with the extrinsic curvature, note that as it is defined here, K, ® has

density weight one. It is therefore sufficient to show that {I, °, 5”%} ~ 0. We compute
with the smeared simplicity constraint
JE— 1 J—

b di oM D, M bIJ AB dCD
{Ko (), 57 [feal} = —8/ A7y feq (y) 77 (x) €xpepnr {Kars (@), 77 ()77 (y) }
M d)b
= 2 £ (@) 7 (@). (7.50)

It follows that P? Poisson commutes with the simplicity constraint on its constraint

surface.

107
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It remains to verify the ADM Poisson brackets. Since gq;(z) depends only on 77 (x)
we have trivially {gas(z), qea(y)} = 0. Next, we invoke (A.24]),

0qab = _gnglcdﬂ'dJ(Sﬂ'lea (7.51)

and since G °? appears in (7.45)), it follows in one line that

{Qab(x)ﬂ PCd(y)} = _q(i)G;blef(x)ﬂelj(x){ﬁfIJ(x)a KgKL(y)}iGCdghﬂ'hKL
= 6 (2 — y)87, 7). (7.52)

The last bracket is the most complicated. Again using (A.24]), we obtain
1
5Pab _ ZGabcdﬂ'dIJ(SKCIJ

1
+ Z |:Gabcd77[[ 77] C (b\KLGa)c 7T 1J— g’/TCKLGabedTFe[J:| KcKL(S']TdIJ

(7.53)
and using this, analogous to the calculation in section we obtain
SPU[K, 7)(x) 0PY[K, 7|(y)
PY[K PUK /dD 2 ) —ab > cd
{ [ ,71']( ) } 6KfIJ( ) (57TfIJ(Z) a c

%Gabmchdefﬂ_leKeIJa(D) (.T _ y) + %Gabng—l e(d|gfﬂ_c)IJKeIJ5(D) (l‘ _ y)

- gGabthflcdhfﬂ_eIJKeIJ(s(D)(w o y):| —ab o ed

1
= ZG‘Mf GG, + 3% (q“"dgcla) + q<b‘cs¢d‘a>) 5P (z —y) = 0. (7.54)

In the first step, we used . Due to the antisymmetry in ab, cd, the first term is
antisymmetric in z, e and therefore proportional to %, := 7/ Qajz K¢ 1. In the second
summand of the second line, contracting the matrices and rearranging the terms leads
to the remaining terms in the fourth line. The terms in the third line are symmetric
in the exchange of ab, c¢d and therefore drop out. We claim that ¥,; is constrained to
vanish by the Gauf constraint. With the convention K, := —CK,r sn’ we obtain for
the Gaufl constraint dropping terms o< .

Gy =2K,m g b~ 2K pr(n g B — Ef}]nL)
= —2( K, B + 2K[iny) = 91y + 209, (7.55)
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7.2 New variables and equivalence with ADM formulation

where K% = E*L' K, ;1 is the trace part of K75 = ﬁ[[](ﬁg]KaKL, Ny =nrg —Cnmy. It
follows that K*; = 0 and f(a[IEf}] = 0 on the Gauf} constraint surface. Now

_ 2
G EqrEByy ~ 20BN R K o B Byy = ;Ka[IEaJ}~ (7.56)

Therefore, 4 lab] — [ [Cd}ECIEC J]E“I E% vanishes on the GauB constraint surface and

proves ([7.54]). O

Step 2: Of course, the transformation {77, 7?55} — {(]ﬂgau = BKaU,(fr)bKL =

%WbK LY for B € R/{0} is canonical. We restrict to real 3 in order to retain a real phase
space, otherwise we reproduce the problems of the original, complex Ashtekar variables
with implementing the reality conditions. Like the usual spin connection, Iy (7] is
unchanged by constant rescalings, Tqr[m] = Tor J[(?T)]. The parameter § is similar to,

but structurally different from the Immirzi parameter in D = 3, as we will see.

Step 3: Finally, one would like to perform a canonical transformation to connection
variables {(I’gau,(fr)bKL} — {Aury = Targlr] + (Iﬁ{)au,(fr)bKL}. The only non-trivial

Poisson bracket is the one between two connections A,ry. We have

0Aurs(x) 0AvkL(Y)
6(ll§)CMN(Z) 5(7€-)CMN(Z)

_ 25 |:(5FbKL[7T,y) _ (5Fa[][7T,CU):| — 2,8 [5beL[7T’y) — &Sﬂal‘][ﬂ-’x) , (757)

small (z) SR (y) small (z) SmbEL ()

{Aars(z), AbrL(y)} = / dPz |2 —alJz < bK Ly

where in the last step, we invoked the key result of the previous section, I'y;; =
OF/ ory + 7,17 and exploited the commutativity of partial functional derivatives.
However, while .7%!/ vanishes on the simplicity constraint surface, its functional deriva-
tives do not vanish necessarily. One would have to study .#*// more carefully in
order to decide if the transformation is canonical or notﬂ Here, we will proceed

differently. We will still perform the transformation {(’Ig)au,(fr)bKL} — {Aurg =

!Using the explicit expression (9.34) for I in D = 3, a direct, rather lengthy computation shows
that {Aau[oﬂ”], AbKL[ﬁbKL]} ~ 0 only if both multiplier fields are chosen such that their transversal
tracefree parts vanish and therefore, this particular transformation is not canonical. However, other
explicit expressions for I may differ from the chosen one by ., 9., which does not allow for general

conclusions.
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Corgm) + (IB() alJs (g)bK L1 and postulate the (non-vanishing) Poisson brackets

)
{Aars(z), 75 (y)}y = 205607 65,60 (@ — y), (7.58)

but then, rather than showing that it is canonical, prove that, like in step 1, the sym-
plectic reduction of the obtained Yang Mills phase space with respect to the simplicity
constraint leads to the ADM phase space.

. . o B
To this end, let us rewrite the Gaufl constraint in terms A,;; and (7T)bK L

@l — ol Bl |1
®*

~ 9, Dats L oplt  Dalrla) o pelr - Gl
(8)
_ pA Wars, (7.59)

Note that the terms we added vanish on the simplicity constraint surface, since I'y77[7]
weakly annihilates 7. The covariant differential D“, of A acts only on internal indices.
This does not affect the tensorial character of because 77 is a Lie algebra valued
vector density of weight one and is its covariant divergence which is independent
of the Levi-Civita connection. Under this constraint, A transforms as a connection.
The map from this Yang-Mills theory phase space to the coordinates (qqp, Pab) of the
ADM phase space is given by

2
det(q)g® = 2 RPats Qo . (7.60)

2¢
b L abe @
P .= ZG b d[Acty = Lepg[rl] 7, (7.61)

which of course directly follows from (7.44} [7.45)).

Now we want to prove

Theorem 5.
i. Gaufl and simplicity constraints obey a first class constraint algebra.
1. The symplectic reduction of the Yang-Mills phase space defined above with respect to

Gauf$ and simplicity constraints coincides with the ADM phase space. More in detail,

the functions qu[r], P®[A, 7] defined in are (weak) Dirac observables
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with respect to Gaufl and simplicity constraints and (weakly) obey the standard Poisson

brackets

{aw(@), Py} = 35,58 8@ — 9), {aw(@), aea®)} = {P(2), PU(y)} = 0
on the constraint surface defined by simplicity and Gaufl constraints.
This theorem is of course the direct analogon of theorem [4}

Proof.

i.

analogous to the case before.

ii.

The hybrid spin connection I'y75[E] is a G connection by construction. Its extension
[Cyurs[m] off the simplicity constraint surface therefore transforms as a G connection
modulo the simplicity constraint. Since both 77/, K,;; = %(AQU — Tury) trans-
form in the adjoint representation of G it is clear that Tr(7%x®), Tr(K,n®) are in fact
GauB invariant, possibly modulo the simplicity constraint, and thus are qq, P®. That
qap, P are also simplicity invariant (modulo the simplicity constraint) follows from

the same calculation as before.

Concerning the ADM Poisson brackets, the only calculation that changes is the Pois-
son bracket between two ADM momenta. Dropping all terms oc 4%, which already

appeared in the previous case and also here vanish weakly, we obtain the additional

terms
{P(x), P“(y)} ~ (7.62)
~ = G (@) I (@) G0 ) P () [(Aers (), Coren )} — (A ), Ters (@)

We now again invoke the key result of the previous section and write I'y7; = 6 F/dm%7 +
Sarj where %,;; vanishes on the constraint surface of the simplicity constraint and
depends at most on its first partial derivatives. It is therefore given by an expression

of the form

Sk L = NglcLmn 51"+ Mokt L0051 (7.63)

for certain coefficients A, u. First of all, we notice that due to the commutativity of

partial functional derivatives

{Aers(x),6F /5795 (y)} — {Agrr(y), 6F /07 ()} = 0. (7.64)
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Next, due to the derivatives involved, the Poisson bracket is not ultralocal, however,
what we intend to prove is that {P%[f.], P°/[f’,]} ~ 0 with the smeared functions
Pb(fy] = [dPxfyP®. Let M§ = 1 fu,G4%, M7 = 1G3¥ f/,. then the contribution
from 7k in the first term of (7.62]) becomes after smearing

%/le,/dDy M}%(g)f”(x) (M;Lg(ﬁ)hKL)\%(Lmn - [M]/lg(g.)hKLu%?Lmn]’p> )

x {Aers (@), 731" ()}
—4 / dP M (M,{f(ﬁ)h“x%@mn - [M,;g(ﬁ)h“uﬁg’mn],p> 5m. ™ ()
~ 0. (7.65)

The calculation for the second term is similar. In conclusion, {P®[f.], P[f!;]} ~ 0

vanishes on the joint constraint surface of the Gaufl and the simplicity constraint. [

7.3 ADM Constraints in terms of the new variables

It remains to express the ADM constraints in terms of the new variables. Of course
we could just substitute for the expressions , however, this is not the most
convenient form for the ADM constraints because they involve the hybrid connection
which is a complicated expression in terms of w. We will therefore adopt the strategy
familiar from D + 1 = 4 and invoke the curvature F' of A. In the end, we will arrive at
expressions 77, 7 for spatial diffeomorphism and Hamiltonian constraint which differ
from their counterparts ./, #”, obtained by naive substitution of g, P by
[7.61]) in (2.27)), (2.28]), by terms proportional to Gaufl and simplicity constraints. This

guarantees that the algebra of Gauf}, simplicity, spatial diffeomorphism an Hamiltonian

constraints is of first class.

To see this, let us write J4, = A + 2, H# = A + % where 2, % vanish on the
constraint surface of the simplicity and Gaufl constraint. We have seen already that
{7, 7} =0,{9,} x ., {4,9} x¥4. We also have shown that are weak
Dirac observables with respect to . and invariant under ¢. Since JZ, 7" are defined
in terms of it follows that {7, 7]} « ./ {7, H'} < 7. Altogether there-
fore { &, .}, {S, %, {9,7,}, {9,#} x ./, 9 thus ¥, ¥ form an ideal. Next
we have {J, )} < H,.S G, {H], A"y < H',S G, {H' A} x H], S YG be-
cause the algebra of the variables is the same as that of the ADM variables
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7.3 ADM Constraints in terms of the new variables

modulo .%,¥ terms and therefore the algebra of the ADM constraints is reproduced
modulo ., ¥ terms. Together with what was already said, this implies that JZ,, 7
reproduce the ADM algebra of constraints modulo ., ¥ terms.

In the following, we will repeatedly use the formulas (C.12} [C.13)) relating the hybrid
and the Riemann curvature. We obtain modulo .# for the Ricci scalar

RaprymEab i 7~ Ry s[n! EE — nK EY)[ng EY — n/ E%.] = —Cdet(q)R. (7.66)
Next, using (C.12))

Rab]JFbIJ = 2Rab]JnIEbJ = 2qbcx/det(q)RabUnle‘C] = —2qbc\/det(q)Rabc de ! = 0,

(7.67)

which is the analog of the algebraic Bianchi identity.
We now expand the curvature

Fapry =20, Ayrg + Aar A ™ 7 — Aase 4 5 1 (7.68)
of A=T + BK in terms of I', K and obtain

Faprs = Rapry + 28D (o Kyjry + 287 Klarie Ky © 5. (7.69)
Contracting with 7%/ we find using

Foprym""? = 28(DioKyr)m""" — B2 Te([Ka, Kplr"). (7.70)

The second term is proportional to the GauB constraint because Tr([K,, Kp|n®) =

Tr(K,[Kp, 7)) and remembering (7.59). In the first term we notice that D' 7%/ ~ 0
so that

Faprym®!’ ~ 48D K}y = 2BDy[K, " — 60K, | = —4BDyP, * = 284, (1.71)

is proportional to the spatial diffeomorphism constraint modulo .#/;%. Note that

K .= —%KCI 7¢%m®!’ is symmetric in a, b modulo the GauB constraint.

Next, using ((7.66))

FoyrynEab i 7~ —Cdet(q)R — 28D, Tr(Ky[n%, 7)) — B2Tr([K,, Ky)nn®). (7.72)
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The second term is again proportional to the Gauf constraint, since Tr(Kj[r?, 7°]) =
—Tr(7?[Kp, 7°]). So far all the steps were similar to the 3 + 1 situation. The difference

comes in when looking at the third term in (7.72))

—Tr([Ky, Kp|m7%) &~ [Karg Kb & j — Ky Ko & j][n! EF — nLEY|Inl EY — n/ EY)

= ([~ (Karx BN (Kyy KEY) + (K BN (Ko KEY)). (7.73)

By the Gauf} constraint 1) we have K% ; ~ 0 and therefore K,j;E* = —n;K,;E*
= ¢n;K2. Thus the first term in ((7.73) is given by [K¢]?. However, the second term
cannot be written in terms of K g To explore the structure of the disturbing term we

notice that from K'; = 0 we have the decomposition
Karg = K" ars + 20Ky g, Kap = —(Karn”. (7.74)
Hence

_C(KbIKEaI) (KaJ KEbJ) — _C(RtfblKEaI . KbIEuan) (thaJ KEbJ . KaJEanK)
= — (K" B (Ko HEY) - KUK, (7.75)

where K, E" = —(K,r7E"'n’ ~ K,;7%7 /(2¢) was used. Altogether,
—Tr([Ka, Kp|mn’) = —[KPK} — (K$)?) — (K" B (Ko KEY). (7.76)

The first term in has the structure that appears in the Hamiltonian constraint
and can be written in terms of P, q,;, however, the second term does not appear
in the Hamiltonian constraint and must be removed. Also notice that the Ricci term
in has sign —( while the first term has negative sign. If we are interested in
Lorentzian gravity then the relative sign between these two terms should be negative
which is not the case for the choice of a compact gauge group ¢ = 1. Therefore the

expression ([7.72)) fails to yield the Hamiltonian constraint for several reasons.
To assemble the Hamiltonian constraint without making use of I, the idea is to consider

covariant derivatives which give access to A. Using suitable algebraic combinations then

yields the desired expressions. To that end, let again D4, be the covariant differential
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of A acting only on internal indices and let D'4, be its extension by the Levi-Civita

connection. Consider
K A _cJL K 1A _cJL K c_d|JL
Dy @ =" ; (D%pyn ") mep = 7 5 (D" 2ym ™) megr — 277 5 Tk Fl[niﬂ' JJL.
(7.77)

The second term equals modulo .¥
2" E% — ny BN ng Ber, — np BT a7l = —2¢ BS B Txdt ~ 0 (7.78)

and thus vanishes modulo .. Writing D'4, = [D’4, — DY,] + DY, and noticing that
D7l ~ 0, we obtain
ﬂ_aK g (DAbT('CJL) oKL & CﬁEgEcL[Kb J Mﬂ'CML +Kb L M 7I_CJM]
~ (BESEc[Ky T yEEn™ — Ky &y BT n)
= —B(D—-1)EY Ky; =(B(D - 1)K, °. (7.79)

It follows that

1
(D—1)?

and thus linear combinations of ([7.72)) and ([7.80) can be used in order to produce the

correct factor in front of the term quadratic in the extrinsic curvature.

[Dy @ Do * = (D)) = B[ @ Ko * — (K¢)?) (7.80)

In analogy to , consider
DY = bl DA, palKIT) — bl A, el K1) o bl KF{EZWCHKIJ]- (7.81)
The second term equals modulo .%
2 BT V) = (—¢Tg, BT E) (7.82)

and thus is pure trace. Since we intend to cancel K tf .77 we therefore consider instead

of (|7.81)) its transverse tracefree projection
Dy := [Py - D", (7.83)

under which (7.82)) drops out. The projector P given in ([7.14]) can be expressed purely
in terms of 747 using (7.29) and

Ea[lﬁ[][](EbL] ~—C (WQM[I??J} kT + oy’ [KnL]> : (7.84)

115



7. THE NEW VARIABLES - HAMILTONIAN PICTURE

We continue using again D", 7 ~ 0
Dy ~ Py <7Tb[I|K| [KbKLWa|L|J] + K ot LD
~ —B¢ Py (B, L BOF) = — B¢ BRI (7.85)
Notice that the last line is indeed tracefree and transverse. We write (7.85)) as
Bes

thaIJ — _TFCLIJ,()KL thbKL; FaIJ,bKL — —45Eb[IﬁJ][LEaK]. (786)

The tensor F/PKL can be seen as bilinear form on transverse tensors of type K,

and actually coincides with the tensor given in (4.48). Its inverse (F~1),; Jbk 1 has
already been given in ([£49), [F - F~1¢l) = 4(5317{[(7751. Using 1D and
1
Eq1Epy =~ ([marmmes™ — C§Qabn1nJ]7 (7.87)

F~1 can be completely expressed in terms of 7%/, The quadratic combination of K

to be removed from ([7.76]) can now be compactly written as

Eb[}?tbeMEaJRtfal M _ Eb[IﬁN] [MEaJ] thbJMRtfaIN

s _ _ s, _ _
= —ZF“IN”’JMK“QINK“MM = —E(F Yarspxr D™ DKL (7.88)
Variable Dof H 15% cl. constraints ‘ Dof (count twice!)
2
AZIJ D (?""1) /4 1
(7/3T) . D2(12)+1) A, D
1J D(D+1)
7 D2(D 2)
b -1
Si7 —5—-D
Sum: D3 + D? H Sum: D3+ D+2

Table 7.1: The new variables: counting of degrees of freedom

We now have all the pieces we need. The appropriate Hamiltonian constraint for

spacetime signature s is displayed in ([2.27). We find
Cs — . -
NGt =5 (FabIJWaIKWb k7 = sCDy (F Y arsprcr, Dif™ "

b D Da = (D) = e D Da (0

(7.89)
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This expression simplifies for s = ( and 8 = 1 in which case the terms quadratic in
Dy @ precisely cancel. This is again similar to the situation in 3 + 1 dimensions. This
special case can also be obtained more directly starting from the Palatini formulation
as we will see in the next chapter [§| Counting of the degrees of freedom is shown in

table [7.1] and of course is in agreement with general relativity.
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The new variables - Lagrangian

picture

In the last chapter [7], we developed a higher dimensional connection formulation for
general relativity with only first class constraints and Poisson commuting connections
in any spacetime dimension D+1 > 3 by a judicious extension of the D+1 ADM phase
space supplemented by first class Gaufl and simplicity constraints. This approach has
the advantage that it is rather simple, allows for SO(1, D) or SO(D + 1) as structure
group irrespective of the spacetime signature and that in addition it admits a free pa-
rameter that is, as we have seen, similar to but yet rather different from the Barbero
Immirzi parameter in 3+ 1 dimensions. However, one may ask whether this connection
formulation can be obtained from an action principle, just as the LQG connection for-
mulation can be obtained from the Holst action [145]. Here, we answer this question

in the affirmative.

The appropriate action to choose will be simply the D + 1 Palatini action with BF
type simplicity constraints we already studied in section However, following this
route will not allow for the Immirzi like freedom and the structure group will be tied
to the spacetime signature: it is necessarily SO(1, D) for Lorentzian spacetime signa-
ture and SO(D + 1) for Euclidean spacetime signature. This makes this approach less
favourable for quantisation of the Lorentzian theory which requires a compact struc-
ture group. Yet the efforts of this chapter are not in vain as our results confirm the

achievements of the previous chapter via an alternative route. Maybe the most aston-
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ishing outcome is that we obtain a pure first class theory while it is well known that the
Palatini formulation is plagued by second class constraints, as we have seen in The
resolution of the apparent contradiction is that we have to apply an additional step in

order to arrive at the first class formulation which goes by the name gauge unfixing.

In more detail, we do the following: as we have seen in section when starting
from the Palatini formulation with BF type simplicity constraints of, say, Lorentzian
general relativity in D + 1 spacetime dimensions with structure group SO(1, D) and
following Dirac’s canonical analysis, we are naturally lead to an SO(1, D) connection
A and a so(1, D) valued vector density = which is canonically conjugate to the con-
nection. However, in addition to the SO(1, D) Gaufl constraint, the D-dimensional
spatial diffeomorphism constraint and the Hamiltonian constraint, we had to introduce
an additional primary constraint . which requires the momentum = to derive from
(the pull back to the leaves of the foliation of) a co-(D + 1)-bein, called (BF type)
simplicity constraint (precisely because it is the temporal spatial part of the simplicity
constraint of a higher dimensional Plebanski formulation, cf. section and [169]).
The stability of the constraint .# with respect to the canonical Hamiltonian enforces a
secondary constraint Z and (., Z) form a second class pair. The situation is of course
completely the same as in D = 3 dimensions. In D = 3 dimensions one can now either
consider this SO(1,3) connection formulation and try to quantise the corresponding
Dirac bracket [194] with non Dirac bracket commuting connections or one imposes the
time gauge and reduces the (Holst modified) theory to a Dirac bracket commuting
SU(2) (or SO(3)) connection formulation. In higher dimensions also both possibilities
exist, except that imposing the time gauge does not lead to a SO(D) connection for-
mulation but rather the extended ADM formulation of section as has already
been shown in [I66]. Thus the second strategy does not lead to the desired connection
formulation with compact SO(D) precisely due to the dimensional mismatch between
D and D(D — 1)/2. Thus, in order to have a connection formulation only the first
possibility remains but then the complication with the Dirac bracket arises. It is at
this point where gauge unfixing comes into play: by a systematic, allowed modifica-
tion of the Hamiltonian constraint which does not alter its first class character, the
simplicity constraints . become Poisson commuting with all but the 2 constraints.

Remarkably, this modification of the Hamiltonian constraint, which makes it simplicity
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invariant, involves a correction term which is precisely the one found in the previous
chapter which makes sure that the Hamiltonian constraint derived from the Palatini
Lagrangian coincides with the ADM Hamiltonian constraint when Gaufl and simplicity
constraints are satisfied. One can now consider the 2 constraints as gauge fixing con-
ditions for the . constraints and impose only the first class constraints. This way one
can map the second class constraint system to an equivalent first class constraint sys-
tem and replace the complicated Dirac bracket by the simple ordinary Poisson bracket
with Poisson commuting connections. In the end, this formulation is identical to the
one of the previous chapter for matching spacetime and internal signature as well as

unit Barbero Immirzi like parameter.

The chapter is is organised as follows: the canonical analysis of the higher dimensional
Palatini theory was already considered in sections and and the corresponding
Hamiltonian formulations have been found to be plagued by second class constraints.
Therefore, here we will start by reviewing the procedure of gauge unfixing in section
and then apply it to the outcome of the canonical analysis of section The
result is an SO(1, D) or SO(D + 1) connection formulation for Lorentzian or Euclidean
general relativity respectively with first class constraints only and a connection variable
which is Poisson self-commuting, the price to pay is one extra term in the Hamiltonian

constraint.

8.1 Review of gauge unfixing

The name “gauge unfixing” suggests that this is a procedure in some sense inverse to
“gauge fixing”. To see to what extent this is indeed the case it is useful to recall some
facts about gauge fixing first. After that we focus on the gauge unfixing case. This
review section can be skipped by readers familiar with gauge (un)fixing although we
add a few extra twists to it. We have combined material from several sources: to the
best of our knowledge, the pioneering paper on gauge unfixing of second class theories
is [199] and the general theory was developed in [201, 202]. Parts of this theory were
independently rediscovered from the point of view of a first class theory in [161], 204],

see also [205-207].
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8.1.1 Gauge fixing

Recall that gauge fixing of a first class system with first class constraints .7 (where [
takes values in some index set) on a phase space M consists in imposing an equal number
of gauge fixing conditions Z; such that the matrix F' with entries Fry := {97, Z;} is
regular. The gauge fixing conditions, modulo the problem of Gribov copies, select a
unique point on each gauge orbit of the ;. Here the gauge orbit of a point m € M is
the setfl]

[m] == {ag(m), 87 €R}, as(f) :=exp(B{,.}) f, (8.1)

where ag(f) is the gauge flow with parameter § applied to the (smooth) function f
on phase space. To qualify as an admissible gauge fixing condition, at least on the

constraint surface
M :={m e M; S (m)=0V I}, (8.2)
it must be possible to reach the selected section
og(M) :={m € M; Z;(m)=0V I} (8.3)
from any other section of M.
At least locally, the constraint surface acquires the structure of a fibre bundle where

the fibres are given by the gauge orbits (considered as subsets of M) and the base space

is the set of equivalence classes
M :={[m]; m € M} (8.4)

called the reduced phase space. Under the above conditions there is a bijection between
oy(M) and M: given m € o4 (M) one obtains [m] € M via and given [m/| (consid-
ered as a subset of M) one computes the unique point m’ € [m] such that Z;(m’) = 0
for all I, that is m’ = [m] N o4 (M). However, while the construction of M is canonical,

i.e. does not use any structure other than .#7 which canonically follow from the Dirac

In case that the first class constraints close with non trivial structure functions only, it maybe
necessary to apply several of the Poisson automorphisms ag with different 8 because the ag do not

form a group under concatenation in this case.
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algorithm applied to the singular Lagrangian in question, the cross section o4 (M) uses
the additional input of & which, except for the regularity condition on F', is rather

arbitrary.

The observables of the first class system are the gauge invariant functions evaluated on
the constraint surface. These therefore only depend on the equivalence classes [m]. It
appears that the construction of such gauge invariant functions is generically impossi-
ble for sufficiently complicated constraints .#7. This turns out to be correct if one is
interested in these observables as functions on M. However, given a set of gauge fixing
conditions 7, not only can one write an explicit formula for these observables but one
can also compute their Poisson algebra. This also then displays the relation between
the spaces 04(M) and M in explicit form. Given a function f on M one can define a

weak Dirac observable by the formula

O (f) = [ap(f)]ag(#)=01 (8.5)

where the superscript (2) is to make it explicit that this formula is not canonical but
depends on the chosen gauge fixing. This formula has to be understood in the following
way: first one computes the gauge flow of f at m € M with real valued (phase space

independent) constants 37, that is
ap(f) =S+ 3 o BB (i, L 10 S1 1) (56)
n=1 ’

and then one solves the condition ag(Zr) = 0 for all I for 81 = 4%(m) and inserts the
corresponding phase space dependent function into (8.6). The value v(m) is thus the
parameter needed in order to map m to that point on its orbit [m] at which the &
vanish. It is not difficult to check that indeed {-#7,0s} ~ 0, and that O preserves

the pointwise addition and multiplication of functions

O (f +g) =0 (f)+ 0D (g), 0D (fg)=0D ()09 g). (8.7)
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Moreover, the following remarkable formula holdsﬂ

{0D(1),09(9)} = {0D(1),09(9)}y 5 = OV ({9} .), (8.8)

where {.,.}", 5 is the Dirac bracket of the second class system of constraints .77, 7;.
Since a sufficient number of the O(?)(f) serves as coordinates of M we see that the
Poisson bracket on the reduced phase space M is given by the Dirac bracket and O(?)
is a Dirac bracket homomorphism from the algebra of smooth functions on M to the

one on M.

It should be stressed, however, that this algebra of observables is not canonical, it
depends on the choice of admissible gauge fixing & which is an extra input necessary
for their very construction. Nevertheless, once we have made such a choice, we see that
a first class system . together with a gauge fixing condition Z is completely equivalent
to the second class system ., 2. Namely, for a second class system the reduced phase

space consists simply in the constraint manifold
M :={meM; (m)=21(m)=0VI}=o,(M), (8.9)

which precisely coincides with the gauge section (8.3)), and the symplectic structure on
M is given by the Dirac bracket

{£.9Y5.0 = {f.9) = {£, 6} F1* {%5, 9}, (8.10)
where {6, } = {77, Z1} and F,3 = {€,, €3} is non degenerate by construction. When
restricting O?) to MM which is in bijection with M as we have seen, it becomes a Dirac
bracket isomorphism.

8.1.2 Gauge unfixing

We now consider a second class system with constraints .%7, Z; with the special struc-

ture that .77 is a first class subalgebra of constraints, that is

(1,71} = fr & S (8.11)

!The first identity holds because the . constraints form a subalgebra. The Dirac matrix
Fog = {64,653}, {6} = {77, 21} on the constraint surface therefore has the symbolic structure
0 B B™'AB™!
F = and its inverse is given by F~! = 1
-B A B
bracket {f, ¢g}* contains no terms x {f, 2}{g, 2}.

_B!
0 so that the Dirac
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for certain structure functions fr; * and Fr; := {.%7,%;} is supposed to be non

degenerate on the constraint surface
M :={me M; (m)=2;(m)=0VI}, (8.12)

which is equipped with the Dirac bracket (8.10). In [202] we find conditions under
which linear combinations of a given set of second class constraints can be subdivided
into sets .7 and Z; subject to (8.11). Here we will simply assume that this has been

achieved.

We have seen in the previous section that a first class system %7 together with ad-
ditional gauge fixing conditions Z; is equivalent with the second class system .7, Z;.
The idea of gauge unfixing is now simply to interpret the given second class system of
constraints .1, Zr as just a first class system %7 to which the particular gauge fixing

conditions 95 have been added.

This point of view has the following advantage towards quantisation: for a first class
system of constraints we have two possible quantisation strategies, namely A. Operator
Constraint Quantisation and B. Reduced Phase Space Quantisation. The advantage of
option A. is that one can work with the simple Poisson bracket algebra on the kine-
matical phase space M for which Hilbert space representations are typically easy to
find and the task is to find those which support the .77 as densely defined, closable and
non anomalous operators. The disadvantage is that one has to equip the joint kernel
of the constraints with a new (physical) inner product which carries a representation
of the observables of the theory and while there are general tools available such as
group averaging, it is generically not possible to determine the physical Hilbert space
in closed form. The disadvantage of option B. is that the Dirac bracket algebra on the
reduced phase space is typically so complicated that no Hilbert space representations
can be found. On the other hand, if one manages to do so, then one has direct access
to the physical Hilbert space and the algebra of observables. Now in case that option
B. is inhibited due to the complexity of the Dirac bracket algebra which is typically the
case for second class systems, option A. appears to be the only possible approach to
quantisation. As we will see, one can do even better than that, but let us assume for

the moment that we take a second class system .¥7, Z; with complicated Dirac bracket
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algebra and therefore drop 27 and just perform an operator constraint quantisation of
ST

At first sight, this strategy seems to be false for at least two reasons:

1. From the point of view of the first class system, the gauge fixing conditions Z;
are just one of an infinite number of possible choices, the first class system does
not know about the ; and therefore one can drop the Z;. However, we are not
given a first class system, we are given a second class system and from the point
of view of the second class system, the Z; are canonical, they follow canonically
from Dirac’s stabiliser algorithm applied to the given singular Lagrangian. It
seems therefore to be wrong to forget about the special role of the 27 within the
first class system as we would drop information that is forced on us by Dirac’s
algorithm. However, imposing the Z; as operators as well in the quantum theory

is not possible, that is, the joint kernel of the Z;, .7 is just the zero vector.

2. The canonical Hamiltonian H of the second class system as derived via Dirac’s
stabiliser algorithm is typically not gauge invariant with respect to the .#7 which
would not be the case for a true first class system with just the constraints .#7. In
fact, in many applications the second class structure .%;, & arises from primary

constraints .7 and a canonical Hamiltonian of the form
H' = Hy+ \ .7, (8.13)

with nontrivial Hy independent of the .7 (that is [Hp).»—¢ # 0) and the Zr arise

as secondary constraints from the stability requirement
0={H' 71} ~ {Ho, %1} = 9, (8.14)

where {.7,.7;} o Sk ~ 0 was used. The stability of the & fixes the Lagrange

multipliers \!
0= {H, 2} = {Ho, 1} + M {F0, 2} = N =—[F W {Hy, .7} = A8.15)

so that the stabilised, first class Hamiltonian (it weakly commutes with all the

constraints .7, 5) reads

H = Hy + \) .. (8.16)
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It is not gauge invariant with respect to just the constraints .#; since {H, ./} ~

97 so that the constraints &7 appear again as a consistency condition.

We now explain how both obstacles can be overcome. We deal first with the second
issue: we simply make the canonical Hamiltonian H gauge invariant with respect to

the .7 by using the map O?) displayed in 1j that is, we replace H by

H:= 0Y)(H). (8.17)

To see that this is an allowed Hamiltonian within the second class system we need to

compute H in some detail. As one can show [204, 207] one has explicitly
ONH)=H+> = [[ 2, {&", {7 H}.}, (8.18)

n=1 k=1

1
n!

where "1 = [F~Y17.%; so that {1, 2,} = 6% modulo .#. We have

H-H=-9{S" H}+0(2* = -2/ ([F {7, HY + {F',H}.7)) + 0(2?)
=-2; ((F (2, + NFF)+{F HY.7)) + 0(2%) = 0(2%,2.7)

(8.19)
for some N f . Therefore H and H differ by terms at least quadratic in the constraints
and thus do not spoil the first class structure of H. Therefore H is an admissible
Hamiltonian for the second class system which is simultaneously weakly invariant with
respect to the 7. This is also the reason why one did not choose H' = O®)(H) for
some gauge fixing conditions ¢; # Z; because by a similar calculation as in one
would now compute H' — H = O(29,.7%9,%?) but ¥4 is no constraint and thus H’ is
not an admissible Hamiltonian for the second class system. Notice also that H and H

generate the same equations of motion on M.

We now come to the second issue. The question is: how can it be that the first
class constrained Hamiltonian system (ﬁ ,-7T) be equivalent to the second class system
(ﬁ , 1, 21)7 The first class system does not know about the 2;. It is true that if we
choose the special gauge fixing conditions ¥ := %7 = 0 for the first class system, then
the reduced phase spaces of the two systems are indeed isomorphic as we have shown
above. However, the choice of ¢; is arbitrary from the point of view of the first class

system as long as the matrix with entries {.7,%;} is non degenerate and therefore it
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appears that one has to still somehow feed the additional information about the special
role of the gauge fixing condition ¥; = Z; into the first class system. However, this is
not the case: the point is simply that an arbitrary gauge condition ¢; = 0 is related by
a gauge transformation generated by the .7 to the gauge condition 27 = 0. Therefore
the observables of the form O(g)( f) are in fact linear combinations, with phase space
independent coefficients, of the observables of the form O )( f). This follows simply
from the fact that for gauge invariant functions F' (with respect to the .#7) we have

F =~ OY)(F). Applied to F = O¥)(f) it follows
0D () ~ O (o%)( f)) . (8.20)

Hence any observable of the form O®)(f) can be written as O(?)(f’) for some other
function f’ = O@)(f). Since the roles of &7, Z; can be interchanged we see that the
range of the maps O?), O¥) is the same. Since the algebra of the O(g)(f) and of the
oY )( f) can be computed using the original Poisson bracket on the unreduced phase
space we see that the algebra of the O?)(f) and O¥)(f) are isomorphic, i.e. it does
not matter whether we display one and the same observable F' in the form F = O(?) (f)
or in the form F = O@)(f").

What is different are of course the maps O?), O which provide different gauge
invariant extensions of a given function f. Only the map O(?) yields an isomorphism
with the Dirac bracket algebra of the second class system. However, this does not mean
that one cannot use O®) to construct gauge invariant observables. It just means that
the identification between the Dirac bracket algebra of functions on M with the Poisson

bracket algebra on M is rather complicated to write down because the correct gauge
invariant function is O(?2)(f) ~ O®)(O?)(f)) and not just O@)(f).

Remarks:

1.

This last observation now is also the key to a reduced phase space quantisation ap-
proach to second class systems (H,.#7, Z5): after having replaced it by an equivalent
first class system (H,.#7) one can now make use of the local Abelianisation theorem
(see e.g. [51] and references therein) and replace the constraints .7 by an equivalent,

strongly Abelian set .} = 77 + hr(¢;¢%, pa) at least locally in phase space where the
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system of first class constraints .#7 has been solved for some of the momenta 7; in terms
of its conjugate variables ¢’ and the remaining canonical pairs (¢%,p,). Using the nat-
ural gauge fixing condition &; = ¢; the algebra of the Q% := O (¢%), P, := 09 (p,)
coincides with the algebra of the ¢%, p, because the corresponding Dirac bracket does
not affect the subalgebra of functions of ¢, p,. Since the algebra of the Q%, P, is simple
it can be quantised. This is surprising because we could have chosen to solve the con-
straints .7; = 9 = 0 for } = 71 —11;(q% pa), Py = ¢ —®!(¢%, ps) from the outset so
that the reduced phase space is parametrised by the ¢%, p, but the corresponding Dirac
bracket {p4,¢"}* # 60 is not simple. The reason is of course that the functions Q%, P,
are genuinely different from ¢, p,, in fact they are nontrivial functions of ¢!, ¢%, p, built
in such a way that they have a simple Dirac bracket with respect to ., 2. Moreover
{Q* P} ={Q" B}%, 4 due to gauge invariance. This holds for any two pairs of gauge
invariant functions, in particular for the Hamiltonian H.

2.

For generally covariant systems Hy is not a true Hamiltonian but rather a linear
combination of different constraints Hy = ;LA‘KA, typically a closed subalgebra of
the form {€’, 65} = fap © €/ such that {€}, 71} = far 7% for A # 0 and
{65, 1} = Zr thus {Ho, -1} ~ p°Z;. In our applications it will turn out that
{€¢),2:} = far K9g, A+ 0 and {6}, 21} is not weakly zero. The Dirac stabiliser
algorithm then replaces 6 by 6y = 63 — F/1{%}, 2,}S; so that {6y, Z1} = 0 while
€'\ = € for A # 0 and H' is replaced by H = u“%€4. The €4 now close among them-
selves modulo .;. Application of O?) replaces H by H = puA€a, €4 = O? )(€y).

Now modulo .7 constraints
{€a, 6B} = O ({64, 65}y ) (8.21)
and

{Ca, €Y g X {Ca,CB}, {Ca, S1H{CB, L5}, {Ca, S1H{CB, D1}, {Ca, P1}{€B, 21},
< Cp, S, Th. (8.22)

Since O)(2;) ~ 0 it follows that the €4 and the .% form a first class algebra.
3.
Whether gauge unfixing is feasible depends largely on the question whether the series

that determines H terminates. Fortunately, in our application this will be the case.

129



8. THE NEW VARIABLES - LAGRANGIAN PICTURE

4.
The formula O (f) ~ O (O¥)(f)) does not display the fact that ¢ can be reached
from 2 via a gauge transformation. However, using the fact that O(“)(2;) ~ 0 and

that O)(f) is a power series in & we also have

0N(f) % 0 ([exp(BHE™N" S5, 1) - fla=—9-)] ) (8:23)

with Fr; = {#%;}. Notice that the argument of O(?) on the right hand side of
is not gauge invariant and that it is the gauge transform of f with respect to the weakly
Abelian constraints .9 = [Fil]IJyJ from the gauge 4 = 0 to the gauge 2 = 0 as
desired.

5.

An important final comment concerns the dynamics of the theory (we consider for
simplicity only one pair of second class constraints but the same discussion applies,
with more notational load, to the general case): suppose first that H' = Hy + A .77,
that is Hy is not constrained to vanish. From the point of view of the second class
system the Hamiltonian that drives the dynamics of the system is H or equivalently
H via the Dirac bracket evaluated on the constraint surface of the second class system

M, that is

fir—g—o = {H, Y 5)lr—9—0 = {H . y—90, fir=9—-0} 7 - (8.24)

On the other hand, from the point of view of the first class system, the Hamiltonian is H
which acts on gauge (./-) invariant functions which we write in the form F = O(?)(f)

on the constraint surface of the first class system M, that is

Fly—o={H,F}y—o = {0 (H),09 (f)}5—0 = O {H, [}y 5) |70 (8.25)

Comparing ([8.24) and (8.25) we see that the time evolutions are isomorphic when

mapping f|.y—g—o 10 O (f) 7=

Now we consider the case that Hy = ¥ itself is constrained to vanish. Then also
the Hamiltonian H is constrained to vanish from the point of view of the second class
system since is a linear combination of the three constraints %,.%, 2. Now the following
subtlety arises: from the point of view of the first class system, the Hamiltonian H is not
constrained to vanish because the first class system is only subject to the constraints

%,.. But this would clearly be wrong: the first class system would only have the
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constraint . and this would lead to a different dimensionality of the reduced phase
space than in the second class system. The correct point of view is the following: the
second class system is equivalently described by the three types of constraints H,.%, 2
of which H constitutes a first class set of constraints while (., 2) constitute a second
class system of constraints. From the point of view of the first class system we just
forget about the 2 constraints and instead consider the first class constraint system
H,.7. The counting of physical number of degrees of freedom is now correct again
because both first class constraints H,.# count twice in the first class system while
in the second class system H,.”, 2 only H counts twice and ., 2 only count once.
This also makes sure that there is no true Hamiltonian in both schemes. To compare
the observables from both points of view, let .4 = ., S :=H, 91 := D, Dy =9
where the gauge fixing condition ¢ is chosen in such a way that the matrix with entries
Fry ={%1,%2;} is non singular. It is easy to see that the second class system (7, 1)
is of the type to which gauge unfixing applies and the discussion proceeds from here

just as in the general case.

8.2 Application of gauge unfixing to gravity

We now want to apply the ideas of gauge unfixing to higher dimensional general rela-

tivity and start with the Hamiltonian system derived in section [5.2] The second class
. . b ~ b ~ . . .

constraints are given by 5”% ~ @“M ~ 0. As we pointed out in section the

constraints are not independent and the Dirac matrix
br .M dr ;N D M bed JN
(1) F5N = [ aPa PRt (3.26)
e

is not invertible. We will neglect this fact for the moment and will see shortly that we
can deal with it using the independent sets of constraints of section We remark
that gauge unfixing has been applied previously to 2+ 1-dimensional linearised massive
gravity [208].

The general discussion of the previous section suggests that the simplicity invariant
extension of the Hamiltonian constraint involves an infinite series which is beyond any
analytical control already at the classical level. Luckily, the Dirac matrix depends only

I

on 77 and therefore commutes with the BF-simplicity constraint. Hence repeated
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commutators acting on functions that depend polynomially on A vanish beyond the

order of the polynomial. We calculate explicitly

. 1
H = H — 5.@“’ (8.27)

where terms up to the second order contributed, since .7 is quadratic in the con-
nection. The effect of the extra term in the Hamiltonian can be seen when solving
the simplicity constraint and reducing the theory to the ADM variables. When doing
the calculation , we have to use 2 ~ (FK tf)aI 7 =0 to eliminate a term propor-
tional to K,  FelJOKL gtf, o This is not necessary any more because the additional

—1/292F =19 precisely counters this term.

The Gaufl and diffeomorphism constraints only obtain extra terms proportional to
the BF-simplicity constraints which can be neglected in the first class theory. We can

use the projector identities to calculate the new constraint algebra

{gf gf} G+ .7, (8.28)
{g %} (8.29)
(8.30)

{;%i S+ G+ . (8.31)
{%ﬂ%ﬂ} —A+G+., (8.32)
{ } (8.33)
{%,y} (8.34)
{%,y} —0. (8.35)

By construction it closes without the & constraint and displays a first class structure.

Concerning gauge invariant phase space functions, it is clear that a vanishing com-
mutator with the BF-simplicity constraint does not constrain the dependence on 7.
Additionally, these functions may only depend on the simplicity invariant extension of

Agry which is given explicitly by

Aoty = Aarg + 25 (F7) ?C[l M L, (8.36)
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since A,ry changes under simplicity gauge transformations as

67 Aarg = {Aau’ 5”%[0%]} = e (8.37)
We still have to give a sense to (F _1) Z%. As we have shown in section it is
enough to consider only a subspace of Lagrange multipliers for the BF-simplicity and

.@“Mb constraints parametrised by the projected test functions

d% = 7(a|IJ7Tb)KL€IJKLM- (8.38)

FaIJ,bKL

On this subspace, was shown to be invertible. We therefore make the ansatz

- ABCDM
T(c|EF (F 1)d)GH7(a‘AB7Tb)CD€ (8.39)

for some constant <, where

_ —S
(F 1)aIJ,bKL = m%AC%BD (TFCECWcED - SWCD) (UABUKU??J]L - 277{%77K][J771E]}>

(8.40)

only depends on 7/ and reduces to the correct expression on the simplicity constraint

surface when contracted in the above equation. Insertion into A yields

1
= 16(D - 12((D - 3)))? (8.41)

when demanding that A is independent of 2, i.e. that the K tf ;7 term is cancelled.
Since all simplicity invariant phase space functions are arbitrary functions of A,z and
77 we have shown that the proposed expression for (F *1) Z’g yields the desired
results. This can of course also be obtained by direct inversion of the projected version
of the matrix F'. This way we obtain a connection formulation for gravity in D+1 > 3
without second class constraints. Notice however that the observables (with respect to
the simplicity constraint) (121, 7) have complicated Poisson brackets, only the brackets

of the canonical pair (A, ) are simple, therefore suggesting a Dirac quantisation ap-

proach (quantisation at the kinematical level).

Let us summarise and compare with the connection formulation in D + 1 = 4:
1.
On the surface where the simplicity constraint vanishes, 7%/ = 2nl! B9Vl we can de-

scribe the situation more explicitly. From the above formula it is obvious that both
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8. THE NEW VARIABLES - LAGRANGIAN PICTURE

n!67 Aqr; = 0 and E“67 Ayr; = 0, since we always may choose cf‘fb] = 0. Thus,
when decomposing the connection Aur; = Uarg + Koy + 2n[1Ka‘J] into hybrid spin
connection and rotational (i.e. transversal) and boost (i.e longitudinal) components of
hybrid contorsion K7z, we find that the simplicity constraint generates on-shell gauge
transformations of the trace free part of the rotational (transversal) components of the
SO(1, D) (or SO(D + 1) in the Hamiltonian framework of the previous chapter) hybrid
contorsion K%,;;. As we have seen in equation , the remaining trace component
of the rotational part K'f,r is proportional to the boost part of the Gaufl constraint
and vanishes if n;%4/7 = 0 holds. In total, we find that observables in this connection
theory may not depend on the value of the rotational components of the SO(1, D) (or
SO(D + 1)) hybrid contorsion at all. The whole physical information contained in the
connection is encoded in the boost components of the contorsion, which becomes con-
jugate to the vielbein after solving the simplicity constraint. Therefore, when removing
the boost gauge freedom by choosing the time gauge, there is no physical information
left in the SO(D) connection.

2.

In D +1 = 4, this formulation therefore differs from the formulation in terms of
real Ashtekar variables considered in [I46], which remains a connection formulation
also after imposing the time gauge. This is achieved by mixing boost and rotational
components of the connection using the total antisymmetric tensor, i.e. (V)Aajk =
Agjk — YeoijkAaoi, to “rotate” physical degrees of freedom into the rotational compo-
nents of the connection, and v now is the Barbero Immirzi parameter. Thus, this
procedure exploits a peculiarity of dimension D + 1 = 4, and therefore is not possible
in any other dimension. As we have seen, it is possible to arrive at the new connection
formulation also by enlarging the ADM phase space. Following this route allowed for
the introduction of a free parameter 8 similar to the Barbero-Immirzi parameter, but
the transformation made to obtain the connection is very different in nature since there
is no mixing of boost and rotational parts. This will become even clearer in section
when we will restrict to D+ 1 = 4 and then introduce two free parameters, the one

being 3 of chapter|[7]and the other one corresponding to the Barbero Immirzi parameter
7 (cf. chapter [6).

134



Extensions and related material

9.1 Linear simplicity constraint

In [6], an SO(1, D) or SO(D + 1) connection formulation was introduced which, instead
of the quadratic simplicity constraint we considered so far, involves a linear simplicity
constraint similar to the one used in the new spin foam models [I86-191]. While in
these approaches, discrete versions of the constraints appear, continuum versions of
the linear simplicity constraints already appeared in [209]. However, their treatment
is rather different than the one displayed here, having a focus on the Lagrangian for-
mulation and constructing the linear constraint using a three form field. In our case
instead, an additional unit length scalar field N is introduced, which upon solving
the linear simplicity constraint will coincide with the hybrid vielbein normal n![E].
Moreover, as we will see later in section the way to couple the Rarita Schwinger
field (“gravitino”) of supergravity theories as shown in [6] uses these normal fields N/
(and therefore the use of the linear simplicity constraints) in an intricate way, and so
far it is unknown if this can also be achieved with the quadratic constraint. In the
following, we will shortly outline the construction of this first class constrained system
in any dimensions, which upon symplectic reduction again is equivalent to the ADM
formulation. The quantisation of the additional field N' [6] and the implementation of
both, the linear and quadratic simplicity constraints at the quantum level [3| 5], will

be discussed in section Our exposition in this section will follow [6].
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9.1.1 Introducing linear simplicity constraints

We want to remind the reader of the solutionlﬂ to the quadratic simplicity constraint
B . . .

S =0 (W)aIJ = %n[IEaU], where n![E] the unique (up to sign) unit normal to

the hybrid vielbein E*/. While the quadratic simplicity constraint is defined solely in

terms of (7@“[ 7 the linear constraint usually demands that there is a vector field N/

such that
y(L . _ NJ (B)CLKL 9 1
IM = CIJKLM T (9.1)

vanishes. This equation defines the linear constraint we want to consider in the follow-
ing. We do not want to fix the vector field N! by hand, so we have to postulate it as

new phase space degrees of freedom together with its conjugate momentum Pj. For

any dimension D > 3, this constraint demands that (g)al J

of its factors being N/, (7/6;)“” = %N[IE“"]], where we can choose w.l.o.g. N/E%; = 0.

is a simple bivector with one

The hybrid vielbein, however, which now encodes the physical information in (7[?“1 g

already fixes the direction of N' (up to sign). To get rid of the unphysical information

about N’s length, we add the normalisation constraints
N = NIN; - ¢, (9.2)

and reobtain the solution of the quadratic constraints. Of course, these constraints up
to now only reduce (7Br) — E and N — n(F). To account for the momenta Pj being
non-physical, we could introduce additional constraints. However, if we manage to
implement ., 4 being first class, we expect that the gauge transformations of these

constraints get rid of the additional degrees of freedom in Pj.

Apart from the change from quadratic to linear simplicity and normalisation con-

straints, we want to construct the theory similar to what we did in chapter The

phase space is coordinatised by {A,77, (fr)bK L NT

brackets ([7.58) and

, Py} with the non-vanishing Poisson

{NT(@), Ps(y)} = 6567 (@ — y). (9-3)

'For D = 3, the quadratic constraint allows for an additional topological solution sector, which we

excluded by hand. The linear constraint will not allow for these solutions.
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9.1 Linear simplicity constraint

This phase space is subject to the already introduced linear simplicity and normalisa-
tion constraints, but of course, to reproduce general relativity, we have to add more
constraints. In order that the constraint algebra closes, we change the definition of ¢!/
and 7, such that they generate SO(D + 1) or SO(1, D) gauge transformations and
spatial diffeomorphisms respectively on all phase space variables, in particular as well
on N1, Py,

@1 — pA, Qa1 L opli Nl (9.4)

A, = %(ﬁ)b”aaAbU _ %ab (9’?)””Aau) + Pra.N. (9.5)

This already makes sure that the algebra of all the constraints we introduced so far is
closing. For the Hamiltonian constraint, we will work with the original version which is

obtained by simply replacing the ADM variables in the ADM Hamiltonian constraint
by (7.60) :

v _4\1/6 Dralts DAKL (4 Pl (A= T ey | %\/aR[ﬁ]. (9.6)

In particular, we cannot add to the Hamiltonian constraint the terms one would expect
for gravity coupled the space time scalar fields N', since {7, St and {0, N}

would not vanish weakly, spoiling the constraint algebra.

Like in the case of the quadratic constraint, to prove that this constrained system
is indeed equivalent to the ADM formulation, we first will define (weak) Dirac observ-
ables with respect to Gauf}, simplicity and normalisation constraints corresponding to
Qab, P%, show that their Poisson brackets at least weakly reproduce the ADM canonical
brackets and furthermore show that the constraint algebra is closing and, in particular,
the Poisson brackets between ¢ and 7, weakly reduces to . Since we already
gave calculational details when dealing with the quadratic constraints in chapter [7] and

the analysis in this case is analogous, we will be rather brief here.

The map to the ADM phase space is of course again given by (7.60} [7.61)). ¢u5, P°? are
obviously still Gaufl invariant and trivially Poisson commute with the normalisation
constraint, and since we still have {P,.} o ., both are also (weak) simplicity ob-

servables. That the ADM brackets {q, ¢}, {¢, P} are reproduced follows directly from
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9. EXTENSIONS AND RELATED MATERIAL

the treatment in chapter 7 To conclude that {P, P} still is weakly zero needs some
more work, since we changed both, the simplicity and the Gaufl constraint which were
needed in this calculation. However, since the solutions to the quadratic simplicity con-
straint and the linear simplicity and normalisation constraints coincide, we conclude
that whatever terms weakly vanished due to .7 abﬂ = 0 will now also weakly vanish

when yﬁﬁ = 0 = 4. Furthermore, we did not need the whole Gaufl constraint,

but rather 4, := (7@

elJ qeja(A — T[7])p)15, which simplicity on shell already vanishes
modulo the rotational components 477 of the Gau$ constraints. The rotational com-
ponents of the Gaufl constraint are, however, still unchanged, since the additional term
2PUNl ~ 2PUn/l[E] weakly is pure “boost” modulo the linear simplicity and nor-
malisation constraints. Therefore, the ADM canonical brackets are weakly reproduced
like in the case of the quadratic constraint. We are left with studying the constraint
algebra, or more precisely, the Hamiltonian constraint, since we have already seen that
all the other constraints weakly Poisson commute. Since ¢ is constructed using the
maps to the ADM phase space, we know that it weakly Poisson commutes with ¢/,
s
with the bracket between two Hamiltonian constraint, we invoke the previous result

that the ADM brackets are reproduced to conclude that

A, and of course also with the generator of spatial diffeomorphisms 57,. Left

{AIN], # M)} ~ —s4;[¢" (NOM — MO,N)], (9.7)

where ' = —2q,.DyP* now denotes the ADM diffeomorphism constraint. It is
straightforward to show that .7, and ., are weakly equivalent and therefore, not only
does the constraint algebra close, but moreover the hypersurface deformation algebra
is weakly reproduced. Concerning the counting of the number of degrees of freedom,
note that the constraints /- again are not irreducible, but we know that they reduce
(7[?“” — E and N! — ||N||, therefore removing w + D = w de-
grees of freedom (without modding out by their gauge orbits). We obtain the familiar
(D 4 1)(D — 2) phase space degrees of freedom of general relativity.

Finally, we want to remark that related formulations of general relativity with (timelike)
normal as independent dynamical field, already exist in the literature [146], 194} [196].
However, while our formulation features both the simplicity constraint and the timelike

normal vector field at the same time, in the other approaches this field only appears in
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9.2 SO(p, D + q) formulation

Variable Dof H 1% cl. constraints ‘ Dof (count twice!)
Aury w w 1
Bk D2(§+1) A, D
NI D41 @glJ D(D2+1)
Py D+1 . DAD-)
N 1
Sum: | D?®+ D?+42D +2 H Sum: D3+ 3D +4

Table 9.1: The new variables with linear simplicity constraint: counting of degrees of
freedom

the process of solving the simplicity constraint while keeping the whole Gauf} constraint,
i.e. not choosing time gauge. In other words, the time normal is an integral part of the

simplicity constraint in our approach, not a concept emerging after its solution.

9.1.2 Solution of the linear simplicity constraints

Symplectic reduction with respect to the linear simplicity and normalisation constraint

of course is analogous to the treatment in section [4.2.4] Using the solution (767)“1 J =

%n”Eam and the ansatz A,r; = Uyry[n] + BKarg, we find

1 . ) _ . _ _
i(ﬁ)“f TAgrs + PINT =~ —CK, B — K1 E* 0! + Pt

[~CKoy — nyEqr (K™ + P B
= EYK,;, (9.8)

Q

where we have dropped total time derivatives and divergences. Compared with K s in
([4.62), K,; here is defined with an additional term oc PZ. In terms of these variables, we
find for the constraints, like after the reduction in section [£.2.4] the eADM expressions

(3.27, [3.28] [3.29).

9.2 SO(p,D + q) formulation

This section will be once again inspired by Pelddn’s programme. With Ashtekar’s new
variables, general relativity was formulated on a Yang Mills phase space, which sug-

gested to consider the unification of these two theories. After work of Peldan in 2+1
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dimensions [210], in [I05, [106] Chakraborty and Pelddn studied such unified models
inspired by Ashtekar’s new formulation also in 3+1 dimensions, which, with certain
choice of gauge group would reproduce general relativity, while in a weak field ex-
pansion around de Sitter spacetime, would give conventional Yang-Mills theory to the
lowest order. The way the authors proceeded was to generalise Ashtekar’s formulation
to arbitrary gauge group (without adding new constraints), i.e. a phase space coordi-
natised by a connection A valued in the corresponding Lie algebra and a conjugate (Lie
algebra valued) generalised vielbein, subject to Gauf}, Hamiltonian and spatial diffeo-
morphism constraint. As we have seen in chapter [7] this phase space will in general
have more physical degrees of freedom than general relativity, allowing for extra Yang
Mills degrees of freedom. However, since these models are based on the original com-
plex Ashtekar variables, no mathematically rigorous quantisation thereof can be carried
out, and, more severely, already classically their construction in Lorentzian signature

is incomplete.

Here, we will study a different possibility of obtaining unified theories, which is however
in the same spirit as Pelddn’s treatment: Having constructed a SO(D 4 1) or SO(1, D)
Hamiltonian connection formulation for general relativity, it is rather not surprising
that one can extend the gauge group further to SO(p, D + ¢q), with p > 0, ¢ > 0,
p+q =: k > 1. The idea of how to obtain unified models is then to start with this
pure gravity formulation, to drop first class constraints, which for sure will enlarge the
number of physical degrees of freedom, and to study what kinds of matter coupled
theories can be obtained in that way. Note that these groups are of particular interest
for unification, since in particular they include SO(10), which one of the GUT models
is based on [211}, 212].

We will build up this formulation step by step, first studying the ingredients neces-
sary to extend the usual vielbein formulation to the gauge groups SO(D + p, ¢), and in

a second step turning it into a real connection formulation.
We will show that this programme probably fails: While we are able to give an ex-

plicit construction of an SO(D + p, q) Yang Mills formulation of pure general relativity,

all of the additionally introduced first class constraints are needed in order to obtain a
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9.2 SO(p, D + q) formulation

first class Hamiltonian constraint in this extended theory, and dropping constraints has

to come, if at all possible, with non-trivial alterations of the Hamiltonian constraint.

9.2.1 Extension of the eADM phase space

Let us start by extending the eADM phase space of section [3.2.3| further. We will still

use K7, E® as phase space coordinates, but now understand that they are RP-P+4

valued, i.e. I,J,... € {0,1,...,D + k — 1}. Internal indices are now moved with

nry = diag(—, ..., —, +, ..., +) 1. We will call this vielbein a k-hybrid vielbein, the inter-
—— ——

D D+q
nal space having k£ dimensions more than the spacetime. This makes the hybrid vielbein

considered before a 1-hybrid vielbein. When compared to the theory with 1-hybrid viel-

bein, the enlarged vielbein now has D(D+k)— D(D+1) = D(k—1) additional degrees
(D+k)(D+k=1) _ D(D+1) _ (2D+k)(k—1)
2 2 = 2

of freedom, while the Gaufl constraint obtains
additional components. Therefore, there now are (2D +k)(k—1)—2D(k—1) = k(k—1)
less physical phase space degrees of freedom, and we are forced to introduce additional
fields.

A possible way how to proceed is to introduce x space time scalars / internal (unit)

vector fields, n;’, i,4,... € {1,...,2}, vielbein- and mutually orthogonal,

€2 =n;'E% =0, (9.9)

(2

Cij = nilnjl =i =0, (9.10)
where 7;; = diag(—, ..., —, +, ..., +)ij, together with their conjugate momenta p’;. These

P q
are 2z(D + k) additional phase space degrees of freedom, subject to Dx + w con-

straints (note that their mutual orthogonality constitutes a symmetric constraint).
Demanding that these fields account for the missing degrees of freedom results in a
quadratic equation for z, k(k — 1) = 22(D + k) — 2Dx — z(x + 1), which has the solu-
tions x = k and x = k — 1. Le., we can either introduce a “completion” of the vielbein
ni!, ..., n! like in appendix or we can drop one of these normals, say ni!. This
was expected, since the the k-hybrid vielbein plus the £ — 1 mutually orthogonal unit
normals already fix ng’ (up to sign). Both options can be worked out, here we proceed

with introducing all £ normals.
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The non-vanishing Poisson brackets are given by
{Kar(x), ¥ (y)} = 6in{ 6P (z — y), (9.11)
{nir(@), P ()} = ninf 6P (@ —y), (9.12)

where 4, j, ... € {1,..,k}. In order that the constraints 9.10)) transform nicely under
SO(p, D+ q) transformations and spatial diffeomorphisms, we will define the generators

such that they act also on the newly introduced fields,

@17 — gpall g 7)1 opilly ). (9.13)

H, = E"0,Kp; — 0y(EY Kay) + p' Oanir, (9.14)
1 S

H = ﬁEamEmealeJ —5va”'R, (9.15)

where summation convention is also used for i, j, etc. Note that we kept the Hamiltonian
constraint in the form it appeared in , in particular did not add the terms one
would expect when minimally coupling these scalar fields to general relativity. The
reason is the same as when using the linear simplicity constraint in section [9.1 The
Hamiltonian constraint would pick up terms o p?, which would spoil the constraint
algebra since .77 would no longer (weakly) Poisson commute with the & constraints.
In its current form, . depends only on K,;E?!, and it is easy to convince oneself that
this combination weakly Poisson commutes with €*. All other Poisson brackets vanish
trivially (at least weakly), except the one between two Hamiltonian constraints. For

this, we find explicitly
(N), A My = Hlg™(NOM — MON)| + 5[ B B Dy(NOLM — MOLN)),
(9.16)

where in the Gaufl constraint term we used that K[‘IIEW = %quJEa[EbJ and defined

Hly = 2D, (KyE'), (9.17)

a

which coincides with the original spatial diffeomorphism constraint (3.28) of the eADM
formulation. The above calculation is greatly simplified using (A.8)) and noting that
due to the antisymmetry in M, N, only terms with derivatives on the multipliers can

survive.
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To furnish the proof that the constraint algebra closes, we have to show that ", ~ 7.
What saves the day at this point is the result of appendix namely that there exists

a k-hybrid spin connection
Ty = 6b[I|Da€b\J] + ni[l|8aniu} (9.18)
annihilating £%/ and all of the n;s. Using this, we have

Ay, = 2D (K E™)
= Ky Do E" + E" 0,Kyr — 0y(Kar E”) + 2T |4 Ko B
= —Ky T By + o, — T Oanar
= M+ %FHaugU — " (Oamnir + THarym;”)

1
= Ha+ §THa”%J, (9.19)

where in the second line, we only wrote out the terms of the first line explicitly, then
dropped the last summand due to torsion freeness, in the first summand used that IT'H
annihilates £ and replaced the two summands in the middle of the second line by
¢, minus the terms involving the normals. From line three to four, we replaced the
first summand by the Gaufl constraint minus the terms involving the normals, and in

the last step used that T'H also annihilates all n;s.

With this, we already want to end our proof that the constrained system (9.11]
9.10}9.13} [0.14} [9.15)) gives general relativity, since in the gauge n;! = n!, it obviously
reduces to the SO(D) eADM formulation.

9.2.2 Connection formulation

The transition from the k-hybrid vielbein formulation to a connection formulation now
is completely analogous to chapter [} We introduce the canonical pair of variables

Aau,(fr)bKL and n,r, p’/, 0,5 € {1,...,k — 1}, together with
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1.) an additional canonical pair N7, P’ (the kth unit vector), subject to the con-

straints
(0=))
S = GUKLMNJWCLKL, (9.20)
% = W N, e {1,k -1}, (9.21)
%‘ = n”njl—mj, ’i,j c {1,...,k}, (9.22)
where in the last constraint we understand that ng; = Nj;. The linear simplicity
Bary

constraint demands that 7 = %N IIEal7] and the remaining ones then give the

constraints of the k-hybrid vielbein formulation,
or

2.) the constraints

1
S = ZEUKW(?W(?I’KL, (9.23)
¢, = nn,;, ie{l,...k—1}, (9.24)
(gz’j = n”njl—mj, 1,] € {1,...,k—1}. (925)

The quadratic simplicity constraint enforces (TBr)“I = %N U1Eal/l and €%'; demands

that both, N and E% are orthogonal to all n;;, i € {1,....,k — 1}.

Again both possibilities can be worked out. We will continue with case 1.). Addi-

tional to the constraints we introduced so far, we of course again need

@l . DAa(fT)aIJ +2pl 7 4+ 2P NI, (9.26)
w 1)1 Lo Berg il I
o =51 Oapry = 5O(T Aarg) +p* Ganir + P 0aNT, (9.27)
T B8 S
e _ﬁ Dlalrs D]k L (A—T[m,ni, N|)yrs (A=T[m,ni, N))oger —iﬁR[w],
q
(9.28)

where the sums over ¢ here and on the following run from 1, ..., k—1. Note the change in
the Hamiltonian constraint when compared to (9.6): The extensions off the simplicity

constraint surface of the k-hybrid spin connection now necessarily also depends on the
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9.2 SO(p, D + q) formulation

unit vectorsﬂ n;, N, e.g.

Fa]J[W,ni, N] = C7TbU|KDa7Tb|J]K — QCN[IH’L‘J}TLZ'M@GNM

+ 1 ani ) + ¢(3 = D)Ni;10aN) ), (9.29)

where ¢ = || N||. One can check that [7.61]), where again I'[n] has to be replaced by
['[r, n;, N], define (weak) Dirac observables with respect to the kinematical constraints
and that the ADM canonical Poisson brackets are reproduced. From this, it again eas-
ily follows that the constraint algebra is first class and the system indeed is equivalent
to the ADM formulation. Moreover, symplectic reduction with respect to the linear
simplicity constraint immediately leads back to the k-hybrid vielbein formulation of

the previous section. We leave it to the interested reader to work out the details.

Variable ‘ Dof H 15 ¢l. constraints ‘ Dof (count twice!)
A, D(D+k)§D+k—1) > 1
(ﬁ)bKL D(D+k)§D+k71) A, D
nig k(D + k) qlJ (D+k)(2D+k*1)
Y k(D + k) o DDk 1)(D+h=2)
¢ D(k—1)
Gij e
Sum: D3+ D*(2k — 1) Sum: D3 + D*(2k — 2)
+D(k? + k) + 2k* +D(k* + k+1) + 2k* + 2

Table 9.2: SO(p, D+ q) formulation with linear simplicity constraint: counting of degrees
of freedom (k =p + q)

Finally, let us comment on increasing the phase space degrees of freedom by dropping
constraints of the set {.¢, ¢} while retaining a first class constraint algebra: That this
is non-trivial can already be seen from : To conclude that {J, 7} ~ 0, we
needed that the k-hybrid spin connection annihilates E%! as well as all unit vectors.

Now, for the existence of the k-hybrid spin connection and to show that I'[mr,n;, N]

! Actually, the dependence on one of the unit vectors can be removed by expressing it as function
of the other (k— 1) unit vectors and 7. However, to simplify the final expression, we refrain from doing

SO.
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in (9.29) reduces to this connection, we needed the mutual orthogonality properties of
E n;; and Ny, which only hold if all constraints {.#, %} are imposed.

However, dropping of constraints comes with the possibility of changing existing con-
straints: E.g., the previously forbidden scalar field terms p? one would expect in the
Hamiltonian constraint become in principle allowed as soon as none of the constraints
in the reduced set {., ¢’} depends on the corresponding unit vector n anymore. That
these terms miraculously cure the problems caused by the spin connection terms is,

however, rather unlikely. We leave the study of this issue for further research.

9.3 D = 3: Revival of the Barbero-Immirzi parameter

This section is taken from [2] with minor modifications.

In the special case of 3+ 1 dimensions, it is straightforward to reintroduce the Barbero
Immirzi parameter v: Use the method of gauge unfixing to the result of the canonical
analysis of the Holst action in section [6.2} The Dirac matrix F', which has to be in-
verted for gauge unfixing, is very simple in this case, given by Fe <@ —= —jf—fquG“b cd
as we have seen. We would obtain a connection formulation with (first class) quadratic
simplicity constraints and gauge group SO(3, 1), which reduces to the Ashtekar Bar-
bero formulation after solving the simplicity and boost Gaufl constraints. (Another
straightforward calculations shows that the same procedure gives a possible solution to
the open issue (i) in [213]). For quantisation purposes, it again would be nice to be
able to work with the compact gauge group SO(4) instead of the Lorentz group. More-
over, the linear simplicity constraint, which was introduced in section [9.1] is favoured
in 3 + 1 dimensions, since the quadratic simplicity constraint allows for unphysical so-
lutions, usually called the topological sector. Last but not least, a formulation with
Barbero Immirzi parameter probably is as near as we can get to the Ashtekar Barbero
variables, and with linear simplicity constraints it also maximally mimics the new spin
foam models. In this appendix, we will show by extending ADM phase space that both,
the formulations with flipped internal signature and with quadratic or linear simplicity

constraints, exist.
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9.3 D = 3: Revival of the Barbero-Immirzi parameter

9.3.1 Quadratic simplicity constraints

We start with the formulation given in section with variables {Kal g, moEL } Re-
stricting to 3+ 1 dimensions, we can perform a canonical transformation to the pair of

variables defined by

O 1. kL ™
(ﬁ)au = B(A )" " Kok = Bl Kar g, (9.30)
, 1 1)
(vﬂﬁ)au — B(%)IJKLWaKL — B//ﬁrau’ (9.31)

where the matrices .#, .#~' are given in and (6.3), and v € R/{0}, v* # ¢,
is the Barbero Immirzi parameter. This transformation is, of course, inspired of our
canonical treatment of the Holst action in section[6.2l Note that we introduced a second
free parameter 8 coming from a constant rescaling, which already appeared in section

To obtain a connection formulation, we the would like to use the canonical pair of

variables given by A,r := (I[r] + ([%))aIJ and (Vﬁﬂ)au’
’y7
LBk o osbsKsL 3/
Aarg(@), T 70 (y) = 20,00 0570° (¢ — ), (9.32)

while all other Poisson brackets vanish. We will prove in the following that these vari-

ables are indeed a valid extension of the ADM phase space.

For later convenience, we introduce the notations

(7,8) 1 (B
Y alJ = *Qab ™ 1J,
q
™) B
Lol B_(ﬂ—l)IJKL(VW )aKL,

™) )
(Wﬁ)au = 2. (///—1)IJKL(///—1)KLMN(V7’T5)QMN’ (9.33)
’Y7

. . . 7/8
where in the first line %qab has to be understood as a function of (’Yw Jats

(19.35). Moreover, note that in 3 + 1 dimensions the expression for the hybrid spin
connection given in section can be simplified to

as given in

Tarsln] = Cmyng Dar’ = ¢ <7Tb[1\Kaa7TbJ}K + 7Tb[1|KFgc7TCJ]K> ) (9.34)
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where T®. again denotes the Christoffel symbols and D, is the covariant derivative
annihilating g,;. The ADM variables, expressed in terms of A,r; and (Vﬁﬁ)“u , are
given by
b C arg b _ SOBars b
qq®’ = 2", =27 T 77, 9.35
Gr = 5 R (9:35)
1 (v
K% .= 3 0l gae g 9.36
ab 1 ab cd 1 abc (’Y’B)dlj
P = =0 GG K = G [ Acry = Ter[m]] 7 (9.37)

which immediately follows from ([7.60} [7.61).

Rewriting the constraints in terms of the new variables, we find the Gaufl and quadratic

simplicity constraints

g7 .— pA,Walr o (A—TI[x)), 1 a1 g) (9.38)
1
S0 = ZEIJKLT('?JWI[)(L. (9.39)

Note that I'[r] weakly annihilates OPars

as well. In 3 + 1 dimensions, the quadratic
simplicity constraint has additional solutions which lead to a theory not corresponding
to general relativity. We will exclude this sector by hand. In section [9.3.2] we will
introduce the linear version of the simplicity constraint, which does not have this ad-

ditional solution sector.

Using the equations ({9.35) , we find for the ADM constraints

1 9, 9.
= =5Ds (A= Tlrly % = 82 (4Tl g, W) (9-40)
1 ((6B)airg (68 S
w =i ( el UKL (A _ D)), (A - rwm) — SVaR(m).  (941)
q
where in both equations we dropped terms proportional to K [aI J (77’?5)“,] 17, Which, as

(v.8)
we already have seen several times, vanishes modulo the Simplicity and (rotational

components of) the Gaufl constraint.

Since T'y7; given in (9.34) transforms as a connection under the action of the Gauf
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constraint, ([9.36] [0.37, [9.40], [0.41)) are invariant under gauge transformations. Since the

")
matrix .# is built from intertwiners, (9.35)) and (9.39) are gauge invariant by inspection.

Simplicity invariance of (9.37} [9.40} [9.41) follows from

!

{7} = -5 RO L4,

2V
()

_ 1 GIJKLIB%—I(WT’Fﬂ)(bUan)(cW?()L 5z — )

=57

1
S ( Fhdga | ya(qu)b) 53z —y) ~ 0. (9.42)

What remains to be checked is if the ADM Poisson brackets are reproduced on the

GKLMNW%L(Q)W%N(?J) }

new phase space, which will by construction imply that the constraint algebra closes.
The following Poisson brackets will be helpful in the sequel, which are straightforward

generalisations of the corresponding ones in appendix [A]

0q = DC_lq(fﬁ)aué(’yﬁﬁ)a’U, (9.43)
5t = gG—lab Cd(fﬁ)cuéﬁﬁf’)duj (9.44)
-1

Omary = ;QQbPIJ KL — gﬂ'aKLﬂ'bIJ 5((/}} )i E MN5(77’T6)bMNa (9.45)

and from the last line follows
Ol (1) L Aar s (2), mKE ()} ~ —26%(z — y)maKLGE. (9.46)

The brackets

(ol # aeal H Ny =0 and {qul %1 PUA T =605 (9.47)

are easily verified. The remaining Poisson bracket

(P14, ) Aw), oA, O B

1 ae( 7B) C ( ’B)
:/d?’x/d?’y KQAabq [ 77r WJ) (z) {Aeu(l’), <q Lf VW d]KL) (?/)}

(;Bcd(A — F)fKL) (y)- — [A < B] (948)

N / i / Py [(;Aabqa[e”#)blw> () {Acrs (@), (~T i) ()}

(5Baa 1) ()] < 14 60 8] 0.9
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is much harder and therefore will be discussed in more detail. Here, A, and B.g4 are
test fields of compact support, which we can choose symmetric w.l.o.g., since P% is
symmetric by definition. The second line and third line of the above
equation vanish independently. For , we find using

1 R _
9.48) = ... = Z / d3:L’ AabBcdqac(’yﬂﬁ)[dlqub}e(A — F)e[J X gl‘][. . .},

which vanishes if the (rotational part of the) Gauf constraint holds. Before we proceed,

we define afe = iAa,bGabef and /3,9 = %BchCth and check that Qlef] = 0= ﬂ[gh]'

Then, we find for the third line (skipping “—[A <+ B]” for a moment)

d?’x d3y af@(ﬁ%_ﬁ)f]](x) {AGIJ(x)y (*C)ﬂ-bKM <Dg7TbLM> (y)} ﬁhg('yﬁﬁ)hKL(y)
- _ C/ d333/d3y O‘fe(,yﬁ'ﬁ)fl(](x)[{AeIJ(m)aﬂ-bKM(y)} (DgTrbLM> Bhg('V%B)hKL(y)
- {AeIJ(l‘),WbLM(y)} Dy (WbKM/Bhg(vﬁ'ﬁ)hKL> (y)} (9.50)

L(1.8) . (+.8)
—C/d3x/d3y af ,Yﬂ- fIJ(x) {AeIJ(x)arga(y)}ﬂ'bKMﬂ' LMBhg 777 hKL(y)'
(9.51)

Again, (9.50) and (9.51)) vanish separately. For (9.50), we find after a few steps using
(9.40)

= 2(/ >z ap® Dy (ﬁhg -Tr (776 ﬂ'f(vfrﬁ)h>)

= QC/ A3 afe [Dg <15h9 - Tr <ﬂ.[e 7TJv](*y7,r,fo’)h>> — (Dyq™) }/Bhg Ty (Wa Wf(vﬁﬁ)hﬂ
o q q
~ 0,

which vanishes since the trace Tr(abc) := al ;b7 e of antisymmetric matrices a, b, ¢

is antisymmetric when exchanging two matrices while oy is symmetric and Dyqp. = 0
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9.3 D = 3: Revival of the Barbero-Immirzi parameter

by construction. The remaining part (9.51)) can be rewritten as
(9.51) =
(1,8)
——¢ [ @y (PR TR} 517 T (wd e h) v)

[

=~ ¢ [ [{Pul 00} T+ PPl e 0)}] 00 T (0 2

[ a j a ]- 1 C( 7/8)
——¢ [ @y [~ {PAalan)} 60T+ {PUA) O 0) ]| 50 T <7r e h)

_ 11 7
<= ¢ [ @ [Aatht a8 L v (7 25

=— C/ d®y AgD. <1Bhb Tr <7r“ Wc(vﬁﬁ)h>)
o q

1 e c a( ’fB)c
= C/ d3y (D:Aw) Zded (qb( 52) —q déz) Tr <7r Ee 7rh>

=¢ /U By (D.Aap) qubd Tr <7ra(77’r6 Je wd> :

In the first step, we just reassembled the terms on the left hand side of the Poisson
bracket, in the second we used the definition of the Christoffel symbol, in the third
the formula for the derivative of the inverse matrix and antisymmetry of the trace in
(i <> ¢). In the fourth line we used the already known brackets of the metric g, and
its conjugate momentum P°®. Note that the density weight and index structure is such
that the terms in the fourth line can be reassembled in a covariant derivate. In the

sixth line the definition of £,9 is inserted, we integrated by parts and we used that

(v,8)
(%cﬁ)) = Tr(a b c) (this trace property can be shown using the definition of the

()

matrices .#). Thus we find that the second summand appearing in the definition of

Tr(ab

B9 vanishes due to antisymmetry of the trace in the indices (a <> b). If we now restore

the antisymmetry in the test fields (A <> B), we obtain

(©51) = % / @y |(DeAuw) B4 — (DeBap) A% ;Tr <wa”ff’c 7'rd>
~ L 3 cda b
~ 46’7\/ad ye D, (AabB d)

1
_ d3 ac<cdaAa Bb ):0,
457/0 Yy € b d

where we used the simplicity constraint in the second line and then dropped a surface
term. We leave the case where ¢ has a boundary for further research. This furnishes

the proof of the validity of the formulation.
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9.3.2 Barbero Immirzi parameter and linear simplicity constraints

As was demonstrated in section [9.1] instead of the quadratic simplicity constraints we
may as well work with linear simplicity (and normalisation) constraints when intro-
ducing additional phase space degrees of freedom {N I , Py}. This result extends to
the D = 3 case with Barbero Immirzi parameter as follows: The theory with linear
simplicity and normalisation constraint has the non-vanishing Poisson brackets

as well as
{N'(@), Ps(y)} = 656°(x —y), (9.52)

and the constraints are given by

Heo = %(Vﬁﬁ)bIJaaAbIJ — %317 (hﬁﬁ)bUAau) + P19, N, (9.53)
e _4\1/6 ((vﬁﬁ)[au(vﬁﬁ)b}KL (A—T[x]),,, (A— I‘[ﬂ])aKL> — g\/ZIR(ﬂ), (9.54)
@17 .— pA,OPals L oplin] (9.55)
S = dIELN e (9.56)
N = NIN; —¢. (9.57)

The proof that this constrained system actually describes general relativity is the same
as we gave in section for general D > 3 without Barbero Immirzi parameter. We
want to point out that, while we now are mixing boost and rotational components due
to the matrices .#, .# ', for the proof that the ADM Poisson brackets are reproduced
on the extended phase space in section we again only needed 4!/ ~ 0 and
Z% ~ 0, and therefore, the same argumentation as in section goes through. We

leave it to the interested reader to work out the details.

9.3.3 Solving the linear simplicity and normalisation constraints

While we were rather brief in the last subsection, here we want to be more explicit,
since a thorough understanding of the relation between this formulation and the usual
Ashtekar Barbero variables will be important when one wants to compare the resulting

quantum theories in D = 3.
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9.3 D = 3: Revival of the Barbero-Immirzi parameter

It is instructive to solve first the simplicity (and normalisation) constraints and then the
boost Gaufl constraint (“time gauge”), which will in the first step lead to a formulation
similar to the one given in section (cf. also [146]), and then to the formulation in
Ashtekar-Barbero variables. We will treat the case with linear simplicity constraints,
since in 3 4+ 1 dimensions, the linear constraint has the additional advantage that its
only solution is general relativity, while the quadratic simplicity constraint also allows
for the topological solution.

The solution to the linear simplicity and normalisation constraint is given by (7@“[ I =

%n[f EJl and therefore

9. 1 1
(Wﬂﬂ)au _ 5 <2n[IEa|J] n GIJKLnKEaL> ‘ (9.58)
Y

For the connection, we make the Ansatz A,;; = Turg + (KB o1J- The symplectic
77
potential becomes

1 7/8 1 % 1 7/8 - 1 ’5 - 5
f(’YTF )aIJAa]J + PIN[ = f(’YTF )aI‘]FaL] + *(771' Ja1s K .15+ PINI
2 2 2 (7.8)
1 . . .
= —MVEUK%KE“LFW +nl B Ky + PIN

: 1 .
= —(nll EalJ]) (KaIJ + MGIJKLFGLKL> + PIN;

) B 1 B
~ —FEa/ <CKaJ + EGIJKLTLIF(IKL +nyP Eyr

_ 1
—nyEIEPK <Kb1K + EIKLMFbLM>>
28y

=: EY A,. (9.59)

In the next step we express the remaining constraints in terms of the new canonical

variables. The reduction of the Gaufl constraint yields

1 1
51\1ng‘] = _Ar;D4,

2
~ AU(KB)gK”#B)aKJ + A7 PINY
Vs

= Apg KL gen®®7 4 A ;PN
= Ay Kl (n"E*Y —n’ E*Y) 4 A PN
~ —A; B (gf(,{ — B, YK KL 4 nPK EaK)

OBar 4 A PINY
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1
= —A[JEaJ (ACIL — % <€MIKLnMFaKL — nIEéVEbKGNKLMFbLM>>
1 1
= SAL <2EGU Al 4 %JJKLaa (nKEg)> , (9.60)

which after time gauge n! = 56 and solution of the boost part of the Gaufl constraint
obviously reproduces the SU(2) Gaufl constraint of the Ashtekar-Barbero formulation.

The diffeomorphism constraint becomes

1(v, 1 ;
A= 5 W0, Ay~ 500 <”7f )b”AaU> + ProoN!
~ EblaaAb[ — 8b (EbIAa[> y (961)

which coincides on-shell with the spatial diffeomorphism constraint of section|9.3.1

1 (+.8) (1:8),
A== Dy ((A — Ty = 0 (A=Tla)ery 7 ”)

1
~ EblaaAb[ — 0O (EbIAa[) + §FaKL [W]gKL. (9.62)

H H I . IJKL pH
Here, we used R ;; = EfEdJRabcd, Ry m' =0 (cf appendlx and !/ Rab[JnKEg =

0 which follows from the algebraic Bianchi identity. Finally, the Hamiltonian constraint

gives
1 ((B)iairg(0:8) s (7,8)
H = —m ( 7 lall T KL (A_F)bIJ (A_F)aKL> - 5\/§R( )
1 1 1
~ —ﬁE[auEW <Ab1 - %GMIKLnMFHbKL> <AaJ - %GNJABnNFHaAB>
S
— 5\/§R(E). (9.63)

9.3.4 Time gauge

We choose time gauge n! = 56 & E% = 0 and solve its second class partner, the
boost part 9% = —E%AY of the Gauf} constraint (7, 7,... € {1,2,3}). It is convenient

to introduce the rescaled variables A, — Al := —(YA, and EY — E'b o= —%Ebj,

154



9.3 D = 3: Revival of the Barbero-Immirzi parameter

where 7 := 37, in terms of which we have

EY A, — E'9AL, (9.64)
1 .. g

Gl = =Gy = 0B + T ALE'S, (9.65)

A s 0, = B9, AL — (E’biA;i> , (9.66)

J“f — jf = —\}ZIE[aliEb]j <Abz - %Eiklrbkl> <Aaj - ;ejmnfamn> - %\/Z]R(E)

~ Q\aaeiij;bkE’“iE/bj — 2\1@ (1 — s7%) €5 Rap " E' E'. (9.67)
Here, terms proportional to the Gaufl constraint have been dropped in the expression
for the Hamiltonian constraint. At this stage, only the combination of the parameters
4 =~ is left and plays the role of the Barbero Immirzi parameter in usual Ashtekar
Barbero variables, cf. chapter [f] One could ask if one should have worked with one
parameter from the beginning. To give a tentative answer to this question, note that the

(quadratic) simplicity constraint implies je; ]KL(’Y'%B)G'IJ (VT’rﬂ)bKL = 2C—7(AY7’TB)“U (Vﬁﬁ)b

R GRS 1J
and therefore
2 2
9 9 1 b b
2qq® = WaIJﬂ_?J: ( 27 ) [<1+C2> (vﬁﬁ)au(vﬁﬁ)%_76UKL(77TB)a1J('Y7Tﬂ)bKL
¢ =C v gt
232
v L OO (9.68)
72 +¢
We expect that the square root of this factor, %, will appear in the spectrum of
¥

the area operator. It seems improbable that the two parameters v, 5 appear just in
this peculiar combination in the spectra of operators and therefore, at the quantum

level one probably will be able to distinguish between ~ and S.

9.3.5 Formulation with two commuting SU(2) connections

Note that we could have chosen time gauge before solving the simplicity and normali-
sation constraints by setting N7 = 6f and solving the boost part of the GauB constraint
GY = DAa(’yfrﬁ)ai — P!, where we used the notation (Vfrﬂ)“i = (V#B)“Oi

define A,; = Agoi. We find

. Furthermore, we

1(7.,8)
™

(v,8)

UI A+ T YAy (9.69)

. . 1(v,
alJ Ay + pl Ny 5(vﬁﬁ)
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and

@i _ aa(v B ai 4oa,lil, (", ﬁ)akm (v{rﬁ)a[iAzL}, (9.70)
i _ Ez'jk(vﬁﬁ)?k B 27( Vﬁﬁ)ai’ (9.71)
=30,y = 50n (4 ) + O 0,0 - 0, (H A ) o)

__L (’Yﬁ)[aﬁj(%ﬁ)b]kl
H = 4\/§< T @ (A- F)bz] (A - D)ok

L (0B a)i 0Bk > 1 ((%ﬁ)[ai(%ﬁ) bl )
—— 7 T Ap(A—Dgir | —— [ 7 T ApiAgi qR(m),
- ( WA= D) - iAo f( (n >)
9.73

where we dropped constants in front of the simplicity constraint and in the Hamiltonian
constraint we neglected terms proportional to the simplicity constraint (I'g0; &~ 0). Note
that in the case without Barbero Immirzi parameter, the simplicity constraint .7% =
€ikn T demands the vanishing of 7% and therefore there is no physical information
left in the conjugate SU(2) connection Agq;;. Here, this is not the case and we obtain
a genuine connection formulation of general relativity. Moreover, the other canonical

pair {Am-, (77’%6)1’]' } has the same structure as {Km-,Ebj}. Then, it follows from the

know results when extending the ADM phase space to Ashtekar-Barbero variables (cf.

J
the transformation {Aai,(vfrﬂ)bj} — {A; =17, + aeip; AR, BE_PR .= iekmlmﬁﬁ)%}

aij
( ﬁ)

section that there exists a spin connection I, which annihilates (77%5)‘”' and that

for « € R/{0} is canonical. Defining Amj = Agij and EL% = @J  we obtain the
symplectic potential
1
5 ‘“JA;LU + E “”A* (9.74)
and constraints
49 = DFE, " + D, E_ (9.75)
1 .. g .
5613’2%3 =B, % 4 C;XE“”, (9.76)
Lo 1 b
Ho= GBS0, — S0, (B AY,)
1 _
+ 3B, Ay, - ab (B-"iag,), (9.77)
1 ij bkl
=i r (B[ B (AT~ T(By, B-)),,, (AT = T(Ey, EL)) )
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_ 2\1/5 (E—[“WEJFHM (A- - F/(E—))bij (AT —T(Ey, E_))akl>
o 4\1/6 (Ei[alijEib}kl (A_ — F/(Ef))bij (A_ - F,(Ef»akl)
S iz (9.78)

/
abij

where we dropped the term — %E,bij R!...(E_) in the spatial diffeomorphism constraint,
since it vanishes due to the Bianchi identity. We made explicit that the spin connec-
tion I'q;; in the Hamiltonian constraint does not annihilate E_%J but the physical
combination of F;% and E_% (i.e. the combination which remains when solving the
simplicity constraint). Note however, that on the simplicity constraint surface, we have
that Ey, E_ and therefore also the physical E are multiples of each other with constant
coeflicients, E~ afE_ ~ —vyB(FE, and since the spin connection is unchanged by con-
stant rescalings of the vielbein which it annihilates, I'(FE, E_) and IV(E_) coincide on
the simplicity constraint surface. In this formulation we now have two commuting

SU(2) connections A:er‘j and A_;;, which can be interpreted as the two parts SU(2)*
and SU(2)~ of SO(4). They are, however, not uncorrelated and their momenta are
multiples of each other (9.76)), in complete analogy to the relation K +~L = 0 of boost-

and rotation generators in the new spin foam models.

Of course, with a suitable choice of variables, one of the two connection carries no

physical information. Explicitly, B = %ekilﬁ’akl = 2(7727[?_06kil(E+ + yaE_)%, and
At = —%ek”(%ﬁ — 7ECA*)QM carry the physical information and can be shown to be

a canonical pair. In terms of these, we have
1
Va

E[a|iE|b]j <Abz - ;:eiklr[EA]bkl) (Aaj - CAEjmnF[EA]amn> - g\/E]R(E)a
Y

2y
(9.79)

H ~ —

where 4 := % This form of the Hamiltonian constraint again coincides with our

result of section [0.3.41

9.4 On the ¥ constraints

We will see later on that the fact that the simplicity constraint is quadratic in the
momenta 77 leads to problems when quantising, in particular, group averaging tech-

niques are not available. Therefore, one might want to substitute this constraint at the
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classical level by a different one which simplifies quantisation. Of course, a possible
way of how to get rid of . is to gauge fix the simplicity constraint and then try to
gauge unfix the gauge fixing condition. The most natural gauge fixing condition to
introduce, the 2 constraint from section [5.2] is alas much more complicated than the
simplicity constraint and even if we succeeded in exchanging their role, we would make
the problems in the quantum theory only worse. The question thus arises if we could

introduce different gauge fixings with nicer properties, which we will briefly study here.

Let us start our considerations in the {K,r, 7®%L}-theory from section for con-
venience. Since our gauge fixing should be easier to handle than the simplicity con-
straint at the quantum level, we are lead to consider gauge fixings which are at most
linear in the momenta 7*7. Of course, in order to be second class with the simplicity
constraints, it necessarily has to be at least linear in K,5;. For general D > 3, the
probably simplest constraint which one can come up with,

N R 1 J—
D" = (Mr ) Ky, = §EUKLM7T“1JKbKL, (9.80)

meets these needs. If . = 0, it obviously demands that K,;; = 0, and therefore is
a good first guess. Like the simplicity constraints, the 2” constraints are for D > 3
not all independent. However, in D = 3 where the multiindex M is absent, 2" has 9
components, but we would only expect 6 independent constraints from our experience
with the Palatini theory. Therefore, the constraints 2" must have some further source
of non-independence, apart from the one stemming from the labelling by a multiindex.

Indeed, only the symmetric part
.@g, = (*ﬁﬂ(a‘)KLK“))KL (981)

is independent, and one easily finds that if . = 0, it demands that the transverse
tracefree part I_(Ctbfl j of Kqrj vanishes. The antisymmetric part then is already con-
strained to vanish, since it can be shown to be proportional to the boost part of the
Gauf} constraint f(}r' and f(g[ 7, 1.e. the symmetric part, again if . = 0. We could of
course argue that, classically, it does not matter if we impose 2” or &', but this only
holds if . = 0 and since we want to get rid of this constraint, we are lead to continue

with 2’. Note that here we already lost the linearity in the momenta, since w7 is a
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complicated function of 77, We will continue anyway to see if we can obtain a con-
nection formulation with first class albeit complicated 2’ constraint. In the following,

we will restrict to D = 3.

That 2’ is equivalent to (5.24) already follows from the fact that both demand the

vanishing of f(gfl ;- Explicitly, we have

gab — 2(*7TC)KL7T(a|KNDé4ﬂ,b)LN
— UKL (er®) @l e DARDMN
~ _f]JKLMN(*TFC)IJW(G‘KL[KC7 7_[_b)]MN

— KLy fop or™MN (+7€) 1yl e K OP QR

_ quGade-@éd + yc(bﬂ_a)IJKC]J o yabﬂ-CIJKcIJ- (982)

Here, in the second line, we used that the trace over three generators gives the structure
constants (cf. appendix [D] for notation), in the third we used A = I'[r] + K and that
I'[r] weakly annihilates 7 (note that the Christoffel symbols drop out). In the fourth
line, we rewrote the commutator using the structure functions and in the fifth line use
the relation . We see that the constraints 2 and 2’ are (weakly) related by the
invertible matrix G4 (cf. (2.15)).

Using ([A.25)) we easily deduce
1
0Dy, = (+m (o) 6 Ky g + (xK )" 5qa)cP1JKL - gﬂ'a)KLWCIJ oreK L, (9.83)

which will be used repeatedly in calculating Poisson brackets in the following. Note
that Py &L .= 77[}[(775] — %ﬂ'a[Jﬂ'aKL projects orthogonal to L = P A T |}
First of all, note that 2’ obviously will Poisson commute with the Gaufl and spatial

diffeomorphism constraint. We find that the Dirac matrix between .¥ and 2’
{7 (@), Zlaly)} = ~48L0)5° (@ — ) (0.84)

is trivial, in particular phase space independent. Note that in higher dimensions, this

cannot be true due to the non-independence of the constraints.
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Furthermore, the maps to the ADM phase space ((7.44} [7.45)) actually are 2’ observ-
ables,
¢\
{da[m)(2), Z'caly)} = —gGablefﬁeU{WfU(x), K" (y)} (+me) k1)

i .
q7 able(dqc)fy f5(3) (1‘ - y)7 (985)

{P?[r, K(2), Z'caly)} =

1 1
= §Gabef7TfIJ(*K(c|)KL (qu)a:PKLIJ - gﬂd)KLWeIJ> 0z —y)

1
S eKL(S{C(*Trd))I‘] <Gabef77[I](77J]L + ZW(MKLGa)e gfﬂ-gIJ

5
¢
q
D 1
= 54" 28" (x —y) = 54 a0eq™! 7" 15 (x — )

Gab gfﬂ'eKLﬂ'gIJ> 5(3) (ﬂj _ y)

¢ a a e
- quflJ (W(bwG 7 e — G be(c|> )76 (x — ), (9.86)

where in the first line we used and in the third line . As we already stated,
the 2" terms in the second to last line vanish weakly modulo 2', ¢4 and .. This
proves that 2’ weakly Poisson commutes with the Hamilton constraint when expressed
via . Finally, due to the very simple form of 2’, we find that it is actually

first class with itself,
2
{D (), Dia(y)} = 5(*K(d)IJqC)(b(*Wa))IJ5(3) (x—y)

B ;&yghqg(a [Qb)eq(cp& + Qb)(c|q6z] -@”e\d)d(g) (x —y)
—ab & cd
2

s 5(*K(d)IJQC)(b(*7ra))IJ5(3) (x —y) —ab <> cd

8
= qCK( I‘]qc)(bﬂ'a)lj(s(?))(l‘ - y) —ab < cd

4¢
= (Kta" marsave + K" o150

+K[dIJ7Tb]IJQac + K[cljﬂb]IJQad) 5(3) (l‘ - y) ~ 0, (9'87)

where the terms in the last line vanish since K|y ﬂrb]] 7 2 0 up to GauB and simplicity

constraint.
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9.5 First class Hamiltonian formulation with arbitrary internal space

We see that, at least in D = 3 and in variables K, 7, there is a gauge fixing 2’ of
the simplicity constraint with nicer properties: The Dirac matrix becomes trivial and
2’ is first class with respect to all other constraints. But gauge unfixing and obtaining

a connection formulation still fail because of two reasons.

Firstly, 2’ is weakly Poisson commuting with itself and the Hamiltonian constraint
only up to the simplicity constraint. Therefore, we cannot simply drop the simplicity

constraint unless we change 2’ and # such that their algebra closes without .&.

Secondly, we still do not yet have a connection formulation. Of course, we can ex-

press 2’ in terms of new connection variables, 2’ = (*(ﬁ)(a)f J(A - L[r])yyrs- But since

we were not able to prove that the transformation {K,77, 755} — {Aa1s, (Tﬂr)bKL} is
canonical, we do not know if the constraint algebra is reproduced. In particular, when
trying to redo the calculation {2, 2’} in connection variables, one cannot reproduce
the result of because of exactly the same problems which appeared when trying
to prove then canonicity of the transformation to connection variables in section

Note that also the original & constraint of section [5.2| was not poisson self commuting.

While we will show in the next section that the first of these two problems can be
overcome, i.e. we will construct a formulation with first class & constraints, but we do

not know how to solve the second.

9.5 First class Hamiltonian formulation with arbitrary in-

ternal space

When introducing additional fields in the Lagrangian, one usually would as well intro-
duce constraints which take care of the superfluous degrees of freedom. This is what
happens when e.g. going from the Einstein Hilbert action to the Plebanski action
(5.4). But when comparing the Einstein Hilbert actions with metric and vielbein
as fundamental degree of freedom, what catches the eye is that, while working
with more fields (e,! having (D + 1) components while g,,,, being symmetric, only

(D+1)(D+2)

has 5 independent components), we do not need to change the action by ad-

ditional constraints. The extra degrees of freedom are pure gauge, which is reflected in
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9. EXTENSIONS AND RELATED MATERIAL

a new invariance of the action: e,/ — e;f := gl je,” for g € SO(D + 1) or SO(1, D)
in the Euclidean or Lorentzian case respectively. On the Hamiltonian side, as we have
seen in section additional primary constraints arise corresponding to these internal
gauge transformations. L.e., the action by construction only depends on ¢, and surely
we cannot solve the defining equations of the momenta for any other velocities. The
velocities which cannot be solved for turn out to multiply exactly the Gaufl constraints

in the Hamiltonian corresponding to the additional internal symmetry.

This leads to the question: what happens if we choose not to work with a vielbein, but
decompose the metric differently? E.g., suppose we consider the Finstein Hilbert action
as a functional of a Lie algebra valued co vielbein field 7,7 using g,,, = Tl gt sim-
ilar to what is used in part [[Il Do we need a simplicity constraint? The answer we will
give in the following to this question is no, for the Lagrangian picture no new constraints
are needed. This rises the question if they will somehow reappear in the Hamiltonian
formulation. Performing the canonical analysis, we will find that the answer again is
no. Actually, the simplicity constraints cannot appear as primary constraints, since
primary constraints are at least linear in the momenta canonically conjugate to the 7s
which we will call K in analogy with section Instead, apart from a “Gauf} like”
constraint, constraints similar to the & constraints will appear as primary first class
constraints, and the algebra of all constraints will be shown to be of the first class, in
particular, no secondary constraints will appear. Our discussion will be independent of
choice of internal space (except that its dimension should allow for incorporating the
metric degrees of freedom) in the beginning, only later we will restrict to the case when

m, is valued in some Lie algebra g.

9.5.1 Lagrangian viewpoint

Specificly, we will work with 7,%, o, 8,7 € {1,..., A}, A > D 4+ 1. We demand that in
the internal space, there exists a constant metric tensor d,g with inverse 58, We will

decompose the spacetime metric according to

G = Wuaﬂyﬁ(saﬁ. (9.88)
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9.5 First class Hamiltonian formulation with arbitrary internal space

Variation of the Einstein Hilbert action ({2.1)) with respect to 7#, yields, using dg"" =
2711 579 like in section

55 = / AP 27 /Tg] (%) G (1) 0671, (9.89)
M
up to a boundary term. Contraction the field equations
G (m)m”o =0 (9.90)

with 7,%, we obtain G, = 0 as necessary condition, which then solves all the field
equations. We thus are still dealing with general relativity, but with a possibly huge
gauge symmetry. To find the generators of these transformations (zero eigenvectors
of the matrix relating momenta and velocities) later in the Hamiltonian picture, it is
helpful to study the new symmetries already at the level of the action. The infinitesimal

transformations 7, % — 7r:LO‘ = m,* + €,% leaving the action invariant have to satisfy

E(uaﬂ—u)a =0, (991)

in order to leave g,, invariant. Since 7,% are D + 1 vectors in a A-dimensional space,
there are A — (D + 1) linearly independent internal vectors orthogonal to it which for

sure satsify (9.91]). These orthogonal directions can be accessed using the projectors

Isaﬁ = 5@5 - Wuaﬂuﬁglwa Qaﬁ = Wpaﬂuﬂglwa 5(15 = Isaﬁ + Qaﬁ,
Isaﬁlsﬁry = ISO&’Y’ Qa,@QB’Y = Qa’yy ISQBQB’}/ = 07 (992)

and in particular, Pogm,” = 0, Qupm,” = mua. Thus, there exist (D + 1)[A — (D + 1)]

independent vectors €, satisfying €,* := poB €,3 Which constitute solutions to (9.91)).

Futhermore, exploiting the symmetry of (9.91)) in the index pair pu, v, we obtain w
solutions €,* = AP,m,* with A¥ = —A"f. Since 7,* has A(D + 1) components and
the symmetries remove (D +1)(A — %), we are left with w, corresponding

to the metric degrees of freedom.

9.5.2 Canonical analysis

Performing the D +1 split, we use in analogy to the vielbein case m,* = ”mﬂ +sn,n<,
where ”77#0‘ = q,"m n® =m,*n", and we have Hmﬁna =0, n®ny = s. Trivially, the

split form of the action is given by (2.11)), where the spatial metric now is considered as
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9. EXTENSIONS AND RELATED MATERIAL

constructed from the pullback of ”mﬁ, Gab = Ta“Tpa, and (2.13)) immediately translates
into Kgqp = %ﬂ—(aa (frb)a + (gNﬂ-)b)a)'

For the momenta, we find

59
Koot z) = <o —
(t2) = 5ot

_ / aP Sqan(t,y) 48
o (57'(00‘(t,x) 5Qab(tay)
= —/q(t, x)GCd“b(t, ) Tga(t, ©) Kap(t, x)

= Gt (7 (t.2) — (Lwm)a (1)) (9.93)

where we introduced G%% := —%ﬂbaG“b CdeB and G was defined in (2.15)). From

the zero eigenvectors of this matrix, we again can deduce the primary constraints, and
indeed, we find zero eigenvectors corresponding to the invariances of the action. Using

similar projectors
Paﬁ = 5045 - 7"'(J,oﬂ'rb,Bqabv Qaﬁ = 71'aoﬂ"'bﬁqaby (994)
these result in the primary constraints

@b .= rlo KVl — 0, (9.95)

D% = PosK™» = 0. (9.96)

Counting shows that, if these constraints are first class as we will prove later on, they are
sufficient: We have in total w+D(A—D) = D(A—2HL) constraints to go from m,®
t0 ¢qp, which differ by the same number of components, DA — w =D(A—- %)

As before, (9.93)) can only be solved for the velocities corresponding to ¢up,

. N - cla
F(aﬂﬂ'b)ﬁ = —%ngi}iﬂ'( ‘ Ki) —l—’/'l'(aﬁ(g]vﬂ')b)g, (997)
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9.5 First class Hamiltonian formulation with arbitrary internal space

and expressing the kinetic term we expect in the Hamiltonian in terms of K, m, N, N ,

we obtain using (9.97)) and elementary algebra

K% 7ta® = K (Pug + Qup) 71
= (K“O‘Pag + K[aaﬂb]aﬂw + K(mwb)aﬂbg) el
= P*Pagtta” + G mpp7a)”
+ Klaagb) (—\]/VaGg;i;w(chg) + W(aﬁ(chﬂ)bm)

N _
= .@aapagﬁaﬁ + gbaﬂ[bwﬂ'a]ﬁ — %K(aaﬂb)ang 1C)l7r(claKg)

+ K[aaﬂb]aﬂ'aﬁ(f]vﬂ’)bﬁ + Kbaﬂaaﬂaﬁ(fjvﬂ)bﬁ
== @aa {Pagfraﬁ — Paﬁ(gj\ﬂr)aﬂ} +gba [W[b|5ﬁa]ﬁ - W[bﬁ(gj\[ﬂ')aw}
_ f/vamwwwaa;;;;ﬂcwg + K" (L) an. (9.98)

and therefore for the action in Hamiltonian form
S = / dt / Pz [PMN + PMINe 4 K9, 7,9 — AE — X,

— (K"ar® = SNV (PR = 5GP Ky Kea) ) (K7, N, )|

- / dt / dPu :P(N)N + PMIN® 4 KO, — XE — X6,

- %K“aﬁaa + %K“a(.wa)a“ - ;N\/Q(D)R> (K, N, N)}
- / dt / dPz [PUV)N + PN 4 K9, — AE — X,

Ay D% — Ay @ — NOH, — Nﬁf] , (9.99)

where in the last step, we used (9.98)), integrated by parts and defined

oy = Kbaaaﬂ'ba - ab(Kbaﬂ-aa)v (9100)
1 -
= —Q—ﬂKW%b)anggw(C‘aKg) - 5vaPR. (9.101)

We furthermore replaced the velocities we could not solve for by Lagrange multipliers

dao and Ag. Eliminating as before N, N, we obtain the Hamiltonian

H= / 4Pz [duaZ™ + A™* + N + N (9.102)
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and non-vanishing Poisson brackets
{ma®(t,2), KPs(t,y)} = 65650 (z — y). (9.103)

Let us study the stability of the constraints under time evolution. First, since .57,
again is obviously the generator of spatial diffeomorphisms, it is clearly first class and
its Poisson brackets with all constraints are clear. J# only depends on qu(7) = ma“mpa,
(and derivatives thereof) and P(K,m) = 3K (©lB74) 5, and they satisfy (weakly) the
ADM Poisson brackets,

{dab(m)(t, 2), gea(m) (£, )} = 0,
{qap(m)(t, ), PUK, ) ()} = 0,000 (z ),

{P* (K, 7)(t,x), P(K,m)(t,y)} = —i (g™ + ) (2) 67)(x — y), (9.104)

which in turn tells us that the hypersurface deformation algebra is (weakly) re-
produced. What is left to check is if the Poisson brackets between the new constraints
weakly vanish, and whether ¢ () and P (K, ) are Dirac observables with respect to

the new constraints. Straightforward calculation shows

(2°4(t,2), P 5(t,y)} = (2Pa5gab + 5Pty — ﬂba@%) 5O (x —y), (9.105)
{9 (t.2), Z%(t,9)} = 1" P06 (x —y), (9.106)
{901, 0), 91, y)} = (a9 - g1°g) 6P (@ ), (9.107)

{2°a(t, ), qea(m)(t,y) } = 0, (9.108)
{9°(t, x), gea() (1, )} = 0, (9.109)
{2 a(t,2), PUK, 1) (1,)} = — 50770 06D (@ — ), (9.110)
(9 (t, ), P(K, ) (t,y)} = % (4™ — ) 5P) @ — ). (9.111)

proving that the constraints are all first class and no secondary constraints appear. To
interpret the additional constraints 2%, and 4%, note that 2%, demands that K lies

in the same D-dimensional subspace in the internal space as the 7s (in the notation

J J]

used in part say, the 7s are given by m,!/ = 2nlle,

K%y =2n;K" survives) and then 4% reduces to the GauB like constraint el®; K/,

, then only the component

which is related with the symmetry of the extrinsic curvature.
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9.5 First class Hamiltonian formulation with arbitrary internal space

Variable ‘ Dof H 15% cl. constraints ‘ Dof (count twice!)

T DA H 1
Kb DA A, D
a D(D-1
@ab (2 )
2 D(A—- D)
Sum: ‘ 2DA H Sum: ‘ 2DA — (D? - D —2)

Table 9.3: First class formulation with arbitrary internal space: counting of degrees of

freedom

9.5.3 Connection formulation?

Here, we end our general analysis, and in the following will specify the internal space.
Since we want to discuss the possibility of obtaining a connection formulation, the
case of interest is that m, be g-valued for some compact Lie algebra g. As usual, we
can assume the Killing metric to be given by d,s and the structure constants fqgs,
to be totally antisymmetric and to satisfy f,7° f3vs = 0ap- In this case, we of course
expect the appearance of a Gaufl constraint ¢,, := fagﬁﬂraﬁK %7, Indeed, this constraint
corresponds to the zero eigenvectors (Vua)g := fapyTa? of Ggf’ﬁ. However, it has to be
and, of course, is already included in the constraints we introduced before. To see this,

it is convenient to first recombine these constraints to the equivalent set of constraints

~

Do = T K g)- (9.112)

Their equivalence can be seen as follows: First of all, @aﬁ has w components, of

which (A_D)gﬂ trivially vanish (project both indices on the (A — D)-dimensional
(gfl) _ (A*D)(S*Dfl) — D(A- 24

subspace accessed via P*? ), i.e. we have with A
the right number of constraints. Furthermore, contraction with 77 yields ¢, and

a single contraction with 7%® and using ¥, we obtain 2.

In a second step, we decompose 92045 according to

@aﬁ = <5$5§ - fo‘ﬁef'ﬁ6 + faﬁsf'y&e) @aﬁ
= 90 P g7, (9.113)
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9. EXTENSIONS AND RELATED MATERIAL

where 298 .= (55;‘5? — fo‘ﬁefwge) T VK] = Maﬁn/(;ﬂ'ahKaa] has the property foém‘@ﬁ7
= 0 due to fuys f,g“"s = 0q3. The geometrical interpretation of this Z-constraint is that
it generates all transformations which leave ¢, = maomp® invariant and which are not
GauBl transformations. Its form crucially depends on the Lie algebra under consider-
ation: For so(3), it is easy to see that 2%’ = 0 identically since M*®.; = 0. For
g =so(D+1) orso(l,D) with D > 2, we have M[U“KL][MNHOP} x <€IJMNM€KLOPM
—eKLy, NMEI J o PM) (cf. appendiXEI), which should be compared with , where a
very similar contraction of two epsilons appeared when obtaining the independent set

of - and simplicity constraints such that the Dirac matrix is invertible.

Let us calculate the constraint algebra of the newly introduced constraints. Using
{@ag, _@75} = 55[7925],1 — 5a[7925] 5 and the Jacobi identity satisfied by the structure

constants, it is straightforward to obtain

(Yo G5} = =217 F5° D5 = — fap s (9.114)
{Dap: Gy} = —2Mop" " Dsc = 2f18° Dsa). (9.115)
{.@ag, _@75} = —QMQBECMM;C”@E” = —2Ma56<M75C?7.@6n + 2Ma5€[7f5]64g<. (9.116)

Now we have separated the Gaufl constraint from the Z-part, we can give a tenta-
tive definition of what one could call the simplicity constraint . for any Lie algebra:
A gauge fixing for 2, i.e. a constraint such that {., Z} yields an invertible matrix
on a suitably chosen space of Lagrange multipliers, while {, ¢} ~ 0 for any other
constraint €. Equivalently, .# should annihilate all components of © which do not
contribute to the metric up to the Gaufl constraint. Ideally, we would like .# to be
constructed solely from 7 and in the following restrict attention to this case. Since
it is very easy to write down constraints which for sure will weakly Poisson commute
with the Gaufl and spatial diffeomorphism constraint and since {.%, gu[7]} = 0 by
construction, the only thing which needs to be checked is if {.7, P?[K, 7|} &< ¥ = 0.
Being independent of K%, no other constraint except . can appear on the right hand
side of this Poisson bracket. Finding . with the above properties seems to be the core

problem, and probably is impossible in most cases.
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9.5 First class Hamiltonian formulation with arbitrary internal space

Still, assuming we have accomplished this, the second step in order to obtain a connec-
tion formulation is to gauge unfix .¥. This again is non-trivial, the problem being that
for the Poisson bracket {J¢, .7}, we need that

{PP(E, m)[ fas], PUCK, ) [feal} =

1 a C « « '
= / dPx [—2f b pr e mpames (M b 5D+ f W’Y)} ~ 0, (9.117)

has to vanish weakly without using 2. This gives us a hint towards what the simplicity
constraints have to be, namely a necessary condition is that the matrix multiplying
K%, in the @-term satisfies WaawbgMaﬁymrcV =S s o'< ., and one could conjecture
that this matrix actually constitutes the simplicity constraint. In particular, one finds
{7, PUK, 7]} « .#'. However, .7/ are algebraically by far too many constraints,
and have to be hugely redundant in order to be correct. Again comparingﬂ to the
case SO(D + 1) or SO(1, D) of part [l we have that .’ indeed is proportional to the
simplicity constraint ./, o (H * o)) Jjﬁb] 7- Using the solution of the simplicity
constraint 797 = 2nll E47] after calculating the Poisson bracket, one can show that

with the constraint
o =P EEM L v @ ORQMN o prragy, (9.118)

being a certain contraction and projection of the full .7/, ,,, the Poisson bracket
{&, 2} is invertible on transversal trace free Lagrange multipliers as introduced in
part but apart from this indirect proof of the validity of the chosen set, finding an
independent set of simplicity constraints is rather complicated even in this case. We
want to point out that this independent set of constraints is again very similar to the

independent set of simplicity constraints obtained in section

Pushing further, we need to find a connection which, at least weakly, solves
D,mpe + faﬁwraﬁ(ﬂ')ﬂ'bﬂ/ ~ 0. (9119)

At first sight, this seems hopeless, since these are D?A equations for DA unknowns

[ya(m). However, we only need that I" annihilates m weakly, i.e. only those parts of

'Note that for direct comparison with the SO(D + 1) or SO(1, D) case, we again should perform
the canonical transformation {7,%, K%} — {K}, = %(ﬂ'ba'ﬂ'aﬁ — 5 TaaTos — qabPas) K, m'** =

Vag**m*}.
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9. EXTENSIONS AND RELATED MATERIAL

m which are left when solving .#, and this makes a solution - at least algebraically

- possible: Those parts constitute DA — [D(A — ZF) — A] = w + A degrees

of freedom. The requirements that they be annihilated are D times that number,

D[M + A]. However, they are not all independent, the w

5 equations corre-

sponding to 27(¢jo Damp)® = Dagse = 0 are identically satisfied, leaving DA equations

for DA unknowns. However, the number of degrees of freedom in the freedom in the

“vielbein” resulting when solving both, 2 and ., being w + A, is rather odd

D(D+1)
2

(except for e.g. A = ), which makes it unlikely that a corresponding simplicity
constraint can be found which removes the unnecessary degrees of freedom in 7,“ in a

gauge invariant way.

Finally, even if . and I';%[r]| can be found, we do not know of a general argument
indicating that the corresponding transformation to connection variables is canonical

(or at least that we can construct a corresponding extension of the ADM phase space).

Summarising, it seems doubtful that other connection formulations can be obtained
due to the problems mentioned, although we did not prove that it is impossible. At
this point one cannot proceed any further without making a specific choice of the
gauge group and study in detail the corresponding matrix Ma575, We leave the study

of specific groups for further research.
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Part 111

Quantisation
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This part is taken from [3]. The presentation has been changed slightly, and chapter
has been enlarged to incorporate also a summary of the findings of [5] and parts
of [6].

We provide a loop quantisation of the new connection formulation of D+ 1 dimensional
general relativity (D + 1 > 3) introduced in part [[I, namely an SO(D + 1) gauge theory
subject to SO(D + 1) Gauf constraint, simplicity constraint, spatial diffeomorphism
constraint and Hamiltonian constraint. Apart from the different gauge group which
however is compact and the additional simplicity constraint, the situation is precisely
the same as for LQG and the quantisation of our connection formulation is therefore
in complete analogy with LQG. We can therefore simply follow any standard text on
LQG such as [61} 62] and follow all the quantisation steps. This way we arrive at the
holonomy-flux algebra, its unique spatially diffeomorphism invariant state whose GNS
data are the analogue for SO(D+1) of the Ashtekar-Isham-Lewandowski Hilbert space,
the analogue of spin network functions, kinematical geometrical operators such as the
volume operator which is pivotal for the quantisation of the Hamiltonian constraint,
the SO(D+1) GauB constraint, the spatial diffeomorphism constraint, the Hamiltonian

constraint and a corresponding master constraint.

The only structurally new ingredient is the simplicity constraint which constrains the
type of allowed SO(D+ 1) representations, and therefore the corresponding sectionm
will be considerably longer than the ones treating the other kinematical constraints.
The simplicity constraints have been intensely studied in the spin foam literature, but
here we want to take an unbiased look at them in the canonical picture and work with
methods independent of the spacetime dimension. We want to stress that we will not
present a completely satisfactory solution to the simplicity constraint puzzle, but rather
suggest for both, the quadratic and the linear constraint, some new starting points for

further research which will hopefully help finding such a solution in the future.

This part is organised as follows: in the first chapter, we define the SO(D~+1) holonomy-
flux algebra and the corresponding Hilbert space representation. In chapter two we
implement the kinematical constraints, that is Gauf, simplicity and spatial diffeomor-

phism constraints. This chapter will come with its own introduction, mainly sketching
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the spin foam results and outlining our own findings on the simplicity constraints. In
chapter three we develop kinematical geometrical operators, specifically D-dimensional
area and volume operators. Lower dimensional operators such as length operators etc.
can be constructed similarly but are left for future publication. Finally, in chapter four
we quantise the Hamiltonian constraint. Most of the presentation will be brief since
all the constructions literally parallel those of LQG. We therefore refer the interested

reader to [62], the exposition of which we follow, for all the missing details.
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10

Introduction to the

holonomy-flux-algebra

The construction of the kinematical Hilbert has been performed in [20}, 21), 24-27] for
four and higher space-time dimension and arbitrary compact gauge group. These re-
sults apply for the case considered here, since we are using the compact group SO(D+1)
irrespective of the signature of the space-time metric. We therefore only cite the main
results in this section and introduce notation needed later on.

L are distributional, we have to

Since the Poisson brackets between A,;; and wt%K
smear them with test functions. In order to obtain non-distributional Poisson brack-
ets, smearing has to be done at least D-dimensional in total. A,;; is a one-form,
thus naturally smeared along a one-dimensional curve. From 7%/, being a vector
density of weight one, we can construct the so(D + 1) - valued pseudo (D — 1)-form

1J €aa;...ap_ 717 Which is integrated over a (D — 1)-dimensional sur-

(*ﬂ-)al---anl =7
face in a background-independent way. These considerations lead to the definitions of
holonomies and fluxes, which yield a natural starting point for a background indepen-

dent quantisation. In the following, we choose (T[J)K L= % (5?6]11 — (55(5@) as a basis

of the Lie algebra so(D + 1).
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10. INTRODUCTION TO THE HOLONOMY-FLUX-ALGEBRA

10.1 Holonomies, distributional connections, cylindrical
functions, kinematical Hilbert space and spin net-

work states

Denote by 7 the space of smooth connections over 0. We define the holonomy h.(A) €
SO(D + 1) of the connection A € & along a curve c: [0,1] — ¢ as the unique solution
to the differential equation

d
75 tes(A) = he, (A)A(e(s)), ey =1p+1, he(A) = hey (A), (10.1)
where cs(t) = c(st), s € [0,1], A(c(s)) := AL/ (c(s))777¢%(s). The solution is explicitly

given by

he(A) = P exp </A> =1pp +§:/01dt1 /1dt2.../1 dtn A(c(t)) ... Alc(tn)),
c — ty

tn—1
(10.2)

where & denotes the path ordering symbol which orders the smallest path parameter
to the left. Like in 3 + 1 dimensional LQG, we will restrict ourselves to piecewise ana-

lytic and compactly supported curves.

The holonomies coordinatise the classical configuration space. In quantum field theory
it is generic that the measure underlying the scalar product of the theory is supported
on a distributional extension of the classical configuration space. For gravity, this en-
largement of the configuration space is done by generalising the idea of a holonomy.

Since the equations
heoet (A) = he(A)he (A)  he-1(A) = he(A)7! (10.3)

hold, we see that an element A € & is a homomorphism from the set of piecewise
analytic paths with compact support & into the gauge group. We now introduce
the set &7 := Hom(Z,S0(D + 1)) of all algebraic homomorphisms (without continuity
assumptions) from & into the gauge group. This space &/ is called the space of dis-
tributional connections over o and constitutes the quantum configuration space. The

algebra of cylindrical functions Cyl(.%7) on the space of distributional SO(D + 1) con-

nections is chosen as the algebra of kinematical observables. The former algebra can
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10.1 Holonomies, distributional connections, cylindrical functions, kinematical Hilbert
space and spin network states

be written as the union of the set of functions of distributional connections defined on
piecewise analytic graphs v, Cyl(«/) = U,Cyl, ()] ~. Cyl, (&) is defined as follows.
A piecewise analytic graph « € o consists of analytic edges e,...,e,, which meet at
most at their endpoints, and vertices v1,...,v;,. We denote the edge and vertex set of
by E(v) (|E(v)| = n) and V(v) (|V(y)| = m), respectively. A function f, € Cylv(g)
is labelled by the graph  and typically looks like f,(A) = F, (hel(A), he‘E‘(A)>,
where F, : SO(D + 1)/l — C. One and the same cylindrical function f € Cyl(</)
can be represented on different graphs leading to cylindrically equivalent representa-
tions of that function. It is understood in the above union that such functions are
identified. We will denote the pullback of a function f, defined on v on the biggerﬂ
graph 7/ = ~ via the cylindrical projections by pfy,v. Then, the equivalence relation
just mentioned can be made more explicit, fy ~ f;, iff pXo fy = Dl ff{, Yy, v < 4"
The pullback on the projective limit function space will be denoted by pZ. The func-
tions cylindrical with respect to a graph that are IV times differentiable with respect
to the standard differentiable structure on SO(D + 1) will be denoted by Cylfyv (&) and

CylN () := UWCyIIWV(g)/ ~.

The action of gauge transformations g and piecewise analytic diffeomorphisms ¢ on

a cylindrical function f = pj f; are given by

8(f) = 0 [i{g(0(e))he(A)g(f(e) Yeer), (10.4)
6¢>(f) = p?(fl({hzﬁ(e) (A)}BEE('y))' (10'5)

Since in the end we are interested only in gauge invariant quantities, after solving the
Gauf} constraint (classically oder quantum mechanically) we have to consider the al-
gebra of cylindrical functions on the space of distributional connections modulo gauge
transformations Cyl(W). For representatives f, of elements f of this space, the
complex-valued function F,, on SO(D + 1)/l has to be such that f,(A) is gauge invari-
ant. We will slightly abuse notation and use the same notation for the new projectors
Doty = oy |Gy — 2, /9, There is a unique [28, 29] choice of a diffeomorphism invari-
ant, faithful measure pg on T/g which equips us with a kinematical, gauge invariant

Hilbert space 40 := Ly (ﬂi /9 ,du()) appropriate for a representation in which A is

'The graph v can be enlarged by e.g. adding or subdividing edges. See e.g. [62] for a precise
definition of the partial order on tame subgroupoids defined by graphs.
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10. INTRODUCTION TO THE HOLONOMY-FLUX-ALGEBRA

diagonal. This measure is entirely characterised by its cylindrical projections defined

by

/ dpo(A) f(A) = / dpo(A) f (A)
A[G oG

:/ I1 dunth)| By (hiosbig),  (106)
SO(D+1)IEM) cCE ()

where pp is the Haar probability measure on SO(D + 1).

An orthonormal basis on 7 is given by spin-network states [214-216], which are de-
fined as follows. Given a graph =, label its edges e € E(y) with non-trivial irreducible
representations my, of SO(D + 1), i.e. A, is the highest weight vector associated with
e, and its vertices v € V() with intertwiners ¢,, i.e. matrices which contract all the
matrices ma, (he) for e incident at v in a gauge invariant way. A spin-network state is
simply a C* cylindrical function on W constructed on the above defined so-called
spin-net, TA/,K,E[A] = tr |:®L£|17TA62, (he; (A)) - ®L"Q1Cj , where A = (A.), &= (¢,) have

indices corresponding to the edges and vertices of  respectively.

10.2 (Electric) fluxes and flux vector fields

Since the momenta 7%/

1J

are Lie algebra-valued vector densities of density weight one,
(*M)ay.ap_y =T €qa...ap_,Trs is a pseudo (D — 1)-form and is naturally integrated

over a (D — 1)-dimensional face S. We therefore define the (electric) fluxes

7(S) = / 7’L]J(*7T)[J :/n[JﬂaIJﬁaalmaDld%'al AL ANdx®P-t, (10.7)
S S

where n = n!

7717 denotes a Lie algebra-valued scalar function of compact support. We
again restrict to piecewise analytic surfaces S, to ensure finiteness of the number of
isolated intersection points of S with a piecewise analytic path. In order to compute
Poisson brackets, we have to suitably regularise the holonomies and fluxes to objects

smeared in D spatial dimensions. A possible regularisation in any dimension is given in

[62]. Removal of the regulator leads to the following action of the Hamiltonian vector
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10.2 (Electric) fluxes and flux vector fields

fields Y;,(S) corresponding to m,(S) on adapted representatives f.q

Y'yyfq(s) [fvs] = Z e(e,S) [n(b(e)) he(A)]AB 8]18(};’{)31“9 <h61 (A), ”"he\E(ws)\(A)>
e€E(vs) ¢
= Y e, S)n'(enS) Ri;fr. (10.8)
e€E(vs)

[ is an adapted representative of the cylindrical function f € Cyl(/) in the sense
that all intersection points of S and ~g are beginning points b(e) of edges e € E(vs)
(this can always be achieved by suitably splitting and inverting edges). In the above
equation, €(e, S) is a type-indicator function, which is +(—)1 if the beginning segment
of the edge e lies above (below) the surface S and zero otherwise. R%; (L7;) is the
right (left) invariant vector field on the copy of SO(D + 1) labelled by e,

4
dt

d

Ruf)®) = () e wd wun®)= () e, o)

The algebra of right (left) invariant vector fields is given by

/ 1
[ 77 %L] = 556,6' (nsx R, + iRy — ik Ry — i Rik),

|:R§J7 %L] =0, (10.10)

and analogously for Lg;. We remark that, in order to calculate functional derivatives,
we had to restrict f to « in the beginning. The end result , however, can be
extended to all of &/. Following the standard treatment, these vector fields are gener-
alised from adapted to non-adapted graphs and shown to yield a cylindrically consistent
family of vector fields, thus they define a vector field Y;,(S) on 7. The Y,,(S) are called

flux vector fields.

On the Hilbert space defined in section[I0.1] the elements of the classical holonomy-flux

algebra become operators which act by

f=f,
Vo (S) -4 := ihkBY(S) ), (10.11)

where the right hand side is the action of the vector field Y,,(S) on the cylindrical

function . The appearance of 3 is due to the fact that we defined the fluxes using T,
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10. INTRODUCTION TO THE HOLONOMY-FLUX-ALGEBRA

. L B
whereas the momenta conjugate to the connection is given by © = %7‘1’. The momentum
operators Yn(S ), with dense domain Cyl', can be shown to be essentially self-adjoint

operators on #° analogously to the (3 + 1)-dimensional case [25].
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11

Implementation and solution of

the kinematical constraints

In this chapter, implementation of the kinematical constraints will be discussed. While
the Gaul and spatial diffeomorphism constraint can be treated as in usual LQG, the
simplicity constraint is new in the canonical theory and we will discuss it in much more

detail than the afore mentioned ones.

As we have seen in chapter [5] the simplicity constraint already appeared in Plebariski’s
constrained BF theory formulation of D = 3 general relativity and its higher dimen-
sions generalisations [169]. We have seen in part [lI] that it comes in two variants,
the quadratic [I, 2] and the linear version [6]. Discrete versions of these constraint
have quite a history in quantum gravity research, they appear in spin foam models
[185] 188, [189], in group field theory [217-219] and also in the canonical lattice mod-
els [220, 221] as well as in the construction of phase spaces for simplicial geometries

[229], 223].

The quadratic constraint used in the original Barrett Crane model [185] is anomalous
and the strong imposition of it at the quantum level leads to a one-dimensional inter-
twiner space. It was shown that this is too restrictive and problems with the asymptotic
behaviour of the vertex amplitude were traced back to this fact in [224, 225]. This led
to an intense study of the quantum simplicity constraints and the development of the

new spin foam models [I86-191], in which the quadratic constraints are replaced by

181



11. IMPLEMENTATION AND SOLUTION OF THE KINEMATICAL CONSTRAINTS

the linear version. The linear constraint is still anomalous in genera]ﬂ but in the new
spin foam models, at least parts of the constraints are imposed weakly which allows
for intertwiner spaces mimicking the canonical theory. While the new models pass the
tests which led to changing the original Barrett Crane model [226-22§], the correct
implementation of the simplicity constraints is still a highly debated issue also in the
spin foam community (cf. [229] for recent criticism on the implementation in the new
models), and new proposals for its correct implementation continue to appear (e.g.
[230-232]).

Recently, the quadratic simplicity constraint has also been found to be anomalous
in the canonical theory (cf. [3| 213 222, 223]). To deal with this anomaly, in [3, 5]
we of course were inspired by but did not closely follow the proposals made so far in
the spin foam literature, the main reason being that many of them make use of special
properties of SO(4) (in the Euclidean theory) which simply are not shared by higher
rotation groups, or use procedures which are incompatible with the in the canonical

picture mandatory cylindrical consistency.

Tentative requirements we could impose on the implementation of both, the linear
and the quadratic constraints, apart from mathematical consistency are the following:
First of all, to avoid overconstraining the system and erroneous removal of physical
degrees of freedom, we would like the constraint operators to be non-anomalous. Sec-
ondly, in D = 3, we are in the very convenient situation of having two quantisations of
the same theories at our disposal, namely the one SU(2) gauge theory obtained when
using the Ashtekar Barbero variables, and the SO(4) theory when using the variables
introduced here. Classically, both theories reduce to the ADM formulation if we solve
the SU(2) Gauf} constraint or the SO(4) Gaufl and simplicity constraints, respectively.
It would be desirable to have a quantum analogon of this classical equivalence, i.e.
there should exists a natural unitary map from the joint kernel of the SO(4) Gaufl and
simplicity constraint to the kernel of the SU(2) Gauf} constraint, spanned by gauge

invariant SU(2) spin network statesﬂ Our considerations will be lead by these two

!The anomaly is only absent for the cases v = ++/C, where v denotes the Barbero Immirzi parameter

and ¢ again is the signature of the internal space, or v = co.
2 Actually, when using the linear simplicity constraint and introducing the Barbero Immirzi param-

eter in the SO(4) theory like in section the classical equivalence is even stronger, since already
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requirements. Note that the latter actually is no necessary criterion, both theories only
have to have as classical limit general relativity to be considered genuine quantisations
thereof. However, conjecturing that the emerging quantum theory should be reason-
ably unique, this requirement is a tentative guideline of how to implement the simplicity
constraints for D = 3. If successful, this implementation then can be mimicked when

generalising to higher dimensions.

Out presentation will be as follows: in section we will very briefly review the
implementation of the Gaufl constraint. The simplicity constraint will be studied in
section The quadratic constraint will be studied in detail, while the findings con-

cerning the linear constraint of [5] will only be sketched.

Starting with the quadratic constraint in we will show how it can be repre-
sented as constraint operator on the kinematical Hilbert space. It can be easily solved
on edges and leads to the well-known simple representations of SO(D + 1) [169], which
allow for a natural mapping to SU(2) representations (section . However, due
to the singular smearing of the fluxes, it is “anomalous” when acting on vertices, like
in spin foams, and the unique solution is the Barrett Crane intertwiner (or its higher
dimensional analogon [169]). We will study the anomaly in detail in section
and introduce necessary and sufficient “building blocks” of the quadratic simplicity
constraint, which are easier to handle. Based on these building blocks, we will com-
ment on possible remedies, namely a master constraint treatment (section or
the imposition of a maximally commuting subset of vertex simplicity constraints cor-
responding to a recoupling scheme (section . While the second option does
not come without problems which have to be further studied (e.g. one needs to choose
a recoupling scheme for each vertex), it has the advantage that it leads to a natural

unitary map to the usual SU(2) based kinematical Hilbert space of LQG.

In section [11.2.2] we will turn to the linear constraint. After constructing a kinemati-
cal Hilbert space for the additional field N7 in section [11.2.2.1] we will show how the

linear simplicity constraint, being linear in the fluxes, can be quantised in analogy to

when solving the simplicity constraint and the boost part Nr%!” of the SO(4) GauB constraint, the
theory reduces to the Ashtekar Barbero formulation.
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11. IMPLEMENTATION AND SOLUTION OF THE KINEMATICAL CONSTRAINTS

the fluxes themselves and actually has a closing quantum algebra (section .
Note that this is different from the linear constraint in spin foams and related with
the missing “mixing” of rotational and boost components, which is caused in usual
Ashtekar Barbero variables due to the presence of the Barbero Immirzi parameterﬂ
However, we will find that the unique solution to these non-anomalous constraints is
a certain, N'-dependent intertwiner, and inserting this intertwiner at all points of a
given spin network is in conflict with cylindrical consistency. While there might be
a chance to make this infinite placing of this N’-dependent intertwiners cylindrically
consistent using a rigging map, in [5] we did not succeed in its construction. From this
perspective, the quadratic constraints seem to be favoured. But as we will see in sec-
tion introduction of the additional field N’ becomes necessary when dealing with
supergravity. Therefore, we will briefly sketch the proposal of the mixed quantisation
(section , where the linear constraint is replaced by the quadratic constraint
while N7 is kept as phase space degree of freedom, at the cost of an additional constraint
demanding the equality of the unit vectors N' and n!(r). This new set of constraints
does not share the problems with cylindrical consistency we encountered when solving

the linear constraints. However, the solution to the additional constraint is unknown.

While several other ideas of how to possibly deal with this issue were discussed in
[5], we will stick to the ones outlined, as they give a mathematically consistent pro-
posal for both, the theory with and without the extra field NZ. We refer the interested
reader to the original literature for further information. In any case, we do not claim
to give a “final answer” to the simplicity constraint problem and further research has

to be conducted to derive an entirely satisfactory treatment of these constraints.

Finally, in section [11.3], we sketch the implementation of the diffeomorphism constraint

already known from D = 3.

!Therefore, if using the new variables but additionally introducing the Barbero Immirzi parameter

in D = 3 like described in section @ it is easy to show that linear constraint becomes anomalous.
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11.1 GauB constraint

11.1 Gaufl constraint

Working with the gauge invariant Hilbert space from the beginning, the Gaufl con-
straint is already solved. Yet we want to summarise its implementation on the gauge
variant Hilbert space 7 = Lo (E, d,ug), since we want to compute quantum com-
mutators of the constraint with the simplicity constraint in the next section. The
implementation (as well as the solution) of the Gauf} constraint can be copied from the
(3 + 1)-dimensional case without modification.

According to the RAQ programme, we choose the dense subspace ® = Cyl>®(&/) in
the Hilbert space. Then, we are looking for an algebraic distribution L € ® such that
the following equation holds

L|p Z - Z | ] =0 (11.1)

e€E(y); v=b(e) e€E(v); v=£(e)

for any v € V(y), any graph v and f, € Cyl5°(«/). The general solution for L is
given by a linear combination of (1,.), where ¢ € /Y is gauge invariant. Thus, for an
adapted graph 4/ (all edges outgoing from the vertex v in question), gauge invariance

amounts to vanishing sum of all right invariant vector fields at a vertex,

> Ryfy=0. (11.2)

e€E(v'); v=b(e)

11.2 Simplicity constraints

11.2.1 Quadratic simplicity constraints

11.2.1.1 From classical to quantum

Classically, vanishing of the simplicity constraints 5’%’ (2) = Le, s perarm ™ (x) KL ()

at all points x € o is completely equivalent to the vanishing of

T X : 1 X X
Cyr(8%,8) = GL%TEOWEUKLMWU(SE ) (S (11.3)

for all points z € ¢ and all surfaces S¥, 57 C o containing = and shrinking to z as

D—-1

€, € tend to zero. More precisely, we use faces of the form S* : (—1/2,1/2) —
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11. IMPLEMENTATION AND SOLUTION OF THE KINEMATICAL CONSTRAINTS

o; (ui,..,up—1) — S*(u1,...,up—1) with semi-analytic but at least once differen-
tiable functions S*(ui,...,up—_1) and S*(0,...,0) = z, and define S¥(uq,...,up_1) =

S%(euq, ...,eup—1). We find that 1) becomes (with the choice ny; = 5{}55])

1 x 1 xa
6(D7_1)7TIJ<S€) = m \/(_6/2 G/Q)D_l du1...dUD_1€aa1maD71 (85 l/au1)(u1, ...,UD_l)
X (08 0=1 /Qup_1)(u1,...,up_1) 717 (8% (u,...,up_1))

= ngo(S) 7 () + O(e) (11.4)

with n4(S) = €aay..ap_, (0574 /0u1)(0,...,0) X ... x (95%*P-1/Jup_1)(0,...,0), from
which the claim follows. Now, similar to the treatment of the area operator in section
12.1] we just plug in the known quantisation of the electric fluxes and hope to get a well-
defined constraint operator in the end. Using the regularised action of the flux vector
fields on cylindrical functions , we find for a representative f, ., of f € Cyl?()
on a graph ~vgg adapted to both S* and S,

A T Qlr : 1 1. \v KL fie
CM(‘S’ ?Sl )755! |:f'YSS/:| = €,I€I,IEOWEIJKLMYWSS, (SE )Y’yssl (Sé’)[fWSS/]

. 1
= Mmoo KL > >
e€E(vyggr);ble)=x e’ €E(yggqr);b(e/)=x

e(e, S")e(e', S")RIRET £, )

. 1 2
= Jimy e O 5 s sl (11.5)

The flux vector fields only act locally on the intersection points e NS, e € E(ygg/).
Therefore, in the second line we used that for small surfaces ST, S’7, the action of the
constraint will be trivial expect for x (and of course only non-trivial if z is in the range
of v5g), thus independent of €. In the limit €, ¢’ — 0 the expression in the last line of
the above calculation clearly diverges except for é’ f = 0, where the whole expression
vanishes identically. Since the kernels of the constraint operators C and é’ coincide, we

can work with the latter and propose the constraint (omitting the ~ again)

CM(S, 8" @)yps fry = phg g TN > e(e, S")e(e’, S") Ry Ric 1Py v fy
e.e'c{e’€E(vggr),b(e")=x}

= Pl T (R = RIG™) (RYZ, = RIGE™ ) oo fre (116)
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11.2 Simplicity constraints

where R}Lg(’) = ZEEE(’YSS/)J)(E)ZI,E(B,S( =1 R, and similar for R?;wn( ). In the follow-

ing, will drop the superscript * for the surfaces for simplicity.

The proof that the family CA'VM (S, S’ x) is consistent and defines a vector field C’M(S , S’ )
on &/ follows from the consistency of Yn(S ). To see that the operator is essentially self-
adjoint, let %ﬂﬁﬁ be the finite-dimensional Hilbert subspace of .7 given by the closed
linear span of spin network functions over v where all edges are labelled with the same
irreducible representations given by 7, J#° = = ®y,z %” . Given any surfaces S, S’ we
can restrict the sum over graphs to adapted ones since we have %”7?7? C %ﬂ‘gsuﬁ’ for the
choice 7/, = 7, with E(yss') 3 ¢’ C e € E(y). Since CM (S, ', z) preserves each ,%’fﬂﬁ,
its restriction is a symmetric operator on a finite-dimensional Hilbert space, therefore
self-adjoint. To see that it is symmetric, note that the right hand side of the first
line of consists of right-invariant vector fields which commute. This is obvious
for the summands with vector fields acting on distinct edges e # €', and for e = ¢
note that [R] ;, R% ] is antisymmetric in (I.J) <+ (K L) and thus vanishes if contracted
with e!7KLM  Now it is straightforward to see that CM (S, S, z) itself is essentially

self-adjoint.

Note that we did not follow the standard route to quantise operators, which would
be to adjust the density weight of the simplicity constraint to be +1 (in its current
form it is +2) and quantise it using the methods in [46]. Rather, the quantisation
displayed above parallels the quantisation of the (square of the) area operator in 3+1
dimensions and indeed we could have considered [dP~lu ,/\ngnEY%’\ for arbitrary
surfaces S and would have arrived at the above expression in the limit that S shrinks
to a point without having to take away the regulator € (the dependence on two rather
than one surface can be achieved, to some extent, by an appeal to the polarisation
identity). If we would have quantised it using the standard route then it would be nec-
essary to have access to the volume operator. We will see in section that for the
derivation of the volume operator in certain dimensions in the form we propose, which
is a generalisation of the 3 + 1 dimensional treatment, we need the above simplicity
constraint operator to cancel some unwanted terms. Of course, there might be other
proposals for volume operators which can be defined in any dimension without using

the simplicity constraint. Still, the quantisation of the simplicity constraint presented
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here will (1) give contact to the simplicity constraints used in spin foam models and
(2) enable us to solve the constraint in any dimension when acting on edges. Its ac-
tion on the vertices, i.e. the requirements on the intertwiners, is more subtle. We will
first present the action on edges and afterwards derive a suitable set of necessary and
sufficient “building blocks” for the vertex simplicity constraints, which will help us to
prove its anomalous nature and to propose possible routes of how to proceed, namely
the master constraint method or the choice of a maximally commuting subset. For
following calculations, note that we always can adapt a graph to a finite number of
surfaces. Furthermore, it is understood that all surfaces intersect 4/ in one point only

(we may always shrink the surfaces until this is true).

11.2.1.2 Edge constraints and their solution

The action of the quantum simplicity constraint at an interior point x of an analytic
edge e = e1 o (e2)~! for both surfaces S, S’ not containing e (otherwise the action is

trivial) is given by

AT

M IJKLM
CM(8, 8", a)ps fy = 05, TN (R — RY) (Rip — RR) Py gn fr
IJKLM
=+pi 2 (R7y — RBY) RELp5 gty
_ IJKLM
= £pj ., 2€ Ry (BT — RPY) Pyggn s

IJKLM
=ty AR Rt f (11.7)

where the sign is + if the orientation of the two surface S, S’ with respect to e coincides
and — otherwise. In the second and fourth step we used gauge invariance at the vertex
v of an adapted graph, ZeGE('y); v=b(e) R7;| fvg¢» = 0, and in the third step we used
that [R°', R®?] = 0. This leads to the requirement on the generators of SO(D + 1) for
all edges

T[IJTKL] :0 (118)

It was found in [169] that this constraint is satisfied by so-called simple representations
of SO(D + 1). These representations have been studied in the mathematical literature
in quite some detail, where they are called most degenerate representations [233-235],
(completely) symmetric representations [234) 236-238] or representations of class one

(with respect to a SO(D) subgroup) [239]. Irreducible simple representations are given
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11.2 Simplicity constraints

by homogeneous harmonic polynomials t%”]\(,DH) of degree N. While the highest weight
vector of irreps of SO(D + 1) usually are of the form A = (ny,...,n,), n; € Ny and
n = L%J, simple irreps are in any dimension labelled by one positive integer N,
A = (N,0,...,0). In this sense, there is a similarity between the simple representations
of SO(D + 1) and the representations of SO(3) (which all can be thought of as being
simple). In particular, for D + 1 = 4 we obtain the well-known simple representations

of SO(4) used in spin foams labelled by j© = j = j".

The commutator with gauge transformations at an interior point x of an analytic edge

e =ej0(e2)”! (e1, ez outgoing at x) yields, analogously to the classical calculation,
[A]7 OM(S7 Sla 'r)’yss/]
AB IJKLM e e e e e e
=+ A (x)e [(Rip + R%p) . (R — Ry) (R, — RiZp)]
= & {AAB (@) PRI [RG REVRSY, — 2SR, ] + (o1 e2) )

D-3
_ M; IJKLM1...M'_lM(M'+1...MD,3 €1 pe1 €1 PE2 €2 PDE2
==+ Z A (e T (R7y Ry, — 2Ry R, + R R L)
i=1
D-3
. A . M
=) AMiyp () O MMM Mps (G 67 ) (11.9)
i=1

Two constraints acting at the same interior point z of an edge e = ej o (ez) ! commute
weakly. Using the gauge invariance of C'f if f is gauge invariant, we find
(CY(8,8',2),CN(8",8",a') | 3
~ o 16p 0 00! COPORN [ RO RS RE LRG| f,+ 0(C L) + 0(GL)
~ PO (eRel L (errot 4 Grenrot 6R61> 1,
- pi‘;%,x/ <€Re1 . (errot | [C«ehrot,eRel] 1 eR™ 'éel,rot> f,
~ DG <2€R61 LGerrot | ¢ C*WO““) £, ~0, (11.10)

which can be seen by the fact that the simplicity on an edge is quadratic in the rotation

generator R®' on that edge, and we used the notation

D-3

) . I, A
§ AMZM( EABCDMl...MZ_lMiMH_l...MD,3R2BRSCD —. A . Ce,T’Ot (1111)
=1
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11. IMPLEMENTATION AND SOLUTION OF THE KINEMATICAL CONSTRAINTS

for a simplicity with a infinitesimal rotation acting on the multi-index M (cf. )
Here, we chose a graph ~y adapted to all four surfaces S, S’, S”, S”. Note that classically,
before introducing singular smearing, the Poisson bracket of two simplicity constraints
vanished strongly. In the quantum theory, we see that this is only true in a weak sense.
However, this already is the case at the level of the classical holonomies and fluxes, i.e.
can be traced back to the singular smearing which is used. In this sense, the simplicity
constraints acting on an edge are non-anomalous and can be solved by labelling all

edges by simple representations of SO(D + 1).

11.2.1.3 Vertex simplicity constraints: Anomaly

When acting on a node then, like the off-diagonal constraints in spin foam models, we
will find that the simplicity constraints do not (weakly) commute anymore. To analyse
the anomaly in detail, here we will first introduce a both necessary and sufficient set
of simple “building blocks” of the simplicity constraint at the node, and then calculate
the commutator of these building blocks. Having them at hand will also be convenient
later on when giving tentative proposals of how to treat these vertex constraints which,

due to their second class nature, should not be imposed strongly anymore.

Considering ((11.6), an obviously sufficient set of building blocks at the vertex v is
given by

Ry Ry fy =0 Ve, € {e" € B(7);v=1b(e")}. (11.12)

Note that they exactly coincide with the off-diagonal simplicity constraints which ap-
pear in spin foam models, see e.g. [169, [190]. For necessity, we have to prove that we
can choose surfaces in such a way that these building blocks follow. Note that it has
already been shown in [240] that all right invariant vector fields R® for single edges e
can be generated by the Y'(.S), but the construction involves commutators of the fluxes.
Since we want to explore if the simplicity constraints acting on vertices are anomalous,
we cannot use commutators in our argument. Instead, we will construct the right in-
variant vector fields R® by using linear combinations of fluxes only. To this end, we

will prove the following lemma:
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11.2 Simplicity constraints

Lemma 1.
For each edge e € E(v) at the vertex v we can always choose two surfaces S, S, such

that the orientations with respect to S, S of all edges but e coincide.

The intuitive idea of how to find these surfaces is to start with a surface containing
the edge e while intersecting all other edges €/ € E(v),e’ # e transversally, and then
slightly distort this surface in the two directions “above” and “below” defined by the
surface, such that the edge e in consideration is once above and once below the surface,
while the orientations of all other edges with respect to the surfaces remain unchanged,
in particular none of them lies inside the surfaces. When subtracting the flux vector
fields corresponding to the two distorted surfaces, all terms will cancel except the terms

involving R°.

Proof. To prove the statement above, two cases have to be distinguished: (a) the case
where no ¢ € E(v) is (a segment of) the analytic extension through v of the edge e
and (b) the case where e has a partner € which is a analytic extension of e through v.

Case (a): The construction of the surface S, with the following properties

1. se C Sy for some beginning segment s, of e, and the other edges ¢’ € E(v),e’ # e

intersect .S, . transversally in v.
2. For ¢ € E(v),e #e: € NSye=v,and for € ¢ E(v), ¢ NS, =0.

is given in [240] and we summarise the result shortly. An analytic surface (edge) is

completely determined by its germ [S], ([e]y)

o0 u’inl umel
S(u,...,up_1) = Z 1 D=1 g(mi,...mp-1) (0,...,0),
| |
T mi...mp—_1:
[e.e] tn
e(t)y=>" He(m(o). (11.13)
n=0

To ensure that s, C S, ., we just need to choose a parametrisation of S such that
S(t,0,...,0) = e(t) which fixes the Taylor coefficients S™%9)(0, ..., 0) = ™)(0). For
the finite number k = |E(v)|—1 of remaining edges at v, we can now use the freedom in
choosing the other Taylor coefficients to assure that there are no (beginning segments
of) other edges contained in S, . [240]. In particular, only a finite number of Taylor

coefficients is involved.

Now we state that the intersection properties of a finite number of transversal edges
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at v with any (sufficiently small) surface S are already fixed by a finite number of
Taylor coefficients of S. We will discuss the case D = 3 for simplicity, higher dimen-
sions are treated analogously. Locally around v we may always choose coordinates
such that the surface is given by z = 0, S(z,y) = (z,v,0). The edge e contained
in the surface is given by e(t) = (z(t),y(t),0) and for any transversal edge at v we
find €'(t) = (2/(t),y'(t),2'(t)) where 2/'(t) = (fz%_ll)!z,("_l)(O) + O0(t"), and n < o0
since otherwise e’ would be contained in S. The sign of the lowest non-vanishing Tay-
lor coefficient z/("_l)(O) determines if the edge is “up”- or “down”-type locally. Set
N = maxgep()ere (), and obviously N < oco. Thus, we can e.g. by modifying
S(V0)(0,0) choose the surface S(z,y) = (x,y, £zV), which locally has the same inter-
section properties with the edges ¢/ € F(v),e’ # e and certainly does not contain e

anymore.

Coming back to the general case considered before, there always exists N < oo such
that we can change S(N:0--0)(0, ..., 0) without modifying the intersection properties of
any of the edges ¢’ € E(v),e’ # e, in particular the “up”- or “down”-type properties
are unaffected. However, the edge e no longer is of the inside type, but becomes either
“up” or “down” (depending on whether SN0,...,0) (0,...,0) is scaled up or down and on
the orientation of S). In general, new intersection points v' € E(v) N S,v" # v may
occur when modifying the surface in the above described way, but we may always make

S smaller to avoid them.

Now choose a pair of surfaces S, S for the edge e such that it is once “up”- and

once “down”-type to obtain the desired result
[YU(S) - ?U(S)] P fy =205 R fy (11.14)

Case (b): In the case that there is a partner é which is a analytic continuation of e
through v, we cannot construct an analytic surface (without boundary) S, . containing
a beginning segment of e and not containing a segment of €. However, we can con-
struct an analytic surface S, f 1 containing (beginning segments of) e, € and sharing
the remaining properties with S, . above. The method is the same as in case (a) [240].
Again, there always exists NV < oo such that we can change S(N’O"“’O)(O, ., 0) without
modifying the intersection properties of any of the edges ¢/ € E(v),e’ # {e,é}, and
such that both edges e, € become either “up” or “down”-type. Moreover, if we choose
N even, then e, € will be of the same type with respect to the modified surface, while

for N odd one edge will be “up” and its partner will be “down”. Calling the modified

192



11.2 Simplicity constraints

surface S for N even and S for N odd, we find with the same calculation (11.14)) as in

case (a) the desired result.

This furnishes the proof of the above lemmdl} O

Choosing the surfaces as described above, we find that the following linear combination

1/ a7 T & o & 5 & \
Z (CM(Sa Slax) - CM(S7 Slwr) - CM(Sv Slvx) + CM(Sa Sl7$)) pﬂyfw
= pie /KM RS RY L, (11.15)

proves the necessity of the building blocks. Using the fact that the edge representations

are already simple, we can rewrite the building blocks as

[ e’ ]- e e/ e e’ e e o of
Ry Ry fy = 5 |(Bips + Biry) (B + Bicy) = Ripg Ry = Bips KL}] fy
1 e e/ e & 1 ce!
= 5( [1J + R[[J)(RKL] + RKL])f'Y = iAIJKLf“/' (1116)

We proceed by showing that the building blocks are anomalous, starting with the case
D = 3. We calculate for e £ ¢’ #£e" # e

LA, PPN Gn] ~ O (Rea (R (B, (11.7)

where we used the notation 5511'_‘_'{}; = nl! 5{}15§i...5§21.
can not be rewritten as a linear combination of the of building blocks (|11.16]), we
antisymmetrise the indices [ABIJ], [ABKC] and [[JKC|] and find in each case that
the result is zero. Therefore, a simplicity building block can not be contained in any

linear combination of terms of the type (11.17). For D > 3, we have

To show that this expression

N AT 1 APOPPAG | ~ OGE (Re) an(Re) Y (R) o (11.18)

Choosing M = FE fixed, the anomaly is the same as above.
A short remark concerning the terminology “anomaly” here and in the title of this

section is in order at this place. Normally, the term anomaly denotes that a cer-

tain classical structure, e.g. the constraint algebra, is not preserved at the quantum

!This also establishes that the right invariant vector fields R$; are not only contained in the Lie
algebra generated by the flux vector fields f/(S), but are already contained in the flux vector space,

which to the best of our knowledge has not been shown.
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level, e.g. by factor ordering ambiguities. The non-commutativity of the simplic-
ity constraints, however, is a classical effect, since it already arises when introducing
holonomies and fluxes as basic variables. Thus, one could argue that it would be more
precise to talk of a quantisation of (partly) second class constraints. On the other hand,
since the holonomy-flux algebra is an integral part of the quantum theory and at the
classical level it would be perfectly fine to use a non-singular smearing and thus first
class simplicity constraints, we will nevertheless use the term anomaly to describe this
phenomenon, since its consequence, the erroneous removal of degrees of freedom at the

quantum level, is the same.

Independently of the terminology chosen, we cannot quantise the simplicity constraints
acting on vertices using the Dirac procedure since this will lead to the additional con-
straints being imposed. The unique solution to these constraints has been
worked out in [I69] and is given by the Barrett-Crane intertwiner in four dimensions
and a higher-dimensional analogue thereof. Several options of how to proceed are at
our disposal at this point. We will first discuss the introduction a vertex master con-
straint as given in [3], and then the choice of a maximally commuting subset of vertex

simplicity constraints as introduced in [5].

11.2.1.4 Quadratic vertex simplicity master constraint

While equivalent at the classical level, the master constraint introduced in [60] allows to
quantise also second class constraints by a strong operator equation. Due to the second
class nature, one expects the master constraint operator to have an empty kernel or at
least a kernel which is too small to describe the physical Hilbert space. Since we know
that the Barrett-Crane intertwiner is a solution to the strong imposition of all vertex
simplicity constraints, we are in the second case. In order to find a larger kernel of the
master constraint, one modifies it by adding terms to it which vanish in the classical
limit, i.e. performs h-corrections. The merits of this procedure are exemplified by the
construction of the EPRL intertwiner [190] in four dimensions, which results from a
master constraint for the linear simplicity constraint upon h-corrections. Since we are
not aware of a suitable solution for the quadratic vertex master simplicity constraint,
we will contend ourselves by giving a definition of this constraint operator. The task

remaining for solving the vertex simplicity master constraint operator is thus to find a
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proper h-correction which results in a physical Hilbert space with the desired proper-

ties, e.g. that there exists a unitary map to SU(2) spin networks in four dimensions.

A general simplicity master constraint is given by
~ " ///MNOP / " 1
Mvp?;f’y = p§ Z Cee 1iKL ATaxrAMNorfy (11.19)
e,el e e eE(v)
with a positive matrix € ¢ MNOP which we will choose diagonal for simplicity, i.e.
ee/ IJKL > )
cgg,e///%][v((ip = %ceeféf:d:,/;l %%gp . The diagonal elements c..s can be chosen symmetric
because of the symmetry of the building blocks. We choose c.or = 1V e,€’,e # € and
cee = 0 since the edge representations are already simple, leading to the final version
of the master constraint we propose,
Mvpif'y = pﬁ Z TIkLATTKL Y- (11.20)
e,e’€E(v),e#e’

Cylindrical consistency and essential self-adjointness follows analogously to the case of

C(S, S, z) in section [11.2.1.1

For the case of SO(4), we can use the decomposition in self-dual and anti-selfdual
generators to find that EUKLR?] féL = fi : fi, —Je. ff’, which implies
IJKL A ee _ [ 7e re! Te re! Te re! Te 7e!'\ . Aee ee’
IIRENG e = (Te+ T ) - (Fo b ) = (J 4 T9) - (T 4 J7) = Ay - A
(11.21)
This leads to the master constraint
Mypify=p5 > (AT'AT’ — 20 A+ Ae_e'Ae_e') s (11.22)
e,/ €E(v),e#e’

where + and — now label independent copies of SO(3). Thus, we can calculate the
matrix elements of this constraint in a recoupling basis analogously to the standard

LQG volume operator matrix elements [241].

11.2.1.5 Choice of maximally commuting subset of vertex simplicity con-

straints

Looking back at chapter [§], one could alternatively try to gauge unfix the second class

vertex simplicity constraints which result after classically introducing holonomy and
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flux variables, to obtain a first class system subject to only a subset of the vertex sim-
plicity constraints. In this process, one would have to pick out a first class subset of
the simplicity constraints which has a closing algebra with the remaining constraints.
The construction of a possible choice of such a subset was discussed in [5] and we will

briefly summarise these findings.

At the heart of the construction lies the fact that a basis in space of intertwiners
can be given by specifying a recoupling scheme and labelling the “internal lines” by
internal irreducible representations. We have seen in that, using that the edge
representation already are constrained to be simple, the simplicity building blocks can
be rewritten as Rf; JR% 0l = ( 0 J+RFI/ J) (R I —i—Rﬁ; L]) [+, which now demands that
not only the edge representations, but also the representation to which they couple, be
simple. Demanding all simplicity building blocks thus means that, no matter which
recoupling scheme is chosen for the intertwiner, all internal representations have to be
simple. As we already commented, this requirement is very restrictive and only allows
for one solution, the Barrett Crane intertwiner (or its higher dimensional version) [169].
The non-commutativity of the building blocks thus can be understood as the fact that
the property of one internal representation being simple in one recoupling scheme in
general is not preserved under a change of recoupling scheme. However, it is proven
in [5] that in one fixed recoupling scheme, we may demand that all internal lines be
simple. Moreover, it is shown (under a certain assumption, cf. [5]) that this set of
commuting vertex simplicity constraints is maximal, i.e. adding any other building

block spoils the closure of the algebra.

A intertwiner of N edges which satisfies such a maximally commuting subset of con-
straints can thus be labelled by the N — 3 simple representations, i.e. “spins”, on its
internal lines in the given recoupling scheme. We will call such an intertwiner a simple
SO(D +1) intertwiner. Choosing the same recoupling scheme for an SU(2) intertwiner,
we can construct a unitary (with respect the scalar products induced by the respective
Ashtekar-Lewandowski measures) map from the set of simple SO(D + 1) intertwiners

to the SU(2) intertwiners by simply identifying the spins on the internal lines.

Of course, this also makes apparent the problem of this proposal: We have to make a
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choice of maximally commuting set of vertex simplicity constraints, i.e. a recoupling
scheme, for each vertex. While at the level of SU(2), a change of recoupling scheme only
is a change of basis in the intertwiner space, the corresponding change of recoupling
scheme at the level of SO(D + 1) does not preserve the property of the intertwiners
being simple. It also is questionable if the Hamiltonian constraint leaves the space of
simple intertwiners in a certain recoupling scheme invariant, and it probably has to be
modified accordingly. Another puzzle is that the “size” of the kinematical Hilbert space
after solving the simplicity constraint in the above described manner is the same for
any dimension D > 3 (neglecting subtleties related with the solution of the diffeomor-
phism constraint), and the dimension of spacetime could become an emerging concept
stemming form the choice of semiclassical states. For an extended discussion on these

issues, we refer the interested reader to the original work [5].

11.2.2 Linear simplicity constraint

As we have seen in section classically it is equivalent to use the linear simplicity
constraints instead of the quadratic constraints we treated so far. We will see shortly in
section that this option even seems favoured if (in particular, Majorana) fermions

are coupled.

To study this constraint in the quantum theory, it is firstly necessary to construct
a kinematical Hilbert space for the additional field N appearing, and secondly one has
to represent and try to solve the constraint in the quantum theory. The kinematical
Hilbert space for N! was given in [6] and the linear constraint was further studied in [5].
We will shortly summarise the findings, and refer the interested reader to the original

articles for more detailed display.

11.2.2.1 Kinematical Hilbert space for N/

From a spacetime point of view, the fields N! are scalars. In [45] [62], already two
routes of how to obtain kinematical Hilbert spaces for scalar fields in a background

independent way were given.

The first route [45] is based on point holonomies, the construction of which works
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fine if the scalar field is valued in the Lie algebra of some compact gauge group. How-
ever, in the case at hand NT transforms in the defining representation of SO(D + 1)

and it is at least not obvious if the point holonomies also can be constructed in this case.

The second possibility [62], which actually could be applied straightforwardly here,
leads to a diffeomorphism invariant Fock representation. However, the field N! we are
dealing with has one crucial property which usual scalar fields do not share and which
led the authors in [5] to construct the Hilbert space differently: it is itself (weakly)
valued in a compact set, namely the D-sphere SP. This is exactly what is ensured by
the normalisation constraint .4 = N'N; — 1.

To make N/ strongly valued in S, the normalisation constraint is gauge fixed by in-
troducing the additional constraint N = N!'P;. The resulting second class pair .4,
A is in a second step strongly solved by going over to the corresponding Dirac bracket.
The remaining fields N7, P; (where ||N|| = 1 now holds strongly) do not have a closing
Dirac bracket algebra any longer. However, the rotation generators Ly; := 2N[115J}
together with N' do have a closing algebra, and moreover, by L;;N7 = —P;, we see
that {N 'L JK } surely separate the points of the phase space (of course, neglecting
A, ).

The Hilbert space % now is constructed in analogy to the one usually used in
LQG: Wave functions are cylindrical functions over finite point sets F[N] of the form
FIN] = Fp,, p,(N(p1),..,N(pn)) where Fp, , is a polynomial with complex coeffi-
cients of the NI(pk), k=1,..,n, I =0,..,D + 1. The cylindrical measure is con-
structed using that there exists an SO(D + 1) invariant probability measure dv on
SP . and the operator N. 7(z) acts by multiplication by Ny(z) on this space. An or-
thonormal basis in this Hilbert space is given by spherical harmonic vertex functions

ST h (N) = [lyes Eff[“ (N), where E{VI (N) are generalisations of spherical harmonics
Y™ (0, ) to higher dimensions and constitute an orthonormal basis for the Hilbert
space J¢, = Lo(S D dv) of square integrable functions on S”. The label I here stands
for the highest weight of the representation A = (1,0,...,0), [ € N, and M denotes an
integer sequence M = (My,...,Mp_o,£Mp_1) satisfying | > My > ... > Mp_1 > 0.
For more details on these functions, we refer the interested reader to our original article

[5] or to [239] for a comprehensive treatment.
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The combined Hilbert space for the scalar field and the gravitational so(D + 1) con-
nection is simply given by the tensor product, J# = .y ® . An orthonormal
basis thereof is given by a slight generalisation of the usual gauge-variant spin network
states (cf., e.g., [45]), where each vertex is labelled by an additional simple SO(D + 1)
irreducible representation coming from the field N!, and the intertwiners of course
have to be altered accordingly to contract also the indices coming from this additional

representation.

11.2.2.2 Regularisation and anomaly freedom

The regularisation of the linear simplicity constraint, being a vector density of weight
one, is similar to the regularisation of the fluxes. YI‘LM is most naturally smeared over

(D — 1)-dimensional surfaces,

FP(S) = / V"M (2)e; e i N (@)7 K (2)eqp, by da? A .. AdzPP-1) (11.23)
S

where S again is a D — 1-surface, and b*™ an arbitrary semianalytic smearing function

of compact support, and the corresponding quantum operator is given by

S(S)f = VON(S)f = pi VN () £
=piy Y ele.S)ep b (b(e)) N (b(e))RIX £ (11.24)

e€ys

Using that the right invariant vector fields actually are in the linear span of the flux
vector fields as we have seen in section [11.2.1.3] it is found in [5] that is necessary and

sufficient to demand that
RIV.f =0 (11.25)

for all points of 7, i.e. the generators of the SO(D)x subgroup of rotations stabilising
NT have to annihilate physical states. While we have found an anomaly in the case
of the quadratic simplicity constraint, the linear constraint actually is non-anomalous,
since the generators of rotations stabilising N' form a closed subalgebra, i.e. commute

Weaklyﬂ Consulting a standard textbook on representation theory [239], we find that

!Note that the constraint is “non-anomalous” in the same sense as the quadratic constraint is

“anomalous”: while classically strongly Poisson commuting, the linear simplicity constraint lose this
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by definition, the only irreducible representations of SO(D + 1) which have in their rep-
resentation space non-zero vectors which are invariant under an SO(D) subgroup are
irreps of class one, and they exactly coincide with what has been termed simple repre-
sentations in the spin foam literature. This already tells us that the above requirement
can only be met if all edge representations are simple. Moreover, one finds that
SO(D) is a massive subgroup of SO(D + 1), which means that the unit length vector £
invariant under this subgroup is unique if it exists [239]. The constraint thus is satisfied
if the ends of all edges meeting at the point where the constraint operator acts are each
individually contracted with (possibly a multiple of) this unit length invariant vector
&x.(N) in the irrep 7, of the edge (or, depending on the orientation, its dual; note that

dual representations of simple representations are simple again).

This of course poses an immediate problem: First of all, the intertwiner space at
any vertex becomes one-dimensional when solving both, the linear simplicity and Gaufl
constraint (all endpoints of the edges have to be contracted with invariant vectors to
fulfil the simplicity constraints, and any further non-trivial N-dependence would make
the vertex non-gauge invariant), which seems too restrictive. Moreover, since the con-
straint has to be satisfied for all surfaces S, it in particular has to hold for all points
of a given graph. However, to insert this N-dependent intertwiner at all points of -« is
in conflict with the definition of cylindrical functions. In [5], the possibility of bringing
the proposal in agreement with cylindrical consistency using a rigging map construction
[242-244] is discussed. However, no rigging map with satisfactory properties is found

and we have to leave this issue for further studies.

11.2.2.3 Mixed quantisation

We have seen that, while the linear constraint has the nice property of being non-
anomalous if quantised as outlined, solving the constraint causes problems. While one
would expect from the experience with the quadratic constraint that, acting on edges,
it only demands the representations carried to be simple, this is not the case and it is

hard to give mathematical sense to the solution space. Therefore it seems that for pure

property upon singular smearing and therefore also in the quantum theory, but at least it remains
weakly commuting or “non-anomalous”. Note, however, that for D = 3, this property is in general lost
when introducing the Barbero Immirzi parameter as we did in section cf. also [5].
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gravity, the quadratic constraint is favourable. However, the formulation we will give
for supergravity (cf. section forces us to introduce the field N?. Therefore, in
[5] a third possibility is discussed, namely replacing the linear constraint classically by
the quadratic constraint plus an additional constraint of the form /g(n(m) — N7) ~ 0.
While classically completely equivalent, at the quantum level this avoids the above
problems: The quadratic constraints can be implemented as before, in particular re-
stricts the edge representations to be simple, while the additional constraint has to be
quantised using the master constraint method [245], since otherwise it most probably
does not commute with the Hamiltonian constraint operator. Choosing a suitable fac-
tor ordering, we can make sure that the additional constraint vanishes when acting on
edges, but the restrictions it imposes on the intertwiner spaces when acting on vertices

cannot be easily deduced and have not been studied so far.

For an extended discussion of the above briefly raised problems and the proposal of
several tentative remedies, as well as a comparison with the approaches used in spin
foams to deal with the simplicity constraints, we refer the interested reader to [5]. We

will also revisit the simplicity problem in the discussion at the end of this work.

11.3 Diffeomorphism constraint

The diffeomorphism constraint can again be treated in exact agreement with the (3+1)-
dimensional case. Consider the set of smooth cylindrical functions ® := Cyl®(<«/ /%)
which can be shown to be dense in #°. By a distribution ¢ € ® on ® we simply mean
a linear functional on ®. The group average of a spin-network state T% Rz is defined by

the following well-defined distribution on ®

Toie= 2 <Tige > (11.26)

v €N
where [y] denotes the orbit of 4 under smooth diffeomorphisms of o which preserve the
analyticity of v including an average over the graph symmetry group (see, e.g., [56] for
technical details). Since we already solved the simplicity constraint on single edges, we
can restrict attention to spin network states with edges labelled by simple SO(D + 1)
representations, A, = (N, 0,...). The group average [f] of a general cylindrical function

f is defined by demanding linearity of the averaging procedure, i.e. first decompose f
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into spin-network states and then average each of the spin-network states separately.
An inner product for the diffeomorphism invariant Hilbert space can be constructed.

We will not give details and refer the reader to [27, [56].
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Geometrical operators

12.1 The D — 1 area operator

The area operator was first considered in [32] and defined mathematically rigorously in
the LQG representation in [34]. In [62], the results of [34] are generalised for arbitrary
dimension D. Using the classical identity 777t ; = 2¢¢®, we can basically copy the
treatment found there. Let S be a surface and X : Uy — S the associated embedding,

where Uy is an open submanifold of RP~!. Then the area functional is given by
Ar[S] = / dP~Yuv/det ([X*q] (u)). (12.1)
Uo

Introduce Uy = Uyeq U, a partition of Uy by closed sets U with open interior, % being
the collection of these sets. Then the area functional can be written as the limit as

|U| — oo of the Riemann sum

1
Ar[S] = > \/ 5m1(Sv)m! (Sp), (12.2)
Uew
where S;y = X (U) and 777(Sy) is the electric flux with choice n!/ = (5[IK(5i], which has
been quantised already. Let f € Cyl?(<7), choose a representative [, and, using the

known action of the quantised electric fluxes, obtain as in the (3 + 1)-dimensional case

2

Ar,[Slpy £y = khBPL, Y -5 > e, 8)Rs, p photfy (123)
z€{enS;e€E(ys)} e€E(vg),r€de

—

where vg > v is an adapted graph. The family of operators Ar,[S] has dense domain
Cyl?(«7). Its independence of the adapted graph follows from that of the electric fluxes.
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Moreover, the properties of the area operator like cylindrical consistency, essential self-

adjointness and discreteness of the spectrum can be shown analogously to [62].

The complete spectrum can be derived using the standard methods. We use
2

S desRl =2 (R w2 (B ) (R Ry

e€E(ys),x€de
—. _AuP _ Adown + %Aup+d0wn7 (124)

where the As are mutually commuting primitive Casimir operators of SO(D+1). Thus
their spectrum is given by the Eigenvalues Ay > 0. We have to distinguish the cases
D+1=2neven,N>n>2and D+1=2n+1 odd, n € N. In a representation of
SO(D + 1) with highest weight A = (nq,...,n,), n; € Ng, we find for the eigenvalues of
the Casimif| A := leI I.<

Avp = A vp = Zfz + 2ZZfZ vy for SO(2n),

J=21<J

Avp = A Up = Zfl + QZZfz + Zfz vy for SO(2n + 1), (12.5)

=2 1i<J

where we used the followmg notation

—2
fi = an + n”%—i_n"? i< (n—2); fa1= n"%‘“”ﬂ fo = % for SO(2n),
j=i
— Np . Ny,
fl:an—}—?, i<(n—1); fn= 5> for SO(2n + 1), (12.6)
j=t

such that fi > fo > ... > f,,. Note that the above formulas hold for general irreducible
Spin(D + 1) representations. Irreducible representations of SO(D + 1) are found by
the restriction that all f; be integers. Denoting by II a collection of representatives of
irreducible representations of SO(D + 1), one for each equivalence class, we find for the

area spectrum

h
SpeC(Ar {K 62\/2)\ L+ 202 — Ay N € N, 7l 72 7l eI, 72 e nl @ 72 }

(12.7)

'Note that R'7 = 1/2X'7 such that X'’ fulfil the standard Lie algebra relations without the

factor 1/2 appearing in ((10.10).
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Note that the above formulas ((12.5)) significantly simplify if we restrict to simple rep-
resentations, Ag = (NV,0,0,...),

Avpyy = N(N +2n—2)vp, =N(N+D —1)vy, for SO(2n),
Avpy = N(N+2n+1—2)op,=N(N + D — 1)vy, for SO(2n +1). (12.8)

We cannot use this simplified expression for the SO(D + 1) Casimir operator in the
general case , since in the decomposition of a tensor product of irreducible simple
representations usually non-simple representations will appearﬂ but we can use it for a
single edge. When acting on a single edge e = ej o (e3) ! intersecting S transversally,

we know that due to gauge invariance
(R, — RV h, = 4 (R%)* he = —2N(N + D — 1)h,. (12.9)
The action of the area operator on a single edge e, e NS # () is thus given by

Ar.[S]pihe = khB\/N(N + D — 1)pth, —167r6< D+1) x VNN + D — 1)pthe,

(12.10)

where l(DH) = D]l/w is the unique length in D 4+ 1 dimensions, and x =
167G(P+1) / ¢® in any dimension, where G(P*1) denotes the gravitational constant. Note
that for D = 3, we find the factor /N (N + 2) in the area spectrum of an edge stemming
from irreducible simple representations of SO(4). Replace the non-negative integer N
labelling the weight by N = 24, 5 half integer, to find the factor 2\/]'(]'7—1—1) of SO(4)

spin foam models, which coincides with the usual spacing in (3 + 1)-dimensional LQG,

— D—1
Ar[S]pthe = 26hB\/5(j + 1)pthe = 3213 (Z;DH)) % /7 + Dpthe.  (12.11)

In standard LQG, instead of the gauge group SO(3) one extends to the double cover
Spin(3) = SU(2) and allows also for half integer representations. Note that in our case,
we cannot allow for general Spin(D + 1) representations at the edges, since the edge
simplicity constraint is not satisfied in representations of Spin(D + 1) which are not as

well representations of SO(D + 1), D > 3 [169].

'For the tensor product of two irreducible simple representations of SO(n) holds [237, 238] (w.l.o.g.
M > N) [M,0,.,0] ®[N,0,..,0] = XK _ V"KM + N - 2K — L, L,0,..,0].
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12. GEOMETRICAL OPERATORS

12.2 The volume operator

The derivation of the volume operator is analogous to the treatment in [62] and requires
only a slight adjustment. The exposure is geared towards using the quadratic simplic-
ity constraint. For an alternative construction of the volume operator when using the

linear constraint, cf. [5].

The volume of a region R is classically measured by

V(R) := /R Pz /g, (12.12)

where ,/q has to be expressed in terms of the canonical variables. The derivation is

performed for 5 = 1, the general result is obtained by multiplying the resulting operator
by gP/(P-1),

12.2.1 D+ 1 even

Let n = (D —1)/2. Let xa(p, x) be the characteristic function in the coordinate z of a
hypercube with centre p spanned by the D vectors A= AR i =1,...,D, where ii’

is a normal vector in the frame under consideration and which has coordinate volume

vol = Al... AP det(ii',...,7") (we assume the vectors to be right-oriented). In other
words,
D X i
XA(p,:U):Z];[l@(2—‘<n,:L‘—p>‘> (12.13)

where < -, - > is the standard Euclidean inner product and ©(y) = 1 for y > 0 and zero
otherwise. We will use lower indices (A}, ..., AP) to label different hypercubes. It will

turn out to be convenient to label the D edges appearing in the following formulae by

/

/
€,€61,...,€n,Cly...,C.

We consider the smeared quantity

7T(pv Al: R >AD)

B 1 D D
- vol(Al)...vol(AD)/Ud le"'/(,d o

XA, (P, 1) xa, (20, 21 + @2) ... xap (Dp, 21 + ... 4+ 2p)

1
ﬁeaaﬂn...anbnEIJ11J1[2J2...Ian7T

aIJﬂ'alIlKlﬂ'lelKl o Wa"InKnﬂ'an"Kn. (1214)
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12.2 The volume operator

Then it is easy to see that the classical identity

~ lm . im0 .
V(R) —Alilllo...Alérgo Rd p |7(p,Ar,...,Ap)|P-T (12.15)

holds. The canonical brackets
{Aau(x), ﬂbKL(y)} = 25D(:U — y)ég(SBK(S? (12.16)

give rise to the operator representation

)

bK L

= —— 12.17
i 0ApKr, ( )

while the connection acts by multiplication.

Let a graph v be given. In order to simplify the notation, we subdivide each edge e with
endpoints v, v’ which are vertices of  into two segments s, s’ where e = s o (s')~! and
s has an orientation such that it is outgoing at v’. This introduces new vertices s N s’
which we will call pseudo-vertices because they are not points of non-semianalyticity
of the graph. Let E(7) be the set of these segments of v but V() the set of true (as

opposed to pseudo) vertices of . Let us now evaluate the action of

791 (p A) 1= VO& 5 /E P x(p, )77 (12.18)

on a function f = p f, cylindrical with respect to . We find (e : [0,1] — o,t — e(t)

being a parametrisation of the edge e)

eGE )

7 (p, A f

(12.19)

Here we have used (1) the fact that a cylindrical function is already determined by its

values on o7 /¥ rather than .7 /% so that it makes sense to take the functional deriva-
tive, (2) the definition of the holonomy as the path-ordered exponential of [ A with
the smallest parameter value to the left, (3) A = dx®Aqr;7!7 where 717/ € so(D + 1)
and we have defined (4) tr(h79/0g) = hapd/0ap, A, B,C, ... being SO(D+1) indices.
The state that appears on the right-hand side of is actually well-defined, in the
sense of functions of connections, only when A is smooth for otherwise the integral over

t does not exist, see [246] for details. However, as announced, we will be interested only
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12. GEOMETRICAL OPERATORS

in quantities constructed from operators of the form (12.19)) and for which the limit of
shrinking A — 0 to a point has a meaning in the sense of J¢ = Ly(o7 /¥, duo) and
therefore will not be concerned with the actual range of the operator (12.19)) for the

moment.

We now wish to evaluate the whole operator #(p, Al,...,AP) on f. It is clear that
we obtain D types of terms, the first type comes from all three functional derivatives
acting on f only, the second type comes from D — 1 functional derivatives acting on f

and the remaining one acting on the trace appearing in ((12.19)), and so forth.

The first term (type) is explicitly given by

ﬁ-(pa Al) ) AD)f
L P [ o
= €aarby..anbn €1TI J1 I J2..InJn dt dty..dt, dt;..dt,
2D! VOI(Al)..VOI(AD) 1 1oz [0,1]P ! o ..BDZEE(')/)

XAl (p7 xl)XAz (2p, Tl + $2)"XAD (Dp’ 1 4+ .+ mD)

K T 0
e, (0,t)71 Vhe, (t1,1)] 0’1)>

«(0

(he (0, 8)7" ¢, by (t’l,l)]Tahjw>
([ 0,75 e ()] 5
“

[her (0, 8) 77 e, B %(t;,l)]T(%e:)(O?lQ £y (12.20)

The other terms are vanishing due to either the same symmetry / anti-symmetry prop-
erties as in the usual treatment or the simplicity constraint in case the first derivative

is involved.

Given a D-tuple ey ...ep of (not necessarily distinct) edges of ~y, consider the func-

tions

Tey,...ep (tl, - ,tD) = el(tl) + ...+ eD(tD). (12.21)
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12.2 The volume operator

This function has the interesting property that the Jacobian is given by

o(xl yoooal ty ooyt
det ( erep o Ter,nep) (1 D)) = arapér () Ep(tp)® (12.22)
which is precisely the form of the factor which enters the integral ((12.20)).

We now consider the limit A!,..., AP — 0. The idea is that all quantities in
are meaningful in the sense of functions on smooth connections and thus limits of func-
tions as A — 0 are to be understood with respect to any Sobolev topology. The miracle
is that the final function is again cylindrical and thus the operator that results in the
limit has an extension to all of <7 /4.

Lemma 2.

For each D-tuple of edges e1, .. ., ep there exists a choice of vectors it . . . ,ﬁlD, 2, ﬁg

and a way to guide the limit A{, Al ... ,Ag — 0 such that

ox¢ .
/[0 1]D det <M> XA1 (pa 61) R XAD (Dpa €1 +... eD)Oe1,...,eD (1223)

vanishes if

(a) if e1,...,ep do not all intersect p or

a a
(b) det (ﬁ) =0 (which is a diffeomorphism invariant statement).
ARG p

Otherwise it tends to
1 81‘3 € A o 7
2—Dsgn (det <M>> Oel7~“76D (p) H AD (1224)
1, ey D P i1

Here we have denoted by OAel“‘_,eD(p) the trace(s) involved in the various terms of

2.

We conclude that (12.20)) reduces to

li m(p, Aq,..., A
A;)rg[),]r(p’ 1 3 D)f

B (ih)Ps(e1,...,ep) .
- Z 2DD!V01(A1).'.VOI(AD_1>XA1(p?fU)"'XAD—l(p7,U)O€1,...,€D(07"'70)?

€1,..,€D

(12.25)
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12. GEOMETRICAL OPERATORS

where v on the right-hand side is the intersection point of the D-tuple of edges and it
is understood that we only sum over such D-tuples of edges which are incident at a
common vertex and s(ey,...,ep) := sgn(det(é1(0),...,ép(0))). Moreover,

N 1
0617“_73[) (0, - ,O) = 56]J]1J1]2J2,,_]anR£JR2K1Rg,llKl - RgZK"R({/ZKn (12.26)

and

RY .= R (h(0,1)) := tr ((TUhe(O, T (12.27)

_9
0he(0,1)
is a right-invariant vector field in the 7!/ direction of SO(D+1), that is, R(hg) = R(h).
We have also extended the values of the sign function to include 0, which takes care of

the possibility that one has D-tuples of edges with linearly dependent tangents.

The final step is choosing Ay = ... = Ap_; and exponentiating the modulus by
1/(D—1). We replace the sum over all D-tuples incident at a common vertex -, .~
by a sum over all vertices followed by a sum over all D-tuples incident at the same
vertex ZveV('y) Zem“neD:U. Now, for small enough A and given p, at most one vertex
contributes, that is, at most one of xa(v,p) # 0 because all vertices have finite sepa-

ration. Then we can take the relevant ya(p,v) = xa(p,v)? out of the exponential and

take the limit, which results in

/de|det 7_/deV (12.28)

V(p)=< )DD Z 3P (p, v) Vi, (12.29)

veV (y
1
D-1
. il
‘/v,'y - ﬁ Z 8(617 ceey eD)qel,...,ED 9 (]‘230)
“e1,ep€E(Y), e1N...Nep=v
1
IJ pli1 K1 pJ I K, Jn

Qer,..ep = §€IJ11J1[2J2...]anRe Rei 1Re’11K1 ...Rez "R%Kn. (12.31)
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12.2 The volume operator

12.2.2 D +1 odd

The case D + 1 uneven works analogously, except that the expression for det(q) is

changed a bit. With n = D/2, the result is
V(R) = /Rde [det(q)(p)| = /RdeV(p)%

D
R B\ D=1 R
v = (3) 5 (p.0) Vo
)

veV (v
ol iD I
vv;y = ﬁ E 5(617"'76D)q61,...,eD7

) e1,...epEE(y),e1N...Nep=v
1
S 2D—2
Vtw - Vv,vvlvw )
I _ LK pJi I.Ky, pJ
ey, = ETN T I do I dp dley B 1y o Ben P R ke -

12.2.3 More results and open questions

(12.32)

(12.33)

(12.34)

(12.35)
(12.36)

The derivations of cylindrical consistency, symmetry, positivity, self-adjointness and

anomaly-freeness given in [62] generalise immediately to the higher dimensional vol-

ume operator. The question of uniqueness of the prefactor [247, 248] in front of the

expression under the square root of the volume operator or the computation of the ma-

trix elements [249-252] have not been addressed so far, however these are not necessary

steps in order to use the volume operator for a consistent quantisation of the Hamilto-

nian constraint in what follows. We leave these open questions for future research.
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13

Implementation of the

Hamiltonian constraint

The implementation of the Hamiltonian constraint will follow along the lines of [62],
see [30] for original literature and details. In section [7.3| (see also [I}, 2]), we derived the

classical expression

IK b J . & ald (p—1 A bKL
Foprgm® 21 g7 + D™ (F™ 7 )argpkr Dyt

“ 5

i I D= (0e1) = gyl D= (0
= et 5 i (FUN O - g 8 DU — (K59), (18)

NMEREN 27

where we specified s = —1, ( = 1 in and in the second step we introduced the no-
tation D,* =: (D —1)K,®, where K,* now actually is weakly given by the (densitised)
extrinsic curvature (cf. - . These correction terms changing the extrinsic curva-
ture contribution to the constraint also appear when using Ashtekar Barbero variables
(except for 42 = s), and can be quantised, as we will see, in analogy to the treatment
in 341 dimensions. We furthermore defined the analogon of the (density weight two)
Euclidean Hamiltonian constraint in D = 3 (although here, this object does not reduce

to the Euclidean Hamiltonian constraint) % := —mx/K 707

kK Faprg, and rewrote the
terms removing the f((ffl ; terms in the form they appear after gauge unfixing (this is

only to keep the notation used in [3]).
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13. IMPLEMENTATION OF THE HAMILTONIAN CONSTRAINT

In order to have a well defined quantum version of this constraint, we have to ex-
press it in terms of holonomy and flux variables. As in the 3 + 1-dimensional case, the

volume operator turns out to be a cornerstone of the quantisation.

At first, we will introduce a graph adapted triangulation of ¢ in order to regularise
the Hamiltonian constraint. Next, classical identities to express the Hamiltonian con-
straint in terms of holonomies and fluxes are derived. Since the complete expression for
the Hamiltonian constraint will turn out to be rather laborious to write down, we will
derive the regularisation piece by piece. Next, we show how to assemble the regularised
pieces to the complete constraint and describe the quantisation. Finally, we construct a
Hamiltonian master constraint in order to avoid some of the usual difficulties associated

with quantisation.

13.1 Triangulation

A natural choice for a triangulation turns out to be the following (we simplify the
presentation drastically, the details can be found in [30]): given a graph 7 one constructs

a triangulation T'(7, €) of o adapted to v which satisfies the following basic requirements.
(a) The graph v is embedded in T'(y,€) for all € > 0.

(b) The valence of each vertex v of 7, viewed as a vertex of the infinite graph T'(7, €),
remains constant and is equal to the valence of v, viewed as a vertex of ~, for

each € > 0.

(¢) Choose a system of semianalyticﬂ arcs ag , . o, ONe for each pair of edges e, e’ of
~ incident at a vertex v of =, which do not intersect v except in its endpoints
where they intersect transversally. These endpoints are interior points of e, ¢’
and are those vertices of T'(y,€) contained in e, e’ closest to v for each € > 0

(i.e., no others are in between). For each €, > 0 the arcs af

’
€
77’”767617 a’Y7v7evel are

diffeomorphic with respect to semianalytic diffeomorphisms. The segments e, ¢/
incident at v with outgoing orientation that are determined by the endpoints

of the arc af , will be denoted by s

e Sve0 sfy v Tespectively. Finally, if ¢ is
a semianalytic diffeomorphism then 55(1),6(0),6(¢) L3(1),6(v),0(¢).0(e") and @(s5 ),

¢(as , . ) are semianalytically diffeomorphic.

!Semianalyticity is a more precise version of piecewise analytic. See [28] for complete definitions.
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13.1 Triangulation

(d) Choose a system of mutually disjoint neighbourhoods US ,, one for each ver-

771}’
tex v of v, and require that for each ¢ > 0 the af , . are contained in UZ,,.

These neighbourhoods are nested in the sense that US, C Ué:,u if e < €. and

limeo US, = {v}.

(e) Triangulate U5, by D-simplices A(v,v,e1,...,ep), one for each ordered D-tuple

€

€
ver o Syven
€ € € 3
and the arcs a$ , ¢, c,» @5 pere50 3 wep rep (DD —1)/2 arcs) from which

etc. are built and triangulate the rest of o arbitrarily. The or-

of distinct edges ey, .. ., ep incident at v, bounded by the segments s

,a

€
Y5vie1,e2?

dered D-tuple eq,...,ep is such that their tangents at v, in this sequence, form

loops «

a matrix of positive determinant.

Requirement (a) prevents the action of the Hamiltonian constraint operator from be-
ing trivial. Requirement (b) guarantees that the regulated operator He¢ (N) is densely
defined for each e. Requirements (c), (d) and (e) specify the triangulation in the neigh-

bourhood of each vertex of v and leave it unspecified outside of them.

The reason why those D-simplices lying outside the neighbourhoods of the vertices
described above are irrelevant will rest crucially on the choice of ordering with [ﬁs_l, V]
on the rightmost: if f is a cylindrical function over v and s has support outside the
neighbourhood of any vertex of v, then V(y U s) — V() consists of planar at most

four-valent vertices only so that [h;!, V]f = 0.

We will define our operator on functions cylindrical over coloured graphs, that is, we
define it on spin network functions. The domain for the operator that we will choose
is a finite linear combination of spin-network functions, hence this defines the operator
uniquely as a linear operator. Any operator automatically becomes consistent if one

defines it on a basis, the consistency condition simply drops out.

The volume operator will appear in every term of the regulated Hamiltonian constraint.
We will choose a factor ordering such that the Hamiltonian constraint acts only on ver-
tices. It is therefore sufficient to regularise the constraint at vertices. As in the usual
treatment, we use the tangents to the edges at a vertex as tangent vectors spanning the
tangent space of the spatial coordinates. To emphasise this, we will abuse the notation
in the following way: Let e,(A) denote the D edges incident at the vertex v of an
analytic D-simplex A € T'(v,¢). The matrix consisting of the tangents of the edges

e1(A),...,ep(A) at v (in that sequence) has non-negative determinant, which induces
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13. IMPLEMENTATION OF THE HAMILTONIAN CONSTRAINT

an orientation of A. Furthermore, let oy be the arc on the boundary of A connecting
the endpoints of e,(A), ep(A) such that the loop agy(A) = eq(A) 0 agy(A) o ey(A)™!
has positive orientation in the induced orientation of the boundary for a < b (modulo

cyclic permutation) and negative in the remaining cases.

13.2 Key classical identities

The following classical identities are key for the rest of the discussion.

13.2.1 D+ 1 > 3 arbitrary

We observe that
Varars(z) .= —(D — 1) {Aars, V(z,€)}, (13.2)

where V(z,€) := [ dPy x(, Y),/q is the volume of the region defined by x.(z,y) =1
measured by ¢ and x.(z,y) = HaD:1 O(e/2 — |x* — y*|) is the characteristic function

D

of a cube of coordinate volume ¢~ with centre x. Also,

1
D-1

nl(z)n;(z) =~ (WaKI(.I')FaKJ(ZC) — T]IJ) . (13.3)

We can write the extrinsic curvature terms in the same way as in the usual 3 + 1-
dimensional case (“KKEE” terms in this case) , using
a D-1
K(z) = K, (x) ~ 35— {H5(x),V(z,€)}. (13.4)
Further,

(D -1)

Kab(a:) ~~ D

TrbKL(x) {AaKL(x)ﬂ {%E[l](‘%e)vv(x?e)}} (135)

gives us access to all the needed terms.

13.2.2 D+ 1 even

Let n = (D —1)/2. It is easy to see that

a 1
Ry

7.(-6111[('1 (z)ﬂ-clt]l K (x) T TrannKn (x)ﬂ-CanKn ("'U)\/aDil(x) (]‘36)

T Eablcl'"b"c"EIJth'"I"J"SgH(det 6)(1‘)
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13.2 Key classical identities

The sign of the determinant of eg where the internal space is the subspace perpendicular

to n! is accessible through

1
sgn(det(eé)) (z) = —=elTi1Indn 2a1b1.--anbn \/aD_IWa[J(ZL')

2D!
Tyt iy (@) T 0, (@) - T 1k, (T) 0,0, (). (13.7)

For the Euclidean part of the Hamiltonian constraint, we need
al K bl

l
Va

1
~ abcalbl...an_lbn_lGIJKLllJl...In_lfn_lsgn(det 6) (x)

T 4(D-2)!

WCKL('I)TFG«IIIKI (x)ﬂ-lelKl (x) e Tay 1l 1Kn ($)7rbnf1Jn71Kn71 (m)\/aDi%

(13.8)

rlal T bl

i (x). The

above expression would be favourable by arguments of simplicity if it would not contain

Regarding quantisation, we have to choose a classical expression for

the additional factor of sgn(det(el))(z) which has to be accounted for. Therefore, we

alJ

can equally well express the two factors of m%'* separately and absorb the inverse square

root into volume operators.

13.2.3 D+1 odd

Let n = (D — 2)/2. With only minor modifications of the D + 1 even case, we get

aIJ(x) ~ # abb161...bncn€IJK11J1...Ian
(D—1)!

7Tbllll(l ('1:)71-01]1 Kl (x) tet TrannKn (x)WCanKn (m)\/aDil(x) (]‘39)

s sgn(det e)(z)my i (z)n” (z)

with

1 J—
nl(x) ~ ﬁﬁalbl"'anﬂbnﬂGIIIJI"'I"+1J"+18gn<det e) (a:)\/(jD 1(x)

Ta1 11 K1 (x)ﬂ-lel K (3}) s TMap i Ing1 Kntt ('I)an+1Jn+1Kn+1 (x) (13'10)
For the Euclidean part of the Hamiltonian constraint, we need
7I.[a\IKﬂ.b]JK 1
Ji  2b-2)"

K K, D—2
NKTa 1, K1 by Jy 1"'7ranInKn7Tann "\/6 (13.11)

abalbl..‘anbnGIJKth.‘.Ian

sgn(det e)

and observe that the factor of sgn(det(el))(x) is canceled by another such factor coming

I The Euclidean part of the Hamiltonian constraint therefore has the same

from n
amount of complexity, measured by the “number of involved operators”, in even and

odd dimensions.
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13. IMPLEMENTATION OF THE HAMILTONIAN CONSTRAINT

13.3 General scheme

The basic idea of the regularisation of the Hamiltonian constraint operator is to approx-
imate the constraint operator on the graph adapted triangulation and then to take the
limit of an infinitely refined triangulation. For this procedure to work, it is mandatory
that the constraint operator has a density weight of +1. A typical term of the classical
Hamiltonian constraint (or any other operator one wants to regulate) will, after using

the above classical identities, consist of
e an integral [ d"z,
e n € Ny spatial e symbols,
e factors of A,rs(x),

e Poisson brackets involving a factor of A,r;(x) as one of its two arguments as
well as either the volume of a neighbourhood of z, the Euclidean part of the
Hamiltonian constraint smeared with unit lapse over a region containing x, or
the Poisson bracket of the Euclidean part of the Hamiltonian constraint with the

volume, smeared as before, as the other argument,

e field strength tensors,

a factor of \/51*",
e (covariant) derivatives.

Operators that are well defined on the kinematical Hilbert space are holonomies and
the volume operator. We will show in the following that we can construct the Euclidean
part of the Hamiltonian constraint operator, which gives us access to the remaining part
of the constraint operator. As a start, it is therefore mandatory to write the Euclidean
part of the Hamiltonian constraint in terms of holonomies and volume operators. We
stress that we do not quantise the 7%/ as flux operators, which would also be possible.
The reason is that the Hamiltonian constraint operator would not simplify significantly
by using fluxes instead of derived flux operators. On the other hand, the appearance of
fluxes only through volume operators can be seen as a certain simplification. Anyhow,
different regularisations are possible and the discrimination between different regulari-

sations has to be considered in the semiclassical limit.

We begin with rewriting the integral. Given a D-tuple of edges (e1,...,ep) incident
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13.3 General scheme

at v with outgoing orientation consider the D-simplex A¢(y,ey,...,ep) bounded by
the D segments s, .., ..., s5,., incident at v and the D(D — l)/2 arcs @S, e )
1 <a<b< D. We now define the “mirror images”
vp(t) =20 =55, (1),
w,p,p/(t) =20 —aj (1),
al, gy () = a5 (8) = 2t[v — 5, (1)),
aS, p pp () = a5 4 p (8) + 2t[0 — 55, (1)), (13.12)
where p # p’ € e1,...,ep and we have chosen some parametrisation of segments and

arcs. Using the data ((13.12) we build 2P — 1 more “virtual” D-simplices bounded by

these quantities so that we obtain altogether 2P D-simplices that saturate v and trian-

gulate a neighbourhood U, . . ofv. Let US, be the union of these neighbourhoods
as we vary the ordered D—tuple of edges of v incident at v. The US ,, v € V() were

chosen to be mutually disjoint in point (d) above. Let now

U;av)elv € = UE U;)v €1,--,ep?
- U Uﬁv, (13.13)
veV (y

then we may write any classical integral (symbolically) as

//Z/

veV ()
oS X )
UEV v=b(e1)N...Nb(ep) USwetsemep USversmep
1
~ — 2P 13.14
[ -1 NP VR N A B
7 weV(y) v=b(e1)N...Nb(ep) Y:Vs€15--5€D ViV,€150 €D

where in the last step we have noticed that classically the integral over US, . ..

converges to 2P times the integral over AS ~ means approximately and

7Y,V,€1,--,€D?
E(v) = ("g’)) with n(v) being the valence of the vertex. Now when triangulating
the regions of the integrals over Uf/ ver...ep and U§ in (|13.14]), regularisation and quan-
tisation gives operators that vanish on fv because the corresponding regions do not

contain a non-planar vertex of ~.

As a next step, we approximate the integral

1
/A dPrg(x) ~ ﬁeDg(v) (13.15)
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13. IMPLEMENTATION OF THE HAMILTONIAN CONSTRAINT

€
7,Vs€a

to be e. The general case of arbitrary coordinate length works analogously, since the

for some function g(x). Here we assumed the coordinate length of each segment s

factors of € will be hidden in holonomies and derivatives contracted with an epsilon
symbol which addresses each segment exactly once. The factor 1/D! accounts for the
volume of a D-simplex. We now multiply the nominator and the denominator by
P(=1)  Together with the factors \/61_”(11) and the factor € from the integral, we
get €P"/V (v,e)""!. The volumes in the denominator are absorbed into the Poisson
brackets by the standard technique. The factors of A,r; are turned into holonomies
(hso)kr = 0k + €€%(0)Aary (717) ., + O(e?) using the same amount of factors of e
since we note that the zeroth order of the expansion of the holonomies vanishes when
inserted into the Poisson brackets. We abbreviated s, = s, . to simplify notation.

The field strength tensors can be dealt with as follows. Let e, e’ be arbitrary paths
which are images of the interval [0, 1] under the corresponding embeddings, which we
also denote by e, ¢’ such that v = e(0) = €/(0). For any 0 < € < 1 set e.(t) := e(et) for
t € [0,1] and likewise for ¢/. Then we expand he (A) in powers of e. Consider the loop

Qe e Where in a coordinate neighbourhood

ec(4t) 0<t<1/4
ee(l)+e(dt—1)—v 1/4<t<1/2

T e e / (13.16)
(1) fe(3—4at)—v 1/2<t<3/4
el (4 — 4t) 3/4<t<1.

\

Now expanding again in powers of € we easily find h%e,e/ = 1p 1+ Fprym!7é2(0)e(0)4+
O(€®). Since the indices of the field strength tensors are contracted only with other
antisymmetric index pairs, the zeroth order of the expansion vanishes as well as the
orders beyond €? in the limit ¢ — 0. The remaining factors of e are absorbed into

covariant derivatives using the approximation
(he(0, €)% (e(€)) he (0, )7t — 7(v))

= ((1 + €c®(0)Ay) (7 (v) + €°(0)0.7m°(v)) (1 — €£%(0)Ag) — Wb(v)>AB + O(€%)
= e¢°(0) DA 7B (v) + O(€2). (13.17)

AB

We note that partial derivatives can be dealt with in the same way.

At this point, all factors of € have been absorbed into holonomies and derivatives.

It is key that the volume operators are ordered to the right in the quantum theory
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13.4 Regularised quantities

since then, the Hamiltonian constraint evaluated on a cylindrical function f, will only
act on the vertices of v. The action at vertices however does not depend on the value

of ¢ > 0 and we can take the limit € — 0, thus removing the regulator.

In order to quantise the Hamiltonian constraint, we have to replace the holonomies
by multiplication operators, the volumes by volume operators, and the Poisson brack-

ets by i/h times the commutator.

13.4 Regularised quantities

In order to construct a well defined Hamiltonian constraint operator, we have to express
it in terms of operators well defined on the kinematical Hilbert space. Instead of writ-
ing down the explicit regularisation for the proposed Hamiltonian constraint, we want
to provide a toolkit for a general class of operators. In the following, we will propose
“regulated” versions of the phase space variables, marked by an upper € in front. The
idea will be to replace all phase space variables in the classical Hamiltonian constraint
by their corresponding regulated versions, do some additional minor modifications and
directly arrive at the Hamiltonian constraint operator, without explicitly dealing with
the triangulation and the correct powers of €. Since the final constraint operator will
only act on vertices of v, it is sufficient to regularise the phase space variables at vertices

V.

In what follows, we use a graph adapted coordinate system, meaning that the spatial

coordinates a,b,...=1,..., D enumerate the D edges incident at v of a D-simplex.

13.4.1 D+ 1 > 3 arbitrary

We will express all the basic variables in terms of holonomies living on the edges of the

adapted triangulation and volume operators acting on it. First, we notice that

(D-1)

m(hsa)fK{(hSa);(ba (V(vve))x—H} (13.18)

WV ars(v)) =
is gauge covariant and reduces to e\/azﬂﬂa[ J(v) in the limit ¢ — 0. The factor of €
is expected as the regulated quantity has a lower spatial index. In the end, when the
complete constraint operator will be assembled, all factors of € will cancel out. We
restrict x > —1 because powers of the volume operator will be defined by the spectral

theorem in the quantum theory.
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13. IMPLEMENTATION OF THE HAMILTONIAN CONSTRAINT

For the extrinsic curvature terms, we propose

6<2\:L/a(Kabea _ (KCC)Q))
_(D=12 1 kL o 1
~ o WA ) () kP {(he)ors {61 (v,€), V (v, )}
< (Y 7MY ) (hs)ar” { (he,) pivs {2 10, €), V (0,0}
(13.19)

where the €77 will be defined below.

Next, we regulate the gauge unfixing term ZF~'2 with density weight 1. We will
place zero density into F~! and a density weight of 1/2 into each 2. Accordingly,

4 _ _

becomes

€ 4—1\N M __ EFGHNe € 2 —1 € ABCDM
(\/‘5 F )cd,ab = e (Vam(er) (\/(5 F )d)GHMAB (Vqmncp)e

(13.21)

with

1

€ 2 —1 L € € € 1 cEC CD
(VEF™) e = =1y Vameac) Wamn) (Vi) (amer”) + 1)
(nABnK[I JIL A[LnK][JnI}B>’ (13.22)

cf. . The & constraint contains a covariant derivative which we regularise as
W DA ) = (VT R s (@) (1329
The full Z constraint
@“Mb = —EIJKLMTFCIJ (77(“|KNDAC7T5)LN> (13.24)
can thus be regularised as
WP =~y (V@ n ) (Va7 (g DA ) (13.25)

In the paper [3], a second regularisation of the ZF =19 part of the Hamiltonian con-

straint is given, which rest on the classic relation]]

Diovamyrs(x) = —(D — D){Faprs(2),V(z,€)}. (13.26)

! Using this was suggested by Wieland [213].
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13.4 Regularised quantities

The resulting part in the Hamiltonian constraint is quadratic in the field strength and
therefore this procedure results in a more non-local operation of the Hamiltonian con-

straint. We refer the interested reader to the original literature.

In general, a generic power of 1/,/q needed to turn the individual terms with den-

sities > 1 into densities of weight 1 can be constructed as

€ 1 1 P € T+1 € z+1__ IJ
e z(2> det (“(va" mar) (Va T w1 ) (13.27)

with the usual x > —1.

The field strength tensors are regularised as

€ _ KL
Foprg = <hasa’sb)KL o107 (13.28)

while we set

Y Aars (v),} = = (hs, ) 1" {(hs, ")k, }- (13.29)

13.4.2 D+ 1 even

Let n = (D —1)/2. We “regulate”

1
(AT (@) s e e A g et ) (0)

e(\/a(l-&-x)ﬂ_bl[lKl (v))e(\/a(l-&-x)ﬂ_thﬁ (U)) o
(Va1 () (VT T e, g, K7 (0)) (13.30)
and

1 _
E(sgn(det(efl))) ~ 7€IJI1J14..Ianeaalbl...anbne(\/a(l) 1)/D7TaIJ)

2D!
e(ﬁ(D—l)/Dﬂ.alhKl)e(\/a(D—l)/Dﬂ_lelKl) o
“a" P, (VAP Py, g, K. (13.31)
For the Euclidean part of the Hamiltonian constraint, we need
. lal K b ~ 1 Eabcalbl...an_lbn_lEIJKLth...In_ljn_lsgn(det e)
Va4 4(D - 2)!

E(\/aWCKL)E(\/aWalhKl)6(\/6771?1J1K1) s
E(ﬂwanfllnflanl)E(\/aﬂ—bn—ljn—lKn_l)' (1332)

As stressed before, the two possibilities to express the Euclidean part of the Hamiltonian

constraint are equally complicated.
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13. IMPLEMENTATION OF THE HAMILTONIAN CONSTRAINT

13.4.3 D+1 odd

Let n = (D — 2)/2. We “regulate”

e 1 c . -
WA () e et e I I g det ) (0) (VA muw (0)

nt () (Vg T, 1 () (VAT T ) K (0) <
(Va1 10, (0)) (Va1 K (0) (13.33)

and

e’I’LI(’U) ~ %ealblwanJrlanrl6111J1-~-1n+1=]n+lsgn(det 6)(’[))

(TP Py e, () (VP Py, g K (0))
(I Py it @) (AP Py g B (). (13.34)

For the Euclidean part of the Hamiltonian constraint, we need

l[alIK _b]J 1
€ <7T \/g K) ~ 2(D — 2)‘eabalbl...anbn6IJK11J1...IanSgn(det 6) (1335)

‘(i) (VaTain k) (Vamo, 1) - (V@ a1, ,) (Va6 2, 7).

13.5 The Hamiltonian constraint operator

At this point, we are ready to assemble the Hamiltonian constraint operator. The
general idea of the regularisation has been described in section Here, we provide

a toolkit in order to assemble the constraint operator.

(1) The “Euclidean part” %%E = —%ﬁw‘”[{ 70 g Fopry of the Hamiltonian con-
straint can be quantised with the methods described above and using the fol-
lowing recipe. The corresponding operator can then be used in commutators to

express additional parts of the full Hamiltonian constraint operator.

(2) Use classical identities in order to express the Hamiltonian constraint in terms
of connections A,rs, volumes V(z,€) and Euclidean Hamiltonian constraints

HE(z,€).
(3) Replace all phase space variables by their corresponding regulated quantities.

(4) Instead of the integration [ d”z, put a sum 4; > _vev(y) over all the vertices v of
the graph ~.
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13.5 The Hamiltonian constraint operator

(5) For every spatial e-symbol, put a sum % EU( A)=y over all D-simplices having
v as a vertex. The holonomies associated with the e-symbol are evaluated along

the edges spanning A.

(6) Substitute the Poisson brackets by % times the commutator of the corresponding

operators, i.e. the multiplication operator ize and the volume operator V.

In order to understand the double sum over D-simplices appearing in the K K FE and

the gauge unfixing term, consider the following argument given in a similar form in

[46): Since lime_o(1/€?)xc(2,y) = 67 (z,y) we have lim.o(1/e?)V (z,€) = \/q(z). It

is also easy to see that for each € > 0 we have that 6V/é7% (x) = 6V (x,€) /677 (z).
The terms under consideration are of the form

[ar. V@) Tars (@) 29 (@) () morc (@) 27K ()

Va(x) ’

where Z%7 is a density of weight +1 and stands symbolically for the remaining terms,

(13.36)

including a spatial e-symbol with upper indices, one of which is a. We rewrite this

expression as

1 e [ op A (@), V3Z (x) [ b {Avkr(y), VIZ"FE(y)
lim =54(D — 1) /d x 2 V() /d Y Xe(@,y) 29/2(y)
—lim —4(D 1)2/de Aoty @),V (2,9} 27 (@)

=0 P 23/4(x)
Py () {AbKL(y)72‘;/(é/(;))}Z )
= lim 4(D ~ 1)’ / . {Aas(@), ;/((;’5)/}6?%)
N e
/ Py (1) {AbKL(y)"‘//(i/y,vE))/}elZ) ()
= lim 4(D — 1) / P {Aau(x;a Véz:)e};Z“” ()
)KL
/dDy Xe(qj,y){AbKL(y;, Vé@zy)e})Z ()

1111014(13 ) /d .T{Aa]] \/T}ZQIJ
e—>
/d Y Xe(@,y){Abrr(y \/T}ZbKL . (13.37)

Triangulation leads to two sums over vertices and two sums over D-simplices containing
the individual vertices. In the limit ¢ — 0 however the two sums over vertices collapse

to a single sum over vertices due to the x. term and we have the desired result.
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13. IMPLEMENTATION OF THE HAMILTONIAN CONSTRAINT

13.6 Solution of the Hamiltonian constraint

As in the 3+ 1-dimensional treatment, we realise that the only spin changing operation
of the Hamiltonian constraint is performed by its Euclidean part. The construction
of a set of rigorously defined solutions to the diffeomorphism and the Hamiltonian

constraint described in [31] thus immediately generalises to our case.

13.7 Master constraint

The implementation of the master constraint

L[ A
M=5 L Jaw)

works analogously to the 3 + 1-dimensional case described in [245]. The inverse square

(13.38)

root is split up between the two Hamiltonian constraints and hidden by adjusting the
power of the volume operators as before. The result of the derivation is the master

constraint operator

MT[S] = Z QM (T[sl} 5 T[s])T[sl] (1339)
[s1]
with
QuLI) = mg > UCIT, )V (CITey(a)) (13.40)
[s] veV (v(sols]))

and l(C'lT so([s))) being the evaluation of I on the Hamiltonian constraint operator with
the additional 1/4 hidden in the volume operator(s). The proof of the following

theorem generalises with obvious modifications from the treatment in [62].

Theorem 6.

(i) The positive quadratic form Qng is closable and induces a unique, positive self-

adjoint operator M on T qify-
(i) Moreover, the point zero is contained in the point spectrum of M.

We deal with the problem of J&;x not being separable by using #-equivalence classes

of spin-networks, see [245]. Now, a direct integral decomposition of %’fiﬂ is available:
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13.8 Factor ordering

Theorem 7.
There is a unitary operator V such that V%fﬁ 1s the direct integral Hilbert space

b
g [ dn3) #p() (13.41)

where the measure class of u and the Hilbert space %%(A), in which VMV ™1 acts by
multiplication by X\, are uniquely determined.

The physical Hilbert space is given by fffhys = jfd‘zﬁ(O),

We notice that we could define an extended master constraint that also involves the

simplicity constraint.

13.8 Factor ordering

In [247, 248], it has been shown that there is a unique factor ordering which results in
a non-vanishing flux operator expressed through the volume operator and holonomies
in the usual 3 + 1 dimensional LQG. The idea, translated to our case, is that the vol-
ume operator in the expression for ‘7% has to act on an at least D-valent non-planar
vertex and the holonomies in the expression have to be ordered to the right for this
to be ensured. Apart from ordering individual terms of the sums appearing differently
(which would be highly unnatural), this leaves only one possible factor ordering. We
remark that the proof of the equivalence of the “normal” and “derived” flux operator
given in [247, 248] does not generalise trivially to our case since it is explicitly based

on SU(2) as the internal gauge group. We leave this point open for further research.

In order to ensure that the Hamiltonian constraint only acts on vertices, we order
in all three terms either a commutator [h; !, V] or a double-commutator [h;!, [#%, V]
to the right.

We leave the remaining details of the factor ordering open, as here we only intend

to show that a quantisation is possible in principle.

13.9 Outlook on consistency checks

At this point, one might ask if there are good indications whether the proposed theory
is physically viable. In case of the usual formulation of LQG in terms of Ashtekar-
Barbero variables, it was shown in [69] that a quantisation of Euclidean general relativ-

ity in three dimensions with methods very similar to the ones used in LQG recovers the
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13. IMPLEMENTATION OF THE HAMILTONIAN CONSTRAINT

known solutions of three-dimensional general relativity familiar from other approaches.
The reason why these theories match is that they both use the gauge groups SU(2) and
that a suitable redefinition of the Lagrange multipliers of Euclidean three-dimensional
general relativity leads to a Hamiltonian constraint with the same algebraic structure as
the Euclidean part of the constraint familiar from LQG. A similar check is conceivable
for the presented theory in that we can describe Lorentzian three-dimensional general
relativity using SU(2) as a gauge group, which would result in a different Hamiltonian
constraint. One could now check if the solution space of Lorentzian three-dimensional
general relativity is reproduced when using SU(2) as a gauge group and thus mimicking
the internal signature switch which is also done in this formulation. As for the simplic-
ity constraint, we cannot use three-dimensional general relativity as a testbed since the

simplicity constraints only appear in four and higher dimensions.

Another approach to consistency checks is to compare our formulation in four dimen-
sions to the usual LQG formulation. In section [I2.1] the area operator was shown
to have the same spectrum as in standard LQG, which however does not come as a
surprise regarding similar results from spin foam models. As for the volume operator,
we do not know whether the spectrum matches the one of standard LQG. This is also
tied to the fact that we are only interested in the spectrum on the solution space to
the vertex simplicity constraint operators, for which we do not have a completely sat-
isfactory proposal. We remark that a matching spectrum of the volume operator can
be obtained by using a weak implementation of the linear vertex simplicity constraints
[253], but as we have seen, the linear constraint comes with its own problems in the

canonical theory.
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Part IV

Inclusion of matter and extension

to supersymmetry
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In the previous chapters, we introduced a new connection formulation of vacuum gen-
eral relativity with compact gauge group in any spacetime dimension D + 1 > 3 and
its loop quantisation. Now we consider coupling of this theory to matter. Concerning
standard matter, it will suffice to consider Dirac fermions because gauge bosons and
scalar fields can be coupled in the same way as it has been done in 3 4+ 1 dimensions
already [46]: Scanning through the details of [46] one realises that nothing depends
substantially on D = 3 and we can consider the gauge boson and scalar sector as
treated already. However, for supergravity theories, also non-standard matter fields,
most prominently, the “gravitino” in fermionic sector, which has spin 3/2 and usually
is a Majorana fermion, and Abelian higher p-form gauge fields in the bosonic sector,

appear (and more).

Therefore, in the first chapter of this part, we will derive a connection formula-
tion of Lorentzian general relativity coupled to Dirac fermions in dimensions D+1 > 3
with compact gauge group. The technique that accomplishes that is similar to the one
that has been introduced in 3 + 1 dimensions already: First one performs a canonical
analysis of Lorentzian general relativity coupled to the Dirac field using the time gauge
and then introduces an extension of the phase space analogous to the one employed in
chapter [7| to obtain a connection theory with SO(D + 1) as the internal gauge group
subject to additional constraints. The success of this method rests heavily on the
strong similarity of the Lorentzian and Euclidean Clifford algebras. A quantisation of
the Hamiltonian constraint is provided. The presentation is taken from [4] with only

minor modifications.

In chapter we will finally turn to non-standard matter fields needed for the ex-
tension to supersymmetric theories. Since the focus of this thesis is on the higher
dimensional extension of LQG, we will only briefly summarise the findings of our orig-
inal articles [0, [7] with results towards this goal: In section we will follow [6] in
performing an analysis of the spin 3/2 Rarita Schwinger field (“gravitino”). This field
usually is a Majorana fermion, i.e. belongs to real representation spaces of SO(1, D).
The obstacle that there is no action of SO(D + 1) on these representation spaces is
circumvented by introducing an auxiliary unit vector field N and to define an action
of SO(D + 1) on a combined objected formed by this field and the Majorana fermion.
The additionally introduced degrees of freedom introduced with this field are naturally
removed by using the linear simplicity constraint. We construct a background inde-

pendent Hilbert space representation for the real valued Majorana spinor fields that
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implements its canonical Dirac anti-bracket and *-relations. To this end, a new method
needed to be developed since the treatment of the Dirac field does not carry over be-

cause the *-algebra is different.

Afterwards in section we will sketch the study of [7] of the three-form gauge
field of d = 11 N = 1 supergravity as an example of an Abelian higher p-form field.
Due to an additional Chern Simons term in the supergravity action, a straightforward
generalisation to higher form degree of the usual loop quantisation procedure fails.
We propose a reduced phase space quantisation instead: We compute the algebra of
the Weyl elements corresponding to a full set of Dirac observables with respect to
the (generalisation of the) Gaufl constraint and show that it allows for a state of the

Narnhofer-Thirring type.

While the fields we study allow for a loop quantisation of a large class of Lorentzian
supergravity theories in diverse dimensions, including the d =4 N =8, d=10 N =1,
and d = 11 N = 1 supergravities, the study is far from complete. We refer the reader

to section for open problems and suggestions for further research.
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14

Inclusion of Dirac fermions

Our starting point is the standard canonical treatment of Dirac fermions coupled to gen-
eral relativity. To the best of our knowledge, Kibble [254] was the first to consider the
canonical formulation of fermions coupled to vierbein gravity. The classical coupling of
fermions to the Ashtekar’s new variables [13] was provided in [255]. Since then, several
papers appeared debating issues arising when including fermions. Among others, the
role of the Immirzi parameter [256], the appearance of torsion [257, 258] and the cor-
rect form of the Holst modification [259] are ongoing debates. Here we will consider the

simplest possibility, namely the standard coupling of Dirac fermions to vielbein gravity.
p p Y, y ping g Y

In 3+ 1 dimensions the quantisation of this theory was carried out for the first time in
the context of Ashtekar’s new variables in [45, 46]. The new ingredient was the passage
to GraBBmann valued half densities and a representation in terms of holomorphic wave
functions of the fermionic variables. Technically, in 3 4+ 1 dimensions one works in the
time gauge and with the Ashtekar Barbero connection which can be obtained by an

extension of the ADM phase space subject to an SU(2) Gauf} constraint.

In higher dimensions, an Ashtekar Barbero like connection is not available and there-
fore a new idea is needed in order to arrive at a connection formulation with compact
gauge group although we are considering Lorentzian gravity. We start from the usual
Dirac - Palatini Lagrangian for Lorentzian general relativity and introduce the time
gauge. This results in a formulation in terms of a canonical pair (K¢, E%), a,b,c,.. =
1,.,D; i,4,k,.. = 1,.., D which is subject to an SO(D) Gauf} constraint (cf. section
for the corresponding vacuum formulation). We now extend this phase space by
a canonical pair (A,77, 77) subject to the simplicity and SO(D + 1) Gaufl constraint
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14. INCLUSION OF DIRAC FERMIONS

like in part [[Il This way we arrive at a connection formulation in terms of the compact
gauge group SO(D + 1) although we are considering Lorentzian gravity. Of course, the
fermionic contribution to the Hamiltonian constraint of Lorentzian gravity, just as in
3 + 1 dimensions, acquires correction terms as compared to its Euclidean counterpart
which in part is due to switching from Lorentzian to Euclidean v matrices. Yet, these
corrections are not as cumbersome as one might expect because the Lorentzian Clifford

algebra differs from the Euclidean one just by a factor of 4 in front of ~°.

After having obtained the fermionic contributions to the classical constraints we quan-

tise them using standard methods [46] and using the representation [45].

14.1 Canonical analysis of Lorentzian gravity coupled to

Dirac fermions

As opposed to pure gravity where, in the end, it does not matter whether one starts
with a first or a second order formulation of the theory, this choice results in inequiva-
lent theories when dealing with fermions. The reason for this is that the torsion freeness
condition which one derives when starting with first order general relativity is modified
by a term quadratic in the fermions, thus resulting in a non-vanishing torsion. At the
end of the canonical analysis, one arrives at the same set of variables, but, after solv-
ing the equations of motion for the torsion part of the connection, one obtains more
interaction terms, most prominently four-fermion interactions, which are not present
in the theory when starting with a second order formulation. To the best of the au-
thor’s knowledge, it is unclear which type of action should be preferred on physical
grounds. The second order variant leads to less interaction terms and could thus be
preferred by demanding simplicity. On the other hand, when deriving the Ashtekar
Barbero variables from the Holst action, one deals in a first order framework and one
could thus consider it more natural to choose this route. Here, we will choose the first
order approach since the results of the canonical analysis in part [[I| can be nicely used
in order to deal with the torsion terms. For further literature on this topic, we refer to
[46, 255, 258].

We start with the first order action

) - :
Saip = — ///{ Pty (QeeﬂfeVJFW,J(A) + %\Ifeﬁfvf‘uqf - ;VA#\I’e‘;'yI\IJ) . (14.2)
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14.1 Canonical analysis of Lorentzian gravity coupled to Dirac fermions

U denotes a GraBmann valued Dirac spinor, ¥ = ¥f49 and VAu\I/ = 8“\I/+%AGUEU\I/,
» = —%[71 ,v”7]. Spinor indices will be mostly suppressed. The properties of the
matrices are summarised in appendix [El The remaining notation is as before, e#! de-
notes the vielbein and Fj,, 17 := 0, A1y — 0y Aurg + [Au, AJ]ry is the field strength of
the SO(1, D) connection A, ;. The gravitational part of this action has already been

analysed in part [[I, we will therefore concentrate on the fermionic part.

The split in space and time is performed analogously to the D = 3 case (cf. sec-
tion [3.2.1)) and we additionally choose the time gauge prior to the canonical analysis
(the time gauge is a canonical gauge, see, for instance, [I61]) by setting n! = 6f. The

split form of the action is found to be

Scir = / dt / Py (E'gK; (YU (YqU) — NA# — N, — Ny G0 — (N + *,-)gi) :
(14.2)

where

atj

1
H = —\/?1R + E[a\zEb]JK Ky + — th Faisbkl gt
Vi ﬂ 8

2\7\f‘1’ ’YiDra(é/a‘I’)—g\TDr o(YqP)EfA (Yq9)

- (A (YA KB — - VAR {2h S} (AR, (143)

Vi NG
o = —2EYDT Ky + () DV u(a0) - (D (a0 (yav) + 3K,
(14.4)
@i = 2K Rl — (yqu)tTei(/q), (14.5)
@, = K, (14.6)
and small Latin indices ¢,7,k,... = 1,..., D are internal indices in the time gauge.

Faidbkl and the derivation of the symplectic structure have been described in chapter
We have decomposed Ayr5 = Targ + 2n[II_(Q|J] + K,17, where the bar notation K,/

as before means that the internal indices are orthogonal on n’.

In the time gauge,
this is equivalent of having only small latin indices running from 1 to D. We have
E% = \/éeai and DT, is the covariant derivative associated to the spin connection I'y;;
annihilating the vielbein. The splits in trace and trace free parts are done with respect
to the vielbein. The Gauf constraint has been split into its rotational part ¥% and its
boost part ¢°. Aij = =T*A,;; and \; = Xjp. All terms proportional to f(itr = f(m-anj

not belonging to the boost part of the GauB constraint have been written as *;%°.
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14. INCLUSION OF DIRAC FERMIONS

The boost part of the Gaufl constraint does not acquire a fermionic part because of
the cancellation % + (%)t = 0. The Dirac spinors in the above equations appear
only as half-densities, i.e. /q¥. Since the symplectic structure tells us that these
half-densities are the natural canonical variables, we will abuse notation and denote
by ¥ from now on a half-density. The importance of using half densities stems from
the simple form of the symplectic structure. Otherwise, the connection would acquire a
complex part [260] and the techniques introduced in [21} 24-27] would not be accessible.

In order to facilitate the canonical analysis, we will employ the equations of motion

for A; and ng at the Lagrangian level. Their solutions translate directly to a purely

canonical treatment as one can check. Variation of the Lagrangian with respect to \;

sets the boost part of the Gauf constraint to zero. Variation with respect to Kflﬁ] yields
f 1 b ij

Kt Fa'Lj bkl\IIEm {’Yma ZU} \Ij7 (147)

aij

which we use to eliminate f((gg] in JZ.

Next, we perform the Legendre transform, yielding the constraints

H = f R+ —ElFEN K, Ky,
\f

1 1
+ L gpeyipt,o - L L prowEeiv
2 /4 2/
. iqﬁzﬁmwzmqf n 336 {7’“, ziﬂ'} UT {p, 05} 0, (14.8)
o, = 2B DN Ky + %xpTDFa\II - %(DFaxp)qu, (14.9)
@i = oKl EW — winiy, (14.10)

as well as the non-vanishing (generalised) Poisson (anti-) brackets [161]

{E%(x), Kij(y)} = 67 (¢ — y)ogd; and  {U(x), —iWf(y)} = —6” (x — )55,
(14.11)

A term proportional to the Gaufl constraint has been omitted in 7 and 7.

We define the generator of spatial diffeomorphisms

Sy = A, — ,mgw = —EY0,Ky; + 0y(E" Kyj) + %qﬁaa\p - %(aaqﬁ)qf, (14.12)
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14.1 Canonical analysis of Lorentzian gravity coupled to Dirac fermions

which acts as

{E‘” } Nb9,E + (8, Nb)E — (9,N)EY, (14.13)
{Km,j% [NY] } = NP0y K o + (9aNY) Ky, (14.14)
{qz S[NY] } = NP, + (a NP, (14.15)
{\Iﬂ“ 7, Nb} NboUt + = (a Nyt (14.16)
(14.17)

by Lie derivatives. The Gauf} constraint acts as

@ [Aij]} =\, EY, (14.18)
=N K, (14.19)
= 5ixijzijxp, (14.20)

1. .
— _§zmijzw, (14.21)

1 L
— _§¢(Dfaqf)f,\ij2”, (14.23)

1

{qﬁziﬂ‘xp, 5@]’ Aij] ¢ = Wi\, 290, (14.24)

}
|
{DFa\p, %giﬂ' [Aij]} = %MUEUDF,I\IJ, (14.22)
1 ..
1 }
|

{\If{v’“, S, %giﬂ' [AU]} =7 ({7'2 XS]} 4 {Amy™, B9 }) v (14.25)

We therefore conclude that the algebra of the diffeomorphism and Gauf3 constraints
closes and that they both Poisson-commute with the Hamiltonian constraint, at least

weakly.

Thus we are left with checking the Poisson bracket of two Hamiltonian constraints. We
split S = Hgray + Hor + H4F into the purely gravitational part, a part containing two
fermions and a part containing the four-fermion terms and define V, := M9, N — NI, M
as well as Vi := (0, M )(OpN) — (0pM)(0,N). The non-vanishing Poisson brackets are
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14. INCLUSION OF DIRAC FERMIONS

given as

{ Hyrar M, Ao [N]} = /

(e

) EaiEbj
dPz | Vag® (—2E9 DV, K ;) + Vay——— KBS |,
q

(A (M), A5 [N]} = /

(e

. . ai bj B
P Vg (Lutpt,w - Lot wyte) - v, P gty ||
2 2 2q
1 |
{Han M), #5[N|} + {H6r[M), Haray [N} :/de (tgqvaq;{E,‘;ryka”}szijw)j

{Hop[ M), #4r N1} + { Hp[M], #5r(N]} = / dPx (—gqvaw{Ezv’“, E“}Ww) ,
(14.26)

and sum up to

E*Eb
{[M], #|N]} = / dPz (Vaq“b% + Vi ;q J %lﬂ) . (14.27)

The constraints are therefore consistent and the canonical analysis ends here.

14.2 Phase space extension

In part I we have seen that the extension of the ADM phase space (g, pab ) to the ex-

aIJ) subject to GauB and simplicity constraint is equivalent

tended phase space (Aqr7, ™
to the ADM phase space. Moreover, this is possible using SO(D + 1) as the structure
group while considering Lorentzian gravity. Since spinors can only be coupled to viel-
beins, we have to construct a transformation from (E% K,;) to (Aurs, 7). The
calculation turns out to be very similar to the one described in part [, we therefore

only give the result and comment on some peculiarities.

The explicit construction is given by
EY =0 mng, Ko = (7 (A =T)axn™, (14.28)

where, as before, 7/ = n!’ — (nfn’ ~nl’ — % (ﬂaKIWaKJ — Cn”), and ',y is the
hybrid spin connection of E% (see appendix |C| for details). The peculiarity of these
expressions is the appearance of n!, which can only be directly (that is, without non-
polynomial terms except for ,/g) expressed in terms of 77 for D41 odd. For general D,
we only have access to n/n’ and then can define £n! through +n! = VnInl, sgn(n’n')

(no summation understood here and one substitutes for n/n! under the square root
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14.2 Phase space extension

the expression for n‘n’ at I = J). Fortunately, we can avoid to make use of this
explicit square root expression by invoking the following trick: Ultimately the non-
vanishing Poisson bracket involving n! is of the form n/{A,r;,n*}. Since nfng ~ ¢
modulo simplicity constraint we have n’ {Aar 7,nK tng =~ 0. To see this, notice that

the simplicity constraint reads 5”% = %e 1IK LMWCI TpdEL Tt follows

n’{Aars, y%} = %nJEIJKLﬁéc(zCTrd)KL ~0
on the constraint surface 7%/ = 2nll E4/1. Tt follows n’ { Aary, n%} ~ n? {Aar s, nt )7k =
—n{Aury, 75 InE. However, {Aars, 15} = —({Aars,n%n} and nfnp can be ex-
pressed unambiguously as above in terms of 7*/7. In order to compute the brackets
between E*! | K,; one then just hast to carefully insert the definition of nyn s in terms of
77 The only term which cannot easily be seen to vanish by algebraic manipulations

alone occurs in the bracket {K,s, K,s} and is of the form
Y n{[A = Tars, [A = Tloxr} = —iif 0"y 0™ [{[Aars, Toxcr} — {Abkr, Tars}]-

This term vanishes due to the weak integrability (modulo simplicity constraint) of the
hybrid connection I'y;; and by using the trick mentioned above, see section for

more details.

After a tedious calculation, the Poisson brackets of E%/ and K,; expressed as func-

tions of A,r; and 77 are given by

{E(2), B (y)} = 0, {Kar(2), Kps(y)} =0, {E(2),Kps(y)} = —C6" (x — y)650).
(14.29)

modulo simplicity constraint.

The only task left to do is to write down a Hamiltonian theory in the variables A,rs

bKL with internal gauge group SO(D + 1) which reduces to the theory derived

and 7
in the previous section on the constraint surface 5”%’ = n;9" = 0. The basic idea is
to first derive a Hamiltonian formulation of Euclidean gravity coupled to fermions and
then to adjust the Hamiltonian constraint to mimic Lorentzian gravity. The reason
why the procedure already used in the vacuum case in part [[I] generalises nicely to
Dirac fermions is the strong resemblance of the Clifford algebras, which differ only by
factors of ¢ for different signatures and the Euclidean signature of the internal gauge

group which ensures that ¥!7 is a Hermitian matrix the Euclidean case.
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14. INCLUSION OF DIRAC FERMIONS

This requires care at several places, e.g. the cancellation % + (£%)t = 0 from the
boost part of the Lorentzian Gaufl constraint is no longer present. In order to derive
the Euclidean constraints, we start as in the previous section with the action (|14.1|)
and perform a D + 1 decomposition. We replace 4° with n;y!, which reduces to 7°
in the time gauge. We note that the object W is not a Lorentz scalar any more
when using Euclidean signature, because the 4° inherent in UW is needed in order to
maintain invariance under boosts which are generated by the anti-Hermitian X%. In
Euclidean signature the boost generator is also Hermitian and thus UTW rather than
WU is now the appropriate Euclidean scalar to be used while U4/ ¥ is a Euclidean
covariant vector with index I. The substitution v* — n;y! is therefore natural for
Euclidean signature and allows for the construction of a manifestly SO(D + 1) gauge
invariant theory. We use the additional n/ in the action to form 7/*/ = 2nl! Eal/l and
introduce the simplicity constraint in order to replace 7’7 by 7%/, The Euclidean

Hamiltonian theory is then given by the constraints

1 1

%E — §7TQIK7TbJKFabIJ + <2\IJT7TQIJE[JDACL\I’ + CC> , (1430)
1 . .

Ay = §7Tb”Fab1J + %\I’TDAa‘I’ - %(DAa‘I’)T‘I’» (14.31)

gé] — DAaﬂ.CLIJ _ \I]TEIJ\I[’ (1432)
1

Y%’ = ZGIJKLMTFGIJWZ)KL, (14.33)

and the (non-vanishing) Poisson brackets

{Aars (@), 7" (y)} = 67 (& — y)04(6% 67 — 0L0%),
{U(2), —i Wl (y)} = —0°(x — y)d5. (14.34)

The task of “Lorentzifying” the gravitational part of #F has already been addressed.
For the fermionic part, we observe that we should add a factor of ¢ in front of the
fermionic term in order to compensate for ’y% = iv% and denote the changed constraint

by Jﬁg . The Hamiltonian constraint now reduces to

1 1 N ] ;
A — g Vak - —\/aE[““E P Kai Kj + <2\/§‘I’T72E?71Dra‘1’ + CC)
1 . 1 D-2 : E} »
t . t50i T E ty0 tf
- T\/aq' VEYK,; — T\/aﬁq’ S%uuisle 4 9, (ﬁql EE"I/> + O(Kqy5)-
(14.35)
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14.2 Phase space extension

The terms proportional to K;EJ can be dealt with using ideas from gauge unfixing. We

calculate

a M- a N a.
(M, HEEINT} = PN + / 40— Mgl T VN (S, S}

4
. ab M ab
= G‘@M[Ncab] + F.@M[Ncab] (1436)
and see that the gravitational constraint G@“—b = —EIJKLMWCIJ ( (@l KN DA 7L ) ~ 0
now receives a fermionic contribution p%. F%’;V—d, the Dirac matrix introduced in sec-

tion however remains unchanged since p% Poisson-commutes with the simplicity
constraint and gauge unfixing works as before. Next to compensating the terms pro-
portional to wa, gauge unfixing also produces a four-fermion term, which we have to

subtract again in order to build the correct Lorentzian Hamiltonian constraint.

Comparison with the previous section leads to the following correction terms:

2 1 . c
= %”g + %E[auEb]JKaIKbJ - *Ggaﬁb (F 1) Lz

1
_7G@a7b (Fi)abcd QCd_f @ab( 7)abch@Cd

1 D
2/gD 1
E¢ . 1 1 — ey —
zq;’fz%q;) + —UtwEY K, + 5\1/{7"3’ Z”}\II\I/{%, Eij}‘;[/.

(arsv) +az

L yivigyt I D=2y AAIDIAT

27
— 0,

(14.37)

This Hamiltonian has to be rewritten in terms of A,;; and 7°%X% only, desirably as

simple as possible regarding the quantisation. We propose the Hamiltonian
L1 ek b A arg A
H = g™ KFaprg + 15\11 'Y ;DU + CC

2 I bJ 1 b (p—1\ N d
+ %E[al E] KaIKbJ - iG-@aM (F 1) ab cd G-@cﬁ

1

N 56‘9@ (F") o 0 r 758 - ngb (F") i o c 25
1 3D 4
\Iﬂz”\p\lﬁzuw + VIS EGOts o Unm’
WG 2./g D—1
— 9, <7T\/IZ1J w*z”w) 2\/@\1&1@“’1@
~ 3 ‘I’T’Y[I Ty Ky B M Wy sy eyan @ (14.38)
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14. INCLUSION OF DIRAC FERMIONS

for quantisation, although we are well aware of the fact that other choices might lead to
equally reasonable classical starting points. We shift the problem of choosing the “cor-
rect” Hamiltonian constraint to the semiclassical analysis. The expressions for n'ny
and E* Ky; were already given in part [IIl and all y-matrices appearing are those for

Euclidean signature.

A last remark concerning the use of the linear simplicity constraint (cf. [6] and section
instead of the quadratic version above is in order. Since, using the linear simplicity
constraint, we have direct access to the internal unit vector N/, the above construction
is, in fact, simpler in that case. In analogy to , we define the map to the eADM
phase space by

EY = (i ym ™ Nk, Kar = 7 (A= T)ax s N, (14.39)

where T',7; is understood as functions of 77 but 777 now is understood as a func-
tion of NZ. The proof that the extension of (K4, E%) with SO(D) Gauf§ constraint to
(Aary, 7% E N1, Py) with SO(D+1) (or SO(1, D)) Gau8, linear simplicity and normal-
isation constraint then is analogous to the one above and therefore will not be detailed

here.

14.3 Kinematical Hilbert space for fermions

The construction of the kinematical Hilbert space for fermions was discussed in [45].
Results obtained there apply for the case at hand, so we only give a short summary.
It is crucial to work with half-densitised fermionic variables ¥ for what follows, as was
stressed in [45].

Faithful implementation of the reality conditions enforces the use of a representation

in which the objects
Ou() = / 4Py /3(2.5) Waly) = lim / dPy XE L0y, (y) (14.40)

become densely defined multiplication operators. Their adjoints 6" become derivative
operators. Here, a = 1, ...,n := 2L(P+1/2] (| | denotes the integer part of .) and x.(z, y)

D centered at z. In

denotes the characteristic function of a box of Lebesgue measure ¢
the above equation, the half-densities ¥ are “dedensitised” using the J-distribution,
which is a scalar in one of its arguments and a density in the other. Thus, the vari-

ables # are Grafimann-valued scalar quantities, which is important for diffeomorphism
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14.4 Implementation of the Hamiltonian constraint operator

invariance [45]. In calculations it is understood that the € — 0 limit is performed after

the manipulation under consideration is performed.

The variables 6,(v) coordinatise together with their conjugates the superspace S,
at the point v. The quantum configuration space is the uncountable direct product
7 = [I,co Sv- In order to define an inner product on .7, it turns out to be suffi-
cient to define an inner product on each S, coming from a probability measure. The

“measure” on S, is a modified form of the Berezin symbolic integral [261]
dm (6,6) = d0doe” and dm, = @pn_idm (0a(v),04(v)) , (14.41)

which has the additional property of being positive on holomorphic functions (those
which only depend on the 6, and not on ). Since the @ are Gramann variables and
thus anti-commute, any product of more than n of these variables will vanish. The
vector space of monomials of order k is n!/k!l(n — k)!-dimensional (0 < k < n) and
the full vector space @, built from all monomials has dimension 2. The full fermionic
Hilbert space is a space of holomorphic square integrable functions on .# with respect

to dup
Hr = Loy (?7 dNF) = Queola (SU7 dmv) . (14'42)

When restricted to a point v, the inner product can be seen to coincide with the
standard inner product on @, when viewed as a vector space of exterior forms of
maximal degree D + 1. For a more complete treatment, the reader is referred to [45]
where it is shown that the fermion measure dup is gauge and diffeomorphism invariant
and that the reality conditions 6, = —im, are faithfully implemented in the inner

product.

14.4 Implementation of the Hamiltonian constraint oper-

ator

The quantisation of the purely gravitational Hamiltonian constraint in dimensions
D +1 > 3 has already been discussed in part [[TI] The quantisation of fermionic de-
grees of freedom was described in detail in [45, [46], which we assume the reader to be
familiar with. Next to an explicit example, we will only provide a toolkit to quantise
the fermionic part of the Hamiltonian constraint operator as writing down the explicit

terms is rather laborious.
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14. INCLUSION OF DIRAC FERMIONS

Quantisation of the # variables is performed by promoting 6, to a multiplication opera-
tor and (61)8 = —h%, where L indicates the left derivative. The explicit quantisation
follows the (extended) toolkit of [3]:

(1) Choose a triangulation T'(vy, €) of the spatial slice o adapted to the graph .

(2) Use classical identities in order to express the Hamiltonian constraint in terms
of connections A,ry, volumes V(z,€e) and Euclidean Hamiltonian constraints
HE(z,€).

(3) Replace all phase space variables by their corresponding regulated quantities.

(4) Instead of the the integration | dPz, put a sum ﬁ ZUEV('y) over all the vertices
v of the graph 7.

(5) For every spatial e-symbol, put a sum EETI;) ZU( A)=p Over all D-simplices having

v as a vertex. The holonomies associated with the e-symbol are evaluated along

the edges spanning A.

(6) Substitute the generalised Poisson (anti-)brackets by + times the (anti-)commutator
of the corresponding operators, i.e. the multiplication operator Be, the volume

operator V, the multiplication operator 0, and the derivation operator —h%.

The kinetic fermionic part of the Hamiltonian constraint operator is a bit more involved

since it contains a derivative. Following [45], we explicitly get

‘ﬁDEirac7 kin(N)f’Y

(3 % By X (THo)~

veV () v(A)=v

L
(B ((hs(a)f(sa(D)(€)) = 0(v)) 89‘1(1}) + H.C’.) frs (14.43)

where by ¢(...) we mean the regulated quantity with the Poisson brackets substituted
by i/h times the commutator of the corresponding operators. The Hermitian conjuga-

tion operation H.C. is meant with respect to the inner product on the Hilbert space.

Due to its length, we refrain from writing down the complete Hamiltonian constraint
operator which can be easily done when following the quantisation recipe. We remark
that we could split the Dirac fermions for D + 1 even into left- and right-handed parts,
however, the presentation does not benefit from this. Details are supplied in [6]. The
quantisation ambiguities from LQG are also present when considering fermions and, as

usual, we shift this problem to the semiclassical limit.
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15

Extension to supersymmetric

theories

“Maybe the way we now interpret Kaluza-Klein ideas is totally wrong.
Perhaps one should instead consider field theories with a variable number of
dimensions [...], maybe even continuous dimensions [...], maybe even a new
Schrodinger equation in which one of the canonical variables is a variable
dimension. The fact that we live in d = 4 would then simply be a Bohr-
quantization rule. Perhaps certain integer dimensions are singled out in a
path integral approach because they have more differentiable structures than
other integer dimensions [...]. In these lectures, however, we will stick to

the “conservative” viewpoint that our world is eleven dimensional.”

- Peter van Nieuwenhuizen [133]

In [6, [7], non-standard matter fields which appear generically in supergravity theo-
ries were included in the loop quantisation framework, namely the spin 3/2 Rarita
Schwinger field (“gravitino”) and the three-form gauge field from the d = 11 N =1

supergravity as a specific example of a higher p-form field.

In the fermionic part we will exclusively study the case of Majorana fermions.
The Rarita Schwinger action actually is not tied to the use of Majorana fermions,
there exist also Dirac and Weyl versions of this field. Also, it is a well-known fact
that Majorana fermions do not exist in any dimension, but in those dimensions instead

one can define anti- or symplectic Majorana fermions with slightly more complicated
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15. EXTENSION TO SUPERSYMMETRIC THEORIES

Majorana conditions (cf. e.g. [133]). Scanning the literature on supergravity theo-
ries in various dimensions (cf. e.g. [134] for a collection of important original articles
which additional explanations, historical remarks and extensive reference to further
literature), it transpires that there are supergravities in which the role of the gravitino
actually is played by any of these possibilities: Weyl, Majorana-Weyl, anti- or sym-
plectic Majorana Rarita Schwinger fields appear. However, for the d =4 N = 1, and
d = 11 N = 1 supergravities, the gravitino actually is a Majorana fermion [134], and
therefore, although the Majorana case cannot be called generic, we already cover these
arguably interesting theories. Still, in [6] it is shown exemplarily that, without further
complications, we are also able to include spin 3/2 Majorana-Weyl fermions both, at
the classical and quantum level (important for e.g. d = 10 N = 1 supergravity), as
well as spin 1/2 Majorana and spin 1/2 Dirac-Weyl fermions which also appear in some
supergravities. This makes us confident that the methods developed actually allow for
the loop quantisation of the fermionic sector of a large class of supergravity theories. In
the bosonic sector (section , while only treating the three-form field from d = 11
N = 1 supergravity explicitly, we also expect that our methods carry over to more
general p-form fields. However, here we make do with only presenting the mentioned

examples and leave the generalisations to the interested reader.

15.1 Rarita Schwinger field

15.1.1 Classical extension to SO(D + 1) gauge supergravity

We start from an action of the form

Ssucrale, A, 1, more] = /

1 _
d%z <2€ e“IeVJFW”(A) + ie 1/1#7“’)”V‘4p¢0 + more> )
M

(15.1)

which is quite generic for (first order) supergravity theoriesﬂ The action consists of
three parts: The first term is given by the Palatini action for gravity known from chapter
the second is the action of the Rarita Schwinger field 1, (spinor indices will be mostly
suppressed; note that in general there might be several Rarita Schwinger fields appear-
ing), and “more” stands for all other terms which are demanded by supersymmetry.

We defined y#P := /K el 1e¥ 1eP . and the covariant derivative acting on the spinor

'Here, we want to make explicit the transition from the Lagrangian to the Hamiltonian formulation
in time gauge once and choose exemplarily the first order framework. We could, however, as well start
with a second order action. The subsequent considerations in the Hamiltonian theory actually do not

depend on this choice of starting point.
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15.1 Rarita Schwinger field

field is defined like before for Dirac spinors, VAM,bZ, = 0,y + %Aul 7214, Being a
Majorana fermion, v has to satisfy the Majorana reality condition 11_)“ = dJL'yD = d}EC’ ,
where C' is called charge conjugation matrix. We will work in a Majorana represen-
tation, in which the spinors are real and we have C' = 7°. Note that this implies a
restriction to those dimensions in which a Majorana representation of the Lorentzian
Clifford algebra exists, which however includes the particularly interesting cases d = 4,
10, 11. Like in the case of Dirac fermions, we again want to first impose time gauge
n! = 6} < E = 0 to reduce the internal SO(1, D) symmetry to SO(D) and then
extend it again to SO(D + 1). Performing the D + 1 split like in the pure gravity case
then leads to

SSUGRA = /dt/de (EaiKai — itP)e pTbep,
1 o
— N — N, — 5)‘”%” — 6+ more). (15.2)

Here, “more” stands for the kinetic terms of all other present fields and for further
constraints which might appear. Of course, we obtain the usual Hamiltonian, spatial
diffeomorphism and SO(D) Gaufl constraint, but also 1/; plays the role of a Lagrange
multiplier field and therefore, one further constraint, the supersymmetry constraints
G, arises. The form of 2 and & depends strongly on the theory under considera-
tion. With a suitable choice of Lagrange multipliers, /7, is the generator of spatial
diffeomorphisms on all phase space variables and therefore has a generic fornﬂ as has
' generating internal SO(D) transformations on all phase space variables in the

corresponding representation. Reading off the momenta conjugate to 1,

7 = iPe L4t (15.3)

we find
@ — 2Kl pll 1 72129y, + more, (15.4)
Mo = EY0,Kyy — 0y(EY Koj) — 7°0athy + 0y(n"1a) + more, (15.5)

where “more” stands for the corresponding terms of any additional fields, as well as

the non-vanishing canonical anti-bracket relations (CAR)

{3 (@), mh(y)} = 63207 (x — ). (15.6)

!Suitable choice of Lagrange multiplier here is equivalent to choosing a certain linear combination

of constraints. The “natural” vector constraint which appears, namely the one whose corresponding
Lagrange multiplier is the shift vector, actually generates a mixture of spatial diffeomorphisms, internal

rotations and local supersymmetry transformations.
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Since the Gaufl and spatial diffeomorphism constraint are expected to be treatable in
the same way as in the non-supersymmetric case, our strategy will be to focus on the
CAR and reality conditions to obtain a kinematical quantisation of this sector of the

theory.

The three main manipulations we have to perform in order to arrive at CAR and

reality conditions which are amenable at the quantum level (for details, see [6]):

(1) It was shown in [45] (and applied in chapter that for Dirac fermions, it is
mandatory to use half densities as fundamental fermionic variables, since oth-
erwise one has a complex valued gravitational connection and problems with
implementing both, the reality conditions and the canonical Poisson anti-bracket
at the quantum level. Interestingly, in the case at hand, we again will be forced to
use half-densitised fermionic variables. Due to the reality of the fermionic field,
the usual defining equation of the fermionic momenta [15.3] actually are second

class with themselves, a complication which is absent in the case of the Dirac
field,

Q% = 7% — iPe yf4P ~ 0, (15.7)
{Q%(2), Q(y)} = 2iP)e v (@ — y). (15.8)

One might at this point again want to use gauge unfixing, but to this end we
had to split the constraints 2® in a covariant way such that we can drop half of
them. A natural splitting would be a chiral one, but the concept of chirality only
is defined in even spacetime dimensions and we do not want to impose further
restrictions on the number of dimensions. Therefore, we are lead to using the
Dirac bracket. For the Dirac anti-bracket between two fermionic fields, we find

i

3D - 1) 2~ Dar + V)8 (x —y),  (15.9)

{tha(@),1s(y) }pB =

and furthermore, one finds {K,*(z), K3/ (y)}pB # 0, {¢a(z), K (y)}pB # 0, and
{¢a(x), E®;(y)}pB = 0. The latter Dirac brackets are rather disastrous in view of
later quantisation: From the first one, we expect that the SO(D + 1) connection
will not be Poisson self - commuting, and the latter two indicate that the Rarita
Schwinger field will have a very complicated action on the connection, being con-
structed from both, E% and K.

These obstacles can be circumvented using half densitised and vielbein contracted
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15.1 Rarita Schwinger field

fermionic variabl ¢ = \/We‘”'wa. From the kinetic term in the action, it is
easy to read off that, when using this fermionic variable, the variable conjugate
to the vielbein changes as K,' — K" := K,' — iEakqu'yjiqSk. After this change of
variables, the non-vanishing Dirac (anti-)brackets are (this was already observed
in [120] in D = 3)

{Kji(x), BY (y)}op = 6,616 (z — y), (15.10)

{#i(z), ¢;(y)}pB = 2(%_1)

(2= Dy + 790 —y),  (15.11)
and all fields are real. To simplify notation, we will drop the subscript DB in the

following.

(2) Having sidestepped this first major problem, we can start thinking of extending
the internal gauge group to SO(D + 1). Since we “decoupled” the fermionic and
gravitational degrees of freedom at the level of the Dirac bracket in the last step,
we can treat the bosonic degrees of freedom like in the vacuum case to obtain
a SO(D + 1) connection formulation. In the fermionic sector, we have to either
get rid of the matrix appearing on the right hand side of before the
extension to SO(D +1) or give an SO(D + 1) version thereof. The latter option is
problematic, since the naive extension (just adding one internal direction, 7;; —
N1y, Yij — 71J) does not lead to a symmetric matrix (under the exchange of both,
I, J and the spinor indices), which, however, is demanded by the symmetry of the
anti-bracket. Therefore, we stick to the former route, and simplify the bracket by
decomposing ¢; into trace and trace free components with respect to 4¢. To this
end, we define

-1 2

3 5 1 D -~ 5

ng = 1605 — B(WZVJ)CYB — an(gaﬁ _ 522/3’ (15.12)
. 1 .. - 21 ;i

Qs = 50" )as = 57 das + 5 E0p (15.13)

where a, 8, ... € {1,...,2lP+1/2]1 denote spinor indices. It is easy to check that
this actually defines projectors, PgﬁQf,Z =0, PgﬁPfg = Pf:k, QgBQJ@g = Q?k,
P +Q = 11, and using them, we can decompose the Rarita-Schwinger field as

follows

. . 1
¢i = Pij¢? +Qij¢? =: pi + Do (15.14)

!This choice of variables actually appeared much earlier in the literature on Hamiltonian super-
gravity [262] when requiring that the kinetic term of the Rarita Schwinger field be explicitly vielbein

independent.
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with p; == P;;¢’ and o := fyiqﬁ,ﬂ At the cost of introducing a new constraint
A = ~'p;, (15.15)

which demands that p; is trace free with respect to 4%, we then find very convenient

non-vanishing fermionic anti-brackets

{01(a), s (9)} = — g 6P — ), (15.16)
(o(0). o)} = i 67w — ). (15.17)

and again all fields are real. A final comment is in order: Note that the constraint
is again second class with itself. If we calculate the corresponding Dirac
bracket, changes to {p;(2), p;(y)}ps = —5Pij 6P)(z — y), and it seams
that not much has been gained when compared with . However, as we will
see later when quantising, it will be central that the right hand side of the Dirac

bracket gives a projector and this is only true for p;, not for ¢;.

(3) Finally, we have to extend the internal space, which actually poses the most in-
tricate problem: Since we started with real valued Lorentzian Dirac matrices, the
corresponding generators (< X77) of SO(D + 1) in the spinor representation are
necessarily complex (more concretely, in our conventions 7y for Euclidean and
Lorentzian signature differs by a factor of ¢ and therefore becomes imaginary).
This implies that the real vector space V of Majorana fermions is not preserved
under the action of the extended, SO(D + 1) Gaufl constraint, and it seems that

the Majorana reality condition and the internal signature switch are incompatible.

However, note that any element g € SO(D + 1) can be written as a g = b - r,
where b is an “Euclidean boost” in the 0j - plane and r a rotation stabilizing
n} = 8¢, and only the “Euclidean boosts” spoil the action of SO(D+1) on V (all
vi, © € {1,..., D} are real valued). If we started with a real spinor € V' and kept
track of all “Euclidean boosts”, we could still impose sensible reality conditions,
namely that the spinor when “boosted” back to V is real. A natural way how
to keep track of these boosts lies in the use of the linear simplicity constraint:
The unit vector field N! encodes the D boost parameters, N? =: b ;(N)n{.

! Also this decomposition already appeared earlier in treatments of the free Rarita-Schwinger field
to isolate the physical degrees of freedom. The trace part o is found to be unphysical in this case, cf.
e.g. [262].
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15.1 Rarita Schwinger field

The inverse matrix b~! rotates N! back to its “time gauge” value n‘ol . Start-

ing from time gauge and spinors in V', we then impose as reality condition that
the spinors when rotated back to “time gauge” are always real valued, i.e. e.g.
b1 (N)o = (b='(N)o)*, where b(N) here is in the spinor representation. Based
on this idea, one can indeed obtain a faithful extension of the supergravity phase
space to the gauge group SO(D + 1), and we refer the reader to the original work
[6] for details. For what follows, we only need that after solving all second class

constraints, the final non-vanishing anti-brackets read

{(hh(2), i)} = —5PY 6Pz — ), (15.18)

{pr(2),pl(y)} =0, (15.19)

{pp(2), P (y)} =0, (15.20)
D

{or(2),00(y)} = Zml 5(D)($ - y), (15.21)

together with the usual canonical brackets we encountered in part [[Iin the bosonic
sector, and all fields are real valued (The subscript  is to remind that these fields
are not the same as above). In terms of these fields, the spatial diffeomorphism
constraint and the linear simplicity and normalisation constraints read as one
would expect, but 7 and & are intricate. More surprisingly, also the Gaufl
constraint is very complicated, which is related with the non-covariant split in
pY and p’- components in the anti-brackets. Still one can prove that all of these
remaining constraints, /¢, ., 417, S
refer the interested reader to [6] for the details.

A and G, are first class, and we again

15.1.2 Kinematical Hilbert space for the Rarita Schwinger field

Consider the finite dimensional complex vector space V' of polynomials of N real valued
Grafimann variables 04, A € {1,..., N}, with complex coefficients. A polynomial f € V

can be written as

N
=30 S L et (15.22)

n=0 1<A;1<..<A,<N

where in)“ 4, are a complex n - forms. An obviously positive definite sesqui-linear form

on V is given by

N
SEDED DD DN ) (15.23)

n=0 A1<--<An
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15. EXTENSION TO SUPERSYMMETRIC THEORIES

which is invariant under U(N) acting on V' by

FoU-fi U AY 4 =15 5 Usiay - Usyay (15.24)

On the Grafimann variables, this corresponds to 64 — Uap0p. Note that this is not an
action on real Gramann variables unless U is real valued. Therefore we restrict U(NV)
to O(N) (more precisely, to a subgroup thereof), and to real valued coefficients in the

polynomials f in what follows.

One can check that with the above inner product the operators

[04 - f1(0) =04 f(0), [0a- f1(0) :=0"f(0)/004 (15.25)

atisfy the adjointness relations HL = 04. Therefore, we can define the operators
0 4= \/ﬁ[@ A + 04], which obviously are self-adjoint and can be checked to satisfy the

anticommutation relations
[04,05]4 = 2hd45. (15.26)

This already gives (up to a constant factor) a faithful representation of the abstract

CAR *-algebra for o if we interpret A as spinor index,

1 Dh
Oq = —A] —— . 15.2
6o = 5\ g0 + 0l (15.27)

For pi., A is compound index (j,a), j € {1,...,D}, o € {1,...,2L(P+1D/2]} " Using that
P%’B is a real valued projector (in particular symmetric and positive semidefinite), we
can define the self adjoint operators

~v \/ﬁ o
pe = 7Pif[ef + af] (15.28)
satisfying
[Aa Aﬁ] _ Epaﬁ (15 29)
PisPrl+ = o' jk- .

The Hilbert space 47, for each point v on the spatial slice then is just given by the
tensor product of the Hilbert spaces we just constructed for both p and o, and the field
theoretic generalisation thereof is constructed as in the case of Dirac fermions, either
using an inductive limit of the finite tensor products of the point Hilbert spaces 7,
or the infinite tensor product of these Hilbert spaces over all points v, cf. [62, 263] for
details.

1% here denotes the left derivative, see, e.g., [161] for more details.
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15.2 Three-form field of d =11 N = 1 supergravity

In this section, we will study the quantisation of new bosonic fields in supergravity
theories using the example of the three-form field (“three index photon”) of d = 11
N = 1 supergravity. We will start by shortly reviewing the classical canonical theory
and afterwards study its quantisation. Again, our exposition will be rather brief and

we refer the interested reader to [7] for more details.

15.2.1 Canonical formulation

The Hamiltonian analysis of the full d = 11 N = 1 supergravity Lagrangian[135] was
studied in [264, 265]. Here, we will restrict to the contributions to the action stemming

form the three-form A, = A since the remaining parts (graviton- and gravitino-

wvp)d
part in d = 11) already were in included in the loop quantisation programme. This
part of the Lagrangian is not solely the (generalisation of) the Maxwell term coupled to
a current, but due to the presence of a Chern Simons term, the field actually becomes

self-interacting. It is given up to a numerical constant by

1
L = _5. /|9|FM1--M4 FHL-He /‘g‘FML#zx JH1-Ha
C
= 5 VI9lE s Forn Ay et Ha1-vap1p3, (15.30)

where F' = dA, Fu, uy = Oy Apy.pis)

sor current bilinear in the Rarita Schwinger field and furthermore depending on the

is the curvature of A, J is a totally skew ten-

vielbein, not containing derivatives. The specific form will not be important in what
follows. Furthermore, ¢ and « are positive constants fixed by the requirement of local
supersymmetry. We will call ¢ the level of the Chern Simons theory in analogy to the

three dimensional case.

We only want to highlight the main results of the canonical analysis, which is straight
forward but tedious. Performing the 10 4 1 split as in section [2.2.1] we find that the
Lagrangian is singular in Dirac’s [I57] terminology: While the momenta 7 to the
spatial components Ay of the three-form field can be solved for the corresponding
velocities, the temporal components A, act as Lagrange multipliers fields and give
rise to the primary constraint

) C
@92 = 9, -9 _ 56“1“2’)1--’MCl--&lFbl_Vb41«}1“&1. (15.31)

This is the analogue of the Gaufl constraint in the Maxwell case, however, due to the

presence of the Chern Simons term in the action, it gets an additional contribution
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15. EXTENSION TO SUPERSYMMETRIC THEORIES

corresponding to the second term in ([15.31f). This leads to the following action on the

phase space variables

{A,9\} = —d), (15.32)
{xm,9[N\]} =c (d\) N\ F, (15.33)
where we introduced the dual seven-pseudo form (7)4, a0, = ﬁebl"bwl_a7wbl"b3,

smeared versions ¢[\] of the constraint as in parts where A is an arbitrary two

form field on o, and used the canonical Poisson brackets
{ Ay g (2), 71 (y)} = 63 6326, 610 (2 — ). (15.34)

Note that, unlike in the Maxwell case, 7 (the analogue of the electric field) is not in-
variant under the action of the “twisted” Gaufl constraint ¢, which has tremendous

consequences for quantisation as we will see.

Apart from the appearance of the three-form Gauf3 constraint, of course, the canon-
ical analysis will lead to corresponding three-form contributions to the Hamiltonian,
spatial diffeomorphism and supersymmetry constraint, but their explicit form will not
be important for what follows. We only want to point out that ¢ can be checked to
be an Abelian ideal in the constraint algebra, i.e. Poisson commutes strongly with all

constraints including itself.

15.2.2 Reduced phase space quantisation

Trying to quantise the theory on a kinematical Hilbert space of the type usually used
in LQG immediately leads to several problems. Integrating A, m over oriented three-
dimensional and seven-dimensional submanifolds, respectively, to write down the gen-
eralisation of the holonomy flux algebra and the LQG type positive linear functional
thereon which then gives a Hilbert space representation by the GNS construction, can
be done analogously. However, the extra term in the twisted Gaufl constraint F' A F
does not exists in this representation, being discontinuous in the holonomies. Even
if we would give a procedure of how to regularise this term, the usual solution space
to the untwisted Gauf} constraint (spanned by a generalisation of gauge invariant spin
networks) would not solve these constraints, since its elements would be annihilated by
D, but not by the second term F A F.

Therefore, in [7] we propose a reduced phase space quantisation. This suggests itself
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15.2 Three-form field of d = 11 N = 1 supergravity

since ¢ is an ideal in the constraint algebra. Indeed, one finds that
pabe .= gabe 4 ceabedr-daeresp, AL & xP=s1+cAAF, (15.35)

and F' = dA are Dirac observables with respect to ¢ and all other constraints can be

expressed in terms of F', P and terms independent of A, 7.

Computing the observable algebra, we find
{F[n], F[M']} =0, {P[f],F[h}= / hAdf, {PLf], P[f']} = =3¢ F[f A f]{15.36)

where we introduced P[f] := [ f A*P and F[h] := [ h A F for a three-form f and a
six-form h. While the algebra closes, P and F' are not conjugate. In particular, if we in
analogy to LQG choose a discontinuous representation in which only the corresponding
Weyl elements are defined but F[h] itself does not exists, shows that P[f] also
cannot be defined. We therefore are looking for a representation in which only the Weyl
elements Wh, f] := exp (i(F'[h] + P[f])) corresponding to both, F' and P exists.

For the *-relations and Weyl relations, we find]
Wik, fI" = W[=h,—f], (15.37)

Wih, f] WK, f'] = W[h+ h' + %f A I i
exp (; / [2(h Ndf = h Ndf) —cf A FAA(f - f’)]) . (15.38)

Note that also the Weyl relations get twisted due to the presence of the Chern Simons
term (c # 0).

The Narnhofer-Thirring type functional [136], which also was applied in the context of

loop quantisation of the closed bosonic string [93],

1 h=f=0

0 else

W(W (h, f)) = { (15.39)
can be shown to give a positive linear functional on the *-algebra 2 generated by the
Weyl elements, and therefore a Hilbert space representation thereof by means of the

GNS construction. This representation is strongly discontinuous in both, h and f and

'To compute the latter, one needs to generalise the Baker-Campbell-Hausdorff formula [266-271]
to higher commutators [272].
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while cyclic, not irreducible.

Finally, it was studied in [7] if the Weyl algebra and the state w continue to be well-
defined if we introduce singular smearing in the spirit of holonomies and fluxes in usual
LQG, i.e. when restricting the smearing functions h, f to the form factors of four-
and seven-surfaces respectively. The answer turns out to be in the affirmative, and we
refer the reader to the original literature [7] for details. This implies that terms in the
Hamiltonian and supersymmetry constraint depending on F', *P can be regularised in
the spirit of [30].
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Part V

Approaching black holes in
higher dimensional LQG: Isolated
horizon boundary degrees of

freedom
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The first articles on black hole entropy in LQG by Krasnov [39] and Rovelli [40] ap-
peared almost simultaneously in 1996. Roughly, employing the discreteness of area
in LQG, by counting the microstates compatible with a certain macroscopic area of a
two-surface, an entropy proportional to its area is derived. This result was significantly
strengthened by Ashtekar and collaborators [273-276]. Invoking the newly introduced
isolated horizon framework, which gives a quasi-local notion of black holes, it could
be shown at the classical level that, when using the Ashtekar’s variables and imposing
the boundary conditions corresponding to a spherically symmetric isolated horizon at
the inner boundary of a given spacetime, a U(1) Chern Simons theory arises on the
horizon in order to render the variational principle well defined. In fact, the Chern
Simons connection turns out to be nothing else than the pull back to the horizon of the
Ashtekar connection in the bulk. Smolin in a seminal work [38] already anticipated the
role of this topological field theory on inner boundaries in spacetime. Quantisation of
the three dimensional Chern Simons theory is well studied [I84] and subsequent state
counting lead to a rigorous derivation of S o A within LQG. Moreover, the constant of
proportionality can be chosen to coincide with Bekenstein’s and Hawking’s result when
fixing the Barbero Immirzi parameter v appropriately. The methods of counting were
subsequently corrected and refined in [277, 278]. Sophisticated number theoretical and
combinatorial methods introduced by Barbero and collaborators (cf. e.g. [279] and

references therein) finally allowed for an exact computation of the entropy.

Central to the early derivations was the spherical symmetry of the horizon and the
related constancy of the Ricci curvature scalar of the horizon two-sphere cross sections,
and only later was extended to axisymmetric horizons [280] and finally to arbitrary

horizon shape [281].

Quite recently, it was argued by Perez and collaborators that the U(1) Chern Simons
theory arises only due to a certain unnecessary gauge fixing, and that one should work
with an SU(2) Chern Simons boundary theory instead [282]. The full bulk group SU(2)
entered the picture already earlier when deriving logarithmic corrections to the entropy
formula [283]. To the best of the author’s knowledge, it is still debated which of the two
should be preferred [284]. While conceptually the same, the use of SU(2) leads to a dif-
ferent prediction for the value of v and different logarithmic corrections. Furthermore,
the SU(2) analysis suggests that one actually can allow for more general connections on
the boundary, not necessarily equal with the (pullback of the) bulk connection, which

in turn allows to obtain the right prefactor in the entropy formula without fixing the
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Barbero Immirzi parameter [43]. Extension of the SU(2) theory to horizons without
spherical symmetry turns out to be possible, but is more complicated than in the U(1)
case [285] and leads to new challenges at the quantum level. For a recent review com-
paring the U(1) and SU(2) framework and introducing the state counting, we refer the
interested reader to [43]. First results that the entropy formula can also be recovered

with spin foams are given in [286, 287].

In this part, we generalise the isolated horizon treatment of usual D = 3 LQG to
higher dimensions D = 2n + 1, resulting in an SO(2(n + 1)) Chern Simons symplectic
structure on the intersections of the black hole horizon with the spatial slice. We will
also derive higher dimensional analogues of the boundary condition F' < 3. We have to
restrict to even spacetime dimensions D+1 = 2(n+1), since a) otherwise there does not
exist a higher dimensional Chern Simons theory on the odd dimensional horizon and b)
the Euler topological density of the (D — 1) dimensional intersection of the horizon and
the spatial slice, which plays a central role in our considerations, is only defined in even
dimensions. We comment briefly on a possible quantisation of the horizon theory and
argue that the local degrees of freedom naturally arising in higher-dimensional non-
Abelian Chern Simons theory could be erased at the quantum level by quantising the

boundary conditions. The exposition follows [10] and several parts are taken from there.

The part is organised as follows: in the section on preliminaries we will firstly
introduce in section [16.1] some new notation which was so far not necessary. Then, in
section[I6.2] we will briefly discuss the Hamiltonian formulation of Chern Simons theory
in higher dimensions, in particular the derivation of its symplectic structure. This of
course is well-known (cf. e.g. [137]) and only added for completeness. Thereafter, we
will introduce the notion of higher dimensional isolated horizons in section and
derive their consequences. They already have been studied in [288-291] and our def-
inition of higher dimensional, undistorted, non-rotating isolated horizons (UDNRIH)

does not differ significantly from the definitions given there.

Thereafter, we will turn to the derivation of the boundary degrees of freedom (chapter
17). Firstly, we will give a comparison of the results obtained in this part with the
ones from the usual treatment in 3 + 1 dimensions (section[L7.1)). This section (partly)
summarises the results obtained in the following sections, in which lengthy derivations

are provided.
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Afterwards we turn to the case of structure group SO(1, D), where we can start our
considerations from the Palatini action principle. We will derive suitable boundary
conditions connecting the (pullback to the horizon cross sections of the) Palatini con-
nection and an its conjugate momenta at the boundary (section . Moreover, we
find that the symplectic structure of an SO(1, D) Chern Simons arises at as bound-
ary contribution to the symplectic structure at the UDNRIH, and moreover, that the

Chern Simons connection coincides with the (pullback of the) Palatini connection (sec-

tion [17.2.2)).

For the structure group SO(D + 1), which we have to prefer when quantising, we
cannot start from an action principle and we have to work purely in the Hamiltonian
picture. What we will show is that one can formulate boundary conditions whose form
is similar to those in the SO(1, D) case, but which now connect the momenta conjugate
to the bulk with the hybrid connection I'° of appendix on the horizon cross sections.
Furthermore, the boundary term to the symplectic structure obtained when extending
the phase space from ADM to the new SO(D + 1) formulation can be reformulated in
terms of an SO(D + 1) Chern Simons symplectic structure of exactly this connection
(section [17.3). Changing to SO(D + 1) seems to force us into the extended paradigm
of Perez and collaborators (the bulk and the Chern Simons connection need not be
directly related), but apart from that no conceptual novelties show up. Like in [292],
the boundary connection is not uniquely determined and we shortly comment on its

non-uniqueness in D = 3.

Up to this point, we considered undistorted horizons only. In section [17.4] we will
discuss the generalisation of both, the Engle-Bettle [281] method as well as the Perez-
Pranzetti [285] method of how to incorporate distortion. The former generalises to the
SO(4) theory, but it is unclear if it works also in higher dimensions. The latter employed
two SU(2) Chern Simons connections and few additional, more or less manageable con-
straints already in D = 3. In higher dimensions, a straight forward generalisation is
possible but invokes [%W + 1 SO(D+1) Chern Simons connections and many more

constraints, which make it doubtful if this route can be continued to the quantum level.

We will close with some comments on quantisation in section which is far from
straight forward since non-Abelian Chern Simons theory in higher dimensions becomes
non-topological. Further comments and tentative research directions can be found in

the general discussion section Some additional material for this part is provided in
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appendix [F] where an overview over the higher-dimensional Newman-Penrose formal-
ism is given, as well as in appendix [G] where further calculational details to derivations

of the main text are provided.
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16

Preliminaries

16.1 Further notation and conventions

This part will need some additional notation not used in the remainder of this thesis,

which we want to introduce briefly.

Apart from D-dimensional Cauchy surfaces ¥, we will now also have to deal with
D-dimensional null surface within the spacetime manifold .#, which we will denote by
A. We will restrict the topology of A to be S x R, where S is a (D — 1)-dimensional
compact Riemannian manifolds which has non-zero Euler characteristic. Examples are
the (D —1)-spheres SP~! or hyperbolic spaces HP~! divided by a freely acting discrete
subgroup T', e.g. handle bodies with genus g > 1 for D = 3 (at the level of topology)
and the corresponding black hole solutions, given e.g. in [293]. For notational simplic-
ity, we will refer to all these manifolds as spheres in this work but keep in mind that
more general topologies are allowed. We mostly restrict attention to even spacetime
dimensions D + 1 =: 2(n + 1), having the advantages that (a) there can exist a Chern
Simons theory on the odd (2n + 1)-dimensional A and (b) the Euler density [294] is
defined for the even (2n)-dimensional intersections S = SP~! of ¥ and A. In addition

to the index conventions of the remainder of this thesis, we will use:

e tensorial indices on A will be denoted by the p, v, p (the pullback arrow will
T

%
sometimes be omitted if there should be no confusion whether the equation is
referring to .# or A).

e tensorial indices in (D — 1)-dimensional subspaces S will be denoted by lower
Greek letters from the beginning of the alphabet: «, 3,7,... € {1,...,D —1} or
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by .

=

e Lie algebra indices of some gauge group G will be denoted by capital Latin letters
from the beginning of the alphabet: A, B,C € {1,...,dim(g)}. Note that this

differs from our conventions in part [[I}

Apart from the spacetime metric g, and the spatial metric gqp, the (degenerate)
metric on A denoted by h,, and the Riemannian metric on (D — 1) dimensional

subspaces denoted by h,s need to be introduced. The corresponding Levi-Civita
connections will be denoted by V,, D,, D, and D,. We denote by EDO+D) =

6“1”1"'“"+1”"+1eIlJl“‘I"HJ"Hle,thl o Ry ivni1Ins1Je, the Euler topological den-
sity [294] and remark that it coincides with other definitions in the literature only up
to normalisation, i.e. the integral of this density over a closed compact manifold, in our
case SP~1, denoted by <E(2”)>, gives a only a multiple of the Euler characteristic xg

of §. We choose this definition since it simplifies many formulas. Explicitly, we have

1
- - (2n)
XS = (g /SE , (16.1)

which in our case, i.e. spheres S?", results in xg2n = 2.

The null normal to A will be denoted by [ and the vector field normal to the (D — 1)
— sphere cross-sections byE| k, normalised to [ - k = —1 (cf. section [16.3]). k can be ex-
tended uniquely to a spacetime 1-form at points of A by requiring it to be null. Then,
at points of A, we can decompose the metric according to g, = by — 21, k,). We will
denote the h-projected vielbein by m, m,; = hjje,r, and furthermore use the notation
= l“eul, k= k“eul, and, since [, k are null and normalised, kK k/n;; = 0 = 11170y,
k1 nr; = —1. We will call {l,k,{m;}} a generalised null frame. Elements of higher

dimensional Newman-Penrose formalism in this frame will be introduced in appendix [F}

We will denote with s the spacelike normal to the (D — 1) - dimensional cross-sections
YNA, s> =1,s-n =0, pointing outward of o (n of course is again the future pointing
timelike unit normal to a spatial slice ). When dealing with the Hamiltonian for-
mulation, we will choose the foliation such that [ = %(n — ), k = *=(n + s) holds,

V2
where [ and k are the (representatives of the equivalence class of the) null normals to

We refrain from using the usual notation n for this normal here, to avoid confusion with the
normal to spatial slices, and also to make clear the difference between the hybrid vielbein normal n'

and kT = ke, .
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a given isolated horizon as specified in section [16.3] Furthermore, we will use the no-

tation s! := s“eul and introduce 77y :=nry+nmy— srsy=nrj + 21k gy = murmty,
nron? =nrys7 = nrsl7 = frsk’ = 0. An upper twiddle indicates the density weight of

one, e.g. 5 :=+/deth s'.

Finally, a word of caution: If using the structure group SO(D + 1), which implies
that the internal and external signature do not match, several of the above formulas
get changed by signs (n! becomes spacelike, and the n n - terms in the definitions of
n) or even become obsolete (since, to perform the signature switch, we already are in

the Hamiltonian framework, I/ and k! are not null anymore).

16.2 Higher dimensional Chern-Simons theory

We will review some facts about Chern-Simons theory in higher dimensions relevant
for this work, with focus on the canonical formulation. In particular, we will derive the
symplectic structure of the theory. We want to stress that these results are not new,
but we state them here for completeness. For a more elaborate canonical treatment of

higher dimensional Chern-Simons theory, we refer the reader to [13§].

The Chern-Simons action is defined for all odd dimensions 2n + 1 and gauge groups G

by the equation

CZL%"S"'1 = iA1A2,,,AnHFA1 A ... N FAntL (16.2)

where FA4 = dAA +1/2 [A, AJ* = dA4 +1/2 fAgc AB A AC is the field strength of
the connection one form AP valued in the Lie algebra of G, fAp¢c are the structure
constants of G, A;, B,C € {1, ...,dim(g)} are Lie algebra indices and i4,. 4, is a rank

n

(n + 1) symmetric tensor invariant under the adjoint action of the group. Explicitly,

on+1 _ - P (27?:;1)
Log™ =tay. A Z(_D Ity <
p=0 ( n )
FAN AN FAr A (172 [A, A t) A A (172 [A, A]A) A4
n—p ;:
n (2n+1)
=ri-y (=1 (2’;;”1) F'PA(1/2 [A AP AA (16.3)
p=0 n

where the second line defines the short hand notation we will use in the following.

For our purposes, it will be sufficient to restrict attention to the groups SO(1, D) or
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SO(D + 1) where D = 2n + 1. It is convenient to label the (DH)

corresponding Lie algebras by an anti-symmetric combination of tvvo indices in the fun-

generators of the

damental representation I,J = 0,..., D (e.g. the connection one form will be denoted

by Al with A7) = 0). We will furthermore restrict the invariant tensor to be the

I1Jy...

epsilon tensor € In+1Jnt1 wwhich is the one relevant for our application. However,

we want to point out that all results of this section are independent of the choice of

gauge group and invariant tensor.

In order to obtain the (pre-)symplectic structure, we invoke the covariant canonical
formalism [295-297), according to which the presymplectic potential is given by the
boundary term of the first variation of the action, while the presymplectic structure is

the exterior derivative of the potential.

Using the relation
5< FPPA - [AA]pAA> {(n+p+1)6A/\F"p/\ [4, A]P+
(n—p) ANF VP~ A 5[A, APty
(n—p)d [5/1 AFPL A %[A, AP A A} } . (16.4)
the first variation of the Chern-Simons action yields
ssat = [ pay
M

n (2n+1

= [, | T

p=0 n

~—

(n+p+1)F"7 A 314,47 oA

~—

n—1 (2 n+1 1
* / € Z(_l)p (27;;])1) (n—p)F"P7EA B [A, AT AGA

n

n—1 <2n+1) 1
+/ ddSAN [N (1P 2B (n — p) F"PL A S [A AP A A
M p=0 ( n ) 2
/ (n+1)e- F"NOA
M
n—1 (2n+1) 1
+/ dd AN [N (~1)P 2Bl (n — p) F" 7L A S [A AP A A
M p=0 ( n ) 2

(16.5)
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Note that the two sums of the bulk contribution cancel each other term by term, and the
only term surviving is the (p = 0) — term of the first sum. We obtain the Chern-Simons

equations of motionlﬂ

e-FN..NF=0, (16.6)
—_—
n times
which in 241 dimensions (which corresponds to n = 1) reduces to F' = 0. Let o be a
2n-dimensional Cauchy slice. The presymplectic potential can be read off the boundary

term of the first variation and is given by

— 2n+1
1
/ SAN Z QnH) —p)F P A SAAPAAL L (167)

For its variation, the equation
1
5[2 |:€ . (51}14 A anpfl A 5 [A,A]p A A:| =

1 1
‘. [2(n +p+1) GuANGGANFPTEN D[A, AP

1 1
+5(n—p—1) AN GyAA FrnoP=2 A 514 AP (16.8)

is useful. Actually, in the above result a boundary term was dropped, but in defining
the symplectic current, we are allowed to drop this term since we will integrate the
symplectic current we want to derive in this step over the boundary of the spacetime

region we are interested in. We find for the symplectic current

dby(d2,01)

n—1

1 2n+1 .
zmeﬁ[lA/\dzA/\ Z(n_ ) DP(n—p)(n+p+1) FP 1AL 5 [A4.41
n b=

n—2
£33y A ap

1
- ”(”2*) € SANSANFT (16.9)
where again the terms in the two sums cancel each other out, with only the (p = 0) —
term in the first sum remaining. Therefore, the presymplectic structure is given by
n(n+1)

Qu(82,01) =

/ € SpANSyANF" T (16.10)

!Note that the bulk term of the variation can be obtained within two lines by varying [16.2
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Usually, in order to have a meaningful phase space description, one now imposes suit-
able boundary conditions and checks if the presymplectic structure is independent of
the choice of the Cauchy slice o and, for noncompact o, if the integral is finite. How-
ever, in this thesis we are only interested in a spacetime with internal isolated horizon
boundary on which the Chern-Simons symplectic structure arises and we only have to

answer this questions for the full spacetime.

From [16.9] we can also read off that the Dirac matrix of Chern-Simons theory is given,

up to numerical factors, by €+ F"~! which coincides with the result in [138, eq. (2.7)].

16.3 Higher dimensional isolated horizons

The isolated horizon framework was introduced in a series of seminal papers [273-
275, 298] and extended to higher dimensions in [288-291]. We will therefore only briefly
state the definition of undistorted, non-rotating horizons in higher dimensions which
we will be using, and discuss its consequences. The definition is geared towards the
goal of the next section, namely to obtain the boundary condition which will lead to a
higher-dimensional Chern-Simons theory on the boundary. We will start by giving the
weaker definitions of near expanding and weakly isolated horizons and a brief discussion

of their consequences in a manner very similar to [275]:
Definition 1. A sub-manifold A of (M, g) is said to be a non-expanding horizon (NEH)
if

(1) A is topologically R x SP~1 and null.

(2) Any null normal | of A has vanishing expansion 0; := h“”V“llﬂ.

(3) All field equations hold at A and —T}'1Y is a future-causal vector for any future

directed null normal 1.

We will state the consequences of definition [} For more details on the derivations, we

refer the interested reader to the standard literature cited above:

(a) Properties of I: Being a null normal to A, [ is automatically twist free and geodesic.
Moreover, using the vanishing of ;, the Raychaudhuri equation and the condition on

the stress energy tensor, one can show it is additionally shear free and R, I"l" = 0.

1On A, b is any tensor such that h,, = hy,/ h“l”,hwz
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16.3 Higher dimensional isolated horizons

(b) Conditions on the Ricci tensor: From the condition on T}, the field equations

and the relation for R,, in (a) it follows that R, = 0, or, in Newman-Penrose

formalism,

(I)o() = Rw,l“lu =0 and (I)QJ = R#ylumzjj =0. (16.11)

(¢) Induced Connection on A: Due to (a), there exists a unique intrinsic derivative
operator D on A. Its action on vector fields X € TA and on 1-forms n € T*A are
given by

D,X" 2V, X" and Dyuny =V i, (16.12)

where X and 7] are arbitrary extensions of X, n to M.

(d) Natural connection 1-form on A: From the properties of [, it follows that there

exists a one-form w! such that

“w
Vull =Wl (16.13)
which implies
Zh = 0. (16.14)

We define the acceleration of [ by I#V [ = kY. We infer k! = it
(e) Conditions on the Weyl tensor: From the defining equation of the Riemann tensor,
it follows that
2Dyl )P = = Ryuo”l” = = Cuuo”l, (16.15)
where in the last step we used (b). Contracting ((16.15) with m, s, we find
Porog =0 and gy =0, (16.16)
and therefore also
0= Uo7 = orsl (16.17)
Using this and (b), we find

0= Chvpol" k7 = Rypol"1°k° = — L, + D, (16.18)
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16. PRELIMINARIES

Definition 2. A pair (A, [l]), where A is a NEH and [l] an equivalence clas:ﬂ of null

normals, is said to be a weakly isolated horizon (WIH) if
4. Lw=0
for any 1 € [l].

Note that, while w! in general depends on the choice of null normal , it is invariant
under constant rescalings of [ and therefore depends only on the equivalence class [I]
we fixed. Therefore, we will drop the superscript ! in the following. We immediately
infer from that the 0" law holds for WIH,

I ~
dr’ = 0. (16.19)

In the following, we will slightly strengthen this usual definition of WIHs in a way which
is very similar to the definitions given in [274] by introducing some extra structure. Fix
a foliation of A by (D —1) - spheres. Denote by [k] an equivalence class of 1-form fields
normal to the foliation of A by (D —1) - spheresﬂ We require that any k € [k] is closed
on A. We extend them uniquely to spacetime 1-forms on .# by requiring that they
be null. Now, we introduce the equivalence class of pairs [l, k] where each pair (I, k,)
satisfies i;k = —1, i.e. we fix [ and k up to mutually inverse and constant rescaling.

Since k is closed and A = §P-1

x R is simply connected, k = —dv for some function v
on A, and each leaf S, = SP~1 of the fixed foliation is characterised by v = const. By
spherically symmetric, we will in the following mean constant on the leaves Sy, e.g. for

a spherically symmetric function f = f(v).

Definition 3. A undistorted non-rotating isolated horizon (UDNRIH) is a WIH where
to each | € [l] there is a k like above, such that

5. k is shear-free with nowhere vanishing spherically symmetric expansion and van-

ishing Newman - Penrose coefficients wj; = I#'m4V ,k, on A.

6. The Euler density ECP=Y of the (D—1) — sphere cross sections obeys E(P~1 /\/h =

f(v) for some function f, i.e. the given ratio is constant on each leaf S, .

Two remarks are in order: Firstly, in D = 3, one finds for undistorted non-rotating

isolated horizons [274], instead of the last condition,

'Two null normals [ and I’ are said to belong to the same equivalence class [I] if I = cl’ for some
positive constant c.
2Again, two 1-forms k, k' are called equivalent if k = ¢k’ for some constant c.
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16.3 Higher dimensional isolated horizons

6. T, I"MkY is spherically symmetric at A.

It is only for D = 3 that 6. and 6. are equivalent. 6’. can be shown to be equivalent to
demanding that the curvature scalar R(?) of the 2-sphere cross sections be constant. In
two dimensions, we have E?) = const. x R®vh = f(v)v/h for some scalar function f.

(P-1) i con-

In higher dimensions, condition 6. still is equivalent to demanding that R
stant on 5,. However, we will see that for our purposes, this condition is unnecessary,
but has to be replaced by 6. This will be discussed explicitly in section [I7.2.1} Apart
from that, compared with [274], our deﬁnitionis slightly stronger (more restrictive) in
that [274] does not demand 4. Furthermore, whereas we only allow for constant rescal-
ing of [, k, in [274)] they are fixed up to spherically symmetric and mutually inverse

rescaling, but later in that paper, the gauge freedom of rescaling is fixed completely.

Secondly, the definition given above is tied to a foliation. The standard definitions
of (W)IH are usually foliation independent, though some results rely on the existence
of a so called good cuts foliation. Moreover, when going to the Hamiltonian formula-
tion, one usually demands that the spacetime foliation is such that at the boundary,
the foliation coincides with this preferred foliation. Note that our fixed foliation is a
good cuts foliation. We leave the question if all results obtained here hold in the more
general context of weaker definitions of (W)IH or ones without reference to a fixed

foliation for further research and continue by stating the consequences of definition

(f) Properties of k, w and its curvature: By the above requirements, we find for vectors

u tangential to A using k*V,k, =0
Yk = w (B BTk — Ky )

1
=ut (D — lﬂkhw - kywﬂ> . (16.20)
Furthermore, we have for tangential vectors u and v
0 = uv"V |,k = —uv"kpwy), (16.21)
from which we conclude that w = f k for some function f . Since 4w = k!, we have
f=—klor
w=—r'k. (16.22)
Contraction of (16.15) with k, yields
2Dy = Couvo"17kp = iy my Vo, (16.23)
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16. PRELIMINARIES

where in the last step we used the trace freeness of the Weyl tensor and ([16.16[). We can
furthermore conclude that dw = 0 and Ug;7; = 0, since w = — & k: and d/{ =0= dk

This can be traced back to the requirement 7y = 0 in the deﬁmuon of UDNRIHS and
in analogy to the D = 3 case, this is why we refer to these horizons as non-rotating
(note that Wyyz; is the analog of JmWy in D = 3).
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17

The boundary degrees of freedom

17.1 Undistorted case: Comparison with D =3

Let us very briefly review the main steps of the the classical part of the black hole
treatment in LQG (we will follow [62]) and compare them with what we expect to
encounter in higher dimensions, which already partly summarises our results. The

following sections then will give rather lengthy derivations thereof.

17.1.1 Boundary condition and role of topological invariants:

Usually in D = 3, the derivation of the boundary condition goes as follows: Due to the
isolated horizon boundary conditions (IHBC), the field equations have to be satisfied at
the horizon. In particular, starting with the Palatini theory, we have F;Si)l ;= ,(ﬁ,)paE%
where 277 = elrre?l 7, due to the equation of motion demanding torsion freeness of the
Palatini connection. Pulling back to the horizon cross sections, we find using again the

THBC that R(;*B PUE% = EELQ,,)ME%. In two dimensions, the Riemann tensor is already

-

determined by the curvature scalar, R,(E,,)pg x R(Q)gwpg‘l,]g. Combining these findings

and choosing time gauge to obtain the structure group SU(2), we have zgly)’ x R(Q);:Wi,

e Je .k
where E’M = ik C [’ €

To continue, we have to invoke that in two dimensions the integral over the Ricci
scalar is a topological invariant by the Gaufl-Bonnet theorem. Due to the spherical
symmetry of the horizon cross section, it follows that the Ricci curvature actually is a
constant given by %SXS, where yg denotes the Euler characteristic of S (which equals
2 in our case of spheres). Ag here denotes the area of the two-sphere cross sections,

which also is a constant in time due to the IHBC. Therefore, we actually have the
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17. THE BOUNDARY DEGREES OF FREEDOM

boundary condition z(‘m x {E:Z x gz In the last step, we used that, when expressing
in canonical fields, the middle term coincides with the pullback to S of the two form
dual to the densitised spatial triad. Classically, the surface degrees of freedom are
determined by the bulk fields by continuity. At the quantum level, this ceases to be
true and it is this equation which relates the bulk (triad) and surface (Chern Simons

connection) degrees of freedom.

In higher dimensions, the first steps towards a derivation of a similar boundary condi-
tion can be literally copied and we also find li ,(5;31 ) = EEL?;UI)Z%. However, in higher
dimensions the Riemann tensor of course has more than one independent component
and also the Ricci scalar ceases to play the topological role he had for D = 3. The idea
of how to generalise this aspect of the boundary condition to higher dimensions comes
from the observation that in two dimensions we have VAR® o eS¢l R((fﬁ) 1> 1-e. the
(densitised) Ricci scalar coincides (up to constant factors) with the Euler topological

density [294] which generalises to even dimensions,

2 L b Vn d1J1. InJn
E2n) .= cirviepinin D1y Ruyn iy - Ry 1 - (17.1)

This motivates that a boundary condition in higher dimensions should read

(2n) (2n)
KiLi KnLnlJ  #v1imen g 2B nllg’ ~ E

KiLy - F KoL, = alJ
< <:,11411/1 141 <:HnVn nln \/E \/E

T Sa,

(17.2)

where s, € T*o denotes the unit conormal vector to S pointing outward of o, s' :=

sqe® and the twiddle indicates the density weight of one, 3 := +/h s!. This in-
deed will be verified in section By the same arguments as above, we have that
E\(/QE") = (8“)1::!“ is constant on a history. However, we will see that the condition (17.2))

actually is not sufficient in higher dimensions and additional boundary conditions have

to be imposed in order to determine the boundary connection in terms of the bulk fields.

In the case of structure group SO(D + 1), the form of the boundary condition turns out
to be the same, but since we have no action principle to start with, the derivations will
be different. In particular, the connection on the left hand side of will in this
case simply be given by the SO(D 4 1) spin connection I'” on S annihilating n!, s/ and
ma (cf. appendix [C)) and not coincide with the (pullback of the) Palatini connection.
The connection to the Palatini connection turns out to be irrelevant at this point, the
most important role of the boundary condition being to relate the boundary connection
with the bulk degrees of freedom (cf. also [292]).
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17.1 Undistorted case: Comparison with D =3

17.1.2 Boundary contribution to the symplectic structure:

Within the Hamiltonian framework, when extending the ADM to the Ashtekar Barbero
phase space, we added an exact one form to the canonical action. However, when
looking closely at (6.31]), we see that this is no longer true in the presence of inner

boundaries, where we obtain a contribution

/dgx ) paisT,,; = ;/d?’x e, (sgne ebkéeck>

= ;I/ d*z € mopomg, (17.3)
S

where we assumed sgne = 1. After another gauge fixing, it is shown again making use
of the IHBC and ruthermore restricting the horizon area to be constant throughout the
histories we are considering, d Ag = 0, that the corresponding symplectic structure can

be rewritten as the symplectic structure of a U(1) Chern Simons theory.

Similarly, from (7.39) we see that a similar transformation when going over to the

new variables leads to the boundary contribution to the symplectic potential
1
/ dPax P glIsT 1 ~ 3 / dPz 9, (2B ony)
g g

1
= ﬁ/ dP~tx 2516n;. (17.4)
S

Of course, the structure of and is necessarily different, since it is unclear
how to generalise to higher dimensions. This again underlines the difference
between Ashtekar’s and the new connection variables. In 3 4+ 1 dimensions, we have
the possibility to introduce a Holst - like modification (cf. section . Repeating the

above calculation then yields the modified boundary term
; 1 1
/d3x wﬂ”“”éfau ~ 3 / &z 0, <2Ea1(5n1 — fyeabcebM(Seéw>

1 1
== | &= <2§Ic5n — ZePm, 5ml> , 17.5
B/s Ty 1o (17.5)

the new term appearing corresponding to the boundary term (17.3) for Ashtekar-
Barbero variables (Note that v in (17.3) and in (17.5) do not coincide, as is explained

also in section .

From (|17.4)), it is easy to obtain the boundary contribution to the symplectic structure

Q561,62 = [ (605" (G, (17.6)
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17. THE BOUNDARY DEGREES OF FREEDOM

and it will be shown that, again restricting to dAg = 0, this symplectic structure can
be rewritten as the symplectic structure of an SO(D + 1) (or SO(1, D), depending on
the structure group in the bulk) Chern Simons theory of the hybrid spin connection I'®
(cf. appendix [C) on S

A Ee)
(5[1F21J) (52]F%KL) R?XllglMlNl”'Rgnflﬂnfanlenfl : (17’7)

TLAS
QS4(51,82) = / (JTELMyNy .My 1Nyt (BB 11
S

This connection is not uniquely determined and exemplarily, we point out possible
modifications of the connection for D = 3. Actually, in the case of structure group
SO(1, D) and for any (even) spacetime dimension, there is a modification which allows
to interpret the Chern Simons connection as the pullback of the bulk connection, as
will be shown in detail in section but like in the boundary condition, this is not

necessary.

The Euler density and its topological nature play a central role again in this derivation,

both in the D = 3 and the higher dimensional case.

17.2 SO(1,D) as internal gauge group

17.2.1 Boundary condition

In this section, we will derive the boundary condition relating the bulk with the horizon
degrees of freedom starting from the Palatini action. This forces us to use SO(1, D) as
the internal gauge group as opposed to SO(D + 1), which can be used in the Hamilto-
nian formalism even for Lorentzian signature. In a later chapter, we will rederive the
boundary condition independently of the internal signature, thus allowing us to use
the loop quantisation based on SO(D + 1) connection variables for the bulk degrees of

freedom.

Due to 3. of definition [T} we have at points of A

Fu'" = Ry = REYY erle’, (17.8)

In the following, we will use the notation introduced in appendix [F] for the Weyl tensor
also for the Riemann tensor, e.g. Rgi75 = REB;Lgl)lﬂk”mpIm"J. Note that therefore,

the internal indices appearing on R and ¥ are perpendicular to I/ and k!, which will
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17.2 SO(1,D) as internal gauge group

be used in several calculations in this section. Pulling back to A, we obtain

1J _ 1J (D+1) ol o
Ffﬂ = Rfﬂ Rm,po e

Lol w'v' po p'tv] w'v' po

v
—

) (hu“'h,,”’R(D“) — 2k, h ”’w’R(D+l)) (me'me? — 2m 1k — 2ot

+ ollegel gl zﬂ)

= M u”,Rﬁjpl;mplmU‘] +m,m, " (_QRKL[IOkJ] — 2R 117 + QRKLOIk[IlJ]>
— «— — —
- 2k[umu]K (ROKU — 2Ror ok’ — 2Ror 1170 + QROKoﬂf[IlJ})
—
= “’M VV,RL,DVT;(BmpImUJ + mHKmI,L (—Q\I/KL[IokJ] — 2RKL[111J] + Q\IJKLmk[IlJ])
— <~ +“— «—
— Qk'[uml,]K <\I/0KIJ — Q\IJOK[IokJ] — 2R0K[111J} + 2\P0K01/€[IZJ]>
—
= hy h R mPlm 4 dkym,y K RogcT17
— = —
= by R Vo lme? 4 2 gy 109 [V, + 0 17.9
po P B, — R W + K0k, (17.9)
— = D-127"

where in the fourth line, we used that ®g; = 0, ®gg = 0 to replace some Riemann
tensor components by the corresponding Weyl tensor components, and in the fifth line
we used 0 = Yoy = Yoy = Yoros = Yooy and furthermore for u, such that
u-l=0=u-k,
D—1
R;(,Lllp ) = [D D ] Up
— QhI[L hl/] hplv /hl/;/ hp”vyuup//
_ v (D+1) ! v
h“ h hﬂ hU'Ru v Us + Qh[ﬂh h/) (V[M/hyl}hZ/ )Vl/”up”

=t n b R R . (17.10)

V]

The second term in the second to last line vanishes due to

K Y

R (VBB )V i = BB RS (LR + Tyl )V

(1
+ BB BN (L 1)V
= BB RE (V) B+ (V)1 V rtt
+ht, Y BE (Vb YK+ (Vi 1)V
= BB (Vg k)

— R Y (Vi U il
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IR

0, (17.11)

where in the first line we used Vg = 0, in the second line that h(l,.) = 0 = h(k,.), in
the third that V[, = 0 and IV ju, = —u"V,l,, and in the fourth line and ﬁ = 0.

—

Finally, we have to account for the vanishing of Ryx1 in (17.9)), which follows from
2 .
Rrjk1=VYrik1 + ﬁﬁK[I(I)J]l
= mg‘m‘jm%Rggfﬂ)ko = mymym?, [V, V, k,

= 2 mlfmtmf Vi, (B = gk = kgt ) (R = 1k =kl ) Ty )

)
=
S

IR

= —=— mu[IﬁJ}K (—(Vﬁk)ku — Hk/ﬁ:lku) =0. (17.12)

From the third to the fourth line, we dropped the second two summands in the first
round bracket because [ and k are twist free, and the second summand in the second
bracket since k”Zk# = 0. In the fifth line, we used that k is twist and shear free and
that l“zku = w!'. In line 6, we again invoke the twist and shear freeness of k. In the

last line, we used that dfy = —kV,;0; since it is spherical symmetric by definition [3|and
that w! = —nlk

In the last line of (17.9)), we furthermore used

1 _ _
Rong = Cong + = (M1sPo1 — ®ry) — firyR(P+Y

D -1
1

= D= 177[J [Vl(gk + /ilek} , (17.13)

1
D(D +1)

which can be shown analogously.

!Comparing with the 3 + 1 dimensional case, we find Rrsx1 = Vrsx1 + %ﬁ;{[ﬂbﬂl = 0 cor-
responds to W3 — ®9; = 0, Y0 =0 to Yo = 0 and ¥; = 0, and Y01 = 0 to the non-rotating
condition JmW¥, = 0.
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17.2 SO(1,D) as internal gauge group

Since the pullback to H of the second summand in 1' is zero ( <]i = 0), we finally

obtain when pulling back once more

_ p(D+1) _ Wy v D) _pl _oJ _ Wy vV pD=-1)__pl oJ
E/,LZIIJ - Ep,yfj - fi <h:l/ Ru’l/’pae e = <h:'u <h:y R,u/z/pom m (1714)

and therefore, for D — 1 = 2n even,

6K1L1...I(nLnIJ H1¥1---Bn¥n F

<6: <:M1V1K1L1'.'£MTLV’ILK’ILLTL
_ Ky\Ly..KnLplJ _H1V1Bnvn o(D—1) (D—1) p1K1, o1L1 . pnKn, onln
=€ £ R oL pon ™ m7tt..m m
L piorpnon vy pnvn pp(D—1) RD-1) o[l J] ECY alJ 17.1
- ﬁf: <6: H1V1P101 """ " UnVnPnOn n-se s \/a n Sa ( : 5)

where E(") denotes the Euler density of the (D—1) — sphere cross sections and ~ means
equal up to the simplicity constraint. Finally, by 6. of definition 3, EG™ = f(v)v/h.
Some comment on the role of the equations (|17.14} |17.15)) is in order.

Firstly, notice that both of these equations are generalisations of the 34+1 dimensional
boundary conditions E;lu/IJ x R(2)£WU known from the U(1) and SU(2) treatments.
has the same left hand side, but further manipulation of the right hand side as
in the 3+1 dimensional case is not possible, since the Riemann tensor is in general not
completely determined by the Ricci scalar in higher dimensions and the Ricci scalar
also ceases to play a topological role. generalises the right hand side, the topo-
logical role now being played by the Euler density, while the left hand side is more

complicated than in the 3+1 dimensional case.

Secondly, at the quantum level, we want to work with an independent Chern-Simons
connection on the horizon from the outset and demand by constraint that the bound-
ary connection actually is determined by the bulk fields. This constraint is in 3+1
dimensions precisely given by the boundary condition £ iu[ g E’“’I 7. In higher di-
mensions, one can easily convince oneself that is insufficient to determine the
boundary connection and one has to impose at the quantum level. However,
connects the momenta conjugate to the bulk connection with Chern-Simons
excitations and therefore is a direct generalisation of what is imposed at the quantum
level in the 341 dimensional case. It therefore could serve as a consistency requirement
additionally to , see the discussion in section One last comment concerning

6’.: Assuming this condition to hold, one easily obtains that
D-1

GuylﬂkV = @01 + mR(D+1) (1716)
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is spherically symmetric. Moreover, taking the trace of (17.13)), we infer that

D -3 D-1
Con’ Doy —
0I1 +D71 01 DD +1)

RPHY = _v,0, — k'6, (17.17)

is spherically symmetric since the right hand side is. Finally, from ((17.10)),

B A(D —2) (D—2)(D—1)
(D 1) — IJ:2 I (p (D+1)
R Ry Con™ + —p5— %01 + DIGESY R
D-3 D—-1 D-1
-9 Iy, 7 9%y, - —— RO+ 2( ® - R+
<C°“ R T Ee 2Pt st ’

(17.18)

where Weyl tensor component identities from appendix [F] were used. Since both sum-

mands in round brackets are spherically symmetric, we find that R(P—1)

is also spheri-
cally symmetric. As we already remarked at the beginning of section this property
will not be needed in higher dimensions, but instead 6. will be crucial in the next sec-

tion.

17.2.2 Hamiltonian framework

In this section, we will show, starting from the Palatini action in (D+1) = 2(n+1) di-
mensions, how the symplectic structure of (2n + 1) - dimensional Chern-Simons theory
arises as boundary contribution to the symplectic structure for an internal boundary
with UDNRIH conditions. We restrict to a vanishing cosmological constant. Note that
the mechanics of higher dimensional isolated horizons has already been studied in the
quasi-local, the asymptotically flat [289] as well as the asymptotically anti-de Sitter
[290] case. However, in all these treatments, the internal SO(1, D) transformations
were (partially) gauge fixed. In view of the boundary term (eq. (7.39)) of the gen-
erating functional for the canonical transformation to SO(1, D) connection variables
which we found in part [Tl and which we expect to be related to the boundary sym-
plectic structure, we are not allowed to fix the internal gauge freedom completely. In
particular, in the usual time gauge n! = (56 , this boundary term vanishes since it is
proportional to én!. Therefore, we will rederive the Hamiltonian framework for IH in
higher dimensions for our specific definition of UDNRIH and without using any internal
gauge ﬁxingﬂ Indeed, the derivation deviates from the usual treatment and we obtain
the same boundary contribution to the symplectic structure we found in which a)

vanishes in time gauge and b) can be reexpressed as SO(1, D) Chern-Simons symplectic

Note, however, that there are interesting allowed gauge fixings, e. g. n! = ¢%nf, s = ¢g''n! for

g € SO(2) (i € {0,1}).
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17.2 SO(1,D) as internal gauge group

structure.

Consider a region . in a (D + 1) - dimensional Lorentzian spacetime (.#", g) bounded
by two (partial) Cauchy slices X1 and X9, A, and possibly an outer boundary 7. On
A, we impose the UDNRIH boundary conditions and furthermore require that 1,3
intersect A in leaves ((D — 1) - spheres) of the preferred foliation S7, S2, respectively.
Moreover, as usual in the IH literature, for a given history (e, A) the horizon area Ag is
constant in time as we will show shortly (below ) We will now furthermore fix
the horizon area to be a constant throughout the histories we are considering, d Ag = 0.
We will not specify any boundary conditions on 7 and neglect boundary terms related
with it which are possibly needed to obtain a well defined variational principle since
they are not relevant for the purpose of this thesis. For a discussion of these issues in
higher dimensions, we refer the interested reader to e.g. [299] and, specifically in the

IH framework, [289]. The Palatini action is given by
S[A, €] :/ YA FY, (17.19)
M

where F' = 1/2F, da* A da”, Fu' = 20, A" + [A, A, 8= —x (e Ne), or
in coordinates — % (€ A €)uy..up 17 = ﬁeﬁl .. efgjlleUKlmKDfl, and as already
stated, boundary terms possibly needed for .7 are neglected. Variation with respect to

A gives rise to a surface term

/ Y17 ASAY, (17.20)
A(ﬁ <

which, however, vanishes when imposing the UDNRIH boundary conditions, and there-
fore, the variation only yields the bulk equations of motion. This is a standard result
in the IH literature, but will be derived here without any internal gauge fixing. Using

Epl = Mur — kulr, we immediately find

€IJK1.Kp_1 [mKl VA /\’)’I’LI(D71 — (D — 1)lK1 k /\sz A .. /\mKDfl] )

1
Ny=———
T T =)

(17.21)

For the pullback of the space time connection A we find analogous to the calculations

in section [[7.2.1]

2
éuIJ = (EHIJ = ngj + ﬁl[[mmﬂek — 2wul[IkJ], (17.22)

Lpirg = m{ Y umyyg) = Ur¥ ks = kYl i, (17.23)
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where TV here denotes the connection on A which annihilates muK, I and kj. Here
and in the following, we will understand that m* := h#**m,! and h** = g+ by g’
such that h**k, = 0.

For the variation of é, we find

2
0Aurs = 6Ty + D1 (811 0Ok + Lz (my.00) 0k + L (66k) ]

—2 [(5wu)l[lkj] + WM(S(Z[I]CJ])} , (17.24)
which for the case at hand can be reduced to

0Aurs = 2kulirk " kM0 Ayscr, — 2k "IN 0 vk + %
= 2kl kgl kM1 6T,k — 2lckpydw, | — 2k M5 16Tk + %
= 2k kgl [kLD£°5zL + 5w,,} — 2k Py DY 81y, + 2, (17.25)

where in the first line, we made use of the fact that only certain components of § A will
appear when contracted with E and Z stands for the remaining terms which Valish in
this contraction. In the second step, several terms drop out due to I¥dm,; = —m, ;0¥ =
—myrcsl” = 0 since [ is fixed up to constant rescaling on A, 1161y = 0 since 12 = 0 on
A, and hljw, = 0. Finally, we used that 56T, = —6DI"1;,+ DL"sl;, = DLy, since
I' annihilates 1. Putting all together, we recover for the definition of an UDNRIH as
given in section the result that there is no boundary term in symplectic potential

for the horizon,

/Z/\(SA:/ XN
AF — A<— —
1

=T /A (mS Ao AMEPL — (D = D)IEY B AmB2 AL AmE oY)

€LTKy . Kp 1 {—2z[f/¢’1 [d(Fp01M) + dw] + zﬁ},kjdroazf’}
__ 2 [ pa I 2/ D—1
= (D—l)!/Ae INAEAT ))+(D—1)! € A dw
L2
(D —2)!

=0, (17.26)

/ EAmMBS2A L AmEP1 R e e e K dpodl!
A

where in the second step, we used (17.21f) and (17.25)), which results in three terms in

the third step, each of which vanishes separately. The first one since we can partially
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17.2 SO(1,D) as internal gauge group

integrate the Lie derivative (boundary terms drop since 61/ = 0 on S;, S3) and we have
ZeP~1 =0 and Lk = 0. Note that here, we defined
— —

GDfl = EIJKl..,KD_llIkJmKl AN mKD_l. (17.27)

To see that it is Lie dragged, note that

Limyr = N ympr + myrVl” = 1Vymyr = —1'T%, 1 my, (17.28)
Ll =10Vl =T, (17.29)
<_

Lk = l”Z,,kI = —1"1%,/ k. (17.30)
(;

Using this, to prove that LeP1 =0 we only need to use the invariance of elt~Ip+1
(_
under (infinitesimal) SO(1, D) transformations. A similar argument shows that

deP~1 = 0. (17.31)

«—

The second term in is zero since dw is fixed on S7, S2 and also Lie dragged along
[, so the whole integrand is Lie dragged an vanishes at the boundary, which implies
that the integral vanishes (This argument is e.g. given in [275]). The last term van-
ishes since the derivative dro annihilates the whole expression (note that Cﬁf = 0) and

therefore leads only to a boundary contribution which vanishes again due to dl|g, g, = 0.

The second variation of the action yields the symplectic current 5[121 J dg)Ary which

is closed by standard arguments,

(/ / Jr/)(;[lEIJ(SQ]A[J:O. (17.32)
P 31 A

Moreover, the contribution at A is a pure surface term, and we will show in the following
that

/ S S8y Ary = Q2(81,62) — Q2K(61,62), (17.33)
A < <
where
s nAs IJKLM3Ns...Mp Ny
QCS:<E(27L)>/SE 22 ((5[1é[]> A ((52]5:1KL) A£M2N2A"‘A£MnNn
(17.34)
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17. THE BOUNDARY DEGREES OF FREEDOM

denotes the Chern-Simons symplectic structure (cf. appendix [16.2)), and therefore, the

symplectic structure is given by

Q(61,02) = / o2 6y ALy (17.35)
>
nAs IJKLMsNs...My Ny,
s [ NS (3,1) () s B,

and is independent of the choice of X.

To prove (17.35)), we will first show that the contribution to the symplectic structure

at A is given by the boundary term we already found in section [17.1
1J _ =T _ =T
Jo oS s = [ 200 — [ 20050, (17.36)

where §; = v/hsy, and in a second step that the boundary contribution can be rewritten

as

. A EGn
[ 200580 = gy [ 27 @)

A
- ps [ i (5,40) (5 Arc) A Ev A Exon

(17.37)

For the variation of E, we find using (17.21))

—(D=1)toXyy
= €17k, K1 [(D = 1)(0mF) AmF2 AL AmEr
—(D = 1)(D = 2)I%1 kA (6m52) AmEe AL AmEP—
—(D — 1) (1% (0k) + (61")k) Am"2 A .. AmPP—1]
= €1JK,. Kp 1 [(D —1)mp A m&2 A LA mKD—l(imLémKl)
—(D = 1)(D = 2)I% k Amp AmEe AL AmEP-1(5, L omE?)
—(D = 1) (=151 (3,5k) + (5157)) k Am"S2 Ao AmBP-1] | (17.38)

where we used
5£l[ = Ej(imjfsm[) — ﬁ(zlémf) = Tﬁj(imjfsm[) + £(1m1(5l)
= mj (inys0mr) + k¢5(im, 1) = my (i 6my), (17.39)

Sk = —k(i;0k). (17.40)

—

284



17.2 SO(1,D) as internal gauge group

In total, after a long calculation explained in appendix one finds for (|17.36))

/ S X" 0y ALy =
A — <

2
“ -1 /A {d 001 (P~ er) 0yl ] + 011 P71 A S

+(D = 1)d [(cs + (karop ™)) k Am"> A oAM=k ey, kepy 0ol
+(D —2)d [k AmM AmBs A LA mBD- 11%%1 JKy K py (i Opm ) 8150 }
2 D 1 I D—-1
/ {d 15 (52]71[ ( ) 5[16 /\52]0&}[} (1741)
We used 6k = —csk and i = 0. Since we also restricted to constant area Ag throughout

the phase space region we are considering (0Ag = 0), we furthermore find
/ 5[16D_1 A 52}(,0[ = —/ 5[16D_1 A 52](,%1/{:) = +/ 5[16D_1 A d52](/£lv)
A A A

=+ [5[2(mlv)|52/ 51]6D71 — 5[2(/41))]51 / (51]6D1:|
So S1

=+ [5[2(5%);5251]@2 - 5[2(#@)\5151]1451} —0. (17.42)

Now, since we have E(P~Y = f(v)eP~1/(D — 1)! for a spherically symmetric function
f by the conditions for an UDNRIH, and since

/ ECM = (8n)"n! xg = 2(8m)"n! =: (E®M), (17.43)
S
/ P71 = (D - 1)! Ag, (17.44)
S
are both constant in time, we have f = %2:» where 2n = D — 1. Here, since in our

case S has spherical topology, we used that the Euler number is yg = 2. The first line
of (17.37)) easily follows. In fact, this also shows that f(v) is independent of v.

For the second pullback of A, we find since w= 0,

2
éIJ:FOIJ—I—D_ll[ImJ]@k = FOIJ+£[J. (17.45)

Since 6y, is constant on the (D — 1) - sphere cross sections of the chosen foliation, we
have dFOK = 0. Since also [K K ] = 0, we obtain F R0 which was already derived

in Sectlon m We now want to show that | m holds which is shown to be true
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17. THE BOUNDARY DEGREES OF FREEDOM

in (G.5) if the connection would be given by I'Y. Therefore, what needs to be checked
is if
EIJKLM2N2"M”N" (25[1F9J A 52}{5[(]4 + 5[1£[J VAN 52]51([,) VAN R0M2N2 VAN ..ROMnNn =0.
(17.46)

Using

0Ky = % (= Uk g% Okomu + g (Oedm™ — m™0,k" 611, + m™ 66,)

+ im0l

(17.47)
we find in a first step
8 _
EiJKL A 5[1{21] A 52}£KL = _mEiJKL A l[k]ﬁ}]\(fel%lM(s[lmM A mL(SQ}lN
8
S B A Ayl =0,

(17.48)

EJI_JKL = e”KLM?NQ"'M"N"ROM2N2 Ao A ROMnNn in the above formula stands for the

terms in contracted with 6 K A K. L indicates that fact that F| needs to be
contracted with k!, 17 since it vanishes otherwise, therefore only one combination of
terms survives when we use in the first step. In the second line, we made use
of 'é6mr = —my8l! and therefore, the expression is antisymmetric in the index pair
M, N. Adding terms until all indices of the epsilon symbol in | plus the index M are
totally antisymmetric and subtracting the therefore needed terms again, we find that
the whole expression vanishes: The total antisymmetrisation since there is no nontrivial
rank D + 2 antisymmetric tensor in D + 1 dimensions, and the subtracted terms since
they are either of the form Umr=0or kfm;r =0, or ROy n A m” which vanishes due
to the Bianci identity, or m” A my = 0.

Furthermore, we have

ETRE A G305 A by Kxi
2 7/ =7/
= (D _ I)EJI_JKL A [_ﬁ[ljﬁj] 6[1FOI/J’ A l[[(k'L}eklM(SQ]mM

= 2k "N 0u Ty Aligciizar (OSogm™ — m™ k™ 6gy1n + mM o510,

+ 2k g k"1 5T 0 A ﬁﬁ{mﬂek(sﬂm}
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2 - N .
= (D . 1)E£JKL A - n[IImaU] <_d1“06[1m1/ — m?/(;[l]._‘./3> A l[KkL]HklM(SQ]mM

- Qk[[ﬁ:ﬁ (dl—\05[1l]/) A l[KﬁL}M (Qkég]mM - mMHkkN(52]lN + mM(Sg]é?k)

— 2[[]]{3(]} [dFO (kl’é[lljl)] AN ﬁf\[{mL]gk(;Q]lM} s (1749)

where we used 77 = m®;mqy in the last step as well as the fact that I'Y annihilates
m& 11 k7 and therefore, e.g. 176T°;; = §(dpol;) — dpodl; = —dpodly. In the last
expression, the second summand in the second to last line and the term in the last line
together just give a surface term which vanishes since the (D — 1) sphere cross sections
have no boundary. To see this, one needs to make use of the fact that dpoR? = dpom =
drol! = dpok”’ = dpof) = df = 0. Moreover, we also have ddfx = 0 since 60 has to
be constant on the (D — 1) - sphere cross sections, and therefore also the last term in
the second to last line is a surface term. Using the notation 61“% to indicate that 6T is
considered as a form in the index ., the terms in the first line of give

20,
(D—-1)
20,

- o= 1)1Kk;LEI%,KL Amar A mpyx

[mﬁMmo‘[]Dgoé[lmam + mﬁ[‘]mall]Dgoé[lmaM - mﬁ[l‘maMDgoé[lmam] 62]ZN

20
-5 fl)szLE,%,KL A mar Amy X

R By, Amamal A | (drodpme! ™ 4+ m15,re, ) | oy

1
[3mB[MmaIDg05[lmaJ] + QmB[JmaI]Dg()&[lmaM] (52]lN

4,
"D

IKELEL, ) Amas Amay [—mﬁ[fma‘ﬂ Dgoé[lmaM} 5oyl (17.50)
In the third step, the term totally antisymmetric in the indices M, J, I vanishes since

lKk‘LE[#J‘KL ANy Amy
= E[IJ‘KLM2N2MMnNnlKkLR0M2N2 VANRTAAN ROMnNn A m‘M] Amy
(D +2)
3
=0, (17.51)

G[IJKLM2N2._.MHNH‘lKkLR0M2N2 AN ROMnNn A\ m|M] N my

since R(lfL A my = 0 due to the Bianci identity and mil =0 = mIkI, and the

antisymmetrisation of D + 2 indices vanishes. Finally, the first term in the second to
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last line of (17.49) gives

46
D - oK By A [(drodutl’) A dym”]
40
(D _kl) K By A (dpodyml) syt +d(. )
= (D4?€1) lK]{;LEILJKL Amp ANmpy [mB[Mma‘N]Dgoé[lma[I] 52]lj] + d( ) ‘), (1752)

up to a boundary term d(...) that vanishes, as above, after integration over H, which
means that (17.50) and (17.52)) together are of the form

lKkLE}:]KL Amy Amy [OéljﬁMN _ OZMNﬁLj]
= lKkLQJKLMZNQ“MnNnR0M2N2 AN ROM”N" Ampy ANmpy [(XIJBMN — OéMNBIJ]
= [(D + 2k ey x vty Ny v v | RO A A ROM N Ay Ay

— QZKkLGJMKLMQNQHMnNnROM2N2 AN ROM"N” Amr A mN} [O/J,BMN — OéMN,BIJ]
= —2ZK,I€L€JMKLM2N2,.M”N”RQM2N2 AL A RQM"N" Amr ANmy [CYNMﬁJI - OéMN,BIJ]

=0, (17.53)

where !’ and XL are antisymmetric matrices. This furnishes the proof of (17.35)).

17.3 SO(D + 1) as internal gauge group

In the previous sections, we have derived the isolated horizon boundary condition re-
lating the connection on the horizon with the bulk degrees of freedom, as well as the
symplectic structure on the horizon, which coincides with the one of higher dimensional
Chern-Simons theory. Since we started from the space-time covariant Palatini action,
the internal gauge group was fixed to SO(1, D). In the light of quantising the bulk
degrees of freedom however, it was pointed out in [I] that one can change the internal
gauge group to SO(D + 1) by a canonical transformation from the ADM phase space.
After this reformulation, the quantisation of the bulk degrees of freedom can be per-
formed with standard LQG methods as spelled out in [3]. Thus, we are interested in
reformulating the horizon boundary condition and the horizon symplectic structure so
that it fits in the SO(D + 1) scheme.

As for the boundary condition, the generalisation to the Euclidean internal group is

straight forward, since the construction of the connection I'° in appendix [C| works in-

dependently of the internal signature. Thus, constructing I'C such that it annihilates
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both n¥ and s% = s,e* additionally to m% = e K the horizon boundary conditions

0,horizon __ p0,bulk
Ryary ™™ = Rysry (17.54)

2
EKlLl...KnLnIJEO‘lBl“-O‘nB”RO,horiZOH 0,horizon E( ")

1J
a1 KLy anﬁnKnLn_Wﬂa Sa - (17.55)

follow immediately from the fact that Roaﬁ xrn = Roag k5% = 0. We will drop the

superscripts “bulk” and “horizon” in what follows.

In order to derive the new symplectic structure, we first perform a symplectic reduc-
tion of the theory derived in the previous chapters by solving the Gaufl and simplicity
constraint. This leads us to the ADM phase space, from which we can perform further
canonical transformations. This step is important since it tells us that using an iso-
lated horizon as a boundary of our manifold, we will have a vanishing horizon symplectic
structure when using ADM variables. We remark that this does not follow trivially for
any boundary if one starts with the Einstein-Hilbert action and performs the Legendre
transform, since one is picking up boundary terms in the Gauf3-Codazzi equation which

are neglected in order to arrive at the standard ADM symplectic structure.

In section we found that the canonical transformation to SO(D + 1) connection

variables leads to the boundary symplectic structure

2
Q%(61,8) = 3 /S dP 1tz 5500’ (17.56)

. . .. 2n
Furthermore, under the non-distortion condition § £ il

vh
n ECM) i . .
of phase space where E\(/QE) = < s ) is constant, it is shown in appendix [G.2| that

= 0, i.e. restricting to the part

(5[1FSJJ) (52]F%KL) RglﬁlMlNl"'Rgnfllgnfanlenfl’ (17.57)

which results in the Chern-Simons type boundary symplectic structure

nAg
QS4(51,82) = STo6m /S6IJKLM1N1...Mn_1Nn_1eaﬁalﬁl...an_lﬁn_l

(5[1F(0)JJ) (52]F%KL) R3151M1N1"'Rgén—lﬁn—1Mn—1Nn—1‘ (17.58)

Concluding, we have shown that also for the case of SO(D + 1) as an internal gauge

group, one arrives at a higher dimensional Chern-Simons symplectic structure at the
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isolated horizon boundary of o.

A remark concerning the uniqueness of I'C is in order. In D = 3, one easily finds
that there are more connections which allow for carrying out the whole programme.
Exemplarily, we can introduce a constant parameter ® € R and choose I'?,// =
9,17 4 2&nm,’! as connections for the Chern-Simons theory on the boundary. We
then find

R®.5" = RO0s" — 20%m,Im, "), (17.59)
I IKLOBRD orp = B — 4% | gl g, (17.60)
vh
A
cl !l 5, T 01690 prcr, = 261137 Gy (17.61)

(E®) — 42 A4

A further modification of I', which in particular allows for generalisation to distorted
horizons, will be introduced in section [17.4.1] where a non-constant field ¥ is added to
the connection. The introduction of ¥ and ® cannot be combined non-trivially, since

otherwise there will be terms o« nllmy”) contributing to Ri’ﬁqj g

A third possibility to change the connection in D = 3, which can be combined with
both of the above methods, is as follows. As we have already seen in if we intro-
duce the Barbero Immirzi parameter v in D = 3 [2], it will appear in the boundary

symplectic structure. The boundary condition in this case reads

1 E(Q)
o (R s+ LR ) = T Bt (17.62)
where
1
D ars _ a1 | 2761‘1 e (17.63)
Y

To show that the boundary symplectic structure can be rewritten according to
2/d2x (5 §oyn —ieaﬁé meard mI> =
5 /s (15702701 = 5 €70 a0 m
B{?ESEQD/SM (e”KL(S“FgU(SQ]FgKLJr 36[1P0a”52]1“05”>, (17.64)
it remains to verify that
E®)

——om! Admp = 20T A 6T, ;. (17.65)

Vh
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Since the scalar curvature R = % is constant on the 2-spheres, the metric h is
fixed up to diffeomorphism. Therefore, my,T%;; are fixed up to diffeomorphism and
SO(D 4+ 1) rotations, i.e. dmy = Ar/émy + Zemy and 0107 = —dpoAry —|—$§F01J. Us-
ing this for the variations, can be proven straight forwardly using 0 = dromj =
dmr+T%;Am?, dl0; + %[FO,FO]U =R, = %le Amy and the properties of the

exterior and Lie derivative.

In higher dimensions, it is less trivial to modify the connection I'°. In particular,
the above constructions can at least not be applied trivially. While ((17.59)) continues
to hold, in (17.60)) mixed terms of the form R A ... A (®m A m) will appear which spoil

the construction, and also the introduction of ~ is tied to D = 3.

17.4 Inclusion of distortion

So far, we have treated undistorted horizons exclusively. Note that our definition
of undistorted only poses a restriction on the Euler density and therefore in higher
dimensions already is a rather weak requirement. Now we want to turn to completely
distorted horizons. In the D = 3 case, this extension was studied in the U(1) framework
for the first time in [300], where a generalisation to axi-symmetric horizons was achieved.
This result was considerably extended by Engle and Beetle [281], who with a beautiful
idea managed to generalise the treatment to arbitrarily shaped spherical horizons. The
same was achieved within the more recent SU(2) framework by Perez and Pranzetti
[285], although their method is more complicated. We will test both proposals for a

possible generalisation to higher dimensions.

17.4.1 Beetle-Engle method

A key ingredient in the derivation of the symplectic structure on the spatial two-sphere
cross section S of the horizon is the “undistortedness” of S, i.e. the constancy of
E® /\/h (or, equivalently R®) on S. Beetle and Engle showed within the U(1)
framework that also for distorted S one can construct a U(1) connection such that the

corresponding curvature scalar is constant on S. They start with the ansatz
0= Lo WY D, W 1
Va= S0a —cap L. (17.66)

For ¥ = 0, this reduces to the connection used in spherical symmetry. The addi-

tional freedom to choose the “curvature potential” ¥ now is used to have the following
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equation satisfied:

dvV=— €= —"—%;s". (17.67)
This leads to the following condition on W
AV = R® <R(2)> : (17.68)

which with the additional condition (¥) = 0 has a unique solution.

In four spacetime dimensions, this idea can be easily generalised to the gauge group
SO(4) or SO(1,3). Using the ansatz

Aoty =T s + 2mgprmg g h™ (D), (17.69)
for the corresponding connection, and demanding the boundary condition
PdIKLE s (A) = 2(E®)nll 5] (17.70)

leads to the requirement

Ay = % (ﬁf}: - <E<2>)> : (17.71)

A lenghty calculation in furthermore shows that for this connection, it holds that
2<E(2)>(5[1§I)(52]n1) = (lIKLeab (6 Aars) (62ApxL) - (17.72)

A generalisation of this procedure to higher dimensions, however, is far from straight
forward. The main problem is that the boundary condition in higher dimensions be-
comes non-linear in the curvature. With the same ansatz for the connection, we obtain
a non-linear partial differential equation for ¥ for which a mathematical solution theory

to the best of the author’s knowledge has not been developed.

17.4.2 Perez-Pranzetti method

The extendibility of the Beetle-Engle method actually suggests that their method
should be applicable also in the case of SU(2). However, Perez and Pranzetti [285]
proceed rather differently. To include distortion, they propose to use two SU(2) Chern

Simons connections

Ag =T+ ¢!, AL =T'40¢, (17.73)
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and find for the corresponding curvatures by demanding the IHBC

) 1 . ) 1 :
F'(A)) = U2 + 5(72 +0)%,  FYAy) = UeX' + 5(02 +¢)%t. (17.74)

Here Wy it a Newman-Penrose coefficient (related to R(®)) and ¢ an extrinsic curvature
scalar. It follows that their difference satisfies an equation of the sought form,

F'(A,) — F'(A,) = %(72 — %)%, (17.75)

with just a constant appearing in front of 3 on the right hand side. This allows to
rewrite the boundary symplectic structure in the arbitrarily distorted case in terms of
two Chern Simons theories. The downside is that the equations (or equivalent
constraints) have to be imposed at the quantum level in order to account for superflu-

ous boundary degrees of freedom. A proposal how this is to be done is given in [285].

Let us mimic the procedure in higher dimensions. We start naively by introducing

N Chern-Simons connections
AL =T, 2 aisgmay, i € {1, N}, (17.76)
For their field strengths, we find
Fo(fgI)J = RgﬂIJ — 2ma[1m5mai. (1777)

When we insert this in the formula needed for the higher dimensional boundary condi-

tion, we find

IJ N . o Bnyn JIJK1L1...Kn Ly (a;) (a:)
E(ai)(A(a ) = Prmn el FB?nKlLl - -Fﬂ:%KnLn
n
k=0

where, schematically, Xj o< (R%)"™* A (m A m)*. Only the k = 0 term, being exactly
of the form “nl/57] x const.” we need, is allowed to survive when linear combining the
E!7. with coefficients b; € R, i € {1,..., N},

(as)
N !
> b BLL(A)) onl'3], (17.79)
=1

which leads to the system of equations

N
Zbi(ai)k:(), ke {0,...,71—1},
=1

N
> bi(a)" =d, (17.80)
=1
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for some constant d # 0. Suppose w.l.o.g. that a; # 0, by # 0. Introducing a new
d= m, we find that the above n + 1 equations for fixed d, actually only depend
on the 2(N — 1) unknowns (a;/a1), (b;/b1). Since N is integer and 2n = D — 1,
we find that we need at least N = [21] +1 = [ZH] + 1 Chern Simons theories
on the boundary, which for D = 3 reproduces N = 2. However, we now have to
implement many additional constraints corresponding to consistently, which
makes a success of this route at the quantum level rather doubtful (see, however, our

comments on quantisation in section |17.5]).

17.5 Comments on quantisation

In a seminal paper, Witten [I84] studied the quantisation of Chern Simons theory in
three dimensions, making heavily use of the fact that it is a topological field theory
(see also [301] for an exhaustive treatment): The field equations read F' = 0, and we
obtain as solution space the finite dimensional moduli space of flat connections modulo
gauge transformations. The quantisation of the boundary degrees of freedom is based
on this work: A key result in the isolated horizon framework is that the field strength
vanishes almost everywhere due to the isolated horizon boundary condition, except
at points where the bulk spin network punctures the isolated horizon. Only at these
points, the flux operator, which determines the field strength on S via the isolated
horizon boundary condition , is non-vanishing. The resulting quantum theory
on the horizon is a Chern-Simons theory with topological defects induced by these spin

network punctures, which result in a finite-dimensional Hilbert space.

In higher dimensions, Chern Simons theory admits local degrees of freedom in gen-
eral [I37, 138]. This can be easily understood looking at the field equations ,
which now are more complicated and do not restrict the connection to be flat in gen-
eral. To treat black holes in higher dimensions at the quantum level, a full quantisation
of the non-topological boundary field theory seems a rather ambitious goal. Here, we
will briefly discuss two proposals for alternative routes for quantisation. Firstly, we
will point out that one of the boundary conditions we derived might actually lead to
flat connections except at the punctures in section We want to stress that this
proposal is incomplete and definitely deserves further study. In section we will
discuss the possibility of gauge fixing from SO(D+1) to U(1). The U(1) Chern Simons
theory is exceptional and suggests itself for quantisation, since it lacks of local degrees

of freedom in any dimension [302]. However, we we did not succeed in performing this
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reduction.

17.5.1 SO(D + 1) as gauge group

Since the symplectic structure on the isolated horizon is exactly of Chern Simons type,
one would expect to obtain a higher-dimensional Chern-Simons theory on the boundary.
Due to the distributional nature of the space of generalised connections in LQG, see
e.g. [62], one promotes the connection on the isolated horizon to an independent degree
of freedom in the quantum theory, here called A;; with field strength Fr; = F(A)z;.
Furthermore, a quantisation of the boundary condition (17.55)) (neglecting for a moment
the stronger condition and thus the fact that the connection on the isolated
horizon is given by I') yields the quantum first class constraints of a higher-dimensional

Chern-Simons theory with punctures,
ENN(g) = tlindnpy o () AL AFL g, () o sqr 1 (7). (17.81)

The quantum interpretation of this equation is that the punctures of bulk spin net-
works act as “particle excitations” for the Chern Simons theory, exactly as in the
3 + 1-dimensional case [292]. The immediate problem with this approach of course are
the local degrees of freedom of higher dimensional Chern Simons theories. As a direct
consequence, one would expect to obtain an infinite entropy by counting the allowed
states in the Hilbert space.

Still, it seems that the functions e, s, 1,7, F272 A ... A FIn/n entering the first class
constraints of higher dimensional Chern Simons theory [137] constitute an important
sub-sector of the theory which one should consider for entropy calculations, as we will
argue in the following. The algebra of these excitations can be explicitly shown to

reproduce the lie algebra relations of so(D + 1),
{EY (2), EX"(y)} o 67D (2 — ) f1HEEpyw EMN (), (17.82)

where f are the corresponding structure constants like given in appendix [D} Preliminary
calculations also indicate that the a straight forward generalisation of the quantisation
prescription in [292] leads to boundary excitations which automatically carry simple
representations. This is appealing since, on the one hand, the use of the variables n!
and s’ inherently implies that this constraint is also solved classically at the horizon,
and on the other hand requires these representations to be simple since the
SO(D + 1) representations in the bulk are simple. But from D = 3 we know that
the boundary Hilbert space typically turns out not to be simply the tensor product
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of the individual representation spaces corresponding to the punctures, but rather a
subspace thereof, since there are additional global constraints resulting form the hori-
zon topology. The global constraints which need to be imposed in higher dimensions
remain to be studied. Another open question is the role played by the vertex simplicity

constraints at the boundary.

Despite these attractive features, we still have to deal with the local degrees of free-
dom. One point that we overlooked up to now is that the classical analogue of the
boundary condition does not constrain the Chern-Simons connection A,rj to
be Fg 7y In sectionm7 it was shown that some modifications of the boundary connec-
tion parametrised by constants are allowed. Furthermore, the idea of Beetle and Engle
introduced in section suggests that further modifications are conceivable, possi-
bly an infinite set. Thus, we should introduce a constraint which restricts the degrees
of freedom of the higher-dimensional Chern-Simons theory as if the horizon connection
would be given by I'. Since the gauge invariant (local) information of a connection is
contained in its field strength, we should introduce the boundary condition in

the form
F(A)g%r}?]on _ F(FO)E%I}{J (1783)

on S. Note that although this condition seems physically sensible, it cannot be strictly
derived due to the non-uniqueness of the boundary connection. In analogy to the 3+ 1
dimensional treatment, we would quantise this boundary condition by promoting the
left hand side to an operator in the higher-dimensional Chern-Simons theory and act
with a proper quantisation of the right hand side on the bulk spin network (as with
a flux operator). Since we would regularise the right hand side by fluxes and commu-
tators involving volume operators as in [3, B0], it would vanish everywhere, except at
puncturesﬂ This mechanism could thus get rid of the local degrees of freedom and
result in a finite entropy much in the same way as in 3 + 1 dimensions. Still, there
are many missing and imprecise steps in this argument, e.g. that one would first need
an actual quantisation of higher-dimensional Chern-Simons theory before a quantum
boundary condition as could be even imposed.

To conclude, we don’t have a satisfactory quantisation of the resulting boundary theory

1'We would expect that the corresponding operator would even vanish at punctures, since the volume
operator annihilates edges. On the other hand, we would demand consistency with , i.e. we
would rather use at punctures. This underlines again that the discussion here does not provide
a satisfactory answer.
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and thus also no direct access to entropy calculations at the moment. The biggest un-
certainty certainly is that no quantisation of higher-dimensional Chern-Simons theory

with a non-Abelian gauge group is known.

17.5.2 Reduction to U(1)

In view of quantisation, the U(1) Chern Simons theory of course is distinguished by
its lack of local degrees of freedom also in higher dimensions. The natural question
arises why not to reformulate the boundary degrees of freedom accordingly. This ques-
tion will be pursued in this section, but as we will see, we did not succeed in giving

a satisfactory description of the boundary degrees of freedom with this structure group.

Two routes suggest themselves: 1) Gauge fix the SO(D + 1) Chern Simons theory
we obtained in the course of this thesis down to SO(2), or 2) impose the gauge fixing
directly at the level of the boundary symplectic structure and rewrite it in terms of an
SO(2) Chern Simons theory.

Concerning the first route, note that gauge fixing cannot change the number of phys-
ical degrees of freedom. Naturally, one would expect the SO(D + 1) Chern Simons
theory on the boundary to have local degrees of freedom. If this turns out to be true,
gauge fixing to SO(2) cannot be possible, simply because this would imply a change of
number of degrees of freedom. But as we commented on in the previous section [17.5.1
the boundary condition might render the boundary degrees of freedom finite even for
the structure group SO(D + 1), so there would be at least no immediate contradiction.
However, it is easy to see that the SO(D + 1) invariant tensor used to construct the
Chern Simons theory, namely e/1-/P+1 does not admit a gauge fixing to SO(2) and

therefore, the first route fails. We will follow route 2) in what follows.

We introduce the gauge fixing nf = ¢%§!, s/ = gljéf, where 7,5 € {0,1} and g € SO(2).
Let us use the usual parametrisation of rotations by an angle ¢, goo = gi11 = cos ¢,
go1 = —g10 = sin¢. The boundary contribution to the symplectic structure reads in

this gauge
5[1§I5Q]n[ = 5[1\/E 52]¢). (17.84)

In the SO(D +1) case, to show that a Chern Simons symplectic structure arises on the
horizon cross sections, it was important that v& and the Euler density are essentially

the same. Introducing an SO(2) connection A,, the analogue of this requirement would

297



17. THE BOUNDARY DEGREES OF FREEDOM

read
Vh =€ mE o Foo oo (17.85)

where Fyp = 20,,Ag. It follows that SVh = 2ne®02n (001 0Aas)) Fasay--F

T O2p—1Q2n
and therefore (upon partial integration)

815 6gnr = 2n€® %" (81 Aa;) (0910ay8) Fasas-Fas,_iaon- (17.86)

With the additional requirement that A = d¢, this would become the symplectic struc-
ture of an SO(2) Chern Simons theory on the boundary. However, from this requirement
we also conclude that F' = 0, which is in contradiction with , and therefore also
our second route fails. It thus seems that we have to stick to the SO(D + 1) theory
on the boundary and one should try to make progress with its quantisation as outlined

above.
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18

Conclusions and outlook

18.1 Summary

In this thesis, we succeeded in constructing a canonical connection formulation of gen-
eral relativity in any spacetime dimension D 4+ 1 > 3, based on the gauge group
SO(D + 1) or SO(1, D). The choice of gauge group, being SO(4) or SO(1,3) in four
spacetime dimensions, already makes explicit that the theory is genuinely different
from the SU(2) Ashtekar Barbero formulation. Our presentation interrelates this new
formulation with several other, well-known Hamiltonian formulations of general rela-
tivity and shows how it arises rather naturally from them. To this end, we derived
the formulation both using Hamiltonian methods, i.e. extending the ADM phase space
appropriately, as well as by performing a detailed canonical analysis of the Palatini
action and applying the procedure of gauge unfixing to get rid of the appearing second

class constraints.

The theory of course is subject to the usual spatial diffeomorphism and Hamiltonian
constraint, but the latter is necessarily more complicated than the one of the SU(2)
Ashtekar Barbero theory. This more complicated form is needed in order to allow for
first class simplicity constraints, which enter the Hamiltonian picture as a new ingredi-
ent and play a central role in both derivations. These three sets of constraints together
with the Gaufl constraint familiar from usual LQG constitute all first class constraints

of the system.

The Hamiltonian route towards the new variables is more general in that it allows

for the introduction of a free parameter 3, similar to but different from the Barbero
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Immirzi parameter 7. Moreover, the internal ({) and spacetime (s) signature are not
necessarily tied to each other, but rather all four possible combinations thereof can be
chosen. This is particularly important regarding quantisation, enabling us to work with
the compact gauge group SO(D + 1) for both, Euclidean and Lorentzian general rela-
tivity in D + 1 dimensions. It is this SO(D + 1) formulation which ultimately features
all the properties needed for loop quantisation. The background independent quan-
tisation techniques developed in LQG for spatially diffeomorphism invariant theories
of connections are formulated independently of the number of dimensions and choice
of compact structure group, and further results like the implementation of Gaufl and
spatial diffeomorphism constraint as well as results on the Hamiltonian constraint and
the uniqueness of the representation generalise to arbitrary dimensions (cf. e.g. [62]

and references therein).

The simplicity constraints constitute a novelty in canonical LQG research, but ac-
tually have a long history in its covariant cousin, the spin foam models [I85, [I88, [189].
Being constructed from discretised B-fields (spin foams) or singularly smeared fluxes
(canonical approach) which are non-commutative, they lead to anomalies at the quan-
tum level. Various proposal are available in the literature on how to deal with this issue,
but some use special properties of the groups SU(2), SO(4) and SO(1,3) which do not
hold in higher dimensions and some are simply not applicable in the canonical picture.
We proposed some new but still incomplete ideas towards a satisfactory solution to this

issue in the canonical picture, and will comment on open problems in section [18.2

We furthermore showed that the framework can be extended further to all standard
model matter fields and also to various kinds of other fields appearing in (higher di-
mensional) supergravity theories. The coupling of gauge bosons (for arbitrary compact
structure groups) as well as scalar fields can literally be copied from the 3+1 dimen-
sional treatment in [45, 46]. Dirac fermions need a special treatment at the classical
level in the Lorentzian case, since we have to exchange the Lorentzian by the Euclidean
Clifford algebra in order to obtain a compact structure group for general relativity.
We showed that this can be accomplished, and after this classical manipulation, the

quantisation known from 341 dimensions can be applied.
Turning to supergravity theories, many new fields arise to complete the super multi-

plets, most prominently, the spin 3/2 Rarita Schwinger field (“gravitino”). Compared

to Dirac fermions, a new technical challenge arises: supersymmetry usually demands
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this field to be a Majorana fermion. The corresponding Majorana condition in the
Hamiltonian picture leads to a non-trivial Dirac anti-bracket, which on the one hand
hugely complicates the switch of the structure group SO(1, D) to SO(D +1) and on the
other hand calls for a quantisation different from that for the Dirac field. We showed
that, using an auxiliary field known from the linear simplicity constraint, the internal
signature switch is still possible and a background independent Hilbert space represen-
tation for the Rarita Schwinger field is provided. Our methods also extend to spin 3/2
Majorana Weyl, spin 1/2 Dirac Weyl and spin 1/2 Majorana fermions. On the bosonic
side, typical new fields are e.g. Abelian higher p-form fields and, exemplarily, we stud-
ied the quantisation of the three form gauge field (“three index photon”) of d = 11,
N = 1 supergravity. Due to a Chern Simons term in the corresponding supergravity
action, this field becomes self-interacting and a non-standard *-algebra of observables
with respect to the (equivalent of the) Gauf constraint arises. The resulting Weyl al-
gebra allows a state of the Narnhofer-Thirring type. These findings allow for the LQG
type quantisation of at least a subset of supergravity theories, including the arguably
interesting cases of d =11 N =1,d =10 N =1 and d =4 N = 8 supergravity.

Finally, as a first application of the developed framework, we took a first step in di-
rection of a quantum gravity derivation of the famous Bekenstein Hawking formula for
the black hole entropy also in higher dimensional LQG. Concretely, we derived a suit-
able boundary condition as well as the boundary symplectic structure for undistorted
non-rotating isolated horizons in 2(n + 1) dimensional spacetimes and showed that it
yields an SO(2(n 4 1)) Chern Simons theory.

18.2 Discussion of open problems and directions for fur-

ther research

Finally, we want to give a (non-exhaustive) list of open problems and interesting direc-

tions for further research.

1. Implementation of the simplicity constraints and connection to spin
foams

Regarding vacuum general relativity, the simplicity constraint is the most unsettled
point in our analysis. Classically, it is equivalent to work with the linear or the quadratic
version of the constraint, or even use a mixing of both. At the quantum level, concep-

tual differences appear (the quadratic constraint operators not forming a closed algebra
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while the linear do) and each case has to be studied individually and, in particular,
dynamical stability of a tentative solution has to be checked. Each implementation
has advantages and disadvantages: the quadratic constraint has the appealing feature
that it leads to simple irreps of SO(D + 1) on the edges [169], which in any dimension
are labelled by only one integer and therefore allow for a natural map to SU(2) irreps.
For D = 3, this in particular fits nicely with the SU(2) edge labels of usual canonical
LQG. However, the quadratic constraint is anomalous at vertices and, to avoid the
Barrett Crane solution, we either need to use a master constraint or implement only
a maximally commuting subset of the constraints. The latter option, while leading
to a (natural) unitary map to the Ashtekar Lewandowski Hilbert space, needs further
study (Can it be shown rigorously that we are allowed to drop the non-commuting
constraints? Are those which are dropped possibly solved weakly? Can the chosen
subset be made dynamically stable? Why are the Hilbert spaces for all dimensions of
the “same size” 7). These questions are discussed in [5] in more detail than we do in this
thesis, but no final answers are provided. The master constraint on the other hand is
rather complicated and since the results from spin foams suggest that there are possible

easier solutions, those should be preferred if they can be rigorously implemented.

The linear constraint is actually non-anomalous (except for additional introduction
of the Barbero Immirzi parameter in D = 3), but strong implementation leads to a

one-dimensional intertwiner space and is troublesome at the edges.

Mixing both proposals, one obtains simple representations at the edges, but again
a complicated master constraint has to be implemented at the vertices (still, its advan-
tage when compared to the quadratic simplicity master constraint is the access to the

unit vector field N' needed for supergravity).

For further research, we think that it is interesting to study in detail the implementation
of the simplicity constraint in the spin foam literature regarding their applicability in
the Hamiltonian picture (a first comparison of the results above to spin foam methods
has already been given in [5]) and generalisability to higher dimensions. Eventually,
this will lead to new developments in the both fields and build new bridges between
them. In particular the classical formulation presented in section [9.3] when reintroduc-
ing the Barbero Immirzi parameter v with both, the linear and the quadratic simplicity
constraint in D = 3, mimics the classical starting point of the new spin foam models

as much as a Hamiltonian formulation possibly can. This suggests that one can also

302



18.2 Discussion of open problems and directions for further research

make stronger contact also at the quantum level (although an implementation of the
simplicity constraint found following this route might have the disadvantage of being

not generalisable to higher dimensions due to the peculiar role played by 7).

Some open points concerning a contact to spin foams are: in the Euclidean theory,
when strongly implementing the quadratic simplicity constraints, we actually recover
the boundary Hilbert space of the original Barrett-Crane model: SO(4) spin networks
with simple representations at the edges and the unique Barrett-Crane intertwiner at
the vertices. This would be very appealing if we did not know about the problems with
the Barrett Crane model, and if the intertwiner spaces would not be too small when

compared with the kinematical Hilbert space of standard LQG.

Turning to the new models [I86-190], the Immirzi parameter and the linear simplicity
constraints enter the picture, and with them the ~-simple SO(4) representations, where
still one SU(2) label suffices to label the SO(4) irreps, but left- and right handed spins
are no longer equal, and, most prominently, the EPRL intertwiner space are introduced.
It is argued in [5] how the EPRL intertwiner space could arise also in the canonical
picture, but these results remain to be made rigorous, and an equivalent of the ~ simple
representation was not shown to arise in the canonical picture for neither the quadratic

nor the linear simplicity constraints.

In the Lorentzian theory, of course the apparent difference between the SO(1,3) based
EPRL model and the canonical SO(4) theory of section is the gauge group. From
a canonical point of view, this difference is necessary since background independent
quantisation methods have not been developed for non-compact gauge groups so far.
Actually, Alexandrov started a line of research studying SO(1,3) canonical LQG and
introduced so called projected spin networks [303, [304] in which the non-compact gauge
group is projected down to SU(2). Although definitely a challenging quest, perhaps

contact can be made by making his proposals mathematically precise.

Finally, it is interesting to study if the gauge unfixing terms in the Hamiltonian play
any role for spin foam models, where the second class partner of the simplicity con-
straints usually is neglected (see, however, [305, 306]). The reason is that this second
class partner is a secondary constraint (cf. , i.e. needed in order that the primary
simplicity constraint is preserved by the dynamics. However, in spin foams the simplic-

ity constraints are implemented at every time step and it is generally argued that the
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secondary constraints are therefore not needed. Recently the time evolution operator
in spin foams has been shown to be of the form PTP [307], where P projects onto the
solutions of the primary simplicity constraints. This leads to conjecture that in the
continuum limit one should actually recover the gauge unfixed Hamiltonian introduced

in this work.

2. Supergravity theories - limitations of the presented treatment
Our considerations for supergravity theories are not completely general since for our
treatment of the Majorana Rarita Schwinger field, we used a real representation of the

Lorentzian Clifford algebra, which does not exist in any dimension.

Furthermore, the list of fields we studied is not exhaustive: in some supergravity the-
ories, anti- or symplectic Majorana fermions appear, and some feature non-Abelian
higher p-forms or non-compact gauge groups (cf. e.g. [134]). While the different
Majorana fermions probably only need a minor generalisation of the framework we
outlined, the latter two pose genuine barriers. The last hinders the application of the
rich machinery developed for background independent quantisation of gauge theories
with compact structure groups, if one is not able to exchange the non-compact group
by a compact one like we did in the case of the gravitational field. Higher non-Abelian
p-form fields probably call for further development in the field of higher gauge theory
[308].

In some supergravity theories, the algebra of local supersymmetry generators closes
only when using the equations of motion, otherwise being second class. We do not
know how to deal with these on-shell formulations, and can only speculate that again

gauge unfixing might offer a way to construct a corresponding off-shell formulation.

Finally, our treatment of the Rarita Schwinger field probably is also not the most
elegant one. In particular, the attractive feature of former treatments of loop super-
gravity [112], employing an Osp(1|2) connection combining both, bosonic and fermionic
degrees of freedom, is lost. Maybe a formulation in terms of superfields would be more

appealing.

3. Supergravity theories - quantum constraint algebra
For supergravity theories, it would be highly desirable to have a faithful representa-

tion of the super Dirac algebra at the quantum level. Forgetting for a moment the
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additional problems posed by the non-existence of an operator corresponding to the
diffeomorphism constraint and the presence of the other constraints, this implies the
reproduction of the additional Poisson brackets {&,6} o« & + 7, {S, #} x & and
{H, 7} x & (cf. e.g. [120,265]).

This, in a sense, is both, a blessing and a curse: while it is probably tremendously
complicated to study the quantum algebra, these requirements might be that strong
that they actually reduce the quantisation ambiguities in both, the Hamiltonian and
the supersymmetry constraint. As testbed, three dimensional supergravity suggests
itself, coming with huge simplifications both, in the bosonic as well as in the fermionic
sector (cf. [309, B10] for previous approaches to loop quantisation of d = 3 supergrav-
ity), and in particular allowing for a study of this issue independent of the simplicity

constraint problem, which does not exist in d = 3.

4. Cosmology

Loop quantum cosmology, the quantisation of various cosmological models with LQG
methods, has been extraordinary successful. Not only does it lead to a rather generic
resolution of singularities present in classical and the older Wheeler deWitt quantum
cosmology, e.g. the big bang singularity which instead is replaced by a quantum bounce
at minimal finite volume of the universe, but also its effective dynamics have been shown
to be in favor of inflation compatible with the 7 years WMAP data (see e.g. [41}, [42]
and references therein). Revisiting these cosmological models within the new higher
dimensional, possibly supersymmetric approach, allows for a study of several open
question for the full theory in much simpler model systems, like how to obtain an ef-

fective four dimensional theory from higher dimensions or how to break supersymmetry.

On the other hand, the cosmological sector of string theory has been studied extensively
(cf. e.g. [96, O7]) and thus could be a first point of contact of string theory with the

framework of higher dimensional LQG proposed here.

5. Black holes

As another early point of contact to string theory, black holes in higher dimensions
suggest themselves. While they are studied in string theory (in particular, the first
derivation of the black hole entropy formula from string theory was performed for su-
persymmetric black holes in five dimensions [98]), this was so far not possible in LQG

due to the restriction to D = 3. While we made first steps in that direction, there
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are several open problems, most prominently, the quantisation of the (non-topological)
higher dimensional SO(D + 1) Chern Simons theory on the boundary and role of the
simplicity constraint we commented on in section These have to be settled before
rigorous state counting and a derivation of the entropy formula, possibly with logarith-

mic corrections, come into reach.

Experience from the D = 3 case suggests that, to reproduce the right prefactor 1/4
of the leading order term in the entropy formula, one has to fix the new parameter
B, which most probably will depend on the dimensionality of spacetime. In more re-
cent work, there have been found ways to reproduce 1/4 without fixing of the Barbero
Immirzi parameter [285, 311]. This could possibly be recovered in higher dimensions

using the freedom in the boundary connection we commented on in section [17.3

The logarithmic corrections in D = 3 are independent of v and therefore seem to
give a more stringent benchmark which might be used as a cross check if the quan-
tisation of the boundary degrees of freedom is correct. However, there seems to be
less consensus on what the prefactor of these logarithmic corrections should be: there
are general arguments (cf. [312, B13]), that the logarithmic corrections should to be
—3/21og(A/4) independent of the spacetime dimension, which is supported by calcu-
lations in different models. This prefactor —3/2 was also found in the LQG derivation
using SU(2) as gauge group, the U(1) case, instead, leads to —1/2 (cf. e.g.[43] and
references therein). However, this does not indicate that the SU(2) treatment of Perez
and collaborators is favoured. In fact, there are also many (non-loop) derivations of
the factor —1/2 (see e.g. [314] and references therein). Finally, very recent calculations
by Sen [315] using Euclidean gravity methods lead to an again different value of the

prefactor. The issue is, to the best of the author’s knowledge, unsettled.

Furthermore, there is an extension of the isolated horizon framework to supersym-
metry [316, B317]. The study of supersymmetric black holes and the role played by
supersymmetry in the subsequent entropy derivation suggest itself for further research.
When treating non-supersymmetric isolated horizons, the Hamiltonian constraint usu-
ally does not need to be taken into account since the lapse function vanishes at the
horizon. The constraint algebra displayed in 3. leads one to the conjecture that either

also the supersymmetry constraint needs not to be taken into account or both have to.

Finally, since no hair theorems for four dimensions generally fail in higher dimensions,
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there is a whole “zoo” of black hole solution to be explored (cf. e.g. [318]). In par-
ticular, it is argued that the black hole entropy actually should depend on the horizon
topology, more precisely on the Euler characteristic y, which seems to nicely fit with
the results obtained here. However, there seems to be no consensus on how topology
enters the entropy formula: when studying exotic topologies, there are results from
LQG [319] as well as results not employing loop techniques [320-322] indicating that
only the sub-leading terms should depend on topology. In contrary, [323] finds that the
leading order term depends on x. To hopefully give answers to these questions in the
future, of course we first have to make progress on the quantisation of the boundary

degrees of freedom.

6. Recovering “every day life” physics

Of course, starting from a higher dimensional, possibly supersymmetric theory of quan-
tum gravity poses the immediate question of how to recover an effective, four dimen-
sional and non-supersymmetric theory, and in particular, if problems similar to the
“landscape” in string theory emerge. So far, we only have the observation that the
implementation of a maximally commuting set of simplicity constraints in chapter [11.2
suggests that the dimensionality of spacetime might be irrelevant at the kinematical
quantum level, only reemerging at the semiclassical level (or possibly through dynam-

ics).

The study of this issue definitely is an ambitious project: before it can be attacked,
one probably needs to make progress on 1. and 3., and furthermore, sufficient control

on the semiclassical sector of the theory needs to be gained.

7. Connection to string theory

While certainly not the least interesting, the connection to string theory is definitely a
hard and long term goal. Even with a future, further developed loop quantum super-
gravity (LQSG) at hand, the comparison at the level of supergravity is only indirect. In
particular, there is still no “string in higher dimensional LQSG”, and the quantisation
methods in string theory are still (at least a priori) background dependent. Therefore,
we think that, parallel to LQSG, the research direction started in [93] of a loop quan-
tisation of string theory should be further developed.

Apart from the already mentioned contact points, cosmology and black holes, an in-

teresting but more speculative application we have in mind is a test of the conjectured
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AdS/CFT correspondence by e.g. loop quantising type IIB supergravity on a 10d man-
ifold (AdS® x $°?) and compare it with a loop quantisation of N = 4 super Yang-Mills
theory. Progress in this direction would probe the non-perturbative limit of the con-
jectured equivalence [85-87] of type IIB string theory on AdS® x S® and N = 4 super
Yang-Mills theory on the four-dimensional boundary of AdS®.

In conclusion, many technical problems remain so far unsettled by our work and def-
initely deserve further studies, but also many interesting new research directions are
opened up. We hope that this work leads to a stronger bridge between canonical LQG
and spin foam models, stimulates a further development of LQSG in any dimensions
and ultimately contributes to an enhanced exchange between strings and loops in the

future.
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A

Variational formulae

In this appendix, we will collect various variational formulae which will be helpful for

calculations in the main text.

Inverse metric and determinant: Since §(9,.9"") = (09uw)g"” + 9w (0g"") = 0,

we have
6g" = —g""g"" g po- (A.1)

For the determinant of the metric, we find using Jacobi’s formula

69 = 99" 09y, (A.2)
1 1 y
Vgl = 27\/@5@ = 9 lglg" 59;% (A.3)

where in the last step, it was important that the metric is non-degenerate.

Christoffel symbols: Two affine connections differ by a tensor field of rank (1,2).
Therefore, one expects that also the variation of the Christoffel symbols yields a tensor
field, which is indeed the case and was, to the best of the author’s knowledge, first
observed in [147].

1 lo}
5FZ1/ = 55 [g” (augl/a + ar/g;w - 8aguu)]

1 1
= 5gpc" (8u5.qVU + ay(sgug - aU(Sguy) — §gpagdﬁdgaﬁ (8M9VU =+ aygug- - ao'gy,y)

1
- §gpg (v,udgl/o + Vzlég,u,a - Vo5gm/) . (A4)

The final expression shows that the variation actually is a tensor field. The easiest way

to comprehend the last step in the above calculation is to work backwards, writing out
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A. VARIATIONAL FORMULAE

the covariant derivatives explicitly and simplifying the resulting expression reproduces

the second line.

Riemann tensor, Ricci tensor, Ricci scalar: For the variation of the Riemann

tensor, we find

o __ o A o
ORyup” = =20 (8[MFV]0 - F[u\p VP\)

= =2V, 07, (A.5)
Contracting this equation with §7, we obtain for the variation of the Ricci tensor
OR,, = —2V[u5FZ}p, (A.6)
Contraction of with the inverse metric and using , we find
g"PoR,, = V" (VPogup — V0ug" 09p0) 5 (A7)

which yields the surface term in the variation of the Einstein Hilbert action in section
Finally, we find for the Ricci scalar

OR = 0(9"" R,p) = VIVPg,, — VIV g7 0gp0e — RI'P6G,p- (A.8)

Laplacian: For the variation of the Laplacian A = ¢g"”V,V,, of a scalar field ¢, we

find using
0Ap =9 (g”"@u&ﬂ[) — g’“’FZVOPQS)

= A6} — (8g,) VIV ¢ — (V“ég,w - hvm/@) VY. (A.9)

Vielbein and related variations: If, instead of a metric, one works with a (co)-

vielbein, the following formulas might be helpful. Their derivation is straight forward.
seM = —e“‘]el’léew, ( )

e = eetl e, ( )

0Guw = 26(H15ey)1, (A.12)

dlg| = 2626“156,”, ( )

(A.14)

9" g = 26”1563“].
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Therefore, if we work with a densitised (co)-vielbein E*! := eet!, we have
SEM = 2eetllle?l e, ;. (A.15)

1

deur=e (CHEMEV J—EuE, J> SE", (A.16)
1

where E,,; = e,;. Note that e = (det £)@1 holds. The first line follows easily from

the above equations and for the second we merely have to invert the matrix appearing

in the first line. More importantly for this work, if we work with a hybrid vielbein (or

its densitised version F := \/éeal , cf. section for notation), we have

56(1] _ (Cnanqab _ eaJebI) 5€bJ7 <A17)
0v/q = /qe*™ Seak, (A.18)
SEY = /g (Cnanqab + Qeamebu]> Sepy, (A.19)
1
d0ear = \/q <C(EaKEbK>_1nInJ + 5 EarEos — EbIEaJ> SE", (A.20)
1 2
8qab = 2e(q 10" = —gc;;blcd(aqch) = —gG;blchdéEdl, (A.21)

1
where 7777 = E.;E¢y and ¢(n'n’ = n!/—7!/ and furthermore Vi = (det(ELEdL))20-D
holds. G;blc 4 here and in the following is the same matrix that appeared in ([2.16]).

Finally, when working with 7%/ = onll palJl; 2¢qq™ = 777t} 5 as in sections
and part [T, we have

8qq™ = (570 15, (A.22)

0= 5= 1q7TaIJ57TaU, (A.23)

8qap = _ZG;,}C 7 omdyy, (A.24)
1 ¢ bKL

a1y = gﬂthIJKL ~ SMaK LTI om . (A.25)

To derive these, the previous formulae are helpful. We used the notation w,;; =
%qab'ﬂ'b[ 7 and in the last equation, we introduced the projector Pj;&F = 17{[( 775} —

K

%wauwa L which projects orthogonal to 77, Py g pn®l = 0.

Vielbein compatible spin connection: As for the Christoffel symbol, the variation
of I'y 1y should yield a tensor. Indeed, we find after some simple algebra using (A.4]
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A. VARIATIONAL FORMULAE

A0
oLy =9 (eﬁ,'v,,e,,m)
= e'[’I|VE(56,,|J] — e'[’I‘VgéeMJ] — e”[Ie")n euKVEﬁep}K. (A.26)

Curvature tensors: In general, we find for SO(D+1) or SO(1, D) curvature tensors

F,u,VIJ

0Fuwrs = 26 (O Aurs + Aun™ Aviein)
= 2V{,0A,15. (A.27)

It is instructive for the unfamiliar reader to rederive (A.§)) from the variation of e#/ e’

R, 17 using (A.26] [A.27) and various other formulas above.
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B

Spatial - temporal

decompositions

In the following, we collect and derive formulas helpful for D 4+ 1 decompositions of

spacetime tensors.

Gaufl Codacci equations: In section[2.2.1] we used the famous Gaufl Codacci equa-
tions to express (PTD R in terms of (P) R and the extrinsic curvature K v, Which we will
derive in the following. We follow [62] and start with noting that for a spatial covector
u,, we have, using the definition of the covariant spatial derivative in the fact

that V annihilates g, and that g, = g — snuny,
) Ryuptio = [Dyy, Dy, = QQfLQZ] a5 (Vway qZ, Vi)
= 2qf:;qllj] qlp’ [—S(vu/ny/ny )qpp/ vy//up// — Sq;j/ (vuxnp/np )vyl/up// —+ vulvy/upl}
= quLqZ] qﬁ [—sq,’j, (Vuny)n” NV + Vu/Vl,/upf}
- 2qﬁtqllj] 9 [Sqrz’ (Vwnp )upVym? + vu’vV’uP'}

= [ZSK[W)KV]“ + ql’jlqzlqg,(DH)RM/V/p/U,qg,} Uy, (B.1)

where from line 3 to line 4 we used that qﬁ,qzlv[ﬂlnyq = 0 due to Frobenius’ theorem,
and from line 4 to 5 that w,, is spatial and therefore n*V, u, = —u,V,n#. This is the
famous Gaufl equation. Contracting it, we obtain

D) p = qupqva(D) Ruvpe
=5 [K? — KW K"™] + ¢ q"" PR, 0. (B.2)
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On the other hand, we have

(D+1)R — VO'(D+1)R

9"g Jwpo
= (¢"" + sn*n”)(q¢"" + sn”n”)(DH)prg
= (q"Pq"7 + 23n“npq"")(D+1)Rm,pU
= ququU(DJrl)RuupU - 2sn,uq1/0[vl“ vu]na
= ¢ q"" PHIR 0 — 2507V, V, 0", (B.3)
and for the last term we have
20V, Vyn” = 2V, (n"'V,n") = 2(V,n")(V,n")
=2V, (n"V,n") — K* + K, K", (B.4)
where in the last step we used
vVt = g"vVun, = (¢" 4 sntn”)V,n,
= quyvunu =K, (B.5)
(Vun”)(Vont) = (Vun,) (Vone)g"? g**
= (Vun,)(Vune)(¢"7 + sntn?)(¢"P + sn"n?)

= (Vun)(Vune)g""q"*
= K, K™ (B.6)

Here, we repeatedly used that n#V,n, = %(Vyn“nu) = 0. Combining (B.2) ,

one arrives at the Codacci equation

DR = PIR — §[K,, K" — K?) — 45V, (n"V,n"). (B.7)

Spin connection and its curvature: For the spatial components of the spin con-

nection, we find

qlljll_‘ulfj _ qﬁley[lv;ﬂel/ﬂ
= ql’j/(”e”[f +sn/nYV (e, !N + sn,nl)
= ”e”UDM”eVJ] + sn[ID,mJ] - QSnUHe”mKW

=i —osnlllleVf,,, (B.8)
where we defined

1= ”e”UDHHeZ,J] + sn[IDunJ}, (B.9)
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which upon pulling back to the spatial manifold ¢ becomes the hybrid spin connection
[103] introduced in appendix

For the projection of the spin connection on the timelike unit normal n*, we simi-
larly find

n‘TMU = n”e"[lvueu‘]}
= nt(lle’l! 4 sn”n[I)Vu(He,,‘ﬂ + sn,nh)
= lle"lfy, lle, 7l 4 splfv,n/l — 250!l p,

= eIy, lle, N + snlfw,n’! + 2nlllieVl/ D, log N, (B.10)

where in the last line, we used that (see e.g. [62, page 55])

S

N
For its curvature, we immediately find from ((C.10))

Vun, = ——D,N. (B.11)

G’U‘IGVJRW,[J — E“I(D—i—l)Ruypyep]

— () p
= PIR — s[K,, K" — K?) — 45V, (n"V ")
= lerlle" BRI 15 — 8[Ky KM — K2 — 45V, (n*V,n”),  (B.12)

where we used (B.7) in the third step and RHWU = (D)Ru,,pa"ep”“e"‘] and RHWU

denotes the curvature of FHMI J,
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C

(Hybrid) spin connection and

generalisations

This appendix is taken from [10]. We will introduce several connections relevant for the
main text, namely the spin connection compatible with the vielbein, Peldan’s “hybrid”

spin connection [I03] and extensions thereof to higher dimensional internal space.

C.1 Vielbein compatible spin connection

It is a well-known fact that, given an SO(D) vielbein e, in D dimensions (or, equiva-
lently, an SO(D + 1) or SO(1, D) vielbein in D + 1 dimensions), there exists a unique

spin connection I'y;;[e] compatible with it, which is obtained by solving
0 ; DFaebi = Daebi + F[e}aijebj (Cl)

for I'[e]qij, where D, denotes the torsion free metric compatible covariant derivative.

D?(D-1) D?(D+1)
2 2

These are D3 equations for unknowns I'[e]q;;, but of these, namely

2e(b|iDFae|0)i = Duqp. = 0, are identically satisfied (or, if we do not fix the affine

2
connection, can be solved for the w components of I'f ). Therefore, the number

of equations equals the number of unknowns, and we can solve for
Llelaij = eb[iDaebU]- (C.2)
Note that an equivalent requirement in this case is the torsion freeness condition

0= D' ey, (C.3)
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C. (HYBRID) SPIN CONNECTION AND GENERALISATIONS

*(D-1)

2(p_
which constitutes Df independent equations for the D7 (D-1)

unknowns I'[e]gi;.

Its curvature R," satisfies
Raped = Rap” ecieq;, (C.4)
Rabij = Rabcd60i€dj, (05)

which will be needed in the main text. These equations can be easily derived from

0= [Drav Drb]eci = Rabcdedi + Rabijecj- (C.6)

C.2 Peldan’s hybrid connection

Starting from a Lagrangian formulation of general relativity on a D + 1 dimensional
space time manifold, the natural gauge group is SO(1, D) or SO(D+1) for the Lorentzian
or Euclidean theory, respectively. When passing to the corresponding Hamiltonian sys-
tem, a D + 1 split is performed and we are naturally led to consider a SO(1, D) or
SO(D + 1) vielbein e,” on the D dimensional spatial manifold, which we call hybrid
vielbein (cf. also chapter |3). However, from the Hamiltonian perspective, the signa-
ture of the internal space ( is not necessarily tied to the space time signature s, since
we can always start with an SO(D) vielbein on the spatial slice and introduce gauge
degrees of freedom corresponding either to SO(1, D) or SO(D + 1). In the following,
we will therefore treat internal and space time signature independently. Pelddn [103]
investigated if one could define a compatible connection also for this hybrid vielbein.
We have

0= DHey” = Dyey” + TH[e]” en™, (C.7)
which constitutes D?(D+1) equations for % unknowns I'!l[e],/7/. However, again
2

the number of equations matches the number of unknowns. We actually can solve for

equations 2€(b|] DHae|C) 1 = Dugpe = 0 are identically satisfied, and again,

the unique “hybrid” spin connection,
I'e]ars = €’ ;1 Daepys + CnyrDan gy, (C.8)

where n! is the unique (up to sign) unit normal to the hybrid vielbein, nfeq; = 0,
nIn'nr; = ¢, and ¢ again denotes the internal signature, ¢ = —1 for SO(1, D) and +1
for SO(D + 1). Note that the sign ambiguity is absent in I'"[e],;s since n! appears
quadratically.

In this case, the conditions

!

0= Djyey’ (C.9)
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are insufficient [I03], being only 7D2(D2_1)) independent equations. Again, since
0= [Dy, Dylle.” = Rapcled” + Ry el (C.10)
0= [D, Dyl]n’ = Rgy! yn, (C.11)
we have
Rabed = Ry ecreas, (C.12)
R = Rapeae e (C.13)

The superscript “H” on ' and RM will be skipped in several formulae throughout this
thesis, since already the index structure distinguishes the hybrid from the usual spin

connection.

C.3 Extensions to higher dimensional internal space

Now we want to extend this result to a higher dimensional internal space, which is nec-
essary for black hole applications in part [V} since we have to deal with the vielbein on
the D — 1 dimensional inner boundaries of the spatial slice, and also allows for the con-
struction of SO(p, D+q) gauge theories (p > 0, ¢ > 0, p+q # 0) of gravity in section[9.2]

We will start quite general by introducing an RPP+9 — valued vielbein e,” in D dimen-

sions (note that in this section, we will have I, J,K... = 1,..., D + k), ealernry = qap

where n;; = diag(—, ..., —, +, ..., +) and p+¢q = k, and ask for a so(p, D + ¢) connection
N— N —

P D+q
'L annihilating e/. We have

0 = DY/ = Dyey” + THY e, K, (C.14)

corresponding to D?(D + k) equations to determine I'fl ;. However, these equations

are not all independent, since
0= e(c‘IDgew)] (C.15)

are identically satisfied due to the antisymmetry of the so(p, D + ¢) connection and the

metric compatibility of D,. The result are

D*(D +k) — D*(D+1)/2=D*(D—1)/2 + k) (C.16)

319



C. (HYBRID) SPIN CONNECTION AND GENERALISATIONS

independent equations for the
DD +k)(D+k—-1)/2 (C.17)

unknowns F?I g+ It is clear that F?[ s cannot be determined uniquely for any £, since
the number of equations grows, for fixed D, linearly with k, while the connection
components grow quadratically. More precisely, equating both, we obtain =
(C.17) & Dk(k —1)/2 = 0, i.e. the connection is only uniquely determined for the
gauge groups SO(D), corresponding to k = 0, and SO(1, D) or SO(D + 1) for k = 1.
Let us study the indeterminacy for £ > 1 in more detail. First we “complete” the
vielbein by choosing an orthonormal set of k unit vectors n;!, i = 1, ..., k, normal to
the vielbein, i.e. n;ileq; = 0 Vi = 1,....k and nifnj‘]nu = n; Vi,j = 1,...,k where
ni; = diag(—, ..., —, 4+, ..., +)'| The indices 1, j, ... will be raised and lowered using this
—— ——

P a
metric and its inverse /. Then we can decompose I' EI 7 according to

T8y = Tars + 20T g + g, (C.18)

where summation over repeated indices 4, j is understood and Ty7yn;” = 0Vi = 1,..., k,
I'yyn;? = 0Vi,j = 1,....k. Inserting this decomposition of I';; ; into 1’ we find
that T, simply drops out and therefore cannot be solved for, and the number of
its components, Dk(k — 1)/2 since it is antisymmetric in 4, j, precisely matches the

indeterminacy. For the other components, one obtains

=

a7 = €' (M yx Daes’™, (C.19)
a7 = Nk Dan'™, (C.20)

=

where 7777 := e,re® . Inserting back into (C.18)), we find
T4 = 2€"1Daeyy) — € Daes™ + nimjinTa (C.21)

and therefore a Dk(k — 1)/2 — parameter family of connections annihilating e,’. To
obtain a unique connection, we have to add additional requirements, e.g. we could
demand that I, = 0V i,j = 1,..., k (these requirements are independent of the choice
of “completion” for the vielbein {n;/}¥ ;). This connection 'l would be special in

that it would only depend on e,’,

Fiu = 2€b[I|Da€b|J] - €b[177J]KDa€bK- (C.22)

! Actually, we can as well specify k — 1 vectors, since the last one, ng’, is already determined (up

to sign) by the mentioned requirements.
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C.3 Extensions to higher dimensional internal space

Having in mind the application to black holes, we will proceed differently. For a fixed
extension, the extra conditions we impose are Dln;/ = 0 Vi = 1,....k — 1E| (these
requirements are sensitive to the choice of completion). Again, these conditions are not
all independent. We have e,! Dn;; = 0 and n(il D(Il{nj) ; = 0 already satisfied, which
results in D(k — 1)(D + k) — (D*(k — 1) + Dk(k — 1)/2) = Dk(k — 1)/2 independent
equations. This equals the number of undetermined components I'/,,. Solving for these,
we find

', = —nl Denil! (C.23)
and
07 sle,n] = €® Daeyy g + 1’ (1) Dany (C.24)

as the unique connection annihilating the chosen completion of e,”. This connection

has several nice properties. For all connection of the family, we have

Rg)ljecfedJ = Rabcda (C.25)

Rl peni' ™7 =0, (C.26)
which follows from contraction of
0= [DY, DYle.s = RAT je.” + Rupleq’. (C.27)
But for this connection I'’, we additionally have
R n;? = D% DVn;T =0 (C.28)
and therefore
Royry = Rave” e“reay. (C.29)

From the right hand side of (C.29)), we see that, while Fg ;7 depends on the choice of
{n;" }le, Rgbl s is independent of n, determined completely by e, and its first and
second derivatives. Explicitly, choosing a different completion {7,/ }¥_; of e,!, which is

related to {n;’}¥_; by a SO(p, q) transformation g via #; = g;/n;, we find

Torsle,n) = Tarsle,n] + Kars, (C.30)
Kary = ¢'kn"rny Dagi, (C.31)

'Note that, since ny! is given by eqa’, ns?, i = 1,...,k — 1, up to sign, it is automatically annihilated
by D, if the latter are.
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and

Ry [L0le, 7] = Ry [L%le, nl] + 2D°(e, n]ju Ky + [Ka, Kolrg = ... = Roprs[L0le, n]].
(C.32)

For even dimensions D = 2n, it follows from (|C.29)

Ki..KiyliJi..InJn _a1by...anb 0 0 _ D) i1...0k,,. K1 Ky
€ nenoe nen Ralbllljl"'Rananan = E( )6 nzl[ <My, ], (033)

the right hand side of which is also manifestly invariant under SO(p, ¢) rotations and

where E(P) denotes the D - dimensional Euler density

1 €a1bl...anbnecldl...cnan

V4

Note that Rgb[ 7 is not the only curvature tensor constructed from eq! only. Of course,

EP) .= arbrerds-Ra, byend, - (C.34)

the connection I' Lll 1 we considered earlier, obtained by choosing Iy = 0, is constructed

solely from e,! and so is the corresponding curvature tensor, but it fails to satisfy

(C.29). More precisely, we find

Riyry = Ry + 2 — D)k (n— 0550 (Dpajec™ ) (Dpea®). (C.35)
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D

The Lie algebras so(1, D) and
so(D + 1)

This appendix is mostly taken from [2]. We generalise a so(1,3) structure constant

identity given in [I03] to so(1, D) or so(D + 1). In our notation,

(Tan)' s =n"1anm (D.1)

denotes the generators of so(1, D) or so(D 4+ 1) in the fundamental representation. The
antisymmetric index pair AB labels the D(D + 1)/2 generators, I and J are matrix
indices, also antisymmetric. In the following, a generator T4p will always have a label,
but the matrix indices will be mostly suppressed. Insertion of the definitions shows

that the generators satisfy the usual Lorentz algebra
I
[Tas,Tep)' 5 =2na5c (Toys)" 7 = fas.cp,”" (Ter)' s (D.2)
with
fag.cp.er = —2ng)cnp)EnFa = —2Tr (TagTepTEF) - (D.3)
We further define the Cartan-Killing metric
_ _ 1J KL
qrikr = Mg & —Tr(TapTep) = (Tas)'™” qrixr (Tep) (D.4)

and the object

*7 1 M
(¢ M)IJ,KL = §€1JKLM (D.5)
defining the dual
T3 = (¢*M)ap,“PTep (D.6)
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generators. We note that self-duality is a concept reserved for 3 + 1 dimensions.

These definitions lead us to the main result of this appendix:

S (oot ~
fapepirferen’ = aap.eracrcop + =22 (M) ap.pr(@)am.op
2 2(D — 3)!
—(gr < cu), (D.7)
where 73757 1= N1, [N | TMz2| Na| -+ TIMp 5| N 5] 18 defined with total weight one and ¢ = —1

(4+1) for so(1,D) (so(D + 1)) as before. It can be proven by carefully inserting the
definitions and writing out explicitly each term.

Using these definitions, we can rewrite

A, Q) ;= A*PQP fapep!y, (D.8)

Tr (AQZ) = —%AABQCDEEFJ”AB,CD,EF, (D.9)

and use (D.7)) to simplify certain calculations in the main text.
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E

Gamma matrices

This appendix is taken from [4]. The properties of the gamma matrices can be found in
most textbooks on quantum field theory, see, for instance, [324]. Their basic property
is the Clifford algebra

{v',77}y = 29", (E.1)

where 0!/ is the flat Minkowski metric of a spacetime with signature (p, ¢). From this

relation alone, one deduces,
(=1, 5) = =iyt iyt (E-2)
and
i[S KL = gL gKI _ pLIsKT | pJKSIL  pIKsJL (E.3)

where ¥V .= —%[’yl ,v’]. X!’ thus constitutes a representation of the Lie algebra
so(p, q) on spinor space.

Furthermore, the expression {v%, %1/} = —iylK~y71y7l is completely antisymmetric in
1,J K.

It is noteworthy that /7 is a Hermitian matrix for Euclidean signature. In general,
(ZI J )T = n!nt781J which becomes important when dealing with Lorentzian signa-
ture, i.e. the boost part of the GauB constraint is purely rotational as $% + (X%) = 0.
Explicit representations of the gamma matrices exist for all dimensions D +1 > 2, see,
for instance, [325], or [326]. A generalisation of left- and right-handed spinors exists

for D + 1 even and is spelled out e.g. in [6].
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F

Higher dimensional Newman

Penrose formalism

In this appendix, which is taken from [I0], we will very briefly introduce the higher
dimensional Newman Penrose formalism as far as it is needed for the purpose of this

thesis. Firstly, the Riemann tensor can be decomposed as follows

(D+1) _ ~(D+1) (D+1)  (D+1) 2 (D+1)
Rivpe’ = Cpvpo” + D_1 (R[mp 9o R[MU 9|V]p) DD — 1)g[u|pg\V10R
2 2
_ (D+1 (D+1) (D+1) D+1
=Cion) + 51 (J[Mp Ile = Jiulo 9|u]p) T D+ 1)9[u|p9|u1aR( ),

(F.1)

where C,S?,;Lgl) denotes the (D + 1) Weyl tensor and J,%)H) = RL’BH) — ﬁgMVR(D+1)
the tracefree Ricci tensor. In a given null frame {I,k, {m;}}, > = k> =1-m; =k-m; =
0,1 -k=—1, mr-my = nry, we will use the following notation (cf. [327]) for the

components of the Weyl tensor

Woi01 := COEVIME1PK?, Woior := COEVIMEY 1Pmg,

Woi1s = OO EDIME kPmg, Woipy o= CLO VIR mimT,

\I/()[()J = Cﬁf;l)l“m?lpmg, \I/()]L] = C&?;l)l”m?kpmﬂ,

\I/QIJK = Cﬁ?;,l)l“m?m{}m?{, \Iflle = C’fgg,l)k“m'fk:pmg,

WijK = Cﬁ?;l)k“m?msm‘}(, ViIKL = Cﬁlg[;l)m’;mf}m';(m%. (F.2)

We will use analogous notation for the (D + 1) Riemann tensor if convenient. From

curvature tensor symmetries and tracelessness, the relations

Yore' = Win' =0, Yoy = Vi) = Vi = 0, Yo = —Yon',
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F. HIGHER DIMENSIONAL NEWMAN PENROSE FORMALISM

1
o100 = —VYors ', Cor1g = U117, Yorig = 3 (Torrs + ¥rxs™) (F.3)

can be derived [327]. For the components of the tracefree Ricci tensor J,SEH), we
introduce the notation
Doy = J£L£)+1)lulv’ Do = J;(Lgﬂ)l“kya Doy = J;(L?H)l“m?v
Oy = JOVEE, @y =J0 VY, @y = JD T mimy, (F.4)
and, because of tracelessness, it holds that
20, = &, (F.5)
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G

Details on calculations for part

v

This appendix is taken from [I0] and provides calculational details for several deriva-

tions of part

G.1 Symplectic structure via the Palatini action

In this appendix, we provide calculational details for showing (17.41]),

1
1J ~I D— l
Aé[lg 62]2’11[] = 2/A {d [5[15 52]71[] + m(SuG 1 VAN 52}(&) } .

(G.1)

We will contract any of the three lines of ((17.38]) separately with (17.24]) and multiply

them by (D%ll)!. For the first line, we find

(D — 1)€[JK1A._KD71 [mL VAN mK2 VANPYRAN mKDfl(imL5[1mK1)]
A [52]r°” — 25yl k) — 2w52](z[fkﬂ)}
= (D — l)GIJKlmKD_llIkJJ [mL VAN mi2 N A mip-1 (imLﬁKlMé[lmM)}
VAN |:—2k[/dpo(52]ll/ — 252]w}
+ (D — 1)6]JK1,__KD_1 [mL AmB2 A LA mKD_l(—ileKlk]V[(S[lmN[)]
A [2k7 dpodggl! — 2k7w(591")]
+ (D — 1)€[JK1...KD71 [mL A mK2 AN mKD*l(*imLkiKllM(S[lmM)]

A [217 dpodggk! + 217 w(59 k)]

= — Q(D — 1)6]JK1_._KD71ZI]§J(S[1WLK1 AmB2 A AmEDP- A |:k[’d1"052]lll + 52](,‘)}

— 2(D — 1)€[JK1...KD71lIkJmM VAN m2 N A mip-1

A [0 kM dpodgl™t — w(Sp kM) (691" 1)]
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G. DETAILS ON CALCULATIONS FOR PART |V|

—2(D - 1)6[JK1...KD71ZI]€J’I7’LM AmBE2 A AmEDp—
A [8pt™ dpody k™t + w(Spl™M) (616" )]

— 26527 A [d(kl,az]zf’) + 52]4

—2(D - 1)261JK1[K2_._KD71‘lIkJm|M} AmE2 A o AmEP
A [0 kM dpodg ™t — w(S kM) (691" 1)]

—2(D — 1)€[JK1_._KD_1lIkJmM AmB2 AL AmEP
A [0t dpody k™t + w(Sl™M) (616" )]

— 26,1 A [d(k:pég]lp) n 52]4

—2(D — 1)61‘]]\/[;@,__;(1%1lIkJmK1 AmB2 A AmED
A [0 kM dpodg ™t — w( kM) (69915 1)]

—-2(D - l)elJKlmKD_lllkJmM AmE2 A L AmEP
A [8ppl™ drody k™t + w(Spl™) (51 k5)]

= 203€P 71 A [ dlepdyt”) + by

— 2(D — 1)6[JK1K2.._KD_1lIkJmM A mK2 VANAN mKD*1

A [6p k"™ dpodg ™ + 0ppl™ dpodyy k™t — w(0p k") (091 ) + w(Spl™) (6155)]

= 203€P 71 A [dlep dyt”) + by

—2(D = Dergmy i 10 I &I m™M AmB2 AL AmEP=1 A dpo (565 S0 ap)
= 20PN |d(kpogl”) + by

+ ek Ko kp I AmE2 A A mEP1 A dipo (5650 891 1)

— 2er Mko. kp L KM AMBE A A mBEPT Ad(6 kR 6yl

= 26PN |d(kpogl”) + by

— 2e5 K MK K p LR AmMB2 A LA MRt A dpo (In S kN E 6yl 1)
— 26PN A (01 K 0yl )

= 20PN |d(Rpdgl") + by + 26271 A dpo (VL) (K 31))

— 26PN A (011K 0yl )

—2d [(5[161’*11@1,)(52]11’)] — 26" A Sy
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G.2 Symplectic structure independent of the internal signature

Similar calculations of the same length show that for the second and third line of (|17.38])
contracted with ((17.24]), we obtain

— (D — 1)(D — 2)€[JK1,,,KD_IZK1 kAmp A mis VANAN mHip-1 (’imL(S[lmKQ)
2
A0y + == (01 )m! 6y
=—2(D = 2)ersK,..ip 1 d [UE Tk AmM AmB3 AL AmMEPT (i, 6 ) 69051 ]

(G.3)

and

— (D — 1>€IJK1_._KD71 (—lKI (zlé[lk) + ((5[1ZK1)) EAmB2 A L AmEp

2

A [5r0” + 57 ((&U)mlﬂek + z”(amlﬂ)ek)]

D —
= — Q(D — 1)6]JK1._.KD_1d [lIka' AmB2 AL AmEp (ilé[lk + kMé[llM) (52]ZK1] ,
(G.4)

respectively. Summing up the three lines, we arrive at (17.41)) rescaled by the factor

(0%11)! introduced before.

G.2 Symplectic structure independent of the internal sig-

nature

In this appendix, we provide calculational details for showing that under the assump-
tio §EZY — 0 (2n = D — 1), we have

Vh

E(2n)
2
vVh

(6[151)(52}711) — nEIJKLMlNl...Mn,1Nn,16&50{1[31...&”,15”,1 (5[1ngj) (52]F%KL> %

0 0
Ra151M1N1 "'Ran—lﬁn—1Mn—1Nn—1’
(G.5)

where I'Y ; ; is the generalised hybrid connection and R 31, the corresponding curvature

tensor which are given in appendix

Note that this requirement for an UDNRIH is equivalent to restricting to histories with a fixed

value of the horizon area, § As = 0, which can be seen as follows: Since E?™ = f(v)v/h, by integrating
2n

both sides over S we obtain f(v) = f = % actually is independent of v since both, Ag and (E®*™)

gCY s wCM) _ (B8CM) ‘ ;
= 6 A T Az §As, where we used that the topology of S is

are. Therefore, we have ¢
fixed.
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G. DETAILS ON CALCULATIONS FOR PART |V|

Starting with (G.5|), we first calculate

E(Qn) 1
6( \/E ) =4 <healﬁl--.anﬁnf'}/lal..-’Yn(snRallBl,Yl(;l...Ranﬁnyn(sn)

— _(5logh) Ejg)
e 00200 (g, Doy 0T, + Raysir s ) X
Reupardy-Roy 1m0
= —(dlogh) EC

vh

2n 5 S

eanin @it (Do, Dy, 8hg,s,) Ryt -+ Banfuasn
n

+ 76a1,81...anﬁn67161...fynénRalﬁwlel (6h5161) Ra252’7252'”Ran5n’7n5n

E(2n)
2Vh

2n
n Ealﬁl"'a"ﬂne'ylél"qné" (Daleléhglgl) Ra2527252-~-Ran5n’yn5n~ (G.G)

= —(dlogh)

In the second line, we just explicitly wrote down all variations appearing using (A.5|).
In the third, we used (A.4]) and in the last step, we used

- oo 5 5 . (2n)
EE 181...anfn (7101.-.n " R i (5h5161)R02627252...Ran5n7n5n = i (6logh).

(G.7)

This last identity can be verified as follows:

n . 81.. b
Eealﬁl anﬁné% L nROélﬁYYlel (5h5161) ROCQﬁQ’YQ(SQ"ROCnﬁn’Yn&n

- _ %6(%1/31--%6%[71|51--vn5n <5h61|C1})

= %ﬁalﬁl--a’nﬁn [(5h6151) 120200 C1m 2(n — 1) (6h172) 662"5"@7151}

hs, e, Ray Bimc Ra2ﬂ2’7252 "Ran5n7n5n

X h5161 RalﬁﬂlCl Ra2527252“R04n,3n7n5n

nE2n) nn—1) 4.8 a .
= 2\/E (510gh) I — 1ﬁ1” nﬁnefhél..’YnénRalﬁlq/ll(éhélﬁl)Ra2182')/262"Ran6n’7n5n7
(G.8)
where in the first step, we used hdhs = —hs0h®, then we added zero by adding

all terms necessary that the expression in the second line becomes antisymmetric in

V1,01, ---s Vn, On, 1 and immediately subtracting them again. Since these are D indices
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G.2 Symplectic structure independent of the internal signature

in dimension D —1, the antisymmetrisation vanishes and we are left with the subtracted
terms. The first of these gives, using hs.0h% = —dlogh, the first term in the fourth
line, while the remaining ones, after renaming indices, reproduce up to numerical fac-
tors the expression we started with. Comparing the first and the last line of , one

easily infers (G.7).

Next, we will calculate 5Fg 1

5P31J: 5F2KL UKIULJ

(
( :K1+CnKn1+sK81) (mBLm5J+CnLnJ+sL3J>
= ﬁK[[[ ( 5ngﬁK> - (D25m5K> - (51“57) m}() mg| ]
+ 2 ((8D3nsc) = (DAonk)) mig) +2 ((5DYskc) — (Dbdsi)) 11
+Cnirsyg [nK ((5D38K) - (DgésK)) — st ((5DgnK) — (DgénK))]
= ﬁK[[mmﬂ |:— <D35m6[() — <5F§7> mﬂ’ } — 2CﬁK[1nJ] (Dgén;{)

— 27':]K[ISJ} (DgésK) —2¢n(rs (DgnKésK) (G.9)

where in the second step we used nry = n77 + (nyny + sysy and nyy = mﬁjmgj, in
the third that (679, ,)m?’ = ((5ng51) — (Dgémﬂj) - (51“27) m] and corresponding
equations for n, s, and finally in the fourth step we used that Fg 7y annihilates the hybrid
vielbein and n, s. This way of expressing 5Fg 7y is convenient for several reasons. First
of all, we explicitly separated the (bar bar), (bar n), (bar s) and (n s) terms. Since the
two variations of I‘g 7y in are contracted with an e, which is bar projected on all
other indices (remember Rgﬂ 1= Rg 810> cf. , the only contributions will come from
(bar bar) - (n s) and (bar n) - (bar s) terms. Secondly, many of the terms are such
that covariant derivates D appear explicitly. This simplifies further manipulations
like partial integrations, since almost all appearing objects are annihilated by DY.
Furthermore, since S already is a boundary, no boundary terms appear when partially
integrating. Using , we thus find

nel JIEMaN - Mulo gafoaBacnbn (6,10 1 1) (59T %xcr,) By syntsNo - Roen N,

_ . IJKLM>Ns...MpNy afasfs...anBn p0O 0
= ne € Ra252M2N2...Ran5nMnNn

X [SCnIﬁJJ' (Dgﬁ[ln‘]’) SKILL (D%%]SL/)
+4¢q" rmesy <<D25[1m61r> + <5[1F5m> m},) NKSL (DgnP(SQ}SP)}

4n

- Vh

0v202...Yn0n ...QnPn
Y07202.. 700 cafazfBa..anf R02627252"‘Ranﬁn’7n5n
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G. DETAILS ON CALCULATIONS FOR PART |V|

X [Qm%] (Dgé[ln‘]) msr, (Dg(SQ]SL) — (Dg(s[lhag) (Dﬁnpég]SP)]

4n §
02...Yn0,
_ 767 Y202...Yn n6a5a262 anﬂnRangwéz"-Ranﬁn%ﬁn

X [2m7J (Dgé[lnj) msr (Dg(SQ] §L) - (Dngé[lh/&;) TLP ((52] §p)]

8n -
- _ W67(57262...vn(5n @Bz ..anfn Razﬂg'yz&z'--Ranﬁn'ynénva (Dgé[an) meL, (ngz]sL)

(2n) (2n)
- [2 <(5[1 E\/E ) + E\/E ((5[1 log h)] nP ((52}§p) . (GlO)

In the third line, note that the term containing Dgém? vanishes, since when partially

integrating, we obtain a term of the form (D?aDg]nP (55p>, which vanishes due to

torsion freeness. In the second step, we used

GIJM1N1...MnNn §

lNl...m'Y"Mnm(s"Nn = ie’ﬂ&l"ﬁ"é" (Gll)

Vh

and again (A.4). In the third step, we densitised s’ (note that s’ is always contracted
such that variations on the density vA drop out), partially integrated in the last sum-

nrsym™ pm

mand and interchanged the indices « and 5. In the fourth step, we replaced the second
summand in square brackets using (G.6)).

Now we will have a closer look at the left hand side of (G.5)).

ECY o @n) (5 ECM I
2 NG (5[18 )(52]n1) =2F\“" (5[18 )(52}711) + Th 81(5[1 log h)((SQ}n )
E(2n)

= 2BC" (68" (6yns) + n!(6p51)(6ylogh).  (G.12)

vh
Here, in the first step we varied s’ and the density v/h independently. In the second

step, we interchanged the variations and used s;én! = —n!ds; in the second summand.

For the first summand, we find
2B (5,57) (3m1)

2 0 B Y101 0n I
- _ﬁealﬁl anf 6’71 b Ralﬁl'ﬂ(sl"'Ranﬁn')’nisn(é[ln )(62]81)

= —2C€alﬁl"'a"’B"GIJKlLl"'K"L"RghBlKlLl...RganKnLnn]SJ((S[lnM)(52]SM)

= _44601161”.&”,8” el I tntn Rgl,BIKlLl "'RgnﬁnKnLnnIS[J(é[lnM) (52} S|M])

—4 1P anbn (5[171[M)€I|J]K1L1"'K"L" RO 8, 16y 1y -+ B o 16 1, 1157 (02)501)

_ *2C6a161“'a”5" ((5[1n1)6K1L1...KnLnMJ + Qn(é[anl)ELl...KnLnMJI)

0 0
x Ra151K1L1 "‘RanﬂnKnLnnIsJ(ég]sM)
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G.3 Symplectic structure for the SO(4) based Beetle-Engle connection

c.anfn Li..KnLyMJI p0 K 0 0
= _4Cn€0¢151 anf el Ra1,81K1L1(6[1n 1)Ra2ﬁ2K2L2"‘Ran,@nKnLnnlsJ((SQ]SM)

= 8Cn€al’81"'Q"B"GLI"'K"L"MJI(Dnggzl5[1TLL1)R3252K2L2...RgnﬁnKnLnn[SJ((SQ}SM)
o 8n g,

...anfBn 01..%0n RO 0 J 0 L 0 s
= —76 Pr..anp €101 RO&252’YQ52"'Ran,3n’Yn5nm61 (Dﬁld[lnj)m% (Doc162]8[/)?
(G.13)

which shows that (G.12) coincides with (G.10]) iff § (E\(;g)) = 0. Here, in the first
step, we used the defining equation for £*® and in the second step we used (G.11)
and (C.29)). In the third step, we antisymmetrise in the lower pair of indices J and

M. Note that the additional term vanishes since s78s; = 0 and the epsilon tensor

enforces dsy to be projected into that direction. The fifth line is exactly the same as
the fourth, we just moved 6n™ to the front and antisymmetrised the upper indices
J and M instead of the lower ones. Now we again antisymmetrise the D + 2 upper
indices M, I, J, Ky, L1, ..., K, L,,, which gives zero, and subtract the term we added for
antisymmetrisation again. The first of these, the first summand in the round brackets
in line 6, gives zero due to ndn; = 0. The others all give the same term of the
form RgBKLénL = QDFQDg,}énK, which we used in the second to last line. One more
integration by parts in the last line, again using and densitising s gives the

final result.

G.3 Symplectic structure for the SO(4) based Beetle-Engle

connection

For D = 3, we will show that one can bypass the restriction to spherically symmetric

isolated horizons in complete analogy to the treatment of Beetle and Engle [281],
2(E®)(68")(0gny) = "KL (5 Aars) (09 AskL) (G.14)

where <E(2)> = . g d2zE® coincides, up to constant factors, with the Euler character-
istic of the intersection of the Isolated Horizon with the spatial slices, and A,;; was
defined in (17.69). The assumption & % = 0 is then replaced by §(E®) = 0, which

however is already enforced by our choice of topology of the horizon.
To prove (G.14]), we start by noting that

el JKL o (6pAars) (69AsK1L)

= el TRET (61101 5) (89T xcr) + 2 (0pTars) (6 Kprr) + (dnKars) (63 Ksxr)]
= A+B+C, (G.15)
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G. DETAILS ON CALCULATIONS FOR PART |V|

where we introduced the abbreviations A, B, C for the three summands. The first
summand in square brackets is, up to factors, the restriction to D = 3 of what we just

calculated above,

A= TBEeP (5,10, 1) (69T %)

2F(2)
-~ Vh

(6[151)((52]71,]) -2 <6[1) ’I’lP ((52]§P) . (G16)
Next, we need to calculate

0Karg =0 <2ma[1m5|J} hﬁ”y(Dﬂ/J))
= 2mam” 5 (Do) + A(6mi i) mgsi nhPY (D) + 2marms; g (SR°7) (D))

+ 4((5m[a‘K)m5][JnKnI] h'B’y(D,ﬂP) + 4(5M[Q‘K)mfg][JSKSH hﬁ’y(Dv’(/J),
(G.17)

where we again split the (bar bar) terms (second line) from the (bar n), (bar s) terms

(third line). Since no (n s) terms appear, we find for C

C =l /KLgaB (5[1KOJJ) (52}K5KL)
= 32¢e" P (S1ymya nr )™ gk (D) (Symyg v )me ps™ s h™ (Det))
= —32Vhe®? (§ymajnr) s (Soymg v )n™ W (Dewp)s™ O (D))
0, (G.18)

where in the second step we used

EIJKLTL[SJmaKmBL = C\/Eea/g (G.19)

and the last equality is easily obtained when explicitly writing out all antisymmetrisa-
tions. For B, we find using (G.9) and (G.17))

B =278 (0010, ) (9 Ksxc1)
= 2! MR [=2(nrs, (Dan™dpsar)] [QWﬁKmA/LDﬁW/J + 2mg L (35 h7°) Dt
"‘4(52]m[,B\N)m'y}LﬁNKthcSw]
+ [=207" gy (Dadpinar)] [4(521m{mN)mv]LSNSKh”‘SDW]

+ [=20™ 155 (Dabpsn)] [44(52]m[6|N)m'y]LnNnKh’y(sD6¢]}
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G.3 Symplectic structure for the SO(4) based Beetle-Engle connection

= —8Vhe*? {(Dan™dys0r) [eayh 7 Dsdagth + 2(0mip v )ecym™ B Dy
ey (09h7°) Dstt|
+2m M (Dadpnar) (Saymigin ey s™h7° Dsv
—2m (Dadpsur) (521m[6|N)6e|v]”Nh”‘sD6¢}
= —svh {(DanMé[lsM) [—D%Q]w + 2(Syyman)ml®N DLy — (Symgn)m®N Dy
—(3yh°") Dsv|
+2 (Dadjinar) (Soyman)s™ mM Dy — (Dodpnar) (Sympn)s™m™™ Dy
—2 (Dadpsnr) (Syman)n™Nml*™M DPly 4+ (Dodpisi) (52}mﬁN)nNmaMD51/1}
= -8vh {(DanM5[1SM) [—DO‘52]¢ — (ogman)m N D — (52]h°‘5)D5¢}
+ (Dadpnar) (8gs™ )™ D — (Dadpsar) (Sgn™ )in™ D4}
= —svh {(nM Susnr) [Dap%]w + Do((83 1og V) D™¥) + Da((5y haé)Dw)}
+ (Dadpnardys™ ) iin™ Dy}
— —8Vh { (M5 su) [Acszm + (Db log VR) D + (85 log V) A
~(Gayhas) D* D% = (DG has) D] — (Bama) (5™ A0 |

= —8vVh { (nM(S[lsM) (52]A¢) — \}E(d[lnM) [\/E(éz]sM) + SM(52] \/E)} Aw}
= =8 {(n"é5m) (0 A¢) — (61nar) (33" ) A}

and since we assumed that Ay = 1 (i\/%) - <E(2)>> and §(E®?)) =0, we find

(2) (2)
=2 {(”M5[1§M) (52135) + (01150 (5n™) (?/E - <E(2)>> } : (G.20)

Here, in the second line, we inserted the expressions for 61, ;; and 6K,7s
G.17)). Note that since dK,r; does not contain (n s) terms, the (bar bar) terms of
o107 drop out. In the third step, we used 1) and 17y = marm? s, and in the
fourth step, epsilon identities were used and antisymmetrisations in (3, ) were written
out explicitly. When furthermore writing out the antisymmetrisations in (a, 3), we
find that several terms cancel (step 5) and additionally used (dmqy7)n! = —(0n!)mar,
(6mar)s’ = —(0s")mqr and marm®; = 777 In the sixth step, the upper line is partially
integrated and we used (§mar)m™ = 2 (Shag)h® = ﬁé\/ﬁ, and the two summands

of the lower line are combined into one term. The seventh step consists of writing out
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G. DETAILS ON CALCULATIONS FOR PART |V|

all individual appearing in the square brackets explicitly and partially integrating the
last term. In step 8, we used (A.9)) and the remaining steps are straightforward.

Combining (G.16)), (G.20) and (G.18]), we find immediately
el L e (6 Aaty) (89 AsxL)

2E®2) y E®2) )
= == (6un") (6y51) + 2 <5[1 n® (595p)

Vh Vh
2 2)
-2 {(“M5[1§M) (52]?/5) + (8 5ar) (™) (E\/E - (E(2)>> }
= 2(E®) (61150) (Szn™). (G.21)
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