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Höherdimensionale und supersymmetrische Erweiterungen der

Schleifenquantengravitation

Der Naturwissenschaftlichen Fakultät

der Friedrich-Alexander Universität

Erlangen-Nürnberg

zur Erlangung des Doktorgrades

Dr. rer. nat.

vorgelegt von

Andreas Thurn

aus Kemnath

http://www.natfak.uni-erlangen.de
http://www.uni-erlangen.de
http://www.uni-erlangen.de
mailto:andreas-thurn@web.de




Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der

Friedrich-Alexander Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 15. November 2013
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Abstract

In this work, we extend loop quantum gravity (LQG) both, to higher di-

mensions and supersymmetry (i.e. supergravity theories), thus overcoming

the current limitation to 3+1 dimensions with standard model matter fields.

On the one hand, this gives a proof of principle that LQG is in accordance

with these two theoretical concepts, and on the other hand hopefully allows

contact with superstring/M - theory, which necessarily is supersymmetric

and formulated in ten or eleven spacetime dimensions. Symmetry argu-

ments suggest that supergravity theories in the corresponding dimensions

constitute the low energy effective field theory limit of superstring/M - the-

ory. This makes a study of the loop quantisation thereof, which we start

here, a promising endeavour at the border between the two approaches.

In more detail, our findings are the following: firstly, a new canonical for-

mulation for general relativity in D + 1 spacetime dimensions (D ≥ 2) on

a Yang Mills theory phase space is presented for the first time, with the

core properties that 1. the canonical variables encoding the metric informa-

tion are a real connection and its real conjugate momentum, in particular

satisfying the standard canonical Poisson bracket relations, 2. the gauge

group can be chosen to be a compact group (namely SO(D + 1)) for both,

Lorentzian and Euclidean signature spacetimes, and 3. the system of con-

straints is first class (in Dirac’s terminology). Up to now, such a formulation

was only known for D = 3 (and D = 2), corresponding to Ashtekar Barbero

variables, constituting the classical foundation of the loop quantisation pro-

gramme.

The quantisation procedure itself is formulated almost independently of the

number of spacetime dimensions and the choice of compact gauge group, and
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therefore the lack of higher dimensional analogues of LQG only was caused

by the missing classical canonical formulation satisfying 1. - 3. Thus it is not

surprising and we show explicitly that the new formulation we present can

be quantised using the methods developed in the loop community straight-

forwardly to obtain LQG theories in higher dimensions.

The formulation which we present is genuinely new in that it does not

reduce to the Ashtekar Barbero formulation for D = 3, and furthermore for

D > 2 comes with an additional set of constraints, the so called simplicity

constraints, which pose the only conceptually new challenge when quantis-

ing. Interestingly, these constraints are not at all unknown in (quantum)

gravity research, and in particular are a standard ingredient in the covariant

approach to LQG called spin foam models. The formulation in this sense

builds a novel bridge between the covariant and canonical approaches to

LQG. The quantum anomalies known for this constraint from spin foams

are recovered, which lead to problems when implementing it at the quantum

level. We present some new proposals of how to deal with these problems.

In the second part of this work, we give an extension of the above framework

to the loop quantisation of a large class of Lorentzian signature supergrav-

ities, including in particular the D + 1 = 4 N = 8, D + 1 = 11 N = 1 and

D + 1 = 10 N = 1 theories. Concretely, we incorporate standard and also

non-standard matter fields, which appear in supergravity theories due to

the requirement of supersymmetry, into the afore developed framework of

higher dimensional LQG.

Coupling to standard model matter fields has already been achieved in

usual LQG and the results obtained there carry over to the case at hand.

The only exception is the treatment of Dirac fermions, which needs slight

adjustment: coming from an action principle, the Dirac field transforms in

the spinor representation of the gauge group SO(1, D) for the physically rel-

evant Lorentzian theory, but due to the strong similarity of the Lorentzian

and the Euclidean Clifford algebras, the gauge group can be exchanged for
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SO(D + 1) to fit in with the gravitational degrees of freedom.

Typical non-standard fields appearing in supergravity theories are the spin

3/2 Rarita Schwinger field (“gravitino”) on the fermionic side, and (Abelian)

higher p-form fields as novel bosonic fields (i.e. generalisations of the

Maxwell field to higher form degree).

The former usually is a Majorana fermion (i.e. it is its own antiparticle)

and therefore belongs to a real representation space of SO(1, D). In order

to formulate supergravities in terms of SO(D+ 1) gauge theories, we again

have to exchange the gauge group SO(1, D) with SO(D + 1), but there is

no action of SO(D + 1) on these real representation spaces, which hugely

complicates the passage when compared to the case of Dirac fermions. We

present a solution to this problem and for the first time, to the best of the

author’s knowledge, provide a background independent Hilbert space rep-

resentation for the gravitino field.

Concerning novel bosonic fields, we exemplarily treat the three-form field

(“three index photon”) of D + 1 = 11 N = 1 supergravity. Due to an

additional Chern Simons term in the action, this field is not a simple gen-

eralisation of the Maxwell field to three-forms, but actually becomes self

interacting and the equivalent of the electric field is not gauge invariant. We

propose a reduced phase space quantisation with respect to the equivalent

of the Gauß constraint, and the background independent representation we

use is given by a state of Narnhofer-Thirring type, which already has been

used in the loop literature in Thiemann’s treatment of the closed bosonic

string.

In the third part of this work, as a first application of the new variables, we

extend the isolated horizon treatment (a quasi-local notion of black holes)

in LQG to higher dimensions. In D = 3, the use of Ashtekar Barbero vari-

ables induces a Chern Simons theory on the horizon and the quantisation

thereof and subsequent state counting led to the derivation of the famous
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Bekenstein Hawking entropy formula for black holes from LQG. Here, we

study (non-distorted) isolated horizons in 2(n+ 1) dimensional spacetimes

and find that using the new variables induces an SO(2(n+1)) Chern Simons

theory thereon. Since this theory, unlike its D = 3 counterpart, has local

degrees of freedom, the quantisation and finally rederivation of the entropy

formula become significantly more intricate and are left for further research.

We want to stress that several aspects of both, the higher dimensional

as well as the supersymmetric extension, definitely deserve further study

to actually catch up with the current status of usual canonical LQG. In

the non-supersymmetric case, this concerns mainly the implementation of

the simplicity constraint and its interplay with the dynamics. In the su-

persymmetric case, of course the supersymmetry constraint needs intensive

study, in particular its role in the quantum super Dirac algebra. We hope

that the generalisation of LQG to higher dimensions and supersymmetry

achieved in this work will spark further development to clarify the men-

tioned open problems and finally lead to new interrelations between LQG

and superstring/M - theory.
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Zusammenfassung

In dieser Arbeit verallgemeinern wir Schleifenquantengravitation (LQG) so-

wohl auf höhere Dimensionen als auch auf Supersymmetrie (d.h. Supergra-

vitationstheorien). Damit wird die bestehende Limitation der LQG auf 3+1

Dimensionen und Materiefelder des Standardmodells aufgehoben. Dies be-

weist einerseits, dass LQG prinzipiell mit diesen beiden theoretischen Kon-

zepten in Einklang gebracht werden kann. Andererseits weckt es Hoffnung,

dass neue Anknüpfungspunkte zu Superstring- und M - Theorie ermöglicht

werden, da diese Theorien notwendigerweise supersymmetrisch sind und in

zehn beziehungsweise elf Raumzeitdimensionen formuliert werden müssen.

Symmetrieargumente legen nahe, dass sich diese Theorien im Niederenergie-

limes effektiv durch Supergravitationstheorien in eben diesen Dimensionen

beschreiben lassen. Die Untersuchung der Schleifenquantisierung der ent-

sprechenden Supergravitationstheorien, mit der wir in dieser Arbeit begin-

nen, stellt daher ein vielversprechendes Unterfangen an der Grenze zwischen

den beiden Ansätzen dar.

Präziser formuliert lauten unsere Ergebnisse wie folgt: Wir präsentieren

erstmalig eine kanonische Formulierung der allgemeinen Relativitätstheorie

in D+ 1 Raumzeitdimensionen (D ≥ 2) auf einem Yang Mills Phasenraum

mit den zentralen Eigenschaften: 1. Die kanonischen Variablen, die die me-

trische Information tragen, sind ein reeller Zusammenhang und ein dazu

konjugierter reeller Impuls, die insbesondere die kanonischen Poissonklam-

merrelationen erfüllen. 2. Als Eichgruppe kann sowohl für die lorentzsche

als auch die euklidische Theorie eine kompakte Gruppe gewält werden (in

unserem Fall SO(D + 1)). 3. Die Zwangsbedingungen sind alle von erster

Klasse (in Diracs Terminologie). Eine solche Formulierung war bisher nur

in drei und vier Dimensionen bekannt, die Ashtekar Barbero Formulierung,
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welche die klassische Basis für LQG darstellt.

Das Programm der Schleifenquantisierung selbst ist fast gänzlich unabhängig

von der Anzahl der Raumzeitdimensionen und der Wahl der kompakten

Eichgruppe formuliert, weswegen das Fehlen von höherdimensionalen Ana-

loga der LQG alleine dem Nichtvorhandensein der klassischen kanonischen

Formulierung zuzuschreiben ist, welche die obigen Anforderungen 1. - 3.

erfüllt. Darum ist es nicht verwunderlich, dass die Methoden der Schlei-

fenquantisierung direkt auf die hier präsentierte Formulierung anwendbar

sind, um höherdimensionale Schleifenquantengravitationstheorien zu erhal-

ten. Dies arbeiten wir explizit aus.

Die Formulierung, die wir präsentieren, ist insofern wirklich neu, als dass

sie sich für die Wahl D = 3 nicht auf die bekannte Ashtekar Barbero For-

mulierung reduziert. Stattdessen finden wir für D > 2 eine zusätzliche

Zwangsbedingung, die sogenannte
”
Simplicity“ Zwangsbedingung, die die

einzige konzeptionell neue Herausforderung bei der Quantisierung darstellt.

Diese Zwangsbedingung ist interessanterweise keineswegs unbekannt in der

(Quanten-) Gravitationsforschung und taucht insbesondere generell in Spin-

schaummodellen auf, die auch kovarianter Ansatz zur LQG genannt werden.

In diesem Sinne stellt unsere Formulierung eine neue Verbindung zwischen

kovarianter und kanonischer LQG her. Für diese Zwangsbedingung treten

Quantenanomalien auf, die schon von den Spinschaummodellen her bekannt

sind und die zu Problemen bei der Implementierung der Zwangsbedingung

auf Quantenebene führen. Wir stellen einige neue Lösungsansätze hierfür

vor.

Den zweiten Teil dieser Arbeit stellt die Erweiterung des obigen Rahmen-

werks auf die Schleifenquatisierung einer ganzen Klasse von lorentzschen

Supergravitationstheorien dar, die insbesondere die D + 1 = 4 N = 8, die

D+ 1 = 11 N = 1 und die D+ 1 = 10 N = 1 Theorien umfasst. Konkreter

untersuchen wir dazu die Kopplung von Standard- und außergewöhnlichen

Materiefeldern an die bis dahin untersuchte Vakuumgravitationstheorie, die
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in Supergravitationstheorien wegen den Anforderungen der Supersymmetrie

vorkommen.

Die Kopplung von Standardmaterie wurde für die LQG bereits erforscht

und die Ergebnisse aus der vierdimensionalen Theorie sind auch auf die

neue Formulierung anwendbar. Die einzige Ausnahme bilden Diracfermio-

nen, bei denen nachgebessert werden muss: Ausgehend von einer Wirkung

transformieren sie in der Spinordarstellung der Eichgruppe SO(1, D), aber

wegen der starken Ähnlichkeit der lorentzschen und euklidischen Clifford

Algebren kann die Eichgruppe gegen SO(D+ 1) getauscht werden. Das Di-

racfeld fügt sich so in die Behandlung des gravitativen Anteils der Theorie

ein.

Bezüglich der außergewöhnlichen Materiefelder tritt in Supergravitations-

theorien im fermionischen Sektor typischerweise das Spin 3/2 Rarita Schwin-

ger Feld (
”
Gravitino“) auf und auf bosonischer Seite sind höhere p-Form

Felder (d.h. Verallgemeinerungen des Maxwellfeldes auf höhere Formgrade)

zu finden.

Ersteres ist normalerweise ein Majoranafermion (d.h. es ist sein eigenes An-

titeilchen) und gehört damit zu einem reellen Darstellungsraum der SO(1, D).

Um nun auch Supergravitationstheorien als SO(D+ 1) Eichtheorien zu for-

mulieren, muss die Eichgruppe SO(1, D) erneut gegen SO(D+ 1) getauscht

werden. Aber auf den reellen Darstellungsräumen existiert keine Wirkung

der Gruppe SO(D + 1), was den Eichgruppenwechsel verglichen mit dem

Fall des Diracfeldes enorm erschwert. Wir finden eine Lösung für dieses

Problem und konstruieren, nach bestem Wissen des Autors erstmalig, eine

hintergrundunabhängige Hilbertraumdarstellung für das Gravitino.

Als Beispiel für die neuartigen bosonischen Felder betrachten wir das Drei-

formfeld (
”
Dreiindexphoton“) der D + 1 = 11 N = 1 Supergravitation.

Dieses Feld stellt keine triviale Erweiterung des Maxwellfeldes auf Dreifor-

men dar, da es wegen eines zusätzlichen Chern Simons Terms in der Wir-
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kung selbstwechselwirkend ist. Das führt unter anderem auch dazu, dass das

Äquivalent des elektrischen Feldes nicht eichinvariant ist. Wir führen eine

Quantisierung des bezüglich des Pendants der Gauß Zwangsbedingung re-

duzierten Phasenraumes durch. Eine hintergrundunabhängige Darstellung

erhalten wir durch Verwendung eines Zustandes vom Narnhofer-Thirring

Typ, wie er in der Literatur zur Schleifenquantisierung bereits von Thie-

mann in seiner Behandlung des geschlossenen bosonischen Strings benutzt

wurde.

Im dritten Teil der Arbeit erweitern wir schließlich als erste Anwendung

der neuen Variablen die Behandlung von isolierten Horizonten (einer quasi-

lokalen Beschreibung schwarzer Löcher) in der LQG auf höhere Dimen-

sionen. In vier Raumzeitdimensionen induziert der Gebrauch der Ashte-

kar Barbero Variablen eine Chern Simons Theorie auf dem Horizont. Ei-

ne Quantisierung der entsprechenden Horizontfreiheitsgrade und anschlie-

ßendes Zählen der Mikrozustände führte zur Herleitung von Bekensteins

und Hawkings berühmter Entropieformel für schwarze Löcher innerhalb der

LQG. In dieser Arbeit untersuchen wir (nicht-deformierte) isolierte Horizon-

te in 2(n+1)-dimensionalen Raumzeiten und finden, dass aus dem Gebrauch

der neuen Variablen eine SO(D+1) Chern Simons Theorie auf dem Horizont

resultiert. Diese hat jedoch, im Gegensatz zu ihrem dreidimensionalen Ge-

genstück, lokale Freiheitsgrade, was die Quantisierung und Herleitung der

Entropieformel signifikant erschwert. Beide Punkte müssen in zukünftiger

Forschungsarbeit weiter untersucht werden.

Es ist zu betonen, dass einige Aspekte sowohl von der höherdimensionalen

als auch von der supersymmetrischen Erweiterung weiterer Forschung bedür-

fen, um den gleichen Stand wie die aktuelle vierdimensionale LQG zu er-

reichen. Im nicht supersymmetrischen Fall betrifft dies hauptsächlich die

Implementierung der Simplicity-Zwangsbedingung und sein Zusammenspiel

mit der Dynamik. Im supersymmetrischen Fall werfen vor allem die Super-

symmetrie Zwangsbedingung und insbesondere ihre Rolle in der Quanten-

Super-Diracalgebra neue Fragen auf. Wir hoffen, dass die in dieser Arbeit
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erzielte Verallgemeinerung der LQG auf höhere Dimensionen und Supersym-

metrie weitere Forschung zur Klärung dieser Fragen anregt und schließlich

zu neuen Anknüpfungspunkten zwischen LQG und Superstring/M - Theorie

führt.
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1

Introduction

1.1 A very brief history of (canonical) loop quantum grav-

ity

More than 25 years have passed since Ashtekar introduced his nowadays famous vari-

ables [13, 14] for classical and quantum gravity in 1986. In these papers, extending

seminal work by Sen [15], not only did Ashtekar succeed in giving a canonical descrip-

tion of four dimensional general relativity on a Yang Mills phase space, at the same

time he found the formulation which up to now features the most simple version of one

of the Achilles’ heels of quantum gravity research, the so-called Hamiltonian constraint.

This usually very complicated initial value constraint of general relativity turns out to

be a polynomial function in terms of Ashtekar’s variables. However, for the physically

relevant Lorentzian signature space times, Ashtekar’s original Yang Mills connection

takes values in non compact Sl(2,C) rather than in a compact gauge group and is fur-

thermore subject to complicated reality conditions, and up to now no one succeeded in

giving a Hilbert space representation due to these two problems.

Nine years afterwards, Barbero and later Immirzi [16–19] gave a slight generalisation of

Ashtekar’s original proposal by introducing a free parameter γ, the so called Barbero

Immirzi parameter (or often just Immirzi parameter), into the theory. Upon choosing

γ = i, Ashtekar’s original proposal is recovered, while for γ ∈ R/{0}, the resulting Yang

Mills connection turns out to be real and valued in the compact SU(2). However, this

comes at the cost of a more complicated, non-polynomial Hamiltonian constraint.

1



1. Introduction

In the mean while, enormous progress had been made in giving a mathematically rigor-

ous kinematical framework for background independent quantisation of gauge theories

of compact structure groups [20–26], which now could be applied to the SU(2) Ashtekar

Barbero formulation to obtain what nowadays is called canonical loop quantum grav-

ity (LQG). In particular, the general quantum solution to two of the three (families

of) initial value constraints, the Gauß and spatial diffeomorphism constraints, could

be obtained [27], and later on, it was proven that the chosen representation actually

is unique (under mild assumptions) [28, 29]. Thiemann finally made groundbreaking

progress in giving a mathematically well defined Hamiltonian constraint operator de-

spite the non-polynomiality of the classical constraint [30, 31].

Approximately in the same period of time, the probably most popular results were

derived: Riemannian geometric operators like area and volume in LQG were found to

have discrete spectrum [32–36], that is, a result of LQG is that spacetime at a funda-

mental level is discrete; in applications of the LQG framework to cosmological models,

so called loop quantum cosmology (LQC), a natural resolution of the big bang singu-

larity was found [37]; and the famous Bekenstein Hawking formula for the black hole

entropy was derived from first principles in LQG [38–40]. The latter two, LQC and

black holes in LQG, continue to be subject to intense study also nowadays.

The mentioned results have been considerably strengthened since then and new ones

were obtained. In LQC, a resolution of various singularities of the classical theory

was found in a variety of models and there are results that the LQC effective dynamics

favours inflation (cf. [41, 42] and references therein). A mathematically rigorous frame-

work for the derivation of the black hole entropy and a sophisticated counting method

were introduced, and also logarithmic corrections to the black hole entropy could be re-

covered (cf. [43, 44] and references therein). Coupling to standard model matter fields

was achieved in [45, 46] and recently the framework was extended to metric theories

beyond general relativity [47].

Major open problems are for example the quantum dynamics and recovering of semi-

classical physics from the theory as well as a lack of proof that the constraint algebra is

2



1.2 Motivation

faithfully represented at the quantum level. To attack the first problem, a completely

new research branch, the so-called spin foam models, was launched, which tries to give

loop quantum dynamics using a path integral approach (see e.g. [48, 49] for recent

reviews and [50] for a basic introduction). We want to stress the importance of this

covariant research branch of LQG, which is at least as active as the canonical line of

research we outlined so far, but due to the canonical focus of this thesis will not play

the role it deserves.

On the canonical side, recently the focus shifted from Dirac to reduced phase space

quantisation and several deparametrised models were introduced [51–54], matter cou-

pled models which, instead of a Hamiltonian constraint, feature a true Hamiltonian and

give direct access to the physical Hilbert space. Powerful semiclassical techniques have

been introduced ([55] and references therein) in order to extract perturbative quantum

field theory on Minkowski (or curved) space time physics from the background inde-

pendent and non-perturbative quantum theory, but still this task is far from completed.

Finally, regarding the last of the above mentioned major open problems, the quan-

tum constraint algebra has been proven to be non anomalous by Thiemann [56] in the

sense that the commutator of two Hamiltonian constraints vanishes on diffeomorphism

invariant states, but if the hypersurface deformation algebra actually can be faithfully

represented remains to be unclear, see [57–59] for recent literature towards an improve-

ment on this issue. However, in principle this problem can be avoided using the Master

constraint method developed in [60].

Of course, this short exposition of LQG cannot be comprehensive and many important

aspects of the theory and its development were left unmentioned. For more details, we

refer the interested reader to the textbooks [61–63] and references therein or [64] for an

introductory textbook suitable for undergraduate students, or to the reviews [65–68].

1.2 Motivation

The quantisation procedure developed in the LQG literature is of very general nature,

and does neither depend on the spacetime dimension under consideration nor on the

3
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compact gauge group chosen, and moreover has been extended to coupling of all matter

fields of the standard model[45, 46]. It thus might surprise the unfamiliar reader that

LQG was restricted to four spacetime dimensions up to now. However, the problem

prohibiting generalisations of LQG to higher dimensions lies not in the quantum theory,

but instead appears already at the classical level: the classical canonical formulation

of general relativity in Yang Mills type variables suitable for loop quantisation was

known for four spacetime dimensions, namely Ashtekar’s variables, but not in higher

dimensions1.

Of course, up to now there is no experimental evidence neither for higher dimensions

nor for supersymmetry. This justifies the question: should we not be content with the

restrictions the theory seems to impose, that up to now extensions to higher dimensions

and inclusion of supersymmetry were not possible (see section 1.3 for attempts in both

directions)? Should we regard these facts more as a feature than a flaw, perhaps even

that “good old” four spacetime dimensions are a prediction of LQG?

We will argue that this is not the case, and that the endeavour of searching for both,

the higher dimensional as well as the supersymmetric generalisation, is worth being

pursued, out of the following two reasons: Firstly, they constitute a step towards con-

vergence of different approaches in the multi-branched field of quantum gravity research.

Secondly, of course the ambition of theoretical physics is not only to give theoretical

explanation of experimental data, but also to deduce experimentally falsifiable predic-

tions from a so far untested set of theoretical ideas to gear the development of future

experiments. Higher dimensions and supersymmetry are an arguably interesting set

of such theoretical ideas and therefore worth studying in their own right. These two

relevant reasons will be laid out in more detail in the following.

Today’s quantum gravity research is split into several branches, many of which are

seemingly unrelated both at a conceptual and technical level. This is generally consid-

ered as a problem hindering progress of the field in total, which is underlined by the call

1A Yang Mills formulation for general relativity and loop quantisation thereof exists also in three

spacetime dimensions, which can be used as a testbed for the four dimensional theory (cf. e.g. [69]).
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for convergence appearing regularly in the scope of present-day conferences on (quan-

tum) gravitation (e.g. Spanish Relativity Meeting: ERE2010 , Sept. 2010, Granda,

Spain [70] and Quantum Theory and Gravitation, June 2011, Zurich, Switzerland [71]).

Actually, this fact is no novelty at all and seems to be almost as old as quantum

gravity research. Already in the early sixties, Peter Bergmann stated regarding the

research at his time [72]: “In view of the great difficulties of this program, I consider

it a very positive thing that so many different approaches are being brought to bear on

the problem. To be sure, the approaches, we hope, will converge to one goal.”

Since then, instead of converging, the field seems to have drifted even further apart. At

that time, the followed lines of research were mainly the perturbative approach, trying

to quantise the metric fluctuations over Minkowski (or another background) spacetime,

and the canonical approach which aimed at unravelling and quantising the Hamiltonian

theory underlying general relativity. These early approaches known in the sixties were

all shortly afterwards shown to fail due to non-renormalisability [73, 74] of general rel-

ativity and ill-definedness of the Wheeler-DeWitt equation among other problems (cf.

e.g. [75] for an account on the historical development of the field of quantum gravity).

To cope with these, very different proposals were made where to modify the existing

routes towards quantum gravity, which further fanned out the research branches. Su-

pergravities in diverse dimensions were introduced in the hope of mending the problem

of perturbative non-renormalisability, but failed to do so [76–78] (with the possible

exception of d = 4, N = 8 supergravity [79, 80]). Superstring theories [81, 82] and M

- theory [83, 84] were introduced, mainly perturbatively defined approaches to quan-

tum gravity which aim at giving a unified description of all forces. Not only do they

require spacetime to be ten (superstring theory) or eleven (M - theory) dimensional,

they furthermore are necessarily supersymmetric and predict infinitely many new fields.

Almost simultaneously, LQG was developed, following a different philosophy from the

outset. It treats the quantisation of the self interacting theory of gravity non pertur-

batively, and takes the lessons from general relativity seriously, namely that spacetime

itself becomes dynamical. This leads to the belief that, at the quantum level, a fun-

damental theory cannot be a fixed background spacetime and fields on it, but the
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spacetime itself must be quantised. Spacetime as we perceive it should be an emerg-

ing concept, probably only recovered semi-classically. To implement this concept of

background independence, new, background independent quantisation techniques were

developed. While the quantisation procedure itself is changed in LQG, as we already

heard, the approach is rather conservative regarding number of space time dimensions,

supersymmetry is no necessary ingredient and therefore was mostly not considered (see,

however, section 1.3 for an account on prior work on supersymmetry in LQG), and it

also aims not at giving a unified description of the forces.

Of course, there are many more approaches, like non-commutative geometry, regular-

isation group techniques, twistor theory, causal dynamical triangulations and discrete

approaches to quantum gravity, but we will restrict our discussion to the two main

lines of research, strings and loops. As we have seen, their respective conceptual basis

is fundamentally different. The lack of convergence between these routes to quantum

gravity and, in a sense, these “different languages” one speaks make communication of

researchers from different branches complicated, and hinders fruitful cross fertilisations.

Just to name an example, one of the most astonishing conjectures in string theory in

the past years, the AdS/CFT correspondence [85–87] (see also [88] for a basic introduc-

tion and [89, 90] for a more recent review on AdS/CFT and its integrability structure),

has lead to new developments in other areas like solid state physics and QCD (cf. e.g.

[91, 92]), but had, to the best of the author’s knowledge, no influence at all on LQG.

On the other hand, findings like Thiemann’s quantisation of the string [93] with LQG

methods, which indicates that the critical dimensions (10, 11 or 26) possibly can be

avoided, is hardly acknowledged in the string community (see, e.g. [94] and section 1.3).

In order to stimulate scientific exchange, it would be desirable to conduct research

on the boarder between superstring/M - theory and LQG, but the literature on this

topic is rather sparse (cf. again section 1.3). To make contact, three different routes

suggest themselves.

One possibility is to dimensionally reduce superstring/M - theory down to four di-

mensions and to break supersymmetry, and to compare the resulting effective theory

with an appropriately chosen sector of LQG. However, in order to arrive from a ten
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at a four dimensional model from string theory, many choices have to be made and

associated is a “landscape of string vacua”, and it seems that at least currently there

is no preferred model we could compare to (see [95] for a recent review of string theory

phenomenology).

The second route then of course is to compare the two approaches directly in ten

or eleven dimensions, the natural ones for superstring/M - theory, and to this end, our

generalisations of LQG to higher dimensions and supersymmetry are necessary. More

concretely, what we propose is to study the loop quantisation of supergravity theories

in ten and eleven dimensions, which by symmetry arguments are expected to be the

low energy effective field theory limits of superstring/M - theory.

Thirdly, symmetry reduced sectors like cosmology and black holes suggest themselves

for the comparison, since cosmological models are well studied [41, 42, 96, 97] and a

microscopic derivation of the Bekenstein Hawking entropy formula for black holes is

available [43, 44, 98, 99] in both fields. Also to this end, our extensions are interesting,

since e.g. in string theory, typically also black holes in higher dimensions are studied,

which so far was not possible within LQG.

But irrespective of a possible connection to superstring/M - theory, we believe that

higher dimensional and supersymmetric extensions of LQG are of interest because it

is thinkable that higher dimensionality and supersymmetry describe real properties of

nature. Indications thereof might be about to be found in current experiments like the

LHC, and then call for a theoretical explanation. Even if not, they should have their

imprint at least in quantum gravity effects and if there is the chance to predict mea-

surable indications of the presence of supersymmetry or higher dimensions in future

experiments, this definitely is a subject worth studying in its own right.

Of course, this is a long term project: First, one has to deduce how to break su-

persymmetry or compactify the excess dimensions at the quantum level, and one might

encounter the same problems found in string theory when doing so. Even if this is

achieved, obtaining falsifiable predictions in quantum gravity research doubtlessly is
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an arduous task. Because it was unthinkable for decades to obtain experimental in-

formation testing the Planck scale where quantum gravity effects originate from, the

only lead for quantum gravity research was conceptual appeal, mathematical rigor, and

sticking to well-established theoretical frameworks.

Today, this situation has changed significantly. Thanks to enormous advances in ex-

perimental particle and astroparticle physics as well as astronomy, we are about to

learn from the Planck scale. Moreover, during the last decade, especially in quan-

tum gravity phenomenological models, experimentally testable quantum gravity effects

were thought up (see e.g. [100] for a recent review of LQG phenomenology), although

the rigorous derivation of these observable phenomena from a full-fledged proposal for

quantum gravity are still mostly missing.

We want to point out one tentative application we have in mind for the LQG gen-

eralisations we provide: in a LQG extension of the inflationary scenario all the way

down to the Planck scale, it has recently been shown that for generic initial conditions

at the big bounce, which is predicted by LQC instead of a big bang, the theory predicts

a cosmic microwave background compatible with the seven year WMAP data, with a

small window for a quantum gravity imprint on the data which will be measurable by

future satellites (see [101] and literature therein). It would be particularly interesting

to reexamining this derivation in a higher dimensional and/or supersymmetric model

and to see if these predictions deviate. Incidentally, there also have been found first

indications that LQC, up to now being a loop quantisation of cosmological models,

actually can be obtained from full LQG [102]. A rigorous proof thereof would lift these

microwave background imprints to testable predictions from the full theory.

After having motivated the task at hand, we will continue with an outline of the existing

literature on higher dimensional Ashtekar variables and supersymmetric extensions.

1.3 Position in the existing literature

Despite these promises, the existing literature on higher dimensional extensions of

Ashtekar’s variables is rather scarce. Peldán [103] sketched a general programme for the

8



1.3 Position in the existing literature

extension of Ashtekar’s formulation to higher dimensions and for the study of unified

theories of general relativity and Yang Mills theory, but only provided further results on

the latter [104–106]. Still, we want to remark that the article [103] was rather influential

for the work presented here. Later, there was work by Nieto towards an extension of

the original complex Ashtekar variables to 7+1 dimensions using octonions [107], and

further to dimensions 10+2, 2+2 and 8+0 [108, 109], which however do not (at least

straightforwardly) allow for application of the loop quantisation programme. With the

extension to higher dimensions which we will present in this work, we therefore enter

uncharted territory.

The literature on loop quantisation of supergravity theories is considerably richer. Ja-

cobson was the first to extend the original complex Ashtekar variables to d = 4 N = 1

supergravity [110]. A similar formulation for d = 4 N = 2 supergravity was given in

[111]. Shortly afterwards, Fülöp realised that in Jacobson’s formulation of the d = 4

N = 1 theory, when splitting the supersymmetry generators into its chiral parts, one

chirality can be absorbed into the Gauß constraint to recast the theory in terms of

Ashtekar variables for the gauge group Osp(1|2) [112]. Doing this, both, bosonic and

fermionic degrees of freedom are combined into a single connection, a feature which

is very appealing for a supersymmetric theory in the author’s opinion. Based on this

work, Osp(1|2) Wilson loops were introduced and a representation through loop vari-

ables was discussed [113, 114]. Ling and Smolin introduced spin networks for the groups

Osp(1|2n) and calculated the spectrum of the area operator for the four dimensional

theory [115, 116]. However, these results are only formal since no inner product and

therefore no Hilbert space was defined, although some of the necessary mathematical

structures for the group Osp(1|2) have been probed [117, 118].

The first canonical formulations of the d = 4 N = 1 theory in terms of real Ashtekar

Barbero variables were given in [119, 120]. At the Lagrangian level, supergravity ver-

sions of the Holst action for d = 4 N = 1 were introduced in [119, 121]. Curiously,

while the studies of the loop quantisation of supergravity theories in complex Ashtekar

variables we mentioned before were lacking mathematical rigor, the real formulations,

which immediately allow for loop quantisation at least in the bosonic sector, were not

further studied to the best of the author’s knowledge. This is probably related with
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the reality condition the Rarita Schwinger field (“gravitino”) is subject to, being a Ma-

jorana fermion. As we will see, they are the core problem when quantising this field,

and in particular, prevent it from being treated like the Dirac fermion. This work will

succeed in solving the mentioned problems.

Finally, since one of the long term goals is to make contact to string theory, we want

to outline the research efforts undertaken in both, the loop and the string community

to this end. Firstly, basically all the loop supergravity research we already mentioned

contributes to these efforts, but also the work of Nieto on higher dimensions is clearly

influenced by superstring/M - theory. Thiemann gave a loop quantisation of the closed

bosonic string in [93], which points towards a possible avoidance of a critical dimen-

sion and supersymmetry in string theories when using loop methods. This work was

criticised in [94] and also in the outside view on LQG [122]. Thiemann answered to

both of these papers in [123]. For a recent view on string theory from within the LQG

community, see [124]. Similar results regarding the avoidance of a fixed ambient space’s

dimension were also obtained using different quantisation schemes in [125–127]. Contin-

uing Thiemann’s line of research on the loop string, in [128, 129] the canonical analysis

of the algebraic string was performed and its relation to the Nambu Goto string was

studied. The algebraic formulation of the bosonic string has a lot of similarities with

the Ashtekar Barbero formulation, leading to a first class Hamiltonian formulation and

allowing for a Barbero Immirzi like parameter. Further studies of this theory at the

quantum level were announced in the latter, but did not appear until now. Melosch

and Nicolai proposed Ashtekar variables for d = 11 N = 1 supergravity [130], the con-

jectured low energy effective field theory of M - theory. Further connections of LQG to

M - theory were drawn in [131, 132].

Reference to further literature, of course, will be provided in the main text.

1.4 Results in a nutshell

In this thesis, we present a Hamiltonian formulation for Lorentzian and Euclidean

general relativity in any spacetime dimension D + 1 (D ≥ 2) which has the following

core properties:
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1. one of the canonical variables is a connection, in particular Poisson self commut-

ing; this field and its canonically conjugate are real,

2. the gauge group is compact,

3. the theory is free of second class constraints.

It therefore can be loop quantised. Furthermore, various standard and non-standard

matter fields can be coupled, which ultimately allows for a loop quantisation of a wide

class of supergravity theories in various dimensions. As a first application, combining

the new variables with the framework of higher dimensional isolated horizons, we take

first steps towards a deduction of Bekenstein’s and Hawking’s famous entropy formula

for black holes also in higher dimensional LQG.

In more detail, we will show that a canonical analysis of the Palatini action in any

dimension leads naturally to a formulation which satisfies property 1., but has second

class constraints and, in the Lorentzian case, the non-compact gauge group SO(1, D).

We can take care of 3. by means of gauge unfixing, a procedure to turn a second class

constraint system into a physically equivalent first class system which we will review in

detail. But still we cannot circumvent the non-compactness problem. However, when

starting directly from the ADM phase space and enlarging it to the new formulation

obtained after gauge unfixing, we will find that actually, the extension is independent of

the internal signature, i.e. we can work with the compact gauge group SO(D+ 1) irre-

spective of the spacetime signature. In summary, general relativity for both, Lorentzian

and Euclidean spacetimes, in any dimension D + 1 can be formulated as SO(D + 1)

gauge theory with properties 1. - 3. It is, like Ashtekar’s theory, subject to Gauß,

spatial diffeomorphism and Hamiltonian constraint. Additionally, for D ≥ 31 a new

first class constraint, the simplicity constraint already familiar from Plebański theory

and covariant LQG in D = 3, arises in the canonical theory.

The properties 1. - 3. are all crucial for the applicability of the loop quantisation

procedure: second class constraints (3.) should not be quantised and have to be dealt

1The case D = 2 plays a special role, since the simplicity constraints do not exists in that dimensions

and our formulation, unlike in the case D = 3, actually coincides with the D = 2 Ashtekar formulation

(for corresponding choice of internal signature).
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with classically, e.g. using the Dirac bracket, which usually spoils property 1., the

self-commutativity of the connection. Since the connection acts by multiplication in

the representation chosen for loop quantisation, this self-commutativity is crucial. Ac-

tually, 1. lies at the heart of the construction of the holonomy flux algebra, on which

the quantisation is based. The compactness of the gauge group 2. implies that the

holonomies of the connection are valued in a compact set and the probability measure

thereon is central when constructing the Ashtekar Lewandowski measure on the space

of generalised connections.

Having all these properties fulfilled, the application of the loop quantisation programme,

being formulated independent of the number of spacetime dimensions or the compact

gauge group, is straightforward, as we will show explicitly, and the rigorous mathe-

matical basis for quantisation carries over to the SO(D + 1) theory. The Hamiltonian

constraint is, when compared with the constraint in the Ashtekar Barbero theory, more

complicated, since it obtains an extra contribution when applying gauge unfixing, and

even more additional terms when choosing the internal and external signature to differ,

but these terms can be dealt with at the quantum level. As a new ingredient, we also

have to treat the simplicity constraint in the quantum theory. Both, the implementa-

tion of the linear and the quadratic version of this constraint will be discussed. We did

not succeed in finding a completely satisfactory prescription for the implementation,

but give several new ideas how the problem can be attacked and we discuss several

ideas of how one could proceed with further research.

Coupling matter to the SO(D+ 1) theory is, like in the SU(2) case, possible for various

matter fields. Inclusion of Yang Mills fields and scalar fields works in completely anal-

ogy to the four dimensional case. Dealing with Dirac fields is slightly more involved.

They transform in the spinor representation of the gauge group SO(1, D), which seems

at first sight in conflict with the gauge group SO(D+ 1) we have to use for the gravita-

tional degrees of freedom. Therefore, like in D = 3, in the Hamiltonian theory we first

break the gauge group down from SO(1, D) to SO(D) by choosing time gauge. But

then, unlike the D = 3 case, a second step is necessary, namely, we have to enlarge the

gauge group again to SO(D+1). The Dirac matrices for the SO(1, D) and SO(D + 1)

Clifford algebras differ, for our sign conventions, by a factor of ±i in the matrix γ0.
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That they can be exchanged ultimately is tied to the fact that SO(D+1) and SO(1, D)

act on the same complex representation spaces. The Hilbert space representation for

the fermions then can again be directly taken over from the treatment in D = 3. The

enlargement to SO(D + 1) furthermore leads to extra terms in the Hamiltonian con-

straint, which however are unproblematic both in the classical and in the quantum

theory.

While standard matter therefore can be included just like in the case of usual Ashtekar

Barbero variables, in order to treat supergravity theories, we need to consider also

non-standard matter fields, most prominently, the Rarita-Schwinger field (“gravitino”).

This field differs from the Dirac field not only in that it has spin 3/2, but moreover,

usually it is a Majorana fermion and therefore its own antiparticle. In particular,

for D + 1 = 4, 10, 11, when choosing a real representations of the Lorentzian Clifford

algebra, it is a real field1. Since the Lorentzian Dirac matrices are real in this repre-

sentation, the real vector space of the Majorana fermions is preserved under the action

of SO(1, D), but when switching the internal signature and using the internal gauge

group SO(D + 1) instead (with necessarily complex Dirac matrices), this no longer is

the case. However, it is possible to introduce an additional internal unit vector field

N I to keep track of the complex components the fermionic fields obtain under internal

rotations. One can use this field to construct a combined object of both, the fermionic

and unit vector field, such that there is an action of SO(D+1) which respects the reality

conditions of the Majorana fermions. Interestingly, the additional, unphysical degrees

of freedom introduced by the field N I and its conjugate momentum can be removed by

using the linear simplicity constraint, which interweaves them with the gravitational

degrees of freedom. When trying to quantise, one immediately finds that the Hilbert

space representation known for Dirac fermions from D = 3 cannot be applied in this

case. The reason is that the Majorana reality condition the fermions are subject to

gives rise to second class constraints which lead to a non-trivial Dirac antibracket. A

corresponding Hilbert space representation will be given.

1This does not hold in dimensions where there are no real (or imaginary) representations of the

Clifford algebra; then, the role of the gravitino is played by anti- or symplectic Majorana fermions,

which satisfy a more complicated reality condition. Sometimes, the role of the gravitino is also played

by Weyl or Majorana Weyl spinors (cf. [133, 134]).
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Having included the gravitino and standard matter already opens the road to loop

quantise the easiest supergravity theories, like d = 4 N = 1 supergravity. However, in

many supergravity theories also new bosonic matter fields appear, e.g. Abelian higher

p-form fields, like the Kalb Ramond two-form field of d = 10 supergravities and the

three-form field (three index photon) of d = 11 N = 1 supergravity. As an arguably

interesting example, we will treat the latter. Due to an additional Chern Simons term

in the corresponding supergravity action [135], this field is not simply a three-form

equivalent of the Maxwell field in higher dimensions, but becomes self-interacting and,

in particular, the equivalent of the electric field transforms non-trivial under the ac-

tion of the (equivalent of the) Gauß constraint. We propose a reduced phase space

quantisation based on the Weyl algebra generated by the exponentials of certain Dirac

observables with respect to the Gauß constraint. Due to the non-standard action of

the Gauß constraint, the observable corresponding to the electric field gets an addi-

tional contribution proportional to the level of the Chern-Simons theory, which then

also shows up in the Weyl relations. These twisted Weyl relations can be computed

in closed form and a Hilbert space representation can by given by using a state of

Narnhofer-Thirring type [136], which in the LQG literature already appeared in Thie-

mann’s treatment of the closed bosonic string [93].

Finally, as a first application of the variables for higher dimensional LQG, we will

take first steps towards the derivation of the famous Bekenstein Hawking formula for

the black hole entropy also in higher dimensions. The reproduction of this formula is

considered as one of the “benchmarks” of any quantum theory of gravity and already

has been met by D = 3 LQG (see [43, 44] and references therein). We will work out in

detail the boundary symplectic structure arising on (2n + 1)-dimensional undistorted

non-rotating isolated horizons when using the new variables, which turns out to be

the symplectic structure of a higher dimensional SO(2(n + 1)) Chern Simons theory,

and provide an appropriate boundary condition connecting bulk and horizon degrees of

freedom. However, since Chern Simons theory in higher dimensions, unlike in the three

dimensional case, has local degrees of freedom in general [137, 138], its quantisation and

the counting of horizon degrees of freedoms done to determine the black hole entropy

need further intensive studies.
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1.5 Outline of the thesis

This thesis is organised as follows: it consists of five parts. Part I is introductory in

nature, reviews several Lagrangian and Hamiltonian formulations of general relativity

and the relations between them, with an emphasis on those formulations which are

relevant for the construction of the new variables. We made an effort to streamline

the analysis such that one is lead step by step to the later introduction of the new

variables, on the one hand to facilitate access to this work for readers less familiar with

canonical formulations of general relativity, and on the other hand to make apparent

the various interrelations between them and the new variables and to point out that

the new formulation follows rather naturally from existing canonical formulations. The

review material is well-known and the familiar reader might directly jump to part II,

where we finally will introduce the new variables both from a Hamiltonian (chapter 7)

and Lagrangian (chapter 8) point of view. Some extra material on possible extensions

of the formulation in terms of the new variables are collected in chapter 9. In part

III, we will turn to the quantisation of this theory using LQG methods. A central

object of this study is the simplicity constraint. In part IV, we will extend the up

to now considered vacuum theory to incorporate (super)matter fields both, at the

classical and quantum level. Due to certain properties of the new variables, mainly

the inclusion of fermionic fields needs to be revisited thoroughly. We will discuss Dirac

fermions in detail, and comment more briefly on Majorana fermions and the three

index photon of eleven dimensional supergravity as an example for a higher p-form

field, the latter two paving the way to treat various supergravity theories. Part V will

be dedicated to a first application of the developed framework of higher dimensional

LQG, namely black holes in higher dimensions. Concretely, we will derive the isolated

horizon boundary degrees of freedom when using the new variables, which constitutes

the first step in checking if the famous black hole entropy formula can be derived from

LQG also in higher dimensions. Each one of the parts mentioned so far again comes

with an introduction and outline of its own, which is the reason why we keep this

outline brief. Finally, we will conclude and give an outlook on further research in

chapter 18. In the appendices, we provide variational formulae which will be helpful

in various calculation throughout this thesis (appendix A), we give details on spatial

- temporal decomposition of various tensors used when going from Lagrangian to the

15



1. Introduction

Hamiltonian formulations (appendix B), introduce in detail the vielbein compatible

spin connection and generalisations thereof (appendix C), give some details on the

Lie algebras so(D + 1) and so(1, D) relevant for this work (appendix D), summarise

relations satisfied by the Gamma matrices (appendix E), shortly introduce the higher

dimensional Newman Penrose formalism (appendix F), and finally in appendix G give

calculational details for several lengthy derivations from part V.
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Part I

Preliminaries: Actions for gravity

and corresponding Hamiltonian

formulations
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We will start with the basics of Lagrangian and Hamiltonian formulations of general

relativity. Even if the whole dynamical content of general relativity is encoded in

Einstein’s famous field equations

Gµν + Λgµν =
8πG

c4
Tµν , (1.1)

formulating the theory in Lagrangian or Hamiltonian terms gives deeper insight into

the theory and, as the reader will notice, increases its aesthetic appeal. Moreover,

the passage from a classical to a quantum theory is usually based on Lagrangian or

Hamiltonian formulations. Path integral quantisation usually starts from a classical

action principle, and canonical quantisation has a classical Hamiltonian formulation as

its foundation. Thus, for the aim of quantising gravity, the study of these formulations

may be crucial. In (1.1), Gµν and gµν denote the Einstein and metric tensor, respec-

tively, Λ the cosmological constant, G is Newton’s constant, c the speed of light and

Tµν the energy momentum tensor of the matter fields under consideration. A precise

definition of Gµν will be given shortly.

If not made explicit otherwise, we will leave the spacetime dimensions under consider-

ation unspecified except for the requirement D + 1 > 2, where D denotes the spatial

dimension. Since the focus of the first part of this work lies on a reformulation of the

gravitational sector, we will here and in the following only deal with the matter free

case, i.e. we choose vanishing energy momentum tensor Tµν . Matter fields will be

introduced later on in part IV. We will also stick to the case of vanishing cosmological

constant Λ = 0. Moreover, we will neglect boundary terms for the time being, but want

to stress that a careful treatment thereof is needed and refer the unfamiliar reader to the

standard literature [139–141]. We will treat simultaneously Lorentzian and Euclidean

gravity, denoting the spacetime signature by s = ±1. We will furthermore denote the

signature of the internal space with ζ = ±1. Starting from an action principle, internal

and spacetime signature coincide, ζ = s. However, in the Hamiltonian picture, we

have the freedom to choose s 6= ζ. Finally, we want to recommend also the excellent

overview over actions for gravity with particular emphasis on 3 and 4 dimensions given

in [103].

There are several actions known for general relativity which differ in form and/or

19



in (kinematical) field content, but basically by definition all have to share the same

physical degrees of freedom satisfying the same equations of motion, namely Einstein’s

vacuum field equations (1.1). We will make a distinction between metric and vielbein

formulations. A formulation in terms of a vielbein becomes mandatory as soon as one

is dealing with fermionic matter, but as we will see, it might also be convenient when

working without fermions. A vielbein was, to the best of the author’s knowledge, first

considered in [142], precisely when coupling spinor fields to general relativity, although

the field there is not called vielbein and denoted by
√
g νν′ , primed indices being inter-

nal ones.

We furthermore differentiate between first and second order actions of gravity depend-

ing on whether the actions are of first or second order in the derivatives of the fields.

Typically, in first order formulations, the connection and the metric (or vielbein) are

independent kinematical fields, but varying the action with respect to the connection,

one obtains equations of motion which require the connection to be metric compatible.

Palatini is usually credited for first observing this, and therefore, first order actions are

often named after him. Thus, Wald [143] names the first order action depending on a

metric and an affine connection “Palatini action”, while the first order action depending

on a vielbein and a spin connection is called either called “Palatini action” in Ashtekar’s

book [144] or “Hilbert-Palatini action” in [103, 145, 146]. However, in his 1919 paper

[147] (English translation [148]), Palatini is actually not varying with respect to the

connection independently. Aiming at unifying general relativity and electromagnetic

phenomena, it is Einstein who did this in his 1925 paper [149], and according to [150],

where this issue is discussed, no one did before. Despite this comment, we will stick to

the nomenclature used by Ashtekar and call the action depending on a vielbein and an

independent spin connection “Palatini action” in the following. This also is consistent

with [2], one of the articles this thesis is based on.

The first action ever written down for general relativity, however, is a second order

one, the Einstein Hilbert action [151]. Surprisingly, this arguably simplest non-trivial,

generally covariant action one could possibly write down, the integral over spacetime

of the densitised scalar curvature of the Levi-Civita connection, yields Einstein’s field

equations as Lagrangian equations of motion. We will briefly review this action in
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section 2.1. The very basic formulas in this and the following sections are supposed to

acquaint the reader with the notation and conventions used in this thesis and to lead

even the non-experts step by step from the Einstein Hilbert action to the Hamiltonian

formulation in terms of the new variables which lies at the heart of this thesis. The

experienced reader might want to jump directly to part II and, if needed, consult the

list of tables and conventions section at the beginning of this thesis.

After deriving Einstein’s field equations by varying the Einstein Hilbert action, we

will turn to the corresponding Hamiltonian formulation. Actually, the first Hamilto-

nian descriptions of general relativity date back to the 1950’s [152–155], based on the

pioneering methods developed by Dirac [156, 157] and Bergmann and collaborators

[158–160] for Hamiltonian formulations of gauge theories like general relativity. We

strongly encourage the unfamiliar reader to consult the excellent exposures [157] and

[62, section 24], or [161] for a very detailed account on this so-called “Dirac algorithm”,

which nowadays has become a standard technique in the relativist’s toolbox.

In 1960, Arnowitt, Deser and Misner introduced a certain decomposition of the space-

time metric [162, 163], which leads to a very convenient and nowadays frequently used

Hamiltonian formulation of general relativity. It is named after its inventors: ADM

formulation. We will give the derivation of the ADM formulation starting from the

Einstein Hilbert action and discuss it in some detail, since the methods will be needed

in any Hamiltonian formulation of general relativity.

After this, we will turn to a neatly related action, by introducing the vielbein and

using it instead of the spacetime metric as fundamental degree of freedom in the Ein-

stein Hilbert action. Consequently, when performing the canonical analysis, also in the

corresponding Hamiltonian formulation the fundamental role now is played by the spa-

tial co vielbein instead of the spatial metric. We will furthermore present the canonical

transformation from the co vielbein to a densitised vielbein, which is related to both,

the Ashtekar Barbero formulation and the new formulation of [1, 2]. In this work, we

will refer to all of these formulation as extended ADM (eADM) formulation1.

1Note that in some references, these formulations are also just called ADM formulation (cf. e.g.

[103]).
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Thereafter, we will turn to the already mentioned Palatini action. While it is straight-

forward to see that the variation leads to Einstein’s vacuum field equations, the singular

Legendre transformation to the corresponding Hamiltonian formulation is much more

intricate and was first derived in full generality for arbitrary dimensions d > 2 in

[2, 164, 165] (results for spacetime dimensions 3 and 4 are given in [103], and for ar-

bitrary dimensions d > 2 in so called time gauge in [166]. Choosing this gauge fixing

simplifies the analysis considerably.). We will find that, after solving all second class

constraints, we are lead back to the eADM formulation.

In continuation, we will turn to the (real version of the) Plebański formulation [167]

of general relativity. Its importance for the LQG community is based on the fact that

this action is the starting point for the spin foam models [49, 168]. The Plebański for-

mulation exists for all dimensions D > 21. We refrain from displaying the full, rather

lengthy canonical analysis of the (real) Plebański action, and refer the interested reader

to [170]. Instead, we give the canonical analysis of a certain hybrid version of Plebański

and Palatini gravity, which will be the basis for our later Lagrangian access to the new

variables in chapter 8.

Finally, we will study some actions peculiar to D = 3 which lead to Ashtekar or

Ashtekar Barbero variables when passing to the canonical theory. Firstly, in section

6.1, we modify the Palatini action by adding the so-called Holst term [145], which only

exists in four spacetime dimensions. We will perform a canonical analysis of this ac-

tion in section 6.2. This does not directly lead to Ashtekar Barbero variables, but the

canonical formulation obtained in this way will be helpful in section 9.3 when reintro-

ducing the Barbero Immirzi parameter γ into the framework of the new variables for

D = 3. Only after solving all second class constraints and choosing time gauge in sec-

tion 6.2.3, we obtain the famous Ashtekar Barbero formulation [13, 14], which the loop

quantisation approach is based on. In section 6.3, we will also describe the canonical

transformation which relates this formulation to the ADM formulation, since this route

will be mimicked when obtaining the new variables following the Hamiltonian route.

1While Plebański worked in D = 3, a more general version for D > 2 was given in [169].
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Secondly, in section 6.4 we will shortly comment on the CDJ [171] action. Like the

Ashtekar Barbero formulation on the Hamiltonian side, the CDJ Lagrangian only ex-

ists in D = 2, 3 dimensions1, but we will restrict to the D = 3 case here. It is an

almost pure Lagrangian connection formulation (the metric can be eliminated up to

the denisitised lapse function) of general relativity, which for nonzero cosmological con-

stant or certain matter coupling can even be turned into a pure connection formulation

[173]. Its Hamiltonian formulation coincides with Ashtekar’s original complex (in the

Lorentzian case) formulation, i.e. the choice γ2 = s.

There are several other actions for gravity, partly particular for four dimensions. Just

to name a few, there is a formulation in terms of an affine connection solely, the La-

grangian being the square root of the determinant of the Ricci curvature, which is

due to Schrödinger [174]; in another action for vacuum gravity, the fundamental ge-

ometrical object is neither the metric nor the vielbein, but the curved space gamma

matrices [175]; a formulation by ’t Hooft [176] with internal SL(3) or SU(3) symme-

try, respectively, for Euclidean or Lorentzian signature, where, instead of a vielbein, a

“cube root” of the metric constitutes the metric degrees of freedom; a formulation by

Faddeev where Einstein’s equations are derived employing the embedding of the space-

time into 10-dimensional linear space [177]; and for some of the Lagrangians we will

discuss, there are related complex or self-dual versions, or modifications by topological

terms. The selection of actions and Hamiltonian formulations which are going to be

presented should by no means indicate that the others do not deserve intense study.

Classically, different actions or Hamiltonian formulations are equivalent, but from the

quantum gravity perspective, the right classical starting point might be crucial for

the endeavour of quantising general relativity. In fact, the successes when quantising

general relativity using Ashtekar’s variables when compared to the older Wheeler -

DeWitt approach [178–180] are an indication in this direction. The fact that some of

the formulations mentioned above are rather recent, as is the Hamiltonian connection

formulation central to this thesis, shows that this field of research is an active one and

it might well be that the right classical starting point still has to be found.

A last comment concerning the expression corresponding Hamiltonian formulation in

1The extension to D = 2 dimensions was achieved in [172].
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the title of this part of the thesis: since all actions as well as Hamiltonian formulations

of general relativity are physically equivalent, any Hamiltonian formulation in a sense

corresponds to any Lagrangian formulation. Corresponding in the title therefore only

refers to the fact that the Hamiltonian formulations are obtained from the actions un-

der consideration by applying Dirac’s standard method in a straightforward way, which

will be made more explicit in the following sections.
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2

Einstein Hilbert action and ADM

formulation

2.1 Einstein Hilbert action

The Einstein Hilbert action in D + 1 dimensions is given by

SEH [g] :=
s

2κ

∫
M
dD+1X

√
| det g(X)| (D+1)R(X). (2.1)

Here, M denotes a (D + 1) - dimensional spacetime manifold, gµν the metric tensor,

µ, ν, ... ∈ {0, ..., D}, (D+1)R the Ricci scalar and κ := c4

8sπG . In the Lorentzian case, we

will restrict to globally hyperbolic spacetimes. The restriction to globally hyperbolic

spacetimes is demanded by causality and assures by a theorem due to Geroch [181] that

the manifold (M , g) is topologically isomorphic to R × σ for some spatial manifold σ.

Quite recently, these results where strengthened by showing that globally hyperbolic

manifolds are actually isometric to (R × σ,−βdt2 + gt) for a smooth family (σ, gt) of

Riemannian manifolds and smooth function β on M [182]. In the Euclidean case, we

will as well restrict to manifolds of topology R× σ.

We will choose units such that κ = 1. The remaining factor of s
2 also appeared in

front of the Palatini action in [2], and in order to simplify comparison, we will intro-

duce it for most action we will consider. In the following, we will use the short hand

notation g := det g and drop the superscript indicating the dimension from curvature

tensors for the time being. Our conventions for the curvature tensors are as follows1:

1Cf. also the conventions.
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2. Einstein Hilbert action and ADM formulation

for one-forms uρ, we define the Riemann tensor Rµνρ
σ to be

[∇µ,∇ν ]uρ = Rµνρ
σuσ, (2.2)

where [A,B] := AB−BA denotes the commutator and ∇ the unique torsion free1, met-

ric compatible connection, ∇µuν := ∂µuν−Γρµνuρ. Γρµν = 1
2g
ρσ (∂νgµσ + ∂µgνσ − ∂σgµν)

denote the Christoffel symbols. The Ricci tensor is defined by Rµν := Rµρν
ρ and the

Ricci scalar by R := Rµνg
µν .

It is straightforward to see that the variation of this action yields

δSEH =
s

2

∫
M
dD+1X

√
|g|
[(
Rµν −

1

2
gµνR

)
δgµν + gµνδRµν

]
, (2.3)

and using the formulas given in appendix A for the variation of the Riemann tensor,

the contribution from the last summand

gµνδRµν = ∇µ (∇νδgµν − gνρ∇µδgνρ) , (2.4)

gives only a boundary term by Stoke’s theorem and thus will be neglected2. The

remaining integrand yields Einstein’s famous (vacuum) field equations

Gµν := Rµν −
1

2
gµνR = 0, (2.5)

and any other action we will write down in the following has to reproduce them.

2.2 Canonical analysis: ADM formulation

2.2.1 D + 1 split

While general relativity inherently is a theory of spacetime, in order to obtain a Hamil-

tonian formulation, one has to make a split in “space” and “time”, the so-called

D + 1 split3. To this end, we first introduce a foliation of M =̃ R × σ by a family

Σt = Xt(σ) of spacelike hypersurfaces labelled by t = const., where Xt : σ → M

1In the following, we assume all affine connections to be torsion free and refer the interested reader

to the review [183] for a discussion of the inclusion of torsion.
2Note, however, that for this term to vanish, it does not suffice to demand δg|∂M = 0, one fur-

thermore has to demand that the derivates of δg vanish at the boundary, or, alternatively, modify the

action by a boundary term, which is discussed e.g. in [143, appendix E].
3Our exposition will follow [62].

26



2.2 Canonical analysis: ADM formulation

denotes a one-parameter family of embeddings defined by Xt(x) := X(t, x). Here,

Xµ and xa (a, b, ... ∈ {1, ..., D}) denote local coordinates on M and σ, respectively.

The freedom of choice of foliation can be parametrised by the deformation vector field

Tµ := ∂Xµ(t,x)
∂t |X=X(t,x). This vector field describes the flow of “time”, and we will in-

terpret Lie derivatives along this vector field as time derivatives. Introducing the future

pointing unit normal field nµ to the spatial slices Σt, gµνn
µnν = s, we can decompose

the deformation vector field according to

Tµ = Nnµ +Nµ, (2.6)

where N is called lapse function, and Nµ denotes the shift vector field, which is tan-

gential to the spatial slices, gµνn
µNν = 0. We will call tensor fields with the property

that their contraction with n vanishes “spatial”. For a visualisation, see fig. 2.1. The

x

Xμ δt

Nnμ δt

Nμ δt

x

Σt+δt

Σt

Σt-δt

M

Figure 2.1: Visualisation of the D + 1 split - Foliation of the spacetime manifold M

into (spatial) leaves Σt labelled by the value of the time function t on these leaves. The

figure illustrates furthermore the meaning of the lapse function N and the shift vector Nµ.

induced spatial metric on Σt is given by

qµν = gµν − snµnν , (2.7)

also called first fundamental form. For a Hamiltonian formulation of general relativity,

it is convenient to use qµν , N , and Nµ as fundamental fields, which in turn encode the
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2. Einstein Hilbert action and ADM formulation

whole information of gµν . To obtain the ADM action, we have to express the Einstein

Hilbert action in terms of these fields and their derivatives. We first introduce the

torsion free covariant spatial derivative compatible with qµν . For scalar fields φ and

spatial one forms uµ on Σt, it is defined by

Dµφ = qνµ∇ν φ̃,

Dµuν = qρµq
σ
ν∇ρũσ, (2.8)

and extended to general tensor fields by linearity and Leibnitz’ rule1.

It by definition preserves spatial tensors and it is easy to check that Dµqνρ = 0. The

Ricci scalar in the Einstein Hilbert action can be reexpressed using the famous Gauß-

Codacci equation (see appendix B for a derivation)

(D+1)R = (D)R− s
[
KµνK

µν −K2
]

+ 2s∇µ (nν∇νnµ − nµ∇νnν) , (2.9)

where we introduced the extrinsic curvature or second fundamental form

Kµν := qρµq
σ
ν∇ρnσ, (2.10)

and denoted its trace by K := Kµνq
µν . The final split form of the action is obtained

by pulling back (spatial) tensor fields to σ using the D spatial vector fields Xµ
a (X) :=

Xµ
,a(x, t)|X(x,t)=X (e.g. qab(x, t) := (Xµ

aXν
b qµν)(X(x, t)) etc., cf. [62, section 1.1] for

more details). Neglecting the surface term due to the last term in (2.9), we obtain

S =
s

2

∫
dt

∫
σ
dDxN

√
q
(

(D)R− s
[
KabK

ab −K2
])

. (2.11)

Here, we again denote the determinant of the spatial metric by q := det q and further-

more used that g = sN2q and therefore
√
|g| = |N |√q. However, since we chose Tµ

future pointing timelike, N > 0 classically and we have therefore dropped the absolute

value sign in (2.11).

1φ̃ and ũµ here denote smooth extensions to a neighbourhood of Σt in M . Note that Dµ is

insensitive to the chosen extension. We will drop the tilde in what follows.
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2.2 Canonical analysis: ADM formulation

2.2.2 Legendre transformation

Following Dirac [157], we start the canonical analysis by calculating the momenta

conjugate to the spatial metric, which we will denote by P ab. By Frobenius’ theorem,

Kµν is a symmetric (0,2)-tensor. Using this, one can reexpress Kµν as follows

Kµν =
1

2
(Lnq)µν =

1

2N
(LT−Nq)µν , (2.12)

from which we see that it is related to the time derivative of the spatial metric. In the

last step above, we used that nµqµν = 0 and therefore, terms ∝ ∂N vanish. Pulling

back to σ, we obtain

Kab =
1

2N
(q̇ab − (LNq)ab) . (2.13)

Using this, a short calculation shows that

P ab(t, x) :=
δS

δq̇ab(t, x)

=
s

4N(t, x)

δS

δKab(t, x)

= −1

2

√
q(t, x)

[
Kab(t, x)−K(t, x)qab(t, x)

]
= −1

2

√
q(t, x)Gab cd(t, x)Kcd(t, x), (2.14)

where

Gab cd := qa(c|qb|d) − qabqcd. (2.15)

Since the inverse of Gab cd is easily found to be1

G−1
ab cd := qa(c|qb|d) −

1

D − 1
qabqcd, (2.16)

we find solving (2.14) for q̇ab

Kab(q, P ) = − 2
√
q
G−1
ab cdP

cd = − 2
√
q

(
Pab −

1

D − 1
qabP

)
, (2.17)

q̇ab(q, P,N, ~N) = 2NKab(q, P ) + (LNq)ab, (2.18)

1G−1
ab cd is sometimes referred to as the DeWitt “supermetric”, introduced in [178] as a metric in

the “superspace” of spatial Riemannian metrics.
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2. Einstein Hilbert action and ADM formulation

where P := P abqab denotes the trace of P ab. For the momenta conjugate to lapse and

shift, we immediately find

P (N)(t, x) :=
δS

δṄ(t, x)
= 0, (2.19)

P ( ~N)
a (t, x) :=

δS

δṄa(t, x)
= 0. (2.20)

It is obvious that we cannot solve for the velocities Ṅ , Ṅa in terms of qab, P
ab, N , P (N),

Na, P
( ~N)
a , and therefore, we see that the Lagrangian we are dealing with is singular.

The equations (2.19, 2.20) constitute primary constraints according to Bergmann’s

terminology,

C (t, x) := P (N)(t, x) = 0, Ca(t, x) := P ( ~N)
a (t, x) = 0. (2.21)

Now it is straightforward, using (2.13, 2.14, 2.17, 2.18), to obtain the action in canonical

form1

S =

∫
dt

∫
σ
dDx

[
P (N)Ṅ + P ( ~N)

a Ṅa + P abq̇ab − λC − λaCa

−
(
P abq̇ab −

s

2
N
√
q
(

(D)R− sGab cdKabKcd

))
(P, q,N, ~N)

]
=

∫
dt

∫
σ
dDx

[
P (N)Ṅ + P ( ~N)

a Ṅa + P abq̇ab − λC − λaCa

−
(
P ab(2NKab + (LNq)ab)−

s

2
N
√
q(D)R−NP abKab

)
(P, q,N, ~N)

]
=

∫
dt

∫
σ
dDx

[
P (N)Ṅ + P ( ~N)

a Ṅa + P abq̇ab − λC − λaCa

−N
(
− 2
√
q

(
P abPab −

1

D − 1
P 2

)
− s

2

√
q(D)R

)
−Na

(
−2qacDbP

bc
)

−2∂b

(
NaqacP

bc
)]

. (2.22)

Dropping the surface term in the last line, we can easily read off the non-vanishing

Poisson brackets

{qab(x), P cd(y)} = δc(aδ
d
b) δ

(D)(x− y), (2.23)

{N(x), P (N)(y)} = δ(D)(x− y), (2.24)

{Na(x), P
( ~N)
b (y)} = δab δ

(D)(x− y), (2.25)

1Note that the undetermined velocities Ṅ , Ṅa appear in the Hamiltonian as Lagrange multipliers

λ, λa according to Dirac’s procedure.
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2.2 Canonical analysis: ADM formulation

and the Hamiltonian

H :=

∫
σ
dDx [λC + λaCa +NH +NaHa]

=: C [λ] + Ca[λ
a] + H [N ] + Ha[N

a]. (2.26)

Note the notation C [c] we introduced for smeared versions of constraints C with a

Lagrange multiplier field c. This notation will be used extensively throughout this

thesis. We furthermore defined

H := − 2
√
q

(
P abPab −

1

D − 1
P 2

)
− s

2

√
q(D)R, (2.27)

Ha := −2qacDbP
bc, (2.28)

which are called Hamiltonian constraint and spatial diffeomorphism constraint, respec-

tively.

2.2.3 Constraint analysis

More precisely, (2.27, 2.28) are secondary constraints which arise when we demand that

the primary constraints C , Ca be preserved by the time evolution generated by H,

0
!

= Ċ = {C , H} = {P (N), H} = −H , (2.29)

0
!

= Ċa = {Ca, H} = {P ( ~N)
a , H} = −Ha. (2.30)

These secondary constraints satisfy the Dirac or hypersurface deformation algebra

{Ha[N
a],Hb[M

b]} = −Hc[(LNM)c],

{Ha[N
a],H [M ]} = −H [(LNM)],

{H [N ],H [M ]} = −sHa[q
ab(N∂bM −M∂bN)], (2.31)

and in particular trivially Poisson commute with the primary constraints. Thus, they

are preserved by the time evolution and the stability analysis ends here. To verify

(2.31), note that Ha generates spatial diffeomorphisms on all phase space variables,

{qab[fab],Hc[N
c]} =

(
L ~Nq

)
ab

[fab], (2.32)

{P ab[Fab],Hc[N
c]} =

(
L ~NP

)ab
[Fab], (2.33)
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2. Einstein Hilbert action and ADM formulation

which readily explains the first two lines in (2.31). Here, the notation indicates the

smearing of qab, P
ab with smearing field fab, Fab that we already introduced for con-

straints earlier.

Calculating the Poisson bracket between two Hamilton constraints above is more com-

plicated, but the calculation simplifies if we apply the formula for δ(D)R given in ap-

pendix A and furthermore use that, since the expression is antisymmetric in M,N , all

terms without derivatives acting on the multipliers vanish. The Hamiltonian constraint

can be shown to generate diffeomorphisms in time on shell, i.e. if the equations of mo-

tion hold. The derivation thereof is cumbersome and we refer the reader to e.g. [62,

section 1.3].

Variable Dof 1st cl. constraints Dof (count twice)

qab
D(D+1)

2 H 1

P ab D(D+1)
2 Ha D

Sum: D2 +D Sum: 2D + 2

Table 2.1: ADM phase space: counting of degrees of freedom

As one expects for a generally covariant theory like general relativity, we see that the

Hamiltonian is constrained to vanish. All constraints are first class in Dirac’s termi-

nology, as (2.31) shows (the remaining Poisson brackets are trivial). Again following

Dirac’s programme, we introduce the extended Hamiltonian, which amounts to adding

all secondary first class constraints (in this case, H and Ha) to the Hamiltonian with

arbitrary Lagrange multipliers, say N ′ and Na′. But H and Ha are already present in

the Hamiltonian, and thus get multiplied by N ′′ := N+N ′ and Na′′ := Na+Na′ in H.

But N ′′ and Na′′ still are completely arbitrary multipliers. Now we can trivially solve

the constraints C and Ca by demanding these equations strongly and gauge fixing N

and Na. One obtains the canonical ADM action and the ADM Hamiltonian [162, 163]

S =

∫
dt

∫
σ
dDx

[
P abq̇ab −NH −NaHa

]
, (2.34)

H =

∫
σ
dDx [NH +NaHa] . (2.35)
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2.2 Canonical analysis: ADM formulation

Finally, counting degrees of freedom (cf. table 2.1), we find (D+ 1)(D−2) phase space

degrees of freedom, which have to be reproduced by any of the following formulations.
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2. Einstein Hilbert action and ADM formulation
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3

Einstein Hilbert action with

vielbein and eADM formulation

3.1 Einstein Hilbert vielbein formulation

In this section, we will consider an action closely related to the Einstein Hilbert action.

To this end, we introduce the “square root” of the metric, the co - vielbein eµ
I satisfying

gµν = eµ
Ieν

JηIJ , (3.1)

and the action we want to consider is given by

S′EH :=
s

2

∫
M
dD+1X det e eµIe

ν
JRµν

IJ =

= s

∫
M
dD+1X ∗ (e ∧ e)IJ ∧RIJ . (3.2)

Here, eµI denotes the vielbein, eµIe
µ
J = ηIJ , η := diag(ζ,+1, ...,+1), and det e the

determinant of the co - vielbein. Of course the internal signature here is dictated by

the space time signature, ζ = s, i.e. the gauge group is SO(D + 1) for Euclidean and

SO(1, D) for Lorentzian general relativity. In the following, we will use (D+1)e := det e.

We furthermore introduced the vielbein compatible spin connection: The equation

0 = ∇Γ
µe
ν
I := ∂µe

ν
I + Γνµρe

ρ
I + ΓµI

JeνJ , (3.3)

can be solved uniquely for

ΓµIJ := eν [I|∇µeν|J ], (3.4)
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3. Einstein Hilbert action with vielbein and eADM formulation

and Rµν
IJ := 2∂[µΓν]

IJ+2Γ[µ|
IKΓ|ν]K

J above denotes its curvature. Using the formulas

in appendix A, we easily find for the variation of this action

δS′EH = s

∫
M
dD+1X (D+1)e

[(
eνJRρν

KJ − 1

2
eρ
KeµIe

ν
JRµν

IJ

)
δeρK

+ eµIe
ν
J∇Γ

[µδΓν]
IJ
]
. (3.5)

Since ∇Γ
µ annihilates eνJ , the term in the last line obviously only contributes a boundary

term which we drop, and the field equations read

0 = eνJRρν
KJ − 1

2
eρ
KeµIe

ν
JRµν

IJ

= eσK
(
Rρσ −

1

2
gρσR

)
= eσKGρσ, (3.6)

where we used Rµν
IJ = Rµνρσe

ρIeσJ (cf. appendix C). Since we only consider invertible

eσK (otherwise, the metric would be degenerate), Gµν = 0 is a necessary consequence,

and sufficient to solve the field equations.

This is not too surprising, since the action S′EH coincides with the Einstein Hilbert

action considered as a function of the vielbein up to sgn ((D+1)e). Using the results in

appendix C, we have

SEH [e] =
s

2

∫
M
dD+1X

[√
|g|(D+1)R

]
(e)

=
s

2

∫
M
dD+1X |det e| eµIeνJRµνIJ , (3.7)

since
√
|g| = |det e| and R = Rµν

IJeµIe
ν
J . Variation of (3.7) yields trivially (only

using δgµν = 2e(µ|Iδeν)
I in (2.3)) the field equations (3.6).

3.2 Canonical Analysis: eADM formulation

3.2.1 D + 1 split and Legendre transformation

The Hamiltonian formulation corresponding to this action will be called extended ADM

formulation (eADM). To obtain it, we perform the D + 1 split analogously to the

treatment in section 2.2.1. Using the (future pointing unit) normal to the spatial slices
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3.2 Canonical Analysis: eADM formulation

nµ, we construct δµν = (gµν − snµnν) + snµnν =: qµν + snµnν and decompose the

vielbein according to eµI = qµν e
ν
I + seνInνn

µ =: ‖eµI + snIn
µ. By construction, ‖eµI is

the spatial part of the vielbein, ‖eµInµ = 0. From appendix B, we have

eµIeνJRµνIJ = ||eµI ||eνJRH
µνIJ − s

(
KµνK

µν −K2
)

, (3.8)

where RH
µνIJ is the curvature of ΓH

µ
IJ := ||eν[IDµ

||eν
J ] + sn[IDµn

J ] and Kµν =

1
2(Lnq)µν = ||e(µ|

I(Ln
||eν))I . Pulling back to the spatial manifold σ like in section 2.2,

we obtain

S =
s

2

∫
dt

∫
σ
dDx N (D)e

[
eaIebJRH

abIJ − s
(
KabK

ab −K2
)]

, (3.9)

where eaI denotes the hybrid vielbein and RH
abIJ is the curvature of the hybrid spin

connection annihilating the hybrid vielbein introduced by Peldán [103],

ΓH
a
IJ := eb[IDaeb

J ] + sn[IDan
J ], (3.10)

DH
a eb

I := Daeb
I + ΓH

a
I
Jeb

J = 0. (3.11)

For more details, see appendix C. Actually, we could have used a shortcut to arrive

here: Starting with the action (3.7), we already know its split form using that this

action is equal to SEH [e]. The result is given by (2.11), where (D)R and
√
q are now

considered as a function of ea
I via

qab = ea
Ieb

JηIJ , (3.12)

and Kab as a function of ea
I , N and Na.

Since (3.7) only differs from the action we used above by a factor of sgn((D+1)e), the

split form we arrived at has the same property. In what follows, we will neglect this

subtle difference, i.e. effectively continue with the split form of the action (3.7), in

order to facilitate comparison with the ADM case.
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3. Einstein Hilbert action with vielbein and eADM formulation

Instead of P ab, we now calculate the momenta kaI conjugate to ea
I ,

kaI(t, x) :=
δS

δėaI(t, x)

=

∫
σ
dDy

δq̇bc(t, y)

δėaI(t, x)

δS

δq̇bc(t, y)

= 2δa(ceb)I(t, x)P bc(t, x)

= −√q(t, x)ebI(t, x)Gab cd(t, x)Kcd(t, x)

= GaI
b
J (ėb

J − (LNe)b
J), (3.13)

where

GaI
b
J := −

√
q

N
ecIG

ac bdedJ

= −
√
q

2N
qc[aed]

Ie(c
Jδbd), (3.14)

and Gab cd is defined in (2.15). Solvability of (3.13) for ėa
I depends on the invertibility

of this matrix, and therefore, the primary constraints can be obtained from it. That

GaI
b
J is not invertible is already clear from the fact that Kcd in the second to last line

of (3.13) only depends on

q̇ab = 2e(aI ėb)
I , (3.15)

and thus we cannot hope for solving for the other components of ėa
I . Contracting the

third to last line with eaJ and symmetrising / antisymmetrising in the index pair I, J ,

we obtain

ka(Iea|J) = 2eb(Iea|J)P
ba, (3.16)

GIJ := 2ka[Iea|J ] = 4eb[Iea|J ]P
ba = 0, (3.17)

where the factor of 2 in the definition of GIJ is inserted in order to fit with later results.

Contracting the first line with e(c|Ie|d)J , we obtain

k(c|Ie|d)
I = 2P cd, (3.18)

which can be solved for q̇ab = 2e(aI ėb)
I in analogy to (2.17, 2.18). Note that in this

section, P ab of course is given in terms of e, ė via (2.13, 2.14) and (3.12, 3.15). The anal-

ysis of N , Na and their momenta is completely the same as before. We can decompose
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3.2 Canonical Analysis: eADM formulation

kaI ėa
I according to

kaI ėa
I = kbIebJe

aJ ėa
I

= kbIebJe
a(J |ėa

I) + kbIebJe
a[J |ėa

I]

=
1

2
kbIe

aI q̇ab +
1

2
ea[J |

(
ėa
I] + snI]nK ėaK

)
GIJ

= P abq̇ab +
1

2
ea[J |

(
ėa
I] + snI]nK ėaK

)
GIJ . (3.19)

Adding and subtracting kaI ėa
I in (2.11) and correspondingly for N , Na, and introduc-

ing the Lagrange multiplier λIJ = ea[J | (ėaI] + snI]nK ėaK
)

for the velocities we cannot

solve for, we obtain

S =

∫
dt

∫
σ
dDx

[
P (N)Ṅ + P ( ~N)

a Ṅa + kaI ėa
I − λC − λaCa

−
(
P abq̇ab +

1

2
λIJGIJ −

s

2
N
√
q
(

(D)R− sGab cdKabKcd

))
(k, e,N, ~N)

]
.

(3.20)

Clearly, after performing the same manipulations as in the metric case and eliminating

N , Na and their momenta, the final form of the action will be

S =

∫
dt

∫
σ
dDx

[
kaI ėa

I − 1

2
λIJGIJ −NH −NaHa

]
, (3.21)

with the non-vanishing Poisson brackets

{eaI(x), kbJ(y)} = δbaδ
(D)(x− y). (3.22)

In (3.21), GIJ is given by (3.17) and H , Ha as in (2.27, 2.28) with qab, P
cd replaced

by ea
I , kaI using (3.12) and (3.18),

Ha = −Db(k
bJeaJ) +

1

2
Db(G

IJebJeaI)

≈ −Db(k
bJeaJ), (3.23)

H = − 1

2
√
q

(
kaIkbJ − 1

D − 1
kaJkbI +

1

2
GKJebKk

aI

)
eaJebI −

s

2

√
q(D)R

≈ − 1

2
√
q

(
kaIkbJ − 1

D − 1
kaJkbI

)
eaJebI −

s

2

√
q(D)R, (3.24)

where it is understood that q and (D)R are expressed using eaI . GIJ is called the Gauß

constraint.
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3. Einstein Hilbert action with vielbein and eADM formulation

3.2.2 Constraint analysis

It is easy to convince oneself (and it is made explicit below in section 3.2.3) that the

Gauß constraint (3.17) generates internal SO(D+ 1) or SO(1, D) transformations. The

commutation relations of the corresponding Lie algebra

{1

2
GIJ [λIJ ],

1

2
GKL[ωKL]} =

1

2
GMN [[λ, ω]MN ], (3.25)

follow. Since G IJ also strongly Poisson commutes with H , Ha, which transform as

scalars under internal rotations, it is a first class constraint. Moreover, with the re-

placements (3.12, 3.18), it is easy to show that the ADM Poisson brackets (2.23) and

therefore also the hypersurface deformation algebra (2.31) are reproduced weakly, i.e.

up to terms ∝ GIJ (cf. e.g. [62, section 4.2.1] for calculational details), i.e. we again

obtain a first class system.

Interestingly, while we will see shortly that the Gauß constraint arises in the first

order formulation as a secondary constraint, here it is a primary constraint. Counting

of degrees of freedom results in (D + 1)(D − 2) coinciding with the ADM counting in

the previous section.

Variable Dof 1st cl. constraints Dof (count twice!)

ea
I D(D + 1) H 1

kbJ D(D + 1) Ha D

G IJ D(D+1)
2

Sum: 2D2 + 2D Sum: D2 + 3D + 2

Table 3.1: eADM phase space: counting of degrees of freedom

3.2.3 From the co vielbein to the densitised vielbein

In later chapters, we will exclusively use the canonical variables KaI , E
aI . These are

related to the ones used here by {eaI , kbJ} →{
KaI :=

1
√
q

(
ebIeaJ −

1

D − 1
eaIebJ − sqabnInJ

)
kbJ , EaI :=

√
qqabeb

I

}
, (3.26)
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3.2 Canonical Analysis: eADM formulation

which can be easily shown to be a canonical transformation (The above matrix in

the definition of KaI is the non-singular part of − δebJ (x)
δEaI(y)

, and the minus sign stems

from the fact that we switched momenta and configuration variables). Solving for

kbJ =
√
q(2ea[JebI] − sqabnInJ)KaI , we can rewrite the set of constraints in terms of

these variables,

G IJ = 2Ea[IKa
|J ], (3.27)

Ha ≈ −Db

(
KaIE

bI − δbaKcIE
cI
)

, (3.28)

H ≈ − 1

2
√
q

(
Ka

IKb
J −Ka

JKb
I
)
EaJEbI − s

2

√
q(D)R, (3.29)

where in the last two expressions we dropped terms proportional to 2K [c
IE

d]I =

1
qE

cIEdJGIJ and, of course,
√
q and (D)R are now understood as functions of EaI .

Since this formulation will be more relevant for the rest of this work than the one we

had before the canonical transformation, we will at this point shortly discuss the ac-

tion of these constraints on the phase space variables. The Gauß constraint of course

generates internal SO(D + 1) or SO(1, D) transformations,

{KaI(x),
1

2
GKL[λKL]} = λI

JKaJ , (3.30)

{EaI(x),
1

2
GKL[λKL]} = λIJE

aJ . (3.31)

Ha in this form not only generates spatial diffeomorphisms, but also internal rotations.

We have

Ha[N
a] =

∫
σ
dDx Na

[
−∂b(EbIKaI) + ΓcbaE

bIKcI + (DH
aE

bI)KbI

+EbI
(
∂aKbI − ΓcabKcI + ΓH

aIJKb
J
)]

=

∫
σ
dDx Na

[
−∂b(EbIKaI) + EbI∂aKbI +

1

2
ΓH

aIJG
IJ

]
=

∫
σ
dDx

[
EbI(L ~NK)bI +

1

2
NaΓH

aIJG
IJ

]
, (3.32)

where in the first step, we only wrote out all terms appearing in Ha, and in the second

noted that the terms containing Christoffel symbols cancel due to their symmetry and

the hybrid spin connection annihilates EaI . In the last step, we dropped a surface term.

Therefore, introducing H̃a := Ha − 1
2ΓH

aIJG
IJ , we find that this linear combination
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3. Einstein Hilbert action with vielbein and eADM formulation

generates spatial diffeomorphisms

{KaI [f
aI ], H̃c[N

c]} =
(
L ~NK

)
aI [f

aI ], (3.33)

{EaI [FaI ], H̃c[N
c]} =

(
L ~NE

)
aI [FaI ], (3.34)

from which we can easily deduce the action of Ha. This implies that, on rotationally

invariant observables (i.e. observables w.r.t. G ), the action of Ha still is that of

spatial diffeomorphisms. Of course, it can also be worked out that the action of H on

rotationally invariant observables is the same as in the ADM case. The discussion is

more intricate and we leave it to the interested reader to work out the details.

3.2.4 Time gauge

One often encounters a formulation in the literature similar to the one we considered

in section 3.2.3, which, however, only has a SO(D) gauge symmetry. In D = 3, when

going from the ADM formulation to the Ashtekar Barbero variables, this formulation

usually arises at an intermediate step, as we will see in section 6.3. It can be obtained

from the SO(D + 1) or SO(1, D) formulation we considered in the first remark by

choosing time gauge (the time gauge is a canonical gauge, see, for instance, [161]), i.e.

setting nI = δI0 or equivalently Ea0 = 0. Furthermore, this requirement is second class

with the boost part of the Gauß constraint, which we therefore also have to solve if

we do not want to retain second class constraints. After a straightforward symplectic

reduction, we obtain a phase space coordinatised by the canonical pair {Kbj , E
ai},

i, j, ... ∈ {1, ..., D}, subject to the constraints

G ij = 2Ea[iKa
|j], (3.35)

Ha ≈ −Db

(
KaiE

bi − δbaKciE
ci
)

, (3.36)

H ≈ − 1

2
√
q

(
Ka

iKb
j −Ka

jKb
i
)
EajEbi − s

2

√
q(D)R. (3.37)

3.3 eADM via extension of the ADM phase space

Of course, as the name already suggests, the same Hamiltonian formulation can also

be obtained via an extension of the ADM phase space. We will be rather brief here

and refer the interested reader to [62, section 4.2.1] for a detailed treatment.
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3.3 eADM via extension of the ADM phase space

We introduce a larger phase space coordinatised by a densitised (hybrid) vielbein

EaI =
√
qeaI and its conjugate KaI , and postulate the non-vanishing Poisson brackets

{KaI(x), EbJ(y)} = δbaδ
J
I δ

(D)(x − y). Note that, since we are just adding internal de-

grees of freedom, we can choose to work with a (D+1)-dimensional internal space with

signature ζ = ±1 irrespective of the space time signature s. Moreover, we have another

possibility, namely to work with a D-dimensional internal space, i.e. a genuine D-bein

of which the spatial metric is constructed. To treat all three cases at the same time, it

will be convenient to use ζ = 0 in the third case and, only in this section, use indices

I, J, ... also for D-dimensional internal space. We define the map from the extended to

the ADM phase space by:

qqab[E] := EaIEbI , Kab[E,K] := − 1
√
q
EcIqc(aKb)I , P ab[E,K] = −1

2

√
qGab cdKcd.

(3.38)

Now we impose constraints demanding that those parts of KaI which do not contribute

to Kab vanish. If these constraints define a coisotropic constraint surface (i.e., first

class constraints), we expect that modding out by the corresponding gauge orbits will

account for the additionally introduced degrees of freedom in the vielbein. The parts

which do not contribute are Gab := EcIqc[aKb]I and ζnJKbJ . The requirement that both

of them vanish can be conveniently combined into the constraint G IJ = 2Ea[IKa
|J ],

that we already encountered in the last sections. It generates SO(D + 1), SO(1, D) or

SO(D) transformations and therefore, as we expected, removes the “rotational” degrees

of freedom which the vielbein has in addition to the information on the spatial metric.

Obviously, the ADM variables as given in (3.38) are Dirac observables with respect to

this constraint. If the ADM Poisson brackets are reproduced on the extended phase

space, we know that we have a first class algebra of constraints (using the map (3.38) to

rewrite the ADM constraints in terms of the coordinates on the extended phase space)

and that symplectic reduction with respect to G IJ leads back to the ADM phase space.

Therefore, what is left to check is

{qab[E](x), P cd[E,K](y)} = δc(aδ
d
b)δ

(D)(x− y), (3.39)
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3. Einstein Hilbert action with vielbein and eADM formulation

which follows in one line using (A.21) and

δP cd[E,K] =
q

2
Gcd efEeIδKf

I (3.40)

+

[
1

2
Gcd efδ

I
J +

1

q
G−1 e(d|

gfE
c)
JE

gI − 1

q
G−1 cd

hfE
h
IE

eJ

]
Ke

JδEf I .

To derive (3.40), the formulas in appendix A might be helpful.

Similarly, we find

{P ab[E,K](x), P cd[E,K](y)} =

∫
σ
dDz

[
δP ab[E,K](x)

δKf
I(z)

δP cd[E,K](y)

δEf I(z)
− ab↔ cd

]
=

[
q

4
Gab xfGcd efExIKe

Iδ(D)(x− y) +
1

2
Gab gfG−1 e(d|

gfE
c)
JKe

Jδ(D)(x− y)

− 1

2
Gab hfG−1 cd

hfE
eJKe

Jδ(D)(x− y)

]
− ab↔ cd

=
1

2
Gab xfGcd efGxe +

1

8

(
q(b|dG c|a) + q(b|cG d|a)

)
δ(D)(x− y) ≈ 0. (3.41)

From the first to the second line, we only inserted (3.40) to obtain three terms. Due

to the antisymmetry in ab, cd, the first term obviously is antisymmetric in x, e and

therefore proportional to Gxe, which gives the first term in the fourth line. In the

second summand, we only have to contract the matrices, which is trivial since they are

inverse to each other, and then rearrange the terms exploiting again the antisymmetry

in ab, cd to obtain the remaining terms in the fourth line. The third summand of the

second step obviously is symmetric in the exchange of ab, cd and therefore drops out.

As we have seen before, since Gab = − q
2Eb

IEc
JGIJ is proportional to (a part of) the

Gauß constraint, it vanishes weakly, and therefore the ADM Poisson bracket is weakly

fulfilled. Note that the remaining Poisson bracket between two metrics is trivially

fulfilled. This ends the proof that the symplectic reduction of the eADM constrained

Hamiltonian system with respect to the constraint G IJ gives back the ADM phase

space. The explicit form of Ha, H when expressed in terms of {KaI , E
bJ} of course is

the same as in (3.28, 3.29).
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4

Palatini action and corresponding

2nd class constraint system

4.1 Palatini action

The action we want to study in this section is a first order action in D+ 1 dimensions,

which we will call “Palatini action” as we commented on in the introduction to this

chapter. It is given by

SP[e,A] =
s

2

∫
M
dD+1X eeµIeνJFµνIJ . (4.1)

The notation is as before, eµI denotes the vielbein and e the determinant of the co-

vielbein, and FµνIJ := 2∂[µAν]IJ + 2A[µ|IKA|ν]
K
J is the field strength of the SO(1, D)

or SO(D + 1) connection AµIJ for Lorentzian and Euclidean spacetimes respectively.

Using δFµν
IJ = 2∇A[µδAν]

IJ = 2∂[µδAν]
IJ + 4A[µ|

[I|KδA|ν]K
|J ] (cf. appendix A), we

obtain, up to a boundary term, the field equations

∇Aµ (ee[µ|Ie|ν]J) = 0, (4.2)

eνJFµνIJ −
1

2
eρIeσJFρσIJeµI = 0. (4.3)

The first of these can be easily shown to be the torsion freeness condition ∇A[µeν]
I = 0,

which is solved by AµIJ = ΓµIJ , and inserting this into the second field equation and

using the relations is appendix C, Einstein’s field equations are reproduced.
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4. Palatini action and corresponding 2nd class constraint system

In the following, we will obtain two different Hamiltonian formulations from this ac-

tion, one strictly following Dirac’s procedure (here), and one where we introduce the

so-called quadratic simplicity constraints (section 5.2).

4.2 Canonical analysis

4.2.1 D + 1 split and Legendre transformation

The canonical analysis presented here was firstly given in [2, 164, 165]. In our pre-

sentation, we will follow [2] and several parts were taken from there with only minor

modifications.

The D + 1 split is performed analogous to section 3.2.1 using

eµIeνJFµνIJ = ‖eµI‖eνJFµνIJ + 2snInµ‖eνJFµνIJ , (4.4)

and rewriting the terms according to

N (D)e‖eµInJnνFµνIJ = −1

2
π′µIJ(T ν −Nν)FµνIJ

=
1

2
π′µIJLTAµIJ +

1

2
(T νAνIJ)G ′IJ −NµH ′

µ , (4.5)

1

2
N (D)e‖eµI‖eνJFµνIJ = −sN˜H ′, (4.6)

where we introduced

π′µIJ := 2n[IEµ|J ] := 2(D)en[I‖eµ|J ], (4.7)

N˜ := N/(D)e, (4.8)

G ′IJ := DA
µπ
′µIJ := ∂µπ

′µIJ + [Aµ, π
′µ]IJ , (4.9)

H ′ := −1

2
π′µIKπ′νJKFµνIJ , (4.10)

H ′
µ :=

1

2
π′νIJFµνIJ . (4.11)

The split is completed by pulling back all spatially projected quantities to the spatial

manifold σ. Note that we changed the lapse function according to (4.8), but we will

still refer to N˜ simply as lapse function (of density weight -1). Introducing the nota-

tion λIJ = −(T · A)IJ and adding and subtracting all momenta multiplied with the
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4.2 Canonical analysis

corresponding velocities, the action reads

S =

∫
dt

∫
σ
dDx

(
1

2
π′aIJ ȦaIJ −N˜H ′ −NaH ′

a −
1

2
λIJG

′IJ
)

=

∫
dt

∫
σ
dDx

(
1

2
πaIJ ȦaIJ + P (E)

a
IĖaI + P

(N˜)
Ṅ˜ + P ( ~N)

a Ṅa +
1

2
P

(λ)
IJ λ̇

IJ

−
[

1

2
caIJS

aIJ + γaIP
(E)
a

I + αP
(N˜)

+ αaP ( ~N)
a +

1

2
αIJP

(λ)
IJ

+N˜H ′ +NaH ′
a +

1

2
λIJG

′IJ
])

, (4.12)

from which we read off the total Hamiltonian

HT =

∫
σ
dDx

(
N˜H ′ +NaH ′

a +
1

2
λIJG

′IJ + αP
(N˜)

+ αaP ( ~N)
a +

1

2
αIJP

(λ)
IJ

+
1

2
caIJS

aIJ + γaIP
(E)
a

I

)
.

(4.13)

Here, the P s denote the canonically conjugate momenta to the variables indicated

in brackets and πaIJ is the momentum to AaIJ
1. We furthermore replaced all the

velocities which could not be solved for in the Hamiltonian by Lagrange multipliers,

α = Ṅ˜ , αa = Ṅa, αIJ = λ̇IJ , caIJ = ȦaIJ and γaI = ĖaI . Furthermore, we introduced

a factor of 1/2 in front of term with a trace over the Lie algebra indices. Note that,

of course, P
(E)
a

I , P (N˜), P
( ~N)
a and P

(λ)
IJ constitute primary constraints, but unlike the

case of other constraints, we refrain from introducing calligraphic letters C = P ≈ 0

for them, in order not to keep notation simpler. There is one more primary constraint,

S aIJ = πaIJ − π′aIJ (4.14)

called the simplicity constraint. Using it, we can replace all π′aIJs by πaIJs in the

primed constraint H ′, H ′
a and G ′IJ (this being equivalent to a redefinition of the La-

grange multiplier of the simplicity constraint) and will call the resulting expressions H ,

Ha and G IJ in the following. The requirement of conservation under the Hamiltonian

time evolution of the constraints P (N˜), P
( ~N)
a and P

(λ)
IJ shows that H , Ha and G IJ

are constraints and that the total Hamiltonian is a linear combination of constraints
1To avoid confusion, we want to remark that we here break with our previous convention, calling

the conjugate variable to EaI P
(E)
a

I and not KaI like before. This is because later, after solving second

class constraints, we will find that we are lead back to the eADM phase space, but P
(E)
a

I will not

exactly coincide with the eADM conjugate momentum KaI .
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4. Palatini action and corresponding 2nd class constraint system

as expected. We take a shortcut at this point and solve P (N˜), P
( ~N)
a and P

(λ)
IJ strongly

at this point, and will treat lapse, shift and λIJ in the following as Lagrange multipliers.

Note that the (timelike in the Lorentzian case) unit normal nI appearing in (4.7)

is determined (up to sign) by the requirements EaInI = 0 and nIn
I = s. However,

we will see in the following that the constraint analysis is simplified if we introduce nI

together with its conjugate momenta P
(n)
I as additional phase space degree of freedom,

and add the constraints EaInI ≈ 0 and nInI−s ≈ 0 as well as the requirement P
(n)
I = 0

to the total Hamiltonian with Lagrange multipliers ρ and ρa and γI , respectively.

The final ingredient we want to introduce before starting with the constraint anal-

ysis of this theory are certain projectors. We define the projection transversal to nI by

η̄IJ := ηIJ−snInJ (in the Lorentzian theory, one could speak of rotational components

as opposed to boost components along nI , which we, in slight abuse of terminology,

will also use in the Euclidean case). Using it, we can decompose Lie algebra valued

tensors XIJ according to

XIJ = 2n[IX̄|J ] + X̄IJ , (4.15)

where we defined X̄IJ := η̄KI η̄
L
JXKL and X̄I := −sXIJn

J . Applying this decomposi-

tion to the Lagrange multiplier of the simplicity constraint, we can split it into a boost

and a non-boost part,

1

2
caIJS

aIJ = 0 ⇔ 1

2
c̄aIJS̄

aIJ :=
1

2
c̄aIJ π̄

aIJ = 0,

sc̄aIS̄
aI := −c̄aI

(
πaIJnJ + s EaI

)
= 0. (4.16)

This set of constraints is of course equivalent to the full simplicity constraint: solving

S̄ aIJ = 0, we have π̄aIJ = 0 and hence πaIJ = 2n[IBa|J ] for some BaJ . S̄ aI then

demands that BaJ = EaJ .

We will decompose the rotational components of the simplicity constraint even further

into trace and trace free parts with respect to EaI . To this end, we define the inverse

of EaI , EaI := 1
q qabE

b
I , satisfying EaIE

bI = δba and EaIE
a
J = η̄IJ and introduce the

decomposition of tensors of the index structure X̄aIJ as

X̄aIJ = X̄tf
aIJ +

2

D − 1
Ea[IX̄

tr
J ], (4.17)

48



4.2 Canonical analysis

where X̄tr
J := EaIX̄aIJ . The superscripts “tr” and “tf” here of course stand for “trace”

and “trace free”, and indeed one easily verifies that

X̄tf
aIJ = Ptf

aIJ
bKLX̄bKL := (δbaη̄

K
[I η̄

L
J ] −

2

D − 1
Ea[I η̄

L
J ]E

bK)X̄bKL (4.18)

is trace free with respect to EaI . Ptf here denotes the projector on the tracefree part.

Applying this decomposition to S̄ aIJ , we can as well project the corresponding La-

grange multipliers accordingly.

After these considerations, the total Hamiltonian reads

HT =

∫
σ
dDx

(
N˜H +NaHa +

1

2
λIJG

IJ +
1

2
c̄tf
aIJS̄

aIJ
tf +

1

D − 1
c̄tr
J S̄ J

tr

+sc̄aIS
aI + γaIP

(E)
a

I + γIP
(n)
I + ρ(nInI − s) + ρa(E

aInI)

)
. (4.19)

The non-vanishing Poisson-brackets can be read off from (4.12),{
AaIJ(x), πbKL(y)

}
= 2δbaη

[K
I η

L]
J δ

(D)(x− y),{
EaI(x), P

(E)
bJ (y)

}
= δab η

I
Jδ

(D)(x− y),{
nI(x), P

(n)
J (y)

}
= ηIJδ

(D)(x− y). (4.20)

4.2.2 Constraint analysis

In order to perform the constraint analysis of the Hamiltonian HT given in (4.19), we

introduce smeared constraints C [f ] :=
∫
σ d

Dx f · C , where the smearing function mir-

rors the index structure of the constraint C under consideration, and, following Dirac,

check if they are either (at least weakly) preserved by the time evolution generated by

HT, or fix some Lagrange multipliers of the set {N˜ , Na, λIJ , c̄
tf
aIJ , c̄I , c̄aI , γ

a
I , γI , ρ, ρa},

or lead to new, secondary constraints. We already obtained the secondary constraints

H , Ha and GIJ in the last section from evolving P (N˜), P
( ~N)
a and P

(λ)
IJ . In the following,

we will investigate the evolution of the remaining primary constraints.

For the constraint demanding that nI be a (timelike) unit vector, we find

0
!
≈
∫
σ
dDx f(x)

{
nI(x)nI(x)− s,HT

}
= 2

∫
σ
dDx f nIγI , (4.21)
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4. Palatini action and corresponding 2nd class constraint system

and therefore, γI = γ̄I . Since γI multiplies the momenta conjugate to nI , the Hamilto-

nian flow is such that it does not change the length of nI , exactly as expected. Stability

of S̄ aI requires

0
!
≈ {S̄ aI [f̄aI ], HT} =

∫
σ
dDx f̄aI(x)

{
−sπaIJ(x)nJ(x)− EaI(x), HT

}
=

∫
σ
dDx f̄aI

(
−s{πaIJ , HT}nJ − sπaIJγJ − γ̄aI

)
. (4.22)

Notice that in the last term, only the rotational parts of γaI survive since f̄aI is projected

accordingly. We will not detail the computation of the left-over Poisson bracket between

πaIJ and the total Hamiltonian, which is however straightforward. One finds that S̄ aI

is stable under the time evolution if we choose

γ̄aI = γ̄aI0 := λ̄IJEaJ − 2(DbN
[a)Eb]I +N bη̄IJD

A
bE

aJ −N˜
(
qqabη̄IJ − EaIEbJ

)
DA

bn
J .

(4.23)

Similarly,

0
!
≈
∫
σ
dDx fa(x)

{
EaI(x)nI(x), HT

}
=

∫
σ
dDx fa

(
γaIn

I + γIEaI
)

(4.24)

can be solved by choosing

γaIn
I = γ̄a0 := −γIEaI . (4.25)

For the constraint demanding the vanishing of the momenta conjugate to EaI , we have

0
!
≈
∫
σ
dDxfaI(x)

{
P

(E)
aI (x), HT

}
=

∫
σ
dDxfaI(sc̄aI − ρanI). (4.26)

Decomposing faI into boost and rotational components, we find that both, c̄aI = 0 =

ρa. With the same method, we find ρ = 0 = c̄tr
I , since

0
!
≈
∫
σ
dDx f I(x)

{
P

(n)
I (x), HT

}
≈
∫
σ
dDx f I

(
−2nIρ− c̄tr

I

)
. (4.27)

Finally, we come to the trace and trace free parts of the simplicity constraint. It

is helpful to notice that we actually never have to calculate the derivatives of the

projections we introduced when calculating Poisson brackets, since e.g.

{S̄ aIJ
tf , . } = PaIJtf bKL{S̄ bKL, . }+ S̄ bKL{PaIJtf bKL, . } ≈ PaIJtf bKL{S̄ bKL, . }.

(4.28)
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4.2 Canonical analysis

Therefore, it is sufficient to calculate the time evolution of S̄ aIJ and decompose its

multiplier after calculating the Poisson bracket,

0 ≈ {1

2
S̄ aIJ [f̄aIJ ], HT} =

∫
σ
dDx

1

2
f̄aIJ(x)

{
π̄aIJ(x), HT

}
≈
∫
σ
dDx f̄aIJ

(
−N˜DA

b

(
πb[I|Kπa|J ]K

)
+ Ea[J

(
−γ̄I] − nKλK|I] − s(DbN˜ )Eb|I] +N b DA

bn
I]
))

≈
∫
σ
dDx

(
−sN˜ f̄aIJEb[IDA

bE
a|J ]

+ f̄aIJE
a[J
(
−γ̄I] − nKλK|I] − s(DbN˜ )Eb|I] +N b DA

bn
I]
))

≈
∫
σ
dDx

(
−sN˜ f̄ tf

aIJE
b[IDA

bE
a|J ] − f̄ tr

I

[
−γ̄I − nKλKI − s(DbN˜ )EbI

+N b DA
bn
I +

sN˜
D − 1

(δbcη
I
J − EbIEcJ)DA

bE
cJ

])
, (4.29)

where we have used the simplicity constraint several times and in the last step separated

trace and trace free components of the multiplier f̄aIJ . The corresponding terms have

to vanish separately. For the trace components, we simply fix

γ̄I = γ̄I0 := −nKλKI − s(DbN˜ )EbI +N b DA
bn
I +

sN˜
D − 1

(δbcη
I
J − EbIEcJ)DA

bE
cJ .

(4.30)

The trace free part cannot be dealt with by fixing multipliers, since we know that the

only possible choice, N˜ = 0, is physically not viable, corresponding to a degenerate

spacetime metric. Therefore, we have to introduce an additional constraint,

D̄aIJ
tf := −2sPaIJtf bKLE

c[K DA
cE

bL]. (4.31)

Note that this transversal and trace free projection of the term in (4.29) is sufficient,

since the smearing field is projected accordingly.

This ends the stability analysis of the primary constraints. The total Hamiltonian

is reduced to

HT =

∫
σ
dDx

(
N˜H +NaHa +

1

2
λIJG

IJ +
1

2
c̄tf
aIJS̄

aIJ
tf + γaI0 P

(E)
aI + γ̄I0P

(n)
I

)
, (4.32)
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4. Palatini action and corresponding 2nd class constraint system

where γaI0 and γ̄I0 are fixed functions of phase space variables and the remaining free

Lagrange multipliers as given in (4.23, 4.25, 4.30). The secondary constraints are H ,

Ha, G IJ and D̄aIJ
tf , and the next step consists of analyzing their stability under the

Hamiltonian time evolution. As we will see, S̄ aIJ
tf and D̄aIJ

tf form a second class pair

and the remaining secondary constraints are (or better, can be made) first class and

correspond to the first class constraints we already encountered in section 3.2, the

Hamiltonian, spatial diffeomorphism and Gauß constraint.

Starting with G IJ , it is easy to verify that its action on the phase space variables

AaIJ , π
bKL is given by so(1, D) or so(D + 1) transformations,{

AaIJ ,
1

2
GKL[fKL]

}
= −DA

afIJ , (4.33){
πaIJ ,

1

2
GKL[fKL]

}
= [f, πa]IJ . (4.34)

It satisfies the commutation relations of the so(1, D) or so(D + 1) Lie algebra and

Poisson commutes with H and Ha since they have no free internal indices,{
1

2
G IJ [fIJ ],

1

2
GKL[γKL]

}
=

1

2
G IJ [[f, γ]IJ ] , (4.35){

1

2
G IJ [fIJ ],Ha[N

a]

}
= 0, (4.36){

1

2
G IJ [fIJ ],H [N˜ ]

}
= 0. (4.37)

It trivially Poisson commutes with all constraints which do neither depend on AaIJ nor

πbKL, but not with the simplicity constraints. However, since both, P
(E)
aI and P

(n)
I are

constraints, we can introduce a linear combination of constraints which we will call the

“improved” Gauß constraint

ĜIJ := DA
aπ

a
IJ + 2P

(E)
a[I E

a
J ] + 2P (n)

[InJ ], (4.38)

which now generates SO(1, D) or SO(D + 1) transformations on all phase space vari-

ables, and therefore weakly Poisson commutes with all constraints, in particular is

stable under the Hamiltonian time evolution. Since the constraints we added were

already stable, we know that also the original constraint G IJ is, which can also be

verified by direct calculation. Since the diffeomorphism constraint Ha as we defined
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4.2 Canonical analysis

it here generates spatial diffeomorphisms mixed with internal SO(1, D) or SO(D + 1)

transformations on AaIJ and πbKL, it is convenient to introduce

H̃a := Ha −
1

2
AaIJG

IJ =
1

2
πbIJ∂aAbIJ −

1

2
∂b

(
πbIJAaIJ

)
. (4.39)

H̃a now acts on AaIJ and πbKL by generating spatial diffeomorphisms solely,{
AaIJ , H̃b[f

b]
}

= f b∂bAaIJ + (∂af
b)AbIJ = LfAaIJ , (4.40){

πaIJ , H̃b[f
b]
}

= f b∂bπ
aIJ − (∂bf

a)πbIJ + (∂bf
b)πaIJ = Lfπ

aIJ . (4.41)

From this and (4.39), we can deduce{
Ha[f

a],Hb[N
b]
}

= Ha[(LfN)a]− 1

2
G IJ [faN bFabIJ ], (4.42){

Ha[f
a],H [N˜ ]

}
= H [LfN˜ ] + G IJ [N˜ faπbIKFabJK ], (4.43)

where (LfN)a = f b∂bN
a − N b∂bf

a and (LfN˜ ) = f b∂bN˜ − N˜ ∂bf b (note that N˜ is a

scalar density of weight −1). Like in the case of G IJ , H̃a trivially Poisson commutes

with all other constraints except the simplicity constraints, which we can rectify by

introducing the “improved” spatial diffeomorphism generator

Ĥa :=
1

2
πbIJ∂aAbIJ −

1

2
∂b

(
πbIJAaIJ

)
− EbI∂aP (E)

bI + ∂b

(
P

(E)
aI EbI

)
+ P

(n)
I ∂an

I ,

(4.44)

1which is, upon smearing the constraint and partially integrating, again a linear com-

bination of constraints, and now generates spatial diffeomorphisms on all constraints.

Like Ĝ IJ , it is therefore first class and in particular stable, and implies stability of

Ha. The Hamiltonian constraint at this point already commutes with most of the con-

straints present in HT, and what is left to study is its Poisson bracket with itself and

the transversal trace part of the simplicity constraints. For the former, we have{
H [M˜],H [N˜ ]

}
= −1

2
Ha

[
(M˜∂bN˜ −N˜ ∂bM˜)πaIJπbIJ

]
+

∫
σ
dDx

3

2
(M˜∂aN˜ −N˜ ∂aM˜)πa[IJπ

b
KL]π

cIJFcb
KL

≈ −sHa

[
(M˜∂bN˜ −N˜ ∂bM˜)qqab

]
, (4.45)

1The sign difference in the terms containing the hybrid vielbein when compared to (3.32) of course

are due to the fact that here, although EaI is a density of weight one, we still treat P
(E)
aI as momenta,

whereas KaI in (3.32) constituted the configuration variable. The same difference in sign of course

appeared already in Ĝ IJ when compared to (3.27).
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4. Palatini action and corresponding 2nd class constraint system

which is reminiscent of (2.31), except that M˜, N˜ here are densities of weight -1. Again,

it is helpful for this calculation that, due to the antisymmetry in M˜, N˜ , only terms

∝M˜∂bN˜ −N˜ ∂bM˜ are non-vanishing, and furthermore, a relation satisfied by the con-

traction of so(1, D) or so(D + 1) structure constants was used, cf. appendix D. The

term in the second line vanishes when using the simplicity constraints.

For the Poisson bracket with the total Hamiltonian, we now find in analogy to (4.29)

{H [f˜], HT} ≈ {H [f˜],
1

2
S̄ aIJ

tf [c̄ft
aIJ ]} ≈ −1

2
D̄aIJ

tf [f˜c̄tf
aIJ ] ≈ 0. (4.46)

The Hamiltonian constraint therefore is also preserved.

Finally, the last secondary constraint to investigate is D̄aIJ
tf . We find{

1

2
S̄ aIJ

tf [f̄ tf
aIJ ],

1

2
D̄bKL

tf [f̄ ′tfbKL]

}
=

∫
dDx

1

2
f̄ tf
aIJF

aIJ,bKL 1

2
f̄ ′tfbKL (4.47)

with

F aIJ,bKL = 4sEa[K η̄L][IEb|J ]. (4.48)

Any contraction of this matrix with nI vanishes, it is symmetric in the exchange of the

first set of indices with the second set, and although it is not trace free, it preserves

the property of trace freeness, in the sense that PaIJtf bKLF
bKL,cMNEcM = 0. Most

importantly, it is invertible, and its inverse is given by

(
F−1

)
aIJ,bKL

= −sEaAEbB
(
η̄AB η̄K[I η̄J ]L − 2η̄B[I η̄J ][K η̄

A
L]

)
, (4.49)

1

2
F aIJ,bKL

(
F−1

)
bKL,cMN

= 2δab η̄
[I
M η̄

J ]
N , (4.50)

which shows that S̄ aIJ
tf and D̄bKL

tf are a second class pair. Therefore, to stabilize D̄bKL
tf

we can fix the Lagrange multiplier c̄tf
aIJ , because

1

2
{D̄bKL

tf [f̄ tf
bKL], HT} =

∫
σ
dDx

1

2
f̄ tf
aIJ

(
−1

2
F aIJ,bKLc̄tf

bKL + Σ̄aIJ
tf

)
≈ 0, (4.51)

where we denoted all contributions which do not stem from the S̄ aIJ
tf [c̄tf

aIJ ] term in HT

with Σ̄aIJ
tf after partially integrating terms where derivatives acted on f̄ tf

aIJ . Of course,
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4.2 Canonical analysis

trace or boost components of the resulting terms contributing to Σ̄aIJ
tf vanish because

of the projection of the multiplier. Choosing

c̄tf
aIJ = c̄tf 0

aIJ :=
(
F−1

)
aIJ,bKL

Σ̄bKL
tf , (4.52)

the constraint D̄bKL
tf is stabilized. Finally, the total Hamiltonian reads

HT =

∫
σ
dDx

(
N˜H +NaHa +

1

2
λIJG

IJ +
1

2
c̄tf 0
aIJS̄

aIJ
tf + γaI0 P

(E)
aI + γ̄I0P

(n)
I

)
=

∫
σ
dDx

(
N˜ Ĥ +NaĤa +

1

2
(λIJ +NaAaIJ)Ĝ IJ

)
. (4.53)

In the last step, we noted that the only free Lagrange multipliers left are N˜ , Na and λIJ ,

i.e. upon inserting (4.23, 4.25, 4.30, 4.52), HT must be of the displayed form. Moreover,

by general arguments, at the end of the stability analysis the total Hamiltonian is a

linear combination of first class constraints. Explicit calculation shows that, indeed,

the “improved” generators of spatial diffeomorphisms Ĥa and SO(1, D) or SO(D + 1)

transformations Ĝ IJ given in (4.44, 4.38) appear, as well as a first class Hamiltonian

constraint Ĥ , whose form is rather complicated and we refrain from displaying it

explicitly. At this point, we could already by counting degrees of freedom deduce that

all other constraints have to be second class. We will work out the second class pairs

in the following explicitly and postpone counting of degrees of freedom to the end of

the next section.

4.2.3 Second class pairs and degrees of freedom

We already found the first class constraints Ĥ , Ĥa, Ĝ IJ at the end of the last section,

and in the following will decompose the remaining constraints into second class pairs,

i.e. block-diagonalise the Dirac matrix. We expect that S̄ aIJ
tf and D̄bKL

tf are a second

class pair since the corresponding part of the Dirac matrix (4.48) is invertible. Indeed,

since all constraints except D̄bKL
tf Poisson commute with S̄ aIJ

tf , we can substitute all

remaining constraints by

C → C −
∫

S̄ aIJ
tf

({
D̄tf, S̄tf

}−1
)
aIJ,bKL

{
D̄bKL

tf ,C
}

, (4.54)

which then Poisson commute also with D̄bKL
tf . This notation is symbolic (notice that

the pointwise Poisson brackets are distributional): the matrix {D̄tf, S̄tf} is ultralocal
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4. Palatini action and corresponding 2nd class constraint system

and what is meant is its non distributional factor.

A further set of pairs is given by{
P

(E)
aI [faI ],−S̄ aI [ḡaI ] + sEaInI [ḡa]

}
=
{
P

(E)
aI [faI ],

(
−S̄ aI + sEaJnJn

I
)

[gaI ]
}

=:
{
P

(E)
aI [faI ], E′aI [gaI ]

}
=

∫
σ
dDx faI

[
−δbaηJI

]
gbJ . (4.55)

Another set of second class pairs is obtained realising that

P ′
(n)
I [γI ] := P

(n)
I [γI ] + sP

(E)
aJ [γIπ

aIJ ] (4.56)

Poisson commutes with all the above constraints, and its second class partner is given

by {
P ′

(n)
I [f I ],

s

2
(nJnJ − s)[g] +

1

D − 1
S̄ J

tr [ḡJ ]

}
=

=

{
P ′

(n)
I [f I ],

(
s

2
(nKnK − s)nJ +

1

D − 1
S̄ J

tr

)
[gJ ]

}
=:
{
P ′

(n)
I [f I ], n′J [gJ ]

}
≈
∫
σ
dDx fI

[
−ηIJ

]
gJ . (4.57)

For the last two sets, the Dirac matrix (indicated by square brackets) is trivially invert-

ible, and constraints from different sets Poisson commute with each other. Therefore,

the determinant of the whole Dirac matrix, being block-diagonal, is given by the prod-

uct of the three subdeterminants corresponding to the three sets of second class pairs,

and since all of them are non-zero, the whole Dirac matrix is invertible. The structure

of the Dirac matrix is summarized in table 4.1 and the counting of the degrees of free-

dom is given in table 4.2. As expected for general relativity, we find (D − 2)(D + 1)

phase space degrees of freedom.

4.2.4 Solution of the second class constraints: eADM formulation

The solution of the second class constraints is done analogously to the treatment by

Peldán [103]. To solve the second class constraints, we use the ansatz

AaIJ = ΓaIJ +KaIJ , (4.58)
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P ′
(n)
I n′I P

(E)
aI E′aI S̄ aIJ

tf D̄aIJ
tf

P ′
(n)
K 0 ηIK 0 0 0 0

n′K −ηKI 0 0 0 0 0

P
(E)
bK 0 0 0 δab η

I
K 0 0

E′bK 0 0 −δbaηKI 0 0 0

S̄ bKL
tf 0 0 0 0 0 F aIJ,bKL

D̄bKL
tf 0 0 0 0 −F bKL,aIJ 0

Table 4.1: Palatini theory: structure of the Dirac matrix.

Variable Dof Constraint Number

AaIJ
D2(D+1)

2 First class (count twice!)

πaIJ D2(D+1)
2 Ĥ 1

nI D + 1 Ĥa D

EaI D(D + 1) Ĝ IJ D(D+1)
2

P
(n)
I D + 1 Second class

P
(E)
aI D(D + 1) S aIJ D2(D+1)

2

D̄aIJ
tf

D2(D−1)
2 −D

EaInI D

nInI − s 1

P
(E)
aI D(D + 1)

P
(n)
I D + 1

Sum: D3 + 3D2 + 4D + 2 Sum: D3 + 2D2 + 5D + 4

Table 4.2: Palatini theory: counting of degrees of freedom

57



4. Palatini action and corresponding 2nd class constraint system

where ΓaIJ denotes the hybrid spin connection annihilating EaI (cf. appendix C). Fur-

ther, we decompose KaIJ into K̄aIJ and 2n[IK̄a|J ] and solve the simplicity constraints

strongly, πaIJ = 2n[IEaJ ]. Solving the constraints demanding that nI is orthogonal to

EaI and has unit length leads to

nI =
εIJ1...JDEa1

J1
. . . Ea1

JD
εa1...aD

D!
√

detEaIEbI

, (4.59)

and in the following, it will be understood that nI = nI(E
aJ), and thus that the

constraints nInI − s ≈ 0, EaInI ≈ 0, and PnI ≈ 0 are solved strongly. The boost

(longitudinal) part of the Gauß constraint becomes using the above ansatz for AaIJ

n[IλJ ]D
A
aπ

aIJ = sλIK̄a
KIEaK = sλIK̄

I
tr. (4.60)

Again using this ansatz, we find for D̄aIJ
tf

1

2
f̄ tf
aIJD̄

aIJ
tf = −sf̄ tf

aIJE
b[I|DA

bE
a|J ]

= −1

2
f̄ tf
aIJF

aIJ,bKL 1

2
K̄tf
bKL. (4.61)

We see that D̄aIJ
tf demands the vanishing of the transversal trace part of KaIJ , and

together with the boost part of the Gauß constraint, we see that KaIJ ≈ 2n[IKa|J ].

The latter, however, we will not solve strongly.

Since we solved second class constraints, we have to perform a symplectic reduction

and determine the new symplectic structure, which is analogous to the symplectic re-

duction of the 3+1 Palatini action in [103]. In addition to the above considerations, we

set P
(E)
aI = 0. The symplectic potential now reads

1

2
πaIJ ȦaIJ = n[IEa|J ]

(
Γ̇aIJ + K̇aIJ

)
= nI

(
(DΓ

aE
a
I )̇−DΓ

aĖ
a
I + EaJK̇aIJ

)
=− ∂a(nIĖaI ) + nIEaJK̇aIJ

=− ĖaJnIKaIJ − ṅIEaJKaIJ

= ĖaJ(−nJEIaK̄tr
I − sK̄aJ)

=: EaJK̇aJ , (4.62)
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4.2 Canonical analysis

where we have dropped total time derivatives and divergences, and in the second be-

fore the last step we used that ṅI is transversal, i.e. ṅI = η̄IJ ṅJ = Ea
IEaJ ṅJ =

−EaInJ ĖaJ1. Notice also that we keep the trace part of K̄aIJ since we do not solve

first class constraints at this point.

In the last step, we have to express the remaining constraints H , Ha, and G IJ in

terms of the new canonical variables. Note that we do not need to consider their hat-

ted versions, since the difference is a linear combination of second class constraints

which are now all solved strongly. The calculation yields

G IJ = 2Ea[IKa|J ], (4.63)

Ha ≈ −2D[aE
bJKb]J , (4.64)

H ≈ −s
2
EaIEbJRH

abIJ + Ea[IEb|J ]KaIKbJ , (4.65)

which coincides with the constraints (3.27, 3.28, 3.29) up to the subtlety that H now

has density weight two. We have neglected terms proportional to the Gauß constraint

in the expressions for Ha and H . RH
abIJ denotes the field strength of the hybrid spin

connection. Thus, we arrive at the extended ADM formulation considered before.

Finally, we want to remark that one does not necessarily need to solve all second

class constraints: one could also try to only solve one or two of the three sets in table

4.1. The possibility to only solve P ′
(n)
I and nJ indicates that one can also perform

the analysis without introducing nI as an independent field in the beginning, but it

probably becomes more complicated. Furthermore, expressing EaI and nI appearing

in S̄ bKL
tf and D̄bKL

tf by πaIJ and then solving all but this set of second class pairs leads

to the formulation we will encounter in the next section.

1We also used DΓ
an

I = 0 which follows from EaI n
I = nInI − s = DΓ

aE
b
I = 0: we have for the

longitudinal part nID
Γ
an

I = DΓ
a(nIn

I/2) = 0 and for the transversal part EbID
Γ
an

I = DΓ
a(EbIn

I) =

0.
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5

Plebański and related

formulations

5.1 BF theory and Plebański action

Before coming to the Plebański formulation, we will shortly introduce BF theory. BF

theory is a topological field theory in any dimensions, and its name stems from the

form of its action, being

SBF[A,B] =

∫
M

Tr(B ∧ F ), (5.1)

where F is the so(D + 1) or so(1, D) valued curvature two-form of a connection A in

the Euclidean and Lorentzian case respectively, and B is a so(D+1) or so(1, D) valued

(D− 1)-form field. The trace is taken in the Lie algebra. The field equations are easily

found to be

F = 0, (5.2)

dAB = 0, (5.3)

from which immediately follows that there are no local degrees of freedom. Actually, for

D = 2, general relativity in first order form coincides with D = 2 BF theory. The fact

that general relativity is topological in D = 2 allows the use of a variety of techniques

from TQFT and ultimately is the basis for the successes made with its quantisation

[184].
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5. Plebański and related formulations

In D = 3, a basic object in BF theory is thus a two-form field Bµν . Plebański [167]

was the first to consider not the metric or vielbein as a fundamental object in D = 3

general relativity, but instead (self-dual) two-forms, and wrote down conditions needed

in order that the vielbein can be recovered from these two-forms. These conditions are

now often called “simplicity constraints”. He also wrote down an action principle using

these two-forms, and remarkably, it is neatly related with BF theory. In essence, gravity

in D = 3 is “almost” the topological BF theory, more precisely, it can be formulated as

BF theory subject to these additional simplicity constraints. This deformation of BF

theory is also the classical starting point of spin foam models [185–191], the path inte-

gral or “covariant” approach to LQG. The formulation we will present here actually is

not due to Plebański, but a generalisation of his ansatz. In slight abuse of terminology,

we still named this section “Plebański action” since the idea originates from his work.

The two-forms are not assumed to be self-dual, the formulation exists in any D > 2,

and was introduced by Freidel, Krasnov and Puzio in [169].

The action we want to consider is, in D + 1 dimensions, given by [169]

SFKP[A,B,Φ] :=

∫
M

[Tr(B ∧ F ) + Tr(B ∧ Φ(B))] , (5.4)

where Φ is a certain Lagrange multiplier filed which can be contracted with the B field

in a certain way to yield a (D − 1)-form denoted by Φ(B). It is constructed such that

the variation of SFKP with respect to the Φ field results in the field equations

εIJKLMBµν
IJB

ρσ
KL = εµνρσλcM

λ
(5.5)

for some coefficients cM
λ

. The indices which are overlined denote totally antisymmetric

(D − 3) multiindices and BµνIJ = 1
2!(D−1)!ε

µνρ1...ρD−1BIJ
ρ1...ρD−1

is the rank two anti-

symmetric contravariant tensor density (often called “bivector” in the literature) dual

to Bµν . The equations (5.5) define the simplicity constraints in Lagrangian form. The

name simplicity constraints stems from the fact that in the corresponding literature, a

bivector which is the exterior product of two vectors is called “simple”. This is exactly

what the constraint ensures. Namely, one of the central results of [169] is Theorem 1 ,

stating that (5.5) demands that B comes from a co-vielbein e,

B = ± ∗ (e ∧ e), (5.6)
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5.2 Palatini formulation with BF type simplicity constraints

plus an additional degenerate sector of solutions in D > 3. Substituting back into the

action, we obtain (up to sign) the first order vielbein action of general relativity we

considered in chapter 4. Note that the sign ambiguity in (5.6) is of relevance, it leads

to opposite sign of the cosmological constant in the corresponding solution sectors. For

D = 3, two additional, topological solution sectors are present,

B = ±e ∧ e. (5.7)

Since, as we already stated, spin foam models are based on the D = 3 deformed BF

theory, even modern models like the EPRL model [186, 189] suffer from these unwanted

(or even unphysical) sectors in that that their semiclassical limit is not given by (the

discrete equivalent of) eiSEH solely (see, however, [192] and references therein for a up

to date discussion and possible resolution of this problem using projectors).

As we already stated, we refrain from displaying the rather lengthy canonical anal-

ysis of the Plebański action and refer the interested reader to [170]. However, we will

perform the analysis of a related formulation, which one could call “Palatini formu-

lation with BF type simplicity constraints”. The BF simplicity constraints (or more

precisely, a slightly simpler version thereof) will play a central role, and are, in fact, at

the heart of the new variables we will introduce.

5.2 Palatini formulation with BF type simplicity constraints

We will start with the split form of the Palatini action before performing the Legendre

transform (cf. (4.12)),

S =

∫
dt

∫
σ
dDx

(
1

2
π′aIJ ȦaIJ −N˜H ′ −NaH ′

a −
1

2
λIJG

′IJ
)

, (5.8)

where the notation is the same as in section 4.2. We already know that N˜ , Na and

λIJ will become Lagrange multipliers and we can treat them accordingly already at

this point. We have to introduce conjugate momenta for AaIJ and EaI , πaIJ and P
(E)
aI ,

together with the constraints enforcing that P
(E)
aI = 0 and the simplicity constraints

demanding πaIJ = 2n[IEa|J ]. We can free all other constraints of the dependence

of EaI as we did in section 4.2 by using the simplicity constraint. Note that if we

wrote a simplicity constraint solely in terms of πaIJ , the action would not depend on
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5. Plebański and related formulations

EaI anymore and we could trivially solve the constraint P
(E)
aI by simply dropping EaI

and P
(E)
aI completely. But this is exactly what the simplicity constraints achieve in

BF theory, being formulated a priori without vielbeins. In our Hamiltonian setting,

actually a subset of the BF simplicity constraints suffices, since the variables πaIJ

correspond only to the spatial-temporal components Bat
IJ of the B field.

5.2.1 BF type simplicity constraints

Following this line of thought, the action we want to consider is given by

S =

∫
R
dt

∫
σ
dDx

(
1

2
πaIJ ȦaIJ −N˜H −NaHa −

1

2
λIJG

IJ − cMabS ab
M

)
, (5.9)

where cMab is a Lagrange multiplier field, symmetric in the index pair a, b, which enforces

the BF-type simplicity constraints

S ab
M

:=
1

2
(M ∗ π

a)IJπ
bIJ :=

1

4
εIJKLMπ

aIJπbKL. (5.10)

The other constraints are the same as in section 4.2,

G IJ := DA
aπ

aIJ := ∂aπ
aIJ + [Aa, π

a]IJ , (5.11)

H := −1

2
πaIKπbJKFabIJ , (5.12)

Ha :=
1

2
πbIJFabIJ . (5.13)

The action is motivated by [169], but as we already noted, we can also arrive at it by

taking the action from the previous chapter, dropping the variables EaI , nI , and all

constraints containing them, and introducing the BF-type simplicity constraint. The

theorem which relates πaIJ solving S ab
M

= 0 with the vielbein is a special case of

Theorem 1 from [169] for the full BF simplicity constraint,

Theorem 1.

In dimension D > 3 a generic field πaIJ satisfies the constraints

S ab
M

= 0 (5.14)

if and only if it comes from a frame field. In other words, a non-degenerate πaIJ

satisfies the constraints (5.14) if and only if there exist eaI such that

πaIJ = ±2
√
qn[Iea|J ], (5.15)
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5.2 Palatini formulation with BF type simplicity constraints

where q is the determinant of the inverse matrix of qab = eaIebI .

Like for the full BF simplicity constraint, the theorem also holds for D = 3 with the

additional appearance of a topological sector which we will neglect in the following.

We will provide a short sketch of the proof of this theorem. This proof as well is a

special case of the proof given in [169] and we refer the interested reader to the original

literature for more details.

The constraints are divided into the categories

simplicity: πa[IJπ
a
KL] = 0 (no summation),

intersection: πa[IJπ
b
KL] = 0 for a, b distinct.

We find it convenient for the following considerations to look at πaIJ as a two form

πaIJdx
I ∧ dxJ . It can be shown that for a two-form BIJ

B[IJBKL] = 0 ⇔ BIJ = u[IvJ ], (5.16)

which corresponds to the “simplicity” part of the simplicity constraints. Therefore, all

πaIJ factor into ua[Iv
a
J ] (no summation). To complete the proof, we have to relate the

different uaI to each other. For this purpose, it is proved in [169] that for two two-forms

BIJ and B′IJ ,

B[IJB
′
KL] = 0 ⇔ BIJ = u[IvJ ] and B′IJ = u[IwJ ], (5.17)

meaning that the two two-forms share a common factor which is unique up to scaling.

This relation is ensured by the intersection constraint. Combining these two arguments,

we realise that πaIJ factors into one-forms with a common factor. Introducing the correct

density weight and a suitable normalisation, we obtain

πaIJ = ±2
√
qn[Ie

a
J ]. (5.18)

The sign can be absorbed into nI for D + 1 even, the otherwise appearing signs can

be absorbed into the Lagrange multipliers in the Hamiltonian. We remark that in the

general case discussed in [169], additional normalisation constraints are necessary and

the proof becomes considerably longer.
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5. Plebański and related formulations

The property of nI being time-like in the Lorentzian case will be enforced by another

constraint. Namely, since we want the metric to be positive definite, we impose the

constraint

sπaIJπbIJ ≈ 2qqab > 0, (5.19)

where the greater sign means positive definiteness of matrices. In the Lorentzian case,

the relation is only satisfied if nI is time-like, because EaIEbI would be indefinite other-

wise. This non-holonomic constraint of course does not reduce the degrees of freedom.

5.2.2 Constraint analysis

From the above action (5.9) we “read off” the non-vanishing Poisson brackets as

{AaIJ , πbKL} = 2δbaδ
K
[I δ

L
J ]. Most of the canonical analysis is the same as in the previous

chapter and we will only describe the differences. The Poisson bracket{
H [M˜],H [N˜ ]

}
= −Ha

[
(M˜∂bN˜ −N˜ ∂bM˜)

1

2
πaIJπbIJ

]
+ S ab

M

[
(M˜∂aN˜ −N˜ ∂aM˜)

s

2(D − 3)!
(M ∗ πc)IJF IJcb

]
(5.20)

of two Hamiltonian constraints reproduces exactly the BF-simplicity constraint and

shows that the theory would be inconsistent without this constraint. The BF-simplicity

constraint is stable under spatial diffeomorphisms and internal rotations as reflected by

the Poisson brackets {
H̃a[N

a],S ab
M

[cMab ]
}

= −S ab
M

[
(LNc)

M
ab

]
(5.21)

and {
1

2
G IJ [λIJ ],S ab

M
[cMab ]

}
= S ab

M

[
D−3∑
i=1

λMi
M ′i
c
M1...Mi−1M

′
iMi+1...MD−3

ab

]
, (5.22)

and trivially commutes with itself. As in the previous chapter, the Poisson bracket

with the Hamiltonian constraint{
S ab
M

[cMab ],H [N˜ ]
}

= Dab
M

[
N˜ cMab

]
+ S ab

M
[. . .] (5.23)

imposes a new constraint

Dab
M

= 2(M ∗ πc)IJπ(a|IKDA
cπ
b)J

K . (5.24)
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5.2 Palatini formulation with BF type simplicity constraints

To show its stability, we have to show that the Poisson bracket of this new constraint

with the BF-simplicity is invertible. Irrespective of this, we emphasise that Dab
M

is

stable under internal rotations, reflected by{
1

2
G IJ [λIJ ],Dab

M
[dMab ]

}
= Dab

M

[
D−3∑
i=1

λMi
M ′i
d
M1...Mi−1M

′
iMi+1...MD−3

ab

]
. (5.25)

Concerning the diffeomorphism constraint, it is easy to see that we can extend the co-

variant derivative in Dab
M

to act on spatial indices via the Christoffel symbols. Namely,

adding the corresponding terms to the constraint, we see that, due to the symmetry of

the Christoffel symbols in their lower indices, the added terms are proportional to sim-

plicity constraints. Dab
M

therefore transforms like a scalar density of weight +3 under

spatial diffeomorphisms and the Poisson bracket with the diffeomorphism constraint

has to be proportional to the Dab
M

. Another easy way to do this calculation is to use the

Jacobi identity after expressing Dab
M

as a Poisson bracket. We do not know of any nice

way to express the Poisson bracket of Dab
M

with the Hamiltonian constraint and will

leave the discussion of this bracket open, as its value is not important in the following.

A counting of the degrees of freedom which are reduced by the BF-simplicity constraint

(i.e. πaIJ → EaI), yields D2(D − 1)/2−D which is for D > 3 less than the number of

components of the BF-simplicity 1
2D(D + 1)

(
D+1

4

)
. The BF-simplicity constraints are

therefore not independent and the matrix formed by calculating the Poisson bracket

with Dab
M

cannot be invertible. The solution to this problem is to find an independent

set of BF-simplicity and D constraints which still enforce the same constraint surface.

The constraints of section 4.2 do have this property and lead us to the following ansatz:

We choose some internal time-like vector nI with nInI = s which may vary as a function

of the spatial coordinates and decompose πaIJ as

πaIJ = π̄aIJ + 2n[IEa|J ] (5.26)

as in the previous chapter. We also define EaI by EaIE
bI = δba and nIEaI = 0. To-

gether with the normalisation condition nInI = s this means that nI = nI [E] can

be considered as a function of EaI only and thus does not count as independent de-

gree of freedom. The BF-simplicity constraints plus the non-holonomic constraint are

equivalent with π̄aIJ = 0 and nI being time-like in the Lorentzian case. However,
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5. Plebański and related formulations

π̄aIJ has D2(D − 1)/2 degrees of freedom and EaI has D(D + 1) which together yields

D2(D + 1)/2 + D degrees of freedom while πaIJ has only D2(D + 1)/2 degrees of

freedom. It follows that π̄aIJ and EaI cannot be considered as independent degrees of

freedom, there must be D additional relations among them. Indeed, in section 7.1.2

we will argue1 that it is always possible to arrange that π̄aIJ = π̄aIJtf is automatically

trace free with respect to EaI . These would be the missing D relations and now the

BF-Simplicity constraints are equivalent with the D2(D−1)/2−D constraints π̄aIJtf = 0

which in number match with the constraints K̄tf
aIJ = 0 to which the constraints Dab

M
= 0

reduce as we will now show below. At the moment we have no proof of this for D ≥ 3

thus we will make the assumption that πaIJ can always be decomposed in this way. In

other words, we will only allow πaIJ of the following form: There is a tensor EaI with

qqab = ηIJE
aIEbJ positive definite. Let nI [E] be the unique normal vector satisfying

EaInI = 0, nInI = s. Take any tensor taIJ and construct from it t̄aIJtf [t, E] using

E,n[E]. Then πaIJ := t̄aIJtf + 2n[IEaJ ] and automatically EaI = −sπaIJnJ . For πaIJ

constructed in this way, we derived a fixed point equation in [2] which has obviously

non trivial solutions and the question is whether such πaIJ are generic.

Concerning the DM
ab constraint, we make the same ansatz as in the previous chapter

and set

AaIJ = ΓaIJ + K̄aIJ + 2n[IK̄a|J ]. (5.27)

A short calculation yields

f̄(a|IJπ|b)KLε
IJKLMDab

M
= f̄(a|IJπ|b)KLε

IJKLM εABCDMπ
cABπ(a|C

ED
A
cπ
b)DE

≈ −(D − 3)!(D − 1)K̄aIJF
aIJ,bKLf̄bKL, (5.28)

where F aIJ,bKL denotes the same matrix as in (4.48). As before, we defined πbKL :=

q−1qabπ
a
KL, where q−1qab is the inverse matrix of s

2π
aIJπbIJ , such that πaIJπbIJ =

2sδab . We notice that f̄aIJ can be chosen traceless with respect to EaI , since any trace

part would drop out in the combination f̄(a|IJπb)KLε
IJKLM modulo the BF-Simplicity

constraint. The subset of D constraints parametrised by f̄aIJ = f̄ tf
aIJ as above thus sets

1This is not trivial: For D ≥ 3 one cannot use closed formulas for a proof. It is apparently necessary

to make use of fixed point theorems.
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5.2 Palatini formulation with BF type simplicity constraints

the trace free part of K̄aIJ to zero. When inserting the solution of the BF-simplicity

constraint into the full Dab
M

constraint, we get

Dab
M
≈ 2sεABC

D
Mn

AEcBE(a|CEb)EK̄cED (5.29)

and immediately verify that the solution K̄tf
aIJ = 0 solves all the D constraints because

the trace part of K̄cED drops out in the above combination.

From these considerations, we realise that it is legitimate to use the Lagrange mul-

tipliers displayed in (5.28) and therefore only a subset of the D constraints. It follows

that we only have to check the stability of this subset of constraints. To form the Dirac

matrix, we choose similarly a subset of BF-simplicity constraints equivalent to π̄aIJtf = 0

and calculate∫
dDx

∫
dDy [f̄ tf

(a|IJπb)KLε
IJKLM ](x)

{
S ab
M

(x),Dcd
N

(y)
}

[ḡtf
(c|MNπd)OP ε

MNOPN ](y)

≈ 4(D − 1)2((D − 3)!)2

∫
dDx f̄ tf

aIJF
aIJ,bKLḡtf

bKL. (5.30)

We can therefore adjust the multiplier of the BF-simplicity such that the indepen-

dent subset of D constraints is stable under time evolution and finish the canoni-

cal analysis. Since the Dirac matrix is invertible, the chosen subset of BF-simplicity

constraints has to be independent. The number of BF-simplicities in this subset is

equivalent to the number of degrees of freedom in a transverse trace free matrix, i.e.

D2(D−1)/2−D = D(D+1)(D−2)/2 and matches the degrees of freedom which are to

be taken out of the system by the full BF-simplicity constraints and all BF-simplicity

constraints can thus be derived by taking the linear span of this subset.

The solution of the constraints proceeds analogously to the previous chapter, the only

difference being that we do not need to solve the momenta associated with EaI and nI .

The two formulations presented are therefore equivalent.

5.2.3 Degrees of freedom

As in the previous chapter, we check the degrees of freedom of the Hamiltonian system

derived using the BF-simplicity constraint. For H to become a first class constraint,
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5. Plebański and related formulations

we construct the linear combination (using the same abuse of notation as before)

H̃ := H −
∫

S̄ aIJ
tf

({
D̄tf, S̄tf

}−1
)
aIJ,bKL

{
D̄bKL

tf ,H
}

. (5.31)

Since the Dirac matrix between the independent BF-simplicity and Dab
M

constraints is

invertible, they are of the second class. The rest of the constraints is of the first class.

The difference between the degrees of freedom and the weighted sum of the constraints

Variable DoF Constraint DoF

AaIJ
D2(D+1)

2 First class (count twice!)

πaIJ D2(D+1)
2 H̃ 1

Ha D

G IJ D(D+1)
2

Second class

S ab
M

D2(D−1)
2 −D

Dab
M

D2(D−1)
2 −D

Sum: D3 +D2 Sum: D3 +D + 2

Table 5.1: Palatini theory with BF simplicity constraints: counting of degrees of freedom.

is again (D+ 1)(D− 2) and matches those of general relativity. Solution of the second

class constraints is in analogy to the treatment in section 4.2.4 and leads to the extended

ADM phase space. Note that, instead of solving the second class constraints, one could

as well work with the Dirac bracket, but then the connection AaIJ is not Poisson

self-commuting and the loop quantisation programme at least not directly applicable.

For research in this direction, which however usually considers D = 3 and the Holst

modification of the action we will introduce in section 6.1, cf. [193–196].
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D = 3: Holst and CDJ action,

Ashtekar (Barbero) formulation

6.1 Holst action

Holst [145] was the first to write down an action for Ashtekar Barbero variables, and he

also gave a canonical analysis using time gauge. Like the Ashtekar Barbero variables,

this action only exists in D = 3. Barros e Sá [146] reconsidered the analysis without

choosing any gauge fixing. We will follow his work and, only after having solved the

second class constraints, choose time gauge to obtain the Ashtekar Barbero formulation.

Holst’s action is given by

SHolst =
s

2

∫
M
d4X eeµIe

ν
J

(γ)

F µν
IJ , (6.1)

where the notation is the same as in the previous chapters. We additionally introduced

the notation
(γ)

X IJ :=
(γ)

M IJ
KLX

KL, where the matrix M is given by

(γ)

M IJ
KL := η

[I
Kη

J ]
L +

1

2γ
εIJKL, (6.2)

and γ denotes the Barbero Immirzi parameter [16–19]. This action coincides with

the Palatini action we studied in chapter 4, except for this additional matrix, which

amounts to an additional term ∝ 1
γ . While the Palatini action, as we have seen, in any

dimensions yields general relativity, the additional, so called Holst term only exists for
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6. D = 3: Holst and CDJ action, Ashtekar (Barbero) formulation

D = 3. The matrix
(γ)

M IJ
KL is invertible if γ2 6= ζ, and its inverse is then given by

(
(γ)

M−1)IJKL :=
γ2

γ2 − ζ

(
η

[I
Kη

J ]
L −

1

2γ
εIJKL

)
. (6.3)

In the following, we will restrict to the invertible case for convenience, but want to

remark that the cases we excluded, γ2 = ζ, of course can also be dealt with and, in

fact, correspond to Ashtekar’s original variables. The corresponding action, which then

only depends on the self-dual part of the connection, was written down by Jacobson

and Smolin [197] and, in fact, was the first action known to yield (complex) Ashtekar

variables when passing to the Hamiltonian picture. Furthermore, the internal signature

ζ of course here coincides with the space time signature s = ζ, but for later convenience,

we use to define M−1 as above.

To see that this is a valid action for gravity, it is instructive to vary the action with

respect to the so(4) or so(1, 3) connection Aµ
IJ . The calculation is analogous to section

4.1, using δFµν
IJ = 2∇A[µδAν]

IJ we easily obtain

δSHolst =
s

2

∫
M
d4X eeµIe

ν
J

(
δFµν

IJ +
1

2γ
εIJKLδFµν

KL

)
= −s

∫
M
d4X

(
∇AµeeµIeνJ

)
δ

(γ)

A ν
IJ . (6.4)

Here and in following calculations, it is useful to note that

Tr(
(γ)

XY ) = Tr(X
(γ)

Y ), (6.5)

Tr(
(γ)

XY Z) = Tr(X
(γ)

Y Z) = Tr(XY
(γ)

Z ), (6.6)

[
(γ)

X,Y ]IJ = [X,
(γ)

Y ]IJ =
(γ)

([X,Y ])IJ . (6.7)

Because of the invertibility of
(γ)

M IJ
KL for γ2 6= s, one immediately finds the field

equation ∇Aµ
(
eeµ[Ie

ν
|J ]

)
= 0. The solution is given by Aµ

IJ = Γµ
IJ , as we already

have seen in the Palatini theory. Reinserting into the action, we find that the term

proportional to 1
γ vanishes due to the first Bianchi identity,

εIJKLeeµIe
ν
JRµνKL = εµνρσRµνρσ = 0, (6.8)

and the action thus reduces to the second order vielbein formulation we considered in

section 3.1.
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6.2 Canonical analysis: Ashtekar Barbero formulation

6.2 Canonical analysis: Ashtekar Barbero formulation

6.2.1 3+1 split and Legendre transformation

The 3 + 1 split and canonical analysis of the Holst action is performed analogous to

section 5.2. We find

SHolst =
s

2

∫
M
d4X Ne

(
||eµI

||eνJ + 2snµnI
||eνJ

) (γ)

F µν
IJ

=
s

2

∫
M
d4X Ne

[
||eµI

||eνJ
(γ)

F µν
IJ +

2s

N

(γ)

(n[I
||eνJ ])

(
LTAν

IJ −DA
νAT

IJ −NµFµν
IJ
)]

=

∫
dt

∫
σ
d3x

[
s

2
NeeaIe

b
J

(γ)

F ab
IJ +

(γ)

(en[Ie
b
J ])
(
Ȧb

IJ −DA
bAT

IJ −NaFab
IJ
)]

=

∫
dt

∫
σ
d3x

[
1

2
N˜ πaIKπbJK

(γ)

F ab
IJ +

1

2

(γ)
π b

IJ

(
Ȧb

IJ −DA
bAT

IJ −NaFab
IJ
)]

,

(6.9)

where πaIJ := 2en[Iea|J ]. Holst proceeds by choosing time gauge, but we refrain from

doing so. We have three possibilities of how to proceed without choosing any gauge

fixing: a) following Dirac, introduce momenta conjugate to e,A and treat all of them

as independent phase space degrees of freedom like in section 4.2, b) partially integrate

the kinetic term πȦ → π̇A = ėK ′ and to treat only e,K ′ as phase space coordinates,

c) drop e and instead, introduce the BF type quadratic simplicity constraint of section

5.2 and work on a phase space coordinatised by A and its momenta π. The easiest is

b) and leads to Ashtekar Barbero variables after choosing time gauge. c) reproduces

b) after solving the simplicity constraint and its arising second class partner. a) leads

to a much larger phase space, which also can be reduced to b). We will follow route c),

and can read off from (6.9) the non-vanishing Poisson brackets

{AaIJ(x),
(γ)
π bKL(y)} = 2ηK[I η

L
J ]δ

b
aδ

(3)(x− y) (6.10)

and the Hamiltonian

H =

∫
σ
d3x N˜H +

1

2
λIJGIJ +NaHa + c˜abS ab, (6.11)
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6. D = 3: Holst and CDJ action, Ashtekar (Barbero) formulation

where

H = −1

2
πaIKπ

b
J
K

(γ)

F ab
IJ , (6.12)

Ha =
1

2

(γ)
π b

IJFab
IJ , (6.13)

GIJ = DA
b
(γ)
π b

IJ , (6.14)

S ab =
1

2
(∗πa)IJπbIJ =

1

4
εIJKLπ

aIJπbKL. (6.15)

6.2.2 Constraint analysis

The constraint algebra is easily obtained using the details on the derivation of the

constraint algebra in section 5.2.2. The calculations are equal up to the appearance

of the matrices
(γ)

M , M
(γ)

−1, which, however, can be easily included using (6.5, 6.6).

GIJ and Ha again generate internal SO(4) or SO(1, 3) transformations and spatial

diffeomorphisms (mixed with internal transformations) respectively, and S ab trivially

Poisson commutes with itself, so we will only display the remaining Poisson brackets.

We find {
H [M˜],H [N˜ ]

}
= −Ha

[
(M˜∂bN˜ −N˜ ∂bM˜)

1

2
πaIJπbIJ

]
+ sS ab

[
(M˜∂aN˜ −N˜ ∂aM˜)

1

2
(∗πc)IJ

(γ)

F cb
IJ

]
, (6.16)

{S ab[c˜ab],H [N˜ ]} = Dab[N˜ c˜ab], (6.17)

where

Dab = 2(∗πc)IJπ(a|I
KD

A
cπ
b)J

K (6.18)

exactly coincides with (5.24) for D = 3. Like before, they form a second class pair,

{S ab[cab],D
cd[dcd]} =

∫
σ
d3x cabF

ab cddcd

+
4γ2

γ2 − s
S ab

[
S cd(cabdcd − ca(cdd)b)

− 1

γ
qqcd(cabdcd − ca(cdd)b − cb(cdd)a + ccddab)

]
,

(6.19)
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6.2 Canonical analysis: Ashtekar Barbero formulation

where we defined F ab cd := − 4sγ2

γ2−sq
2Gab cd, and from (2.16) we know that this matrix is

invertible. Like in section 5.2.2, we can therefore stabilise Dab by fixing the Lagrange

multiplier c˜ab in the action and end the stability analysis.

Variable DoF Constraint DoF

AaIJ 18 First class (count twice!)

(γ)
π
aIJ

18 H̃ 1

Ha 3

G IJ 6

Second class

S ab 6

Dab 6

Sum: 36 Sum: 32

Table 6.1: Holst with BF simplicity constraints: counting of degrees of freedom.

6.2.3 Solution of the second class constraints, time gauge

To solve the second class constraints, we make the ansatz AaIJ = ΓaIJ+K
(γ)

aIJ . Inserting

this into the D constraint and using the solution of the simplicity constraint πaIJ =

2n[IEa|J ], we find that again the transversal trace free part of KaIJ is fixed, and this

time does not have to vanish but is given by

K̄tf
aIJ =

1

γ
Ptf
aIJ

bKLεKLMNn
MK̄b

N ≈ 1

γ
εIJMNn

MK̄a
N . (6.20)

Note that the last expression is weakly trace free since its trace part is proportional to

the rotational components of the Gauß constraint expressed in the reduced variables,

which we will give below. For the symplectic reduction and the constraints expressed

in the reduced variables, we will only give the results. More details on the calculations
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6. D = 3: Holst and CDJ action, Ashtekar (Barbero) formulation

can be found in section 9.3, where very similar considerations can be found. We find

1

2

(γ)
π aIJ ȦaIJ = − ˙EaJ

(
sK̄aJ +

1

2γ
εIJ

KLnIΓaKL

−nJEIa
(
−K̄tr

I +
1

2γ
εIK

LMEbKΓbLM

))
=: EaJ ȦaJ , (6.21)

G IJ = 2

(
Ea[IAJ ]

a +
1

2γ
εIJKL∂a (nKE

a
L)

)
, (6.22)

Ha ≈ EbI∂aAbI − ∂b
(
EbIAaI

)
. (6.23)

H ≈ E[a|IEb]J
(
AaI −

1

2γ
εMI

KLnMΓaKL

)(
AbJ −

1

2γ
εNJ

ABnNΓbAB

)
− s

2
EaIEbJRabIJ , (6.24)

where in the expression for Ha, we dropped the term +1
2AaIJG

IJ . In H , we used

(6.20) and the fact that K̄I
tr, being proportional to the the boost part of the Gauß

constraint, weakly vanishes, and therefore KaIJ ≈ 2
(γ)

M IJ
MNnMK̄aN . Note that AaI

cannot transform as a connection under G IJ at this point. Only after introducing time

gauge nI = δI0 ⇔ Ea0 = 0 and solving its second class partner, the boost part of the

Gauß constraint G0i = −EaiA0
a, we finally arrive at the Ashtekar Barbero formulation

EaIȦaI → E′aiȦ′ai, (6.25)

GIJ → 1

2
εikjGij = ∂aE

′ak + εkijA′aiE
′a
j , (6.26)

Ha →Ha = E′bi∂aA
′
bi − ∂b

(
E′biA′ai

)
, (6.27)

H →H = E[a|iEb]j
(
Aai −

s

2γ
εi
klΓakl

)(
Abj −

s

2γ
εj
mnΓbmn

)
− s

2
EaiEbjRabij

≈ 1

2
εijkF

′
ab
kE′aiE′bj − 1

2

(
1− sγ2

)
εijkRab

kE′aiE′bj , (6.28)

where terms proportional to the Gauß constraint have been dropped in the expression

for the Hamilton constraint. Here, we introduced the primed variables A′ai := −sγAai
and E′bj := − s

γE
bj and used the notation F ′abij = εikjF

′
ab
k.

Let us very briefly point out the special features of this formulation:

1.) For the choice γ2 = s, the (density weight 2) Hamiltonian constraint (6.28) takes a

very simple form. However, for the physically relevant Lorentzian spacetime signature,
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6.3 From ADM to Ashtekar Barbero variables: Integrability of the spin connection

the corresponding connection variable is necessarily complex.

2.) For γ ∈ R/{0}, the connection and its conjugate momentum are real. They satisfy

standard Poisson bracket relations and the gauge group is compact. These properties

lie at the heart of the loop quantisation programme, as we will see later. The cost is a

more complicated Hamiltonian constraint, which however can be dealt with [30].

Variable Dof 1st cl. constraints Dof (count twice!)

Eai 9 H 1

Ab
j 9 Ha 3

G ij 3

Sum: 18 Sum: 14

Table 6.2: Ashtekar Barbero formulation: counting of degrees of freedom

6.3 From ADM to Ashtekar Barbero variables: Integra-

bility of the spin connection

Of course, this formulation also can be obtained starting from the ADM phase space,

which we want to comment on briefly. Following [62] where this issue is nicely discussed,

the passage can be nicely separated in three steps:

1. {qab, P cd; H ,Ha} → {Kai, E
bj ; H ,Ha,G ij}: Extend the ADM constrained Hamil-

tonian system by introducing a densitised vielbein, i.e. an SO(3) gauge symmetry.

2. {Kai, E
bj} → {(γ)Kai,

(γ)Ebj}: Perfom a constant Weyl rescaling with the Bar-

bero Immirzi parameter γ, (γ)Ebj = γEbj and (γ)Kai = 1
γKai. This transforma-

tion is, of course, canonical.

3. {(γ)Kai,
(γ)Ebj} → {Aai, (γ)Ebj}: Perform a canonical transformation to so(3)

connection variables, where

Aai := Γai + (γ)Kai =
1

2
εjikΓa

jk + (γ)Kai. (6.29)

Note that the this last step is clearly singling out D = 3: To define Aai, we take a lin-

ear combination of the variable conjugate to the vielbein with the spin connection Γaij .
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6. D = 3: Holst and CDJ action, Ashtekar (Barbero) formulation

Now, (γ)Kai, like the vielbein, transforms in the defining representation of so(D) while

Γaij transforms in the adjoint representation. Only for D = 3, the defining and the

adjoint representation of so(D) are equivalent, which enables us to define Aai like above.

Step 1. has already been discussed in section 3.3, and the second is trivial. There-

fore, what is left to check is if the transformation in step 3. really is canonical. Since

the spin connection Γaij (cf. appendix C) is a function of Eai and its derivatives, what

is non trivial is the Poisson self commutativity of the newly introduced so(3) connec-

tion Aai. As we will see later when quantising, this self commutativity is central to the

LQG programme, since Aai (or, more precisely, the holonomies) will be represented as

multiplication operators, which would be inconsistent otherwise. We have

{Aai(x), Abj(y)} =

∫
σ
d3z

[
δAai(x)

δ(γ)Kck(z)

δAbj(y)

δ(γ)Eck(z)
− δAai(x)

δ(γ)Eck(z)

δAbj(y)

δ(γ)Kck(z)

]
=

1

γ

[
δΓbj(y)

δEai(x)
− δΓai(x)

δEbj(y)

]
, (6.30)

which is the integrability condition for Γai. In the following, we will prove that

F :=
∫
σ d

3xΓaiE
ai indeed is a generating functional for Γai, δF =

∫
σ d

3xΓaiδE
ai, and

therefore (6.30) vanishes. To this end, consider∫
σ
d3x EaiδΓai =

1

2

∫
σ
d3x
√
qεjike

aiδ
(
ebjDaeb

k
)

=
1

2

∫
σ
d3x
√
qεjik

(
eaiebjδDaeb

k + eai(δebj)Daeb
k
)

=
1

2

∫
σ
d3x
√
qεjik

(
eaiebjDaδeb

k + eai(δecl)e
cjebkDaeb

l
)

=
1

2

∫
σ
d3x

√
q

e
εabc

(
ebkDaδec

k + (δeck)Daeb
k
)

=
1

2

∫
σ
d3x εabc∂a

(
sgn e ebkδec

k
)

, (6.31)

where in the first step, we just used the definition of Γai and Eai, and in the second

step wrote out the two terms stemming from the variation. Note that in the first

summand, due to the antisymmetry in a, b, the covariant derivative Da commutes with

δ, which explains the first summand in the third line. In the second summand, we

used (A.10) to rewrite δebj and (Daeb
k)ebl = −(Daeb

l)ebk due to Daδ
kl = 0 and metric

compatibility. Finally, we used εjike
cjeaiebk = 1

e ε
cab and that sgn e classically is a
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6.3 From ADM to Ashtekar Barbero variables: Integrability of the spin connection

constant. Neglecting the appearing boundary term, we see that the the transformation

in step 3 indeed is canonical. Note that if the boundary of σ is non-empty, we have to

improve the generating functional F , cf. e.g. [62, section 4.2] for details. Finally, let

us have a look at the constraints (3.35, 3.36, 3.37) when expressed in terms of the new

variables. For the Gauß constraint, we have

1

2
εikjG

ij = εikj
(γ)Eai(γ)Ka

j

= εikj
(γ)Eai(γ)Ka

j +
(
Da

(γ)Eak + εkjiΓa
j(γ)Eai

)
= Da

(γ)Eak + εkjiAa
j(γ)Eai

=: DA
a

(γ)Eak =: Gk, (6.32)

where we added 0 = DΓ
aE

a
k in the second step. Aai now transforms as a connection,

{Aai,G k[λk]} = −DA
aλi, (6.33)

{(γ)Eai,G
k[λk]} = εkijλ

k(γ)Eaj . (6.34)

Concerning the spatial diffeomorphism constraint, we already know that it can be

rewritten as Ha ≈ (γ)Ebi∂a(γ)Kbi − ∂b((γ)Kai
(γ)Ebi) up to terms proportional to the

Gauß constraint from (3.32). Replacing (γ)Kai by Aai, we find

Ha ≈ (γ)Ebi∂a(A− Γ)bi − ∂b((A− Γ)ai
(γ)Ebi)

= (γ)Ebi∂aAbi − ∂b(Aai(γ)Ebi)− 2(γ)Ebi∂[aΓb]i + Γai∂b
(γ)Ebi

= (γ)Ebi∂aAbi − ∂b(Aai(γ)Ebi)− 1

2
(γ)Ebiε

jikRab
jk

= (γ)Ebi∂aAbi − ∂b(Aai(γ)Ebi) =: H ′
a , (6.35)

where in the last line, we used that ebiε
jikRab

jk = 0 due to the first Bianchi identity.

It is easy to see that it generates spatial diffeomorphisms solely. Another form of

displaying this constraint often encountered in the literature is

H ′
a = (γ)EbiFabi −AaiG i ≈ (γ)EbiFabi. (6.36)

Finally, using

1

2
(γ)Eai(γ)EbjFabij =

1

2
(γ)Eai(γ)Ebj

(
Rabij + 2εikjD

Γ
[a(γ)Kb]

k + 2(γ)K[a|j(γ)K|b]i

)
=

1

2
(γ)Eai(γ)Ebj

(
Rabij + 2(γ)K[a|j(γ)K|b]i

)
+DΓ

a(
(γ)EaiGi), (6.37)
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6. D = 3: Holst and CDJ action, Ashtekar (Barbero) formulation

where Fabij = εikj(2∂[aAb]
k + εklmAalAbm) denotes the curvature tensor of Aai, we find

for the Hamiltonian constraint

H ≈ 1

2
√
q
εijk

(γ)Eai(γ)EbjFab
k − 1

2
√
q
εijk

(γ)Eai(γ)Ebj
(

1− s

γ2

)
Rab

k. (6.38)

Of course, the constraints (6.32, 6.35, 6.38) coincide with (6.26, 6.27, 6.28) up to the

different density weight of H and inversion of the Barbero Immirzi parameter, γ ↔ 1
γ .

6.4 CDJ action and the original Ashtekar variables

The successes with Ashtekar’s Yang-Mills type variables on the Hamiltonian side nour-

ished interest in formulations of general relativity in terms of a connection, and culmi-

nated on the Lagrangian side in the CDJ formulation [171], a formulation restricted to

D = 2, 3, but almost purely in terms of a connection. In D = 3, it is given by

SCDJ [A, η˜] =
1

8

∫
M
d4X η˜G−1

ij klΩ̃
ijΩ̃kl, (6.39)

where Ω̃ij := εµνρσFµν
iFρσ

j , Fµν
i is the curvature tensor of the so(3,C) connection

Aµ
i, η˜ is a scalar density1 of weight −1, and G−1

ij kl = δi(kδl)j − 1
2δijδkl coincidently has

the same form as (2.16) for D = 3 and therefore, the form of its inverse is given in

(2.15). Like the self-dual Palatini action, this action leads directly to a Hamiltonian

formulation in terms of complex Ashtekar variables and is therefore an action of general

relativity. Treating x0 as time coordinate, we find using Ω̃ij = 4(Ȧa
(i−DA

aA0
(i)Ba|j),

Baj = εabcFbc
j ,

SCDJ =

∫
M
d4X

1

2
η˜Gabij (Ȧa

i −DA
aA

i
0)(Ȧb

j −DA
bA

j
0), (6.40)

where Gabij := 4G−1
ik jlB

akBbl. The canonical momenta are given by

pη˜ = 0, (6.41)

πi = 0, (6.42)

πai = η˜Gabij (Ȧb
j −DA

bA
j
0). (6.43)

1In presence of a cosmological constant, this degree of freedom can be eliminated [173]) and one is

left with a formulation solely in terms of a connection.
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6.4 CDJ action and the original Ashtekar variables

and, restricting to non-degenerate B-fields and denoting Ȧij := ȦiaB
aj , the last equa-

tion can be solved for the 6 components corresponding to the symmetric part

Ȧ(ij) =
1

4η˜
Gij klB−1

ak π
a
l +Ba(iDA

aA
j)
0 , (6.44)

whereas εabcB
ci constitute the three zero Eigenvectors of the matrix Gabij . In total, we

thus have 7 primary constraints

Ha :=
1

2
εabcπ

b
iB

ci = 0, (6.45)

C := pη˜ = 0, (6.46)

Ci := πi = 0. (6.47)

We will denote the corresponding velocities which cannot be eliminated in the Hamilto-

nian and have to be treated as Lagrange multipliers with λij := Ȧ[ij], λ := η̇˜, λi := Ȧi0.

The action in Hamiltonian form is given by

SCDJ =

∫
dt

∫
σ
d3x

[
pη˜η̇˜+ πiȦ0i + πaiȦai

−
(

1

2
πai Ȧ

i
a +

1

2
πaiD

A
a A

i
0 + λiCi + λC

)
Ȧ=Ȧ(π,A)

]
. (6.48)

For the first term in the second line, we find

πai Ȧ
i
a(π,A)

= πai B
−1
aj B

bjȦib(π,A)

= πai B
−1
aj

(
Ȧ(ij)(π,A) + Ȧ[ij]

)
= πai B

−1
aj

 1

4η˜
Gij klB−1

bk π
b
l +Bb(iDA

bA
j)
0 + λij


= πai B

−1
aj

 1

4η˜
(
B−1
b

(iπb|j) − δijB−1
bk π

bk
)

+BbjDA
bA

i
0 −Bb[jDA

bA
i]
0 + λij


= πai B

−1
aj

 1

4η˜
(
B−1
b

[jπb|i] − 2δi[jB−1
bk π

b|k]
)

+BbjDA
bA

i
0 −Bb[jDA

bA
i]
0 + λij


= πa[iB

−1
a|j]

 1

4η˜
B−1
b

[jπb|i] −Bb[jDA
bA

i]
0 + λij

+ πaiD
A
aA

i
0 +

1

2η˜
πaiπbjB−1

a[jB
−1
b|i]
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= 2NaHa + πaiD
A
aA

i
0 −

1

4η˜detB
πaiπbjεijkεabcB

ck. (6.49)

In the third line, we used (6.44) and afterwards only reorganised terms until, in the last

step, we used

(
1
4η˜B−1

b
[jπb|i] −Bb[jDA

bA
i]
0 + λij

)
πa[iB

−1
a|j] = 2NaHa. Here, we intro-

duced three new Lagrange multiplier fields Na equivalent to λij (note that both have

three independent components), explicitly given by 1
4η˜B−1

b
[jπb|i] −Bb[jDA

bA
i]
0 + λij =:

−εijkB−1
ak N

a, and furthermore made use of B−1
ck = 1

2! detB εabcεijkB
aiBbj . Thus, the

Hamiltonian is given by

H :=

∫
σ
d3x

− 1

8η˜detB
πaiπbjεijkεabcB

ck + πaiD
A
a A

i
0 +NaHa + λiCi + λC

 . (6.50)

The stability analysis for C , Ci immediately yields the secondary constraints

Gi := DA
a π

a
i = 0, (6.51)

H :=
1

4
πaiπbjεijkεabcB

ck = 0. (6.52)

Analogous to the ADM case, we can solve C , Ci and treat Ai0, η˜ as Lagrange multipliers.

Using N˜ := − 1
2η˜detB , λi := −Ai0 and dropping a boundary term, the final form of the

Hamiltonian is

H =

∫
σ
dDx

[
N˜H + λiGi +NaHa

]
, (6.53)

and the constraints (6.51, 6.45, 6.52) exactly coincide with those of Ashtekar’s original

(complex in the Lorentzian case) formulation, i.e. with (6.32, 6.36, 6.38) for the choice

γ2 = s (up to the density weight of H ).

Several actions we considered here as well as corresponding Hamiltonian formulations

with their interrelations and their connection to the new variables are given systemat-

ically in figure 6.1, with which we will end the first part of this thesis1.

1To simplify the diagram, always just one direction of the relation of the formulations is indicated.

E.g., gauge unfixing can be reversed by gauge fixing, and similarly can all other arrows be reversed.
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6.4 CDJ action and the original Ashtekar variables

Figure 6.1: Overview over Hamiltonian formulations - In this diagram, several

actions and Hamiltonian formulations which we studied and relations between them are

displayed. In particular, the connection to the new variables are shown. The correspond-

ing canonical variables and constraints are given. First class connection formulations are

displayed in a red box, while actions are in a blue background. Formulations restricted to

D = 3 are coloured in yellow. SO(ζ,D) here means SO(D + 1) for ζ = 1 and SO(1, D) for

ζ = −1.
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6. D = 3: Holst and CDJ action, Ashtekar (Barbero) formulation
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Part II

Extension to higher dimensions:

The new variables
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The following content is taken from [1, 2] with only slight modifications. In chapter 9,

some new parts were added.

Let us shortly summarise what we learned so far: As we heard in the introduction

1, the programme of loop quantisation (see e.g. [62] and references therein) requires

the gravity theory to be formulated in terms of a gauge theory. The reason for that

is that only for theories based on connections and conjugate momenta background in-

dependent Hilbert space representations have been found so far, which also support

the constraints of the theory as densely defined and closable operators. Of course, a

connection formulation is also forced on us if we want to treat fermionic matter as well.

A connection formulation for gravity in D+ 1 > 4 that can be satisfactorily quantised,

even in the vacuum case, has not been given so far. For the case D + 1 = 4, it was

only in 1986 that Ashtekar discovered his new variables for general relativity [13, 14].

The most important property of these variables is that the connection A used has a

canonically conjugate momentum E such that (A,E) have standard canonical brack-

ets, in particular the connection Poisson commutes with itself (cf. section 6.4). This

is not trivial. Indeed, the naive connection that one would expect from the first order

Palatini formulation does not have this crucial property, because the canonical formu-

lation of Palatini gravity suffers from second class constraints as we have seen in section

5.2 and the Palatini connection then has non trivial corresponding Dirac brackets [193].

This prohibited so far to find Hilbert space representations, in particular those of

LQG type in which the connection is represented as a multiplication operator, for the

Palatini connection (see, however, [194, 198]). The Ashtekar connection does not suf-

fer from this problem because it is the self-dual part of the Palatini connection (or

spin connection in the absence of torsion terms). Unfortunately, for the only physi-

cally interesting case of Lorentzian signature this Ashtekar connection takes values in

the non compact Sl(2,C) rather than a compact group and again it is very difficult to

find Hilbert space representations of gauge theories with non compact structure groups.

As observed by Barbero [16, 17], a possible strategy to deal with this non compactness

problem is to use the time gauge and to gauge fix the boost part of SO(1, 3). The

resulting connection, which can be seen as the self dual part of the spin connection for
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Euclidean signature, is then an SU(2) connection. The price to pay is that the Hamilto-

nian constraint for Lorentzian signature in terms of these variables is more complicated

than in terms of the complex valued ones (cf. section 6.2). However, this does not

pose any problems in its quantisation [30]. Using these variables (which also allow a

one parameter freedom related to the Barbero Immirzi parameter [16–19]) a rigorous

quantisation of general relativity with a unique Hilbert space representation could be

derived [20, 21, 28, 29].

A different way to arrive at the same formulation is to start from the geometrody-

namics phase space coordinatised by the ADM variables (three metric and extrinsic

curvature) and to expand it by introducing (densitised) triads E and conjugate mo-

menta K (basically the extrinsic curvature contracted with the triad, cf. section 3.3).

The connection is then the triad spin connection Γ plus this conjugate momentum,

that is, A = Γ + γK where γ is the real valued Barbero Immirzi parameter (cf. section

6.3). The first miracle that happens in 3 spatial dimensions is that this is at all possi-

ble: While K transforms in the defining representation of SO(3), Γ transforms in the

adjoint representation of SO(3). But for the case of SO(3), these are isomorphic and

enable to define the object A. The second miracle that happens in 3 spatial dimensions

is that this connection is Poisson self commuting which is entirely non trivial. Notice

that in three spatial dimensions, the expansion of the phase space alters the number

of configuration degrees of freedom from six per spatial point (described by the three

metric tensor) to nine (described by the co-triad). To get back to the original ADM

phase space, one therefore has to add three constraints and these turn out to comprise

precisely an SU(2) Gauß constraints just as in Yang Mills theory.

It is clear that this strategy can work only in D = 3 spatial dimensions: A metric

in D spatial dimensions has D(D + 1)/2 configuration degrees of freedom per spatial

point while a D-bein has D2. We therefore need D2 − D(D + 1)/2 = D(D − 1)/2

constraints which is precisely the dimensionality of SO(D). However, an SO(D) con-

nection has D2(D−1)/2 degrees of freedom. Requiring that connection and triad have

equal amount of degrees of freedom leads to the unique solution D = 3. Thus in higher

dimensions we need a generalisation of the procedure that works in D = 3. Attempts

to construct a higher dimensional connection formulation have been undertaken, but
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few results are available (cf. section 1.3).

In this part, we will derive a connection formulation for higher dimensional general

relativity. In the first chapter 7, this will be achieved by using a different extension

of the ADM phase space than the one employed in [13, 14]. This new extension of

the ADM phase space does not require the time gauge and generalises to any dimen-

sion D > 1. The result is a Yang Mills theory phase space subject to Gauß, spatial

diffeomorphism and Hamiltonian constraint as well as one additional constraint, the

simplicity constraint which we already encountered before. The structure group can

be chosen to be SO(1, D) or SO(D + 1) and the latter choice is preferred for purposes

of quantisation. Furthermore, like in the case of Ashtekar Barbero variables, there is a

one parameter freedom in choosing the variables. However, in D = 3, the new variables

and the Ashtekar Barbero variables differ and we will show that the new parameter

does not play the role of the Barbero Immirzi parameter.

In chapter 8, we will present how this theory was derived for the first time, which

was not by an extension of the ADM phase space but rather by applying the machin-

ery of gauge unfixing [199–202] to the second class constraint system we encountered in

section 5.2 when studying the Palatini formulation. Following this line, we can map the

second class system to an equivalent first class system which turns out to be identical

to the one we obtained following the Hamiltonian route in chapter 7. However, this

action based approach has limitations compared to the Hamiltonian approach: There

is no Barbero Immirzi like freedom and the structure group is tied to the space time

signature, i.e. SO(1, D) for the physically relevant Lorentzian signature, which makes

the approach less favourable with an eye towards quantisation.

Finally, in chapter 9, we will present several possible extensions of the framework we

outlined so far: We will show in section 9.1 that the quadratic version of the simplicity

constraints can be replaced by the linear version known from spin foam models, which

will turn out to be important for supergravity theories later in part IV, in section 9.2 we

point out that the theory can be extended to the gauge groups SO(p,D + q) (p, q ≥ 0,

p+ q 6= 0) which might be interesting for unified models, in section 9.3 reintroduce the

Barbero Immirzi parameter in D = 3 to obtain a two parameter family of theories, in
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section 9.4 study gauge fixing conditions for the simplicity constraints and finally in

section 9.5 introduce a first class Hamiltonian formulation with arbitrary internal space

and comment on the possibility of turning it into a connection formulation.
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7

The new variables - Hamiltonian

picture

This chapter is based in part on Peldán’s seminal work [103] on the possibility of using

higher dimensional gauge groups for gravity as well as on his concept of a hybrid spin

connection which naturally appears in the connection formulation of 2+1 gravity [203].

The idea how to construct a connection formulation also in higher dimensions is the

following.

If one starts from the Palatini formulation in D + 1 spacetime dimensions, then the

natural gauge group to consider is SO(1, D) or SO(D + 1) respectively for Lorentzian

or Euclidean gravity respectively. Both groups have dimension D(D + 1)/2. This

motivates to look for a connection formulation of the Hamiltonian framework with a

connection AaIJ , a = 1, .., D; I, J = 0, .., D. Such a connection has D2(D + 1)/2

degrees of freedom. The corresponding Gauß constraint removes D(D + 1)/2 degrees

of freedom, leaving us with (D− 1)D(D+ 1)/2 degrees of freedom. However, a metric

in D spatial dimensions has only D(D+ 1)/2 degrees of freedom, which means that we

need D2(D−1)/2−D additional constraints which together with the ADM constraints

and the Gauß constraint form a first class system. To discover this constraint, we need

an object that transforms in the defining representation of the gauge group. It is given

by the spatial (co) vielbein eIa, qab = ηIJe
I
ae
J
b where η has Lorentzian or Euclidean

signature respectively. Since the D internal vectors eIa are linearly independent, we can

complete them to a uniquely defined (D + 1)-bein by the unit vector eI0 = nI where
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7. The new variables - Hamiltonian picture

ηIJe
I
an

J = 0. Now the momentum πaIJ conjugate to AaIJ is supposed to be entirely

determined by eIa, that is, πaIJ ∝
√

det(q)qabn[Ie
J ]
b . In other words, π is “simple” as in

chapters 4 and 5, and we call these constraints therefore simplicity constraints. Since

eIa has D(D+1) degrees of freedom while πaIJ has D2(D+1)/2, these present precisely

the required D2(D − 1)/2 − D constraints. Furthermore, from eIa one can construct

the hybrid spin connection ΓaIJ which annihilates eIa and the idea, as for Ashtekar’s

variables, is that A − Γ is related to the extrinsic curvature. In order to show that

the symplectic reduction of this extension of the ADM phase is given by the ADM

phase space, similar to what happens in case of Ashtekar’s variables, we need that Γ is

integrable at least modulo the simplicity constraints which we show to be the case.

It should be stressed that even in D + 1 = 4 this extension of the ADM phase space is

different from the one employed in LQG: In LQG the Ashtekar-Barbero connection is

given by ALQG
ajk − Γajk ∝ εjklK

l
a, i, j, k = 1, ..., D, while in our case in the time gauge

nI = δI0 we have ANEW
ajk − Γajk is pure gauge. Here Γajk is the spin connection of the

corresponding triad. Thus, in the new formulation the information about the extrinsic

curvature sits in the Aa0j component which is absent in the LQG formulation. We also

emphasise that it is possible to have gauge group SO(D + 1) even for the Lorentzian

ADM phase space. While a Lagrangian formulation is only available when spacetime

and internal signature match (cf. 8 or [2]), this opens the possibility to quantise grav-

ity in D + 1 spacetime dimensions using LQG methods albeit with structure group

SO(D + 1) and additional (simplicity) constraints.

The chapter is is organised as follows: in section 7.1, we will define the required kine-

matical structure of a (D+ 1)-dimensional connection formulation of general relativity.

We will study in detail the properties of the simplicity constraint and the hybrid spin

connection.

In section 7.2, we will postulate an extension of the ADM phase space in terms of

a connection and its conjugate momentum subject to the corresponding Gauß con-

straint and the simplicity constraint discussed before. We will then prove that the

symplectic reduction of this extension with respect to both constraints recovers the

ADM phase space. There is a one parameter freedom in this extension, similar to but
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7.1 Kinematical structure of (D + 1)-dimensional canonical gravity

different from the Barbero Immirzi parameter of standard LQG [18].

In section 7.3, we express the spatial diffeomorphism constraint and the Hamiltonian

constraint in terms of the new variables and prove that the full set of four types of con-

straints, namely Gauß, simplicity, spatial diffeomorphism and Hamiltonian constraints,

is of first class. This can be done for either choice of SO(1, D) or SO(D + 1) indepen-

dently of the spacetime signature. Similar to the situation with standard LQG, the

Hamiltonian simplifies when spacetime signature and internal signature match and if

one chooses unit Barbero Immirzi like parameter. There is an additional correction

term present which accounts for the removal of the pure gauge degrees of freedom

affected by the gauge transformations generated by the simplicity constraint.

7.1 Kinematical structure of (D+1)-dimensional canonical

gravity

This section is subdivided into three parts. In the first part we show that simple

dimensional counting and natural considerations lead to a unique candidate connection

formulation that works in any spacetime dimension D+1 and has underlying structure

group SO(D + 1) or SO(1, D) respectively. We also identify the simplicity constraints

additional to the Gauß constraint that such a formulation requires and show that, while

there is no D-bein and no spin connection in such a formulation, there is a generalised

D-bein and a hybrid connection. The latter is required in order to express the ADM

variables in terms of the connection and its conjugate momentum. In the second part

we formulate an equivalent expression for the simplicity constraint already known from

section 5.2 and discuss its properties and some subtleties. Since we do not assume that

the reader necessarily went through part I on preliminaries, we will be rather explicit

here. Finally, in the third part we prove a key property of the hybrid connection,

namely its integrability modulo simplicity constraints. This will be key to proving in

the next section that the symplectic reduction of the extended phase space by Gauß

and simplicity constraints recovers the ADM phase space.
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7. The new variables - Hamiltonian picture

7.1.1 Preliminaries

Similar to the formulation of standard LQG in D+ 1 = 4 dimensions, we would like to

arrive at a connection formulation of the ADM constrained system which then can be

quantised using standard LQG techniques. This requires the corresponding structure

group to be compact.

To obtain such a formulation, following Peldán [103], the idea is to extend the ADM

phase space by additional degrees of freedom and then to impose additional first class

constraints in such a way that the symplectic reduction of the extended system with

respect to these constraints coincides with the original ADM phase space. In practical

terms, this means that one considers a connection Aαa , i.e. a Lie algebra valued one

form with a Lie algebra of dimension N and a conjugate momentum πaα which is a Lie

algebra valued vector density. Here α, β, .. = 1, .., N . Such a Yang-Mills phase space is

subject to a Gauß constraint

Gα = DA
aπ

a
α = ∂aπ

a
α + fαβ

γ Aβa π
a
γ , (7.1)

where fαβ
γ denote the structure constants of the corresponding gauge group. The re-

quirement is then that there is a reduction (A, π) 7→ qab := qab[A, π], P ab := P ab[A, π]

such that the Poisson brackets of the ADM phase space are reproduced modulo the

Gauß constraint and possible additional first class constraints that maybe necessary in

order that the correct dimensionality of the reduced phase space is achieved.

The question is of course which group should be chosen depending on D and how

to express qab, P
ab in terms of Aαa , π

a
α. Furthermore, one may ask whether the Gauß

constraint is sufficient in order to reduce to the correct number of degrees of freedom

or whether there should be additional constraints. Consider first the case that the

Gauß constraint is sufficient. Then the extended phase space has DN configuration

degrees of freedom of which the Gauß constraint removes N . This has to agree with

the dimension of the ADM configuration degrees of freedom which in D spatial di-

mensions is D(D + 1)/2. It follows N(D − 1) = D(D + 1)/2. Next we need to relate

(Aαa , π
a
α) to (qab, P

ab). There may be many possibilities for doing so but here we will

follow a strategy that is similar to the strategy of standard LQG. We consider some
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7.1 Kinematical structure of (D + 1)-dimensional canonical gravity

representation ρ of the corresponding Lie group G of dimension M ≥ D and introduce

generalised D-beins eIa, I, J,K, ... = 1, ..,M taking values in this representation with

qab = eIaηIJe
J
b . The requirement M ≥ D is needed in order that qab can be chosen to

be non degenerate and we furthermore require that it is positive definite. Here η is a

G-invariant tensor, i.e. ρ(g)IKηIJρ(g)JL = ηKL. The existence of such a tensor already

severely restricts the possible choices of G and typically G is simply defined in this way

whence ρ will typically be the defining representation of G. We extend the covariant

derivative Da to ρ valued objects by asking that DΓ
a annihilates the co-D-bein

DΓ
a e

I
b = ∂ae

I
b − Γcabe

I
c + Γαa [Xρ

α]IJe
J
b = 0, (7.2)

with the Levi-Civita connection Γcab. This equation defines the hybrid (or generalised)

spin connection Γαa (cf. appendix C). Here the Xρ
α denote the generators of the Lie

algebra of G in the representation ρ.

The idea is now that K̃a
b := −1

2 [Aαa − Γαa ]πbα is the expression for the ADM extrin-

sic curvature
√

det(q)Ka
b, Pa

b = −1
2

√
det(q)[Ka

b − δbaKc
c], in terms of the new

variables. However, there are several caveats. First of all, it is not clear that (7.2) has

a non-trivial solution: These are D2M equations for DN coefficients Γαa and thus the

system (7.2) could be overdetermined. Secondly, even if a solution exists, Γαa will be

a function of eIa while we need to express it in terms of the momentum πaα conjugate

to Aαa . If there is no other constraint than the Gauß constraint, then πaα itself must

be already determined in terms of eIa which implies that M = N : The representation

ρ has the same dimension as the adjoint representation of the Lie group. If one scans

the classical Lie groups, then the only case where the defining representation and the

adjoint representation have the same dimension (and are in fact isomorphic) is SO(3) or

SO(1, 2) respectively, whence N = 3. In this case, the equation N(D−1) = D(D+1)/2

has the solutions D = 2 and D = 3 which can be shown to be the only solutions to this

equation on the positive integers.

In order to go beyond D = 3, we therefore need more constraints. We consider now

the case of the choice G = SO(M + 1) or G = SO(1,M) which is motivated by the fact

that these Lie groups underly the Palatini formulation of general relativity in M + 1

spacetime dimensions. Following Peldán’s programme, other choices may be leading,
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7. The new variables - Hamiltonian picture

conceivably, to canonical formulations of GUT theories (cf. section 9.2). For this

choice, we obtain N = M(M + 1)/2 and thus (7.2) presents D2(M + 1) equations for

DM(M + 1)/2 coefficients. Explicitly,

∂ae
I
b − Γcabe

I
c + ΓIJa ebJ = 0, (7.3)

where all internal indices are moved with η. Since Γa(IJ) = 0, we obtain the consistency

condition

e(cI∂ae
I
b) − Γ(c|a|b) = 0, (7.4)

where qab = eIaebI was used. It is not difficult to see that (7.4) is in fact identically

satisfied. Therefore the D2(M + 1) equations (7.3) are not all independent, there are

D2(D + 1)/2 identities (7.4) among them, reducing the number of independent equa-

tions to D2[M+1− 1
2(D+1)] for DM(M+1)/2 coefficients ΓaIJ . Equating the number

of independent equations to the number of equations yields a quadratic equation for

M with the two possible roots M = D and M = D − 1. In the second case eIa is an

ordinary D-bein and ΓaIJ its ordinary spin connection. In the former case we obtain

the hybrid spin connection mentioned before.

Let us discuss the cases SO(D) and SO(D + 1) separately (the discussion is analo-

gous for SO(1, D − 1) and SO(1, D) except that SO(1, D − 1) does not allow for a

positive definite D metric and therefore must be excluded anyway). In the case of

SO(D) we have D2(D − 1)/2 configuration degrees of freedom and D(D − 1)/2 Gauß

constraints. In order to match the number of ADM degrees of freedom, we therefore

need S = D2(D − 1)/2 − D(D − 1)/2 − D(D + 1)/2 = D2(D − 3)/2 additional con-

straints. These must be imposed on the momentum πaIJ conjugate to AaIJ and require

that πaIJ is already determined by eIa. Now eIa has D2 degrees of freedom while πaIJ

has D2(D− 1)/2 so that exactly S degrees of freedom are superfluous. However, there

is no way to to build an object πaIJ with πa(IJ) = 0 from eIa: In order to match the

density weight we can consider EaI =
√

det(q)qabeIb , but we cannot algebraically build

another object vI from eIa without tensor index in order to define πaIJ = v[IEa|J ].

The only solution is that there are no superfluous degrees of freedom, which leads

back to D = 3. Now consider SO(D + 1). In this case we have D2(D + 1)/2
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7.1 Kinematical structure of (D + 1)-dimensional canonical gravity

configuration degrees of freedom and D(D + 1)/2 Gauß constraints requiring S =

D2(D + 1)/2−D(D + 1)/2−D(D + 1)/2 = D2(D − 1)/2−D additional constraints.

The number of superfluous degrees of freedom in πaIJ as compared to eIa is now also

precisely S = D2(D+ 1)/2−D(D+ 1). In contrast to the previous case, however, now

it is possible to construct an object without tensor indices: If we assume that the D

internal vectors eIa, a = 1, .., D are linearly independent then we construct the common

normal

nI :=
1

D!

1√
det(q)

εa1..aDεIJ1..JDe
J1
a1
.. eJDaD , (7.5)

which satisfies eIanI = 0, nIn
I = ζ where ζ = 1 for SO(D+1) and ζ = −1 for SO(1, D).

Notice that nI is uniquely (up to sign) determined by eIa. We may now require that

πaIJ = 2
√

det(q)qabn[Ie
J ]
b =: 2n[IEa|J ]. (7.6)

These are the searched for constraints on πaIJ and constitutes our candidate connection

formulation for general relativity in arbitrary spacetime dimensions D + 1 ≥ 3. Since

they require π to come from a generalised D-bein, we call them simplicity constraints.

These are indeed exactly the constraints we found in the Palatini theory in chapter 4.

Notice that D2(D− 1)/2−D = 0 for D = 2. Indeed, 2 + 1 gravity is naturally defined

as an SO(1, 2) or SO(3) gauge theory.

7.1.2 Properties of the simplicity constraints

The form of the constraint (7.6) is not yet satisfactory because the constraint should

be formulated purely in terms of πaIJ . The same requirement applies to the hybrid

connection to which we will turn in the next subsection. Of course, the simplicity con-

straint which we construct here will coincide with the one from section 5.2, but we will

give a slightly different view here.

Given πaIJ and any unit vector nI we may define EaI [π, n] := −ζπaIJnJ . This object

then automatically satisfies EaInI = 0. Furthermore we may define the transversal

projector

η̄IJ [n] := δIJ − ζnInJ ⇒ η̄IJ n
J = 0 (7.7)
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7. The new variables - Hamiltonian picture

and define

π̄aIJ := η̄IK [n] η̄JL[n] πaKL. (7.8)

As before, all tensors with purely transversal components will carry an overbar. We

obtain the decomposition

πaIJ = π̄aIJ + 2n[IEa|J ]. (7.9)

It appears that the simplicity constraint now is equivalent to π̄aIJ = 0. However, there

are two subtleties: First, at this point nI is an extra structure next to πaIJ which

is required to define (7.8). Therefore the decomposition (7.9) is not intrinsic and nI

appears as an extra degree of freedom. It is therefore necessary to give an intrinsic

definition of nI . Next, suppose that we have achieved to do so, then π̄aIJ constitute

D2(D − 1)/2 degrees of freedom rather than the required D2(D − 1)/2−D while due

to EaIn
I = 0 the EaI constitute only D2 degrees of freedom rather than D(D + 1).

To remove these subtleties, it is cleaner to adopt the following point of view: we consider

D + 1 vector densities EaI to begin with such that the corresponding D(D + 1)-matrix

has maximal rank. From these we can construct the densitised inverse metric

qqab[E] := EaIE
b
Jη

IJ , (7.10)

which we require to have Euclidean signature as well as their common normal

nI [E] :=
1

D!
√

det(q[E])
D−1

εa1..aD εIJ1..JDE
a1J1 ..EaDJD , (7.11)

which is now considered as a function of E. Notice that nIn
I = ζ. Therefore, also

η̄IJ = η̄IJ [E] is a function of E. We can again apply the decomposition (7.9) and now

have cleanly deposited the searched for degrees of freedom into EaI . However, while

nI is now intrinsically defined via EaI , the constraints π̄aIJ = 0 are still D to many.

We should remove D additional degrees of freedom from π̄aIJ . To do so we impose a

tracefree condition. Consider the object

EIa :=
1

q
qab[E]EbI . (7.12)
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7.1 Kinematical structure of (D + 1)-dimensional canonical gravity

It follows easily from the definitions that

EIaE
b
I = δba, EIaE

a
J = η̄IJ . (7.13)

Consider the tracefree, transverse projector

PaIJtf bKL[E] := δab η̄
I
[K η̄

J
L] −

2

D − 1
Ea[I Eb[K η̄

J ]
L]. (7.14)

Then for any tensor πaIJ we have with π̄aIJtf = PaIJtf bKLπ
bKL that

π̄J := EaI π̄
aIJ
tf = 0 (7.15)

and π̄aIJtf nI = 0. Notice that π̄aIJtf has only D2(D − 1)/2−D degrees of freedom inde-

pendent of EaI .

We therefore consider in what follows tensors πaIJ of the following form

πaIJ [E, S̄tf] := S̄aIJtf + 2n[I [E]Ea|J ], (7.16)

where S̄tf and E are considered as independent parameters for π. Notice that S̄tf can

be constructed as P ·S from an arbitrary tensor SaIJ . Such tensors can be intrinsically

described as follows: given π, there exists a normal nI [π] such that the following holds:

Define EaI [π, n] = −ζπaIJnJ and π̄aIJ [π, n] as above. Then automatically

π̄J [π, n] := π̄aIJ [π, n]Qab[π, n]EbI [π, n] = 0. (7.17)

This is a set of D independent (since automatically π̄InI = 0 no matter what nI is),

non-linear equations for the D independent (due to the normalisation nIn
I = ζ) com-

ponents of nI . In the original work [2], we studied this non trivial system of equations

further and showed that it can possibly be solved by fixed point methods. At present

we do not know whether at least tensors πaIJ subject to the condition that ζπaIJπbIJ/2

is positive definite always allow for such a solution nI , however, we know that the num-

ber of possible solutions is always finite because we can transform (7.17) into a system

of polynomial equations. In what follows, we will assume that the solution nI [π] is in

fact unique by suitably restricting the set of allowed tensors πaIJ . This could imply

that the set of such tensors no longer has the structure of a vector space which however

does not pose any problems for what follows.

On the other hand, we can prove the following for general πaIJ :
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Theorem 2.

Let D ≥ 3 and1

S ab
M

:=
1

4
εIJKLMπ

aIJπbKL, (7.18)

where M is any totally skew (D − 3)-tuple of indices in {0, 1, .., D}. Then

S ab
M

= 0 ∀ M, a, b ⇔ PaIJtf bKL[π, n] πbKL = 0 (7.19)

for any unit vector n where PaIJtf bKL[π, n] := [PaIJtf bKL[E]]E=E[π,n] and EaI [π, n] =

−ζπaIJnJ and where P[E] is defined in (7.14). Here we assume that qqab[π, n] :=

πaIKπbJLηIJnKnL is non degenerate for any (timelike for ζ = −1) vector nI .

This result implies that although S ab
M

are D(D + 1)/2
(
D+1

4

)
equations which exceeds

D2(D−1)/2−D for D > 3 only D2(D−1)/2 of them are independent. The constraint

S ab
M

= 0 does not fix nI and makes no statement about the trace part π̄J [π, n] =

π̄aIJ [π, n]EaI [π, n]. Given that the theorem holds for any n it is natural to fix n

such that the trace part vanishes simultaneously as otherwise we would have only that

π̄aIJ = 2Ea[I π̄J ]/(D−1) and not π̄aIJ = 0 or πaIJ = 2n[IEa|J ] on the constraint surface

of the simplicity constraint.

Proof.

Obviously

S ab
M

= 0 ⇔ εIJKLMS ab
M

=
ζ

4
4! (D − 3)! πa[IJ πbKL] = 0. (7.20)

Given π, consider any unit vector n and decompose as in (7.9)

πaIJ = π̄aIJ [π, n] + 2n[IEa|J ][π, n]. (7.21)

Inserting into (7.21), we obtain

πa[IJπbKL] = π̄a[IJ π̄bKL] + 4n[IE(a|J π̄b)KL] = 0. (7.22)

Contracting with nI yields

E(a[J π̄b)KL] = 0. (7.23)

Contracting further with EaJ yields

(D − 1) [π̄bKL − 2

D − 1
Eb[K π̄aJ |L]EaJ ] = (D − 1) PbKLtf aIJ [π, n]πaIJ = 0. (7.24)

We conclude πaIJ = 2v[IEa|J ], vI = (nI − 1
D−1 π̄

bJIEbJ) and inserting back into (7.20)

we see that it is identically satisfied.

1For D = 2 no simplicity constraints are needed since D2(D − 1)/2−D = 0.
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7.1 Kinematical structure of (D + 1)-dimensional canonical gravity

The theorem therefore says that on the constraint surface πaIJ = 2v[IEa|J ] for some

vector v which is not necessarily normalised and not necessarily normal to EaI but

such that EaI , vI constitute D + 1 linearly independent internal vectors. We can

however draw, for ζ = −1, some additional conclusion from the requirement that

qqab = πaIJπbIJ/(2ζ) should have Euclidean signature. First of all, vI cannot be null

since otherwise qqab ∝ (EaI v
I)(EbJv

J) would be degenerate. If vI would be spacelike then

consider ẼaI = EaI − EaJvJvI/(vKvK). It follows πaIJ = 2v[IẼa|J ] and qqab ∝ ẼaIẼbI .

Since vI , ẼaI constitutes a (D + 1)-bein and vI is spacelike while η is Lorentzian, also

qqab would need to be Lorentzian. Hence vI must in fact be timelike for ζ = −1.

We may therefore absorb for either signature the normalisation of v into EaI and de-

fine nI := vI/
√
ζvJvJ as well as ẼaI =

√
ζvKvKE

aJ η̄IJ . Then 2v[IEa|J ] = 2n[IẼa|J ]

with ẼaInI = 0, nInI = ζ. Therefore, the constraint surface defined via (7.18) is the

same as the one given by π̄aIJtf above, where we assumed that π is of the form (7.16)

and constitutes the unique decomposition of πaIJ with no trace part. In what follows,

we will use the simplicity constraint in the form (7.18). However, it will be convenient

to have the presentation (7.16) at one’s disposal when we work off the constraint surface.

Notice that the proof given above also in the case D = 3 does not allow for a “topo-

logical sector” πaIJ = εIJKLnKEaL or “degenerate sector” due to the non degeneracy

assumption. This assumption is dropped in the alternative proof in [2] which is based

on [169] which is why the topological sector does appear there.

7.1.3 Integrability of the hybrid connection modulo simplicity con-

straint

The hybrid connection is defined via (7.3) on the constraint surface S ab
M

= 0. We want

to define an extension off the constraint surface such that the resulting expression is

integrable, i.e. is the functional derivative ΓaIJ = δF/δπaIJ of a generating functional

F = F [π]. To that end, we need the explicit expression of ΓaIJ in terms of eIa, which is

given in appendix C. Here, we will provide a detailed derivation thereof.

To begin with, we notice that DH
a n

I = 0. To see this we consider its D + 1 inde-

pendent components nID
H
a n

I = 1
2D

H
a (nInI) = 0 and eIbD

H
a n

I = −nIDH
a e

I
b = 0. We
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decompose

ΓaIJ = Γ̄aIJ + 2n[I Γ̄a|J ], Γ̄aI = −ζΓaIJn
J (7.25)

and further

Γ̄aIJ = Γ̄abce
b
Ie
c
J , Γ̄aI = Γ̄abe

b
I , (7.26)

where, as before, ebI = qabebI , q
acqcb = δab , qab = eIaebI . We find

Γ̄ab = −ζnI∂aeIb , Γ̄abc = Γbac − ebI∂aeIc , (7.27)

where Γbac = qbdΓ
d
ac is the Levi-Civita connection. Combining these formulae, we obtain

ΓaIJ [E] = −[ηK[I + ζnK n[I ]e
b
J ]∂ae

K
b + Γbaceb[Ie

c
J ]

= ζn[I∂anJ ] + eb[I∂ae
b
J ] + Γbaceb[Ie

c
J ], (7.28)

where we used here and will also use frequently later nK∂aE
bK = −EbK∂anK , nK∂anK =

0 and n[I η̄
K
J ] = n[Iη

K
J ].

To write ΓaIJ in terms of πaIJ , we notice the following weak identities modulo the

simplicity constraint, that is πaIJ ≈ 2n[IEa|J ],

πaIJπbIJ ≈ 4n[IEa|J ] n[IE
b
J ] = 2ζEaIEbI = 2ζqqab,

1

q
qabπ

aKIπbKJ ≈ [nKEaI − nIEaK ] [nKEaJ − nJEaK ]

= DnInJ + ζη̄IJ = (D − 1)nInJ + ζηIJ ,

Ea[InJ ] = −ζπa[I|L nJ ]nL,

1

q
qbdπ

dK
[I π

c
K|J ] ≈ [nKEb[I − EKb n[I ] [EcJ ]nK − nJ ]E

c
K ] = ζ Eb[IE

c
J ] = ζ eb[Ie

c
J ],

1

q
qbcπ

bK
[I∂aπ

c
K|J ] ≈ [nKEc[I − EKc n[I ] ∂a [EcJ ]nK − nJ ]E

c
K ]

= −nKEc[I [nJ ](∂aE
c
K)− (∂aE

c
J ])nK ]

+ EKc n[I [(∂anJ ])E
c
K − EcJ ](∂anK)]

= (D − 1)n[I(∂anJ ]) + Ec[InJ ]E
c
K(∂an

K) + ζEc[I(∂aE
c
J ])

= (D − 2)n[I(∂anJ ]) + ζEc[I(∂aE
c
J ])

= (D − 2)n[I(∂anJ ]) + ζec[I(∂ae
c
J ]),

η̄KI η̄
L
J

1

q
qbdπ

dM
[K ∂aπ

c
|M |L] ≈ ζη̄

K
[I η̄

L
J ]eb[K∂ae

b
L]

= ζeb[I∂ae
b
J ] − n[I∂anJ ]. (7.29)
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Consider the quantities

TaIJ := πbK[I∂aπ
bK

J ], T cbIJ := πbK[Iπ
cK

J ], (7.30)

where πaIJ = 1
q qabπ

b
IJ . Then

(D − 1)n[I∂anJ ] = TaIJ − T̄aIJ , (D − 1)ζeb[I∂ae
b
J ] = TaIJ + (D − 2)T̄aIJ . (7.31)

Inserting (7.30) and (7.31) into (7.28) then leads to the explicit expression

ΓaIJ [π] =
2ζ

D − 1
TaIJ +

ζ(D − 3)

D − 1
T̄aIJ + ζΓbacT

c
bIJ . (7.32)

Expressing Γbac in terms of qqab = πaIJπbIJ/(2ζ), this determines ΓaIJ completely in

terms of πaIJ if we simply replace the ≈ signs in (7.29) by = signs and take the left

hand sides as definitions for the right hand sides.

It transpires that ΓaIJ is a rational, homogeneous function of degree zero of π and

its first derivatives which vanishes at π = 0. Therefore, if ΓaIJ [π] has a generating

functional, then it is given by1

F ′[π] =

∫
dDx πaIJ ΓaIJ [π]. (7.33)

Variation of F ′ with respect to πaIJ yields

δF ′ =

∫
dDx

(
δπaIJ ΓaIJ [π] + πaIJδΓaIJ [π]

)
=

∫
dDx

(
δπaIJ ΓaIJ [π] + πaIJ [δΓaIJ [E] + δS ′

aIJ ]
)

= δ[

∫
dDxπaIJS ′

aIJ ] +

∫
dDx

(
δπaIJ ΓaIJ [π] + 2n[IEa|J ] δΓaIJ [E]

)
+

∫
dDx

(
S aIJ δΓaIJ [E]− δπaIJ S ′

aIJ

)
, (7.34)

where S aIJ := πaIJ−2n[IEa|J ] and S ′
aIJ := ΓaIJ [π]−ΓaIJ [E] both vanish on the con-

straint surface of the simplicity constraint. We see that F ′ itself cannot be a generating

functional but rather

F = F ′ −
∫

dDxπaIJS ′
aIJ , (7.35)

1If a one form ΓM is exact, i.e. has potential U with ΓM = U,M then U(π)− U(π0) =
∫
γπ0,π

Γ for

any path γπ0,π between π0 and π. If Γ is defined at π0 = 0 to vanish then choosing the straight path

t 7→ tπ yields U(π) = const. +
∫ 1

0
dtπMΓM (tπ).
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7. The new variables - Hamiltonian picture

i.e. F ′ has to be corrected by a term that vanishes on the constraint surface of the sim-

plicity constraint, however, its variation does not necessarily vanish on that constraint

surface. It follows that δF/δπaIJ = ΓaIJ + S̃aIJ for some S̃aIJ which vanishes on the

constraint surface of the simplicity constraint provided that∫
dDxn[IEa|J ]δΓaIJ [E] =

∫
dDx

√
det(q)n[Iea|J ]δΓaIJ [E] = 0. (7.36)

This is the key identity that one has to prove. It is the counterpart to the key identity

that is responsible for the fact that the Ashtekar connection is Poisson commuting in

D+1 = 4. The reason for the correction F ′ → F is that ΓaIJ [π] is not strictly integrable

but only modulo terms that vanish on the constraint surface of the simplicity constraint.

We proceed with the proof of (7.36). It is easiest to use (7.25) – (7.27). We have,

using nKδn
K = 0, nKδe

K
b = −eKb δnK and that Γ̄a(bc) = 0,

n[Iea|J ]δ(2n[I Γ̄a|J ]) = 2n[Iea|J ][nI(δΓ̄aJ) + Γ̄aJδnI)]

= ζeaI(δΓ̄aI) = −eaIδ(nJ(∂ae
J
b )ebI)

= eaIδ(eJb (∂anJ)ebI) = eaIδ(η̄JI ∂anJ)

= eaIDa(δnI), (7.37)

n[Iea|J ]δΓ̄aIJ = nIeaJδ(Γ̄abce
b
Ie
c
J)

= nIeaJ Γ̄abce
c
J(δebI) = qacΓ̄acbe

b
I(δn

I)

= −[eaJ(∂ae
J
b )− Γaab]e

b
I(δn

I)

= −[eaJ [∂a(e
b
Ie
J
b )− eJb (∂ae

b
I)− Γaabe

b
I ] (δnI)

= −[eaJ∂a(η̄
J
I )− (Dae

a
I )](δn

I) = [Dae
a
I ] [δnI ], (7.38)

where Da is the torsion free covariant differential annihilating qab as before (it acts only

on tensor indices, not on internal ones). We conclude∫
dDx n[IEa|J ] δΓaIJ [E] =

∫
dDx

√
det(q)Da[e

a
Iδn

I ] =

∫
dDx∂a(E

a
I δn

I) = 0

(7.39)

for suitable boundary conditions on EaI and its variations1.

1For instance one could impose that nI deviates from a constant by a function of rapid decrease at

spatial infinity. Note that the final expression in (7.39) will not vanish but play a central role in part

V.
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7.2 New variables and equivalence with ADM formulation

We therefore have established:

Theorem 3.

There exists a functional F [π] such that for δnI vanishing sufficiently fast at spatial

infinity, we have

δF [π]/δπaIJ(x) = ΓaIJ [π;x) + SaIJ [π;x), (7.40)

where SaIJ vanishes on the constraint surface of the simplicity constraint, depending

at most on its first partial derivatives and ΓaIJ [π] is the hybrid connection (7.32).

7.2 New variables and equivalence with ADM formulation

We want to construct a G = SO(D + 1) or G = SO(1, D) canonical gauge theory over

σ with connection AaIJ and conjugate momentum πaIJ . In analogy to the treatment

in 6.3, we will present the passage in three steps:

1. {qab, P cd; H ,Ha} → {KaIJ , π
bKL; H ,Ha,G IJ ,S ab

M
}: Extend the ADM phase

space to be coordinatized by a denistized “vielbein” πaIJ and conjugate variable

KaIJ transforming in the adjoint of G = SO(D + 1) or G = SO(1, D), subject to

additional Gauß and simplicity constraints.

2. {KaIJ , π
bKL} → {K

(β)
aIJ ,

(β)
π bKL}: Perform a constant Weyl rescaling with a free

parameter β ∈ R/{0}.

3. {qab, P cd; H ,Ha} → {AaIJ ,
(β)
π bKL; H ,Ha,G IJ ,S ab

M
}: Note that, up to now,

each step was in close analogy to the ones of section 6.3. Thus, in the third

step, we would like to perform a canonical transformation {K
(β)

aIJ ,
(β)
π bKL} →

{AaIJ ,
(β)
π bKL} to connection variables AaIJ = ΓaIJ [π] + K

(β)
aIJ , where ΓaIJ [π] is

the hybrid connection (7.32) constructed from π. However, as we will see, due

problems arising since ΓaIJ [π] is integrable only up to the simplicity constraint,

it is hard to prove that this transformation is canonical. Instead, we will give a

proof that the symplectic reduction of this Yang Mills phase space with respect

to Gauß and simplicity constraint again leads back to the ADM phase space, and

therefore the Yang Mills formulation is valid.
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7. The new variables - Hamiltonian picture

Step 1: We introduce the variables KaIJ , πbKL subject to the canonical brackets

{KaIJ(x), πbKL(y)} = 2δbaδ
K
[I δ

L
J ]δ

(D)(x− y),

{KaIJ(x),KbKL(y)} = {πaIJ(x), πbKL(y)} = 0, (7.41)

as well as to the Gauß constraint

G IJ := [Ka, π
a]IJ = 2K [I

a K πa|K|J ] (7.42)

and the simplicity constraint

S ab
M

=
1

4
εIJKLMπ

aIJπbKL. (7.43)

Internal indices as before are moved by the internal metric η which is just the Euclidean

metric for SO(D + 1) (ζ = 1) and the Minkowski metric for SO(1, D) (ζ = −1). We

have for g ∈ SO(1, D) or SO(D+ 1) that gIJgKLηKL = ηIJ , det((gIJ)) = 1. We define

a map from this extended phase space with coordinates (KaIJ , π
aIJ) to the coordinates

(qab, P
ab) of the ADM phase space by the following formulas

det(q)qab :=
1

2ζ
πaIJ πb IJ , (7.44)

P ab :=
1

4

(
qa[cKcIJπ

b]IJ + qb[cKcIJπ
a]IJ
)

=
1

4
Gab cdKcIJπ

dIJ , (7.45)

which should be compared with (3.38). The central result of this section is:

Theorem 4.

i. Gauß and simplicity constraints obey a first class constraint algebra.

ii. The symplectic reduction of the extended phase space defined above with respect to

Gauß and simplicity constraints coincides with the ADM phase space. More in detail,

the functions qab[π], P ab[K,π] defined in (7.44, 7.45) are (weak) Dirac observables

with respect to Gauß and simplicity constraints and (weakly) obey the standard Poisson

brackets

{qab(x), P cd(y)} = δc(aδ
d
b) δ

(D)(x− y), {qab(x), qcd(y)} = {P ab(x), P cd(y)} = 0

on the constraint surface defined by simplicity and Gauß constraints.
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Proof.

i.

Since S ab
M

only depends on πaIJ , it Poisson commutes with itself. The Gauß constraint

of course generates G gauge transformations under which π transforms as a section in

an associated vector bundle under the adjoint representation of G and K accordingly.

The Poisson algebra of the smeared Gauß constraints is therefore (anti-)isomorphic

with the Lie algebra of G

{1

2
G IJ [fIJ ],

1

2
GKL[f ′KL]} = −1

2
G IJ [[f, f ′]IJ ]. (7.46)

Under finite Gauß transformations we have

πaIJ 7→ [gπag−1]IJ . (7.47)

Since G = SO(1, D) or SO(D + 1) is unimodular, we obtain

S ab
M
7→ ζ gM

NS ab
N
, gM

N =
D−3∏
i=1

gMi
Ni . (7.48)

It follows the first class structure {G ,G } ∝ G , {G ,S } ∝ S , {S ,S } = 0. This is,

of course, what we expected from section 5.2.

ii.

Since both πaIJ , KaIJ transform in the adjoint representation of G it is clear that

Qab ∝ Tr(πaπb), Kb
a ∝ Tr(Kaπ

b) are in fact Gauß invariant, possibly modulo the

simplicity constraint, and thus are qab, P
ab. Since S ab

M
and qab are both constructed

from πaIJ alone it is clear that they strictly Poisson commute. As for P ab we notice

that it is a linear combination of the objects

Ka
b := −1

2
KaIJπ

bIJ , (7.49)

with coefficients that depend only on qab. While the notation already suggests that

Ka
b is related with the extrinsic curvature, note that as it is defined here, Ka

b has

density weight one. It is therefore sufficient to show that {Ka
b,S cd

M
} ≈ 0. We compute

with the smeared simplicity constraint

{Ka
b(x),S cd

M
[fMcd ]} = −1

8

∫
dDy fMcd (y) πbIJ(x) εABCDM {KaIJ(x), πcAB(y)πdCD(y)}

= −2 fMcd (x)δ(c
a S

d)b

M
(x). (7.50)

It follows that P ab Poisson commutes with the simplicity constraint on its constraint

surface.
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7. The new variables - Hamiltonian picture

It remains to verify the ADM Poisson brackets. Since qab(x) depends only on πaIJ(x)

we have trivially {qab(x), qcd(y)} = 0. Next, we invoke (A.24),

δqab = −ζ
q
G−1
ab cdπ

cIJδπdIJ , (7.51)

and since Gab cd appears in (7.45), it follows in one line that

{qab(x), P cd(y)} = − ζ

q(x)
G−1
ab ef (x)πeIJ(x){πf IJ(x),KgKL(y)}

1

4
Gcd ghπ

hKL

= δ(D)(x− y)δc(aδ
d
b). (7.52)

The last bracket is the most complicated. Again using (A.24), we obtain

δP ab =
1

4
Gab cdπ

dIJδKcIJ

+
1

4

[
Gab cdη

K
[I η

L
J ] +

ζ

q
π(b|KLGa)c

edπ
e
IJ −

ζ

q
πcKLGabedπ

e
IJ

]
KcKLδπ

dIJ ,

(7.53)

and using this, analogous to the calculation in section 3.3, we obtain

{P ab[K,π](x), P cd[K,π](y)} =

∫
σ
dDz

[
2
δP ab[K,π](x)

δKfIJ(z)

δP cd[K,π](y)

δπfIJ(z)
− ab↔ cd

]
=

[
q

8
Gab xfGcd efπxIJKe

IJδ(D)(x− y) +
ζ

8
Gab gfG−1 e(d|

gfπ
c)
IJKe

IJδ(D)(x− y)

− ζ

8
Gab hfG−1 cd

hfπ
eIJKe

IJδ(D)(x− y)

]
− ab↔ cd

=
1

4
Gab xfGcd efGxe +

ζ

32

(
q(b|dG c|a) + q(b|cG d|a)

)
δ(D)(x− y) ≈ 0. (7.54)

In the first step, we used (7.53). Due to the antisymmetry in ab, cd, the first term is

antisymmetric in x, e and therefore proportional to Gxe := πaIJqa[xKe]IJ . In the second

summand of the second line, contracting the matrices and rearranging the terms leads

to the remaining terms in the fourth line. The terms in the third line are symmetric

in the exchange of ab, cd and therefore drop out. We claim that Gab is constrained to

vanish by the Gauß constraint. With the convention K̄aI := −ζKaIJn
J we obtain for

the Gauß constraint dropping terms ∝ S

GIJ = 2KaL[Iπ
a
J ]

L ≈ 2KaL[I(nJ ]E
aL − EaJ ]n

L)

= −2ζK̄a[IE
a
J ] + 2K̄tr

[InJ ] =: ḠIJ + 2n[I ḠJ ], (7.55)
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where K̄tr
I = EaLK̄aLI is the trace part of K̄aIJ = η̄K[I η̄

L
J ]KaKL, η̄IJ = ηIJ − ζnInJ . It

follows that K̄tr
I = 0 and K̄a[IE

a
J ] = 0 on the Gauß constraint surface. Now

G abEaIEbJ ≈ 2ζE[a|Kqb]cK̄cKEaIEbJ =
2ζ

q
K̄a[IE

a
J ]. (7.56)

Therefore, G [ab] = [G [cd]EcIEcJ ]EaIEbJ vanishes on the Gauß constraint surface and

proves (7.54).

Step 2: Of course, the transformation {KaIJ , π
bKL} → {K

(β)
aIJ := βKaIJ ,

(β)
π bKL :=

1
βπ

bKL} for β ∈ R/{0} is canonical. We restrict to real β in order to retain a real phase

space, otherwise we reproduce the problems of the original, complex Ashtekar variables

with implementing the reality conditions. Like the usual spin connection, ΓaIJ [π] is

unchanged by constant rescalings, ΓaIJ [π] = ΓaIJ [
(β)
π ]. The parameter β is similar to,

but structurally different from the Immirzi parameter in D = 3, as we will see.

Step 3: Finally, one would like to perform a canonical transformation to connection

variables {K
(β)

aIJ ,
(β)
π bKL} → {AaIJ := ΓaIJ [π] + K

(β)
aIJ ,

(β)
π bKL}. The only non-trivial

Poisson bracket is the one between two connections AaIJ . We have

{AaIJ(x), AbKL(y)} =

∫
σ
dDz

2
δAaIJ(x)

δK
(β)

cMN (z)

δAbKL(y)

δ
(β)
π cMN (z)

− aIJx↔ bKLy


= 2β

[
δΓbKL[π, y)

δπaIJ(x)
− δΓaIJ [π, x)

δπbKL(y)

]
= 2β

[
δSbKL[π, y)

δπaIJ(x)
− δSaIJ [π, x)

δπbKL(y)

]
, (7.57)

where in the last step, we invoked the key result of the previous section, ΓaIJ =

δF/δπaIJ + SaIJ and exploited the commutativity of partial functional derivatives.

However, while S aIJ vanishes on the simplicity constraint surface, its functional deriva-

tives do not vanish necessarily. One would have to study S aIJ more carefully in

order to decide if the transformation is canonical or not1. Here, we will proceed

differently. We will still perform the transformation {K
(β)

aIJ ,
(β)
π bKL} → {AaIJ :=

1Using the explicit expression (9.34) for Γ in D = 3, a direct, rather lengthy computation shows

that {AaIJ [αaIJ ], AbKL[βbKL]} ≈ 0 only if both multiplier fields are chosen such that their transversal

tracefree parts vanish and therefore, this particular transformation is not canonical. However, other

explicit expressions for Γ may differ from the chosen one by S , ∂S , which does not allow for general

conclusions.
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7. The new variables - Hamiltonian picture

ΓaIJ [π] + K
(β)

aIJ ,
(β)
π bKL} and postulate the (non-vanishing) Poisson brackets

{AaIJ(x),
(β)
π bKL(y)} = 2δbaδ

K
[I δ

L
J ]δ

(D)(x− y), (7.58)

but then, rather than showing that it is canonical, prove that, like in step 1, the sym-

plectic reduction of the obtained Yang Mills phase space with respect to the simplicity

constraint leads to the ADM phase space.

To this end, let us rewrite the Gauß constraint in terms AaIJ and
(β)
π bKL,

G IJ = 2K
(β)

[I
a K

(β)
π a|K|J ]

≈ ∂a
(β)
π aIJ + 2Γ[I

a K
(β)
π a|K|J ] + 2K

(β)

[I
a K

(β)
π a|K|J ]

= DA
a

(β)
π aIJ . (7.59)

Note that the terms we added vanish on the simplicity constraint surface, since ΓaIJ [π]

weakly annihilates π. The covariant differential DA
a of A acts only on internal indices.

This does not affect the tensorial character of (7.59) because πaIJ is a Lie algebra valued

vector density of weight one and (7.59) is its covariant divergence which is independent

of the Levi-Civita connection. Under this constraint, A transforms as a connection.

The map from this Yang-Mills theory phase space to the coordinates (qab, P
ab) of the

ADM phase space is given by

det(q)qab :=
β2

2ζ

(β)
π aIJ (β)

π b
IJ , (7.60)

P ab :=
1

4
Gab cd[AcIJ − ΓcIJ [π]]

(β)
π
dIJ

, (7.61)

which of course directly follows from (7.44, 7.45).

Now we want to prove

Theorem 5.

i. Gauß and simplicity constraints obey a first class constraint algebra.

ii. The symplectic reduction of the Yang-Mills phase space defined above with respect to

Gauß and simplicity constraints coincides with the ADM phase space. More in detail,

the functions qab[π], P ab[A, π] defined in (7.60, 7.61) are (weak) Dirac observables
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7.2 New variables and equivalence with ADM formulation

with respect to Gauß and simplicity constraints and (weakly) obey the standard Poisson

brackets

{qab(x), P cd(y)} = δc(aδ
d
b) δ

(D)(x− y), {qab(x), qcd(y)} = {P ab(x), P cd(y)} = 0

on the constraint surface defined by simplicity and Gauß constraints.

This theorem is of course the direct analogon of theorem 4:

Proof.

i.

analogous to the case before.

ii.

The hybrid spin connection ΓaIJ [E] is a G connection by construction. Its extension

ΓaIJ [π] off the simplicity constraint surface therefore transforms as a G connection

modulo the simplicity constraint. Since both πaIJ , KaIJ := 1
β (AaIJ − ΓaIJ) trans-

form in the adjoint representation of G it is clear that Tr(πaπb), Tr(Kaπ
b) are in fact

Gauß invariant, possibly modulo the simplicity constraint, and thus are qab, P
ab. That

qab, P
ab are also simplicity invariant (modulo the simplicity constraint) follows from

the same calculation as before.

Concerning the ADM Poisson brackets, the only calculation that changes is the Pois-

son bracket between two ADM momenta. Dropping all terms ∝ G ab, which already

appeared in the previous case and also here vanish weakly, we obtain the additional

terms

{P ab(x), P cd(y)} ≈ (7.62)

≈− 1

16
Gab ef (x)

(β)
π fIJ(x) Gcd gh(y)

(β)
π hKL(y) [{AeIJ(x),ΓgKL(y)} − {AgKL(y),ΓeIJ(x)}].

We now again invoke the key result of the previous section and write ΓaIJ = δF/δπaIJ+

SaIJ where SaIJ vanishes on the constraint surface of the simplicity constraint and

depends at most on its first partial derivatives. It is therefore given by an expression

of the form

SgKL = λMgKLmnS
mn
M

+ µMp
gKLmn∂pS

mn
M

(7.63)

for certain coefficients λ, µ. First of all, we notice that due to the commutativity of

partial functional derivatives

{AeIJ(x), δF/δπgKL(y)} − {AgKL(y), δF/δπeIJ(x)} = 0. (7.64)
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7. The new variables - Hamiltonian picture

Next, due to the derivatives involved, the Poisson bracket is not ultralocal, however,

what we intend to prove is that {P ab[fab], P cd[f ′cd]} ≈ 0 with the smeared functions

P ab[fab] =
∫
dDxfabP

ab. Let M e
f = 1

4fabG
abe
f , M ′gh = 1

4G
cdg
h f ′cd, then the contribution

from SgKL in the first term of (7.62) becomes after smearing

≈
∫
dDx

∫
dDy M e

f

(β)
π fIJ(x)

(
M ′gh

(β)
π hKLλMgKLmn − [M ′gh

(β)
π hKLµMp

gKLmn],p

)
(y)

× {AeIJ(x),Smn
M

(y)}

= 4

∫
dDx M e

f

(
M ′gh

(β)
π hKLλMgKLmn − [M ′gh

(β)
π hKLµMp

gKLmn],p

)
δ(m
e S

n)f

M
(x)

≈ 0. (7.65)

The calculation for the second term is similar. In conclusion, {P ab[fab], P cd[f ′cd]} ≈ 0

vanishes on the joint constraint surface of the Gauß and the simplicity constraint.

7.3 ADM Constraints in terms of the new variables

It remains to express the ADM constraints in terms of the new variables. Of course

we could just substitute for the expressions (7.60, 7.61), however, this is not the most

convenient form for the ADM constraints because they involve the hybrid connection

which is a complicated expression in terms of π. We will therefore adopt the strategy

familiar from D+ 1 = 4 and invoke the curvature F of A. In the end, we will arrive at

expressions Ha,H for spatial diffeomorphism and Hamiltonian constraint which differ

from their counterparts H ′
a ,H

′, obtained by naive substitution of qab, P
ab by (7.60,

7.61) in (2.27), (2.28), by terms proportional to Gauß and simplicity constraints. This

guarantees that the algebra of Gauß, simplicity, spatial diffeomorphism an Hamiltonian

constraints is of first class.

To see this, let us write Ha = H ′
a + Za, H = H ′ + Z where Za,Z vanish on the

constraint surface of the simplicity and Gauß constraint. We have seen already that

{S ,S } = 0, {G ,S } ∝ S , {G ,G } ∝ G . We also have shown that (7.60, 7.61) are weak

Dirac observables with respect to S and invariant under G . Since H ′
a ,H

′ are defined

in terms of (7.60, 7.61) it follows that {S ,H ′
a} ∝ S , {S ,H ′} ∝ S . Altogether there-

fore {S ,Ha}, {S ,H }, {G ,Ha}, {G ,H } ∝ S ,G thus S ,G form an ideal. Next

we have {H ′
a ,H

′
b } ∝ H ′

c ,S ,G , {H ′
a ,H

′} ∝ H ′,S ,G , {H ′,H ′} ∝ H ′
a ,S ,G be-

cause the algebra of the variables (7.60, 7.61) is the same as that of the ADM variables
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7.3 ADM Constraints in terms of the new variables

modulo S ,G terms and therefore the algebra of the ADM constraints is reproduced

modulo S ,G terms. Together with what was already said, this implies that Ha,H

reproduce the ADM algebra of constraints modulo S ,G terms.

In the following, we will repeatedly use the formulas (C.12, C.13) relating the hybrid

and the Riemann curvature. We obtain modulo S for the Ricci scalar

RabIJπ
aIKπb K

J ≈ RabIJ [nIEaK − nKEaI ][nKEbJ − nJEbK ] = −ζ det(q)R. (7.66)

Next, using (C.12)

RabIJπ
bIJ ≈ 2RabIJn

IEbJ = 2qbc
√

det(q)RabIJn
IeJc = −2qbc

√
det(q)Rabc

dedIn
I = 0,
(7.67)

which is the analog of the algebraic Bianchi identity.

We now expand the curvature

FabIJ := 2∂[aAb]IJ +AaIK Ab
K

J −AaJK Ab
K

I (7.68)

of A = Γ + βK in terms of Γ,K and obtain

FabIJ = RabIJ + 2βDH
[aKb]IJ + 2β2K[aIK Kb]

K
J . (7.69)

Contracting (7.69) with πbIJ we find using (7.67)

FabIJπ
bIJ ≈ 2β(D[aKb]IJ)πbIJ − β2Tr([Ka,Kb]π

b). (7.70)

The second term is proportional to the Gauß constraint because Tr([Ka,Kb]π
b) =

Tr(Ka[Kb, π
b]) and remembering (7.59). In the first term we notice that DΓ

aπ
bIJ ≈ 0

so that

FabIJπ
bIJ ≈ −4βD[aK

b
b] = 2βDb[Ka

b − δbaKc
c] = −4βDbPa

b = 2βHa (7.71)

is proportional to the spatial diffeomorphism constraint modulo S ,G . Note that

Kab := −1
2KcIJq

caπbIJ is symmetric in a, b modulo the Gauß constraint.

Next, using (7.66)

FabIJπ
aIKπb K

J ≈ −ζ det(q)R− 2βDaTr(Kb[π
a, πb])− β2Tr([Ka,Kb]π

aπb). (7.72)
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7. The new variables - Hamiltonian picture

The second term is again proportional to the Gauß constraint, since Tr(Kb[π
a, πb]) =

−Tr(πa[Kb, π
b]). So far all the steps were similar to the 3 + 1 situation. The difference

comes in when looking at the third term in (7.72)

−Tr([Ka,Kb]π
aπb) ≈ [KaIKKb

K
J −KbIKKa

K
J ][nIEaL − nLEaI ][nLEbJ − nJEbL]

= −ζ[−(KaIKE
aI)(KbJ

KEbJ) + (KbIKE
aI)(KaJ

KEbJ)]. (7.73)

By the Gauß constraint (7.55), we have K̄tr
I ≈ 0 and therefore KaJIE

aJ = −nIK̄aJE
aJ

= ζnIK
a
a . Thus the first term in (7.73) is given by [Ka

a ]2. However, the second term

cannot be written in terms of Kb
a. To explore the structure of the disturbing term we

notice that from K̄tr
I = 0 we have the decomposition

KaIJ = K̄tf
aIJ + 2n[IK̄a|J ], K̄aI = −ζKaIJn

J . (7.74)

Hence

−ζ(KbIKE
aI)(KaJ

KEbJ) = −ζ(K̄tf
bIKE

aI − K̄bIE
aInK)(K̄tf

aJ
KEbJ − K̄aJE

bJnK)

= −ζ(K̄tf
bIKE

aI)(K̄tf
aJ

KEbJ)−Kb
aK

a
b , (7.75)

where K̄aIE
bI = −ζKaIJE

bInJ ≈ KaIJπ
bIJ/(2ζ) was used. Altogether,

−Tr([Ka,Kb]π
aπb) = −[Kb

aK
a
b − (Kc

c )
2]− ζ(K̄tf

bIKE
aI)(K̄tf

aJ
KEbJ). (7.76)

The first term in (7.76) has the structure that appears in the Hamiltonian constraint

and can be written in terms of P ab, qab, however, the second term does not appear

in the Hamiltonian constraint and must be removed. Also notice that the Ricci term

in (7.72) has sign −ζ while the first term has negative sign. If we are interested in

Lorentzian gravity then the relative sign between these two terms should be negative

which is not the case for the choice of a compact gauge group ζ = 1. Therefore the

expression (7.72) fails to yield the Hamiltonian constraint for several reasons.

To assemble the Hamiltonian constraint without making use of Γ, the idea is to consider

covariant derivatives which give access to A. Using suitable algebraic combinations then

yields the desired expressions. To that end, let again DA
a be the covariant differential
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7.3 ADM Constraints in terms of the new variables

of A acting only on internal indices and let D′Aa be its extension by the Levi-Civita

connection. Consider

Db
a := πaKJ (DA

bπ
cJL) πcKL = πaKJ (D′Abπ

cJL) πcKL − 2πaKJ πcKL Γ
[c
bdπ

d]JL.
(7.77)

The second term equals modulo S

−2[nKEaJ − nJEaK ][nKEcL − nLEcK ]Γ
[c
bdπ

d]JL = −2ζ EaJ EcLΓ
[c
bdπ

d]JL ≈ 0 (7.78)

and thus vanishes modulo S . Writing D′Aa = [D′Aa −DH
a] +DH

a and noticing that

DH
a π

cJL ≈ 0, we obtain

πaK J (DA
bπ
cJL) πcKL ≈ ζβEaJEcL[Kb

J
Mπ

cML +Kb
L
M πcJM ]

≈ ζβEaJEcL[Kb
J
ME

cLnM −Kb
L
ME

cJnM ]

= −β(D − 1)EaJ KbJ = ζβ(D − 1)Kb
a. (7.79)

It follows that

1

(D − 1)2
[Db

a Da
b − (Dc

c)2] ≈ β2[Kb
a Ka

b − (Kc
c )

2] (7.80)

and thus linear combinations of (7.72) and (7.80) can be used in order to produce the

correct factor in front of the term quadratic in the extrinsic curvature.

In analogy to (7.77), consider

DaIJ := πb[I KD
A
bπ
a|K|J ] = πb[I KD

′A
bπ
a|K|J ] − 2πb[I KΓ

[a
bcπ

c]|K|J ]. (7.81)

The second term equals modulo S

2ζEb[IΓ
[a
bcE

c]J ] = (−ζΓcbcE
b[I)EaJ ] (7.82)

and thus is pure trace. Since we intend to cancel K̄tf
aIJ we therefore consider instead

of (7.81) its transverse tracefree projection

D̄tf
aIJ := [Ptf ·D]aIJ , (7.83)

under which (7.82) drops out. The projector Ptf given in (7.14) can be expressed purely

in terms of πaIJ using (7.29) and

Ea[I η̄
J ]
[KEbL] ≈ −ζ

(
πaM [I η̄J ]

[KπbL]M + δabn
[IηJ ]

[KnL]

)
. (7.84)

115



7. The new variables - Hamiltonian picture

We continue using again DH
aπ ≈ 0

D̄tf
aIJ ≈ βPtf

(
πb[I|K|

[
KbKLπ

a|L|J ] +Kb
J ]
Lπ

a
K

L
])

≈ −βζ Ptf

(
Eb[IKb

J ]
LE

aL
)

= −βζ Eb[IK̄J ]L
btf E

a
L. (7.85)

Notice that the last line is indeed tracefree and transverse. We write (7.85) as

D̄tf
aIJ = −βζs

4
F aIJ,bKL K̄tf

bKL, F aIJ,bKL = −4sEb[I η̄J ][LEaK]. (7.86)

The tensor F aIJ,bKL can be seen as bilinear form on transverse tensors of type K̄aIJ

and actually coincides with the tensor given in (4.48). Its inverse (F−1)aIJ,bKL has

already been given in (4.49), [F · F−1]aIJbKL = 4δab η̄
I
[K η̄

J
L]. Using (7.29) and

EaIEbJ ≈ ζ[πaIMπbJ
M − ζ 1

q
qabnInJ ], (7.87)

F−1 can be completely expressed in terms of πaIJ . The quadratic combination of K̄tf

to be removed from (7.76) can now be compactly written as

EbIK̄tf
bJME

aJK̄tf
aI

M = Eb[I η̄N ][MEaJ ]K̄tf
bJMK̄

tf
aIN

= −s
4
F aIN,bJMK̄tf

aINK̄
tf
bJM = − s

β2
(F−1)aIJ,bKLD̄tf

aIJD̄tf
bKL. (7.88)

Variable Dof 1st cl. constraints Dof (count twice!)

Aa
IJ D2(D+1)

2 H 1

(β)
π
b

KL
D2(D+1)

2 Ha D

G IJ D(D+1)
2

S ab
M

D2(D−1)
2 −D

Sum: D3 +D2 Sum: D3 +D + 2

Table 7.1: The new variables: counting of degrees of freedom

We now have all the pieces we need. The appropriate Hamiltonian constraint for

spacetime signature s is displayed in (2.27). We find

√
qH =

ζs

2

(
FabIJπ

aIKπb K
J − sζD̄tf

aIJ (F−1)aIJ,bKL D̄tf
bKL

+
1

(D − 1)2
[Db

aDa
b − (Dc

c)2]

)
− 1

2β2(D − 1)2
[Db

aDa
b − (Dc

c)2].

(7.89)
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This expression simplifies for s = ζ and β = 1 in which case the terms quadratic in

Db
a precisely cancel. This is again similar to the situation in 3 + 1 dimensions. This

special case can also be obtained more directly starting from the Palatini formulation

as we will see in the next chapter 8. Counting of the degrees of freedom is shown in

table 7.1 and of course is in agreement with general relativity.
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8

The new variables - Lagrangian

picture

In the last chapter 7, we developed a higher dimensional connection formulation for

general relativity with only first class constraints and Poisson commuting connections

in any spacetime dimension D+1 ≥ 3 by a judicious extension of the D+1 ADM phase

space supplemented by first class Gauß and simplicity constraints. This approach has

the advantage that it is rather simple, allows for SO(1, D) or SO(D + 1) as structure

group irrespective of the spacetime signature and that in addition it admits a free pa-

rameter that is, as we have seen, similar to but yet rather different from the Barbero

Immirzi parameter in 3+1 dimensions. However, one may ask whether this connection

formulation can be obtained from an action principle, just as the LQG connection for-

mulation can be obtained from the Holst action [145]. Here, we answer this question

in the affirmative.

The appropriate action to choose will be simply the D + 1 Palatini action with BF

type simplicity constraints we already studied in section 5.2. However, following this

route will not allow for the Immirzi like freedom and the structure group will be tied

to the spacetime signature: it is necessarily SO(1, D) for Lorentzian spacetime signa-

ture and SO(D + 1) for Euclidean spacetime signature. This makes this approach less

favourable for quantisation of the Lorentzian theory which requires a compact struc-

ture group. Yet the efforts of this chapter are not in vain as our results confirm the

achievements of the previous chapter via an alternative route. Maybe the most aston-
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8. The new variables - Lagrangian picture

ishing outcome is that we obtain a pure first class theory while it is well known that the

Palatini formulation is plagued by second class constraints, as we have seen in 5.2. The

resolution of the apparent contradiction is that we have to apply an additional step in

order to arrive at the first class formulation which goes by the name gauge unfixing.

In more detail, we do the following: as we have seen in section 5.2, when starting

from the Palatini formulation with BF type simplicity constraints of, say, Lorentzian

general relativity in D + 1 spacetime dimensions with structure group SO(1, D) and

following Dirac’s canonical analysis, we are naturally lead to an SO(1, D) connection

A and a so(1, D) valued vector density π which is canonically conjugate to the con-

nection. However, in addition to the SO(1, D) Gauß constraint, the D-dimensional

spatial diffeomorphism constraint and the Hamiltonian constraint, we had to introduce

an additional primary constraint S which requires the momentum π to derive from

(the pull back to the leaves of the foliation of) a co-(D + 1)-bein, called (BF type)

simplicity constraint (precisely because it is the temporal spatial part of the simplicity

constraint of a higher dimensional Plebański formulation, cf. section 5.1 and [169]).

The stability of the constraint S with respect to the canonical Hamiltonian enforces a

secondary constraint D and (S ,D) form a second class pair. The situation is of course

completely the same as in D = 3 dimensions. In D = 3 dimensions one can now either

consider this SO(1, 3) connection formulation and try to quantise the corresponding

Dirac bracket [194] with non Dirac bracket commuting connections or one imposes the

time gauge and reduces the (Holst modified) theory to a Dirac bracket commuting

SU(2) (or SO(3)) connection formulation. In higher dimensions also both possibilities

exist, except that imposing the time gauge does not lead to a SO(D) connection for-

mulation but rather the extended ADM formulation of section 3.2.4, as has already

been shown in [166]. Thus the second strategy does not lead to the desired connection

formulation with compact SO(D) precisely due to the dimensional mismatch between

D and D(D − 1)/2. Thus, in order to have a connection formulation only the first

possibility remains but then the complication with the Dirac bracket arises. It is at

this point where gauge unfixing comes into play: by a systematic, allowed modifica-

tion of the Hamiltonian constraint which does not alter its first class character, the

simplicity constraints S become Poisson commuting with all but the D constraints.

Remarkably, this modification of the Hamiltonian constraint, which makes it simplicity
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8.1 Review of gauge unfixing

invariant, involves a correction term which is precisely the one found in the previous

chapter which makes sure that the Hamiltonian constraint derived from the Palatini

Lagrangian coincides with the ADM Hamiltonian constraint when Gauß and simplicity

constraints are satisfied. One can now consider the D constraints as gauge fixing con-

ditions for the S constraints and impose only the first class constraints. This way one

can map the second class constraint system to an equivalent first class constraint sys-

tem and replace the complicated Dirac bracket by the simple ordinary Poisson bracket

with Poisson commuting connections. In the end, this formulation is identical to the

one of the previous chapter for matching spacetime and internal signature as well as

unit Barbero Immirzi like parameter.

The chapter is is organised as follows: the canonical analysis of the higher dimensional

Palatini theory was already considered in sections 4.2 and 5.2 and the corresponding

Hamiltonian formulations have been found to be plagued by second class constraints.

Therefore, here we will start by reviewing the procedure of gauge unfixing in section

8.1 and then apply it to the outcome of the canonical analysis of section 5.2. The

result is an SO(1, D) or SO(D+ 1) connection formulation for Lorentzian or Euclidean

general relativity respectively with first class constraints only and a connection variable

which is Poisson self-commuting, the price to pay is one extra term in the Hamiltonian

constraint.

8.1 Review of gauge unfixing

The name “gauge unfixing” suggests that this is a procedure in some sense inverse to

“gauge fixing”. To see to what extent this is indeed the case it is useful to recall some

facts about gauge fixing first. After that we focus on the gauge unfixing case. This

review section can be skipped by readers familiar with gauge (un)fixing although we

add a few extra twists to it. We have combined material from several sources: to the

best of our knowledge, the pioneering paper on gauge unfixing of second class theories

is [199] and the general theory was developed in [201, 202]. Parts of this theory were

independently rediscovered from the point of view of a first class theory in [161, 204],

see also [205–207].

121



8. The new variables - Lagrangian picture

8.1.1 Gauge fixing

Recall that gauge fixing of a first class system with first class constraints SI (where I

takes values in some index set) on a phase spaceM consists in imposing an equal number

of gauge fixing conditions DI such that the matrix F with entries FIJ := {SI ,DJ} is

regular. The gauge fixing conditions, modulo the problem of Gribov copies, select a

unique point on each gauge orbit of the SI . Here the gauge orbit of a point m ∈M is

the set1

[m] := {αβ(m), βI ∈ R}, αβ(f) := exp(βI{SI , .}) · f , (8.1)

where αβ(f) is the gauge flow with parameter β applied to the (smooth) function f

on phase space. To qualify as an admissible gauge fixing condition, at least on the

constraint surface

M := {m ∈M ; SI(m) = 0 ∀ I}, (8.2)

it must be possible to reach the selected section

σD(M) := {m ∈M ; DI(m) = 0 ∀ I} (8.3)

from any other section of M .

At least locally, the constraint surface acquires the structure of a fibre bundle where

the fibres are given by the gauge orbits (considered as subsets of M) and the base space

is the set of equivalence classes

M̂ := {[m]; m ∈M} (8.4)

called the reduced phase space. Under the above conditions there is a bijection between

σD(M) and M̂ : given m ∈ σD(M) one obtains [m] ∈ M̂ via (8.1) and given [m] (consid-

ered as a subset of M) one computes the unique point m′ ∈ [m] such that DI(m
′) = 0

for all I, that is m′ = [m]∩σD(M). However, while the construction of M̂ is canonical,

i.e. does not use any structure other than SI which canonically follow from the Dirac

1In case that the first class constraints close with non trivial structure functions only, it maybe

necessary to apply several of the Poisson automorphisms αβ with different β because the αβ do not

form a group under concatenation in this case.
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algorithm applied to the singular Lagrangian in question, the cross section σD(M) uses

the additional input of D which, except for the regularity condition on F , is rather

arbitrary.

The observables of the first class system are the gauge invariant functions evaluated on

the constraint surface. These therefore only depend on the equivalence classes [m]. It

appears that the construction of such gauge invariant functions is generically impossi-

ble for sufficiently complicated constraints SI . This turns out to be correct if one is

interested in these observables as functions on M . However, given a set of gauge fixing

conditions DI , not only can one write an explicit formula for these observables but one

can also compute their Poisson algebra. This also then displays the relation between

the spaces σD(M) and M in explicit form. Given a function f on M one can define a

weak Dirac observable by the formula

O(D)(f) := [αβ(f)]αβ(D)=0, (8.5)

where the superscript (D) is to make it explicit that this formula is not canonical but

depends on the chosen gauge fixing. This formula has to be understood in the following

way: first one computes the gauge flow of f at m ∈ M with real valued (phase space

independent) constants βI , that is

αβ(f) := f +

∞∑
n=1

1

n!
βI1 ..βIn {SI1 , {.., {SIn , f}..}} (8.6)

and then one solves the condition αβ(DI) = 0 for all I for βI = γI(m) and inserts the

corresponding phase space dependent function into (8.6). The value γ(m) is thus the

parameter needed in order to map m to that point on its orbit [m] at which the DI

vanish. It is not difficult to check that indeed {SI , Of} ≈ 0, and that O(D) preserves

the pointwise addition and multiplication of functions

O(D)(f + g) = O(D)(f) +O(D)(g), O(D)(fg) = O(D)(f) O(D)(g). (8.7)
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Moreover, the following remarkable formula holds1

{O(D)(f), O(D)(g)} ≈ {O(D)(f), O(D)(g)}∗S ,D ≈ O(D)({f, g}∗S ,D), (8.8)

where {., .}∗S ,D is the Dirac bracket of the second class system of constraints SI ,DI .

Since a sufficient number of the O(D)(f) serves as coordinates of M̂ we see that the

Poisson bracket on the reduced phase space M̂ is given by the Dirac bracket and O(D)

is a Dirac bracket homomorphism from the algebra of smooth functions on M to the

one on M̂ .

It should be stressed, however, that this algebra of observables is not canonical, it

depends on the choice of admissible gauge fixing D which is an extra input necessary

for their very construction. Nevertheless, once we have made such a choice, we see that

a first class system S together with a gauge fixing condition D is completely equivalent

to the second class system S ,D . Namely, for a second class system the reduced phase

space consists simply in the constraint manifold

M := {m ∈M ; SI(m) = DI(m) = 0 ∀ I} ≡ σD(M), (8.9)

which precisely coincides with the gauge section (8.3), and the symplectic structure on

M is given by the Dirac bracket

{f, g}∗S ,D = {f, g} − {f,Cα} [F−1]αβ {Cβ, g}, (8.10)

where {Cα} = {SI ,DI} and Fαβ = {Cα,Cβ} is non degenerate by construction. When

restricting O(D) to M which is in bijection with M̂ as we have seen, it becomes a Dirac

bracket isomorphism.

8.1.2 Gauge unfixing

We now consider a second class system with constraints SI ,DI with the special struc-

ture that SI is a first class subalgebra of constraints, that is

{SI ,SJ} = fIJ
K SK (8.11)

1The first identity holds because the S constraints form a subalgebra. The Dirac matrix

Fαβ = {Cα,Cβ}, {Cα} = {SI ,DI} on the constraint surface therefore has the symbolic structure

F =

(
0 B

−B A

)
and its inverse is given by F−1 =

(
B−1AB−1 −B−1

B−1 0

)
so that the Dirac

bracket {f, g}∗ contains no terms ∝ {f,D}{g,D}.
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for certain structure functions fIJ
K and FIJ := {SI ,DJ} is supposed to be non

degenerate on the constraint surface

M := {m ∈M ; SI(m) = DI(m) = 0 ∀ I}, (8.12)

which is equipped with the Dirac bracket (8.10). In [202] we find conditions under

which linear combinations of a given set of second class constraints can be subdivided

into sets SI and DI subject to (8.11). Here we will simply assume that this has been

achieved.

We have seen in the previous section that a first class system SI together with ad-

ditional gauge fixing conditions DI is equivalent with the second class system SI ,DI .

The idea of gauge unfixing is now simply to interpret the given second class system of

constraints SI ,DI as just a first class system SI to which the particular gauge fixing

conditions DI have been added.

This point of view has the following advantage towards quantisation: for a first class

system of constraints we have two possible quantisation strategies, namely A. Operator

Constraint Quantisation and B. Reduced Phase Space Quantisation. The advantage of

option A. is that one can work with the simple Poisson bracket algebra on the kine-

matical phase space M for which Hilbert space representations are typically easy to

find and the task is to find those which support the SI as densely defined, closable and

non anomalous operators. The disadvantage is that one has to equip the joint kernel

of the constraints with a new (physical) inner product which carries a representation

of the observables of the theory and while there are general tools available such as

group averaging, it is generically not possible to determine the physical Hilbert space

in closed form. The disadvantage of option B. is that the Dirac bracket algebra on the

reduced phase space is typically so complicated that no Hilbert space representations

can be found. On the other hand, if one manages to do so, then one has direct access

to the physical Hilbert space and the algebra of observables. Now in case that option

B. is inhibited due to the complexity of the Dirac bracket algebra which is typically the

case for second class systems, option A. appears to be the only possible approach to

quantisation. As we will see, one can do even better than that, but let us assume for

the moment that we take a second class system SI ,DI with complicated Dirac bracket
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algebra and therefore drop DI and just perform an operator constraint quantisation of

SI .

At first sight, this strategy seems to be false for at least two reasons:

1. From the point of view of the first class system, the gauge fixing conditions DI

are just one of an infinite number of possible choices, the first class system does

not know about the DI and therefore one can drop the DI . However, we are not

given a first class system, we are given a second class system and from the point

of view of the second class system, the DI are canonical, they follow canonically

from Dirac’s stabiliser algorithm applied to the given singular Lagrangian. It

seems therefore to be wrong to forget about the special role of the DI within the

first class system as we would drop information that is forced on us by Dirac’s

algorithm. However, imposing the DI as operators as well in the quantum theory

is not possible, that is, the joint kernel of the DI ,SI is just the zero vector.

2. The canonical Hamiltonian H of the second class system as derived via Dirac’s

stabiliser algorithm is typically not gauge invariant with respect to the SI which

would not be the case for a true first class system with just the constraints SI . In

fact, in many applications the second class structure SI ,DI arises from primary

constraints SI and a canonical Hamiltonian of the form

H ′ = H0 + λI SI , (8.13)

with nontrivial H0 independent of the SI (that is [H0]S =0 6= 0) and the DI arise

as secondary constraints from the stability requirement

0
!

= {H ′,SI} ≈ {H0,SI} =: DI , (8.14)

where {SI ,SJ} ∝ SK ≈ 0 was used. The stability of the DI fixes the Lagrange

multipliers λI

0
!

= {H ′,DI} = {H0,SI}+ λJ{SJ ,DI} ⇒ λI = −[F−1]JI {H0,SJ} =: λI0,(8.15)

so that the stabilised, first class Hamiltonian (it weakly commutes with all the

constraints SI ,DI) reads

H = H0 + λI0 SI . (8.16)

126



8.1 Review of gauge unfixing

It is not gauge invariant with respect to just the constraints SI since {H,SI} ≈
DI so that the constraints DI appear again as a consistency condition.

We now explain how both obstacles can be overcome. We deal first with the second

issue: we simply make the canonical Hamiltonian H gauge invariant with respect to

the SI by using the map O(D) displayed in (8.5) that is, we replace H by

H̃ := O(D)(H). (8.17)

To see that this is an allowed Hamiltonian within the second class system we need to

compute H̃ in some detail. As one can show [204, 207] one has explicitly

O(D)(H) = H +

∞∑
n=1

1

n!

n∏
k=1

[−DIk ] {S ′I1 , ..{S ′In , H}..}, (8.18)

where S ′I = [F−1]IJSJ so that {S ′I ,DJ} = δIJ modulo S . We have

H̃ −H = −DI{S ′I , H}+ O(D2) = −DI

(
[F−1]IJ{SJ , H}+ {F IJ , H}SJ

)
+ O(D2)

= −DI

(
[F−1]IJ [DJ +NK

J SK ] + {F IJ , H}SJ

)
+ O(D2) = O(D2,DS )

(8.19)

for some NK
J . Therefore H̃ and H differ by terms at least quadratic in the constraints

and thus do not spoil the first class structure of H. Therefore H̃ is an admissible

Hamiltonian for the second class system which is simultaneously weakly invariant with

respect to the SI . This is also the reason why one did not choose H̃ ′ = O(G )(H) for

some gauge fixing conditions GI 6= DI because by a similar calculation as in (8.19) one

would now compute H̃ ′ −H = O(DG ,S G ,G 2) but GI is no constraint and thus H̃ ′ is

not an admissible Hamiltonian for the second class system. Notice also that H and H̃

generate the same equations of motion on M .

We now come to the second issue. The question is: how can it be that the first

class constrained Hamiltonian system (H̃,SI) be equivalent to the second class system

(H̃,SI ,DI)? The first class system does not know about the DI . It is true that if we

choose the special gauge fixing conditions GI := DI = 0 for the first class system, then

the reduced phase spaces of the two systems are indeed isomorphic as we have shown

above. However, the choice of GI is arbitrary from the point of view of the first class

system as long as the matrix with entries {SI ,GJ} is non degenerate and therefore it
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appears that one has to still somehow feed the additional information about the special

role of the gauge fixing condition GI = DI into the first class system. However, this is

not the case: the point is simply that an arbitrary gauge condition GI = 0 is related by

a gauge transformation generated by the SI to the gauge condition DI = 0. Therefore

the observables of the form O(G )(f) are in fact linear combinations, with phase space

independent coefficients, of the observables of the form O(D)(f). This follows simply

from the fact that for gauge invariant functions F (with respect to the SI) we have

F ≈ O(D)(F ). Applied to F = O(G )(f) it follows

O(G )(f) ≈ O(D)
(
O(G )(f)

)
. (8.20)

Hence any observable of the form O(G )(f) can be written as O(D)(f ′) for some other

function f ′ = O(G )(f). Since the roles of GI ,DI can be interchanged we see that the

range of the maps O(D), O(G ) is the same. Since the algebra of the O(G )(f) and of the

O(D)(f) can be computed using the original Poisson bracket on the unreduced phase

space we see that the algebra of the O(D)(f) and O(G )(f) are isomorphic, i.e. it does

not matter whether we display one and the same observable F in the form F = O(D)(f)

or in the form F = O(G )(f ′).

What is different are of course the maps O(D), O(G ) which provide different gauge

invariant extensions of a given function f . Only the map O(D) yields an isomorphism

with the Dirac bracket algebra of the second class system. However, this does not mean

that one cannot use O(G ) to construct gauge invariant observables. It just means that

the identification between the Dirac bracket algebra of functions on M with the Poisson

bracket algebra on M̂ is rather complicated to write down because the correct gauge

invariant function is O(D)(f) ≈ O(G )(O(D)(f)) and not just O(G )(f).

Remarks:

1.

This last observation now is also the key to a reduced phase space quantisation ap-

proach to second class systems (H,SI ,DI): after having replaced it by an equivalent

first class system (H̃,SI) one can now make use of the local Abelianisation theorem

(see e.g. [51] and references therein) and replace the constraints SI by an equivalent,

strongly Abelian set S ′
I = πI + hI(φ

I ; qa, pa) at least locally in phase space where the
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system of first class constraints SI has been solved for some of the momenta πI in terms

of its conjugate variables φI and the remaining canonical pairs (qa, pa). Using the nat-

ural gauge fixing condition GI = φI the algebra of the Qa := O(G )(qa), Pa := O(G )(pa)

coincides with the algebra of the qa, pa because the corresponding Dirac bracket does

not affect the subalgebra of functions of qa, pa. Since the algebra of the Qa, Pa is simple

it can be quantised. This is surprising because we could have chosen to solve the con-

straints SI = DI = 0 for S ′
I = πI−ΠI(q

a, pa), D ′I = φI−ΦI(qa, pa) from the outset so

that the reduced phase space is parametrised by the qa, pa but the corresponding Dirac

bracket {pa, qb}∗ 6= δba is not simple. The reason is of course that the functions Qa, Pa

are genuinely different from qa, pa, in fact they are nontrivial functions of φI , qa, pa built

in such a way that they have a simple Dirac bracket with respect to S ,D . Moreover

{Qa, Pb} = {Qa, Pb}∗S ,D due to gauge invariance. This holds for any two pairs of gauge

invariant functions, in particular for the Hamiltonian H̃.

2.

For generally covariant systems H0 is not a true Hamiltonian but rather a linear

combination of different constraints H0 = µAC ′A, typically a closed subalgebra of

the form {C ′A,C ′B} = fAB
C C ′C such that {C ′A,SI} = fAI

JSJ for A 6= 0 and

{C ′0,SI} = DI thus {H0,SI} ≈ µ0DI . In our applications it will turn out that

{C ′A,DI} = f̃AI
KDK , A 6= 0 and {C ′0,DI} is not weakly zero. The Dirac stabiliser

algorithm then replaces C ′0 by C0 = C ′0 − F JI{C ′0,DJ}SI so that {C0,DI} = 0 while

C ′A = CA for A 6= 0 and H ′ is replaced by H = µACA. The CA now close among them-

selves modulo SI . Application of O(D) replaces H by H̃ = µAC̃A, C̃A = O(D)(CA).

Now modulo SI constraints

{C̃A, C̃B} ≈ O(D)({CA,CB}∗S ,D) (8.21)

and

{CA,CB}∗S ,D ∝ {CA,CB}, {CA,SI}{CB,SJ}, {CA,SI}{CB,DJ}, {CA,DI}{CB,DJ},

∝ CA,SI ,DI . (8.22)

Since O(D)(DI) ≈ 0 it follows that the C̃A and the SI form a first class algebra.

3.

Whether gauge unfixing is feasible depends largely on the question whether the series

that determines H̃ terminates. Fortunately, in our application this will be the case.
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4.

The formula O(G )(f) ≈ O(D)(O(G )(f)) does not display the fact that G can be reached

from D via a gauge transformation. However, using the fact that O(D)(DI) ≈ 0 and

that O(G )(f) is a power series in G we also have

O(G )(f) ≈ O(D)
([

exp(βI{(F̃−1)IJSJ , .}) · f ]β=−(G−D)

])
, (8.23)

with F̃IJ = {S,GJ}. Notice that the argument of O(D) on the right hand side of (8.23)

is not gauge invariant and that it is the gauge transform of f with respect to the weakly

Abelian constraints S̃I = [F̃−1]IJSJ from the gauge G = 0 to the gauge D = 0 as

desired.

5.

An important final comment concerns the dynamics of the theory (we consider for

simplicity only one pair of second class constraints but the same discussion applies,

with more notational load, to the general case): suppose first that H ′ = H0 + λISI ,

that is H0 is not constrained to vanish. From the point of view of the second class

system the Hamiltonian that drives the dynamics of the system is H or equivalently

H̃ via the Dirac bracket evaluated on the constraint surface of the second class system

M , that is

ḟ|S =D=0 = [{H̃, f}∗S ,D ]S =D=0 = {H|S =D=0, f|S =D=0}∗S ,D . (8.24)

On the other hand, from the point of view of the first class system, the Hamiltonian is H̃

which acts on gauge (S -) invariant functions which we write in the form F = O(D)(f)

on the constraint surface of the first class system M , that is

Ḟ|S =0 = {H̃, F}|S =0 = {O(D)(H), O(D)(f)}|S =0 = O(D)({H, f}∗S ,D)|S =0. (8.25)

Comparing (8.24) and (8.25) we see that the time evolutions are isomorphic when

mapping f|S =D=0 to O(D)(f)|S =0.

Now we consider the case that H0 = C itself is constrained to vanish. Then also

the Hamiltonian H̃ is constrained to vanish from the point of view of the second class

system since is a linear combination of the three constraints C ,S ,D . Now the following

subtlety arises: from the point of view of the first class system, the Hamiltonian H̃ is not

constrained to vanish because the first class system is only subject to the constraints

C ,S . But this would clearly be wrong: the first class system would only have the
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constraint S and this would lead to a different dimensionality of the reduced phase

space than in the second class system. The correct point of view is the following: the

second class system is equivalently described by the three types of constraints H̃,S ,D

of which H̃ constitutes a first class set of constraints while (S ,D) constitute a second

class system of constraints. From the point of view of the first class system we just

forget about the D constraints and instead consider the first class constraint system

H̃,S . The counting of physical number of degrees of freedom is now correct again

because both first class constraints H̃,S count twice in the first class system while

in the second class system H̃,S ,D only H̃ counts twice and S ,D only count once.

This also makes sure that there is no true Hamiltonian in both schemes. To compare

the observables from both points of view, let S1 := S , S2 := H̃, D1 := D , D2 := G

where the gauge fixing condition G is chosen in such a way that the matrix with entries

FIJ = {SI ,DJ} is non singular. It is easy to see that the second class system (SI ,DI)

is of the type to which gauge unfixing applies and the discussion proceeds from here

just as in the general case.

8.2 Application of gauge unfixing to gravity

We now want to apply the ideas of gauge unfixing to higher dimensional general rela-

tivity and start with the Hamiltonian system derived in section 5.2. The second class

constraints are given by S ab
M
≈ Dab

M
≈ 0. As we pointed out in section 5.2.2, the

constraints are not independent and the Dirac matrix

{S ab
M

[cMab ],D
cd
N

[dNcd]} =:

∫
σ
dDx cMab F

ab
M

cd
N
dNcd (8.26)

is not invertible. We will neglect this fact for the moment and will see shortly that we

can deal with it using the independent sets of constraints of section 5.2.2. We remark

that gauge unfixing has been applied previously to 2+1-dimensional linearised massive

gravity [208].

The general discussion of the previous section suggests that the simplicity invariant

extension of the Hamiltonian constraint involves an infinite series which is beyond any

analytical control already at the classical level. Luckily, the Dirac matrix depends only

on πaIJ and therefore commutes with the BF-simplicity constraint. Hence repeated
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commutators acting on functions that depend polynomially on A vanish beyond the

order of the polynomial. We calculate explicitly

H̃ = H − 1

2
Dab
M

(
F−1

)
M
ab

N
cd Dcd

N
, (8.27)

where terms up to the second order contributed, since H is quadratic in the con-

nection. The effect of the extra term in the Hamiltonian can be seen when solving

the simplicity constraint and reducing the theory to the ADM variables. When doing

the calculation (4.65), we have to use D ∼ (FK̄tf)aIJ = 0 to eliminate a term propor-

tional to K̄tf
aIJF

aIJ,bKLK̄tf
bKL. This is not necessary any more because the additional

−1/2DF−1D precisely counters this term.

The Gauß and diffeomorphism constraints only obtain extra terms proportional to

the BF-simplicity constraints which can be neglected in the first class theory. We can

use the projector identities to calculate the new constraint algebra{
G̃ , G̃

}
= G̃ + S , (8.28){

G̃ , H̃ a
}

= S , (8.29){
G̃ , H̃

}
= S , (8.30){

H̃a, H̃b

}
= H̃a + G̃ + S , (8.31){

H̃a, H̃
}

= H̃ + G̃ + S , (8.32){
G̃ ,S

}
= S , (8.33){

H̃a,S
}

= S , (8.34){
H̃ ,S

}
= 0. (8.35)

By construction it closes without the D constraint and displays a first class structure.

Concerning gauge invariant phase space functions, it is clear that a vanishing com-

mutator with the BF-simplicity constraint does not constrain the dependence on πaIJ .

Additionally, these functions may only depend on the simplicity invariant extension of

AaIJ which is given explicitly by

ÃaIJ = AaIJ + Dcd
N

(
F−1

)
N
cd,
M
ab εMIJKLπ

bKL, (8.36)
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since AaIJ changes under simplicity gauge transformations as

δSAaIJ :=
{
AaIJ ,S

bc
M

[cMbc ]
}

= cMab εIJKLMπ
bKL. (8.37)

We still have to give a sense to
(
F−1

)
N
cd,
M
ab . As we have shown in section 5.2.2, it is

enough to consider only a subspace of Lagrange multipliers for the BF-simplicity and

Dab
M

constraints parametrised by the projected test functions

dMab = d̄(a|IJπb)KLε
IJKLM . (8.38)

On this subspace, F aIJ,bKL was shown to be invertible. We therefore make the ansatz(
F−1

)
N
cd,
M
ab = αεEFGHNπ(c|EF

(
F−1

)
d)GH,(a|AB πb)CDε

ABCDM (8.39)

for some constant α, where(
F−1

)
aIJ,bKL

:=
−s

(D − 1)
πaACπbBD

(
πcECπcE

D − sηCD
) (
ηABηK[IηJ ]L − 2ηA[LηK][Jη

B
I]

)
(8.40)

only depends on πaIJ and reduces to the correct expression on the simplicity constraint

surface when contracted in the above equation. Insertion into Ã yields

α =
1

16(D − 1)2((D − 3)!)2
(8.41)

when demanding that Ã is independent of D , i.e. that the K̄tf
aIJ term is cancelled.

Since all simplicity invariant phase space functions are arbitrary functions of ÃaIJ and

πaIJ , we have shown that the proposed expression for
(
F−1

)
N
cd,
M
ab yields the desired

results. This can of course also be obtained by direct inversion of the projected version

of the matrix F . This way we obtain a connection formulation for gravity in D+ 1 > 3

without second class constraints. Notice however that the observables (with respect to

the simplicity constraint) (Ã, π) have complicated Poisson brackets, only the brackets

of the canonical pair (A, π) are simple, therefore suggesting a Dirac quantisation ap-

proach (quantisation at the kinematical level).

Let us summarise and compare with the connection formulation in D + 1 = 4:

1.

On the surface where the simplicity constraint vanishes, πaIJ = 2n[IEa|J ], we can de-

scribe the situation more explicitly. From the above formula it is obvious that both
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nIδSAaIJ = 0 and EaIδSAaIJ = 0, since we always may choose cM[ab] = 0. Thus,

when decomposing the connection AaIJ = ΓaIJ + K̄aIJ + 2n[IKa|J ] into hybrid spin

connection and rotational (i.e. transversal) and boost (i.e longitudinal) components of

hybrid contorsion KaIJ , we find that the simplicity constraint generates on-shell gauge

transformations of the trace free part of the rotational (transversal) components of the

SO(1, D) (or SO(D+ 1) in the Hamiltonian framework of the previous chapter) hybrid

contorsion K̄tf
aIJ . As we have seen in equation (4.60), the remaining trace component

of the rotational part K̄tr
J is proportional to the boost part of the Gauß constraint

and vanishes if nIG
IJ = 0 holds. In total, we find that observables in this connection

theory may not depend on the value of the rotational components of the SO(1, D) (or

SO(D + 1)) hybrid contorsion at all. The whole physical information contained in the

connection is encoded in the boost components of the contorsion, which becomes con-

jugate to the vielbein after solving the simplicity constraint. Therefore, when removing

the boost gauge freedom by choosing the time gauge, there is no physical information

left in the SO(D) connection.

2.

In D + 1 = 4, this formulation therefore differs from the formulation in terms of

real Ashtekar variables considered in [146], which remains a connection formulation

also after imposing the time gauge. This is achieved by mixing boost and rotational

components of the connection using the total antisymmetric tensor, i.e. (γ)Aajk =

Aajk − γε0ijkAa0i, to “rotate” physical degrees of freedom into the rotational compo-

nents of the connection, and γ now is the Barbero Immirzi parameter. Thus, this

procedure exploits a peculiarity of dimension D + 1 = 4, and therefore is not possible

in any other dimension. As we have seen, it is possible to arrive at the new connection

formulation also by enlarging the ADM phase space. Following this route allowed for

the introduction of a free parameter β similar to the Barbero-Immirzi parameter, but

the transformation made to obtain the connection is very different in nature since there

is no mixing of boost and rotational parts. This will become even clearer in section

9.3, when we will restrict to D+1 = 4 and then introduce two free parameters, the one

being β of chapter 7 and the other one corresponding to the Barbero Immirzi parameter

γ (cf. chapter 6).
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Extensions and related material

9.1 Linear simplicity constraint

In [6], an SO(1, D) or SO(D+1) connection formulation was introduced which, instead

of the quadratic simplicity constraint we considered so far, involves a linear simplicity

constraint similar to the one used in the new spin foam models [186–191]. While in

these approaches, discrete versions of the constraints appear, continuum versions of

the linear simplicity constraints already appeared in [209]. However, their treatment

is rather different than the one displayed here, having a focus on the Lagrangian for-

mulation and constructing the linear constraint using a three form field. In our case

instead, an additional unit length scalar field N I is introduced, which upon solving

the linear simplicity constraint will coincide with the hybrid vielbein normal nI [E].

Moreover, as we will see later in section 15.1, the way to couple the Rarita Schwinger

field (“gravitino”) of supergravity theories as shown in [6] uses these normal fields N I

(and therefore the use of the linear simplicity constraints) in an intricate way, and so

far it is unknown if this can also be achieved with the quadratic constraint. In the

following, we will shortly outline the construction of this first class constrained system

in any dimensions, which upon symplectic reduction again is equivalent to the ADM

formulation. The quantisation of the additional field N I [6] and the implementation of

both, the linear and quadratic simplicity constraints at the quantum level [3, 5], will

be discussed in section 11.2. Our exposition in this section will follow [6].
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9.1.1 Introducing linear simplicity constraints

We want to remind the reader of the solution1 to the quadratic simplicity constraint

S ab
M = 0 ⇔

(β)
π aIJ = 2

βn
[IEa|J ], where nI [E] the unique (up to sign) unit normal to

the hybrid vielbein EaI . While the quadratic simplicity constraint is defined solely in

terms of
(β)
π aIJ , the linear constraint usually demands that there is a vector field N I

such that

S a
IM

:= εIJKLM NJ (β)
π aKL (9.1)

vanishes. This equation defines the linear constraint we want to consider in the follow-

ing. We do not want to fix the vector field N I by hand, so we have to postulate it as

new phase space degrees of freedom together with its conjugate momentum PJ . For

any dimension D ≥ 3, this constraint demands that
(β)
π aIJ is a simple bivector with one

of its factors being N I ,
(β)
π aIJ = 2

βN
[IEa|J ], where we can choose w.l.o.g. N IEaI = 0.

The hybrid vielbein, however, which now encodes the physical information in
(β)
π aIJ ,

already fixes the direction of N I (up to sign). To get rid of the unphysical information

about N ’s length, we add the normalisation constraints

N := N INI − ζ, (9.2)

and reobtain the solution of the quadratic constraints. Of course, these constraints up

to now only reduce
(β)
π → E and N → n(E). To account for the momenta PJ being

non-physical, we could introduce additional constraints. However, if we manage to

implement S , N being first class, we expect that the gauge transformations of these

constraints get rid of the additional degrees of freedom in PJ .

Apart from the change from quadratic to linear simplicity and normalisation con-

straints, we want to construct the theory similar to what we did in chapter 7. The

phase space is coordinatised by {AaIJ ,
(β)
π bKL, N I , PJ} with the non-vanishing Poisson

brackets (7.58) and

{
N I(x), PJ(y)

}
= δIJδ

(D)(x− y). (9.3)

1For D = 3, the quadratic constraint allows for an additional topological solution sector, which we

excluded by hand. The linear constraint will not allow for these solutions.
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9.1 Linear simplicity constraint

This phase space is subject to the already introduced linear simplicity and normalisa-

tion constraints, but of course, to reproduce general relativity, we have to add more

constraints. In order that the constraint algebra closes, we change the definition of G IJ

and Ha such that they generate SO(D + 1) or SO(1, D) gauge transformations and

spatial diffeomorphisms respectively on all phase space variables, in particular as well

on N I , PJ ,

G IJ = DA
a

(β)
π aIJ + 2P [INJ ], (9.4)

Ha =
1

2

(β)
π bIJ∂aAbIJ −

1

2
∂b

(
(β)
π bIJAaIJ

)
+ PI∂aN

I . (9.5)

This already makes sure that the algebra of all the constraints we introduced so far is

closing. For the Hamiltonian constraint, we will work with the original version which is

obtained by simply replacing the ADM variables in the ADM Hamiltonian constraint

by (7.60, 7.61),

H = − 1

4
√
q

[
(β)
π [a|IJ (β)

π b]KL (A− Γ[π])bIJ (A− Γ[π])aKL

]
− s

2

√
qR[π]. (9.6)

In particular, we cannot add to the Hamiltonian constraint the terms one would expect

for gravity coupled the space time scalar fields N I , since {H ,S a
IM
} and {H ,N }

would not vanish weakly, spoiling the constraint algebra.

Like in the case of the quadratic constraint, to prove that this constrained system

is indeed equivalent to the ADM formulation, we first will define (weak) Dirac observ-

ables with respect to Gauß, simplicity and normalisation constraints corresponding to

qab, P
cd, show that their Poisson brackets at least weakly reproduce the ADM canonical

brackets and furthermore show that the constraint algebra is closing and, in particular,

the Poisson brackets between H and Ha weakly reduces to (2.31). Since we already

gave calculational details when dealing with the quadratic constraints in chapter 7 and

the analysis in this case is analogous, we will be rather brief here.

The map to the ADM phase space is of course again given by (7.60, 7.61). qab, P
cd are

obviously still Gauß invariant and trivially Poisson commute with the normalisation

constraint, and since we still have {P,S } ∝ S , both are also (weak) simplicity ob-

servables. That the ADM brackets {q, q}, {q, P} are reproduced follows directly from
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9. Extensions and related material

the treatment in chapter 7. To conclude that {P, P} still is weakly zero needs some

more work, since we changed both, the simplicity and the Gauß constraint which were

needed in this calculation. However, since the solutions to the quadratic simplicity con-

straint and the linear simplicity and normalisation constraints coincide, we conclude

that whatever terms weakly vanished due to S ab
M = 0 will now also weakly vanish

when S a
IM

= 0 = N . Furthermore, we did not need the whole Gauß constraint,

but rather Gab :=
(β)
π cIJqc[a(A − Γ[π])b]IJ , which simplicity on shell already vanishes

modulo the rotational components Ḡ IJ of the Gauß constraints. The rotational com-

ponents of the Gauß constraint are, however, still unchanged, since the additional term

2P [INJ ] ≈ 2P [InJ ][E] weakly is pure “boost” modulo the linear simplicity and nor-

malisation constraints. Therefore, the ADM canonical brackets are weakly reproduced

like in the case of the quadratic constraint. We are left with studying the constraint

algebra, or more precisely, the Hamiltonian constraint, since we have already seen that

all the other constraints weakly Poisson commute. Since H is constructed using the

maps to the ADM phase space, we know that it weakly Poisson commutes with G IJ ,

S a
IM

, N , and of course also with the generator of spatial diffeomorphisms Ha. Left

with the bracket between two Hamiltonian constraint, we invoke the previous result

that the ADM brackets are reproduced to conclude that

{H [N ],H [M ]} ≈ −sH ′
a [qab (N∂bM −M∂bN)], (9.7)

where H ′
a = −2qacDbP

bc now denotes the ADM diffeomorphism constraint. It is

straightforward to show that Ha and H ′
a are weakly equivalent and therefore, not only

does the constraint algebra close, but moreover the hypersurface deformation algebra

is weakly reproduced. Concerning the counting of the number of degrees of freedom,

note that the constraints S a
IM

again are not irreducible, but we know that they reduce
(β)
π aIJ → EaI and N I → ||N ||, therefore removing D(D+1)(D−2)

2 + D = D2(D−1)
2 de-

grees of freedom (without modding out by their gauge orbits). We obtain the familiar

(D + 1)(D − 2) phase space degrees of freedom of general relativity.

Finally, we want to remark that related formulations of general relativity with (timelike)

normal as independent dynamical field, already exist in the literature [146, 194, 196].

However, while our formulation features both the simplicity constraint and the timelike

normal vector field at the same time, in the other approaches this field only appears in
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9.2 SO(p,D + q) formulation

Variable Dof 1st cl. constraints Dof (count twice!)

AaIJ
D2(D+1)

2 H 1
(β)
π bKL D2(D+1)

2 Ha D

N I D + 1 G IJ D(D+1)
2

PJ D + 1 S a
IM

D2(D−1)
2

N 1

Sum: D3 +D2 + 2D + 2 Sum: D3 + 3D + 4

Table 9.1: The new variables with linear simplicity constraint: counting of degrees of

freedom

the process of solving the simplicity constraint while keeping the whole Gauß constraint,

i.e. not choosing time gauge. In other words, the time normal is an integral part of the

simplicity constraint in our approach, not a concept emerging after its solution.

9.1.2 Solution of the linear simplicity constraints

Symplectic reduction with respect to the linear simplicity and normalisation constraint

of course is analogous to the treatment in section 4.2.4. Using the solution
(β)
π aIJ =

2
βn

[IEa|J ] and the ansatz AaIJ = ΓaIJ [π] + βKaIJ , we find

1

2

(β)
π aIJ ȦaIJ + PIṄ

I ≈ −ζK̄aJ Ė
aJ − K̄aIJE

aJ ṅI + P̄I ṅ
I

≈
[
−ζK̄aJ − nJEaI

(
K̄trI + P̄ I

)]
ĖaJ

=: EaJK̇aJ , (9.8)

where we have dropped total time derivatives and divergences. Compared with KaI in

(4.62), KaI here is defined with an additional term ∝ P̄ I . In terms of these variables, we

find for the constraints, like after the reduction in section 4.2.4, the eADM expressions

(3.27, 3.28, 3.29).

9.2 SO(p,D + q) formulation

This section will be once again inspired by Peldán’s programme. With Ashtekar’s new

variables, general relativity was formulated on a Yang Mills phase space, which sug-

gested to consider the unification of these two theories. After work of Peldán in 2+1
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9. Extensions and related material

dimensions [210], in [105, 106] Chakraborty and Peldán studied such unified models

inspired by Ashtekar’s new formulation also in 3+1 dimensions, which, with certain

choice of gauge group would reproduce general relativity, while in a weak field ex-

pansion around de Sitter spacetime, would give conventional Yang-Mills theory to the

lowest order. The way the authors proceeded was to generalise Ashtekar’s formulation

to arbitrary gauge group (without adding new constraints), i.e. a phase space coordi-

natised by a connection A valued in the corresponding Lie algebra and a conjugate (Lie

algebra valued) generalised vielbein, subject to Gauß, Hamiltonian and spatial diffeo-

morphism constraint. As we have seen in chapter 7, this phase space will in general

have more physical degrees of freedom than general relativity, allowing for extra Yang

Mills degrees of freedom. However, since these models are based on the original com-

plex Ashtekar variables, no mathematically rigorous quantisation thereof can be carried

out, and, more severely, already classically their construction in Lorentzian signature

is incomplete.

Here, we will study a different possibility of obtaining unified theories, which is however

in the same spirit as Peldán’s treatment: Having constructed a SO(D+ 1) or SO(1, D)

Hamiltonian connection formulation for general relativity, it is rather not surprising

that one can extend the gauge group further to SO(p,D + q), with p ≥ 0, q ≥ 0,

p + q =: k ≥ 1. The idea of how to obtain unified models is then to start with this

pure gravity formulation, to drop first class constraints, which for sure will enlarge the

number of physical degrees of freedom, and to study what kinds of matter coupled

theories can be obtained in that way. Note that these groups are of particular interest

for unification, since in particular they include SO(10), which one of the GUT models

is based on [211, 212].

We will build up this formulation step by step, first studying the ingredients neces-

sary to extend the usual vielbein formulation to the gauge groups SO(D+ p, q), and in

a second step turning it into a real connection formulation.

We will show that this programme probably fails: While we are able to give an ex-

plicit construction of an SO(D+p, q) Yang Mills formulation of pure general relativity,

all of the additionally introduced first class constraints are needed in order to obtain a
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9.2 SO(p,D + q) formulation

first class Hamiltonian constraint in this extended theory, and dropping constraints has

to come, if at all possible, with non-trivial alterations of the Hamiltonian constraint.

9.2.1 Extension of the eADM phase space

Let us start by extending the eADM phase space of section 3.2.3 further. We will still

use KaI , E
bJ as phase space coordinates, but now understand that they are Rp,D+q

valued, i.e. I, J, ... ∈ {0, 1, ..., D + k − 1}. Internal indices are now moved with

ηIJ = diag(−, ...,−︸ ︷︷ ︸
p

,+, ...,+︸ ︷︷ ︸
D+q

)IJ . We will call this vielbein a k-hybrid vielbein, the inter-

nal space having k dimensions more than the spacetime. This makes the hybrid vielbein

considered before a 1-hybrid vielbein. When compared to the theory with 1-hybrid viel-

bein, the enlarged vielbein now has D(D+k)−D(D+1) = D(k−1) additional degrees

of freedom, while the Gauß constraint obtains (D+k)(D+k−1)
2 − D(D+1)

2 = (2D+k)(k−1)
2

additional components. Therefore, there now are (2D+k)(k−1)−2D(k−1) = k(k−1)

less physical phase space degrees of freedom, and we are forced to introduce additional

fields.

A possible way how to proceed is to introduce x space time scalars / internal (unit)

vector fields, ni
I , i, j, ... ∈ {1, ..., x}, vielbein- and mutually orthogonal,

C a
i := ni

IEaI = 0, (9.9)

Cij := ni
InjI − ηij = 0, (9.10)

where ηij = diag(−, ...,−︸ ︷︷ ︸
p

,+, ...,+︸ ︷︷ ︸
q

)ij , together with their conjugate momenta piJ . These

are 2x(D + k) additional phase space degrees of freedom, subject to Dx+ x(x+1)
2 con-

straints (note that their mutual orthogonality constitutes a symmetric constraint).

Demanding that these fields account for the missing degrees of freedom results in a

quadratic equation for x, k(k − 1) = 2x(D + k)− 2Dx− x(x+ 1), which has the solu-

tions x = k and x = k− 1. I.e., we can either introduce a “completion” of the vielbein

n1
I , ... , nk

I like in appendix C.3, or we can drop one of these normals, say nk
I . This

was expected, since the the k-hybrid vielbein plus the k − 1 mutually orthogonal unit

normals already fix nk
I (up to sign). Both options can be worked out, here we proceed

with introducing all k normals.
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The non-vanishing Poisson brackets are given by

{KaI(x), EbJ(y)} = δbaη
J
I δ

(D)(x− y), (9.11)

{niI(x), pjJ(y)} = ηji η
J
I δ

(D)(x− y), (9.12)

where i, j, ... ∈ {1, .., k}. In order that the constraints (9.9, 9.10) transform nicely under

SO(p,D+q) transformations and spatial diffeomorphisms, we will define the generators

such that they act also on the newly introduced fields,

G IJ := 2Ea[IKa
J ] + 2pi[Ini

J ], (9.13)

Ha := EbJ∂aKbJ − ∂b(EbJKaJ) + piI∂aniI , (9.14)

H :=
1
√
q
Ea[I|Eb|J ]KaIKbJ −

s

2

√
q(D)R, (9.15)

where summation convention is also used for i, j, etc. Note that we kept the Hamiltonian

constraint in the form it appeared in (3.29), in particular did not add the terms one

would expect when minimally coupling these scalar fields to general relativity. The

reason is the same as when using the linear simplicity constraint in section 9.1: The

Hamiltonian constraint would pick up terms ∝ p2, which would spoil the constraint

algebra since H would no longer (weakly) Poisson commute with the C constraints.

In its current form, H depends only on KaIE
bI , and it is easy to convince oneself that

this combination weakly Poisson commutes with C a
i . All other Poisson brackets vanish

trivially (at least weakly), except the one between two Hamiltonian constraints. For

this, we find explicitly

{H [N ],H [M ]} = H ′
a [qab(N∂bM −M∂bN)] +

1

2
G IJ [

1

q
EaIE

b
JDb(N∂aM −M∂aN)],

(9.16)

where in the Gauß constraint term we used that K [a
IE

b]I = 1
2qG

IJEaIE
b
J and defined

H ′
a := 2D[a(Kb]IE

bI), (9.17)

which coincides with the original spatial diffeomorphism constraint (3.28) of the eADM

formulation. The above calculation is greatly simplified using (A.8) and noting that

due to the antisymmetry in M , N , only terms with derivatives on the multipliers can

survive.
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To furnish the proof that the constraint algebra closes, we have to show that H ′
a ≈Ha.

What saves the day at this point is the result of appendix C.3, namely that there exists

a k-hybrid spin connection

ΓH
aIJ := eb[I|Daeb|J ] + ni[I|∂ani|J ] (9.18)

annihilating EaI and all of the nis. Using this, we have

H ′
a = 2D[a(Kb]IE

bI)

= KbIDaE
bI + EbI∂aKbI − ∂b(KaIE

bI) + 2Γ[ab]
cKcIE

bI

= −KbIΓ
H
a
IJEbJ + Ha − piI∂aniI

= Ha +
1

2
ΓH

aIJG
IJ − piI(∂aniI + ΓH

aIJni
J)

= Ha +
1

2
ΓH

a
IJGIJ , (9.19)

where in the second line, we only wrote out the terms of the first line explicitly, then

dropped the last summand due to torsion freeness, in the first summand used that ΓH

annihilates EaI and replaced the two summands in the middle of the second line by

Ha minus the terms involving the normals. From line three to four, we replaced the

first summand by the Gauß constraint minus the terms involving the normals, and in

the last step used that ΓH also annihilates all nis.

With this, we already want to end our proof that the constrained system (9.11, 9.12; 9.9,

9.10, 9.13, 9.14, 9.15) gives general relativity, since in the gauge ni
I = ηIi , it obviously

reduces to the SO(D) eADM formulation.

9.2.2 Connection formulation

The transition from the k-hybrid vielbein formulation to a connection formulation now

is completely analogous to chapter 7. We introduce the canonical pair of variables

AaIJ ,
(β)
π bKL and niI , p

jJ , i, j ∈ {1, ..., k − 1}, together with
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1.) an additional canonical pair NI , P
J (the kth unit vector), subject to the con-

straints

S a
IM

:= εIJKLMN
J (β)
π aKL, (9.20)

C a
i :=

(β)
π aIJNIniJ , i ∈ {1, .., k − 1}, (9.21)

Cij := niInj
I − ηij , i, j ∈ {1, ..., k}, (9.22)

where in the last constraint we understand that nkI = NI . The linear simplicity

constraint demands that
(β)
π aIJ = 2

βN
[I|Ea|J ] and the remaining ones then give the

constraints of the k-hybrid vielbein formulation,

or

2.) the constraints

S ab
M :=

1

4
εIJKLM

(β)
π aIJ (β)

π bKL, (9.23)

C aI
i := πaIJniJ , i ∈ {1, ..., k − 1}, (9.24)

Cij := niInj
I − ηij , i, j ∈ {1, ..., k − 1}. (9.25)

The quadratic simplicity constraint enforces
(β)
π aIJ = 2

β Ñ
[I|Ea|J ], and C aI

i demands

that both, Ñ I and EaI are orthogonal to all niI , i ∈ {1, ..., k − 1}.

Again both possibilities can be worked out. We will continue with case 1.). Addi-

tional to the constraints we introduced so far, we of course again need

G IJ := DA
a

(β)
π aIJ + 2pi[Ini

J ] + 2P [INJ ], (9.26)

Ha :=
1

2

(β)
π bIJ∂aAbIJ −

1

2
∂b(

(β)
π bIJAaIJ) + piI∂aniI + P I∂aNI , (9.27)

H := − 1

4
√
q

[
(β)
π [a|IJ (β)

π b]KL (A− Γ[π, ni, N ])bIJ (A− Γ[π, ni, N ])aKL

]
− s

2

√
qR[π],

(9.28)

where the sums over i here and on the following run from 1, ..., k−1. Note the change in

the Hamiltonian constraint when compared to (9.6): The extensions off the simplicity

constraint surface of the k-hybrid spin connection now necessarily also depends on the
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unit vectors1 ni, N , e.g.

ΓaIJ [π, ni, N ] = ζπb[I|KDaπb|J ]
K − 2ζN[In

i
J ]niM∂aN

M

+ ni[I|∂ani|J ] + ζ(3−D)N[I|∂aN|J ], (9.29)

where ζ = ||N ||. One can check that (7.60, 7.61), where again Γ[π] has to be replaced by

Γ[π, ni, N ], define (weak) Dirac observables with respect to the kinematical constraints

and that the ADM canonical Poisson brackets are reproduced. From this, it again eas-

ily follows that the constraint algebra is first class and the system indeed is equivalent

to the ADM formulation. Moreover, symplectic reduction with respect to the linear

simplicity constraint immediately leads back to the k-hybrid vielbein formulation of

the previous section. We leave it to the interested reader to work out the details.

Variable Dof 1st cl. constraints Dof (count twice!)

AaIJ
D(D+k)(D+k−1)

2 H 1
(β)
π bKL D(D+k)(D+k−1)

2 Ha D

niI k(D + k) G IJ (D+k)(D+k−1)
2

pjJ k(D + k) S a
IM

D(D+k−1)(D+k−2)
2

C a
i D(k − 1)

Cij
k(k+1)

2

Sum: D3 +D2(2k − 1) Sum: D3 +D2(2k − 2)

+D(k2 + k) + 2k2 +D(k2 + k + 1) + 2k2 + 2

Table 9.2: SO(p,D+q) formulation with linear simplicity constraint: counting of degrees

of freedom (k = p+ q)

Finally, let us comment on increasing the phase space degrees of freedom by dropping

constraints of the set {S ,C } while retaining a first class constraint algebra: That this

is non-trivial can already be seen from (9.19): To conclude that {H ,H } ≈ 0, we

needed that the k-hybrid spin connection annihilates EaI as well as all unit vectors.

Now, for the existence of the k-hybrid spin connection and to show that Γ[π, ni, N ]

1Actually, the dependence on one of the unit vectors can be removed by expressing it as function

of the other (k−1) unit vectors and π. However, to simplify the final expression, we refrain from doing

so.
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in (9.29) reduces to this connection, we needed the mutual orthogonality properties of

EaI , niI and NI , which only hold if all constraints {S ,C } are imposed.

However, dropping of constraints comes with the possibility of changing existing con-

straints: E.g., the previously forbidden scalar field terms p2 one would expect in the

Hamiltonian constraint become in principle allowed as soon as none of the constraints

in the reduced set {S ,C } depends on the corresponding unit vector n anymore. That

these terms miraculously cure the problems caused by the spin connection terms is,

however, rather unlikely. We leave the study of this issue for further research.

9.3 D = 3: Revival of the Barbero-Immirzi parameter

This section is taken from [2] with minor modifications.

In the special case of 3 + 1 dimensions, it is straightforward to reintroduce the Barbero

Immirzi parameter γ: Use the method of gauge unfixing to the result of the canonical

analysis of the Holst action in section 6.2. The Dirac matrix F , which has to be in-

verted for gauge unfixing, is very simple in this case, given by F ab cd = − 4sγ2

γ2−sq
2Gab cd

as we have seen. We would obtain a connection formulation with (first class) quadratic

simplicity constraints and gauge group SO(3, 1), which reduces to the Ashtekar Bar-

bero formulation after solving the simplicity and boost Gauß constraints. (Another

straightforward calculations shows that the same procedure gives a possible solution to

the open issue (i) in [213]). For quantisation purposes, it again would be nice to be

able to work with the compact gauge group SO(4) instead of the Lorentz group. More-

over, the linear simplicity constraint, which was introduced in section 9.1, is favoured

in 3 + 1 dimensions, since the quadratic simplicity constraint allows for unphysical so-

lutions, usually called the topological sector. Last but not least, a formulation with

Barbero Immirzi parameter probably is as near as we can get to the Ashtekar Barbero

variables, and with linear simplicity constraints it also maximally mimics the new spin

foam models. In this appendix, we will show by extending ADM phase space that both,

the formulations with flipped internal signature and with quadratic or linear simplicity

constraints, exist.
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9.3.1 Quadratic simplicity constraints

We start with the formulation given in section 7.2 with variables
{
KaIJ , π

bKL
}

. Re-

stricting to 3 + 1 dimensions, we can perform a canonical transformation to the pair of

variables defined by

K
(γ,β)

aIJ := β(
(γ)

M−1)IJ
KLKaKL := β

(γ)

M−1KaIJ , (9.30)

(γ,β)
π aIJ :=

1

β
(

(γ)

M )IJKLπ
aKL :=

1

β

(γ)

MπaIJ , (9.31)

where the matrices M , M−1 are given in (6.2) and (6.3), and γ ∈ R/{0}, γ2 6= ζ,

is the Barbero Immirzi parameter. This transformation is, of course, inspired of our

canonical treatment of the Holst action in section 6.2. Note that we introduced a second

free parameter β coming from a constant rescaling, which already appeared in section

7.2. To obtain a connection formulation, we the would like to use the canonical pair of

variables given by AaIJ := (Γ[π] + K
(γ,β)

)aIJ and
(γ,β)
π aIJ ,

{
AaIJ(x),

(γ,β)
π bKL(y)

}
:= 2δbaδ

K
[I δ

L
J ]δ

3(x− y), (9.32)

while all other Poisson brackets vanish. We will prove in the following that these vari-

ables are indeed a valid extension of the ADM phase space.

For later convenience, we introduce the notations

(γ,β)
π aIJ :=

1

q
qab

(γ,β)
π b

IJ ,

πaIJ := β · (
(γ)

M−1)IJKL
(γ,β)
π aKL,

π
(γ,β)

aIJ := β2 · (
(γ)

M−1)IJKL(
(γ)

M−1)KLMN
(γ,β)
π aMN , (9.33)

where in the first line 1
q qab has to be understood as a function of

(γ,β)
π aIJ as given in

(9.35). Moreover, note that in 3 + 1 dimensions the expression for the hybrid spin

connection given in section 7.1.3 can be simplified to

ΓaIJ [π] := ζπb[I|KDaπ
b
J ]
K := ζ

(
πb[I|K∂aπ

b
J ]
K + πb[I|KΓbacπ

c
J ]
K
)

, (9.34)
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where Γbac again denotes the Christoffel symbols and Da is the covariant derivative

annihilating qab. The ADM variables, expressed in terms of AaIJ and
(γ,β)
π aIJ , are

given by

qqab :=
ζ

2
πaIJπbIJ =

ζ

2

(γ,β)
π aIJ π

(γ,β)

b
IJ , (9.35)

Kab := − 1

2
√
q

(γ,β)
π (b|IJqa)c (A− Γ[π])cIJ , (9.36)

P ab := −1

2

√
qGab cdK

cd =
1

4
Gab cd[AcIJ − ΓcIJ [π]]

(γ,β)
π

dIJ

, (9.37)

which immediately follows from (7.60, 7.61).

Rewriting the constraints in terms of the new variables, we find the Gauß and quadratic

simplicity constraints

G IJ := DA
a

(γ,β)
π aIJ ≈ 2 (A− Γ[π])a

[I
K

(γ,β)
π aK|J ], (9.38)

S ab :=
1

4
εIJKLπaIJπ

b
KL. (9.39)

Note that Γ[π] weakly annihilates
(γ,β)
π aIJ as well. In 3 + 1 dimensions, the quadratic

simplicity constraint has additional solutions which lead to a theory not corresponding

to general relativity. We will exclude this sector by hand. In section 9.3.2, we will

introduce the linear version of the simplicity constraint, which does not have this ad-

ditional solution sector.

Using the equations (9.35, 9.37), we find for the ADM constraints

Ha = −1

2
Db

(
(A− Γ[π])aIJ

(γ,β)
π bIJ − δba (A− Γ[π])cIJ

(γ,β)
π cIJ

)
, (9.40)

H = − 1

4
√
q

(
(γ,β)
π [a|IJ (γ,β)

π b]KL (A− Γ[π])bIJ (A− Γ[π])aKL

)
− s

2

√
qR(π), (9.41)

where in both equations we dropped terms proportional to K
(γ,β)

[a
IJ (γ,β)

π |b]IJ , which, as

we already have seen several times, vanishes modulo the Simplicity and (rotational

components of) the Gauß constraint.

Since ΓaIJ given in (9.34) transforms as a connection under the action of the Gauß
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constraint, (9.36, 9.37, 9.40, 9.41) are invariant under gauge transformations. Since the

matrix
(γ)

M is built from intertwiners, (9.35) and (9.39) are gauge invariant by inspection.

Simplicity invariance of (9.37, 9.40, 9.41) follows from{
Kab(x),S cd(y)

}
= − 1

2
√
q

(γ,β)
π (b|IJqa)e(x)

{
AeIJ(x),

1

4
εKLMNπcKL(y)πdMN (y)

}
= − 1

2
√
q
εIJKLβ

(γ)

M−1(γ,β)
π (b|IJqa)(cπ

d)
KL δ

3(x− y)

= − 1
√
q

(
S b(dqc)a + S a(dqc)b

)
δ3(x− y) ≈ 0. (9.42)

What remains to be checked is if the ADM Poisson brackets are reproduced on the

new phase space, which will by construction imply that the constraint algebra closes.

The following Poisson brackets will be helpful in the sequel, which are straightforward

generalisations of the corresponding ones in appendix A,

δq =
ζ

D − 1
q π

(γ,β)
aIJδ

(γ,β)
π aIJ , (9.43)

δqab =
ζ

q
G−1 ab

cd π
(γ,β)

cIJδ
(γ,β)
π d

IJ , (9.44)

δπaIJ =

[
1

q
qabPIJ KL −

ζ

2
πaKLπbIJ

]
β(

(γ)

M

−1

)KLMNδ
(γ,β)
π bMN , (9.45)

and from the last line follows

(γ,β)
π cIJ(x)

{
AaIJ(x), πb

KL(y)
}
≈ −2δ3(x− y)πa

KLδcb . (9.46)

The brackets

{qab[
(γ,β)
π ], qcd[

(γ,β)
π ]} = 0 and {qab[

(γ,β)
π ], P cd[A,

(γ,β)
π ]} = δc(aδ

d
b) (9.47)

are easily verified. The remaining Poisson bracket

{P ab[A,
(γ,β)
π ][Aab], P

cd[A,
(γ,β)
π ][Bcd]}

=

∫
σ
d3x

∫
σ
d3y

[(
1

2
Aabq

a[e(γ,β)
π b]IJ

)
(x)

{
AeIJ(x),

(
qc[f

(γ,β)
π d]KL

)
(y)

}
(

1

2
Bcd(A− Γ)fKL

)
(y)

]
− [A↔ B] (9.48)

+

∫
σ
d3x

∫
σ
d3y

[(
1

2
Aabq

a[e(γ,β)
π b]IJ

)
(x) {AeIJ(x), (−ΓfKL)(y)}(

1

2
Bcdq

c[f (γ,β)
π d]KL

)
(y)

]
− [A↔ B] (9.49)

149



9. Extensions and related material

is much harder and therefore will be discussed in more detail. Here, Aab and Bcd are

test fields of compact support, which we can choose symmetric w.l.o.g., since P ab is

symmetric by definition. The second line (9.48) and third line (9.49) of the above

equation vanish independently. For (9.48), we find using (9.44)

(9.48) = . . . =
1

4

∫
σ
d3x AabBcdq

ac(γ,β)
π [d|IJqb]e(A− Γ)eIJ ∝ Ḡ IJ [. . .],

which vanishes if the (rotational part of the) Gauß constraint holds. Before we proceed,

we define αf
e := 1

4AabG
ab e

f and βh
g := 1

4BcdG
cd g

h and check that α[ef ] = 0 = β[gh].

Then, we find for the third line (skipping “−[A↔ B]” for a moment)

(9.49) =

=

∫
σ
d3x

∫
σ
d3y αf

e(γ,β)
π fIJ(x)

{
AeIJ(x), (−ζ)πbKM

(
Dgπ

b
L
M
)

(y)
}
βh

g(γ,β)
π hKL(y)

=− ζ
∫
σ
d3x

∫
σ
d3y αf

e(γ,β)
π fIJ(x)

[
{AeIJ(x), πbKM (y)}

(
Dgπ

b
L
M
)
βh

g(γ,β)
π hKL(y)

−
{
AeIJ(x), πbL

M (y)
}
Dg

(
πbKMβh

g(γ,β)
π hKL

)
(y)
]

(9.50)

− ζ
∫
σ
d3x

∫
σ
d3y αf

e(γ,β)
π fIJ(x)

{
AeIJ(x),Γbga(y)

}
πbKMπ

a
L
Mβh

g(γ,β)
π hKL(y).

(9.51)

Again, (9.50) and (9.51) vanish separately. For (9.50), we find after a few steps using

(9.46)

(9.50) = . . . =

= 2ζ

∫
σ
d3x αf

e Dg

(
βh

g · Tr

(
πe π

f (γ,β)
π h

))
= 2ζ

∫
σ
d3x αfe

[
Dg

(
1

q
βh

g · Tr

(
π[e πf ](γ,β)

π h

))
− (Dgq

ea)
1

q
βh

g · Tr

(
πa π

f (γ,β)
π h

)]
≈ 0,

which vanishes since the trace Tr(abc) := aIJb
J
Kc

K
I of antisymmetric matrices a, b, c

is antisymmetric when exchanging two matrices while αab is symmetric and Daqbc = 0
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by construction. The remaining part (9.51) can be rewritten as

(9.51) =

=− ζ
∫
σ
d3y

{
P ab[Aab],Γ

d
gc(y)

}
βh

g Tr

(
πd π

c(γ,β)
π h

)
(y)

=− ζ
∫
σ
d3y

[{
P ab[Aab], q

de(y)
}
qdiΓgc e +

{
P ab[Aab],Γgc i(y)

}] 1

q
βh

g Tr

(
πi πc

(γ,β)
π h

)
=− ζ

∫
σ
d3y

[
−
{
P ab[Aab], qjk(y)

}
δ

(j
i Γk)

gc +
{
P ab[Aab], ∂cqig(y)

}] 1

q
βh

g Tr

(
πi πc

(γ,β)
π h

)
≈− ζ

∫
σ
d3y

[
AabΓ

b
gc +Aag~∂c

] 1

q
βh

g Tr

(
πa πc

(γ,β)
π h

)
=− ζ

∫
σ
d3y AabDc

(
1

q
βh

b Tr

(
πa πc

(γ,β)
π h

))
= ζ

∫
σ
d3y (DcAab)

1

4q
Bed

(
qb(eδ

d)
h − q

cdδbh

)
Tr

(
πa

(γ,β)
π c πh

)
= ζ

∫
σ
d3y (DcAab)

1

4q
Bb

d Tr

(
πa

(γ,β)
π c πd

)
.

In the first step, we just reassembled the terms on the left hand side of the Poisson

bracket, in the second we used the definition of the Christoffel symbol, in the third

the formula for the derivative of the inverse matrix and antisymmetry of the trace in

(i ↔ c). In the fourth line we used the already known brackets of the metric qab and

its conjugate momentum P cd. Note that the density weight and index structure is such

that the terms in the fourth line can be reassembled in a covariant derivate. In the

sixth line the definition of βh
g is inserted, we integrated by parts and we used that

Tr(ab
(γ,β)
c ) = Tr(a

(γ,β)

b c) (this trace property can be shown using the definition of the

matrices
(γ)

M ). Thus we find that the second summand appearing in the definition of

βh
g vanishes due to antisymmetry of the trace in the indices (a↔ b). If we now restore

the antisymmetry in the test fields (A↔ B), we obtain

(9.51) =
ζ

4

∫
σ
d3y

[
(DcAab)B

b
d − (DcBab)A

b
d

] 1

q
Tr

(
πa

(γ,β)
π c πd

)
≈ 1

4βγ

∫
σ
d3y εcda Dc

(
AabB

b
d

)
=

1

4βγ

∫
σ
d3y ∂c

(
εcdaAabB

b
d

)
= 0,

where we used the simplicity constraint in the second line and then dropped a surface

term. We leave the case where σ has a boundary for further research. This furnishes

the proof of the validity of the formulation.
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9.3.2 Barbero Immirzi parameter and linear simplicity constraints

As was demonstrated in section 9.1, instead of the quadratic simplicity constraints we

may as well work with linear simplicity (and normalisation) constraints when intro-

ducing additional phase space degrees of freedom {N I , PJ}. This result extends to

the D = 3 case with Barbero Immirzi parameter as follows: The theory with linear

simplicity and normalisation constraint has the non-vanishing Poisson brackets (9.32)

as well as

{
N I(x), PJ(y)

}
= δIJδ

3(x− y), (9.52)

and the constraints are given by

Ha :=
1

2

(γ,β)
π bIJ∂aAbIJ −

1

2
∂b

(
(γ,β)
π bIJAaIJ

)
+ PI∂aN

I , (9.53)

H := − 1

4
√
q

(
(γ,β)
π [a|IJ (γ,β)

π b]KL (A− Γ[π])bIJ (A− Γ[π])aKL

)
− s

2

√
qR(π), (9.54)

G IJ := DA
a

(γ,β)
π aIJ + 2P [INJ ], (9.55)

S aI := εIJKLNJπ
a
KL, (9.56)

N := N INI − ζ. (9.57)

The proof that this constrained system actually describes general relativity is the same

as we gave in section 9.1 for general D ≥ 3 without Barbero Immirzi parameter. We

want to point out that, while we now are mixing boost and rotational components due

to the matrices M , M−1, for the proof that the ADM Poisson brackets are reproduced

on the extended phase space in section 9.3.1, we again only needed Ḡ IJ ≈ 0 and

S ab ≈ 0, and therefore, the same argumentation as in section 9.1 goes through. We

leave it to the interested reader to work out the details.

9.3.3 Solving the linear simplicity and normalisation constraints

While we were rather brief in the last subsection, here we want to be more explicit,

since a thorough understanding of the relation between this formulation and the usual

Ashtekar Barbero variables will be important when one wants to compare the resulting

quantum theories in D = 3.
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It is instructive to solve first the simplicity (and normalisation) constraints and then the

boost Gauß constraint (“time gauge”), which will in the first step lead to a formulation

similar to the one given in section 6.2.3 (cf. also [146]), and then to the formulation in

Ashtekar-Barbero variables. We will treat the case with linear simplicity constraints,

since in 3 + 1 dimensions, the linear constraint has the additional advantage that its

only solution is general relativity, while the quadratic simplicity constraint also allows

for the topological solution.

The solution to the linear simplicity and normalisation constraint is given by
(β)
π aIJ =

2
βn

[IEa|J ] and therefore

(γ,β)
π aIJ =

1

β

(
2n[IEa|J ] +

1

γ
εIJKLnKEaL

)
. (9.58)

For the connection, we make the Ansatz AaIJ = ΓaIJ + K
(γ,β)

aIJ . The symplectic

potential becomes

1

2

(γ,β)
π aIJ ȦaIJ + P IṄI =

1

2

(γ,β)
π aIJ Γ̇aIJ +

1

2

(γ,β)
π aIJ K̇

(γ,β)
aIJ + P IṄI

=
1

2βγ
εIJKLnKE

a
LΓ̇aIJ + n[IEa|J ]K̇aIJ + P IṄI

= − ˙(n[IEa|J ])

(
KaIJ +

1

2βγ
εIJ

KLΓaKL

)
+ P IṄI

≈ − ˙EaJ
(
ζK̄aJ +

1

2βγ
εIJ

KLnIΓaKL + nJ P̄
IEaI

−nJEIaEbK
(
K̄bIK +

1

2βγ
εIK

LMΓbLM

))
=: EaJ ȦaJ . (9.59)

In the next step we express the remaining constraints in terms of the new canonical

variables. The reduction of the Gauß constraint yields

1

2
ΛIJG

IJ =
1

2
ΛIJD

A
a

(γ,β)
π aIJ + ΛIJP

INJ

≈ ΛIJ K
(γ,β)

I
aK

(γ,β)
π aKJ + ΛIJP

INJ

= ΛIJK
I
aKπ

aKJ + ΛIJP
INJ

= ΛIJK
I
aK

(
nKEaJ − nJEaK

)
+ ΛIJP

INJ

≈ −ΛIJE
aJ
(
ζK̄I

a − nIEaLEbKK̄L
b K + nIPKEaK

)
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= −ΛIJE
aJ

(
AIa −

1

2βγ

(
εM

IKLnMΓaKL − nIENa EbKεNKLMΓbLM

))
=

1

2
ΛIJ

(
2Ea[IAJ ]

a +
1

βγ
εIJKL∂a (nKE

a
L)

)
, (9.60)

which after time gauge nI = δI0 and solution of the boost part of the Gauß constraint

obviously reproduces the SU(2) Gauß constraint of the Ashtekar-Barbero formulation.

The diffeomorphism constraint becomes

Ha =
1

2

(γ,β)
π bIJ∂aAbIJ −

1

2
∂b

(
(γ,β)
π bIJAaIJ

)
+ PI∂aN

I

≈ EbI∂aAbI − ∂b
(
EbIAaI

)
, (9.61)

which coincides on-shell with the spatial diffeomorphism constraint of section 9.3.1,

Ha = −1

2
Db

(
(A− Γ[π])aIJ

(γ,β)
π bIJ − δba (A− Γ[π])cIJ

(γ,β)
π cIJ

)
≈ EbI∂aAbI − ∂b

(
EbIAaI

)
+

1

2
ΓaKL[π]GKL. (9.62)

Here, we usedRH
abIJ = EcIEdJRabc

d, RH
abIJn

I = 0 (cf. appendix C) and εIJKLRH
abIJnKE

b
L =

0 which follows from the algebraic Bianchi identity. Finally, the Hamiltonian constraint

gives

H = − 1

4
√
q

(
(γ,β)
π [a|IJ (γ,β)

π b]KL (A− Γ)bIJ (A− Γ)aKL

)
− s

2

√
qR(

(γ,β)
π )

≈ − 1
√
q
E[a|IEb]J

(
AbI −

1

2βγ
εMI

KLnMΓHbKL

)(
AaJ −

1

2βγ
εNJ

ABnNΓHaAB

)
− s

2

√
qR(E). (9.63)

9.3.4 Time gauge

We choose time gauge nI = δI0 ⇔ Ea0 = 0 and solve its second class partner, the

boost part G 0i = −EaiA0
a of the Gauß constraint (i, j, . . . ∈ {1, 2, 3}). It is convenient

to introduce the rescaled variables Aai → A′ai := −ζγ̃Aai and Ebj → E′bj := − ζ
γ̃E

bj ,
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where γ̃ := βγ, in terms of which we have

EaIȦaI → E′aiȦ′ai, (9.64)

GIJ → −1

2
εkijGij = ∂aE

′ak + εkijA′aiE
′a
j , (9.65)

Ha →Ha = E′bi∂aA
′
bi − ∂b

(
E′biA′ai

)
, (9.66)

H →H = − 1
√
q
E[a|iEb]j

(
Abi −

ζ

2γ̃
εi
klΓbkl

)(
Aaj −

ζ

2γ̃
εj
mnΓamn

)
− s

2

√
qR(E)

≈ 1

2
√
q
εijkF

′
ab
kE′aiE′bj − 1

2
√
q

(
1− sγ̃2

)
εijkRab

kE′aiE′bj . (9.67)

Here, terms proportional to the Gauß constraint have been dropped in the expression

for the Hamiltonian constraint. At this stage, only the combination of the parameters

γ̃ = γβ is left and plays the role of the Barbero Immirzi parameter in usual Ashtekar

Barbero variables, cf. chapter 6. One could ask if one should have worked with one

parameter from the beginning. To give a tentative answer to this question, note that the

(quadratic) simplicity constraint implies 1
2εIJKL

(γ,β)
π aIJ (γ,β)

π bKL = 2ζγ
γ2+ζ

(γ,β)
π aIJ (γ,β)

π b
IJ

and therefore

2ζqqab = πaIJπbIJ =

(
γ2

γ2 − ζ

)2 [(
1 +

ζ

γ2

)
(γ,β)
π aIJ (γ,β)

π b
IJ −

1

γ
εIJKL

(γ,β)
π aIJ (γ,β)

π bKL

]
≈ γ2β2

γ2 + ζ

(γ,β)
π aIJ (γ,β)

π b
IJ . (9.68)

We expect that the square root of this factor, |γβ|√
γ2+ζ

, will appear in the spectrum of

the area operator. It seems improbable that the two parameters γ, β appear just in

this peculiar combination in the spectra of operators and therefore, at the quantum

level one probably will be able to distinguish between γ and β.

9.3.5 Formulation with two commuting SU(2) connections

Note that we could have chosen time gauge before solving the simplicity and normali-

sation constraints by setting N I = δI0 and solving the boost part of the Gauß constraint

G0i = DA
a

(γ,β)
π ai − P i, where we used the notation

(γ,β)
π ai :=

(γ,β)
π a0i. Furthermore, we

define Aai := Aa0i. We find

1

2

(γ,β)
π aIJ ȦaIJ + P IṄI →

1

2

(γ,β)
π aijȦaij +

(γ,β)
π aiȦai (9.69)
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and

G ij = ∂a
(γ,β)
π aij + 2Aa

[i|
k

(γ,β)
π ak|j] + 2

(γ,β)
π a[iAj]a , (9.70)

S ai = εijk
(γ,β)
π a

jk −
2ζ

γ

(γ,β)
π ai, (9.71)

Ha =
1

2

(γ,β)
π bij∂aAbij −

1

2
∂b

(
(γ,β)
π bijAaij

)
+

(γ,β)
π bi∂aAbi − ∂b

(
(γ,β)
π biAai

)
, (9.72)

H = − 1

4
√
q

(
(γ,β)
π [a|ij(γ,β)

π b]kl (A− Γ)bij (A− Γ)akl

)
− 1
√
q

(
(γ,β)
π [a|i(γ,β)

π b]jkAbi(A− Γ)ajk

)
− 1
√
q

(
(γ,β)
π [a|i(γ,β)

π b]jAbiAaj

)
− s

2

√
qR(π),

(9.73)

where we dropped constants in front of the simplicity constraint and in the Hamiltonian

constraint we neglected terms proportional to the simplicity constraint (Γa0i ≈ 0). Note

that in the case without Barbero Immirzi parameter, the simplicity constraint S ai =

εijkπajk demands the vanishing of πaij and therefore there is no physical information

left in the conjugate SU(2) connection Aaij . Here, this is not the case and we obtain

a genuine connection formulation of general relativity. Moreover, the other canonical

pair

{
Aai,

(γ,β)
π bj

}
has the same structure as

{
Kai, E

bj
}

. Then, it follows from the

know results when extending the ADM phase space to Ashtekar-Barbero variables (cf.

section 6.3) that there exists a spin connection Γ′aij which annihilates
(γ,β)
π ai and that

the transformation

{
Aai,

(γ,β)
π bj

}
→
{
A−aij := Γ′aij + αεikjA

k
a, E−

bkl := 1
αε
kml(γ,β)

π b
m

}
for α ∈ R/{0} is canonical. Defining A+

aij := Aaij and E+
aij :=

(γ,β)
π aij , we obtain the

symplectic potential

1

2
E+

aijȦ+
aij +

1

2
E−

aijȦ−aij (9.74)

and constraints

G ij = D+
a E+

aij +D−a E−
aij , (9.75)

1

2
εijkS a

k = E+
aij +

ζα

γ
E−

aij , (9.76)

Ha =
1

2
E+

bij∂aA
+
bij −

1

2
∂b

(
E+

bijA+
aij

)
+

1

2
E−

bij∂aA
−
bij −

1

2
∂b

(
E−

bijA−aij

)
, (9.77)

H = − 1

4
√
q

(
E+

[a|ijE+
b]kl
(
A+ − Γ(E+, E−)

)
bij

(
A+ − Γ(E+, E−)

)
akl

)
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− 1

2
√
q

(
E−

[a|ijE+
b]kl
(
A− − Γ′(E−)

)
bij

(
A+ − Γ(E+, E−)

)
akl

)
− 1

4
√
q

(
E−

[a|ijE−
b]kl
(
A− − Γ′(E−)

)
bij

(
A− − Γ′(E−)

)
akl

)
− s

2

√
qR(E+, E−), (9.78)

where we dropped the term −1
2E−

bijR′abij(E−) in the spatial diffeomorphism constraint,

since it vanishes due to the Bianchi identity. We made explicit that the spin connec-

tion Γaij in the Hamiltonian constraint does not annihilate E+
aij but the physical

combination of E+
aij and E−

aij (i.e. the combination which remains when solving the

simplicity constraint). Note however, that on the simplicity constraint surface, we have

that E+, E− and therefore also the physical Ê are multiples of each other with constant

coefficients, Ê ≈ αβE− ≈ −γβζE+, and since the spin connection is unchanged by con-

stant rescalings of the vielbein which it annihilates, Γ(E+, E−) and Γ′(E−) coincide on

the simplicity constraint surface. In this formulation we now have two commuting

SU(2) connections A+
aij and A−aij , which can be interpreted as the two parts SU(2)+

and SU(2)− of SO(4). They are, however, not uncorrelated and their momenta are

multiples of each other (9.76), in complete analogy to the relation K+γL = 0 of boost-

and rotation generators in the new spin foam models.

Of course, with a suitable choice of variables, one of the two connection carries no

physical information. Explicitly, Êai = 1
2ε
kilÊakl := γβ

2(γ2−ζ)ε
kil(E+ + γαE−)akl and

Âa
i := − ζ

2βγ ε
kil(A+− γζ

α A
−)akl carry the physical information and can be shown to be

a canonical pair. In terms of these, we have

H ≈ − 1
√
q
Ê[a|iÊ|b]j

(
Âbi −

ζ

2γ̂
εiklΓ[Ê]b

kl

)(
Âaj −

ζ

2γ̂
εjmnΓ[Ê]a

mn

)
− s

2

√
qR(Ê),

(9.79)

where γ̂ := αβγ
(α−ζγ) . This form of the Hamiltonian constraint again coincides with our

result of section 9.3.4.

9.4 On the D constraints

We will see later on that the fact that the simplicity constraint is quadratic in the

momenta πaIJ leads to problems when quantising, in particular, group averaging tech-

niques are not available. Therefore, one might want to substitute this constraint at the
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9. Extensions and related material

classical level by a different one which simplifies quantisation. Of course, a possible

way of how to get rid of S is to gauge fix the simplicity constraint and then try to

gauge unfix the gauge fixing condition. The most natural gauge fixing condition to

introduce, the D constraint from section 5.2, is alas much more complicated than the

simplicity constraint and even if we succeeded in exchanging their role, we would make

the problems in the quantum theory only worse. The question thus arises if we could

introduce different gauge fixings with nicer properties, which we will briefly study here.

Let us start our considerations in the {KaIJ , π
bKL}-theory from section 7.2 for con-

venience. Since our gauge fixing should be easier to handle than the simplicity con-

straint at the quantum level, we are lead to consider gauge fixings which are at most

linear in the momenta πaIJ . Of course, in order to be second class with the simplicity

constraints, it necessarily has to be at least linear in KaIJ . For general D ≥ 3, the

probably simplest constraint which one can come up with,

DM
ab
′′ := (∗Mπa)KLKbKL =

1

2
εIJKLMπaIJKbKL, (9.80)

meets these needs. If S = 0, it obviously demands that K̄aIJ = 0, and therefore is

a good first guess. Like the simplicity constraints, the D ′′ constraints are for D > 3

not all independent. However, in D = 3 where the multiindex M is absent, D ′′ has 9

components, but we would only expect 6 independent constraints from our experience

with the Palatini theory. Therefore, the constraints D ′′ must have some further source

of non-independence, apart from the one stemming from the labelling by a multiindex.

Indeed, only the symmetric part

DM
ab
′ := (∗Mπ(a|)KLK|b)

KL (9.81)

is independent, and one easily finds that if S = 0, it demands that the transverse

tracefree part K̄tf
aIJ of KaIJ vanishes. The antisymmetric part then is already con-

strained to vanish, since it can be shown to be proportional to the boost part of the

Gauß constraint K̄tr.
I and K̄tf

aIJ , i.e. the symmetric part, again if S = 0. We could of

course argue that, classically, it does not matter if we impose D ′′ or D ′, but this only

holds if S = 0 and since we want to get rid of this constraint, we are lead to continue

with D ′. Note that here we already lost the linearity in the momenta, since πaIJ is a
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9.4 On the D constraints

complicated function of πaIJ . We will continue anyway to see if we can obtain a con-

nection formulation with first class albeit complicated D ′ constraint. In the following,

we will restrict to D = 3.

That D ′ is equivalent to (5.24) already follows from the fact that both demand the

vanishing of K̄tf
aIJ . Explicitly, we have

Dab = 2(∗πc)KLπ(a|KNDA
c π

b)L
N

= −f IJ KLMN (∗πc)IJπ(a|
KLD

A
c π

b)MN

≈ −f IJ KLMN (∗πc)IJπ(a|
KL[Kc, π

b)]MN

= −f IJ KLMNfOP QR
MN (∗πc)IJπ(a|

KLKc
OPπb)QR

= ζq2Gab cdD ′cd + S c(bπa)IJKcIJ −S abπcIJKcIJ . (9.82)

Here, in the second line, we used that the trace over three generators gives the structure

constants (cf. appendix D for notation), in the third we used A = Γ[π] + K and that

Γ[π] weakly annihilates π (note that the Christoffel symbols drop out). In the fourth

line, we rewrote the commutator using the structure functions and in the fifth line use

the relation (D.7). We see that the constraints D and D ′ are (weakly) related by the

invertible matrix Gab cd (cf. (2.15)).

Using (A.25) we easily deduce

δD ′ab = (∗π(a)
IJδKb)IJ + (∗K(b)

IJ

[
1

q
qa)cPIJ KL −

ζ

2
πa)KLπcIJ

]
δπcKL, (9.83)

which will be used repeatedly in calculating Poisson brackets in the following. Note

that PIJ KL := ηK[I η
L
J ] −

ζ
2πaIJπ

aKL projects orthogonal to πaIJ , PIJ KLπaKL = 0.

First of all, note that D ′ obviously will Poisson commute with the Gauß and spatial

diffeomorphism constraint. We find that the Dirac matrix between S and D ′

{S ab(x),D ′cd(y)} = −4δ(a
c δ

b)
d δ

3(x− y) (9.84)

is trivial, in particular phase space independent. Note that in higher dimensions, this

cannot be true due to the non-independence of the constraints.
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9. Extensions and related material

Furthermore, the maps to the ADM phase space (7.44, 7.45) actually are D ′ observ-

ables,

{qab[π](x),D ′cd(y)} = −ζ
q
G−1
ab efπ

eIJ{πf IJ(x),K(d
KL(y)}(∗πc)KL)

=
4ζ

q2
G−1
ab e(dqc)fS

efδ(3)(x− y), (9.85)

{P ab[π,K](x),D ′cd(y)} =

=
1

2
Gab efπ

fIJ(∗K(c|)KL

(
1

q
qd)xPKLIJ −

ζ

2
πd)

KLπeIJ

)
δ(3)(x− y)

− 1

2
KeKLδ

f
(c(∗πd))

IJ

(
Gab efη

K
[I ηJ ]L+

ζ

q
π(b|KLGa)e

gfπ
g
IJ

−ζ
q
Gab gfπ

eKLπgIJ

)
δ(3)(x− y)

=
D

2
qabD ′cdδ

(3)(x− y)− 1

2
q(c

(bqd)eq
a)fD ′′efδ

(3)(x− y)

− ζ

q2
KfIJ

(
π(b|IJGa)f

e(c| − πfIJGab e(c|
)
qd)fS

efδ(3)(x− y), (9.86)

where in the first line we used (A.21) and in the third line (7.53). As we already stated,

the D ′′ terms in the second to last line vanish weakly modulo D ′, G and S . This

proves that D ′ weakly Poisson commutes with the Hamilton constraint when expressed

via (7.44, 7.45). Finally, due to the very simple form of D ′, we find that it is actually

first class with itself,

{D ′ab(x),D ′cd(y)} =
2

q
(∗K(d)

IJqc)(b(∗πa))IJδ
(3)(x− y)

− ζ

q3
S ghqg(a

[
qb)eq(c|x + qb)(c|qex

]
D ′′e|d)δ

(3)(x− y)

− ab↔ cd

≈ 2

q
(∗K(d)

IJqc)(b(∗πa))IJδ
(3)(x− y)− ab↔ cd

=
8ζ

q
K(d

IJqc)(bπa)IJδ
(3)(x− y)− ab↔ cd

=
4ζ

q

(
K[d

IJπa]IJqbc +K[c
IJπa]IJqbd

+K[d
IJπb]IJqac +K[c

IJπb]IJqad
)
δ(3)(x− y) ≈ 0, (9.87)

where the terms in the last line vanish since K[a|IJπb]
IJ ≈ 0 up to Gauß and simplicity

constraint.
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9.5 First class Hamiltonian formulation with arbitrary internal space

We see that, at least in D = 3 and in variables K, π, there is a gauge fixing D ′ of

the simplicity constraint with nicer properties: The Dirac matrix becomes trivial and

D ′ is first class with respect to all other constraints. But gauge unfixing and obtaining

a connection formulation still fail because of two reasons.

Firstly, D ′ is weakly Poisson commuting with itself and the Hamiltonian constraint

only up to the simplicity constraint. Therefore, we cannot simply drop the simplicity

constraint unless we change D ′ and H such that their algebra closes without S .

Secondly, we still do not yet have a connection formulation. Of course, we can ex-

press D ′ in terms of new connection variables, D ′ = (∗
(β)
π (a)

IJ(A−Γ[π])b)IJ . But since

we were not able to prove that the transformation {KaIJ , π
bKL} → {AaIJ ,

(β)
π bKL} is

canonical, we do not know if the constraint algebra is reproduced. In particular, when

trying to redo the calculation {D ′,D ′} in connection variables, one cannot reproduce

the result of (9.87) because of exactly the same problems which appeared when trying

to prove then canonicity of the transformation to connection variables in section 7.2.

Note that also the original D constraint of section 5.2 was not poisson self commuting.

While we will show in the next section that the first of these two problems can be

overcome, i.e. we will construct a formulation with first class D constraints, but we do

not know how to solve the second.

9.5 First class Hamiltonian formulation with arbitrary in-

ternal space

When introducing additional fields in the Lagrangian, one usually would as well intro-

duce constraints which take care of the superfluous degrees of freedom. This is what

happens when e.g. going from the Einstein Hilbert action (3.2) to the Plebański action

(5.4). But when comparing the Einstein Hilbert actions with metric (2.1) and vielbein

(3.7) as fundamental degree of freedom, what catches the eye is that, while working

with more fields (eµ
I having (D + 1)2 components while gµν , being symmetric, only

has (D+1)(D+2)
2 independent components), we do not need to change the action by ad-

ditional constraints. The extra degrees of freedom are pure gauge, which is reflected in
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9. Extensions and related material

a new invariance of the action: eµ
I → e′µ

I := gIJeµ
J for g ∈ SO(D + 1) or SO(1, D)

in the Euclidean or Lorentzian case respectively. On the Hamiltonian side, as we have

seen in section 3.2, additional primary constraints arise corresponding to these internal

gauge transformations. I.e., the action by construction only depends on q̇ab and surely

we cannot solve the defining equations of the momenta for any other velocities. The

velocities which cannot be solved for turn out to multiply exactly the Gauß constraints

in the Hamiltonian corresponding to the additional internal symmetry.

This leads to the question: what happens if we choose not to work with a vielbein, but

decompose the metric differently? E.g., suppose we consider the Einstein Hilbert action

as a functional of a Lie algebra valued co vielbein field πµ
IJ using gµν = πµIJπν

IJ , sim-

ilar to what is used in part II. Do we need a simplicity constraint? The answer we will

give in the following to this question is no, for the Lagrangian picture no new constraints

are needed. This rises the question if they will somehow reappear in the Hamiltonian

formulation. Performing the canonical analysis, we will find that the answer again is

no. Actually, the simplicity constraints cannot appear as primary constraints, since

primary constraints are at least linear in the momenta canonically conjugate to the πs

which we will call K in analogy with section 7.2. Instead, apart from a “Gauß like”

constraint, constraints similar to the D constraints will appear as primary first class

constraints, and the algebra of all constraints will be shown to be of the first class, in

particular, no secondary constraints will appear. Our discussion will be independent of

choice of internal space (except that its dimension should allow for incorporating the

metric degrees of freedom) in the beginning, only later we will restrict to the case when

πµ is valued in some Lie algebra g.

9.5.1 Lagrangian viewpoint

Specificly, we will work with πµ
α, α, β, γ ∈ {1, ..., A}, A ≥ D + 1. We demand that in

the internal space, there exists a constant metric tensor δαβ with inverse δαβ. We will

decompose the spacetime metric according to

gµν = πµ
απν

βδαβ. (9.88)
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9.5 First class Hamiltonian formulation with arbitrary internal space

Variation of the Einstein Hilbert action (2.1) with respect to πµα yields, using δgµν =

2π(µ
αδπ

ν)α like in section 3.1,

δS =
s

2

∫
M

dD+1x 2
√
|g|(π)Gµν(π)πναδπ

µα, (9.89)

up to a boundary term. Contraction the field equations

Gµν(π)πνα = 0 (9.90)

with πρ
α, we obtain Gµρ = 0 as necessary condition, which then solves all the field

equations. We thus are still dealing with general relativity, but with a possibly huge

gauge symmetry. To find the generators of these transformations (zero eigenvectors

of the matrix relating momenta and velocities) later in the Hamiltonian picture, it is

helpful to study the new symmetries already at the level of the action. The infinitesimal

transformations πµ
α → π′µ

α = πµ
α + εµ

α leaving the action invariant have to satisfy

ε(µ
απν)α = 0, (9.91)

in order to leave gµν invariant. Since πµ
α are D + 1 vectors in a A-dimensional space,

there are A− (D + 1) linearly independent internal vectors orthogonal to it which for

sure satsify (9.91). These orthogonal directions can be accessed using the projectors

P̂αβ := δαβ − πµαπνβgµν , Q̂αβ := πµαπνβg
µν , δαβ = P̂αβ + Q̂αβ,

P̂αβP̂βγ = P̂αγ , Q̂αβQ̂βγ = Q̂αγ , P̂αβQ̂βγ = 0, (9.92)

and in particular, P̂αβπµβ = 0, Q̂αβπµβ = πµα. Thus, there exist (D + 1)[A− (D + 1)]

independent vectors εµ
α satisfying εµ

α := Pαβεµβ which constitute solutions to (9.91).

Futhermore, exploiting the symmetry of (9.91) in the index pair µ, ν, we obtain D(D+1)
2

solutions εµ
α = Λρµπρ

α with Λµν = −Λνµ. Since πµ
α has A(D + 1) components and

the symmetries remove (D+ 1)(A− (D+2)
2 ), we are left with (D+2)(D+1)

2 , corresponding

to the metric degrees of freedom.

9.5.2 Canonical analysis

Performing the D+ 1 split, we use in analogy to the vielbein case πµ
α = ||πµ

α+ snµn
α,

where ||πµ
α := qµ

νπν
α, nα = πµ

αnµ, and we have ||πµ
αnα = 0, nαnα = s. Trivially, the

split form of the action is given by (2.11), where the spatial metric now is considered as
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9. Extensions and related material

constructed from the pullback of ||πµ
α, qab = πa

απbα, and (2.13) immediately translates

into Kab = 1
N π(a

α
(
π̇b)α + (LNπ)b)α

)
.

For the momenta, we find

Kc
α(t, x) =

δS

δπ̇cα(t, x)

=

∫
σ
dDy

δq̇ab(t, y)

δπ̇cα(t, x)

δS

δq̇ab(t, y)

= −√q(t, x)Gcd ab(t, x)πdα(t, x)Kab(t, x)

= Gcdαβ

(
π̇d

β(t, x)− (LNπ)d
β(t, x)

)
, (9.93)

where we introduced Gacαβ := −
√
q
N πbαG

ab cdπdβ and Gab cd was defined in (2.15). From

the zero eigenvectors of this matrix, we again can deduce the primary constraints, and

indeed, we find zero eigenvectors corresponding to the invariances of the action. Using

similar projectors

Pαβ := δαβ − πaαπbβqab, Qαβ := πaαπbβq
ab, (9.94)

these result in the primary constraints

G ab := π[a
αK

b]α = 0, (9.95)

Da
α := PαβK

aβ = 0. (9.96)

Counting shows that, if these constraints are first class as we will prove later on, they are

sufficient: We have in total D(D−1)
2 +D(A−D) = D(A−D+1

2 ) constraints to go from πa
α

to qab, which differ by the same number of components, DA− D(D+1)
2 = D(A− D+1

2 ).

As before, (9.93) can only be solved for the velocities corresponding to q̇ab,

π(a
βπ̇b)β = − N

√
q
G

(−1)
ab cdπ

(c|αKd)
α + π(a

β(LNπ)b)β, (9.97)
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9.5 First class Hamiltonian formulation with arbitrary internal space

and expressing the kinetic term we expect in the Hamiltonian in terms of K,π,N, ~N ,

we obtain using (9.97) and elementary algebra

Ka
απ̇a

α = Kaα (Pαβ + Qαβ) π̇a
β

=
(
KaαPαβ +K [aαπb]απbβ +K(aαπb)απbβ

)
π̇a

β

= DaαPαβπ̇a
β + G baπ[b|βπ̇a]

β

+K(aαπb)α

(
− N
√
q
G

(−1)
ab cdπ

(c|αKd)
α + π(a

β(LNπ)b)β

)
= DaαPαβπ̇a

β + G baπ[b|βπ̇a]
β − N
√
q
K(aαπb)αG

(−1)
ab cdπ

(c|αKd)
α

+K [aαπb]απa
β(LNπ)bβ +Kbαπaαπa

β(LNπ)bβ

= Daα
[
Pαβπ̇a

β − Pαβ(LNπ)a
β
]

+ G ba
[
π[b|βπ̇a]

β − π[b
β(LNπ)a]β

]
− N
√
q
K(aαπb)αG

(−1)
ab cdπ

(c|αKd)
α +Kaα(LNπ)aα. (9.98)

and therefore for the action in Hamiltonian form

S =

∫
dt

∫
σ
dDx

[
P (N)Ṅ + P ( ~N)

a Ṅa +Ka
απ̇a

α − λC − λaCa

−
(
Ka

απ̇a
α − s

2
N
√
q
(

(D)R− sGab cdKabKcd

))
(K,π,N, ~N)

]
=

∫
dt

∫
σ
dDx

[
P (N)Ṅ + P ( ~N)

a Ṅa +Ka
απ̇a

α − λC − λaCa

−
(

1

2
Ka

απ̇a
α +

1

2
Ka

α(LNπ)a
α − s

2
N
√
q(D)R

)
(K,π,N, ~N)

]
=

∫
dt

∫
σ
dDx

[
P (N)Ṅ + P ( ~N)

a Ṅa +Ka
απ̇a

α − λC − λaCa

−daαDaα − ΛabG
ab −NaHa −NH

]
, (9.99)

where in the last step, we used (9.98), integrated by parts and defined

Ha := Kb
α∂aπb

α − ∂b(Kb
απa

α), (9.100)

H := − 1

2
√
q
K(aαπb)αG

(−1)
ab cdπ

(c|αKd)
α −

s

2

√
q(D)R. (9.101)

We furthermore replaced the velocities we could not solve for by Lagrange multipliers

daα and Λab. Eliminating as before N , Na, we obtain the Hamiltonian

H =

∫
σ
dDx

[
daαDaα + ΛabG

ab +NaHa +NH
]

, (9.102)
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and non-vanishing Poisson brackets

{πaα(t, x),Kb
β(t, y)} = δbaδ

α
β δ

(D)(x− y). (9.103)

Let us study the stability of the constraints under time evolution. First, since Ha

again is obviously the generator of spatial diffeomorphisms, it is clearly first class and

its Poisson brackets with all constraints are clear. H only depends on qab(π) = πa
απbα

(and derivatives thereof) and P cd(K,π) = 1
2K

(c|βπd)
β, and they satisfy (weakly) the

ADM Poisson brackets,

{qab(π)(t, x), qcd(π)(t, y)} = 0,

{qab(π)(t, x), P cd(K,π)(t, y)} = δc(aδ
d
b)δ

(D)(x− y),

{P ab(K,π)(t, x), P cd(K,π)(t, y)} = −1

4

(
qa(cG d)b + qb(cG d)a

)
(x) δ(D)(x− y), (9.104)

which in turn tells us that the hypersurface deformation algebra 2.31 is (weakly) re-

produced. What is left to check is if the Poisson brackets between the new constraints

weakly vanish, and whether qab(π) and P cd(K,π) are Dirac observables with respect to

the new constraints. Straightforward calculation shows

{Da
α(t, x),Db

β(t, y)} =
(

2PαβG
ab + πaβD

b
α − πbαDa

β

)
δ(D)(x− y), (9.105)

{G ab(t, x),Dc
α(t, y)} = qc[aDb]

αδ
(D)(x− y), (9.106)

{G ab(t, x),G cd(t, y)} =
(
qc[aG b]d − qd[aG b]c

)
δ(D)(x− y), (9.107)

{Da
α(t, x), qcd(π)(t, y)} = 0, (9.108)

{G ab(t, x), qcd(π)(t, y)} = 0, (9.109)

{Da
α(t, x), P cd(K,π)(t, y)} = −1

2
qa(cDd)

αδ
(D)(x− y), (9.110)

{G ab(t, x), P cd(K,π)(t, y)} =
1

2

(
qa(cG d)b − qb(cG d)a

)
δ(D)(x− y). (9.111)

proving that the constraints are all first class and no secondary constraints appear. To

interpret the additional constraints Da
α and G ab, note that Da

α demands that K lies

in the same D-dimensional subspace in the internal space as the πs (in the notation

used in part II, say, the πs are given by πa
IJ = 2n[Iea

J ], then only the component

Ka
IJ = 2n[IK

a
J ] survives) and then G ab reduces to the Gauß like constraint e[a

IK
b]I ,

which is related with the symmetry of the extrinsic curvature.
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Variable Dof 1st cl. constraints Dof (count twice!)

πa
α DA H 1

Kb
β DA Ha D

G ab D(D−1)
2

Daα D(A−D)

Sum: 2DA Sum: 2DA− (D2 −D − 2)

Table 9.3: First class formulation with arbitrary internal space: counting of degrees of

freedom

9.5.3 Connection formulation?

Here, we end our general analysis, and in the following will specify the internal space.

Since we want to discuss the possibility of obtaining a connection formulation, the

case of interest is that πa be g-valued for some compact Lie algebra g. As usual, we

can assume the Killing metric to be given by δαβ and the structure constants fαβγ

to be totally antisymmetric and to satisfy fα
γδfβγδ = δαβ. In this case, we of course

expect the appearance of a Gauß constraint Gα := fαβγπa
βKaγ . Indeed, this constraint

corresponds to the zero eigenvectors (Vaα)β := fαβγπa
γ of Gabαβ. However, it has to be

and, of course, is already included in the constraints we introduced before. To see this,

it is convenient to first recombine these constraints to the equivalent set of constraints

D̂αβ := πa[αK
a
β]. (9.112)

Their equivalence can be seen as follows: First of all, D̂αβ has A(A−1)
2 components, of

which (A−D)(A−D−1)
2 trivially vanish (project both indices on the (A−D)-dimensional

subspace accessed via Pαβ), i.e. we have with A(A−1)
2 − (A−D)(A−D−1)

2 = D(A − D+1
2 )

the right number of constraints. Furthermore, contraction with πaαπbβ yields G ab, and

a single contraction with πaα and using G ab, we obtain Daα.

In a second step, we decompose D̂αβ according to

D̂αβ =
(
δαγ δ

β
δ − f

αβ
εfγδ

ε + fαβεfγδ
ε
)

D̂αβ

=: Dαβ + fαβγG
γ , (9.113)
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where Dαβ :=
(
δαγ δ

β
δ − f

αβ
εfγδ

ε
)
πa

[γKaδ] =: Mαβ
γδπa

[γKaδ] has the property fαβγD
βγ

= 0 due to fαγδfβ
γδ = δαβ. The geometrical interpretation of this D-constraint is that

it generates all transformations which leave qab = πaαπb
α invariant and which are not

Gauß transformations. Its form crucially depends on the Lie algebra under consider-

ation: For so(3), it is easy to see that Dαβ = 0 identically since Mαβ
γδ = 0. For

g = so(D+ 1) or so(1, D) with D > 2, we have M [IJ ][KL]
[MN ][OP ] ∝

(
εIJMN

M εKLOPM

−εKLMN
M εIJOPM

)
(cf. appendix D), which should be compared with (5.28), where a

very similar contraction of two epsilons appeared when obtaining the independent set

of D- and simplicity constraints such that the Dirac matrix is invertible.

Let us calculate the constraint algebra of the newly introduced constraints. Using

{D̂αβ, D̂γδ} = δβ[γD̂δ]α − δα[γD̂δ]β and the Jacobi identity satisfied by the structure

constants, it is straightforward to obtain

{Gα,Gβ} = −2fα
γεfβ

δ
εD̂γδ = −fαβεGε, (9.114)

{Dαβ,Gγ} = −2Mαβ
δεfγε

ζD̂δζ = 2fγ[β|
δDδ|α], (9.115)

{Dαβ,Dγδ} = −2Mαβ
εζMγδ

ζηD̂εη = −2Mαβ
εζMγδ

ζηDεη + 2Mαβ
ε
[γfδ]ε

ζGζ . (9.116)

Now we have separated the Gauß constraint from the D-part, we can give a tenta-

tive definition of what one could call the simplicity constraint S for any Lie algebra:

A gauge fixing for D , i.e. a constraint such that {S ,D} yields an invertible matrix

on a suitably chosen space of Lagrange multipliers, while {S ,C } ≈ 0 for any other

constraint C . Equivalently, S should annihilate all components of π which do not

contribute to the metric up to the Gauß constraint. Ideally, we would like S to be

constructed solely from π and in the following restrict attention to this case. Since

it is very easy to write down constraints which for sure will weakly Poisson commute

with the Gauß and spatial diffeomorphism constraint and since {S , qab[π]} = 0 by

construction, the only thing which needs to be checked is if {S , P ab[K,π]} ∝ S ≈ 0.

Being independent of Ka
α, no other constraint except S can appear on the right hand

side of this Poisson bracket. Finding S with the above properties seems to be the core

problem, and probably is impossible in most cases.
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9.5 First class Hamiltonian formulation with arbitrary internal space

Still, assuming we have accomplished this, the second step in order to obtain a connec-

tion formulation is to gauge unfix S . This again is non-trivial, the problem being that

for the Poisson bracket {H ,H }, we need that

{P ab(K,π)[fab], P
cd(K,π)[f ′cd]} =

=

∫
σ
dDx

[
−1

2
fa[bf ′a

c]πbαπcβ

(
Mαβ

γδD
γδ + fαβγG

γ
)]

!
≈ 0, (9.117)

has to vanish weakly without using D . This gives us a hint towards what the simplicity

constraints have to be, namely a necessary condition is that the matrix multiplying

Ka
α in the D-term satisfies πaαπbβM

αβ
γδπc

γ =: S ′
abc δ

!∝ S , and one could conjecture

that this matrix actually constitutes the simplicity constraint. In particular, one finds

{S ′, P cd[K,π]} ∝ S ′. However, S ′ are algebraically by far too many constraints,

and have to be hugely redundant in order to be correct. Again comparing1 to the

case SO(D + 1) or SO(1, D) of part II, we have that S ′ indeed is proportional to the

simplicity constraint S ′
abc IJ ∝ (M ∗ π[a|)IJS|b]cM . Using the solution of the simplicity

constraint πaIJ = 2n[IEa|J ] after calculating the Poisson bracket, one can show that

with the constraint

Sa
IJ = PIJ KLMKLMN

OP QRQMN
OPπaQR, (9.118)

being a certain contraction and projection of the full S ′
abc IJ , the Poisson bracket

{S ,D} is invertible on transversal trace free Lagrange multipliers as introduced in

part II, but apart from this indirect proof of the validity of the chosen set, finding an

independent set of simplicity constraints is rather complicated even in this case. We

want to point out that this independent set of constraints is again very similar to the

independent set of simplicity constraints obtained in section 5.2.

Pushing further, we need to find a connection which, at least weakly, solves

Daπbα + fα
βγΓaβ(π)πbγ ≈ 0. (9.119)

At first sight, this seems hopeless, since these are D2A equations for DA unknowns

Γaα(π). However, we only need that Γ annihilates π weakly, i.e. only those parts of

1Note that for direct comparison with the SO(D + 1) or SO(1, D) case, we again should perform

the canonical transformation {πaα,Kb
β} → {K′aα := 1√

q
(πbαπaβ − 1

D−1
πaαπbβ − qabPαβ)Kbβ , π′aα :=

√
qqabπb

α}.
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9. Extensions and related material

π which are left when solving S , and this makes a solution - at least algebraically

- possible: Those parts constitute DA − [D(A − D+1
2 ) − A] = D(D+1)

2 + A degrees

of freedom. The requirements that they be annihilated are D times that number,

D[D(D+1)
2 + A]. However, they are not all independent, the D2(D+1)

2 equations corre-

sponding to 2π(c|αDaπb)
α = Daqbc = 0 are identically satisfied, leaving DA equations

for DA unknowns. However, the number of degrees of freedom in the freedom in the

“vielbein” resulting when solving both, D and S , being D(D+1)
2 + A, is rather odd

(except for e.g. A = D(D+1)
2 ), which makes it unlikely that a corresponding simplicity

constraint can be found which removes the unnecessary degrees of freedom in πa
α in a

gauge invariant way.

Finally, even if S and Γa
α[π] can be found, we do not know of a general argument

indicating that the corresponding transformation to connection variables is canonical

(or at least that we can construct a corresponding extension of the ADM phase space).

Summarising, it seems doubtful that other connection formulations can be obtained

due to the problems mentioned, although we did not prove that it is impossible. At

this point one cannot proceed any further without making a specific choice of the

gauge group and study in detail the corresponding matrix Mαβ
γδ. We leave the study

of specific groups for further research.

170



Part III

Quantisation
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This part is taken from [3]. The presentation has been changed slightly, and chapter

11.2 has been enlarged to incorporate also a summary of the findings of [5] and parts

of [6].

We provide a loop quantisation of the new connection formulation of D+1 dimensional

general relativity (D+1 ≥ 3) introduced in part II, namely an SO(D+1) gauge theory

subject to SO(D + 1) Gauß constraint, simplicity constraint, spatial diffeomorphism

constraint and Hamiltonian constraint. Apart from the different gauge group which

however is compact and the additional simplicity constraint, the situation is precisely

the same as for LQG and the quantisation of our connection formulation is therefore

in complete analogy with LQG. We can therefore simply follow any standard text on

LQG such as [61, 62] and follow all the quantisation steps. This way we arrive at the

holonomy-flux algebra, its unique spatially diffeomorphism invariant state whose GNS

data are the analogue for SO(D+1) of the Ashtekar-Isham-Lewandowski Hilbert space,

the analogue of spin network functions, kinematical geometrical operators such as the

volume operator which is pivotal for the quantisation of the Hamiltonian constraint,

the SO(D+1) Gauß constraint, the spatial diffeomorphism constraint, the Hamiltonian

constraint and a corresponding master constraint.

The only structurally new ingredient is the simplicity constraint which constrains the

type of allowed SO(D+1) representations, and therefore the corresponding section 11.2

will be considerably longer than the ones treating the other kinematical constraints.

The simplicity constraints have been intensely studied in the spin foam literature, but

here we want to take an unbiased look at them in the canonical picture and work with

methods independent of the spacetime dimension. We want to stress that we will not

present a completely satisfactory solution to the simplicity constraint puzzle, but rather

suggest for both, the quadratic and the linear constraint, some new starting points for

further research which will hopefully help finding such a solution in the future.

This part is organised as follows: in the first chapter, we define the SO(D+1) holonomy-

flux algebra and the corresponding Hilbert space representation. In chapter two we

implement the kinematical constraints, that is Gauß, simplicity and spatial diffeomor-

phism constraints. This chapter will come with its own introduction, mainly sketching
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the spin foam results and outlining our own findings on the simplicity constraints. In

chapter three we develop kinematical geometrical operators, specifically D-dimensional

area and volume operators. Lower dimensional operators such as length operators etc.

can be constructed similarly but are left for future publication. Finally, in chapter four

we quantise the Hamiltonian constraint. Most of the presentation will be brief since

all the constructions literally parallel those of LQG. We therefore refer the interested

reader to [62], the exposition of which we follow, for all the missing details.
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10

Introduction to the

holonomy-flux-algebra

The construction of the kinematical Hilbert has been performed in [20, 21, 24–27] for

four and higher space-time dimension and arbitrary compact gauge group. These re-

sults apply for the case considered here, since we are using the compact group SO(D+1)

irrespective of the signature of the space-time metric. We therefore only cite the main

results in this section and introduce notation needed later on.

Since the Poisson brackets between AaIJ and πbKL are distributional, we have to

smear them with test functions. In order to obtain non-distributional Poisson brack-

ets, smearing has to be done at least D-dimensional in total. AaIJ is a one-form,

thus naturally smeared along a one-dimensional curve. From πaIJ , being a vector

density of weight one, we can construct the so(D + 1) - valued pseudo (D − 1)-form

(∗π)a1...aD−1 := πaIJεaa1...aD−1τIJ which is integrated over a (D − 1)-dimensional sur-

face in a background-independent way. These considerations lead to the definitions of

holonomies and fluxes, which yield a natural starting point for a background indepen-

dent quantisation. In the following, we choose (τIJ)K L = 1
2

(
δKI δJL − δKJ δIL

)
as a basis

of the Lie algebra so(D + 1).
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10. Introduction to the holonomy-flux-algebra

10.1 Holonomies, distributional connections, cylindrical

functions, kinematical Hilbert space and spin net-

work states

Denote by A the space of smooth connections over σ. We define the holonomy hc(A) ∈
SO(D + 1) of the connection A ∈ A along a curve c : [0, 1]→ σ as the unique solution

to the differential equation

d

ds
hcs(A) = hcs(A)A(c(s)), hc0 = 1D+1, hc(A) = hc1(A), (10.1)

where cs(t) := c(st), s ∈ [0, 1], A(c(s)) := AIJa (c(s))τIJ ċ
a(s). The solution is explicitly

given by

hc(A) = P exp

(∫
c
A

)
= 1D+1 +

∞∑
n=1

∫ 1

0
dt1

∫ 1

t1

dt2 . . .

∫ 1

tn−1

dtnA(c(t1)) . . . A(c(tn)),

(10.2)

where P denotes the path ordering symbol which orders the smallest path parameter

to the left. Like in 3 + 1 dimensional LQG, we will restrict ourselves to piecewise ana-

lytic and compactly supported curves.

The holonomies coordinatise the classical configuration space. In quantum field theory

it is generic that the measure underlying the scalar product of the theory is supported

on a distributional extension of the classical configuration space. For gravity, this en-

largement of the configuration space is done by generalising the idea of a holonomy.

Since the equations

hc◦c′(A) = hc(A)hc′(A) hc−1(A) = hc(A)−1 (10.3)

hold, we see that an element A ∈ A is a homomorphism from the set of piecewise

analytic paths with compact support P into the gauge group. We now introduce

the set A := Hom(P,SO(D + 1)) of all algebraic homomorphisms (without continuity

assumptions) from P into the gauge group. This space A is called the space of dis-

tributional connections over σ and constitutes the quantum configuration space. The

algebra of cylindrical functions Cyl(A ) on the space of distributional SO(D + 1) con-

nections is chosen as the algebra of kinematical observables. The former algebra can
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be written as the union of the set of functions of distributional connections defined on

piecewise analytic graphs γ, Cyl(A ) = ∪γCylγ(A )/ ∼. Cylγ(A ) is defined as follows.

A piecewise analytic graph γ ∈ σ consists of analytic edges e1,...,en, which meet at

most at their endpoints, and vertices v1,...,vm. We denote the edge and vertex set of γ

by E(γ) (|E(γ)| = n) and V (γ) (|V (γ)| = m), respectively. A function fγ ∈ Cylγ(A )

is labelled by the graph γ and typically looks like fγ(A) = Fγ

(
he1(A), ..., he|E|(A)

)
,

where Fγ : SO(D + 1)|E| → C. One and the same cylindrical function f ∈ Cyl(A )

can be represented on different graphs leading to cylindrically equivalent representa-

tions of that function. It is understood in the above union that such functions are

identified. We will denote the pullback of a function fγ defined on γ on the bigger1

graph γ′ � γ via the cylindrical projections by p∗γ′γ . Then, the equivalence relation

just mentioned can be made more explicit, fγ ∼ f ′γ′ iff p∗γ′′γfγ = p∗γ′′γ′f
′
γ′ ∀γ, γ′ ≺ γ′′.

The pullback on the projective limit function space will be denoted by p∗γ . The func-

tions cylindrical with respect to a graph that are N times differentiable with respect

to the standard differentiable structure on SO(D+ 1) will be denoted by CylNγ (A ) and

CylN (A ) := ∪γCylNγ (A )/ ∼.

The action of gauge transformations g and piecewise analytic diffeomorphisms φ on

a cylindrical function f = p∗l fl are given by

δg(f) := p∗l fl({g(b(e))he(A)g(f(e))−1}e∈E(γ)), (10.4)

δφ(f) := p∗l fl({hφ(e)(A)}e∈E(γ)). (10.5)

Since in the end we are interested only in gauge invariant quantities, after solving the

Gauß constraint (classically oder quantum mechanically) we have to consider the al-

gebra of cylindrical functions on the space of distributional connections modulo gauge

transformations Cyl(A /G ). For representatives fγ of elements f of this space, the

complex-valued function Fγ on SO(D + 1)|E| has to be such that fγ(A) is gauge invari-

ant. We will slightly abuse notation and use the same notation for the new projectors

pγ′γ : Aγ′/Gγ′ → Aγ/Gγ . There is a unique [28, 29] choice of a diffeomorphism invari-

ant, faithful measure µ0 on A /G which equips us with a kinematical, gauge invariant

Hilbert space H 0 := L2

(
A /G , dµ0

)
appropriate for a representation in which A is

1The graph γ can be enlarged by e.g. adding or subdividing edges. See e.g. [62] for a precise

definition of the partial order on tame subgroupoids defined by graphs.
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diagonal. This measure is entirely characterised by its cylindrical projections defined

by ∫
A /G

dµ0(A)f(A) =

∫
A /G

dµ0,γ(A)fγ (A)

=

∫
SO(D+1)|E(γ)|

 ∏
e∈E(γ)

dµH(he)

 Fγ
(
h1, ..., h|E|

)
, (10.6)

where µH is the Haar probability measure on SO(D + 1).

An orthonormal basis on H 0 is given by spin-network states [214–216], which are de-

fined as follows. Given a graph γ, label its edges e ∈ E(γ) with non-trivial irreducible

representations πΛe of SO(D + 1), i.e. Λe is the highest weight vector associated with

e, and its vertices v ∈ V (γ) with intertwiners cv, i.e. matrices which contract all the

matrices πΛe(he) for e incident at v in a gauge invariant way. A spin-network state is

simply a C∞ cylindrical function on A /G constructed on the above defined so-called

spin-net, Tγ,~Λ,~c[A] := tr
[
⊗|E|i=1πΛei

(hei(A)) · ⊗|V |j=1cj

]
, where ~Λ = (Λe), ~c = (cv) have

indices corresponding to the edges and vertices of γ respectively.

10.2 (Electric) fluxes and flux vector fields

Since the momenta πaIJ are Lie algebra-valued vector densities of density weight one,

(∗π)a1...aD−1 := πaIJεaa1...aD−1τIJ is a pseudo (D − 1)-form and is naturally integrated

over a (D − 1)-dimensional face S. We therefore define the (electric) fluxes

πn(S) :=

∫
S
nIJ(∗π)IJ =

∫
S
nIJπ

aIJεaa1...aD−1dx
a1 ∧ . . . ∧ dxaD−1 , (10.7)

where n = nIJτIJ denotes a Lie algebra-valued scalar function of compact support. We

again restrict to piecewise analytic surfaces S, to ensure finiteness of the number of

isolated intersection points of S with a piecewise analytic path. In order to compute

Poisson brackets, we have to suitably regularise the holonomies and fluxes to objects

smeared in D spatial dimensions. A possible regularisation in any dimension is given in

[62]. Removal of the regulator leads to the following action of the Hamiltonian vector
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10.2 (Electric) fluxes and flux vector fields

fields Yn(S) corresponding to πn(S) on adapted representatives fγS

Y n
γS

(S) [fγS ] =
∑

e∈E(γS)

ε(e, S) [n(b(e)) he(A)]AB
∂FγS

∂he(A)AB

(
he1(A), ..., he|E(γS)|(A)

)
=

∑
e∈E(γS)

ε(e, S) nIJ(e ∩ S) ReIJfγS . (10.8)

fγS is an adapted representative of the cylindrical function f ∈ Cyl1(A ) in the sense

that all intersection points of S and γS are beginning points b(e) of edges e ∈ E(γS)

(this can always be achieved by suitably splitting and inverting edges). In the above

equation, ε(e, S) is a type-indicator function, which is +(−)1 if the beginning segment

of the edge e lies above (below) the surface S and zero otherwise. ReIJ (LeIJ) is the

right (left) invariant vector field on the copy of SO(D + 1) labelled by e,

(RIJf) (h) :=

(
d

dt

)
t=0

f(etτIJh) and (LIJf) (h) :=

(
d

dt

)
t=0

f(hetτIJ ). (10.9)

The algebra of right (left) invariant vector fields is given by[
ReIJ , R

e′
KL

]
=

1

2
δe,e′ (ηJKR

e
IL + ηILR

e
JK − ηIKReJL − ηJLReIK) ,[

ReIJ , L
e′
KL

]
= 0, (10.10)

and analogously for LeIJ . We remark that, in order to calculate functional derivatives,

we had to restrict f to A in the beginning. The end result (10.8), however, can be

extended to all of A . Following the standard treatment, these vector fields are gener-

alised from adapted to non-adapted graphs and shown to yield a cylindrically consistent

family of vector fields, thus they define a vector field Yn(S) on A . The Yn(S) are called

flux vector fields.

On the Hilbert space defined in section 10.1, the elements of the classical holonomy-flux

algebra become operators which act by

f̂ · ψ := f ψ,

Ŷn(S) · ψ := i~κβYn(S)[ψ], (10.11)

where the right hand side is the action of the vector field Yn(S) on the cylindrical

function ψ. The appearance of β is due to the fact that we defined the fluxes using π,
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10. Introduction to the holonomy-flux-algebra

whereas the momenta conjugate to the connection is given by
(β)
π = 1

βπ. The momentum

operators Ŷn(S), with dense domain Cyl1, can be shown to be essentially self-adjoint

operators on H 0 analogously to the (3 + 1)-dimensional case [25].
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11

Implementation and solution of

the kinematical constraints

In this chapter, implementation of the kinematical constraints will be discussed. While

the Gauß and spatial diffeomorphism constraint can be treated as in usual LQG, the

simplicity constraint is new in the canonical theory and we will discuss it in much more

detail than the afore mentioned ones.

As we have seen in chapter 5, the simplicity constraint already appeared in Plebański’s

constrained BF theory formulation of D = 3 general relativity and its higher dimen-

sions generalisations [169]. We have seen in part II that it comes in two variants,

the quadratic [1, 2] and the linear version [6]. Discrete versions of these constraint

have quite a history in quantum gravity research, they appear in spin foam models

[185, 188, 189], in group field theory [217–219] and also in the canonical lattice mod-

els [220, 221] as well as in the construction of phase spaces for simplicial geometries

[222, 223].

The quadratic constraint used in the original Barrett Crane model [185] is anomalous

and the strong imposition of it at the quantum level leads to a one-dimensional inter-

twiner space. It was shown that this is too restrictive and problems with the asymptotic

behaviour of the vertex amplitude were traced back to this fact in [224, 225]. This led

to an intense study of the quantum simplicity constraints and the development of the

new spin foam models [186–191], in which the quadratic constraints are replaced by
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11. Implementation and solution of the kinematical constraints

the linear version. The linear constraint is still anomalous in general1, but in the new

spin foam models, at least parts of the constraints are imposed weakly which allows

for intertwiner spaces mimicking the canonical theory. While the new models pass the

tests which led to changing the original Barrett Crane model [226–228], the correct

implementation of the simplicity constraints is still a highly debated issue also in the

spin foam community (cf. [229] for recent criticism on the implementation in the new

models), and new proposals for its correct implementation continue to appear (e.g.

[230–232]).

Recently, the quadratic simplicity constraint has also been found to be anomalous

in the canonical theory (cf. [3, 213, 222, 223]). To deal with this anomaly, in [3, 5]

we of course were inspired by but did not closely follow the proposals made so far in

the spin foam literature, the main reason being that many of them make use of special

properties of SO(4) (in the Euclidean theory) which simply are not shared by higher

rotation groups, or use procedures which are incompatible with the in the canonical

picture mandatory cylindrical consistency.

Tentative requirements we could impose on the implementation of both, the linear

and the quadratic constraints, apart from mathematical consistency are the following:

First of all, to avoid overconstraining the system and erroneous removal of physical

degrees of freedom, we would like the constraint operators to be non-anomalous. Sec-

ondly, in D = 3, we are in the very convenient situation of having two quantisations of

the same theories at our disposal, namely the one SU(2) gauge theory obtained when

using the Ashtekar Barbero variables, and the SO(4) theory when using the variables

introduced here. Classically, both theories reduce to the ADM formulation if we solve

the SU(2) Gauß constraint or the SO(4) Gauß and simplicity constraints, respectively.

It would be desirable to have a quantum analogon of this classical equivalence, i.e.

there should exists a natural unitary map from the joint kernel of the SO(4) Gauß and

simplicity constraint to the kernel of the SU(2) Gauß constraint, spanned by gauge

invariant SU(2) spin network states2. Our considerations will be lead by these two

1The anomaly is only absent for the cases γ = ±
√
ζ, where γ denotes the Barbero Immirzi parameter

and ζ again is the signature of the internal space, or γ =∞.
2Actually, when using the linear simplicity constraint and introducing the Barbero Immirzi param-

eter in the SO(4) theory like in section 9.3, the classical equivalence is even stronger, since already
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requirements. Note that the latter actually is no necessary criterion, both theories only

have to have as classical limit general relativity to be considered genuine quantisations

thereof. However, conjecturing that the emerging quantum theory should be reason-

ably unique, this requirement is a tentative guideline of how to implement the simplicity

constraints for D = 3. If successful, this implementation then can be mimicked when

generalising to higher dimensions.

Out presentation will be as follows: in section 11.1, we will very briefly review the

implementation of the Gauß constraint. The simplicity constraint will be studied in

section 11.2. The quadratic constraint will be studied in detail, while the findings con-

cerning the linear constraint of [5] will only be sketched.

Starting with the quadratic constraint in 11.2.1.1, we will show how it can be repre-

sented as constraint operator on the kinematical Hilbert space. It can be easily solved

on edges and leads to the well-known simple representations of SO(D+ 1) [169], which

allow for a natural mapping to SU(2) representations (section 11.2.1.2). However, due

to the singular smearing of the fluxes, it is “anomalous” when acting on vertices, like

in spin foams, and the unique solution is the Barrett Crane intertwiner (or its higher

dimensional analogon [169]). We will study the anomaly in detail in section 11.2.1.3,

and introduce necessary and sufficient “building blocks” of the quadratic simplicity

constraint, which are easier to handle. Based on these building blocks, we will com-

ment on possible remedies, namely a master constraint treatment (section 11.2.1.4) or

the imposition of a maximally commuting subset of vertex simplicity constraints cor-

responding to a recoupling scheme (section 11.2.1.5). While the second option does

not come without problems which have to be further studied (e.g. one needs to choose

a recoupling scheme for each vertex), it has the advantage that it leads to a natural

unitary map to the usual SU(2) based kinematical Hilbert space of LQG.

In section 11.2.2 we will turn to the linear constraint. After constructing a kinemati-

cal Hilbert space for the additional field N I in section 11.2.2.1, we will show how the

linear simplicity constraint, being linear in the fluxes, can be quantised in analogy to

when solving the simplicity constraint and the boost part NIG
IJ of the SO(4) Gauß constraint, the

theory reduces to the Ashtekar Barbero formulation.
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the fluxes themselves and actually has a closing quantum algebra (section 11.2.2.2).

Note that this is different from the linear constraint in spin foams and related with

the missing “mixing” of rotational and boost components, which is caused in usual

Ashtekar Barbero variables due to the presence of the Barbero Immirzi parameter1.

However, we will find that the unique solution to these non-anomalous constraints is

a certain, N I -dependent intertwiner, and inserting this intertwiner at all points of a

given spin network is in conflict with cylindrical consistency. While there might be

a chance to make this infinite placing of this N I -dependent intertwiners cylindrically

consistent using a rigging map, in [5] we did not succeed in its construction. From this

perspective, the quadratic constraints seem to be favoured. But as we will see in sec-

tion 15.1, introduction of the additional field N I becomes necessary when dealing with

supergravity. Therefore, we will briefly sketch the proposal of the mixed quantisation

(section 11.2.2.3), where the linear constraint is replaced by the quadratic constraint

while N I is kept as phase space degree of freedom, at the cost of an additional constraint

demanding the equality of the unit vectors N I and nI(π). This new set of constraints

does not share the problems with cylindrical consistency we encountered when solving

the linear constraints. However, the solution to the additional constraint is unknown.

While several other ideas of how to possibly deal with this issue were discussed in

[5], we will stick to the ones outlined, as they give a mathematically consistent pro-

posal for both, the theory with and without the extra field N I . We refer the interested

reader to the original literature for further information. In any case, we do not claim

to give a “final answer” to the simplicity constraint problem and further research has

to be conducted to derive an entirely satisfactory treatment of these constraints.

Finally, in section 11.3, we sketch the implementation of the diffeomorphism constraint

already known from D = 3.

1Therefore, if using the new variables but additionally introducing the Barbero Immirzi parameter

in D = 3 like described in section 9.3, it is easy to show that linear constraint becomes anomalous.
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11.1 Gauß constraint

11.1 Gauß constraint

Working with the gauge invariant Hilbert space from the beginning, the Gauß con-

straint is already solved. Yet we want to summarise its implementation on the gauge

variant Hilbert space H = L2

(
A , dµ′0

)
, since we want to compute quantum com-

mutators of the constraint with the simplicity constraint in the next section. The

implementation (as well as the solution) of the Gauß constraint can be copied from the

(3 + 1)-dimensional case without modification.

According to the RAQ programme, we choose the dense subspace Φ = Cyl∞(A ) in

the Hilbert space. Then, we are looking for an algebraic distribution L ∈ Φ′ such that

the following equation holds

L

p∗γ
 ∑
e∈E(γ); v=b(e)

ReIJ −
∑

e∈E(γ); v=f(e)

LeIJ

 fγ
 = 0 (11.1)

for any v ∈ V (γ), any graph γ and fγ ∈ Cyl∞γ (A ). The general solution for L is

given by a linear combination of 〈ψ, .〉, where ψ ∈H 0 is gauge invariant. Thus, for an

adapted graph γ′ (all edges outgoing from the vertex v in question), gauge invariance

amounts to vanishing sum of all right invariant vector fields at a vertex,∑
e∈E(γ′); v=b(e)

ReIJfγ′ = 0. (11.2)

11.2 Simplicity constraints

11.2.1 Quadratic simplicity constraints

11.2.1.1 From classical to quantum

Classically, vanishing of the simplicity constraints S ab
M

(x) = 1
4εIJKLMπ

aIJ(x)πbKL(x)

at all points x ∈ σ is completely equivalent to the vanishing of

CM (Sx, S′x) := lim
ε,ε′→0

1

ε(D−1)ε′(D−1)
εIJKLMπ

IJ(Sxε )πKL(S′xε′ ) (11.3)

for all points x ∈ σ and all surfaces Sxε , S
′x
ε′ ⊂ σ containing x and shrinking to x as

ε, ε′ tend to zero. More precisely, we use faces of the form Sx : (−1/2, 1/2)D−1 →
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11. Implementation and solution of the kinematical constraints

σ; (u1, ..., uD−1) 7→ Sx(u1, ..., uD−1) with semi-analytic but at least once differen-

tiable functions Sx(u1, ..., uD−1) and Sx(0, ..., 0) = x, and define Sxε (u1, ..., uD−1) :=

Sx(εu1, ..., εuD−1). We find that (10.7) becomes (with the choice nIJ = δK[I δ
L
J ])

1

ε(D−1)
πIJ(Sxε ) =

1

ε(D−1)

∫
(−ε/2,ε/2)D−1

du1...duD−1εaa1...aD−1(∂Sxa1/∂u1)(u1, ..., uD−1)

× (∂SxaD−1/∂uD−1)(u1, ..., uD−1) πaIJ(Sx(u1, ..., uD−1))

= na(S)πaIJ(x) +O(ε) (11.4)

with na(S) = εaa1...aD−1(∂Sxa1/∂u1)(0, ..., 0) × ... × (∂SxaD−1/∂uD−1)(0, ..., 0), from

which the claim follows. Now, similar to the treatment of the area operator in section

12.1, we just plug in the known quantisation of the electric fluxes and hope to get a well-

defined constraint operator in the end. Using the regularised action of the flux vector

fields on cylindrical functions (10.8), we find for a representative fγSS′ of f ∈ Cyl2(A )

on a graph γSS′ adapted to both Sx and S′x,

ĈM (Sx, S′x)γSS′
[
fγSS′

]
:= lim

ε,ε′→0

1

ε(D−1)ε′(D−1)
εIJKLM Ŷ

IJ
γSS′

(Sxε )Ŷ KL
γSS′

(S′xε′ )[fγSS′ ]

= lim
ε,ε′→0

1

ε(D−1)ε′(D−1)
εIJKLM

∑
e∈E(γSS′ );b(e)=x

∑
e′∈E(γSS′ );b(e

′)=x

ε(e, Sx)ε(e′, S′x)RIJe R
KL
e′ fγSS′

=: lim
ε,ε′→0

1

ε(D−1)ε′(D−1)

ˆ̃CM (Sx, S′x)γSS′ [fγSS′ ]. (11.5)

The flux vector fields only act locally on the intersection points e ∩ S, e ∈ E(γSS′).

Therefore, in the second line we used that for small surfaces Sxε , S′xε′ , the action of the

constraint will be trivial expect for x (and of course only non-trivial if x is in the range

of γSS′), thus independent of ε. In the limit ε, ε′ → 0 the expression in the last line of

the above calculation clearly diverges except for ˆ̃Cf = 0, where the whole expression

vanishes identically. Since the kernels of the constraint operators Ĉ and ˆ̃C coincide, we

can work with the latter and propose the constraint (omitting the ∼ again)

ĈM (S, S′, x)γp
∗
γfγ = p∗γSS′ ε

IJKLM
∑

e,e′∈{e′′∈E(γSS′ ),b(e
′′)=x}

ε(e, Sv)ε(e′, S′v)ReIJR
e′
KLp

∗
γSS′γ

fγ

= p∗γSS′ ε
IJKLM

(
RupIJ −R

down
IJ

)(
Rup

′

KL −R
down′
KL

)
p∗γSS′γfγ , (11.6)
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where R
up(′)
IJ :=

∑
e∈E(γSS′ ),b(e)=x,ε(e,S(′))=1R

e
IJ and similar for R

down(′)
IJ . In the follow-

ing, will drop the superscript x for the surfaces for simplicity.

The proof that the family ĈMγ (S, S′, x) is consistent and defines a vector field ĈM (S, S′, x)

on A follows from the consistency of Ŷn(S). To see that the operator is essentially self-

adjoint, let H 0
γ,~π be the finite-dimensional Hilbert subspace of H 0 given by the closed

linear span of spin network functions over γ where all edges are labelled with the same

irreducible representations given by ~π, H 0 = ⊕γ,~πH 0
γ,~π. Given any surfaces S, S′ we

can restrict the sum over graphs to adapted ones since we have H 0
γ,~π ⊂H 0

γSS′ ,~π
′ for the

choice π′e′ = πe with E(γSS′) 3 e′ ⊂ e ∈ E(γ). Since ĈM (S, S′, x) preserves each H 0
γ,~π,

its restriction is a symmetric operator on a finite-dimensional Hilbert space, therefore

self-adjoint. To see that it is symmetric, note that the right hand side of the first

line of (11.6) consists of right-invariant vector fields which commute. This is obvious

for the summands with vector fields acting on distinct edges e 6= e′, and for e = e′

note that [ReIJ , R
e
KL] is antisymmetric in (IJ)↔ (KL) and thus vanishes if contracted

with εIJKLM . Now it is straightforward to see that ĈM (S, S′, x) itself is essentially

self-adjoint.

Note that we did not follow the standard route to quantise operators, which would

be to adjust the density weight of the simplicity constraint to be +1 (in its current

form it is +2) and quantise it using the methods in [46]. Rather, the quantisation

displayed above parallels the quantisation of the (square of the) area operator in 3+1

dimensions and indeed we could have considered
∫
dD−1u

√
|nSanSb S ab

M
| for arbitrary

surfaces S and would have arrived at the above expression in the limit that S shrinks

to a point without having to take away the regulator ε (the dependence on two rather

than one surface can be achieved, to some extent, by an appeal to the polarisation

identity). If we would have quantised it using the standard route then it would be nec-

essary to have access to the volume operator. We will see in section 12.2 that for the

derivation of the volume operator in certain dimensions in the form we propose, which

is a generalisation of the 3 + 1 dimensional treatment, we need the above simplicity

constraint operator to cancel some unwanted terms. Of course, there might be other

proposals for volume operators which can be defined in any dimension without using

the simplicity constraint. Still, the quantisation of the simplicity constraint presented

187



11. Implementation and solution of the kinematical constraints

here will (1) give contact to the simplicity constraints used in spin foam models and

(2) enable us to solve the constraint in any dimension when acting on edges. Its ac-

tion on the vertices, i.e. the requirements on the intertwiners, is more subtle. We will

first present the action on edges and afterwards derive a suitable set of necessary and

sufficient “building blocks” for the vertex simplicity constraints, which will help us to

prove its anomalous nature and to propose possible routes of how to proceed, namely

the master constraint method or the choice of a maximally commuting subset. For

following calculations, note that we always can adapt a graph to a finite number of

surfaces. Furthermore, it is understood that all surfaces intersect γ′ in one point only

(we may always shrink the surfaces until this is true).

11.2.1.2 Edge constraints and their solution

The action of the quantum simplicity constraint at an interior point x of an analytic

edge e = e1 ◦ (e2)−1 for both surfaces S, S′ not containing e (otherwise the action is

trivial) is given by

ĈM (S, S′, x)p∗γfγ = ±p∗γSS′ ε
IJKLM

(
Re1IJ −R

e2
IJ

) (
Re1KL −R

e2
KL

)
p∗γSS′γfγ

= ±p∗γSS′2ε
IJKLM

(
Re1IJ −R

e2
IJ

)
Re1KLp

∗
γSS′γ

fγ

= ±p∗γSS′2ε
IJKLMRe1KL

(
Re1IJ −R

e2
IJ

)
p∗γSS′γfγ

= ±p∗γSS′4ε
IJKLMRe1IJR

e1
KLp

∗
γSS′γ

fγ , (11.7)

where the sign is + if the orientation of the two surface S, S′ with respect to e coincides

and − otherwise. In the second and fourth step we used gauge invariance at the vertex

v of an adapted graph,
[∑

e∈E(γ); v=b(e)R
e
IJ

]
fγSS′ = 0, and in the third step we used

that [Re1 , Re2 ] = 0. This leads to the requirement on the generators of SO(D + 1) for

all edges

τ[IJτKL] = 0. (11.8)

It was found in [169] that this constraint is satisfied by so-called simple representations

of SO(D + 1). These representations have been studied in the mathematical literature

in quite some detail, where they are called most degenerate representations [233–235],

(completely) symmetric representations [234, 236–238] or representations of class one

(with respect to a SO(D) subgroup) [239]. Irreducible simple representations are given
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11.2 Simplicity constraints

by homogeneous harmonic polynomials H
(D+1)
N of degree N . While the highest weight

vector of irreps of SO(D + 1) usually are of the form Λ = (n1, ..., nn), ni ∈ N0 and

n = bD+1
2 c, simple irreps are in any dimension labelled by one positive integer N ,

Λ = (N, 0, ..., 0). In this sense, there is a similarity between the simple representations

of SO(D + 1) and the representations of SO(3) (which all can be thought of as being

simple). In particular, for D + 1 = 4 we obtain the well-known simple representations

of SO(4) used in spin foams labelled by j+ = j = j−.

The commutator with gauge transformations at an interior point x of an analytic edge

e = e1 ◦ (e2)−1 (e1, e2 outgoing at x) yields, analogously to the classical calculation,[
ĜγSS′ [Λ], ĈM (S, S′, x)γSS′

]
=± ΛAB(x)εIJKLM

[(
Re1AB +Re2AB

)
,
(
Re1IJ −R

e2
IJ

) (
Re1KL −R

e2
KL

)]
=±

{
ΛAB(x)εIJKLM

[
Re1AB, R

e1
IJR

e1
KL − 2Re1IJR

e2
KL

]
+ (e1 ↔ e2)

}
=±

D−3∑
i=1

ΛMi
M ′i

(x)εIJKLM1...Mi−1M
′
iMi+1...MD−3

(
Re1IJR

e1
KL − 2Re1IJR

e2
KL +Re2IJR

e2
KL

)
=
D−3∑
i=1

ΛMi
M ′i

(x) ĈM1...Mi−1M
′
iMi+1...MD−3(S, S′, x). (11.9)

Two constraints acting at the same interior point x of an edge e = e1 ◦ (e2)−1 commute

weakly. Using the gauge invariance of Cf if f is gauge invariant, we find[
ĈM (S, S′, x), ĈN (S′′, S′′′, x′)

]
p∗γfγ

≈± 16p∗γδx,x′ε
IJKLM εOPQRN

[
Re1IJR

e1
KL, R

e1
OPR

e1
QR

]
fγ + O(Ĉfγ) + O(Ĝfγ)

∼ p∗γδx,x′
(
εRe1 · Ĉe1,rot + Ĉe1,rot · εRe1

)
fγ

∼ p∗γδx,x′
(
εRe1 · Ĉe1,rot + [Ĉe1,rot, εRe1 ] + εRe1 · Ĉe1,rot

)
fγ

∼ p∗γδx,x′
(

2εRe1 · Ĉe1,rot + ε · Ĉe1,rot,rot
)
fγ ≈ 0, (11.10)

which can be seen by the fact that the simplicity on an edge is quadratic in the rotation

generator Re1 on that edge, and we used the notation

D−3∑
i=1

ΛMi
M ′i

εABCDM1...Mi−1M
′
iMi+1...MD−3ReABR

e
CD =: Λ · Ĉe,rot (11.11)
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11. Implementation and solution of the kinematical constraints

for a simplicity with a infinitesimal rotation acting on the multi-index M (cf. (11.9)).

Here, we chose a graph γ adapted to all four surfaces S, S′, S′′, S′′′. Note that classically,

before introducing singular smearing, the Poisson bracket of two simplicity constraints

vanished strongly. In the quantum theory, we see that this is only true in a weak sense.

However, this already is the case at the level of the classical holonomies and fluxes, i.e.

can be traced back to the singular smearing which is used. In this sense, the simplicity

constraints acting on an edge are non-anomalous and can be solved by labelling all

edges by simple representations of SO(D + 1).

11.2.1.3 Vertex simplicity constraints: Anomaly

When acting on a node then, like the off-diagonal constraints in spin foam models, we

will find that the simplicity constraints do not (weakly) commute anymore. To analyse

the anomaly in detail, here we will first introduce a both necessary and sufficient set

of simple “building blocks” of the simplicity constraint at the node, and then calculate

the commutator of these building blocks. Having them at hand will also be convenient

later on when giving tentative proposals of how to treat these vertex constraints which,

due to their second class nature, should not be imposed strongly anymore.

Considering (11.6), an obviously sufficient set of building blocks at the vertex v is

given by

Re[IJR
e′

KL]fγ = 0 ∀e, e′ ∈ {e′′ ∈ E(γ); v = b(e′′)}. (11.12)

Note that they exactly coincide with the off-diagonal simplicity constraints which ap-

pear in spin foam models, see e.g. [169, 190]. For necessity, we have to prove that we

can choose surfaces in such a way that these building blocks follow. Note that it has

already been shown in [240] that all right invariant vector fields Re for single edges e

can be generated by the Y (S), but the construction involves commutators of the fluxes.

Since we want to explore if the simplicity constraints acting on vertices are anomalous,

we cannot use commutators in our argument. Instead, we will construct the right in-

variant vector fields Re by using linear combinations of fluxes only. To this end, we

will prove the following lemma:
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11.2 Simplicity constraints

Lemma 1.

For each edge e ∈ E(v) at the vertex v we can always choose two surfaces S, S̃, such

that the orientations with respect to S, S̃ of all edges but e coincide.

The intuitive idea of how to find these surfaces is to start with a surface containing

the edge e while intersecting all other edges e′ ∈ E(v), e′ 6= e transversally, and then

slightly distort this surface in the two directions “above” and “below” defined by the

surface, such that the edge e in consideration is once above and once below the surface,

while the orientations of all other edges with respect to the surfaces remain unchanged,

in particular none of them lies inside the surfaces. When subtracting the flux vector

fields corresponding to the two distorted surfaces, all terms will cancel except the terms

involving Re.

Proof. To prove the statement above, two cases have to be distinguished: (a) the case

where no e′ ∈ E(v) is (a segment of) the analytic extension through v of the edge e

and (b) the case where e has a partner ẽ which is a analytic extension of e through v.

Case (a): The construction of the surface Sv,e with the following properties

1. se ⊂ Sv,e for some beginning segment se of e, and the other edges e′ ∈ E(v), e′ 6= e

intersect Sv,e transversally in v.

2. For e′ ∈ E(v), e′ 6= e: e′ ∩ Sv,e = v, and for e′ /∈ E(v), e′ ∩ Sv,e = ∅.

is given in [240] and we summarise the result shortly. An analytic surface (edge) is

completely determined by its germ [S]v ([e]v)

S(u1, ..., uD−1) =

∞∑
m1,...,mD−1=0

um1
1 ...u

mD−1

D−1

m1!...mD−1!
S(m1,...,mD−1) (0, ..., 0) ,

e(t) =

∞∑
n=0

tn

n!
e(n)(0). (11.13)

To ensure that se ⊂ Sv,e, we just need to choose a parametrisation of S such that

S(t, 0, ..., 0) = e(t) which fixes the Taylor coefficients S(m,0,...,0)(0, ..., 0) = e(m)(0). For

the finite number k = |E(v)|−1 of remaining edges at v, we can now use the freedom in

choosing the other Taylor coefficients to assure that there are no (beginning segments

of) other edges contained in Sv,e [240]. In particular, only a finite number of Taylor

coefficients is involved.

Now we state that the intersection properties of a finite number of transversal edges
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11. Implementation and solution of the kinematical constraints

at v with any (sufficiently small) surface S are already fixed by a finite number of

Taylor coefficients of S. We will discuss the case D = 3 for simplicity, higher dimen-

sions are treated analogously. Locally around v we may always choose coordinates

such that the surface is given by z = 0, S(x, y) = (x, y, 0). The edge e contained

in the surface is given by e(t) = (x(t), y(t), 0) and for any transversal edge at v we

find e′(t) = (x′(t), y′(t), z′(t)) where z′(t) = tn−1

(n−1)!z
′(n−1)(0) + O(tn), and n < ∞

since otherwise e′ would be contained in S. The sign of the lowest non-vanishing Tay-

lor coefficient z
′(n−1)(0) determines if the edge is “up”- or “down”-type locally. Set

N = maxe′∈E(v),e′ 6=e (n), and obviously N < ∞. Thus, we can e.g. by modifying

S(N,0)(0, 0) choose the surface S̃(x, y) = (x, y,±xN ), which locally has the same inter-

section properties with the edges e′ ∈ E(v), e′ 6= e and certainly does not contain e

anymore.

Coming back to the general case considered before, there always exists N < ∞ such

that we can change S(N,0,...,0)(0, ..., 0) without modifying the intersection properties of

any of the edges e′ ∈ E(v), e′ 6= e, in particular the “up”- or “down”-type properties

are unaffected. However, the edge e no longer is of the inside type, but becomes either

“up” or “down” (depending on whether S(N,0,...,0)(0, ..., 0) is scaled up or down and on

the orientation of S). In general, new intersection points v′ ∈ E(v) ∩ S, v′ 6= v may

occur when modifying the surface in the above described way, but we may always make

S smaller to avoid them.

Now choose a pair of surfaces S, S̃ for the edge e such that it is once “up”- and

once “down”-type to obtain the desired result[
ŶIJ(S)− ŶIJ(S̃)

]
p∗γfγ = 2p∗γR

e
IJfγ . (11.14)

Case (b): In the case that there is a partner ẽ which is a analytic continuation of e

through v, we cannot construct an analytic surface (without boundary) Sv,e containing

a beginning segment of e and not containing a segment of ẽ. However, we can con-

struct an analytic surface Sv,{e,ẽ} containing (beginning segments of) e, ẽ and sharing

the remaining properties with Sv,e above. The method is the same as in case (a) [240].

Again, there always exists N <∞ such that we can change S(N,0,...,0)(0, ..., 0) without

modifying the intersection properties of any of the edges e′ ∈ E(v), e′ 6= {e, ẽ}, and

such that both edges e, ẽ become either “up” or “down”-type. Moreover, if we choose

N even, then e, ẽ will be of the same type with respect to the modified surface, while

for N odd one edge will be “up” and its partner will be “down”. Calling the modified
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11.2 Simplicity constraints

surface S for N even and S̃ for N odd, we find with the same calculation (11.14) as in

case (a) the desired result.

This furnishes the proof of the above lemma1.

Choosing the surfaces as described above, we find that the following linear combination

1

4

(
ĈM (S, S′, x)− ĈM (S̃, S′, x)− ĈM (S, S̃′, x) + ĈM (S̃, S̃′, x)

)
p∗γfγ

= p∗γε
IJKLMReIJR

e′
KLfγ (11.15)

proves the necessity of the building blocks. Using the fact that the edge representations

are already simple, we can rewrite the building blocks as

Re[IJR
e′

KL]fγ =
1

2

[
(Re[IJ +Re

′

[IJ)(ReKL] +Re
′

KL])−R
e
[IJR

e
KL] −R

e′

[IJR
e′

KL]

]
fγ

=
1

2
(Re[IJ +Re

′

[IJ)(ReKL] +Re
′

KL])fγ =:
1

2
∆ee′
IJKLfγ . (11.16)

We proceed by showing that the building blocks are anomalous, starting with the case

D = 3. We calculate for e 6= e′ 6= e′′ 6= e[
εIJKL∆ee′

IJKL, ε
ABCD∆e′e′′

ABCD

]
∼ δABCIJK (Re′′)AB(Re)

IJ(Re′)
K
C , (11.17)

where we used the notation δI1...InJ1...Jn
:= n! δI1[J1

δI2J2
...δInJn]. To show that this expression

can not be rewritten as a linear combination of the of building blocks (11.16), we

antisymmetrise the indices [ABIJ ], [ABKC] and [IJKC] and find in each case that

the result is zero. Therefore, a simplicity building block can not be contained in any

linear combination of terms of the type (11.17). For D > 3, we have[
εIJKLM∆ee′

IJKL, ε
ABCDE∆e′e′′

ABCD

]
∼ δABCE

IJKM
(Re′′)AB(Re)

IJ(Re′)
K
C . (11.18)

Choosing M = E fixed, the anomaly is the same as above.

A short remark concerning the terminology “anomaly” here and in the title of this

section is in order at this place. Normally, the term anomaly denotes that a cer-

tain classical structure, e.g. the constraint algebra, is not preserved at the quantum

1This also establishes that the right invariant vector fields ReIJ are not only contained in the Lie

algebra generated by the flux vector fields Ŷ (S), but are already contained in the flux vector space,

which to the best of our knowledge has not been shown.
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level, e.g. by factor ordering ambiguities. The non-commutativity of the simplic-

ity constraints, however, is a classical effect, since it already arises when introducing

holonomies and fluxes as basic variables. Thus, one could argue that it would be more

precise to talk of a quantisation of (partly) second class constraints. On the other hand,

since the holonomy-flux algebra is an integral part of the quantum theory and at the

classical level it would be perfectly fine to use a non-singular smearing and thus first

class simplicity constraints, we will nevertheless use the term anomaly to describe this

phenomenon, since its consequence, the erroneous removal of degrees of freedom at the

quantum level, is the same.

Independently of the terminology chosen, we cannot quantise the simplicity constraints

acting on vertices using the Dirac procedure since this will lead to the additional con-

straints (11.18) being imposed. The unique solution to these constraints has been

worked out in [169] and is given by the Barrett-Crane intertwiner in four dimensions

and a higher-dimensional analogue thereof. Several options of how to proceed are at

our disposal at this point. We will first discuss the introduction a vertex master con-

straint as given in [3], and then the choice of a maximally commuting subset of vertex

simplicity constraints as introduced in [5].

11.2.1.4 Quadratic vertex simplicity master constraint

While equivalent at the classical level, the master constraint introduced in [60] allows to

quantise also second class constraints by a strong operator equation. Due to the second

class nature, one expects the master constraint operator to have an empty kernel or at

least a kernel which is too small to describe the physical Hilbert space. Since we know

that the Barrett-Crane intertwiner is a solution to the strong imposition of all vertex

simplicity constraints, we are in the second case. In order to find a larger kernel of the

master constraint, one modifies it by adding terms to it which vanish in the classical

limit, i.e. performs ~-corrections. The merits of this procedure are exemplified by the

construction of the EPRL intertwiner [190] in four dimensions, which results from a

master constraint for the linear simplicity constraint upon ~-corrections. Since we are

not aware of a suitable solution for the quadratic vertex master simplicity constraint,

we will contend ourselves by giving a definition of this constraint operator. The task

remaining for solving the vertex simplicity master constraint operator is thus to find a
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11.2 Simplicity constraints

proper ~-correction which results in a physical Hilbert space with the desired proper-

ties, e.g. that there exists a unitary map to SU(2) spin networks in four dimensions.

A general simplicity master constraint is given by

M̂ vp
∗
γfγ = p∗γ

∑
e,e′,e′′,e′′′∈E(v)

ce
′′e′′′
ee′

MNOP
IJKL ∆ee′

IJKL∆e′′e′′′
MNOP fγ (11.19)

with a positive matrix ce
′′e′′′
ee′

MNOP
IJKL , which we will choose diagonal for simplicity, i.e.

ce
′′e′′′
ee′

MNOP
IJKL = 1

4!cee′δ
e′′

(e δ
e′′′

e′) δ
MNOP
IJKL . The diagonal elements cee′ can be chosen symmetric

because of the symmetry of the building blocks. We choose cee′ = 1 ∀ e, e′, e 6= e′ and

cee = 0 since the edge representations are already simple, leading to the final version

of the master constraint we propose,

M̂ vp
∗
γfγ = p∗γ

∑
e,e′∈E(v),e 6=e′

∆ee′
IJKL∆ee′

IJKLfγ . (11.20)

Cylindrical consistency and essential self-adjointness follows analogously to the case of

C(S, S′, x) in section 11.2.1.1.

For the case of SO(4), we can use the decomposition in self-dual and anti-selfdual

generators to find that εIJKLReIJR
e′
KL = ~Je+ · ~Je

′
+ − ~Je− · ~Je

′
− , which implies

εIJKL∆ee′
IJKL =

(
~Je+ + ~Je

′
+

)
·
(
~Je+ + ~Je

′
+

)
−
(
~Je− + ~Je

′
−

)
·
(
~Je− + ~Je

′
−

)
=: ∆ee′

+ −∆ee′
− .

(11.21)

This leads to the master constraint

M̂ vp
∗
γfγ = p∗γ

∑
e,e′∈E(v),e 6=e′

(
∆ee′

+ ∆ee′
+ − 2∆ee′

+ ∆ee′
− + ∆ee′

− ∆ee′
−

)
fγ , (11.22)

where + and − now label independent copies of SO(3). Thus, we can calculate the

matrix elements of this constraint in a recoupling basis analogously to the standard

LQG volume operator matrix elements [241].

11.2.1.5 Choice of maximally commuting subset of vertex simplicity con-

straints

Looking back at chapter 8, one could alternatively try to gauge unfix the second class

vertex simplicity constraints which result after classically introducing holonomy and
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11. Implementation and solution of the kinematical constraints

flux variables, to obtain a first class system subject to only a subset of the vertex sim-

plicity constraints. In this process, one would have to pick out a first class subset of

the simplicity constraints which has a closing algebra with the remaining constraints.

The construction of a possible choice of such a subset was discussed in [5] and we will

briefly summarise these findings.

At the heart of the construction lies the fact that a basis in space of intertwiners

can be given by specifying a recoupling scheme and labelling the “internal lines” by

internal irreducible representations. We have seen in (11.16) that, using that the edge

representation already are constrained to be simple, the simplicity building blocks can

be rewritten as Re[IJR
e′

KL]fγ = 1
2(Re[IJ+Re

′

[IJ)(ReKL]+R
e′

KL])fγ , which now demands that

not only the edge representations, but also the representation to which they couple, be

simple. Demanding all simplicity building blocks thus means that, no matter which

recoupling scheme is chosen for the intertwiner, all internal representations have to be

simple. As we already commented, this requirement is very restrictive and only allows

for one solution, the Barrett Crane intertwiner (or its higher dimensional version) [169].

The non-commutativity of the building blocks thus can be understood as the fact that

the property of one internal representation being simple in one recoupling scheme in

general is not preserved under a change of recoupling scheme. However, it is proven

in [5] that in one fixed recoupling scheme, we may demand that all internal lines be

simple. Moreover, it is shown (under a certain assumption, cf. [5]) that this set of

commuting vertex simplicity constraints is maximal, i.e. adding any other building

block spoils the closure of the algebra.

A intertwiner of N edges which satisfies such a maximally commuting subset of con-

straints can thus be labelled by the N − 3 simple representations, i.e. “spins”, on its

internal lines in the given recoupling scheme. We will call such an intertwiner a simple

SO(D+1) intertwiner. Choosing the same recoupling scheme for an SU(2) intertwiner,

we can construct a unitary (with respect the scalar products induced by the respective

Ashtekar-Lewandowski measures) map from the set of simple SO(D + 1) intertwiners

to the SU(2) intertwiners by simply identifying the spins on the internal lines.

Of course, this also makes apparent the problem of this proposal: We have to make a
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choice of maximally commuting set of vertex simplicity constraints, i.e. a recoupling

scheme, for each vertex. While at the level of SU(2), a change of recoupling scheme only

is a change of basis in the intertwiner space, the corresponding change of recoupling

scheme at the level of SO(D + 1) does not preserve the property of the intertwiners

being simple. It also is questionable if the Hamiltonian constraint leaves the space of

simple intertwiners in a certain recoupling scheme invariant, and it probably has to be

modified accordingly. Another puzzle is that the “size” of the kinematical Hilbert space

after solving the simplicity constraint in the above described manner is the same for

any dimension D ≥ 3 (neglecting subtleties related with the solution of the diffeomor-

phism constraint), and the dimension of spacetime could become an emerging concept

stemming form the choice of semiclassical states. For an extended discussion on these

issues, we refer the interested reader to the original work [5].

11.2.2 Linear simplicity constraint

As we have seen in section 9.1, classically it is equivalent to use the linear simplicity

constraints instead of the quadratic constraints we treated so far. We will see shortly in

section 15.1 that this option even seems favoured if (in particular, Majorana) fermions

are coupled.

To study this constraint in the quantum theory, it is firstly necessary to construct

a kinematical Hilbert space for the additional field N I appearing, and secondly one has

to represent and try to solve the constraint in the quantum theory. The kinematical

Hilbert space for N I was given in [6] and the linear constraint was further studied in [5].

We will shortly summarise the findings, and refer the interested reader to the original

articles for more detailed display.

11.2.2.1 Kinematical Hilbert space for N I

From a spacetime point of view, the fields N I are scalars. In [45, 62], already two

routes of how to obtain kinematical Hilbert spaces for scalar fields in a background

independent way were given.

The first route [45] is based on point holonomies, the construction of which works
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11. Implementation and solution of the kinematical constraints

fine if the scalar field is valued in the Lie algebra of some compact gauge group. How-

ever, in the case at hand N I transforms in the defining representation of SO(D + 1)

and it is at least not obvious if the point holonomies also can be constructed in this case.

The second possibility [62], which actually could be applied straightforwardly here,

leads to a diffeomorphism invariant Fock representation. However, the field N I we are

dealing with has one crucial property which usual scalar fields do not share and which

led the authors in [5] to construct the Hilbert space differently: it is itself (weakly)

valued in a compact set, namely the D-sphere SD. This is exactly what is ensured by

the normalisation constraint N = N INI − 1.

To make N I strongly valued in SD, the normalisation constraint is gauge fixed by in-

troducing the additional constraint Ñ = N IPI . The resulting second class pair N ,

Ñ is in a second step strongly solved by going over to the corresponding Dirac bracket.

The remaining fields N I , P̄I (where ||N || = 1 now holds strongly) do not have a closing

Dirac bracket algebra any longer. However, the rotation generators LIJ := 2N[I P̄J ]

together with N I do have a closing algebra, and moreover, by LIJN
J = −P̄I , we see

that {N I , LJK} surely separate the points of the phase space (of course, neglecting

A, π).

The Hilbert space HN now is constructed in analogy to the one usually used in

LQG: Wave functions are cylindrical functions over finite point sets F [N ] of the form

F [N ] = Fp1,..,pn(N(p1), .., N(pn)) where Fp1..pn is a polynomial with complex coeffi-

cients of the N I(pk), k = 1, .., n, I = 0, .., D + 1. The cylindrical measure is con-

structed using that there exists an SO(D + 1) invariant probability measure dν on

SD, and the operator N̂I(x) acts by multiplication by NI(x) on this space. An or-

thonormal basis in this Hilbert space is given by spherical harmonic vertex functions

F
~v,~l,

~~M
(N) :=

∏
v∈~v Ξ

~Mv
lv

(N), where Ξ
~M
l (N) are generalisations of spherical harmonics

Y m
l (θ, φ) to higher dimensions and constitute an orthonormal basis for the Hilbert

space Hp = L2(SD, dν) of square integrable functions on SD. The label l here stands

for the highest weight of the representation Λ = (l, 0, ..., 0), l ∈ N, and ~M denotes an

integer sequence ~M := (M1, . . . ,MD−2,±MD−1) satisfying l ≥M1 ≥ . . . ≥MD−1 ≥ 0.

For more details on these functions, we refer the interested reader to our original article

[5] or to [239] for a comprehensive treatment.
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11.2 Simplicity constraints

The combined Hilbert space for the scalar field and the gravitational so(D + 1) con-

nection is simply given by the tensor product, HT = Hgrav ⊗HN . An orthonormal

basis thereof is given by a slight generalisation of the usual gauge-variant spin network

states (cf., e.g., [45]), where each vertex is labelled by an additional simple SO(D + 1)

irreducible representation coming from the field N I , and the intertwiners of course

have to be altered accordingly to contract also the indices coming from this additional

representation.

11.2.2.2 Regularisation and anomaly freedom

The regularisation of the linear simplicity constraint, being a vector density of weight

one, is similar to the regularisation of the fluxes. S a
IM

is most naturally smeared over

(D − 1)-dimensional surfaces,

S b(S) :=

∫
S
bLM (x)εIJKLMN

I(x)πaJK(x)εab1...bD−1
dxb1 ∧ ... ∧ dxbD−1 , (11.23)

where S again is a D−1-surface, and bLM an arbitrary semianalytic smearing function

of compact support, and the corresponding quantum operator is given by

Ŝb(S)f = Ŷ εbN̂ (S)f = p∗γS Ŷ
εbN̂
γS

(S)fγS

= p∗γS

∑
e∈γS

ε(e, S)εIJKLMb
LM (b(e))N̂ I(b(e))RJKe fγS . (11.24)

Using that the right invariant vector fields actually are in the linear span of the flux

vector fields as we have seen in section 11.2.1.3, it is found in [5] that is necessary and

sufficient to demand that

R̄IJe · fγ = 0 (11.25)

for all points of γ, i.e. the generators of the SO(D)N subgroup of rotations stabilising

N I have to annihilate physical states. While we have found an anomaly in the case

of the quadratic simplicity constraint, the linear constraint actually is non-anomalous,

since the generators of rotations stabilising N I form a closed subalgebra, i.e. commute

weakly1. Consulting a standard textbook on representation theory [239], we find that

1Note that the constraint is “non-anomalous” in the same sense as the quadratic constraint is

“anomalous”: while classically strongly Poisson commuting, the linear simplicity constraint lose this
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by definition, the only irreducible representations of SO(D+1) which have in their rep-

resentation space non-zero vectors which are invariant under an SO(D) subgroup are

irreps of class one, and they exactly coincide with what has been termed simple repre-

sentations in the spin foam literature. This already tells us that the above requirement

(11.25) can only be met if all edge representations are simple. Moreover, one finds that

SO(D) is a massive subgroup of SO(D+ 1), which means that the unit length vector ξ

invariant under this subgroup is unique if it exists [239]. The constraint thus is satisfied

if the ends of all edges meeting at the point where the constraint operator acts are each

individually contracted with (possibly a multiple of) this unit length invariant vector

ξπe(N) in the irrep πe of the edge (or, depending on the orientation, its dual; note that

dual representations of simple representations are simple again).

This of course poses an immediate problem: First of all, the intertwiner space at

any vertex becomes one-dimensional when solving both, the linear simplicity and Gauß

constraint (all endpoints of the edges have to be contracted with invariant vectors to

fulfil the simplicity constraints, and any further non-trivial N -dependence would make

the vertex non-gauge invariant), which seems too restrictive. Moreover, since the con-

straint has to be satisfied for all surfaces S, it in particular has to hold for all points

of a given graph. However, to insert this N -dependent intertwiner at all points of γ is

in conflict with the definition of cylindrical functions. In [5], the possibility of bringing

the proposal in agreement with cylindrical consistency using a rigging map construction

[242–244] is discussed. However, no rigging map with satisfactory properties is found

and we have to leave this issue for further studies.

11.2.2.3 Mixed quantisation

We have seen that, while the linear constraint has the nice property of being non-

anomalous if quantised as outlined, solving the constraint causes problems. While one

would expect from the experience with the quadratic constraint that, acting on edges,

it only demands the representations carried to be simple, this is not the case and it is

hard to give mathematical sense to the solution space. Therefore it seems that for pure

property upon singular smearing and therefore also in the quantum theory, but at least it remains

weakly commuting or “non-anomalous”. Note, however, that for D = 3, this property is in general lost

when introducing the Barbero Immirzi parameter as we did in section 9.3, cf. also [5].
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11.3 Diffeomorphism constraint

gravity, the quadratic constraint is favourable. However, the formulation we will give

for supergravity (cf. section 15.1) forces us to introduce the field N I . Therefore, in

[5] a third possibility is discussed, namely replacing the linear constraint classically by

the quadratic constraint plus an additional constraint of the form
√
q(nI(π)−N I) ≈ 0.

While classically completely equivalent, at the quantum level this avoids the above

problems: The quadratic constraints can be implemented as before, in particular re-

stricts the edge representations to be simple, while the additional constraint has to be

quantised using the master constraint method [245], since otherwise it most probably

does not commute with the Hamiltonian constraint operator. Choosing a suitable fac-

tor ordering, we can make sure that the additional constraint vanishes when acting on

edges, but the restrictions it imposes on the intertwiner spaces when acting on vertices

cannot be easily deduced and have not been studied so far.

For an extended discussion of the above briefly raised problems and the proposal of

several tentative remedies, as well as a comparison with the approaches used in spin

foams to deal with the simplicity constraints, we refer the interested reader to [5]. We

will also revisit the simplicity problem in the discussion 18.2 at the end of this work.

11.3 Diffeomorphism constraint

The diffeomorphism constraint can again be treated in exact agreement with the (3+1)-

dimensional case. Consider the set of smooth cylindrical functions Φ := Cyl∞(A /G )

which can be shown to be dense in H 0. By a distribution ψ ∈ Φ′ on Φ we simply mean

a linear functional on Φ. The group average of a spin-network state Tγ,~Λ,~c is defined by

the following well-defined distribution on Φ

T[γ],~Λ,~c :=
∑
γ′∈[γ]

< Tγ′,~Λ,~c, . > , (11.26)

where [γ] denotes the orbit of γ under smooth diffeomorphisms of σ which preserve the

analyticity of γ including an average over the graph symmetry group (see, e.g., [56] for

technical details). Since we already solved the simplicity constraint on single edges, we

can restrict attention to spin network states with edges labelled by simple SO(D + 1)

representations, Λe = (Ne, 0, ...). The group average [f ] of a general cylindrical function

f is defined by demanding linearity of the averaging procedure, i.e. first decompose f
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into spin-network states and then average each of the spin-network states separately.

An inner product for the diffeomorphism invariant Hilbert space can be constructed.

We will not give details and refer the reader to [27, 56].
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Geometrical operators

12.1 The D − 1 area operator

The area operator was first considered in [32] and defined mathematically rigorously in

the LQG representation in [34]. In [62], the results of [34] are generalised for arbitrary

dimension D. Using the classical identity πaIJπbIJ = 2qqab, we can basically copy the

treatment found there. Let S be a surface and X : U0 → S the associated embedding,

where U0 is an open submanifold of RD−1. Then the area functional is given by

Ar[S] :=

∫
U0

dD−1u
√
det ([X∗q] (u)). (12.1)

Introduce U0 = ∪U∈U U , a partition of U0 by closed sets U with open interior, U being

the collection of these sets. Then the area functional can be written as the limit as

|U | → ∞ of the Riemann sum

Ar[S] :=
∑
U∈U

√
1

2
πIJ(SU )πIJ(SU ), (12.2)

where SU = X(U) and πIJ(SU ) is the electric flux with choice nIJ = δI[Kδ
J
L], which has

been quantised already. Let f ∈ Cyl2(A ), choose a representative fγ and, using the

known action of the quantised electric fluxes, obtain as in the (3 + 1)-dimensional case

Ârγ [S]p∗γfγ = κ~βp∗γS
∑

x∈{e∩S;e∈E(γS)}

√√√√√−1

2

 ∑
e∈E(γS),x∈∂e

ε(e, S)ReIJ


2

p∗γSγfγ , (12.3)

where γS � γ is an adapted graph. The family of operators Ârγ [S] has dense domain

Cyl2(A ). Its independence of the adapted graph follows from that of the electric fluxes.
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Moreover, the properties of the area operator like cylindrical consistency, essential self-

adjointness and discreteness of the spectrum can be shown analogously to [62].

The complete spectrum can be derived using the standard methods. We use ∑
e∈E(γS),x∈∂e

ε(e, S)ReIJ


2

= 2
(
Rx,upIJ

)2
+ 2

(
Rx,downIJ

)2
−
(
Rx,upIJ +Rx,downIJ

)2

=: −∆up −∆down +
1

2
∆up+down, (12.4)

where the ∆s are mutually commuting primitive Casimir operators of SO(D+1). Thus

their spectrum is given by the Eigenvalues λπ > 0. We have to distinguish the cases

D + 1 = 2n even, N 3 n ≥ 2 and D + 1 = 2n + 1 odd, n ∈ N. In a representation of

SO(D+ 1) with highest weight Λ = (n1, ..., nn), ni ∈ N0, we find for the eigenvalues of

the Casimir1 ∆ := −1
2XIJX

IJ

∆vΛ := λπΛvΛ =

 n∑
i=1

f2
i + 2

n∑
j=2

∑
i<j

fi

 vΛ for SO(2n),

∆vΛ := λπΛvΛ =

 n∑
i=1

f2
i + 2

n∑
j=2

∑
i<j

fi +

n∑
i=1

fi

 vΛ for SO(2n+ 1), (12.5)

where we used the following notation

fi =

n−2∑
j=i

nj +
nn−1 + nn

2
, i ≤ (n− 2); fn−1 =

nn−1 + nn
2

; fn =
nn − nn−1

2
for SO(2n),

fi =
n−1∑
j=i

nj +
nn
2
, i ≤ (n− 1); fn =

nn
2

for SO(2n+ 1), (12.6)

such that f1 ≥ f2 ≥ ... ≥ fn. Note that the above formulas hold for general irreducible

Spin(D + 1) representations. Irreducible representations of SO(D + 1) are found by

the restriction that all fi be integers. Denoting by Π a collection of representatives of

irreducible representations of SO(D+ 1), one for each equivalence class, we find for the

area spectrum

Spec(Âr[S]) =

{
κ~β

2

N∑
n=1

√
2λπ1

n
+ 2λπ2

n
− λπ12

n
;N ∈ N, π1

n, π
2
n, π

12
n ∈ Π, π12

n ∈ π1
n ⊗ π2

n

}
.

(12.7)

1Note that RIJ = 1/2XIJ , such that XIJ fulfil the standard Lie algebra relations without the

factor 1/2 appearing in (10.10).
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Note that the above formulas (12.5) significantly simplify if we restrict to simple rep-

resentations, Λ0 = (N, 0, 0, ...),

∆vΛ0 = N(N + 2n− 2)vΛ0 =N(N +D − 1)vΛ0 for SO(2n),

∆vΛ0 = N(N + 2n+ 1− 2)vΛ0=N(N +D − 1)vΛ0 for SO(2n+ 1). (12.8)

We cannot use this simplified expression for the SO(D + 1) Casimir operator in the

general case (12.7), since in the decomposition of a tensor product of irreducible simple

representations usually non-simple representations will appear1, but we can use it for a

single edge. When acting on a single edge e = e1 ◦ (e2)−1 intersecting S transversally,

we know that due to gauge invariance

{
Re1IJ −R

e2
IJ

}2
he = 4

(
Re1IJ

)2
he = −2N(N +D − 1)he. (12.9)

The action of the area operator on a single edge e, e ∩ S 6= ∅ is thus given by

Âre[S]p∗ehe = κ~β
√
N(N +D − 1)p∗ehe = 16πβ

(
l(D+1)
p

)D−1
×
√
N(N +D − 1)p∗ehe,

(12.10)

where l
(D+1)
p := D−1

√
~G(D+1)

c3
is the unique length in D + 1 dimensions, and κ =

16πG(D+1)/c3 in any dimension, where G(D+1) denotes the gravitational constant. Note

that forD = 3, we find the factor
√
N(N + 2) in the area spectrum of an edge stemming

from irreducible simple representations of SO(4). Replace the non-negative integer N

labelling the weight by N = 2j, j half integer, to find the factor 2
√
j(j + 1) of SO(4)

spin foam models, which coincides with the usual spacing in (3 + 1)-dimensional LQG,

Âre[S]p∗ehe = 2κ~β
√
j(j + 1)p∗ehe = 32πβ

(
l(D+1)
p

)D−1
×
√
j(j + 1)p∗ehe. (12.11)

In standard LQG, instead of the gauge group SO(3) one extends to the double cover

Spin(3) ∼= SU(2) and allows also for half integer representations. Note that in our case,

we cannot allow for general Spin(D + 1) representations at the edges, since the edge

simplicity constraint is not satisfied in representations of Spin(D+ 1) which are not as

well representations of SO(D + 1), D ≥ 3 [169].

1For the tensor product of two irreducible simple representations of SO(n) holds [237, 238] (w.l.o.g.

M ≥ N) [M, 0, .., 0]⊗ [N, 0, .., 0] =
∑N
K=0

∑N−K
L=0 [M +N − 2K − L,L, 0, .., 0].
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12.2 The volume operator

The derivation of the volume operator is analogous to the treatment in [62] and requires

only a slight adjustment. The exposure is geared towards using the quadratic simplic-

ity constraint. For an alternative construction of the volume operator when using the

linear constraint, cf. [5].

The volume of a region R is classically measured by

V (R) :=

∫
R
dDx
√
q, (12.12)

where
√
q has to be expressed in terms of the canonical variables. The derivation is

performed for β = 1, the general result is obtained by multiplying the resulting operator

by βD/(D−1).

12.2.1 D + 1 even

Let n = (D− 1)/2. Let χ∆(p, x) be the characteristic function in the coordinate x of a

hypercube with centre p spanned by the D vectors ~∆i := ∆i~ni, i = 1, . . . , D, where ~ni

is a normal vector in the frame under consideration and which has coordinate volume

vol = ∆1 . . . ∆D det(~n1, . . . , ~nD) (we assume the vectors to be right-oriented). In other

words,

χ∆(p, x) =

D∏
i=1

Θ

(
∆i

2
−
∣∣< ni, x− p >

∣∣) (12.13)

where < ·, · > is the standard Euclidean inner product and Θ(y) = 1 for y > 0 and zero

otherwise. We will use lower indices (∆1
I , . . . ,∆

D
I ) to label different hypercubes. It will

turn out to be convenient to label the D edges appearing in the following formulae by

e, e1, . . . , en, e
′
1, . . . , e

′
n.

We consider the smeared quantity

π(p,∆1, . . . ,∆D)

=
1

vol(∆1) . . . vol(∆D)

∫
σ
dDx1 . . .

∫
σ
dDxD

χ∆1(p, x1)χ∆2(2p, x1 + x2) . . . χ∆D
(Dp, x1 + . . .+ xD)

1

2D!
εaa1b1...anbnεIJI1J1I2J2...InJnπ

aIJπa1I1K1πb1J1
K1 . . . π

anInKnπbnJnKn . (12.14)
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Then it is easy to see that the classical identity

V (R) = lim
∆1→0

. . . lim
∆D→0

∫
R
dDp |π(p,∆1, . . . ,∆D)|

1
D−1 (12.15)

holds. The canonical brackets{
AaIJ(x), πbKL(y)

}
= 2δD(x− y)δbaδ

[K
I δ

L]
J (12.16)

give rise to the operator representation

π̂bKL = −~
i

δ

δAbKL
(12.17)

while the connection acts by multiplication.

Let a graph γ be given. In order to simplify the notation, we subdivide each edge e with

endpoints v, v′ which are vertices of γ into two segments s, s′ where e = s ◦ (s′)−1 and

s has an orientation such that it is outgoing at v′. This introduces new vertices s ∩ s′

which we will call pseudo-vertices because they are not points of non-semianalyticity

of the graph. Let E(γ) be the set of these segments of γ but V (γ) the set of true (as

opposed to pseudo) vertices of γ. Let us now evaluate the action of

π̂aIJ(p,∆) :=
1

vol(∆)

∫
Σ
dDxχ(p, x)π̂aIJ (12.18)

on a function f = p∗γfγ cylindrical with respect to γ. We find (e : [0, 1] → σ, t → e(t)

being a parametrisation of the edge e)

π̂aIJ(p,∆)f =
i~

vol(∆)

∑
e∈E(γ)

∫ 1

0
χ∆(p, e(t))ėa(t)tr

([
he(0, t)τ

IJhe(t, 1)
]T ∂

∂he(0, 1)

)
fγ .

(12.19)

Here we have used (1) the fact that a cylindrical function is already determined by its

values on A /G rather than A /G so that it makes sense to take the functional deriva-

tive, (2) the definition of the holonomy as the path-ordered exponential of
∫
eA with

the smallest parameter value to the left, (3) A = dxaAaIJτ
IJ where τ IJ ∈ so(D + 1)

and we have defined (4) tr(hT∂/∂g) = hAB∂/∂AB, A,B,C, . . . being SO(D+1) indices.

The state that appears on the right-hand side of (12.19) is actually well-defined, in the

sense of functions of connections, only when A is smooth for otherwise the integral over

t does not exist, see [246] for details. However, as announced, we will be interested only
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12. Geometrical operators

in quantities constructed from operators of the form (12.19) and for which the limit of

shrinking ∆ → 0 to a point has a meaning in the sense of H = L2(A /G , dµ0) and

therefore will not be concerned with the actual range of the operator (12.19) for the

moment.

We now wish to evaluate the whole operator π̂(p,∆1, . . . ,∆D) on f . It is clear that

we obtain D types of terms, the first type comes from all three functional derivatives

acting on f only, the second type comes from D − 1 functional derivatives acting on f

and the remaining one acting on the trace appearing in (12.19), and so forth.

The first term (type) is explicitly given by

π̂(p,∆1, ..,∆D)f

=
1

2D!

(i~)D

vol(∆1)..vol(∆D)
εaa1b1..anbnεIJI1J1I2J2..InJn

∫
[0,1]D

dt dt1..dtn dt
′
1..dt

′
n

∑
e1,..,eD∈E(γ)

χ∆1(p, x1)χ∆2(2p, x1 + x2)..χ∆D
(Dp, x1 + ..+ xD)

ėa(t)ėa1
1 (t1)..ėann (tn)ė′1

b1(t′1)..ė′n
bn(t′n)tr

([
he(0, t)τ

IJhe(t, 1)
]T ∂

∂he(0, 1)

)
tr

([
he1(0, t1)τ I1K1he1(t1, 1)

]T ∂

∂he1(0, 1)

)
tr

([
he′1(0, t′1)τJ1

K1he′1(t′1, 1)
]T ∂

∂he′1(0, 1)

)
...

tr

([
hen(0, tn)τ InKnhen(tn, 1)

]T ∂

∂hen(0, 1)

)
tr

([
he′n(0, t′n)τJnKnhe′n(t′n, 1)

]T ∂

∂he′n(0, 1)

)
fγ . (12.20)

The other terms are vanishing due to either the same symmetry / anti-symmetry prop-

erties as in the usual treatment or the simplicity constraint in case the first derivative

is involved.

Given a D-tuple e1 . . . eD of (not necessarily distinct) edges of γ, consider the func-

tions

xe1,...,eD(t1, . . . , tD) := e1(t1) + . . .+ eD(tD). (12.21)
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12.2 The volume operator

This function has the interesting property that the Jacobian is given by

det

(
∂(x1

e1,...,eD
, . . . xDe1,...,eD)(t1, . . . , tD)

∂(t1, . . . , tD)

)
= εa1...aD ė1(t1)a1 . . . ėD(tD)aD (12.22)

which is precisely the form of the factor which enters the integral (12.20).

We now consider the limit ∆1, . . . ,∆D → 0. The idea is that all quantities in (12.20)

are meaningful in the sense of functions on smooth connections and thus limits of func-

tions as ∆→ 0 are to be understood with respect to any Sobolev topology. The miracle

is that the final function is again cylindrical and thus the operator that results in the

limit has an extension to all of A /G .

Lemma 2.

For each D-tuple of edges e1, . . . , eD there exists a choice of vectors ~n1
1, . . . , ~n

1
D, ~n

2
1, . . . , ~n

D
D

and a way to guide the limit ∆1
1,∆

1
2, . . . ,∆

D
D → 0 such that∫

[0,1]D
det

(
∂xae1,...,eD

∂(t1, . . . , tD)

)
χ∆1(p, e1) . . . χ∆D

(Dp, e1 + . . . eD)Ôe1,...,eD (12.23)

vanishes if

(a) if e1, . . . , eD do not all intersect p or

(b) det
(
∂xae1,...,eD
∂(t1,...,tD)

)
p

= 0 (which is a diffeomorphism invariant statement).

Otherwise it tends to

1

2D
sgn

(
det

(
∂xae1,...,eD

∂(t1, . . . , tD)

))
p

Ôe1,...,eD(p)
D∏
i=1

∆i
D. (12.24)

Here we have denoted by Ôe1,...,eD(p) the trace(s) involved in the various terms of

(12.20).

We conclude that (12.20) reduces to

lim
∆D→0

π̂(p,∆1, . . . ,∆D)f

=
∑

e1,...,eD

(i~)Ds(e1, . . . , eD)

2DD!vol(∆1) . . . vol(∆D−1)
χ∆1(p, v) . . . χ∆D−1

(p, v)Ôe1,...,eD(0, . . . , 0),

(12.25)
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12. Geometrical operators

where v on the right-hand side is the intersection point of the D-tuple of edges and it

is understood that we only sum over such D-tuples of edges which are incident at a

common vertex and s(e1, . . . , eD) := sgn(det(ė1(0), . . . , ėD(0))). Moreover,

Ôe1,...,eD(0, . . . , 0) =
1

2
εIJI1J1I2J2...InJnR

IJ
e R

I1K1
e1 RJ1

e′1
K1 . . . R

InKn
en RJne′nKn

(12.26)

and

RIJe := RIJ(he(0, 1)) := tr

(
(τ IJhe(0, 1))T

∂

∂he(0, 1)

)
(12.27)

is a right-invariant vector field in the τ IJ direction of SO(D+1), that is, R(hg) = R(h).

We have also extended the values of the sign function to include 0, which takes care of

the possibility that one has D-tuples of edges with linearly dependent tangents.

The final step is choosing ∆1 = . . . = ∆D−1 and exponentiating the modulus by

1/(D−1). We replace the sum over all D-tuples incident at a common vertex
∑

e1,...,eD

by a sum over all vertices followed by a sum over all D-tuples incident at the same

vertex
∑

v∈V (γ)

∑
e1∩...∩eD=v. Now, for small enough ∆ and given p, at most one vertex

contributes, that is, at most one of χ∆(v, p) 6= 0 because all vertices have finite sepa-

ration. Then we can take the relevant χ∆(p, v) = χ∆(p, v)2 out of the exponential and

take the limit, which results in

V̂ (R) =

∫
R
dDp ̂|det(q)(p)| γ =

∫
R
dDpV̂ (p)γ , (12.28)

V̂ (p) =

(
~
2

) D
D−1 ∑

v∈V (γ)

δD(p, v)V̂v,γ , (12.29)

V̂v,γ =

∣∣∣∣∣∣ i
D

D!

∑
e1,...,eD∈E(γ), e1∩...∩eD=v

s(e1, . . . , eD)qe1,...,eD

∣∣∣∣∣∣
1

D−1

, (12.30)

qe1,...,eD =
1

2
εIJI1J1I2J2...InJnR

IJ
e R

I1K1
e1 RJ1

e′1
K1 . . . R

InKn
en RJne′nKn

. (12.31)
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12.2 The volume operator

12.2.2 D + 1 odd

The case D + 1 uneven works analogously, except that the expression for det(q) is

changed a bit. With n = D/2, the result is

V̂ (R) =

∫
R
dDp ̂|det(q)(p)| γ =

∫
R
dDpV̂ (p)γ , (12.32)

V̂ (p) =

(
~
2

) D
D−1 ∑

v∈V (γ)

δD(p, v)V̂v,γ , (12.33)

V̂ I
v,γ =

iD

D!

∑
e1,...,eD∈E(γ), e1∩...∩eD=v

s(e1, . . . , eD)qIe1,...,eD , (12.34)

V̂v,γ =
∣∣∣V̂ I
v,γ V̂I v,γ

∣∣∣ 1
2D−2

, (12.35)

qIe1,...,eD = εI I1J1I2J2...InJnR
I1K1
e1 RJ1

e′1
K1 . . . R

InKn
en RJne′nKn

. (12.36)

12.2.3 More results and open questions

The derivations of cylindrical consistency, symmetry, positivity, self-adjointness and

anomaly-freeness given in [62] generalise immediately to the higher dimensional vol-

ume operator. The question of uniqueness of the prefactor [247, 248] in front of the

expression under the square root of the volume operator or the computation of the ma-

trix elements [249–252] have not been addressed so far, however these are not necessary

steps in order to use the volume operator for a consistent quantisation of the Hamilto-

nian constraint in what follows. We leave these open questions for future research.
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13

Implementation of the

Hamiltonian constraint

The implementation of the Hamiltonian constraint will follow along the lines of [62],

see [30] for original literature and details. In section 7.3 (see also [1, 2]), we derived the

classical expression

H =− 1

2
√
q

(
FabIJπ

aIKπb K
J + D̄tf

aIJ (F−1)aIJ,bKL D̄tf
bKL

+
1

√
q(D − 1)2

[Db
aDa

b − (Dc
c)2]

)
− 1

2β2(D − 1)2
[Db

aDa
b − (Dc

c)2]

=− 1
√
q
HE +

1

2
√
q
Dab
M

(
F−1

)
M
ab

N
cd Dcd

N
− 1

2
√
q

(β2 + 1)(Ka
bKb

a − (Kc
c)2), (13.1)

where we specified s = −1, ζ = 1 in (7.89) and in the second step we introduced the no-

tation Da
b =: β(D−1)Ka

b, where Ka
b now actually is weakly given by the (densitised)

extrinsic curvature (cf. (7.79)). These correction terms changing the extrinsic curva-

ture contribution to the constraint also appear when using Ashtekar Barbero variables

(except for γ2 = s), and can be quantised, as we will see, in analogy to the treatment

in 3+1 dimensions. We furthermore defined the analogon of the (density weight two)

Euclidean Hamiltonian constraint in D = 3 (although here, this object does not reduce

to the Euclidean Hamiltonian constraint) HE := −1
2π

aIKπbJKFabIJ , and rewrote the

terms removing the K̄tf
aIJ terms in the form they appear after gauge unfixing (this is

only to keep the notation used in [3]).
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13. Implementation of the Hamiltonian constraint

In order to have a well defined quantum version of this constraint, we have to ex-

press it in terms of holonomy and flux variables. As in the 3 + 1-dimensional case, the

volume operator turns out to be a cornerstone of the quantisation.

At first, we will introduce a graph adapted triangulation of σ in order to regularise

the Hamiltonian constraint. Next, classical identities to express the Hamiltonian con-

straint in terms of holonomies and fluxes are derived. Since the complete expression for

the Hamiltonian constraint will turn out to be rather laborious to write down, we will

derive the regularisation piece by piece. Next, we show how to assemble the regularised

pieces to the complete constraint and describe the quantisation. Finally, we construct a

Hamiltonian master constraint in order to avoid some of the usual difficulties associated

with quantisation.

13.1 Triangulation

A natural choice for a triangulation turns out to be the following (we simplify the

presentation drastically, the details can be found in [30]): given a graph γ one constructs

a triangulation T (γ, ε) of σ adapted to γ which satisfies the following basic requirements.

(a) The graph γ is embedded in T (γ, ε) for all ε > 0.

(b) The valence of each vertex v of γ, viewed as a vertex of the infinite graph T (γ, ε),

remains constant and is equal to the valence of v, viewed as a vertex of γ, for

each ε > 0.

(c) Choose a system of semianalytic1 arcs aεγ,v,e,e′ , one for each pair of edges e, e′ of

γ incident at a vertex v of γ, which do not intersect γ except in its endpoints

where they intersect transversally. These endpoints are interior points of e, e′

and are those vertices of T (γ, ε) contained in e, e′ closest to v for each ε > 0

(i.e., no others are in between). For each ε, ε′ > 0 the arcs aεγ,v,e,e′ , a
ε′
γ,v,e,e′ are

diffeomorphic with respect to semianalytic diffeomorphisms. The segments e, e′

incident at v with outgoing orientation that are determined by the endpoints

of the arc aεγ,v,e,e′ will be denoted by sεγ,v,e, s
ε
γ,v,e′ respectively. Finally, if φ is

a semianalytic diffeomorphism then sεφ(γ),φ(v),φ(e), a
ε
φ(γ),φ(v),φ(e),φ(e′) and φ(sεγ,v,e),

φ(aεγ,v,e,e′) are semianalytically diffeomorphic.

1Semianalyticity is a more precise version of piecewise analytic. See [28] for complete definitions.
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13.1 Triangulation

(d) Choose a system of mutually disjoint neighbourhoods U εγ,v, one for each ver-

tex v of γ, and require that for each ε > 0 the aεγ,v,e,e′ are contained in U εγ,v.

These neighbourhoods are nested in the sense that U εγ,v ⊂ U ε
′
γ,v if ε < ε′. and

limε→0 U
ε
γ,v = {v}.

(e) Triangulate U εγ,v by D-simplices ∆(γ, v, e1, . . . , eD), one for each ordered D-tuple

of distinct edges e1, . . . , eD incident at v, bounded by the segments sεγ,v,e1 , . . . , s
ε
γ,v,eD

and the arcs aεγ,v,e1,e2 , a
ε
γ,v,e1,e3 , . . . , a

ε
γ,v,eD−1,eD

(D(D − 1)/2 arcs) from which

loops αεγ;v;e1,e2 , etc. are built and triangulate the rest of σ arbitrarily. The or-

dered D-tuple e1, . . . , eD is such that their tangents at v, in this sequence, form

a matrix of positive determinant.

Requirement (a) prevents the action of the Hamiltonian constraint operator from be-

ing trivial. Requirement (b) guarantees that the regulated operator Ĥε(N) is densely

defined for each ε. Requirements (c), (d) and (e) specify the triangulation in the neigh-

bourhood of each vertex of γ and leave it unspecified outside of them.

The reason why those D-simplices lying outside the neighbourhoods of the vertices

described above are irrelevant will rest crucially on the choice of ordering with [ĥ−1
s , V̂ ]

on the rightmost: if f is a cylindrical function over γ and s has support outside the

neighbourhood of any vertex of γ, then V (γ ∪ s) − V (γ) consists of planar at most

four-valent vertices only so that [ĥ−1
s , V̂ ]f = 0.

We will define our operator on functions cylindrical over coloured graphs, that is, we

define it on spin network functions. The domain for the operator that we will choose

is a finite linear combination of spin-network functions, hence this defines the operator

uniquely as a linear operator. Any operator automatically becomes consistent if one

defines it on a basis, the consistency condition simply drops out.

The volume operator will appear in every term of the regulated Hamiltonian constraint.

We will choose a factor ordering such that the Hamiltonian constraint acts only on ver-

tices. It is therefore sufficient to regularise the constraint at vertices. As in the usual

treatment, we use the tangents to the edges at a vertex as tangent vectors spanning the

tangent space of the spatial coordinates. To emphasise this, we will abuse the notation

in the following way: Let ea(∆) denote the D edges incident at the vertex v of an

analytic D-simplex ∆ ∈ T (γ, ε). The matrix consisting of the tangents of the edges

e1(∆), . . . , eD(∆) at v (in that sequence) has non-negative determinant, which induces
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13. Implementation of the Hamiltonian constraint

an orientation of ∆. Furthermore, let αab be the arc on the boundary of ∆ connecting

the endpoints of ea(∆), eb(∆) such that the loop αab(∆) = ea(∆) ◦ aab(∆) ◦ eb(∆)−1

has positive orientation in the induced orientation of the boundary for a < b (modulo

cyclic permutation) and negative in the remaining cases.

13.2 Key classical identities

The following classical identities are key for the rest of the discussion.

13.2.1 D + 1 ≥ 3 arbitrary

We observe that

√
qπaIJ(x) := −(D − 1){AaIJ , V (x, ε)}, (13.2)

where V (x, ε) :=
∫
dDy χε(x, y)

√
q is the volume of the region defined by χε(x, y) = 1

measured by qab and χε(x, y) =
∏D
a=1 Θ(ε/2 − |xa − ya|) is the characteristic function

of a cube of coordinate volume εD with centre x. Also,

nI(x)nJ(x) ≈ 1

D − 1

(
πaKI(x)πaKJ(x)− ηIJ

)
. (13.3)

We can write the extrinsic curvature terms in the same way as in the usual 3 + 1-

dimensional case (“KKEE” terms in this case) , using

K(x) := Ka
a(x) ≈ D − 1

D
{HE(x), V (x, ε)} . (13.4)

Further,

Ka
b(x) ≈ (D − 1)

2D
πbKL(x) {AaKL(x), {HE [1](x, ε), V (x, ε)}} (13.5)

gives us access to all the needed terms.

13.2.2 D + 1 even

Let n = (D − 1)/2. It is easy to see that

πaIJ(x) ≈ 1

(D − 1)!
εab1c1...bncnεIJI1J1...InJnsgn(det e)(x)

πb1I1K1(x)πc1J1
K1(x) . . . πbnInKn(x)πcnJn

Kn(x)
√
qD−1(x). (13.6)
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The sign of the determinant of eIa where the internal space is the subspace perpendicular

to nI is accessible through

sgn(det(eIa))(x) ≈ 1

2D!
εIJI1J1...InJnεaa1b1...anbn√qD−1πaIJ(x)

πa1I1K1(x)πb1J1
K1(x) . . . πanInKn(x)πbnJn

Kn(x). (13.7)

For the Euclidean part of the Hamiltonian constraint, we need

π[a|IKπb]JK√
q

(x)

≈ 1

4(D − 2)!
εabca1b1...an−1bn−1εIJKLI1J1...In−1Jn−1sgn(det e)(x)

πcKL(x)πa1I1K1(x)πb1J1
K1(x) . . . πan−1In−1Kn−1(x)πbn−1Jn−1

Kn−1(x)
√
qD−2(x).

(13.8)

Regarding quantisation, we have to choose a classical expression for π[a|IKπb]JK√
q (x). The

above expression would be favourable by arguments of simplicity if it would not contain

the additional factor of sgn(det(eIa))(x) which has to be accounted for. Therefore, we

can equally well express the two factors of πaIJ separately and absorb the inverse square

root into volume operators.

13.2.3 D + 1 odd

Let n = (D − 2)/2. With only minor modifications of the D + 1 even case, we get

πaIJ(x) ≈ 1

(D − 1)!
εabb1c1...bncnεIJKI1J1...InJnsgn(det e)(x)πbLK(x)nL(x)

πb1I1K1(x)πc1J1
K1(x) . . . πbnInKn(x)πcnJn

Kn(x)
√
qD−1(x) (13.9)

with

nI(x) ≈ 1

D!
εa1b1...an+1bn+1εII1J1...In+1Jn+1sgn(det e)(x)

√
qD−1(x)

πa1I1K1(x)πb1J1
K1(x) . . . πan+1In+1Kn+1(x)πbn+1Jn+1

Kn+1(x). (13.10)

For the Euclidean part of the Hamiltonian constraint, we need

π[a|IKπb]JK√
q

≈ 1

2(D − 2)!
εaba1b1...anbnεIJKI1J1...InJnsgn(det e)

nKπa1I1K1πb1J1
K1 . . . πanInKnπbnJn

Kn√qD−2 (13.11)

and observe that the factor of sgn(det(eIa))(x) is canceled by another such factor coming

from nI . The Euclidean part of the Hamiltonian constraint therefore has the same

amount of complexity, measured by the “number of involved operators”, in even and

odd dimensions.
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13.3 General scheme

The basic idea of the regularisation of the Hamiltonian constraint operator is to approx-

imate the constraint operator on the graph adapted triangulation and then to take the

limit of an infinitely refined triangulation. For this procedure to work, it is mandatory

that the constraint operator has a density weight of +1. A typical term of the classical

Hamiltonian constraint (or any other operator one wants to regulate) will, after using

the above classical identities, consist of

• an integral
∫
σ d

Dx,

• n ∈ N0 spatial ε symbols,

• factors of AaIJ(x),

• Poisson brackets involving a factor of AaIJ(x) as one of its two arguments as

well as either the volume of a neighbourhood of x, the Euclidean part of the

Hamiltonian constraint smeared with unit lapse over a region containing x, or

the Poisson bracket of the Euclidean part of the Hamiltonian constraint with the

volume, smeared as before, as the other argument,

• field strength tensors,

• a factor of
√
q1−n,

• (covariant) derivatives.

Operators that are well defined on the kinematical Hilbert space are holonomies and

the volume operator. We will show in the following that we can construct the Euclidean

part of the Hamiltonian constraint operator, which gives us access to the remaining part

of the constraint operator. As a start, it is therefore mandatory to write the Euclidean

part of the Hamiltonian constraint in terms of holonomies and volume operators. We

stress that we do not quantise the πaIJ as flux operators, which would also be possible.

The reason is that the Hamiltonian constraint operator would not simplify significantly

by using fluxes instead of derived flux operators. On the other hand, the appearance of

fluxes only through volume operators can be seen as a certain simplification. Anyhow,

different regularisations are possible and the discrimination between different regulari-

sations has to be considered in the semiclassical limit.

We begin with rewriting the integral. Given a D-tuple of edges (e1, . . . , eD) incident
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at v with outgoing orientation consider the D-simplex ∆ε(γ, e1, . . . , eD) bounded by

the D segments sεγ,v,e1 , . . . , sεγ,v,eD incident at v and the D(D − 1)/2 arcs aεγ,v,ea,eb ,

1 ≤ a < b ≤ D. We now define the “mirror images”

sεγ,v,p̄(t) := 2v − sεγ,v,p(t),

aεγ,v,p̄,p̄′(t) := 2v − aεγ,v,p,p′(t),

aεγ,v,p̄,p′(t) := aεγ,v,p̄,p̄′(t)− 2t[v − sεγ,v,p′(1)],

aεγ,v,p,p̄′(t) := aεγ,v,p,p′(t) + 2t[v − sεγ,v,p′(1)], (13.12)

where p 6= p′ ∈ e1, . . . , eD and we have chosen some parametrisation of segments and

arcs. Using the data (13.12) we build 2D − 1 more “virtual” D-simplices bounded by

these quantities so that we obtain altogether 2D D-simplices that saturate v and trian-

gulate a neighbourhood U εγ,v,e1,...,eD of v. Let U εγ,v be the union of these neighbourhoods

as we vary the ordered D-tuple of edges of γ incident at v. The U εγ,v, v ∈ V (γ) were

chosen to be mutually disjoint in point (d) above. Let now

Ū εγ,v,e1,...,eD := U εγ,v − U εγ,v,e1,...,eD ,

Ū εγ := σ −
⋃

v∈V (γ)

U εγ,v, (13.13)

then we may write any classical integral (symbolically) as∫
σ

=

∫
Ūεγ

+
∑

v∈V (γ)

∫
Uεγ,v

=

∫
Ūεγ

+
∑

v∈V (γ)

1

E(v)

∑
v=b(e1)∩...∩b(eD)

(∫
Uεγ,v,e1,...,eD

+

∫
Ūεγ,v,e1,...,eD

)

≈
∫
Ūεγ

+
∑

v∈V (γ)

1

E(v)

 ∑
v=b(e1)∩...∩b(eD)

2D
∫

∆ε
γ,v,e1,...,eD

+

∫
Ūεγ,v,e1,...,eD

 , (13.14)

where in the last step we have noticed that classically the integral over U εγ,v,e1,...,eD
converges to 2D times the integral over ∆ε

γ,v,e1,...,eD
, ≈ means approximately and

E(v) =
(n(v)
D

)
with n(v) being the valence of the vertex. Now when triangulating

the regions of the integrals over Ū εγ,v,e1,...,eD and Ū εγ in (13.14), regularisation and quan-

tisation gives operators that vanish on fγ because the corresponding regions do not

contain a non-planar vertex of γ.

As a next step, we approximate the integral∫
∆ε
γ,v,e1,...,eD

dDx g(x) ≈ 1

D!
εDg(v) (13.15)
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13. Implementation of the Hamiltonian constraint

for some function g(x). Here we assumed the coordinate length of each segment sεγ,v,ea
to be ε. The general case of arbitrary coordinate length works analogously, since the

factors of ε will be hidden in holonomies and derivatives contracted with an epsilon

symbol which addresses each segment exactly once. The factor 1/D! accounts for the

volume of a D-simplex. We now multiply the nominator and the denominator by

εD(n−1). Together with the factors
√
q1−n(v) and the factor εD from the integral, we

get εDn/V (v, ε)n−1. The volumes in the denominator are absorbed into the Poisson

brackets by the standard technique. The factors of AaIJ are turned into holonomies

(hsa)KL = δKL + εėa(0)AaIJ
(
τ IJ
)
KL

+ O(ε2) using the same amount of factors of ε

since we note that the zeroth order of the expansion of the holonomies vanishes when

inserted into the Poisson brackets. We abbreviated sa = sεγ,v,ea to simplify notation.

The field strength tensors can be dealt with as follows. Let e, e′ be arbitrary paths

which are images of the interval [0, 1] under the corresponding embeddings, which we

also denote by e, e′ such that v = e(0) = e′(0). For any 0 < ε < 1 set eε(t) := e(εt) for

t ∈ [0, 1] and likewise for e′. Then we expand heε(A) in powers of ε. Consider the loop

αeε,e′ε where in a coordinate neighbourhood

αeε,e′ε(t) =



eε(4t) 0 ≤ t ≤ 1/4

eε(1) + e′ε(4t− 1)− v 1/4 ≤ t ≤ 1/2

e′ε(1) + eε(3− 4t)− v 1/2 ≤ t ≤ 3/4

e′ε(4− 4t) 3/4 ≤ t ≤ 1.

(13.16)

Now expanding again in powers of ε we easily find hαeε,e′ε
= 1D+1+ε2FabIJτ

IJ ėa(0)ė′b(0)+

O(ε3). Since the indices of the field strength tensors are contracted only with other

antisymmetric index pairs, the zeroth order of the expansion vanishes as well as the

orders beyond ε2 in the limit ε → 0. The remaining factors of ε are absorbed into

covariant derivatives using the approximation(
he(0, ε)π

a(e(ε))he(0, ε)
−1 − πa(v)

)AB
=
(

(1 + εėb(0)Ab)(π
b(v) + εėc(0)∂cπ

b(v))(1− εėd(0)Ad)− πb(v)
)AB

+ O(ε2)

= εėc(0)DA
cπ
aAB(v) + O(ε2). (13.17)

We note that partial derivatives can be dealt with in the same way.

At this point, all factors of ε have been absorbed into holonomies and derivatives.

It is key that the volume operators are ordered to the right in the quantum theory
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13.4 Regularised quantities

since then, the Hamiltonian constraint evaluated on a cylindrical function fγ will only

act on the vertices of γ. The action at vertices however does not depend on the value

of ε > 0 and we can take the limit ε→ 0, thus removing the regulator.

In order to quantise the Hamiltonian constraint, we have to replace the holonomies

by multiplication operators, the volumes by volume operators, and the Poisson brack-

ets by i/~ times the commutator.

13.4 Regularised quantities

In order to construct a well defined Hamiltonian constraint operator, we have to express

it in terms of operators well defined on the kinematical Hilbert space. Instead of writ-

ing down the explicit regularisation for the proposed Hamiltonian constraint, we want

to provide a toolkit for a general class of operators. In the following, we will propose

“regulated” versions of the phase space variables, marked by an upper ε in front. The

idea will be to replace all phase space variables in the classical Hamiltonian constraint

by their corresponding regulated versions, do some additional minor modifications and

directly arrive at the Hamiltonian constraint operator, without explicitly dealing with

the triangulation and the correct powers of ε. Since the final constraint operator will

only act on vertices of γ, it is sufficient to regularise the phase space variables at vertices

v.

In what follows, we use a graph adapted coordinate system, meaning that the spatial

coordinates a, b, . . . = 1, . . . , D enumerate the D edges incident at v of a D-simplex.

13.4.1 D + 1 ≥ 3 arbitrary

We will express all the basic variables in terms of holonomies living on the edges of the

adapted triangulation and volume operators acting on it. First, we notice that

ε(
√
qx+1πaIJ(v)) :=

(D − 1)

(x+ 1)
(hsa)I

K{(hsa)−1
KJ , (V (v, ε))x+1} (13.18)

is gauge covariant and reduces to ε
√
qx+1πaIJ(v) in the limit ε → 0. The factor of ε

is expected as the regulated quantity has a lower spatial index. In the end, when the

complete constraint operator will be assembled, all factors of ε will cancel out. We

restrict x > −1 because powers of the volume operator will be defined by the spectral

theorem in the quantum theory.
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13. Implementation of the Hamiltonian constraint

For the extrinsic curvature terms, we propose

ε

(
1

2
√
q

(Ka
bKb

a − (Kc
c)2)

)
≈ (D − 1)2

4D2
ε( 4
√
q−1π[a|KL(v))(hsa)K

O
{

(hea)−1
OL, {HE [1](v, ε), V (v, ε)}

}
× ε( 4
√
q−1πb]MN (v))(hsb)M

P
{

(heb)
−1
PN , {HE [1](v, ε), V (v, ε)}

}
,

(13.19)

where the επaIJ will be defined below.

Next, we regulate the gauge unfixing term DF−1D with density weight 1. We will

place zero density into F−1 and a density weight of 1/2 into each D . Accordingly,

√
q4 (F−1

)
N
cd,
M
ab = α

√
q4εEFGHNπ(c|EF

(
F−1

)
d)GH,(a|AB πb)CDε

ABCDM (13.20)

becomes

ε
(√

q4F−1
)
N
cd,
M
ab = αεEFGHNε(

√
qπ(c|EF )ε

(√
q2F−1

)
d)GH,(a|AB

ε(
√
qπb)CD)εABCDM

(13.21)

with

ε
(√

q2F−1
)
aIJ,bKL

:=
1

(D − 1)
ε(
√
qπaAC)ε(

√
qπbBD)

(
ε(
√
q−1πcEC)ε(

√
qπcE

D) + ηCD
)

(
ηABηK[IηJ ]L − 2ηA[LηK][JηI]B

)
, (13.22)

cf. (8.40). The D constraint contains a covariant derivative which we regularise as

ε(
√
q−1DA

aπ
bAB) :=

(
hsa

ε(
√
q−1πb(sa))h

−1
sa −

ε(
√
q−1πb(v))

)AB
. (13.23)

The full D constraint

Dab
M

= −εIJKLMπ
cIJ
(
π(a|KNDA

cπ
b)L

N

)
(13.24)

can thus be regularised as

ε(
√
q−3/2Dab

M
) = −εIJKLM

ε(
√
q−1/2πcIJ)

(
ε(
√
q−1π(a|KN )ε(

√
q−1DA

c π
b)L

N )
)

. (13.25)

In the paper [3], a second regularisation of the DF−1D part of the Hamiltonian con-

straint is given, which rest on the classic relation1

2D[a
√
qπb]IJ(x) = −(D − 1){FabIJ(x), V (x, ε)}. (13.26)

1Using this was suggested by Wieland [213].
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13.4 Regularised quantities

The resulting part in the Hamiltonian constraint is quadratic in the field strength and

therefore this procedure results in a more non-local operation of the Hamiltonian con-

straint. We refer the interested reader to the original literature.

In general, a generic power of 1/
√
q needed to turn the individual terms with den-

sities > 1 into densities of weight 1 can be constructed as

ε

(
1

√
q(−2xD−2)

)
≈
(

1

2

)D
det
(
ε(
√
qx+1πaIJ)ε(

√
qx+1πb

IJ)
)

(13.27)

with the usual x > −1.

The field strength tensors are regularised as

εFabIJ =
(
hαsa,sb

)
KL

δK[I δ
L
J ] (13.28)

while we set

ε{AaIJ(v), ·} = −(hsa)I
K{(hsa−1)KJ , ·}. (13.29)

13.4.2 D + 1 even

Let n = (D − 1)/2. We “regulate”

ε(
√
q(D−1)xπaIJ(v)) ≈ 1

(D − 1)!
εab1c1...bncnεIJI1J1...InJnsgn(det e)(v)

ε(
√
q(1+x)πb1I1K1(v))ε(

√
q(1+x)πc1J1

K1(v)) . . .

ε(
√
q(1+x)πbnInKn(v))ε(

√
q(1+x)πcnJn

Kn(v)) (13.30)

and

ε(sgn(det(eIa))) ≈
1

2D!
εIJI1J1...InJnεaa1b1...anbnε(

√
q(D−1)/DπaIJ)

ε(
√
q(D−1)/Dπa1I1K1)ε(

√
q(D−1)/Dπb1J1

K1) . . .

ε(
√
q(D−1)/DπanInKn)ε(

√
q(D−1)/DπbnJn

Kn). (13.31)

For the Euclidean part of the Hamiltonian constraint, we need

ε

(
π[a|IKπb]JK√

q

)
≈ 1

4(D − 2)!
εabca1b1...an−1bn−1εIJKLI1J1...In−1Jn−1sgn(det e)

ε(
√
qπcKL)ε(

√
qπa1I1K1)ε(

√
qπb1J1

K1) . . .

ε(
√
qπan−1In−1Kn−1)ε(

√
qπbn−1Jn−1

Kn−1). (13.32)

As stressed before, the two possibilities to express the Euclidean part of the Hamiltonian

constraint are equally complicated.
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13. Implementation of the Hamiltonian constraint

13.4.3 D + 1 odd

Let n = (D − 2)/2. We “regulate”

ε(
√
q(D−1)xπaIJ(v)) ≈ 1

(D − 1)!
εabb1c1...bncnεIJKI1J1...InJnsgn(det e)(v)ε(

√
q(1+x)πbLK(v))

εnL(v)ε(
√
q(1+x)πb1I1K1(v))ε(

√
q(1+x)πc1J1)K1(v) . . .

ε(
√
q(1+x)πbnInKn(v))ε(

√
q(1+x)πcnJn

Kn(v)) (13.33)

and

εnI(v) ≈ 1

D!
εa1b1...an+1bn+1εII1J1...In+1Jn+1sgn(det e)(v)

ε(
√
q(D−1)/Dπa1I1K1(v))ε(

√
q(D−1)/Dπb1J1

K1(v)) . . .

ε(
√
q(D−1)/Dπan+1In+1Kn+1(v))ε(

√
q(D−1)/Dπbn+1Jn+1

Kn+1(v)). (13.34)

For the Euclidean part of the Hamiltonian constraint, we need

ε

(
π[a|IKπb]JK√

q

)
≈ 1

2(D − 2)!
εaba1b1...anbnεIJKI1J1...InJnsgn(det e) (13.35)

ε(nK)ε(
√
qπa1I1K1)ε(

√
qπb1J1

K1) . . . ε(
√
qπanInKn)ε(

√
qπbnJn

Kn).

13.5 The Hamiltonian constraint operator

At this point, we are ready to assemble the Hamiltonian constraint operator. The

general idea of the regularisation has been described in section 13.3. Here, we provide

a toolkit in order to assemble the constraint operator.

(1) The “Euclidean part” 1√
qHE = − 1

2
√
qπ

aIKπbJKFabIJ of the Hamiltonian con-

straint can be quantised with the methods described above and using the fol-

lowing recipe. The corresponding operator can then be used in commutators to

express additional parts of the full Hamiltonian constraint operator.

(2) Use classical identities in order to express the Hamiltonian constraint in terms

of connections AaIJ , volumes V (x, ε) and Euclidean Hamiltonian constraints

HE(x, ε).

(3) Replace all phase space variables by their corresponding regulated quantities.

(4) Instead of the integration
∫
σ d

Dx, put a sum 1
D!

∑
v∈V (γ) over all the vertices v of

the graph γ.
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13.5 The Hamiltonian constraint operator

(5) For every spatial ε-symbol, put a sum 2D

E(v)

∑
v(∆)=v over all D-simplices having

v as a vertex. The holonomies associated with the ε-symbol are evaluated along

the edges spanning ∆.

(6) Substitute the Poisson brackets by i
~ times the commutator of the corresponding

operators, i.e. the multiplication operator ĥe and the volume operator V̂ .

In order to understand the double sum over D-simplices appearing in the KKEE and

the gauge unfixing term, consider the following argument given in a similar form in

[46]: Since limε→0(1/εD)χε(x, y) = δD(x, y) we have limε→0(1/εD)V (x, ε) =
√
q(x). It

is also easy to see that for each ε > 0 we have that δV/δπaIJ(x) = δV (x, ε)/δπaIJ(x).

The terms under consideration are of the form∫
dDx

√
q(x)πaIJ(x)ZaIJ(x)

√
q(x)πbKL(x)ZbKL(x)

√
q(x)

, (13.36)

where ZaIJ is a density of weight +1 and stands symbolically for the remaining terms,

including a spatial ε-symbol with upper indices, one of which is a. We rewrite this

expression as

lim
ε→0

1

εD
4(D − 1)2

∫
dDx

{AaIJ(x), V }ZaIJ(x)

2 4
√
q(x)

∫
dDy χε(x, y)

{AbKL(y), V }ZbKL(y)

2 4
√
q(y)

= lim
ε→0

1

εD
4(D − 1)2

∫
dDx

{AaIJ(x), V (x, ε)}ZaIJ(x)

2 4
√
q(x)∫

dDy χε(x, y)
{AbKL(y), V (y, ε)}ZbKL(y)

2 4
√
q(y)

= lim
ε→0

1

εD
4(D − 1)2

∫
dDx

{AaIJ(x), V (x, ε)}ZaIJ(x)

2
√
V (y, ε)/εD∫
dDy χε(x, y)

{AbKL(y), V (y, ε)}ZbKL(y)

2
√
V (y, ε)/εD

= lim
ε→0

4(D − 1)2

∫
dDx

{AaIJ(x), V (x, ε)}ZaIJ(x)

2
√
V (y, ε)∫
dDy χε(x, y)

{AbKL(y), V (y, ε)}ZbKL(y)

2
√
V (y, ε)

= lim
ε→0

4(D − 1)2

∫
dDx {AaIJ(x),

√
V (x, ε)}ZaIJ(x)∫
dDy χε(x, y){AbKL(y),

√
V (y, ε)}ZbKL(y). (13.37)

Triangulation leads to two sums over vertices and two sums over D-simplices containing

the individual vertices. In the limit ε→ 0 however the two sums over vertices collapse

to a single sum over vertices due to the χε term and we have the desired result.
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13. Implementation of the Hamiltonian constraint

13.6 Solution of the Hamiltonian constraint

As in the 3+1-dimensional treatment, we realise that the only spin changing operation

of the Hamiltonian constraint is performed by its Euclidean part. The construction

of a set of rigorously defined solutions to the diffeomorphism and the Hamiltonian

constraint described in [31] thus immediately generalises to our case.

13.7 Master constraint

The implementation of the master constraint

M =
1

2

∫
σ
dDx

H (x)2

√
q(x)

(13.38)

works analogously to the 3 + 1-dimensional case described in [245]. The inverse square

root is split up between the two Hamiltonian constraints and hidden by adjusting the

power of the volume operators as before. The result of the derivation is the master

constraint operator

M̂T[s] :=
∑
[s1]

QM (T[s1], T[s])T[s1] (13.39)

with

QM (l, l′) =
∑
[s]

η[s]

∑
v∈V (γ(s0[s]))

l(Ĉ†vTs0([s]))l
′(Ĉ†vTs0([s])) (13.40)

and l(Ĉ†vTs0([s])) being the evaluation of l on the Hamiltonian constraint operator with

the additional 1/ 4
√
q hidden in the volume operator(s). The proof of the following

theorem generalises with obvious modifications from the treatment in [62].

Theorem 6.

(i) The positive quadratic form QM is closable and induces a unique, positive self-

adjoint operator M̂ on Hdiff.

(ii) Moreover, the point zero is contained in the point spectrum of M̂ .

We deal with the problem of Hdiff not being separable by using θ-equivalence classes

of spin-networks, see [245]. Now, a direct integral decomposition of H θ
diff is available:

226



13.8 Factor ordering

Theorem 7.

There is a unitary operator V such that VH θ
diff is the direct integral Hilbert space

H θ
diff ∝

∫ ⊕
R+

dµ(λ) H θ
diff(λ) (13.41)

where the measure class of µ and the Hilbert space H θ
diff(λ), in which V M̂V −1 acts by

multiplication by λ, are uniquely determined.

The physical Hilbert space is given by H θ
phys = H θ

diff(0).

We notice that we could define an extended master constraint that also involves the

simplicity constraint.

13.8 Factor ordering

In [247, 248], it has been shown that there is a unique factor ordering which results in

a non-vanishing flux operator expressed through the volume operator and holonomies

in the usual 3 + 1 dimensional LQG. The idea, translated to our case, is that the vol-

ume operator in the expression for επaIJ has to act on an at least D-valent non-planar

vertex and the holonomies in the expression have to be ordered to the right for this

to be ensured. Apart from ordering individual terms of the sums appearing differently

(which would be highly unnatural), this leaves only one possible factor ordering. We

remark that the proof of the equivalence of the “normal” and “derived” flux operator

given in [247, 248] does not generalise trivially to our case since it is explicitly based

on SU(2) as the internal gauge group. We leave this point open for further research.

In order to ensure that the Hamiltonian constraint only acts on vertices, we order

in all three terms either a commutator [ĥ−1
e , V̂ ] or a double-commutator [ĥ−1

e , [HE , V̂ ]

to the right.

We leave the remaining details of the factor ordering open, as here we only intend

to show that a quantisation is possible in principle.

13.9 Outlook on consistency checks

At this point, one might ask if there are good indications whether the proposed theory

is physically viable. In case of the usual formulation of LQG in terms of Ashtekar-

Barbero variables, it was shown in [69] that a quantisation of Euclidean general relativ-

ity in three dimensions with methods very similar to the ones used in LQG recovers the
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13. Implementation of the Hamiltonian constraint

known solutions of three-dimensional general relativity familiar from other approaches.

The reason why these theories match is that they both use the gauge groups SU(2) and

that a suitable redefinition of the Lagrange multipliers of Euclidean three-dimensional

general relativity leads to a Hamiltonian constraint with the same algebraic structure as

the Euclidean part of the constraint familiar from LQG. A similar check is conceivable

for the presented theory in that we can describe Lorentzian three-dimensional general

relativity using SU(2) as a gauge group, which would result in a different Hamiltonian

constraint. One could now check if the solution space of Lorentzian three-dimensional

general relativity is reproduced when using SU(2) as a gauge group and thus mimicking

the internal signature switch which is also done in this formulation. As for the simplic-

ity constraint, we cannot use three-dimensional general relativity as a testbed since the

simplicity constraints only appear in four and higher dimensions.

Another approach to consistency checks is to compare our formulation in four dimen-

sions to the usual LQG formulation. In section 12.1, the area operator was shown

to have the same spectrum as in standard LQG, which however does not come as a

surprise regarding similar results from spin foam models. As for the volume operator,

we do not know whether the spectrum matches the one of standard LQG. This is also

tied to the fact that we are only interested in the spectrum on the solution space to

the vertex simplicity constraint operators, for which we do not have a completely sat-

isfactory proposal. We remark that a matching spectrum of the volume operator can

be obtained by using a weak implementation of the linear vertex simplicity constraints

[253], but as we have seen, the linear constraint comes with its own problems in the

canonical theory.
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Part IV

Inclusion of matter and extension

to supersymmetry
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In the previous chapters, we introduced a new connection formulation of vacuum gen-

eral relativity with compact gauge group in any spacetime dimension D + 1 ≥ 3 and

its loop quantisation. Now we consider coupling of this theory to matter. Concerning

standard matter, it will suffice to consider Dirac fermions because gauge bosons and

scalar fields can be coupled in the same way as it has been done in 3 + 1 dimensions

already [46]: Scanning through the details of [46] one realises that nothing depends

substantially on D = 3 and we can consider the gauge boson and scalar sector as

treated already. However, for supergravity theories, also non-standard matter fields,

most prominently, the “gravitino” in fermionic sector, which has spin 3/2 and usually

is a Majorana fermion, and Abelian higher p-form gauge fields in the bosonic sector,

appear (and more).

Therefore, in the first chapter 14 of this part, we will derive a connection formula-

tion of Lorentzian general relativity coupled to Dirac fermions in dimensions D+ 1 ≥ 3

with compact gauge group. The technique that accomplishes that is similar to the one

that has been introduced in 3 + 1 dimensions already: First one performs a canonical

analysis of Lorentzian general relativity coupled to the Dirac field using the time gauge

and then introduces an extension of the phase space analogous to the one employed in

chapter 7 to obtain a connection theory with SO(D + 1) as the internal gauge group

subject to additional constraints. The success of this method rests heavily on the

strong similarity of the Lorentzian and Euclidean Clifford algebras. A quantisation of

the Hamiltonian constraint is provided. The presentation is taken from [4] with only

minor modifications.

In chapter 15, we will finally turn to non-standard matter fields needed for the ex-

tension to supersymmetric theories. Since the focus of this thesis is on the higher

dimensional extension of LQG, we will only briefly summarise the findings of our orig-

inal articles [6, 7] with results towards this goal: In section 15.1, we will follow [6] in

performing an analysis of the spin 3/2 Rarita Schwinger field (“gravitino”). This field

usually is a Majorana fermion, i.e. belongs to real representation spaces of SO(1, D).

The obstacle that there is no action of SO(D + 1) on these representation spaces is

circumvented by introducing an auxiliary unit vector field N I and to define an action

of SO(D + 1) on a combined objected formed by this field and the Majorana fermion.

The additionally introduced degrees of freedom introduced with this field are naturally

removed by using the linear simplicity constraint. We construct a background inde-

pendent Hilbert space representation for the real valued Majorana spinor fields that
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implements its canonical Dirac anti-bracket and ∗-relations. To this end, a new method

needed to be developed since the treatment of the Dirac field does not carry over be-

cause the ∗-algebra is different.

Afterwards in section 15.2, we will sketch the study of [7] of the three-form gauge

field of d = 11 N = 1 supergravity as an example of an Abelian higher p-form field.

Due to an additional Chern Simons term in the supergravity action, a straightforward

generalisation to higher form degree of the usual loop quantisation procedure fails.

We propose a reduced phase space quantisation instead: We compute the algebra of

the Weyl elements corresponding to a full set of Dirac observables with respect to

the (generalisation of the) Gauß constraint and show that it allows for a state of the

Narnhofer-Thirring type.

While the fields we study allow for a loop quantisation of a large class of Lorentzian

supergravity theories in diverse dimensions, including the d = 4 N = 8, d = 10 N = 1,

and d = 11 N = 1 supergravities, the study is far from complete. We refer the reader

to section 18.2 for open problems and suggestions for further research.
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Inclusion of Dirac fermions

Our starting point is the standard canonical treatment of Dirac fermions coupled to gen-

eral relativity. To the best of our knowledge, Kibble [254] was the first to consider the

canonical formulation of fermions coupled to vierbein gravity. The classical coupling of

fermions to the Ashtekar’s new variables [13] was provided in [255]. Since then, several

papers appeared debating issues arising when including fermions. Among others, the

role of the Immirzi parameter [256], the appearance of torsion [257, 258] and the cor-

rect form of the Holst modification [259] are ongoing debates. Here we will consider the

simplest possibility, namely the standard coupling of Dirac fermions to vielbein gravity.

In 3 + 1 dimensions the quantisation of this theory was carried out for the first time in

the context of Ashtekar’s new variables in [45, 46]. The new ingredient was the passage

to Graßmann valued half densities and a representation in terms of holomorphic wave

functions of the fermionic variables. Technically, in 3 + 1 dimensions one works in the

time gauge and with the Ashtekar Barbero connection which can be obtained by an

extension of the ADM phase space subject to an SU(2) Gauß constraint.

In higher dimensions, an Ashtekar Barbero like connection is not available and there-

fore a new idea is needed in order to arrive at a connection formulation with compact

gauge group although we are considering Lorentzian gravity. We start from the usual

Dirac - Palatini Lagrangian for Lorentzian general relativity and introduce the time

gauge. This results in a formulation in terms of a canonical pair (Ki
a, E

a
i ), a, b, c, .. =

1, .., D; i, j, k, .. = 1, .., D which is subject to an SO(D) Gauß constraint (cf. section

3.2.4 for the corresponding vacuum formulation). We now extend this phase space by

a canonical pair (AaIJ , π
aIJ) subject to the simplicity and SO(D+ 1) Gauß constraint
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14. Inclusion of Dirac fermions

like in part II. This way we arrive at a connection formulation in terms of the compact

gauge group SO(D+ 1) although we are considering Lorentzian gravity. Of course, the

fermionic contribution to the Hamiltonian constraint of Lorentzian gravity, just as in

3 + 1 dimensions, acquires correction terms as compared to its Euclidean counterpart

which in part is due to switching from Lorentzian to Euclidean γ matrices. Yet, these

corrections are not as cumbersome as one might expect because the Lorentzian Clifford

algebra differs from the Euclidean one just by a factor of i in front of γ0.

After having obtained the fermionic contributions to the classical constraints we quan-

tise them using standard methods [46] and using the representation [45].

14.1 Canonical analysis of Lorentzian gravity coupled to

Dirac fermions

As opposed to pure gravity where, in the end, it does not matter whether one starts

with a first or a second order formulation of the theory, this choice results in inequiva-

lent theories when dealing with fermions. The reason for this is that the torsion freeness

condition which one derives when starting with first order general relativity is modified

by a term quadratic in the fermions, thus resulting in a non-vanishing torsion. At the

end of the canonical analysis, one arrives at the same set of variables, but, after solv-

ing the equations of motion for the torsion part of the connection, one obtains more

interaction terms, most prominently four-fermion interactions, which are not present

in the theory when starting with a second order formulation. To the best of the au-

thor’s knowledge, it is unclear which type of action should be preferred on physical

grounds. The second order variant leads to less interaction terms and could thus be

preferred by demanding simplicity. On the other hand, when deriving the Ashtekar

Barbero variables from the Holst action, one deals in a first order framework and one

could thus consider it more natural to choose this route. Here, we will choose the first

order approach since the results of the canonical analysis in part II can be nicely used

in order to deal with the torsion terms. For further literature on this topic, we refer to

[46, 255, 258].

We start with the first order action

SG+F = −
∫

M
dD+1x

(
1

2
eeµIeνJFµνIJ(A) +

i

2
ΨeµI γ

I∇AµΨ− i

2
∇AµΨeµI γ

IΨ

)
. (14.1)

234



14.1 Canonical analysis of Lorentzian gravity coupled to Dirac fermions

Ψ denotes a Graßmann valued Dirac spinor, Ψ = Ψ†γ0 and∇AµΨ = ∂µΨ+ i
2AaIJΣIJΨ,

ΣIJ = − i
4 [γI , γJ ]. Spinor indices will be mostly suppressed. The properties of the γ

matrices are summarised in appendix E. The remaining notation is as before, eµI de-

notes the vielbein and FµνIJ := ∂µAνIJ − ∂νAµIJ + [Aµ, Aν ]IJ is the field strength of

the SO(1, D) connection AµIJ . The gravitational part of this action has already been

analysed in part II, we will therefore concentrate on the fermionic part.

The split in space and time is performed analogously to the D = 3 case (cf. sec-

tion 3.2.1) and we additionally choose the time gauge prior to the canonical analysis

(the time gauge is a canonical gauge, see, for instance, [161]) by setting nI = δI0 . The

split form of the action is found to be

SG+F =

∫
dt

∫
σ
dDx

(
ĖaiK

i
a + i( 4

√
qΨ†)( 4

√
qΨ)̇−NH −NaHa − λijG ij − (λi + ∗i)G i

)
,

(14.2)

where

H =
1

2

√
qR+

1
√
q
E[a|iEb]jKaiKbj +

1
√
q

1

8
K̄tf
aijF

aij,bklK̄tf
bkl

+
i

2

1
√
q

4
√
qΨEai γ

iDΓ
a( 4
√
qΨ)− i

2

1
√
q
DΓ

a( 4
√
qΨ)Eai γ

i( 4
√
qΨ)

− 1
√
q

( 4
√
qΨ)†Σij( 4

√
qΨ)KaiE

a
j −

1

4

1
√
q

4
√
qΨEak

{
γk,Σij

}
( 4
√
qΨ)K̄tf

aij , (14.3)

Ha = −2EbjDΓ
[aKb]j +

i

2
( 4
√
qΨ)†DΓ

a( 4
√
qΨ)− i

2
(DΓ

a( 4
√
qΨ))†( 4

√
qΨ) +

1

2
K̄tf
aijG

ij ,

(14.4)

G ij = 2K [i
aE

a|j] − ( 4
√
qΨ)†Σij( 4

√
qΨ), (14.5)

Gi = K̄tr
i , (14.6)

and small Latin indices i, j, k, . . . = 1, . . . , D are internal indices in the time gauge.

F aij,bkl and the derivation of the symplectic structure have been described in chapter

4. We have decomposed AaIJ = ΓaIJ + 2n[IK̄a|J ] + K̄aIJ , where the bar notation K̄aIJ

as before means that the internal indices are orthogonal on nI . In the time gauge,

this is equivalent of having only small latin indices running from 1 to D. We have

Eai =
√
qeai and DΓ

a is the covariant derivative associated to the spin connection Γaij

annihilating the vielbein. The splits in trace and trace free parts are done with respect

to the vielbein. The Gauß constraint has been split into its rotational part G ij and its

boost part G i. λij := −TµAµij and λi = λi0. All terms proportional to K̄tr
i := K̄aijE

aj

not belonging to the boost part of the Gauß constraint have been written as ∗iG i.
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14. Inclusion of Dirac fermions

The boost part of the Gauß constraint does not acquire a fermionic part because of

the cancellation Σ0i + (Σ0i)† = 0. The Dirac spinors in the above equations appear

only as half-densities, i.e. 4
√
qΨ. Since the symplectic structure tells us that these

half-densities are the natural canonical variables, we will abuse notation and denote

by Ψ from now on a half-density. The importance of using half densities stems from

the simple form of the symplectic structure. Otherwise, the connection would acquire a

complex part [260] and the techniques introduced in [21, 24–27] would not be accessible.

In order to facilitate the canonical analysis, we will employ the equations of motion

for λi and K̄tf
aij at the Lagrangian level. Their solutions translate directly to a purely

canonical treatment as one can check. Variation of the Lagrangian with respect to λi

sets the boost part of the Gauß constraint to zero. Variation with respect to K̄tf
aij yields

K̄tf
aij = F−1

aij,bklΨE
b
m

{
γm,Σij

}
Ψ, (14.7)

which we use to eliminate K̄tf
aij in H .

Next, we perform the Legendre transform, yielding the constraints

H =
1

2

√
qR+

1
√
q
E[a|iEb]jKaiKbj

+
i

2

1
√
q

ΨEai γ
iDΓ

aΨ−
i

2

1
√
q
DΓ

aΨE
a
i γ

iΨ

− 1

2
Ψ†ΣijΨΨ†ΣijΨ +

1

32
Ψ
{
γk,Σij

}
ΨΨ {γk,Σij}Ψ, (14.8)

Ha = −2EbjDΓ
[aKb]j +

i

2
Ψ†DΓ

aΨ−
i

2
(DΓ

aΨ)†Ψ, (14.9)

G ij = 2K [i
aE

a|j] −Ψ†ΣijΨ, (14.10)

as well as the non-vanishing (generalised) Poisson (anti-) brackets [161]

{Eai(x),Kbj(y)} = δD(x− y)δab δ
i
j and {Ψα(x),−iΨ†β(y)} = −δD(x− y)δαβ .

(14.11)

A term proportional to the Gauß constraint has been omitted in H and Ha.

We define the generator of spatial diffeomorphisms

H̃a := Ha −
1

2
ΓaijG

ij = −Ebj∂aKbj + ∂b(E
bjKaj) +

i

2
Ψ†∂aΨ−

i

2
(∂aΨ

†)Ψ, (14.12)
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14.1 Canonical analysis of Lorentzian gravity coupled to Dirac fermions

which acts as

{
Eai, H̃b[N

b]
}

= N b∂bE
ai + (∂bN

b)Eai − (∂bN
a)Ebi, (14.13){

Kai, H̃b[N
b]
}

= N b∂bKai + (∂aN
b)Kbi, (14.14){

Ψ, H̃b[N
b]
}

= N b∂bΨ +
1

2
(∂aN

a)Ψ, (14.15){
Ψ†, H̃b[N

b]
}

= N b∂bΨ
† +

1

2
(∂aN

a)Ψ†, (14.16)

(14.17)

by Lie derivatives. The Gauß constraint acts as

{
Eai,

1

2
G ij [λij ]

}
= λijE

aj , (14.18){
Kai,

1

2
G ij [λij ]

}
= λi

jKaj , (14.19){
Ψ,

1

2
G ij [λij ]

}
=

1

2
iλijΣ

ijΨ, (14.20){
Ψ†,

1

2
G ij [λij ]

}
= −1

2
iΨ†λijΣ

ij , (14.21){
DΓ

aΨ,
1

2
G ij [λij ]

}
=

1

2
iλijΣ

ijDΓ
aΨ, (14.22){

(DΓ
aΨ)†,

1

2
G ij [λij ]

}
= −1

2
i(DΓ

aΨ)†λijΣ
ij , (14.23){

Ψ†ΣijΨ,
1

2
G ij [λij ]

}
= Ψ†[λ,Σ]ijΨ, (14.24){

Ψ{γk,Σij}Ψ, 1

2
G ij [λij ]

}
= Ψ

(
{γk, [λ,Σ]ij}+ {λkmγm,Σij}

)
Ψ. (14.25)

We therefore conclude that the algebra of the diffeomorphism and Gauß constraints

closes and that they both Poisson-commute with the Hamiltonian constraint, at least

weakly.

Thus we are left with checking the Poisson bracket of two Hamiltonian constraints. We

split H = Hgrav +H2F +H4F into the purely gravitational part, a part containing two

fermions and a part containing the four-fermion terms and define Va := M∂aN−N∂aM
as well as Vab := (∂aM)(∂bN)− (∂bM)(∂aN). The non-vanishing Poisson brackets are
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14. Inclusion of Dirac fermions

given as

{Hgrav[M ],Hgrav[N ]} =

∫
σ
dDx

(
Vaq

ab
(
−2EcjDΓ

[bKc]j

)
+ Vab

EaiEbj

q
Ka[iE

a
j]

)
,

{H2F[M ],H2F[N ]} =

∫
σ
dDx

(
Vaq

ab

(
i

2
Ψ†DΓ

aΨ−
i

2
(DΓ

aΨ)†Ψ

)
− Vab

EaiEbj

2q
Ψ†ΣijΨ

)
,

{Hgrav[M ],H2F[N ]}+ {H2F[M ],Hgrav[N ]} =

∫
σ
dDx

(
1

8q
VaΨ{Eakγk,Σij}ΨΨ†ΣijΨ

)
,

{H2F[M ],H4F[N ]}+ {H4F[M ],H2F[N ]} =

∫
σ
dDx

(
− 1

8q
VaΨ{Eakγk,Σij}ΨΨ†ΣijΨ

)
,

(14.26)

and sum up to

{H [M ],H [N ]} =

∫
σ
dDx

(
Vaq

abHb + Vab
Eai E

b
j

2q
G ij

)
. (14.27)

The constraints are therefore consistent and the canonical analysis ends here.

14.2 Phase space extension

In part II, we have seen that the extension of the ADM phase space (qab, P
ab) to the ex-

tended phase space (AaIJ , π
aIJ) subject to Gauß and simplicity constraint is equivalent

to the ADM phase space. Moreover, this is possible using SO(D + 1) as the structure

group while considering Lorentzian gravity. Since spinors can only be coupled to viel-

beins, we have to construct a transformation from (Eai,Kai) to (AaIJ , π
aIJ). The

calculation turns out to be very similar to the one described in part II, we therefore

only give the result and comment on some peculiarities.

The explicit construction is given by

ĒaI = ζη̄IJπ
aKJnK , K̄aI = ζη̄I

J(A− Γ)aKJn
K , (14.28)

where, as before, η̄IJ = ηIJ − ζnInJ ≈ ηIJ − ζ
D−1

(
πaKIπaK

J − ζηIJ
)
, and ΓaIJ is the

hybrid spin connection of EaI (see appendix C for details). The peculiarity of these

expressions is the appearance of nI , which can only be directly (that is, without non-

polynomial terms except for
√
q) expressed in terms of πaIJ forD+1 odd. For generalD,

we only have access to nInJ and then can define ±nI through ±nI =
√
nInIsgn(n0nI)

(no summation understood here and one substitutes for nInI under the square root
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14.2 Phase space extension

the expression for nInJ at I = J). Fortunately, we can avoid to make use of this

explicit square root expression by invoking the following trick: Ultimately the non-

vanishing Poisson bracket involving nI is of the form nJ{AaIJ , nK}. Since nKnK ≈ ζ

modulo simplicity constraint we have nJ{AaIJ , nK}nK ≈ 0. To see this, notice that

the simplicity constraint reads S cd
M

= 1
4εIJKLMπ

cIJπdKL. It follows

nJ{AaIJ ,S cd
M
} =

1

2
nJεIJKLMδ

(c
a π

d)KL ≈ 0

on the constraint surface πaIJ = 2n[IEaJ ]. It follows nJ{AaIJ , nK} ≈ nJ{AaIJ , nL}η̄KL =

−nJ{AaIJ , η̄KL }nL. However, {AaIJ , η̄KL } = −ζ{AaIJ , nKnL} and nKnL can be ex-

pressed unambiguously as above in terms of πaIJ . In order to compute the brackets

between ĒaI , K̄aI one then just hast to carefully insert the definition of nInJ in terms of

πaIJ . The only term which cannot easily be seen to vanish by algebraic manipulations

alone occurs in the bracket {KaI ,KaJ} and is of the form

η̄KI n
Lη̄MJ n

N{[A− Γ]aIJ , [A− Γ]bKL} = −η̄KI nLη̄MJ nN [{[AaIJ ,ΓbKL} − {AbKL,ΓaIJ}].

This term vanishes due to the weak integrability (modulo simplicity constraint) of the

hybrid connection ΓaIJ and by using the trick mentioned above, see section 7.1.3 for

more details.

After a tedious calculation, the Poisson brackets of ĒaI and K̄aI expressed as func-

tions of AaIJ and πaIJ are given by

{ĒaI(x), ĒbJ(y)} = 0, {K̄aI(x), K̄bJ(y)} ≈ 0, {ĒaI(x), K̄bJ(y)} ≈ −ζδD(x− y)δab δ̄
I
J .

(14.29)

modulo simplicity constraint.

The only task left to do is to write down a Hamiltonian theory in the variables AaIJ

and πbKL with internal gauge group SO(D + 1) which reduces to the theory derived

in the previous section on the constraint surface S ab
M

= nIG
ij = 0. The basic idea is

to first derive a Hamiltonian formulation of Euclidean gravity coupled to fermions and

then to adjust the Hamiltonian constraint to mimic Lorentzian gravity. The reason

why the procedure already used in the vacuum case in part II generalises nicely to

Dirac fermions is the strong resemblance of the Clifford algebras, which differ only by

factors of i for different signatures and the Euclidean signature of the internal gauge

group which ensures that ΣIJ is a Hermitian matrix the Euclidean case.
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14. Inclusion of Dirac fermions

This requires care at several places, e.g. the cancellation Σ0i + (Σ0i)† = 0 from the

boost part of the Lorentzian Gauß constraint is no longer present. In order to derive

the Euclidean constraints, we start as in the previous section with the action (14.1)

and perform a D + 1 decomposition. We replace γ0 with nIγ
I , which reduces to γ0

in the time gauge. We note that the object ΨΨ is not a Lorentz scalar any more

when using Euclidean signature, because the γ0 inherent in ΨΨ is needed in order to

maintain invariance under boosts which are generated by the anti-Hermitian Σ0i. In

Euclidean signature the boost generator is also Hermitian and thus Ψ†Ψ rather than

ΨΨ is now the appropriate Euclidean scalar to be used while Ψ†γIΨ is a Euclidean

covariant vector with index I. The substitution γ0 → nIγ
I is therefore natural for

Euclidean signature and allows for the construction of a manifestly SO(D + 1) gauge

invariant theory. We use the additional nI in the action to form π′aIJ = 2n[IEa|J ] and

introduce the simplicity constraint in order to replace π′aIJ by πaIJ . The Euclidean

Hamiltonian theory is then given by the constraints

H E =
1

2
πaIKπbJKFabIJ +

(
1

2
Ψ†πaIJΣIJD

A
aΨ + CC

)
, (14.30)

H E
a =

1

2
πbIJFabIJ +

i

2
Ψ†DA

aΨ−
i

2
(DA

aΨ)†Ψ, (14.31)

G IJ
E = DA

aπ
aIJ −Ψ†ΣIJΨ, (14.32)

S ab
M

=
1

4
εIJKLMπ

aIJπbKL, (14.33)

and the (non-vanishing) Poisson brackets

{AaIJ(x), πbKL(y)} = δD(x− y)δba(δ
I
Kδ

J
L − δILδJK),

{Ψα(x),−iΨ†β(y)} = −δD(x− y)δαβ . (14.34)

The task of “Lorentzifying” the gravitational part of H E has already been addressed.

For the fermionic part, we observe that we should add a factor of i in front of the

fermionic term in order to compensate for γ0
E = iγ0

L and denote the changed constraint

by H E
(i) . The Hamiltonian constraint now reduces to

H E
(i) →

1

2

√
qR− 1

√
q
E[a|iEb]jKaiKbj +

(
i

2
√
q

Ψ†γ0
LE

a
i γ

iDΓ
aΨ + CC

)
− 1

2
√
q

Ψ†ΨEaiKai −
1

2
√
q

D − 2

D − 1
Ψ†Σ0i

EΨΨ†ΣE
0iΨ + ∂a

(
Eai√
q

Ψ†Σ0i
EΨ

)
+ O(Ktf

aij).

(14.35)
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14.2 Phase space extension

The terms proportional to Ktf
aij can be dealt with using ideas from gauge unfixing. We

calculate

{S ab
M

[cMab ],H
E

(i) [N ]} = GDab
M

[NcMab ] +

∫
σ
dDx

N

4
cMabπ

aIJπbMN εMNKLMΨ†{ΣIJ ,ΣKL}Ψ

:= GDab
M

[NcMab ] + FDab
M

[NcMab ] (14.36)

and see that the gravitational constraint GDab
M

= −εIJKLMπcIJ
(
π(a|KNDA

cπ
b)L

N

)
≈ 0

now receives a fermionic contribution FD . F ab
M
cd
N

, the Dirac matrix introduced in sec-

tion 8.2, however remains unchanged since FD Poisson-commutes with the simplicity

constraint and gauge unfixing works as before. Next to compensating the terms pro-

portional to Ktf
aij , gauge unfixing also produces a four-fermion term, which we have to

subtract again in order to build the correct Lorentzian Hamiltonian constraint.

Comparison with the previous section leads to the following correction terms:

H L = H E
(i) +

2
√
q
E[a|IEb]JKaIKbJ −

1

2
GDab

M

(
F−1

)
M
ab

N
cd GDcd

N

− 1

2
GDab

M

(
F−1

)
M
ab

N
cd FDcd

N
− 1

2
FDab

M

(
F−1

)
M
ab

N
cd GDcd

N

− 1

2
√
q

Ψ†ΣijΨΨ†ΣijΨ +
1

2
√
q

D − 2

D − 1
Ψ†Σ0i

EΨΨ†ΣE
0iΨ

− ∂a
(
Eai√
q

Ψ†Σ0i
EΨ

)
+

1

2
√
q

Ψ†ΨEaIKaI +
1

32
Ψ
{
γk,Σij

}
ΨΨ
{
γk,Σij

}
Ψ.

(14.37)

This Hamiltonian has to be rewritten in terms of AaIJ and πbKL only, desirably as

simple as possible regarding the quantisation. We propose the Hamiltonian

H L =
1

2
πaIKπbJKFabIJ +

(
i
1

2
Ψ†πaIJΣIJD

A
aΨ + CC

)
+

2
√
q
E[a|IEb]JKaIKbJ −

1

2
GDab

M

(
F−1

)
M
ab

N
cd GDcd

N

− 1

2
GDab

M

(
F−1

)
M
ab

N
cd FDcd

N
− 1

2
FDab

M

(
F−1

)
M
ab

N
cd GDcd

N

− 1

2
√
q

Ψ†ΣIJΨΨ†ΣIJΨ +
1

2
√
q

3D − 4

D − 1
Ψ†ΣIKΨΨ†ΣJKΨnIn

J

− ∂a
(
πaIJ√
q

Ψ†ΣIJΨ

)
+

1

2
√
q

Ψ†ΨEaiKai

− 1

32
Ψ†γ[IγJγKγL]ΨnLn

MΨ†γ[IγJγKγM ]Ψ (14.38)
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14. Inclusion of Dirac fermions

for quantisation, although we are well aware of the fact that other choices might lead to

equally reasonable classical starting points. We shift the problem of choosing the “cor-

rect” Hamiltonian constraint to the semiclassical analysis. The expressions for nInJ

and EaIKbI were already given in part II and all γ-matrices appearing are those for

Euclidean signature.

A last remark concerning the use of the linear simplicity constraint (cf. [6] and section

9.1) instead of the quadratic version above is in order. Since, using the linear simplicity

constraint, we have direct access to the internal unit vector N I , the above construction

is, in fact, simpler in that case. In analogy to (14.28), we define the map to the eADM

phase space by

ĒaI = ζη̄IJπ
aKJNK , K̄aI = ζη̄I

J(A− Γ)aKJN
K , (14.39)

where ΓaIJ is understood as functions of πaIJ but η̄IJ now is understood as a func-

tion of N I . The proof that the extension of
(
Kai, E

bj
)

with SO(D) Gauß constraint to(
AaIJ , π

bKL, N I , PJ
)

with SO(D+1) (or SO(1, D)) Gauß, linear simplicity and normal-

isation constraint then is analogous to the one above and therefore will not be detailed

here.

14.3 Kinematical Hilbert space for fermions

The construction of the kinematical Hilbert space for fermions was discussed in [45].

Results obtained there apply for the case at hand, so we only give a short summary.

It is crucial to work with half-densitised fermionic variables Ψ for what follows, as was

stressed in [45].

Faithful implementation of the reality conditions enforces the use of a representation

in which the objects

θα(x) :=

∫
σ
dDy

√
δ(x, y) Ψα(y) := lim

ε→0

∫
σ
dDy

χε(x, y)√
εD

Ψα(y) (14.40)

become densely defined multiplication operators. Their adjoints θ
α

become derivative

operators. Here, α = 1, ..., n := 2b(D+1)/2c (b.c denotes the integer part of .) and χε(x, y)

denotes the characteristic function of a box of Lebesgue measure εD centered at x. In

the above equation, the half-densities Ψ are “dedensitised” using the δ-distribution,

which is a scalar in one of its arguments and a density in the other. Thus, the vari-

ables θ are Graßmann-valued scalar quantities, which is important for diffeomorphism
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14.4 Implementation of the Hamiltonian constraint operator

invariance [45]. In calculations it is understood that the ε→ 0 limit is performed after

the manipulation under consideration is performed.

The variables θα(v) coordinatise together with their conjugates the superspace Sv

at the point v. The quantum configuration space is the uncountable direct product

S :=
∏
v∈σ Sv. In order to define an inner product on S , it turns out to be suffi-

cient to define an inner product on each Sv coming from a probability measure. The

“measure” on Sv is a modified form of the Berezin symbolic integral [261]

dm
(
θ, θ
)

= dθdθeθθ and dmv = ⊗nα=1dm
(
θα(v), θα(v)

)
, (14.41)

which has the additional property of being positive on holomorphic functions (those

which only depend on the θα and not on θα). Since the θ are Graßmann variables and

thus anti-commute, any product of more than n of these variables will vanish. The

vector space of monomials of order k is n!/k!(n − k)!-dimensional (0 ≤ k ≤ n) and

the full vector space Qv built from all monomials has dimension 2n. The full fermionic

Hilbert space is a space of holomorphic square integrable functions on S with respect

to dµF

HF = L2

(
S , dµF

)
= ⊗v∈σL2 (Sv, dmv) . (14.42)

When restricted to a point v, the inner product can be seen to coincide with the

standard inner product on Qv when viewed as a vector space of exterior forms of

maximal degree D + 1. For a more complete treatment, the reader is referred to [45]

where it is shown that the fermion measure dµF is gauge and diffeomorphism invariant

and that the reality conditions θα = −iπα are faithfully implemented in the inner

product.

14.4 Implementation of the Hamiltonian constraint oper-

ator

The quantisation of the purely gravitational Hamiltonian constraint in dimensions

D + 1 ≥ 3 has already been discussed in part III. The quantisation of fermionic de-

grees of freedom was described in detail in [45, 46], which we assume the reader to be

familiar with. Next to an explicit example, we will only provide a toolkit to quantise

the fermionic part of the Hamiltonian constraint operator as writing down the explicit

terms is rather laborious.
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14. Inclusion of Dirac fermions

Quantisation of the θ variables is performed by promoting θα to a multiplication opera-

tor and (̂θ†)β = −~ ∂L

∂θβ
, where L indicates the left derivative. The explicit quantisation

follows the (extended) toolkit of [3]:

(1) Choose a triangulation T (γ, ε) of the spatial slice σ adapted to the graph γ.

(2) Use classical identities in order to express the Hamiltonian constraint in terms

of connections AaIJ , volumes V (x, ε) and Euclidean Hamiltonian constraints

HE(x, ε).

(3) Replace all phase space variables by their corresponding regulated quantities.

(4) Instead of the the integration
∫
σ d

Dx, put a sum 1
D!

∑
v∈V (γ) over all the vertices

v of the graph γ.

(5) For every spatial ε-symbol, put a sum 2D

E(v)

∑
v(∆)=v over all D-simplices having

v as a vertex. The holonomies associated with the ε-symbol are evaluated along

the edges spanning ∆.

(6) Substitute the generalised Poisson (anti-)brackets by i
~ times the (anti-)commutator

of the corresponding operators, i.e. the multiplication operator ĥe, the volume

operator V̂ , the multiplication operator θ̂α and the derivation operator −~ ∂L

∂θα
.

The kinetic fermionic part of the Hamiltonian constraint operator is a bit more involved

since it contains a derivative. Following [45], we explicitly get

Ĥ ε
Dirac, kin(N)fγ

=

(
i~
2

∑
v∈V (γ)

2D

D!

Nv

E(v)

∑
v(∆)=v

ε̂

(
πaIJ√
q

(v)

)
×

(
ΣIJ

(
(hsa(∆)θ(sa(∆)(ε)

)
− θ(v)

)
α

∂L

∂θα(v)
+H.C.

)
fγ , (14.43)

where by ε̂(. . .) we mean the regulated quantity with the Poisson brackets substituted

by i/~ times the commutator of the corresponding operators. The Hermitian conjuga-

tion operation H.C. is meant with respect to the inner product on the Hilbert space.

Due to its length, we refrain from writing down the complete Hamiltonian constraint

operator which can be easily done when following the quantisation recipe. We remark

that we could split the Dirac fermions for D+ 1 even into left- and right-handed parts,

however, the presentation does not benefit from this. Details are supplied in [6]. The

quantisation ambiguities from LQG are also present when considering fermions and, as

usual, we shift this problem to the semiclassical limit.
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15

Extension to supersymmetric

theories

“Maybe the way we now interpret Kaluza-Klein ideas is totally wrong.

Perhaps one should instead consider field theories with a variable number of

dimensions [...], maybe even continuous dimensions [...], maybe even a new

Schrödinger equation in which one of the canonical variables is a variable

dimension. The fact that we live in d = 4 would then simply be a Bohr-

quantization rule. Perhaps certain integer dimensions are singled out in a

path integral approach because they have more differentiable structures than

other integer dimensions [...]. In these lectures, however, we will stick to

the “conservative” viewpoint that our world is eleven dimensional.”

- Peter van Nieuwenhuizen [133]

In [6, 7], non-standard matter fields which appear generically in supergravity theo-

ries were included in the loop quantisation framework, namely the spin 3/2 Rarita

Schwinger field (“gravitino”) and the three-form gauge field from the d = 11 N = 1

supergravity as a specific example of a higher p-form field.

In the fermionic part 15.1, we will exclusively study the case of Majorana fermions.

The Rarita Schwinger action actually is not tied to the use of Majorana fermions,

there exist also Dirac and Weyl versions of this field. Also, it is a well-known fact

that Majorana fermions do not exist in any dimension, but in those dimensions instead

one can define anti- or symplectic Majorana fermions with slightly more complicated
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15. Extension to supersymmetric theories

Majorana conditions (cf. e.g. [133]). Scanning the literature on supergravity theo-

ries in various dimensions (cf. e.g. [134] for a collection of important original articles

which additional explanations, historical remarks and extensive reference to further

literature), it transpires that there are supergravities in which the role of the gravitino

actually is played by any of these possibilities: Weyl, Majorana-Weyl, anti- or sym-

plectic Majorana Rarita Schwinger fields appear. However, for the d = 4 N = 1, and

d = 11 N = 1 supergravities, the gravitino actually is a Majorana fermion [134], and

therefore, although the Majorana case cannot be called generic, we already cover these

arguably interesting theories. Still, in [6] it is shown exemplarily that, without further

complications, we are also able to include spin 3/2 Majorana-Weyl fermions both, at

the classical and quantum level (important for e.g. d = 10 N = 1 supergravity), as

well as spin 1/2 Majorana and spin 1/2 Dirac-Weyl fermions which also appear in some

supergravities. This makes us confident that the methods developed actually allow for

the loop quantisation of the fermionic sector of a large class of supergravity theories. In

the bosonic sector (section 15.2), while only treating the three-form field from d = 11

N = 1 supergravity explicitly, we also expect that our methods carry over to more

general p-form fields. However, here we make do with only presenting the mentioned

examples and leave the generalisations to the interested reader.

15.1 Rarita Schwinger field

15.1.1 Classical extension to SO(D + 1) gauge supergravity

We start from an action of the form

SSUGRA[e,A, ψ,more] = −
∫

M
ddx

(
1

2
e eµIe

ν
JFµν

IJ(A) + ie ψ̄µγ
µρσ∇Aρψσ + more

)
,

(15.1)

which is quite generic for (first order) supergravity theories1. The action consists of

three parts: The first term is given by the Palatini action for gravity known from chapter

4, the second is the action of the Rarita Schwinger field ψµ (spinor indices will be mostly

suppressed; note that in general there might be several Rarita Schwinger fields appear-

ing), and “more” stands for all other terms which are demanded by supersymmetry.

We defined γµνρ := γIJKeµIe
ν
Je
ρ
K , and the covariant derivative acting on the spinor

1Here, we want to make explicit the transition from the Lagrangian to the Hamiltonian formulation

in time gauge once and choose exemplarily the first order framework. We could, however, as well start

with a second order action. The subsequent considerations in the Hamiltonian theory actually do not

depend on this choice of starting point.
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15.1 Rarita Schwinger field

field is defined like before for Dirac spinors, ∇Aµψν = ∂µψν + i
2AµIJΣIJψν . Being a

Majorana fermion, ψ has to satisfy the Majorana reality condition ψ̄µ := ψ†µγ0 = ψT
µC,

where C is called charge conjugation matrix. We will work in a Majorana represen-

tation, in which the spinors are real and we have C = γ0. Note that this implies a

restriction to those dimensions in which a Majorana representation of the Lorentzian

Clifford algebra exists, which however includes the particularly interesting cases d = 4,

10, 11. Like in the case of Dirac fermions, we again want to first impose time gauge

nI = δI0 ⇔ Ea0 = 0 to reduce the internal SO(1, D) symmetry to SO(D) and then

extend it again to SO(D + 1). Performing the D + 1 split like in the pure gravity case

then leads to

SSUGRA =

∫
dt

∫
σ
dDx

(
EaiK̇ai − i(D)e ψT

a γ
abψ̇b

−NH −NaHa −
1

2
λijG

ij − ψ̄tS + more

)
. (15.2)

Here, “more” stands for the kinetic terms of all other present fields and for further

constraints which might appear. Of course, we obtain the usual Hamiltonian, spatial

diffeomorphism and SO(D) Gauß constraint, but also ψ̄t plays the role of a Lagrange

multiplier field and therefore, one further constraint, the supersymmetry constraints

S, arises. The form of H and S depends strongly on the theory under considera-

tion. With a suitable choice of Lagrange multipliers, Ha is the generator of spatial

diffeomorphisms on all phase space variables and therefore has a generic form1, as has

G ij , generating internal SO(D) transformations on all phase space variables in the

corresponding representation. Reading off the momenta conjugate to ψa

πa := i(D)e ψT
b γ

ba, (15.3)

we find

G ij = 2K [i
aE

a|j] + πa[iΣij ]ψa + more, (15.4)

Ha = Ebj∂aKbj − ∂b(EbjKaj)− πb∂aψb + ∂b(π
bψa) + more, (15.5)

where “more” stands for the corresponding terms of any additional fields, as well as

the non-vanishing canonical anti-bracket relations (CAR)

{ψαa (x), πbβ(y)} = −δαβ δbaδ(D)(x− y). (15.6)

1Suitable choice of Lagrange multiplier here is equivalent to choosing a certain linear combination

of constraints. The “natural” vector constraint which appears, namely the one whose corresponding

Lagrange multiplier is the shift vector, actually generates a mixture of spatial diffeomorphisms, internal

rotations and local supersymmetry transformations.
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15. Extension to supersymmetric theories

Since the Gauß and spatial diffeomorphism constraint are expected to be treatable in

the same way as in the non-supersymmetric case, our strategy will be to focus on the

CAR and reality conditions to obtain a kinematical quantisation of this sector of the

theory.

The three main manipulations we have to perform in order to arrive at CAR and

reality conditions which are amenable at the quantum level (for details, see [6]):

(1) It was shown in [45] (and applied in chapter 14) that for Dirac fermions, it is

mandatory to use half densities as fundamental fermionic variables, since oth-

erwise one has a complex valued gravitational connection and problems with

implementing both, the reality conditions and the canonical Poisson anti-bracket

at the quantum level. Interestingly, in the case at hand, we again will be forced to

use half-densitised fermionic variables. Due to the reality of the fermionic field,

the usual defining equation of the fermionic momenta 15.3 actually are second

class with themselves, a complication which is absent in the case of the Dirac

field,

Ωa := πa − i(D)e ψT
b γ

ba ≈ 0, (15.7)

{Ωa(x),Ωb(y)} = 2i(D)e γabδ(D)(x− y). (15.8)

One might at this point again want to use gauge unfixing, but to this end we

had to split the constraints Ωa in a covariant way such that we can drop half of

them. A natural splitting would be a chiral one, but the concept of chirality only

is defined in even spacetime dimensions and we do not want to impose further

restrictions on the number of dimensions. Therefore, we are lead to using the

Dirac bracket. For the Dirac anti-bracket between two fermionic fields, we find

{ψa(x), ψb(y)}DB =
i

2(D − 1)(D)e
((2−D)qab + γab)δ

(D)(x− y), (15.9)

and furthermore, one finds {Ka
i(x),Kb

j(y)}DB 6= 0, {ψa(x),Kc
i(y)}DB 6= 0, and

{ψa(x), Ebj(y)}DB = 0. The latter Dirac brackets are rather disastrous in view of

later quantisation: From the first one, we expect that the SO(D + 1) connection

will not be Poisson self - commuting, and the latter two indicate that the Rarita

Schwinger field will have a very complicated action on the connection, being con-

structed from both, Ebj and Kck.

These obstacles can be circumvented using half densitised and vielbein contracted
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15.1 Rarita Schwinger field

fermionic variable1 φi :=
√

(D)eeaiψa. From the kinetic term in the action, it is

easy to read off that, when using this fermionic variable, the variable conjugate

to the vielbein changes as Ka
i → K ′a

i := Ka
i− iEakφjγjiφk. After this change of

variables, the non-vanishing Dirac (anti-)brackets are (this was already observed

in [120] in D = 3)

{K ′ai(x), Ebj(y)}DB = δbaδ
j
i δ

(D)(x− y), (15.10)

{φi(x), φj(y)}DB =
i

2(D − 1)
((2−D)ηij + γij)δ

(D)(x− y), (15.11)

and all fields are real. To simplify notation, we will drop the subscript DB in the

following.

(2) Having sidestepped this first major problem, we can start thinking of extending

the internal gauge group to SO(D + 1). Since we “decoupled” the fermionic and

gravitational degrees of freedom at the level of the Dirac bracket in the last step,

we can treat the bosonic degrees of freedom like in the vacuum case to obtain

a SO(D + 1) connection formulation. In the fermionic sector, we have to either

get rid of the matrix appearing on the right hand side of (15.11) before the

extension to SO(D+1) or give an SO(D+1) version thereof. The latter option is

problematic, since the naive extension (just adding one internal direction, ηij →
ηIJ , γij → γIJ) does not lead to a symmetric matrix (under the exchange of both,

I, J and the spinor indices), which, however, is demanded by the symmetry of the

anti-bracket. Therefore, we stick to the former route, and simplify the bracket by

decomposing φi into trace and trace free components with respect to γi. To this

end, we define

Pijαβ := ηijδαβ −
1

D
(γiγj)αβ =

D − 1

D
ηijδαβ −

2i

D
Σij
αβ, (15.12)

Qijαβ :=
1

D
(γiγj)αβ =

1

D
ηijδαβ +

2i

D
Σij
αβ, (15.13)

where α, β, ... ∈ {1, ..., 2bD+1/2c} denote spinor indices. It is easy to check that

this actually defines projectors, PijαβQβγjk = 0, PijαβPβγjk = Piγαk, QijαβQβγjk = Qiγαk,

P + Q = 1η, and using them, we can decompose the Rarita-Schwinger field as

follows

φi = Pijφ
j + Qijφ

j =: ρi +
1

D
γiσ, (15.14)

1This choice of variables actually appeared much earlier in the literature on Hamiltonian super-

gravity [262] when requiring that the kinetic term of the Rarita Schwinger field be explicitly vielbein

independent.
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15. Extension to supersymmetric theories

with ρi := Pijφj and σ := γiφi
1. At the cost of introducing a new constraint

Λ := γiρi, (15.15)

which demands that ρi is trace free with respect to γi, we then find very convenient

non-vanishing fermionic anti-brackets

{ρi(x), ρj(y)} = − i
2

1ηij δ
(D)(x− y), (15.16)

{σ(x), σ(y)} = i
D

2(D − 1)
1 δ(D)(x− y), (15.17)

and again all fields are real. A final comment is in order: Note that the constraint

(15.15) is again second class with itself. If we calculate the corresponding Dirac

bracket, (15.16) changes to {ρi(x), ρj(y)}DB = − i
2Pij δ(D)(x − y), and it seams

that not much has been gained when compared with (15.11). However, as we will

see later when quantising, it will be central that the right hand side of the Dirac

bracket gives a projector and this is only true for ρi, not for φi.

(3) Finally, we have to extend the internal space, which actually poses the most in-

tricate problem: Since we started with real valued Lorentzian Dirac matrices, the

corresponding generators (∝ ΣIJ) of SO(D + 1) in the spinor representation are

necessarily complex (more concretely, in our conventions γ0 for Euclidean and

Lorentzian signature differs by a factor of i and therefore becomes imaginary).

This implies that the real vector space V of Majorana fermions is not preserved

under the action of the extended, SO(D + 1) Gauß constraint, and it seems that

the Majorana reality condition and the internal signature switch are incompatible.

However, note that any element g ∈ SO(D + 1) can be written as a g = b · r,
where b is an “Euclidean boost” in the 0j - plane and r a rotation stabilizing

nI0 := δI0 , and only the “Euclidean boosts” spoil the action of SO(D+1) on V (all

γi, i ∈ {1, ..., D} are real valued). If we started with a real spinor ∈ V and kept

track of all “Euclidean boosts”, we could still impose sensible reality conditions,

namely that the spinor when “boosted” back to V is real. A natural way how

to keep track of these boosts lies in the use of the linear simplicity constraint:

The unit vector field N I encodes the D boost parameters, N I =: bIJ(N)nJ0 .

1Also this decomposition already appeared earlier in treatments of the free Rarita-Schwinger field

to isolate the physical degrees of freedom. The trace part σ is found to be unphysical in this case, cf.

e.g. [262].

250



15.1 Rarita Schwinger field

The inverse matrix b−1 rotates N I back to its “time gauge” value nJ0 . Start-

ing from time gauge and spinors in V , we then impose as reality condition that

the spinors when rotated back to “time gauge” are always real valued, i.e. e.g.

b−1(N)σ = (b−1(N)σ)∗, where b(N) here is in the spinor representation. Based

on this idea, one can indeed obtain a faithful extension of the supergravity phase

space to the gauge group SO(D+ 1), and we refer the reader to the original work

[6] for details. For what follows, we only need that after solving all second class

constraints, the final non-vanishing anti-brackets read

{ρir(x), ρjr(y)} = − i
2

Pij δ(D)(x− y), (15.18)

{ρ0
r(x), ρjr(y)} = 0, (15.19)

{ρ0
r(x), ρ0

r(y)} = 0, (15.20)

{σr(x), σr(y)} = i
D

2(D − 1)
1 δ(D)(x− y), (15.21)

together with the usual canonical brackets we encountered in part II in the bosonic

sector, and all fields are real valued (The subscript r is to remind that these fields

are not the same as above). In terms of these fields, the spatial diffeomorphism

constraint and the linear simplicity and normalisation constraints read as one

would expect, but H and S are intricate. More surprisingly, also the Gauß

constraint is very complicated, which is related with the non-covariant split in

ρ0 and ρj- components in the anti-brackets. Still one can prove that all of these

remaining constraints, H , Ha, G IJ , S a
IM

, N and S, are first class, and we again

refer the interested reader to [6] for the details.

15.1.2 Kinematical Hilbert space for the Rarita Schwinger field

Consider the finite dimensional complex vector space V of polynomials of N real valued

Graßmann variables θA, A ∈ {1, ..., N}, with complex coefficients. A polynomial f ∈ V
can be written as

f =
N∑
n=0

∑
1≤A1<..<An≤N

f
(n)
A1..An

θA1 ..θAn , (15.22)

where f
(n)
A1..An

are a complex n - forms. An obviously positive definite sesqui-linear form

on V is given by

〈f, f ′〉 :=

N∑
n=0

∑
A1<..<An

f
(n)
A1..AN

f
(n)′
A1..AN

, (15.23)
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which is invariant under U(N) acting on V by

f 7→ U · f ; [U · f ]
(n)
A1..AN

= f
(n)
B1..BN

UB1A1 ..UBNAN . (15.24)

On the Graßmann variables, this corresponds to θA 7→ UABθB. Note that this is not an

action on real Graßmann variables unless U is real valued. Therefore we restrict U(N)

to O(N) (more precisely, to a subgroup thereof), and to real valued coefficients in the

polynomials f in what follows.

One can check that with the above inner product the operators

[θA · f ](θ) := θA f(θ), [∂A · f ](θ) := ∂lf(θ)/∂θA (15.25)

1satisfy the adjointness relations θ†A = ∂A. Therefore, we can define the operators

θ̂A :=
√
~[θA + ∂A], which obviously are self-adjoint and can be checked to satisfy the

anticommutation relations

[θ̂A, θ̂B]+ = 2~δAB. (15.26)

This already gives (up to a constant factor) a faithful representation of the abstract

CAR *-algebra for σαr if we interpret A as spinor index,

σ̂α :=
1

2

√
D~
D − 1

[θα + ∂α]. (15.27)

For ρir, A is compound index (j, α), j ∈ {1, ..., D}, α ∈ {1, ..., 2b(D+1)/2c}. Using that

Pαβij is a real valued projector (in particular symmetric and positive semidefinite), we

can define the self adjoint operators

ρ̂αi :=

√
~

2
Pαβij [θβj + ∂βj ] (15.28)

satisfying

[ρ̂αj , ρ̂
β
k ]+ =

~
2

Pαβjk . (15.29)

The Hilbert space Hv for each point v on the spatial slice then is just given by the

tensor product of the Hilbert spaces we just constructed for both ρ and σ, and the field

theoretic generalisation thereof is constructed as in the case of Dirac fermions, either

using an inductive limit of the finite tensor products of the point Hilbert spaces Hv

or the infinite tensor product of these Hilbert spaces over all points v, cf. [62, 263] for

details.

1 ∂l

∂θA
here denotes the left derivative, see, e.g., [161] for more details.
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15.2 Three-form field of d = 11 N = 1 supergravity

In this section, we will study the quantisation of new bosonic fields in supergravity

theories using the example of the three-form field (“three index photon”) of d = 11

N = 1 supergravity. We will start by shortly reviewing the classical canonical theory

and afterwards study its quantisation. Again, our exposition will be rather brief and

we refer the interested reader to [7] for more details.

15.2.1 Canonical formulation

The Hamiltonian analysis of the full d = 11 N = 1 supergravity Lagrangian[135] was

studied in [264, 265]. Here, we will restrict to the contributions to the action stemming

form the three-form Aµνρ = A[µνρ], since the remaining parts (graviton- and gravitino-

part in d = 11) already were in included in the loop quantisation programme. This

part of the Lagrangian is not solely the (generalisation of) the Maxwell term coupled to

a current, but due to the presence of a Chern Simons term, the field actually becomes

self-interacting. It is given up to a numerical constant by

L = −1

2

√
|g|Fµ1..µ4 F

µ1..µ4 − α
√
|g|Fµ1..µ4 J

µ1..µ4

− c

2

√
|g|Fµ1..µ4 Fν1..ν4 Aρ1..ρ3ε

µ1..µ4ν1..ν4ρ1..ρ3, (15.30)

where F = dA, Fµ1..µ4 = ∂[µ1
Aµ2..µ3] is the curvature of A, J is a totally skew ten-

sor current bilinear in the Rarita Schwinger field and furthermore depending on the

vielbein, not containing derivatives. The specific form will not be important in what

follows. Furthermore, c and α are positive constants fixed by the requirement of local

supersymmetry. We will call c the level of the Chern Simons theory in analogy to the

three dimensional case.

We only want to highlight the main results of the canonical analysis, which is straight

forward but tedious. Performing the 10 + 1 split as in section 2.2.1, we find that the

Lagrangian is singular in Dirac’s [157] terminology: While the momenta πabc to the

spatial components Aabc of the three-form field can be solved for the corresponding

velocities, the temporal components Atab act as Lagrange multipliers fields and give

rise to the primary constraint

G a1a2 := ∂a3π
a1..a3 − c

2
εa1a2b1..b4c1..c4Fb1..b4Fc1..c4 . (15.31)

This is the analogue of the Gauß constraint in the Maxwell case, however, due to the

presence of the Chern Simons term in the action, it gets an additional contribution
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corresponding to the second term in (15.31). This leads to the following action on the

phase space variables

{A,G [λ]} = −dλ, (15.32)

{∗π,G [λ]} = c (dλ) ∧ F , (15.33)

where we introduced the dual seven-pseudo form (∗π)a1..a7 := 1
3! 7!εb1..b3a1..a7π

b1..b3 ,

smeared versions G [λ] of the constraint as in parts I, II, where λ is an arbitrary two

form field on σ, and used the canonical Poisson brackets

{Ab1..b3(x), πa1..a3(y)} = δa1

[b1
δa2
b2
δa3

b3] δ
(10)(x− y). (15.34)

Note that, unlike in the Maxwell case, π (the analogue of the electric field) is not in-

variant under the action of the “twisted” Gauß constraint G , which has tremendous

consequences for quantisation as we will see.

Apart from the appearance of the three-form Gauß constraint, of course, the canon-

ical analysis will lead to corresponding three-form contributions to the Hamiltonian,

spatial diffeomorphism and supersymmetry constraint, but their explicit form will not

be important for what follows. We only want to point out that G can be checked to

be an Abelian ideal in the constraint algebra, i.e. Poisson commutes strongly with all

constraints including itself.

15.2.2 Reduced phase space quantisation

Trying to quantise the theory on a kinematical Hilbert space of the type usually used

in LQG immediately leads to several problems. Integrating A, π over oriented three-

dimensional and seven-dimensional submanifolds, respectively, to write down the gen-

eralisation of the holonomy flux algebra and the LQG type positive linear functional

thereon which then gives a Hilbert space representation by the GNS construction, can

be done analogously. However, the extra term in the twisted Gauß constraint F ∧ F
does not exists in this representation, being discontinuous in the holonomies. Even

if we would give a procedure of how to regularise this term, the usual solution space

to the untwisted Gauß constraint (spanned by a generalisation of gauge invariant spin

networks) would not solve these constraints, since its elements would be annihilated by

∂aπ
abc but not by the second term F ∧ F .

Therefore, in [7] we propose a reduced phase space quantisation. This suggests itself
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15.2 Three-form field of d = 11 N = 1 supergravity

since G is an ideal in the constraint algebra. Indeed, one finds that

P abc := πabc + cεabcd1..d4e1..e3Fd1..d4Ae1..e3 ⇔ ∗P = ∗π + c A ∧ F , (15.35)

and F = dA are Dirac observables with respect to G and all other constraints can be

expressed in terms of F , P and terms independent of A, π.

Computing the observable algebra, we find

{F [h], F [h′]} = 0, {P [f ], F [h]} =

∫
h ∧ df, {P [f ], P [f ′]} = −3c F [f ∧ f ′],(15.36)

where we introduced P [f ] :=
∫
σ f ∧ ∗P and F [h] :=

∫
σ h ∧ F for a three-form f and a

six-form h. While the algebra closes, P and F are not conjugate. In particular, if we in

analogy to LQG choose a discontinuous representation in which only the corresponding

Weyl elements are defined but F [h] itself does not exists, (15.36) shows that P [f ] also

cannot be defined. We therefore are looking for a representation in which only the Weyl

elements W [h, f ] := exp (i(F [h] + P [f ])) corresponding to both, F and P exists.

For the ∗-relations and Weyl relations, we find1

W [h, f ]∗ = W [−h,−f ], (15.37)

W [h, f ] W [h′, f ′] = W [h+ h′ +
3c

2
f ∧ f ′, f + f ′] ×

exp

(
i

4

∫ [
2(h ∧ df ′ − h′ ∧ df)− cf ∧ f ′ ∧ d(f − f ′)

])
. (15.38)

Note that also the Weyl relations get twisted due to the presence of the Chern Simons

term (c 6= 0).

The Narnhofer-Thirring type functional [136], which also was applied in the context of

loop quantisation of the closed bosonic string [93],

ω(W (h, f)) =

{
1 h = f = 0

0 else
, (15.39)

can be shown to give a positive linear functional on the ∗-algebra A generated by the

Weyl elements, and therefore a Hilbert space representation thereof by means of the

GNS construction. This representation is strongly discontinuous in both, h and f and

1To compute the latter, one needs to generalise the Baker-Campbell-Hausdorff formula [266–271]

to higher commutators [272].
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15. Extension to supersymmetric theories

while cyclic, not irreducible.

Finally, it was studied in [7] if the Weyl algebra and the state ω continue to be well-

defined if we introduce singular smearing in the spirit of holonomies and fluxes in usual

LQG, i.e. when restricting the smearing functions h, f to the form factors of four-

and seven-surfaces respectively. The answer turns out to be in the affirmative, and we

refer the reader to the original literature [7] for details. This implies that terms in the

Hamiltonian and supersymmetry constraint depending on F , ∗P can be regularised in

the spirit of [30].
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Part V

Approaching black holes in

higher dimensional LQG: Isolated

horizon boundary degrees of

freedom
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The first articles on black hole entropy in LQG by Krasnov [39] and Rovelli [40] ap-

peared almost simultaneously in 1996. Roughly, employing the discreteness of area

in LQG, by counting the microstates compatible with a certain macroscopic area of a

two-surface, an entropy proportional to its area is derived. This result was significantly

strengthened by Ashtekar and collaborators [273–276]. Invoking the newly introduced

isolated horizon framework, which gives a quasi-local notion of black holes, it could

be shown at the classical level that, when using the Ashtekar’s variables and imposing

the boundary conditions corresponding to a spherically symmetric isolated horizon at

the inner boundary of a given spacetime, a U(1) Chern Simons theory arises on the

horizon in order to render the variational principle well defined. In fact, the Chern

Simons connection turns out to be nothing else than the pull back to the horizon of the

Ashtekar connection in the bulk. Smolin in a seminal work [38] already anticipated the

role of this topological field theory on inner boundaries in spacetime. Quantisation of

the three dimensional Chern Simons theory is well studied [184] and subsequent state

counting lead to a rigorous derivation of S ∝ A within LQG. Moreover, the constant of

proportionality can be chosen to coincide with Bekenstein’s and Hawking’s result when

fixing the Barbero Immirzi parameter γ appropriately. The methods of counting were

subsequently corrected and refined in [277, 278]. Sophisticated number theoretical and

combinatorial methods introduced by Barbero and collaborators (cf. e.g. [279] and

references therein) finally allowed for an exact computation of the entropy.

Central to the early derivations was the spherical symmetry of the horizon and the

related constancy of the Ricci curvature scalar of the horizon two-sphere cross sections,

and only later was extended to axisymmetric horizons [280] and finally to arbitrary

horizon shape [281].

Quite recently, it was argued by Perez and collaborators that the U(1) Chern Simons

theory arises only due to a certain unnecessary gauge fixing, and that one should work

with an SU(2) Chern Simons boundary theory instead [282]. The full bulk group SU(2)

entered the picture already earlier when deriving logarithmic corrections to the entropy

formula [283]. To the best of the author’s knowledge, it is still debated which of the two

should be preferred [284]. While conceptually the same, the use of SU(2) leads to a dif-

ferent prediction for the value of γ and different logarithmic corrections. Furthermore,

the SU(2) analysis suggests that one actually can allow for more general connections on

the boundary, not necessarily equal with the (pullback of the) bulk connection, which

in turn allows to obtain the right prefactor in the entropy formula without fixing the
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Barbero Immirzi parameter [43]. Extension of the SU(2) theory to horizons without

spherical symmetry turns out to be possible, but is more complicated than in the U(1)

case [285] and leads to new challenges at the quantum level. For a recent review com-

paring the U(1) and SU(2) framework and introducing the state counting, we refer the

interested reader to [43]. First results that the entropy formula can also be recovered

with spin foams are given in [286, 287].

In this part, we generalise the isolated horizon treatment of usual D = 3 LQG to

higher dimensions D = 2n+ 1, resulting in an SO(2(n+ 1)) Chern Simons symplectic

structure on the intersections of the black hole horizon with the spatial slice. We will

also derive higher dimensional analogues of the boundary condition F ∝ Σ. We have to

restrict to even spacetime dimensions D+1 = 2(n+1), since a) otherwise there does not

exist a higher dimensional Chern Simons theory on the odd dimensional horizon and b)

the Euler topological density of the (D−1) dimensional intersection of the horizon and

the spatial slice, which plays a central role in our considerations, is only defined in even

dimensions. We comment briefly on a possible quantisation of the horizon theory and

argue that the local degrees of freedom naturally arising in higher-dimensional non-

Abelian Chern Simons theory could be erased at the quantum level by quantising the

boundary conditions. The exposition follows [10] and several parts are taken from there.

The part is organised as follows: in the section on preliminaries 16, we will firstly

introduce in section 16.1 some new notation which was so far not necessary. Then, in

section 16.2 we will briefly discuss the Hamiltonian formulation of Chern Simons theory

in higher dimensions, in particular the derivation of its symplectic structure. This of

course is well-known (cf. e.g. [137]) and only added for completeness. Thereafter, we

will introduce the notion of higher dimensional isolated horizons in section 16.3 and

derive their consequences. They already have been studied in [288–291] and our def-

inition of higher dimensional, undistorted, non-rotating isolated horizons (UDNRIH)

does not differ significantly from the definitions given there.

Thereafter, we will turn to the derivation of the boundary degrees of freedom (chapter

17). Firstly, we will give a comparison of the results obtained in this part with the

ones from the usual treatment in 3 + 1 dimensions (section 17.1). This section (partly)

summarises the results obtained in the following sections, in which lengthy derivations

are provided.
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Afterwards we turn to the case of structure group SO(1, D), where we can start our

considerations from the Palatini action principle. We will derive suitable boundary

conditions connecting the (pullback to the horizon cross sections of the) Palatini con-

nection and an its conjugate momenta at the boundary (section 17.2.1). Moreover, we

find that the symplectic structure of an SO(1, D) Chern Simons arises at as bound-

ary contribution to the symplectic structure at the UDNRIH, and moreover, that the

Chern Simons connection coincides with the (pullback of the) Palatini connection (sec-

tion 17.2.2).

For the structure group SO(D + 1), which we have to prefer when quantising, we

cannot start from an action principle and we have to work purely in the Hamiltonian

picture. What we will show is that one can formulate boundary conditions whose form

is similar to those in the SO(1, D) case, but which now connect the momenta conjugate

to the bulk with the hybrid connection Γ0 of appendix C on the horizon cross sections.

Furthermore, the boundary term to the symplectic structure obtained when extending

the phase space from ADM to the new SO(D + 1) formulation can be reformulated in

terms of an SO(D + 1) Chern Simons symplectic structure of exactly this connection

(section 17.3). Changing to SO(D + 1) seems to force us into the extended paradigm

of Perez and collaborators (the bulk and the Chern Simons connection need not be

directly related), but apart from that no conceptual novelties show up. Like in [292],

the boundary connection is not uniquely determined and we shortly comment on its

non-uniqueness in D = 3.

Up to this point, we considered undistorted horizons only. In section 17.4, we will

discuss the generalisation of both, the Engle-Bettle [281] method as well as the Perez-

Pranzetti [285] method of how to incorporate distortion. The former generalises to the

SO(4) theory, but it is unclear if it works also in higher dimensions. The latter employed

two SU(2) Chern Simons connections and few additional, more or less manageable con-

straints already in D = 3. In higher dimensions, a straight forward generalisation is

possible but invokes dD+1
4 e + 1 SO(D+1) Chern Simons connections and many more

constraints, which make it doubtful if this route can be continued to the quantum level.

We will close with some comments on quantisation in section 17.5, which is far from

straight forward since non-Abelian Chern Simons theory in higher dimensions becomes

non-topological. Further comments and tentative research directions can be found in

the general discussion section 18.2. Some additional material for this part is provided in
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appendix F, where an overview over the higher-dimensional Newman-Penrose formal-

ism is given, as well as in appendix G where further calculational details to derivations

of the main text are provided.
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16

Preliminaries

16.1 Further notation and conventions

This part will need some additional notation not used in the remainder of this thesis,

which we want to introduce briefly.

Apart from D-dimensional Cauchy surfaces Σ, we will now also have to deal with

D-dimensional null surface within the spacetime manifold M , which we will denote by

∆. We will restrict the topology of ∆ to be S × R, where S is a (D − 1)-dimensional

compact Riemannian manifolds which has non-zero Euler characteristic. Examples are

the (D−1)-spheres SD−1 or hyperbolic spaces HD−1 divided by a freely acting discrete

subgroup Γ, e.g. handle bodies with genus g > 1 for D = 3 (at the level of topology)

and the corresponding black hole solutions, given e.g. in [293]. For notational simplic-

ity, we will refer to all these manifolds as spheres in this work but keep in mind that

more general topologies are allowed. We mostly restrict attention to even spacetime

dimensions D + 1 =: 2(n+ 1), having the advantages that (a) there can exist a Chern

Simons theory on the odd (2n + 1)-dimensional ∆ and (b) the Euler density [294] is

defined for the even (2n)-dimensional intersections S =̃ SD−1 of Σ and ∆. In addition

to the index conventions of the remainder of this thesis, we will use:

• tensorial indices on ∆ will be denoted by the µ
←
, ν
←
, ρ
←

(the pullback arrow will

sometimes be omitted if there should be no confusion whether the equation is

referring to M or ∆).

• tensorial indices in (D − 1)-dimensional subspaces S will be denoted by lower

Greek letters from the beginning of the alphabet: α, β, γ, . . . ∈ {1, . . . , D − 1} or
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by µ
⇐

.

• Lie algebra indices of some gauge group G will be denoted by capital Latin letters

from the beginning of the alphabet: A,B,C ∈ {1, . . . ,dim(g)}. Note that this

differs from our conventions in part II.

Apart from the spacetime metric gµν and the spatial metric qab, the (degenerate)

metric on ∆ denoted by hµν
←−

and the Riemannian metric on (D − 1) dimensional

subspaces denoted by hαβ need to be introduced. The corresponding Levi-Civita

connections will be denoted by ∇µ, Da, Dµ
←

and Dα. We denote by E(D+1) :=

εµ1ν1...µn+1νn+1εI1J1...In+1Jn+1Rµ1ν1I1J1 . . . Rµn+1νn+1In+1Jn+1 the Euler topological den-

sity [294] and remark that it coincides with other definitions in the literature only up

to normalisation, i.e. the integral of this density over a closed compact manifold, in our

case SD−1, denoted by
〈
E(2n)

〉
, gives a only a multiple of the Euler characteristic χS

of S. We choose this definition since it simplifies many formulas. Explicitly, we have

χS =
1

(8π)nn!

∫
S
E(2n), (16.1)

which in our case, i.e. spheres S2n, results in χS2n = 2.

The null normal to ∆ will be denoted by l and the vector field normal to the (D − 1)

– sphere cross-sections by1 k, normalised to l · k = −1 (cf. section 16.3). k can be ex-

tended uniquely to a spacetime 1-form at points of ∆ by requiring it to be null. Then,

at points of ∆, we can decompose the metric according to gµν = hµν − 2l(µkν). We will

denote the h-projected vielbein by m, mµI = hνµeνI , and furthermore use the notation

lI = lµeµ
I , kI = kµeµ

I , and, since l, k are null and normalised, kIkJηIJ = 0 = lI lJηIJ ,

kI lJηIJ = −1. We will call {l, k, {mI}} a generalised null frame. Elements of higher

dimensional Newman-Penrose formalism in this frame will be introduced in appendix F.

We will denote with s the spacelike normal to the (D− 1) - dimensional cross-sections

Σ∩∆, s2 = 1, s ·n = 0, pointing outward of σ (n of course is again the future pointing

timelike unit normal to a spatial slice Σ). When dealing with the Hamiltonian for-

mulation, we will choose the foliation such that l = 1√
2
(n − s), k = 1√

2
(n + s) holds,

where l and k are the (representatives of the equivalence class of the) null normals to

1We refrain from using the usual notation n for this normal here, to avoid confusion with the

normal to spatial slices, and also to make clear the difference between the hybrid vielbein normal nI

and kI = kµeµ
I .

264



16.2 Higher dimensional Chern-Simons theory

a given isolated horizon as specified in section 16.3. Furthermore, we will use the no-

tation sI := sµeµ
I and introduce ¯̄ηIJ := ηIJ + nInJ − sIsJ = ηIJ + 2l(IkJ) = mµIm

µ
J ,

¯̄ηIJn
J = ¯̄ηIJs

J = ¯̄ηIJ l
J = ¯̄ηIJk

J = 0. An upper twiddle indicates the density weight of

one, e.g. s̃I :=
√

deth sI .

Finally, a word of caution: If using the structure group SO(D + 1), which implies

that the internal and external signature do not match, several of the above formulas

get changed by signs (nI becomes spacelike, and the n n - terms in the definitions of

¯̄η) or even become obsolete (since, to perform the signature switch, we already are in

the Hamiltonian framework, lI and kI are not null anymore).

16.2 Higher dimensional Chern-Simons theory

We will review some facts about Chern-Simons theory in higher dimensions relevant

for this work, with focus on the canonical formulation. In particular, we will derive the

symplectic structure of the theory. We want to stress that these results are not new,

but we state them here for completeness. For a more elaborate canonical treatment of

higher dimensional Chern-Simons theory, we refer the reader to [138].

The Chern-Simons action is defined for all odd dimensions 2n+ 1 and gauge groups G

by the equation

dL2n+1
CS = iA1A2...An+1F

A1 ∧ ... ∧ FAn+1 , (16.2)

where FA = dAA + 1/2 [A,A]A = dAA + 1/2 fABC AB ∧ AC is the field strength of

the connection one form AB valued in the Lie algebra of G, fABC are the structure

constants of G, Aj , B,C ∈ {1, ...,dim(g)} are Lie algebra indices and iA1...An is a rank

(n+ 1) symmetric tensor invariant under the adjoint action of the group. Explicitly,

L2n+1
CS = iA1...An+1

n∑
p=0

(−1)p

(
2n+1
n−p

)(
2n+1
n

) ×
FA1 ∧ ... ∧ FAn−p︸ ︷︷ ︸

n−p

∧
(
1/2 [A,A]An−p+1

)
∧ ... ∧

(
1/2 [A,A]An

)︸ ︷︷ ︸
p

∧AAn+1

=: i ·
n∑
p=0

(−1)p

(
2n+1
n−p

)(
2n+1
n

)Fn−p ∧ (1/2 [A,A])p ∧A , (16.3)

where the second line defines the short hand notation we will use in the following.

For our purposes, it will be sufficient to restrict attention to the groups SO(1, D) or
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SO(D + 1) where D = 2n + 1. It is convenient to label the D(D+1)
2 generators of the

corresponding Lie algebras by an anti-symmetric combination of two indices in the fun-

damental representation I, J = 0, ..., D (e.g. the connection one form will be denoted

by AIJ with A(IJ) = 0). We will furthermore restrict the invariant tensor to be the

epsilon tensor εI1J1...In+1Jn+1 , which is the one relevant for our application. However,

we want to point out that all results of this section are independent of the choice of

gauge group and invariant tensor.

In order to obtain the (pre-)symplectic structure, we invoke the covariant canonical

formalism [295–297], according to which the presymplectic potential is given by the

boundary term of the first variation of the action, while the presymplectic structure is

the exterior derivative of the potential.

Using the relation

δ

(
ε Fn−p ∧ 1

2
[A,A]p ∧A

)
= ε

{
(n+ p+ 1) δA ∧ Fn−p ∧ 1

2
[A,A]p+

(n− p) δA ∧ Fn−p−1 ∧ 1

2
[A,A]p+1+

(n− p) d
[
δA ∧ Fn−p−1 ∧ 1

2
[A,A]p ∧A

]}
, (16.4)

the first variation of the Chern-Simons action yields

δS2n+1
CS = δ

∫
M
L2n+1
CS

=

∫
M

ε · n∑
p=0

(−1)p

(
2n+1
n−p

)(
2n+1
n

)(n+ p+ 1)Fn−p ∧ 1

2
[A,A]p

 ∧ δA
+

∫
M

ε · n−1∑
p=0

(−1)p

(
2n+1
n−p

)(
2n+1
n

)(n− p)Fn−p−1 ∧ 1

2
[A,A]p+1

 ∧ δA
+

∫
M
d

δA ∧
ε · n−1∑

p=0

(−1)p

(
2n+1
n−p

)(
2n+1
n

)(n− p)Fn−p−1 ∧ 1

2
[A,A]p ∧A


=

∫
M

(n+ 1) ε · Fn ∧ δA

+

∫
M
d

δA ∧
ε · n−1∑

p=0

(−1)p

(
2n+1
n−p

)(
2n+1
n

)(n− p)Fn−p−1 ∧ 1

2
[A,A]p ∧A

 .

(16.5)
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Note that the two sums of the bulk contribution cancel each other term by term, and the

only term surviving is the (p = 0) – term of the first sum. We obtain the Chern-Simons

equations of motion1

ε · F ∧ ... ∧ F︸ ︷︷ ︸
n times

= 0 , (16.6)

which in 2+1 dimensions (which corresponds to n = 1) reduces to F = 0. Let σ be a

2n-dimensional Cauchy slice. The presymplectic potential can be read off the boundary

term of the first variation and is given by

θσ(δ) =

∫
σ
δA ∧

ε n−1∑
p=0

(
2n+1
n−p

)(
2n+1
n

)(−1)p(n− p)Fn−p−1 ∧ 1

2
[A,A]p ∧A

 . (16.7)

For its variation, the equation

δ[2

[
ε · δ1]A ∧ Fn−p−1 ∧ 1

2
[A,A]p ∧A

]
=

ε ·
[

1

2
(n+ p+ 1) δ[1A ∧ δ2]A ∧ Fn−p−1 ∧ 1

2
[A,A]p

ε· +
1

2
(n− p− 1) δ[1A ∧ δ2]A ∧ Fn−p−2 ∧ 1

2
[A,A]p+1

]
, (16.8)

is useful. Actually, in the above result a boundary term was dropped, but in defining

the symplectic current, we are allowed to drop this term since we will integrate the

symplectic current we want to derive in this step over the boundary of the spacetime

region we are interested in. We find for the symplectic current

dθσ(δ2, δ1)

=
1

2
(

2n+1
n

) ε · δ[1A ∧ δ2]A ∧

n−1∑
p=0

(
2n+ 1

n− p

)
(−1)p(n− p)(n+ p+ 1) Fn−p−1 ∧ 1

2
[A,A]p

+

n−2∑
p=0

(
2n+ 1

n− p

)
(−1)p(n− p)(n− p− 1) Fn−p−2 ∧ 1

2
[A,A]p+1


=
n(n+ 1)

2
ε · δA ∧ δA ∧ Fn−1 , (16.9)

where again the terms in the two sums cancel each other out, with only the (p = 0) –

term in the first sum remaining. Therefore, the presymplectic structure is given by

Ωσ(δ2, δ1) =
n(n+ 1)

2

∫
σ
ε · δ[1A ∧ δ2]A ∧ Fn−1 . (16.10)

1Note that the bulk term of the variation can be obtained within two lines by varying 16.2.
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Usually, in order to have a meaningful phase space description, one now imposes suit-

able boundary conditions and checks if the presymplectic structure is independent of

the choice of the Cauchy slice σ and, for noncompact σ, if the integral is finite. How-

ever, in this thesis we are only interested in a spacetime with internal isolated horizon

boundary on which the Chern-Simons symplectic structure arises and we only have to

answer this questions for the full spacetime.

From 16.9, we can also read off that the Dirac matrix of Chern-Simons theory is given,

up to numerical factors, by ε ·Fn−1, which coincides with the result in [138, eq. (2.7)].

16.3 Higher dimensional isolated horizons

The isolated horizon framework was introduced in a series of seminal papers [273–

275, 298] and extended to higher dimensions in [288–291]. We will therefore only briefly

state the definition of undistorted, non-rotating horizons in higher dimensions which

we will be using, and discuss its consequences. The definition is geared towards the

goal of the next section, namely to obtain the boundary condition which will lead to a

higher-dimensional Chern-Simons theory on the boundary. We will start by giving the

weaker definitions of near expanding and weakly isolated horizons and a brief discussion

of their consequences in a manner very similar to [275]:

Definition 1. A sub-manifold ∆ of (M, g) is said to be a non-expanding horizon (NEH)

if

(1) ∆ is topologically R× SD−1 and null.

(2) Any null normal l of ∆ has vanishing expansion θl := hµν∇µlν1.

(3) All field equations hold at ∆ and −Tµν lν is a future-causal vector for any future

directed null normal l.

We will state the consequences of definition 1. For more details on the derivations, we

refer the interested reader to the standard literature cited above:

(a) Properties of l: Being a null normal to ∆, l is automatically twist free and geodesic.

Moreover, using the vanishing of θl, the Raychaudhuri equation and the condition on

the stress energy tensor, one can show it is additionally shear free and Rµν l
µlν =̂ 0.

1On ∆, hµν is any tensor such that hµν = hµµ′h
µ′ν′hνν′
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16.3 Higher dimensional isolated horizons

(b) Conditions on the Ricci tensor: From the condition on Tµν , the field equations

and the relation for Rµν in (a) it follows that Rµ
←
ν l
ν =̂ 0, or, in Newman-Penrose

formalism,

Φ00 = Rµν l
µlν =̂ 0 and Φ0J = Rµν l

µmν
J =̂ 0. (16.11)

(c) Induced Connection on ∆: Due to (a), there exists a unique intrinsic derivative

operator D on ∆. Its action on vector fields X ∈ T∆ and on 1-forms η ∈ T ∗∆ are

given by

DµX
ν =̂ ∇µ

←
X̃ν and Dµην =̂ ∇µ

←
η̃ ν
←

, (16.12)

where X̃ and η̃ are arbitrary extensions of X, η to M .

(d) Natural connection 1-form on ∆: From the properties of l, it follows that there

exists a one-form ωlµ such that

∇µ
←
lν =̂ ωlµl

ν , (16.13)

which implies

Llhµν
←−

=̂ 0. (16.14)

We define the acceleration of l by lµ∇µlν = κllν . We infer κl = ilω
l.

(e) Conditions on the Weyl tensor : From the defining equation of the Riemann tensor,

it follows that

2(D[µω
l
ν])l

ρ =̂ −Rµνσ
←−

ρlσ =̂ − Cµνσ
←−

ρlσ, (16.15)

where in the last step we used (b). Contracting (16.15) with mρJ , we find

Ψ0I0J =̂ 0 and Ψ0IJK =̂ 0, (16.16)

and therefore also

0 =̂ Ψ010J = Ψ0IJ
I . (16.17)

Using this and (b), we find

0 =̂ Cµνρ
←−

σl
ν lρkσ =̂ Rµνρ

←−
σl
ν lρkσ =̂ −Llω

l
µ
←

+Dµ
←
κl. (16.18)
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Definition 2. A pair (∆, [l]), where ∆ is a NEH and [l] an equivalence class1 of null

normals, is said to be a weakly isolated horizon (WIH) if

4. Llω =̂ 0

for any l ∈ [l].

Note that, while ωl in general depends on the choice of null normal l, it is invariant

under constant rescalings of l and therefore depends only on the equivalence class [l]

we fixed. Therefore, we will drop the superscript l in the following. We immediately

infer from (16.18) that the 0th law holds for WIH,

dκl
←−

=̂ 0. (16.19)

In the following, we will slightly strengthen this usual definition of WIHs in a way which

is very similar to the definitions given in [274] by introducing some extra structure. Fix

a foliation of ∆ by (D−1) - spheres. Denote by [k] an equivalence class of 1-form fields

normal to the foliation of ∆ by (D−1) - spheres2. We require that any k ∈ [k] is closed

on ∆. We extend them uniquely to spacetime 1-forms on M by requiring that they

be null. Now, we introduce the equivalence class of pairs [l, k] where each pair (lµ, kν)

satisfies ilk = −1, i.e. we fix l and k up to mutually inverse and constant rescaling.

Since k is closed and ∆ =̃ SD−1 × R is simply connected, k = −dv for some function v

on ∆, and each leaf Sv =̃ SD−1 of the fixed foliation is characterised by v = const. By

spherically symmetric, we will in the following mean constant on the leaves Sv, e.g. for

a spherically symmetric function f = f(v).

Definition 3. A undistorted non-rotating isolated horizon (UDNRIH) is a WIH where

to each l ∈ [l] there is a k like above, such that

5. k is shear-free with nowhere vanishing spherically symmetric expansion and van-

ishing Newman - Penrose coefficients πJ =̂ lµmν
J∇µkν on ∆.

6. The Euler density E(D−1) of the (D−1) – sphere cross sections obeys E(D−1)/
√
h =

f(v) for some function f , i.e. the given ratio is constant on each leaf Sv.

Two remarks are in order: Firstly, in D = 3, one finds for undistorted non-rotating

isolated horizons [274], instead of the last condition,

1Two null normals l and l′ are said to belong to the same equivalence class [l] if l = cl′ for some

positive constant c.
2Again, two 1-forms k, k′ are called equivalent if k = ck′ for some constant c.
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16.3 Higher dimensional isolated horizons

6’. Tµν l
µkν is spherically symmetric at ∆.

It is only for D = 3 that 6. and 6’. are equivalent. 6’. can be shown to be equivalent to

demanding that the curvature scalar R(2) of the 2-sphere cross sections be constant. In

two dimensions, we have E(2) = const.×R(2)
√
h = f(v)

√
h for some scalar function f .

In higher dimensions, condition 6’. still is equivalent to demanding that R(D−1) is con-

stant on Sv. However, we will see that for our purposes, this condition is unnecessary,

but has to be replaced by 6. This will be discussed explicitly in section 17.2.1. Apart

from that, compared with [274], our definition 3 is slightly stronger (more restrictive) in

that [274] does not demand 4. Furthermore, whereas we only allow for constant rescal-

ing of l, k, in [274] they are fixed up to spherically symmetric and mutually inverse

rescaling, but later in that paper, the gauge freedom of rescaling is fixed completely.

Secondly, the definition given above is tied to a foliation. The standard definitions

of (W)IH are usually foliation independent, though some results rely on the existence

of a so called good cuts foliation. Moreover, when going to the Hamiltonian formula-

tion, one usually demands that the spacetime foliation is such that at the boundary,

the foliation coincides with this preferred foliation. Note that our fixed foliation is a

good cuts foliation. We leave the question if all results obtained here hold in the more

general context of weaker definitions of (W)IH or ones without reference to a fixed

foliation for further research and continue by stating the consequences of definition 3:

(f) Properties of k, ω and its curvature: By the above requirements, we find for vectors

u tangential to ∆ using kµ∇ukµ = 0

∇ukν = uµ
(
hν
′
ν h

µ′
µ ∇µ′kν′ − kνωµ

)
= uµ

(
1

D − 1
θkhµν − kνωµ

)
. (16.20)

Furthermore, we have for tangential vectors u and v

0 = uµvν∇[µkν] = −uµvνk[νωµ], (16.21)

from which we conclude that ω = f̂ k for some function f̂ . Since ilω = κl, we have

f̂ = −κl or

ω = −κlk. (16.22)

Contraction of (16.15) with kρ yields

2D[µων] =̂ Cµνσ
←−

ρlσkρ =̂ mI
µ
←
mJ
ν
←

Ψ01IJ , (16.23)
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where in the last step we used the trace freeness of the Weyl tensor and (16.16). We can

furthermore conclude that dω =̂ 0 and Ψ01IJ =̂ 0, since ω =̂ − κl k
←

and dκl
←−

=̂ 0 =̂ dk
←−

.

This can be traced back to the requirement πJ =̂ 0 in the definition of UDNRIHs, and

in analogy to the D = 3 case, this is why we refer to these horizons as non-rotating

(note that Ψ01IJ is the analog of ImΨ2 in D = 3).
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17

The boundary degrees of freedom

17.1 Undistorted case: Comparison with D = 3

Let us very briefly review the main steps of the the classical part of the black hole

treatment in LQG (we will follow [62]) and compare them with what we expect to

encounter in higher dimensions, which already partly summarises our results. The

following sections then will give rather lengthy derivations thereof.

17.1.1 Boundary condition and role of topological invariants:

Usually in D = 3, the derivation of the boundary condition goes as follows: Due to the

isolated horizon boundary conditions (IHBC), the field equations have to be satisfied at

the horizon. In particular, starting with the Palatini theory, we have F
(4)
µνIJ = R

(4)
µνρσΣρσ

IJ

where Σρσ
IJ = e[ρ

Ie
σ]
J , due to the equation of motion demanding torsion freeness of the

Palatini connection. Pulling back to the horizon cross sections, we find using again the

IHBC that R
(4)
µν
⇐=

ρσΣρσ
IJ = R

⇐
(2)
µνρσΣρσ

IJ . In two dimensions, the Riemann tensor is already

determined by the curvature scalar, R
(2)
µνρσ ∝ R(2)g[µ|ρg|ν]σ. Combining these findings

and choosing time gauge to obtain the structure group SU(2), we have F
⇐

(4)
µν

i ∝ R(2)Σ
⇐µν

i,

where Σ
⇐µνi

= εjik e⇐[µ
j e
⇐ν]

k.

To continue, we have to invoke that in two dimensions the integral over the Ricci

scalar is a topological invariant by the Gauß-Bonnet theorem. Due to the spherical

symmetry of the horizon cross section, it follows that the Ricci curvature actually is a

constant given by −2πχS
AS

, where χS denotes the Euler characteristic of S (which equals

2 in our case of spheres). AS here denotes the area of the two-sphere cross sections,

which also is a constant in time due to the IHBC. Therefore, we actually have the
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boundary condition F
⇐

(4)i ∝ Σ
⇐
i ∝ ∗E

←−
i. In the last step, we used that, when expressing

in canonical fields, the middle term coincides with the pullback to S of the two form

dual to the densitised spatial triad. Classically, the surface degrees of freedom are

determined by the bulk fields by continuity. At the quantum level, this ceases to be

true and it is this equation which relates the bulk (triad) and surface (Chern Simons

connection) degrees of freedom.

In higher dimensions, the first steps towards a derivation of a similar boundary condi-

tion can be literally copied and we also find F
⇐

(D+1)
µνIJ = R

⇐
(D−1)
µνρσ Σρσ

IJ . However, in higher

dimensions the Riemann tensor of course has more than one independent component

and also the Ricci scalar ceases to play the topological role he had for D = 3. The idea

of how to generalise this aspect of the boundary condition to higher dimensions comes

from the observation that in two dimensions we have
√
hR(2) ∝ εαβεIJR

(2)
αβIJ , i.e. the

(densitised) Ricci scalar coincides (up to constant factors) with the Euler topological

density [294] which generalises to even dimensions,

E(2n) := εµ1ν1...µnνnεI1J1...InJnRµ1ν1I1J1 . . . RµnνnInJn . (17.1)

This motivates that a boundary condition in higher dimensions should read

εK1L1...KnLnIJ ε
⇐

µ1ν1...µnνn
F
⇐µ1ν1K1L1 ...F⇐µnνnKnLn

=
2E(2n)

√
h

n[I s̃J ] ≈ E(2n)

√
h
πaIJsa,

(17.2)

where sa ∈ T ∗σ denotes the unit conormal vector to S pointing outward of σ, sI :=

sae
aI and the twiddle indicates the density weight of one, s̃I :=

√
h sI . This in-

deed will be verified in section 17.2.1. By the same arguments as above, we have that
E(2n)
√
h

= (8π)nn!χS
AS

is constant on a history. However, we will see that the condition (17.2)

actually is not sufficient in higher dimensions and additional boundary conditions have

to be imposed in order to determine the boundary connection in terms of the bulk fields.

In the case of structure group SO(D+1), the form of the boundary condition turns out

to be the same, but since we have no action principle to start with, the derivations will

be different. In particular, the connection on the left hand side of (17.2) will in this

case simply be given by the SO(D+1) spin connection Γ0 on S annihilating nI , sJ and

mα
K (cf. appendix C) and not coincide with the (pullback of the) Palatini connection.

The connection to the Palatini connection turns out to be irrelevant at this point, the

most important role of the boundary condition being to relate the boundary connection

with the bulk degrees of freedom (cf. also [292]).
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17.1.2 Boundary contribution to the symplectic structure:

Within the Hamiltonian framework, when extending the ADM to the Ashtekar Barbero

phase space, we added an exact one form to the canonical action. However, when

looking closely at (6.31), we see that this is no longer true in the presence of inner

boundaries, where we obtain a contribution∫
σ
d3x (γ)EaiδΓai =

γ

2

∫
σ
d3x εabc∂a

(
sgn e ebkδec

k
)

=
γ

2

∫
S
d2x εαβ mαkδmβ

k, (17.3)

where we assumed sgn e = 1. After another gauge fixing, it is shown again making use

of the IHBC and ruthermore restricting the horizon area to be constant throughout the

histories we are considering, δAS = 0, that the corresponding symplectic structure can

be rewritten as the symplectic structure of a U(1) Chern Simons theory.

Similarly, from (7.39) we see that a similar transformation when going over to the

new variables leads to the boundary contribution to the symplectic potential∫
σ
dDx (β)πaIJδΓaIJ ≈

1

β

∫
σ
dDx ∂a

(
2EaIδnI

)
=

1

β

∫
S
dD−1x 2s̃IδnI . (17.4)

Of course, the structure of (17.3) and (17.4) is necessarily different, since it is unclear

how to generalise (17.3) to higher dimensions. This again underlines the difference

between Ashtekar’s and the new connection variables. In 3 + 1 dimensions, we have

the possibility to introduce a Holst - like modification (cf. section 9.3). Repeating the

above calculation then yields the modified boundary term∫
σ
d3x

(β,γ)
π aIJδΓaIJ ≈

1

β

∫
σ
d3x ∂a

(
2EaIδnI −

1

γ
εabcebMδe

M
c

)
=

1

β

∫
S
d2x

(
2s̃IδnI −

1

γ
εαβmαIδm

I
β

)
, (17.5)

the new term appearing corresponding to the boundary term (17.3) for Ashtekar-

Barbero variables (Note that γ in (17.3) and in (17.5) do not coincide, as is explained

also in section 9.3).

From (17.4), it is easy to obtain the boundary contribution to the symplectic structure

ΩS(δ1, δ2) =

∫
S

2

β
(δ[1s̃

I)(δ2]nI), (17.6)
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and it will be shown that, again restricting to δAS = 0, this symplectic structure can

be rewritten as the symplectic structure of an SO(D + 1) (or SO(1, D), depending on

the structure group in the bulk) Chern Simons theory of the hybrid spin connection Γ0

(cf. appendix C) on S

ΩS
CS(δ1, δ2) =

nAS

β
〈
E(2n)

〉 ∫
S
εIJKLM1N1...Mn−1Nn−1εαβα1β1...αn−1βn−1

(
δ[1Γ0

αIJ

) (
δ2]Γ

0
βKL

)
R0
α1β1M1N1

...R0
αn−1βn−1Mn−1Nn−1

. (17.7)

This connection is not uniquely determined and exemplarily, we point out possible

modifications of the connection for D = 3. Actually, in the case of structure group

SO(1, D) and for any (even) spacetime dimension, there is a modification which allows

to interpret the Chern Simons connection as the pullback of the bulk connection, as

will be shown in detail in section 17.2.2, but like in the boundary condition, this is not

necessary.

The Euler density and its topological nature play a central role again in this derivation,

both in the D = 3 and the higher dimensional case.

17.2 SO(1,D) as internal gauge group

17.2.1 Boundary condition

In this section, we will derive the boundary condition relating the bulk with the horizon

degrees of freedom starting from the Palatini action. This forces us to use SO(1, D) as

the internal gauge group as opposed to SO(D + 1), which can be used in the Hamilto-

nian formalism even for Lorentzian signature. In a later chapter, we will rederive the

boundary condition independently of the internal signature, thus allowing us to use

the loop quantisation based on SO(D + 1) connection variables for the bulk degrees of

freedom.

Due to 3. of definition 1, we have at points of ∆

Fµν
IJ =̂ Rµν

IJ = R(D+1)
µνρσ eρIeσJ . (17.8)

In the following, we will use the notation introduced in appendix F for the Weyl tensor

also for the Riemann tensor, e.g. R01IJ = R
(D+1)
µνρσ lµkνmρ

Im
σ
J . Note that therefore,

the internal indices appearing on R and Ψ are perpendicular to lI and kI , which will

276



17.2 SO(1,D) as internal gauge group

be used in several calculations in this section. Pulling back to ∆, we obtain

Fµν
←−

IJ = Rµν
←−

IJ = R(D+1)
µν
←−

ρσ e
ρIeσJ

=

(
hµ
←

µ′hν
←
ν′R

(D+1)
µ′ν′ρσ − 2k[µ

←
hν]
←

ν′ lµ
′
R

(D+1)
µ′ν′ρσ

)(
mρImσJ − 2mρ[I lσkJ ] − 2mρ[IkσlJ ]

+ 2l[ρkσ]k[I lJ ]
)

= hµ
←

µ′hν
←
ν′R

(D+1)
µ′ν′ρσm

ρImσJ +mµ
←

Kmν
←

L
(
−2RKL

[I
0k
J ] − 2RKL

[I
1l
J ] + 2RKL01k

[I lJ ]
)

− 2k[µ
←
mν]
←

K
(
R0K

IJ − 2R0K
[I

0k
J ] − 2R0K

[I
1l
J ] + 2R0K01k

[I lJ ]
)

= hµ
←

µ′hν
←
ν′R

(D−1)
µ′ν′ρσm

ρImσJ +mµ
←

Kmν
←

L
(
−2ΨKL

[I
0k
J ] − 2RKL

[I
1l
J ] + 2ΨKL01k

[I lJ ]
)

− 2k[µ
←
mν]
←

K
(

Ψ0K
IJ − 2Ψ0K

[I
0k
J ] − 2R0K

[I
1l
J ] + 2Ψ0K01k

[I lJ ]
)

= hµ
←

µ′hν
←
ν′R

(D−1)
µ′ν′ρσm

ρImσJ + 4k[µ
←
mν]
←

KR0K
[I

1l
J ]

= hµ
←

µ′hν
←
ν′R

(D−1)
µ′ν′ρσm

ρImσJ +
4

D − 1
k[µ
←
mν]
←

[I lJ ]
[
∇lθk + κlθk

]
, (17.9)

where in the fourth line, we used that Φ0J =̂ 0, Φ00 =̂ 0 to replace some Riemann

tensor components by the corresponding Weyl tensor components, and in the fifth line

we used 0 =̂ Ψ0IJK =̂ Ψ01JK =̂ Ψ0I0J =̂ Ψ010J and furthermore for uσ such that

u · l = 0 = u · k,

R(D−1)
µνρ

σuσ = [DµDν ]uρ

= 2hµ
′

[µh
ν′

ν]h
ρ′
ρ ∇µ′hν

′′
ν′ h

ρ′′

ρ′ ∇ν′′uρ′′

= hµ
′
µ h

ν′
ν h

ρ′
ρ h

σ
σ′R

(D+1)
µ′ν′ρ′

σ′uσ + 2hµ
′

[µh
ν′

ν]h
ρ′
ρ (∇[µ′h

ν′′

ν′]h
ρ′′

ρ′ )∇ν′′uρ′′

=̂ hµ
′
µ h

ν′
ν h

ρ′
ρ h

σ
σ′R

(D+1)
µ′ν′ρ′

σ′uσ. (17.10)

The second term in the second to last line vanishes due to

hµ
′

[µh
ν′

ν]h
ρ′
ρ (∇[µ′h

ν′′

ν′]h
ρ′′

ρ′ )∇ν′′uρ′′ = hµ
′

[µh
ν′

ν]h
ρ′′
ρ ∇[µ′(lν′]k

ν′′ + kν′]l
ν′′)∇ν′′uρ′′

+ hµ
′

[µh
ν′′

ν] h
ρ′
ρ ∇µ′(lρ′kρ

′′
+ kρ′ l

ρ′′)∇ν′′uρ′′

=̂ hµ
′

[µh
ν′

ν]h
ρ′′
ρ ((∇[µ′ lν′])k

ν′′ + (∇[µ′kν′])l
ν′′)∇ν′′uρ′′

+ hµ
′

[µh
ν′′

ν] h
ρ′
ρ ((∇µ′ lρ′)kρ

′′
+ (∇µ′kρ′)lρ

′′
)∇ν′′uρ′′

=̂ hµ
′

[µh
ν′

ν]h
ρ′′
ρ (∇[µ′kν′])l

ν′′∇ν′′uρ′′

− hµ
′

[µh
ν′′

ν] h
ρ′
ρ (∇µ′kρ′)uρ

′′∇ν′′ lρ′′
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=̂ 0 , (17.11)

where in the first line we used ∇g = 0, in the second line that h(l, .) = 0 = h(k, .), in

the third that ∇µlν
←−

= 0 and lµ∇ρuµ = −uµ∇ρlµ, and in the fourth line and dk
←−

= 0.

Finally, we have to account for the vanishing of RIJK1 in (17.9), which follows from

RIJK1 = ΨIJK1 +
2

D − 1
¯̄ηK[IΦJ ]1

= mµ
Im

ν
Jm

ρ
KR

(D+1)
µνρσ kσ = mµ

Im
ν
Jm

ρ
K [∇µ,∇ν ] kρ

= 2 mµ
Im

ν
Jm

ρ
K∇[µ

((
hν
′

ν] − lν]k
ν′ − kν]l

ν′
)(

hρ
′
ρ − lρkρ

′ − kρlρ
′
)
∇ν′kρ′

)
=̂ 2 mµ

Im
ν
Jm

ρ
K∇[µ

(
hν
′

ν]

(
hρ
′
ρ − kρlρ

′
)
∇ν′kρ′

)
=̂ 2 mµ

[Im
ν
J ]m

ρ
K∇µ

(
1

D − 1
hν
′
ν h

ρ′
ρ hν′ρ′θk − hν

′
ν kρω

l
ν′

)
=̂

2

D − 1
mµ

[Im
ν
J ]m

ρ
K

(
hνρ∇µθk − hµρθkωlν

)
=̂

2

D − 1
mµ

[I ¯̄ηJ ]K

(
∇µθk + θkω

l
µ

)
=̂

2

D − 1
mµ

[I ¯̄ηJ ]K

(
−(∇lθk)kµ − θkκlkµ

)
=̂ 0. (17.12)

From the third to the fourth line, we dropped the second two summands in the first

round bracket because l and k are twist free, and the second summand in the second

bracket since kµ∇
←
kµ = 0. In the fifth line, we used that k is twist and shear free and

that lµ∇
←
kµ = ωl. In line 6, we again invoke the twist and shear freeness of k. In the

last line, we used that dθk
←−

= −k∇lθk since it is spherical symmetric by definition 3 and

that ωl = −κlk.1

In the last line of (17.9), we furthermore used

R0I1J = C0I1J +
1

D − 1
(¯̄ηIJΦ01 − ΦIJ)− 1

D(D + 1)
¯̄ηIJR

(D+1)

= − 1

D − 1
¯̄ηIJ

[
∇lθk + κlθk

]
, (17.13)

which can be shown analogously.

1Comparing with the 3 + 1 dimensional case, we find RIJK1 = ΨIJK1 + 2
D−1

¯̄ηK[IΦJ]1 = 0 cor-

responds to Ψ3 − Φ21 = 0, ΨKLJ0 = 0 to Ψ0 = 0 and Ψ1 = 0, and ΨKL01 = 0 to the non-rotating

condition ImΨ2 = 0.

278



17.2 SO(1,D) as internal gauge group

Since the pullback to H of the second summand in (17.9) is zero (k
⇐

= 0), we finally

obtain when pulling back once more

F
⇐µνIJ

= R
⇐

(D+1)
µνIJ = hµ

⇐=

µ′ hν
⇐=

ν′R
(D+1)
µ′ν′ρσe

ρIeσJ = hµ
⇐=

µ′ hν
⇐=

ν′R
(D−1)
µ′ν′ρσm

ρImσJ (17.14)

and therefore, for D − 1 = 2n even,

εK1L1...KnLnIJ ε
⇐

µ1ν1...µnνn
F
⇐µ1ν1K1L1 ...F⇐µnνnKnLn

= εK1L1...KnLnIJ ε
⇐

µ1ν1...µnνn
R(D−1)
µ1ν1ρ1σ1

...R(D−1)
µnνnρnσnm

ρ1K1mσ1L1 ...mρnKnmσnLn

=
1√
h
ε
⇐
ρ1σ1...ρnσn ε

⇐
µ1ν1...µnνnR(D−1)

µ1ν1ρ1σ1
...R(D−1)

µnνnρnσn2n[IsJ ] ≈ E(2n)

√
q
πaIJsa , (17.15)

where E(2n) denotes the Euler density of the (D−1) – sphere cross sections and ≈means

equal up to the simplicity constraint. Finally, by 6. of definition 3, E(2n) = f(v)
√
h.

Some comment on the role of the equations (17.14, 17.15) is in order.

Firstly, notice that both of these equations are generalisations of the 3+1 dimensional

boundary conditions F
⇐

4
µνIJ ∝ R(2)Σ

⇐µνIJ
known from the U(1) and SU(2) treatments.

(17.14) has the same left hand side, but further manipulation of the right hand side as

in the 3+1 dimensional case is not possible, since the Riemann tensor is in general not

completely determined by the Ricci scalar in higher dimensions and the Ricci scalar

also ceases to play a topological role. (17.15) generalises the right hand side, the topo-

logical role now being played by the Euler density, while the left hand side is more

complicated than in the 3+1 dimensional case.

Secondly, at the quantum level, we want to work with an independent Chern-Simons

connection on the horizon from the outset and demand by constraint that the bound-

ary connection actually is determined by the bulk fields. This constraint is in 3+1

dimensions precisely given by the boundary condition F
⇐

4
µνIJ ∝ Σ

⇐µνIJ
. In higher di-

mensions, one can easily convince oneself that (17.15) is insufficient to determine the

boundary connection and one has to impose (17.14) at the quantum level. However,

(17.15) connects the momenta conjugate to the bulk connection with Chern-Simons

excitations and therefore is a direct generalisation of what is imposed at the quantum

level in the 3+1 dimensional case. It therefore could serve as a consistency requirement

additionally to (17.14), see the discussion in section 17.5. One last comment concerning

6’.: Assuming this condition to hold, one easily obtains that

Gµν l
µkν = Φ01 +

D − 1

2(D + 1)
R(D+1) (17.16)
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is spherically symmetric. Moreover, taking the trace of (17.13), we infer that

C0I1
I +

D − 3

D − 1
Φ01 −

D − 1

D(D + 1)
R(D+1) = −∇lθk − κlθk (17.17)

is spherically symmetric since the right hand side is. Finally, from (17.10),

R(D−1) = RIJ
IJ = 2C0I1

I +
4(D − 2)

D − 1
Φ01 +

(D − 2)(D − 1)

D(D + 1)
R(D+1)

= 2

(
C0I1

I +
D − 3

D − 1
Φ01 −

D − 1

D(D + 1)
R(D+1)

)
+ 2

(
Φ01 +

D − 1

2(D + 1)
R(D+1)

)
,

(17.18)

where Weyl tensor component identities from appendix F were used. Since both sum-

mands in round brackets are spherically symmetric, we find that R(D−1) is also spheri-

cally symmetric. As we already remarked at the beginning of section 16.3, this property

will not be needed in higher dimensions, but instead 6. will be crucial in the next sec-

tion.

17.2.2 Hamiltonian framework

In this section, we will show, starting from the Palatini action in (D+ 1) = 2(n+ 1) di-

mensions, how the symplectic structure of (2n+ 1) - dimensional Chern-Simons theory

arises as boundary contribution to the symplectic structure for an internal boundary

with UDNRIH conditions. We restrict to a vanishing cosmological constant. Note that

the mechanics of higher dimensional isolated horizons has already been studied in the

quasi-local, the asymptotically flat [289] as well as the asymptotically anti-de Sitter

[290] case. However, in all these treatments, the internal SO(1, D) transformations

were (partially) gauge fixed. In view of the boundary term (eq. (7.39)) of the gen-

erating functional for the canonical transformation to SO(1, D) connection variables

which we found in part II and which we expect to be related to the boundary sym-

plectic structure, we are not allowed to fix the internal gauge freedom completely. In

particular, in the usual time gauge nI = δI0 , this boundary term vanishes since it is

proportional to δnI . Therefore, we will rederive the Hamiltonian framework for IH in

higher dimensions for our specific definition of UDNRIH and without using any internal

gauge fixing1. Indeed, the derivation deviates from the usual treatment and we obtain

the same boundary contribution to the symplectic structure we found in 17.1, which a)

vanishes in time gauge and b) can be reexpressed as SO(1, D) Chern-Simons symplectic

1Note, however, that there are interesting allowed gauge fixings, e. g. nI = g0iηIi , sI = g1iηIi for

g ∈ SO(2) (i ∈ {0, 1}).
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17.2 SO(1,D) as internal gauge group

structure.

Consider a region M in a (D+1) - dimensional Lorentzian spacetime (M ′, g) bounded

by two (partial) Cauchy slices Σ1 and Σ2, ∆, and possibly an outer boundary T . On

∆, we impose the UDNRIH boundary conditions and furthermore require that Σ1,Σ2

intersect ∆ in leaves ((D − 1) - spheres) of the preferred foliation S1, S2, respectively.

Moreover, as usual in the IH literature, for a given history (e,A) the horizon area AS is

constant in time as we will show shortly (below (17.27)). We will now furthermore fix

the horizon area to be a constant throughout the histories we are considering, δAS = 0.

We will not specify any boundary conditions on T and neglect boundary terms related

with it which are possibly needed to obtain a well defined variational principle since

they are not relevant for the purpose of this thesis. For a discussion of these issues in

higher dimensions, we refer the interested reader to e.g. [299] and, specifically in the

IH framework, [289]. The Palatini action is given by

S[A, e] =

∫
M

ΣIJ ∧ F IJ , (17.19)

where F = 1/2Fµνdx
µ ∧ dxν , Fµν

IJ = 2∂[µAν]
IJ + [Aµ, Aν ]IJ , Σ := − ∗ (e ∧ e), or

in coordinates − ∗ (e ∧ e)µ1...µD−1IJ = 1
(D−1)!e

K1
µ1
. . . e

KD−1
µD−1 εIJK1...KD−1

, and as already

stated, boundary terms possibly needed for T are neglected. Variation with respect to

A gives rise to a surface term ∫
∆

Σ
←IJ
∧ δA
←
IJ , (17.20)

which, however, vanishes when imposing the UDNRIH boundary conditions, and there-

fore, the variation only yields the bulk equations of motion. This is a standard result

in the IH literature, but will be derived here without any internal gauge fixing. Using

e
←µI

= mµI − kµlI , we immediately find

Σ
←IJ

= − 1

(D − 1)!
εIJK1..KD−1

[
mK1 ∧ .. ∧mKD−1 − (D − 1)lK1 k ∧mK2 ∧ .. ∧mKD−1

]
.

(17.21)

For the pullback of the space time connection A we find analogous to the calculations

in section 17.2.1

A
←µIJ

= Γ
←µIJ

= Γ0
µIJ +

2

D − 1
l[Imµ|J ]θk − 2ωµl[IkJ ], (17.22)

Γ0
µIJ = mν

[I∇←µmν|J ] − l[I∇←µk|J ] − k[I∇←µl|J ], (17.23)
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where Γ0 here denotes the connection on ∆ which annihilates mµK , lI and kJ . Here

and in the following, we will understand that mµI := hµνmν
I and hµν = gµµ

′
hµ′ν′g

ν′ν

such that hµνkν = 0.

For the variation of A
←

, we find

δA
← µIJ = δΓ0

µIJ +
2

D − 1

[
(δl[I)mµ|J ]θk + l[I(δmµ|J ])θk + l[Imµ|J ](δθk)

]
− 2

[
(δωµ)l[IkJ ] + ωµδ(l[IkJ ])

]
, (17.24)

which for the case at hand can be reduced to

δA
← µIJ = 2kµl[IkJ ]l

KkLlνδA
← νKL − 2k[I ¯̄ηJ ]

LlKhνµδA← νKL + R

= 2kµl[IkJ ]l
KkLlν

[
δΓ0

νKL − 2l[KkL]δων
]
− 2k[I ¯̄ηJ ]

LlKhνµδΓ
0
νKL + R

= 2kµl[IkJ ]l
ν
[
kLDΓ0

ν δlL + δων

]
− 2k[I ¯̄ηJ ]

LhνµD
Γ0

ν δlL + R, (17.25)

where in the first line, we made use of the fact that only certain components of δA
←

will

appear when contracted with Σ
←

and R stands for the remaining terms which vanish in

this contraction. In the second step, several terms drop out due to lνδmνI = −mνIδl
ν =

−mνIcδl
ν = 0 since l is fixed up to constant rescaling on ∆, lIδlI = 0 since l2 = 0 on

∆, and hνµων =̂ 0. Finally, we used that lKδΓ0
µKL = −δDΓ0

µ lL +DΓ0

µ δlL = DΓ0

µ δlL since

Γ0 annihilates lI . Putting all together, we recover for the definition of an UDNRIH as

given in section 16.3 the result that there is no boundary term in symplectic potential

for the horizon,∫
∆

Σ
←
∧ δA
←

=

∫
∆

Σ
←
∧ δΓ
←

= − 1

(D − 1)!

∫
∆

(
mK1 ∧ ... ∧mKD−1 − (D − 1)lK1 k ∧mK2 ∧ ... ∧mKD−1

)
εIJK1...KD−1

∧
{
−2l[IkJ ]

[
d(kMδl

M ) + δω
]

+ 2¯̄ηII′kJdΓ0δlI
′
}

= − 2

(D − 1)!

∫
∆
εD−1 ∧ k

(
Ll(kIδl

I)
)

+
2

(D − 1)!

∫
∆
εD−1 ∧ δω

+
2

(D − 2)!

∫
∆
k ∧mK2 ∧ ... ∧mKD−1 lK1εIJK1...KD−1

kJdΓ0δlI

= 0, (17.26)

where in the second step, we used (17.21) and (17.25), which results in three terms in

the third step, each of which vanishes separately. The first one since we can partially
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17.2 SO(1,D) as internal gauge group

integrate the Lie derivative (boundary terms drop since δlI = 0 on S1, S2) and we have

Llε
←−

D−1 =̂ 0 and Llk
←−

=̂ 0. Note that here, we defined

εD−1 = εIJK1...KD−1
lIkJmK1 ∧ ... ∧mKD−1 . (17.27)

To see that it is Lie dragged, note that

Llm
←−

µI = lν∇
←ν
mµI +mνI∇←µl

ν = lν∇
←ν
mµI = −lνΓ0

νI
JmµJ , (17.28)

Lll
←−

I = lν∇
←ν
lI = −lνΓ0

νI
J lJ , (17.29)

Llk
←−

I = lν∇
←ν
kI = −lνΓ0

νI
JkJ . (17.30)

Using this, to prove that Llε
←−

D−1 = 0 we only need to use the invariance of εI1...ID+1

under (infinitesimal) SO(1, D) transformations. A similar argument shows that

dε
←−

D−1 = 0. (17.31)

The second term in (17.26) is zero since δω is fixed on S1, S2 and also Lie dragged along

l, so the whole integrand is Lie dragged an vanishes at the boundary, which implies

that the integral vanishes (This argument is e.g. given in [275]). The last term van-

ishes since the derivative dΓ0 annihilates the whole expression (note that dk
←

=̂ 0) and

therefore leads only to a boundary contribution which vanishes again due to δl|S1,S2 = 0.

The second variation of the action yields the symplectic current δ[1ΣIJδ2]AIJ which

is closed by standard arguments,

(

∫
Σ2

−
∫

Σ1

+

∫
∆

)δ[1ΣIJδ2]AIJ = 0. (17.32)

Moreover, the contribution at ∆ is a pure surface term, and we will show in the following

that ∫
∆
δ[1Σ
←
IJδ2]A←IJ

= ΩS2
CS(δ1, δ2)− ΩS1

CS(δ1, δ2), (17.33)

where

ΩS
CS =

nAS〈
E(2n)

〉 ∫
S
εIJKLM2N2...MnNn

(
δ[1A⇐IJ

)
∧
(
δ2]A⇐KL

)
∧ F
⇐M2N2 ∧ ... ∧ F⇐MnNn

(17.34)
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denotes the Chern-Simons symplectic structure (cf. appendix 16.2), and therefore, the

symplectic structure is given by

Ω(δ1, δ2) =

∫
Σ
δ[1ΣIJδ2]AIJ (17.35)

+
nAS〈
E(2n)

〉 ∫
S
εIJKLM2N2...MnNn

(
δ[1A⇐IJ

)
∧
(
δ2]A⇐KL

)
∧ F
⇐M2N2 ∧ ... ∧ F⇐MnNn ,

and is independent of the choice of Σ.

To prove (17.35), we will first show that the contribution to the symplectic structure

at ∆ is given by the boundary term we already found in section 17.1,∫
∆
δ[1Σ
←
IJδ2]A←IJ

=

∫
S2

2(δ[1s̃
I)(δ2]nI)−

∫
S1

2(δ[1s̃
I)(δ2]nI), (17.36)

where s̃I =
√
hsI , and in a second step that the boundary contribution can be rewritten

as ∫
S

2(δ[1s̃
I)(δ2]nI) =

AS〈
E(2n)

〉 ∫
S

2
E(2n)

√
h

(δ[1s̃
I)(δ2]nI)

=
nAS〈
E(2n)

〉 ∫
S
εIJKLM2N2...MnNn

(
δ[1A⇐IJ

)
∧
(
δ2]A⇐KL

)
∧ F
⇐M2N2 ∧ ... ∧ F⇐MnNn .

(17.37)

For the variation of Σ
←

, we find using (17.21)

−(D − 1)! δΣ
←IJ

= εIJK1...KD−1

[
(D − 1)(δmK1) ∧mK2 ∧ ... ∧mKD−1

−(D − 1)(D − 2)lK1 k ∧ (δmK2) ∧mK3 ∧ ... ∧mKD−1

−(D − 1)
(
lK1(δk) + (δlK1)k

)
∧mK2 ∧ ... ∧mKD−1

]
= εIJK1...KD−1

[
(D − 1)mL ∧mK2 ∧ ... ∧mKD−1(imLδm

K1)

−(D − 1)(D − 2)lK1 k ∧mL ∧mK3 ∧ ... ∧mKD−1(imLδm
K2)

−(D − 1)
(
−lK1(ilδk) + (δlK1)

)
k ∧mK2 ∧ ... ∧mKD−1

]
, (17.38)

where we used

δm
← I = m

←J
(imJ δmI)− k

←
(ilδmI) = m

←J
(imJ δmI) + k

←
(imI δl)

= m
←J

(imJ δmI) + k
←
cδ(imI l) = m

←J
(imJ δmI), (17.39)

δk
←

= −k(ilδk). (17.40)
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In total, after a long calculation explained in appendix G.1, one finds for (17.36)∫
∆
δ[1Σ
←
IJδ2]A←IJ

=

=
2

(D − 1)!

∫
∆

{
d
[
δ[1(εD−1kI)δ2]l

I
]

+ δ[1ε
D−1 ∧ δ2]ω

l

+(D − 1)d
[(
cδ + (kMδ[1l

M )
)
k ∧mK2 ∧ ... ∧mKD−1 lIkJεIJK1...KD−1

δ2]l
K1
]

+(D − 2)d
[
k ∧mM ∧mK3 ∧ ... ∧mKD−1 lIkJεIJK1...KD−1

(imM δ[1m
K2)δ2]l

K1
]}

=
2

(D − 1)!

∫
∆

{
d
[
δ[1(εD−1kI)δ2]l

I
]

+ δ[1ε
D−1 ∧ δ2]ω

l
}

= 2

∫
∆

{
d
[
δ[1s̃

Iδ2]nI
]

+
1

(D − 1)!
δ[1ε

D−1 ∧ δ2]ω
l
}

. (17.41)

We used δk = −cδk and k
⇐

= 0. Since we also restricted to constant area AS throughout

the phase space region we are considering (δAS = 0), we furthermore find∫
∆
δ[1ε

D−1 ∧ δ2]ω
l = −

∫
∆
δ[1ε

D−1 ∧ δ2](κ
lk) = +

∫
∆
δ[1ε

D−1 ∧ dδ2](κ
lv)

= +

[
δ[2(κlv)|S2

∫
S2

δ1]ε
D−1 − δ[2(κlv)|S1

∫
S1

δ1]ε
D−1

]
= +

[
δ[2(κlv)|S2δ1]AS2 − δ[2(κlv)|S1δ1]AS1

]
= 0. (17.42)

Now, since we have E(D−1) = f(v)εD−1/(D − 1)! for a spherically symmetric function

f by the conditions for an UDNRIH, and since∫
S
E(2n) = (8π)nn! χS = 2(8π)nn! =: 〈E(2n)〉, (17.43)∫

S
εD−1 = (D − 1)! AS , (17.44)

are both constant in time, we have f = 〈E(2n)〉
AS

where 2n = D − 1. Here, since in our

case S has spherical topology, we used that the Euler number is χS = 2. The first line

of (17.37) easily follows. In fact, this also shows that f(v) is independent of v.

For the second pullback of A, we find since ω
⇐

= 0,

A
⇐IJ

= Γ0
IJ +

2

D − 1
l[ImJ ]θk =: Γ0

IJ +K
⇐IJ . (17.45)

Since θk is constant on the (D − 1) - sphere cross sections of the chosen foliation, we

have dΓ0K
⇐=

= 0. Since also [K
⇐
,K
⇐

] = 0, we obtain F
⇐

= R
⇐

0 which was already derived

in section 17.2.1. We now want to show that (17.37) holds, which is shown to be true
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in (G.5) if the connection would be given by Γ0. Therefore, what needs to be checked

is if

εIJKLM2N2..MnNn
(

2δ[1Γ0
IJ ∧ δ2]K⇐KL + δ[1K⇐IJ ∧ δ2]K⇐KL

)
∧R0

M2N2 ∧ ..R0
MnNn = 0.

(17.46)

Using

δK
⇐IJ =

2

D − 1

[
−l[IkJ ]l

KθkδmK + l[I ¯̄ηJ ]K

(
θkδm

K −mKθkk
LδlL +mKδθk

)
+ ¯̄η[I

KmJ ]θkδlK
]
,

(17.47)

we find in a first step

EIJKL⊥ ∧ δ[1K⇐IJ ∧ δ2]K⇐KL = − 8

(D − 1)2
EIJKL⊥ ∧ lIkJ ¯̄ηNKθ

2
kl
Mδ[1mM ∧mLδ2]lN

=
8

(D − 1)2
E
IJ [N |L
⊥ ∧ lIkJθ2

km
M ] ∧mLδ[1lMδ2]lN = 0.

(17.48)

EIJKL⊥ = εIJKLM2N2...MnNnR0
M2N2 ∧ ... ∧R0

MnNn in the above formula stands for the

terms in (17.46) contracted with δK ∧ δK. ⊥ indicates that fact that E⊥ needs to be

contracted with kI , lJ since it vanishes otherwise, therefore only one combination of

terms survives when we use (17.47) in the first step. In the second line, we made use

of lIδmI = −mIδl
I and therefore, the expression is antisymmetric in the index pair

M,N . Adding terms until all indices of the epsilon symbol in E⊥ plus the index M are

totally antisymmetric and subtracting the therefore needed terms again, we find that

the whole expression vanishes: The total antisymmetrisation since there is no nontrivial

rank D + 2 antisymmetric tensor in D + 1 dimensions, and the subtracted terms since

they are either of the form lImI = 0 or kImI = 0, or R0
MN ∧mN which vanishes due

to the Bianci identity, or mL ∧mL = 0.

Furthermore, we have

EIJKL⊥ ∧ δ[1Γ0
IJ ∧ δ2]K⇐KL

=
2

(D − 1)
EIJKL⊥ ∧

[
−¯̄ηI

′

[I
¯̄ηJ
′

J ]δ[1Γ0
I′J ′ ∧ l[KkL]θkl

Mδ2]mM

− 2k[I l
I′ ¯̄ηJ

′

J ]δ[1Γ0
I′J ′ ∧ l[K ¯̄ηL]M

(
θkδ2]m

M −mMθkk
Nδ2]lN +mMδ2]θk

)
+ 2l[IkJ ]k

I′ lJ
′
δ[1Γ0

I′J ′ ∧ ¯̄ηM[KmL]θkδ2]lM

]
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=
2

(D − 1)
EIJKL⊥ ∧

[
− ¯̄ηI

′

[Imα|J ]

(
−dΓ0δ[1m

α
I′ −m

β
I′δ[1Γα•β

)
∧ l[KkL]θkl

Mδ2]mM

− 2k[I ¯̄ηJ
′

J ](dΓ0δ[1lJ ′) ∧ l[K ¯̄ηL]M

(
θkδ2]m

M −mMθkk
Nδ2]lN +mMδ2]θk

)
− 2l[IkJ ][dΓ0(kI

′
δ[1lI′)] ∧ ¯̄ηM[KmL]θkδ2]lM

]
, (17.49)

where we used ¯̄ηIJ = mα
ImαJ in the last step as well as the fact that Γ0 annihilates

mK , lI , kJ and therefore, e.g. lJδΓ0
IJ = δ(dΓ0 lI) − dΓ0δlI = −dΓ0δlI . In the last

expression, the second summand in the second to last line and the term in the last line

together just give a surface term which vanishes since the (D− 1) sphere cross sections

have no boundary. To see this, one needs to make use of the fact that dΓ0R0 = dΓ0m =

dΓ0 lI = dΓ0kJ = dΓ0 ¯̄η = dθK = 0. Moreover, we also have dδθK = 0 since δθK has to

be constant on the (D − 1) - sphere cross sections, and therefore also the last term in

the second to last line is a surface term. Using the notation δΓα•β to indicate that δΓ is

considered as a form in the index •, the terms in the first line of (17.49) give

2θk
(D − 1)

lKkLE⊥IJKL ∧mN mα
[J ∧

[(
dΓ0δ[1m

α|I] +mβ|I]δ[1Γα•β

)]
δ2]l

N

=
2θk

(D − 1)
lKkLE⊥IJKL ∧mM ∧mN×[

mβMmα[IDΓ0

β δ[1mα
|J ] +mβ[Jmα|I]DΓ0

β δ[1mα
M −mβ[I|mαMDΓ0

β δ[1mα
|J ]
]
δ2]l

N

=
2θk

(D − 1)
lKkLE⊥IJKL ∧mM ∧mN×[

1

3
mβ[MmαIDΓ0

β δ[1mα
J ] + 2mβ[Jmα|I]DΓ0

β δ[1mα
M

]
δ2]l

N

=
4θk

(D − 1)
lKkLE⊥IJKL ∧mM ∧mN

[
−mβ[Imα|J ]DΓ0

β δ[1mα
M
]
δ2]l

N . (17.50)

In the third step, the term totally antisymmetric in the indices M,J, I vanishes since

lKkLE⊥[IJ |KL ∧m|M ] ∧mN

= ε[IJ |KLM2N2...MnNn l
KkLR0

M2N2 ∧ ... ∧R0
MnNn ∧m|M ] ∧mN

=
(D + 2)

3
ε[IJKLM2N2...MnNn|l

KkLR0
M2N2 ∧ ... ∧R0

MnNn ∧m|M ] ∧mN

= 0, (17.51)

since RKL0 ∧ mL = 0 due to the Bianci identity and mI l
I = 0 = mIk

I , and the

antisymmetrisation of D + 2 indices vanishes. Finally, the first term in the second to
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last line of (17.49) gives

4θk
(D − 1)

lKkLE⊥IJKL ∧
[
(dΓ0δ[1l

[J) ∧ δ2]m
I]
]

=
4θk

(D − 1)
lKkLE⊥IJKL ∧ ((dΓ0δ[1m

[I)δ2]l
J ]) + d(. . .)

=
4θk

(D − 1)
lKkLE⊥IJKL ∧mM ∧mN

[
mβ[Mmα|N ]DΓ0

β δ[1mα
[I
]
δ2]l

J ] + d(. . .), (17.52)

up to a boundary term d(. . .) that vanishes, as above, after integration over H, which

means that (17.50) and (17.52) together are of the form

lKkLE⊥IJKL ∧mM ∧mN

[
αIJβMN − αMNβIJ

]
= lKkLεIJKLM2N2..MnNnR0

M2N2 ∧ .. ∧R0
MnNn ∧mM ∧mN

[
αIJβMN − αMNβIJ

]
=
[
(D + 2)lKkLε[IJKLM2N2..MnNn|R0

M2N2 ∧ .. ∧R0
MnNn ∧m|M ] ∧mN

− 2lKkLεJMKLM2N2..MnNnR0
M2N2 ∧ .. ∧R0

MnNn ∧mI ∧mN

][
αIJβMN − αMNβIJ

]
= −2lKkLεJMKLM2N2..MnNnR0

M2N2 ∧ .. ∧R0
MnNn ∧mI ∧mN

[
αNMβJI − αMNβIJ

]
= 0, (17.53)

where αIJ and βKL are antisymmetric matrices. This furnishes the proof of (17.35).

17.3 SO(D + 1) as internal gauge group

In the previous sections, we have derived the isolated horizon boundary condition re-

lating the connection on the horizon with the bulk degrees of freedom, as well as the

symplectic structure on the horizon, which coincides with the one of higher dimensional

Chern-Simons theory. Since we started from the space-time covariant Palatini action,

the internal gauge group was fixed to SO(1, D). In the light of quantising the bulk

degrees of freedom however, it was pointed out in [1] that one can change the internal

gauge group to SO(D + 1) by a canonical transformation from the ADM phase space.

After this reformulation, the quantisation of the bulk degrees of freedom can be per-

formed with standard LQG methods as spelled out in [3]. Thus, we are interested in

reformulating the horizon boundary condition and the horizon symplectic structure so

that it fits in the SO(D + 1) scheme.

As for the boundary condition, the generalisation to the Euclidean internal group is

straight forward, since the construction of the connection Γ0 in appendix C works in-

dependently of the internal signature. Thus, constructing Γ0 such that it annihilates
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both nK and sK = sae
aK additionally to mK

α = e
←
K
α , the horizon boundary conditions

R0,horizon
αβIJ = R0,bulk

αβIJ (17.54)

εK1L1...KnLnIJε
α1β1...αnβn

R0,horizon
α1β1K1L1

...R0,horizon
αnβnKnLn

=
E(2n)

√
q
πaIJsa . (17.55)

follow immediately from the fact that R0
αβKLn

K = R0
αβKLs

K = 0. We will drop the

superscripts “bulk” and “horizon” in what follows.

In order to derive the new symplectic structure, we first perform a symplectic reduc-

tion of the theory derived in the previous chapters by solving the Gauß and simplicity

constraint. This leads us to the ADM phase space, from which we can perform further

canonical transformations. This step is important since it tells us that using an iso-

lated horizon as a boundary of our manifold, we will have a vanishing horizon symplectic

structure when using ADM variables. We remark that this does not follow trivially for

any boundary if one starts with the Einstein-Hilbert action and performs the Legendre

transform, since one is picking up boundary terms in the Gauß-Codazzi equation which

are neglected in order to arrive at the standard ADM symplectic structure.

In section 17.1 we found that the canonical transformation to SO(D + 1) connection

variables leads to the boundary symplectic structure

ΩS(δ1, δ2) =
2

β

∫
S
dD−1x δ[1s̃Iδ2]n

I . (17.56)

Furthermore, under the non-distortion condition δE
(2n)
√
h

= 0, i.e. restricting to the part

of phase space where E(2n)
√
h

=
〈E(2n)〉
AS

is constant, it is shown in appendix G.2 that

2
E(2n)

√
h

(δ[1s̃
I)(δ2]nI) = nεIJKLM1N1...Mn−1Nn−1εαβα1β1...αn−1βn−1(

δ[1Γ0
αIJ

) (
δ2]Γ

0
βKL

)
R0
α1β1M1N1

...R0
αn−1βn−1Mn−1Nn−1

, (17.57)

which results in the Chern-Simons type boundary symplectic structure

ΩS
CS(δ1, δ2) =

nAS

β
〈
E(2n)

〉 ∫
S
εIJKLM1N1...Mn−1Nn−1εαβα1β1...αn−1βn−1

(
δ[1Γ0

αIJ

) (
δ2]Γ

0
βKL

)
R0
α1β1M1N1

...R0
αn−1βn−1Mn−1Nn−1

. (17.58)

Concluding, we have shown that also for the case of SO(D + 1) as an internal gauge

group, one arrives at a higher dimensional Chern-Simons symplectic structure at the

289



17. The boundary degrees of freedom

isolated horizon boundary of σ.

A remark concerning the uniqueness of Γ0 is in order. In D = 3, one easily finds

that there are more connections which allow for carrying out the whole programme.

Exemplarily, we can introduce a constant parameter Φ ∈ R and choose Γφα
IJ =

Γ0
α
IJ + 2Φn[Imα

J ] as connections for the Chern-Simons theory on the boundary. We

then find

RΦ
αβ

IJ = R0
αβ

IJ − 2Φ2ma
[Imb

J ], (17.59)

εIJKLεαβRΦ
αβKL =

(
E(2)

√
h
− 4Φ2

)
πaIJsa, (17.60)

AS
〈E(2)〉 − 4Φ2AS

εIJKLεαβδ[1ΓΦ
αIJδ2]Γ

Φ
βKL = 2δ[1s̃

Iδ2]nI . (17.61)

A further modification of Γ0, which in particular allows for generalisation to distorted

horizons, will be introduced in section 17.4.1, where a non-constant field Ψ is added to

the connection. The introduction of Ψ and Φ cannot be combined non-trivially, since

otherwise there will be terms ∝ n[Imα
J ] contributing to RΦ,Ψ

αβIJ .

A third possibility to change the connection in D = 3, which can be combined with

both of the above methods, is as follows. As we have already seen in 17.1, if we intro-

duce the Barbero Immirzi parameter γ in D = 3 [2], it will appear in the boundary

symplectic structure. The boundary condition in this case reads

εαβ
(
εIJKLR0

αβKL +
1

γ
R0

αβ
IJ

)
=
E(2)

√
h

(γ)
π aIJsa, (17.62)

where

(γ)
π aIJ = πaIJ +

1

2γ
εIJKLπ

aKL. (17.63)

To show that the boundary symplectic structure can be rewritten according to

2

β

∫
S
d2x

(
δ[1s̃

Iδ2]nI −
1

2γ
εαβδ[1mαIδ2]m

I
β

)
=

AS

β
〈
E(2)

〉 ∫
S
εαβ

(
εIJKLδ[1Γ0

αIJδ2]Γ
0
βKL +

2

γ
δ[1Γ0

αIJδ2]Γ
0
β
IJ

)
, (17.64)

it remains to verify that

E(2)

√
h
δmI ∧ δmI = −2δΓ0 IJ ∧ δΓ0

IJ . (17.65)
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Since the scalar curvature R = E(2)

2
√
h

is constant on the 2-spheres, the metric h is

fixed up to diffeomorphism. Therefore, mI ,Γ
0
IJ are fixed up to diffeomorphism and

SO(D+1) rotations, i.e. δmI = ΛI
JδmJ +LξmI and δΓ0

IJ = −dΓ0ΛIJ +LξΓ
0
IJ . Us-

ing this for the variations, (17.65) can be proven straight forwardly using 0 = dΓ0mI =

dmI + Γ0
IJ ∧mJ , dΓ0

IJ + 1
2 [Γ0,Γ0]IJ = R0

IJ = 1
2RmI ∧mJ and the properties of the

exterior and Lie derivative.

In higher dimensions, it is less trivial to modify the connection Γ0. In particular,

the above constructions can at least not be applied trivially. While (17.59) continues

to hold, in (17.60) mixed terms of the form R0 ∧ ...∧ (Φm∧m) will appear which spoil

the construction, and also the introduction of γ is tied to D = 3.

17.4 Inclusion of distortion

So far, we have treated undistorted horizons exclusively. Note that our definition

of undistorted only poses a restriction on the Euler density and therefore in higher

dimensions already is a rather weak requirement. Now we want to turn to completely

distorted horizons. In the D = 3 case, this extension was studied in the U(1) framework

for the first time in [300], where a generalisation to axi-symmetric horizons was achieved.

This result was considerably extended by Engle and Beetle [281], who with a beautiful

idea managed to generalise the treatment to arbitrarily shaped spherical horizons. The

same was achieved within the more recent SU(2) framework by Perez and Pranzetti

[285], although their method is more complicated. We will test both proposals for a

possible generalisation to higher dimensions.

17.4.1 Beetle-Engle method

A key ingredient in the derivation of the symplectic structure on the spatial two-sphere

cross section S of the horizon is the “undistortedness” of S, i.e. the constancy of

E(2n)/
√
h (or, equivalently R(2)) on S. Beetle and Engle showed within the U(1)

framework that also for distorted S one can construct a U(1) connection such that the

corresponding curvature scalar is constant on S. They start with the ansatz

◦
V α:=

1

2
θα − εαβhβγDγΨ. (17.66)

For Ψ = 0, this reduces to the connection used in spherical symmetry. The addi-

tional freedom to choose the “curvature potential” Ψ now is used to have the following
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equation satisfied:

d
◦
V

!
= −

〈
R(2)

〉
4

ε = − 2π

AS
Σis

i. (17.67)

This leads to the following condition on Ψ

∆Ψ = R(2) −
〈
R(2)

〉
, (17.68)

which with the additional condition 〈Ψ〉 = 0 has a unique solution.

In four spacetime dimensions, this idea can be easily generalised to the gauge group

SO(4) or SO(1,3). Using the ansatz

AαIJ = Γ0
αIJ + 2mα[Imβ|J ]h

βγ(Dγψ), (17.69)

for the corresponding connection, and demanding the boundary condition

εαβεIJKLFαβKL(A) = 2〈E(2)〉n[I s̃J ] (17.70)

leads to the requirement

∆ψ =
1

4

(
E(2)

√
h
− 〈E(2)〉

)
. (17.71)

A lenghty calculation in G.3 furthermore shows that for this connection, it holds that

2〈E(2)〉(δ[1s̃
I)(δ2]nI) = εIJKLεαβ

(
δ[1AαIJ

) (
δ2]AβKL

)
. (17.72)

A generalisation of this procedure to higher dimensions, however, is far from straight

forward. The main problem is that the boundary condition in higher dimensions be-

comes non-linear in the curvature. With the same ansatz for the connection, we obtain

a non-linear partial differential equation for Ψ for which a mathematical solution theory

to the best of the author’s knowledge has not been developed.

17.4.2 Perez-Pranzetti method

The extendibility of the Beetle-Engle method actually suggests that their method

should be applicable also in the case of SU(2). However, Perez and Pranzetti [285]

proceed rather differently. To include distortion, they propose to use two SU(2) Chern

Simons connections

Aiγ = Γi + γei, Aiσ = Γi + σei, (17.73)

292



17.4 Inclusion of distortion

and find for the corresponding curvatures by demanding the IHBC

F i(Aγ) = Ψ2Σi +
1

2
(γ2 + c)Σi, F i(Aσ) = Ψ2Σi +

1

2
(σ2 + c)Σi. (17.74)

Here Ψ2 it a Newman-Penrose coefficient (related to R(2)) and c an extrinsic curvature

scalar. It follows that their difference satisfies an equation of the sought form,

F i(Aγ)− F i(Aσ) =
1

2
(γ2 − σ2)Σi, (17.75)

with just a constant appearing in front of Σ on the right hand side. This allows to

rewrite the boundary symplectic structure in the arbitrarily distorted case in terms of

two Chern Simons theories. The downside is that the equations (17.74) (or equivalent

constraints) have to be imposed at the quantum level in order to account for superflu-

ous boundary degrees of freedom. A proposal how this is to be done is given in [285].

Let us mimic the procedure in higher dimensions. We start naively by introducing

N Chern-Simons connections

A
(ai)
αIJ = Γ0

αIJ + 2
√
ais[Imα|J ], i ∈ {1, ..., N}. (17.76)

For their field strengths, we find

F
(ai)
αβIJ = R0

αβIJ − 2mα[Imβ|J ]ai. (17.77)

When we insert this in the formula needed for the higher dimensional boundary condi-

tion, we find

EIJ(ai)
(A(ai)) := εβ1γ1...βnγnεIJK1L1...KnLnF

(ai)
β1γ1K1L1

. . . F
(ai)
βnγnKnLn

=

n∑
k=0

akiXk, (17.78)

where, schematically, Xk ∝ (R0)n−k ∧ (m ∧m)k. Only the k = 0 term, being exactly

of the form “n[I s̃J ] × const.” we need, is allowed to survive when linear combining the

EIJ(ai)
with coefficients bi ∈ R, i ∈ {1, ..., N},

N∑
i=1

bi E
IJ
(ai)

(A(ai))
!∝ n[I s̃J ], (17.79)

which leads to the system of equations

N∑
i=1

bi(ai)
k = 0, k ∈ {0, ..., n− 1},

N∑
i=1

bi(ai)
n = d, (17.80)
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for some constant d 6= 0. Suppose w.l.o.g. that a1 6= 0, b1 6= 0. Introducing a new

d̃ = d
b1(a1)n , we find that the above n + 1 equations for fixed d̃, actually only depend

on the 2(N − 1) unknowns (ai/a1), (bi/b1). Since N is integer and 2n = D − 1,

we find that we need at least N = dn+1
2 e + 1 = dD+1

4 e + 1 Chern Simons theories

on the boundary, which for D = 3 reproduces N = 2. However, we now have to

implement many additional constraints corresponding to (17.77) consistently, which

makes a success of this route at the quantum level rather doubtful (see, however, our

comments on quantisation in section 17.5).

17.5 Comments on quantisation

In a seminal paper, Witten [184] studied the quantisation of Chern Simons theory in

three dimensions, making heavily use of the fact that it is a topological field theory

(see also [301] for an exhaustive treatment): The field equations read F = 0, and we

obtain as solution space the finite dimensional moduli space of flat connections modulo

gauge transformations. The quantisation of the boundary degrees of freedom is based

on this work: A key result in the isolated horizon framework is that the field strength

vanishes almost everywhere due to the isolated horizon boundary condition, except

at points where the bulk spin network punctures the isolated horizon. Only at these

points, the flux operator, which determines the field strength on S via the isolated

horizon boundary condition (17.55), is non-vanishing. The resulting quantum theory

on the horizon is a Chern-Simons theory with topological defects induced by these spin

network punctures, which result in a finite-dimensional Hilbert space.

In higher dimensions, Chern Simons theory admits local degrees of freedom in gen-

eral [137, 138]. This can be easily understood looking at the field equations (16.6),

which now are more complicated and do not restrict the connection to be flat in gen-

eral. To treat black holes in higher dimensions at the quantum level, a full quantisation

of the non-topological boundary field theory seems a rather ambitious goal. Here, we

will briefly discuss two proposals for alternative routes for quantisation. Firstly, we

will point out that one of the boundary conditions we derived might actually lead to

flat connections except at the punctures in section 17.5.1. We want to stress that this

proposal is incomplete and definitely deserves further study. In section 17.5.2, we will

discuss the possibility of gauge fixing from SO(D+1) to U(1). The U(1) Chern Simons

theory is exceptional and suggests itself for quantisation, since it lacks of local degrees

of freedom in any dimension [302]. However, we we did not succeed in performing this
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reduction.

17.5.1 SO(D + 1) as gauge group

Since the symplectic structure on the isolated horizon is exactly of Chern Simons type,

one would expect to obtain a higher-dimensional Chern-Simons theory on the boundary.

Due to the distributional nature of the space of generalised connections in LQG, see

e.g. [62], one promotes the connection on the isolated horizon to an independent degree

of freedom in the quantum theory, here called AIJ with field strength FIJ = F (A)IJ .

Furthermore, a quantisation of the boundary condition (17.55) (neglecting for a moment

the stronger condition (17.54) and thus the fact that the connection on the isolated

horizon is given by Γ0) yields the quantum first class constraints of a higher-dimensional

Chern-Simons theory with punctures,

EI1J1(x) := εI1J1...InJnFI2J2(x) ∧ . . . ∧ FInJn(x) ∝ saπ̂aI1J1(x). (17.81)

The quantum interpretation of this equation is that the punctures of bulk spin net-

works act as “particle excitations” for the Chern Simons theory, exactly as in the

3 + 1-dimensional case [292]. The immediate problem with this approach of course are

the local degrees of freedom of higher dimensional Chern Simons theories. As a direct

consequence, one would expect to obtain an infinite entropy by counting the allowed

states in the Hilbert space.

Still, it seems that the functions εI1J1...InJnF
I2J2 ∧ . . . ∧ F InJn entering the first class

constraints of higher dimensional Chern Simons theory [137] constitute an important

sub-sector of the theory which one should consider for entropy calculations, as we will

argue in the following. The algebra of these excitations can be explicitly shown to

reproduce the lie algebra relations of so(D + 1),{
EIJ(x), EKL(y)

}
∝ δ(D−1)(x− y)f IJ,KL,MNE

MN (x), (17.82)

where f are the corresponding structure constants like given in appendix D. Preliminary

calculations also indicate that the a straight forward generalisation of the quantisation

prescription in [292] leads to boundary excitations which automatically carry simple

representations. This is appealing since, on the one hand, the use of the variables nI

and sJ inherently implies that this constraint is also solved classically at the horizon,

and on the other hand (17.81) requires these representations to be simple since the

SO(D + 1) representations in the bulk are simple. But from D = 3 we know that

the boundary Hilbert space typically turns out not to be simply the tensor product
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of the individual representation spaces corresponding to the punctures, but rather a

subspace thereof, since there are additional global constraints resulting form the hori-

zon topology. The global constraints which need to be imposed in higher dimensions

remain to be studied. Another open question is the role played by the vertex simplicity

constraints at the boundary.

Despite these attractive features, we still have to deal with the local degrees of free-

dom. One point that we overlooked up to now is that the classical analogue of the

boundary condition (17.81) does not constrain the Chern-Simons connection AαIJ to

be Γ0
αIJ . In section 17.3, it was shown that some modifications of the boundary connec-

tion parametrised by constants are allowed. Furthermore, the idea of Beetle and Engle

introduced in section 17.4.1 suggests that further modifications are conceivable, possi-

bly an infinite set. Thus, we should introduce a constraint which restricts the degrees

of freedom of the higher-dimensional Chern-Simons theory as if the horizon connection

would be given by Γ0. Since the gauge invariant (local) information of a connection is

contained in its field strength, we should introduce the boundary condition (17.54) in

the form

F (A)horizon
αβIJ = F (Γ0)bulk

αβIJ (17.83)

on S. Note that although this condition seems physically sensible, it cannot be strictly

derived due to the non-uniqueness of the boundary connection. In analogy to the 3 + 1

dimensional treatment, we would quantise this boundary condition by promoting the

left hand side to an operator in the higher-dimensional Chern-Simons theory and act

with a proper quantisation of the right hand side on the bulk spin network (as with

a flux operator). Since we would regularise the right hand side by fluxes and commu-

tators involving volume operators as in [3, 30], it would vanish everywhere, except at

punctures1. This mechanism could thus get rid of the local degrees of freedom and

result in a finite entropy much in the same way as in 3 + 1 dimensions. Still, there

are many missing and imprecise steps in this argument, e.g. that one would first need

an actual quantisation of higher-dimensional Chern-Simons theory before a quantum

boundary condition as (17.83) could be even imposed.

To conclude, we don’t have a satisfactory quantisation of the resulting boundary theory

1We would expect that the corresponding operator would even vanish at punctures, since the volume

operator annihilates edges. On the other hand, we would demand consistency with (17.81), i.e. we

would rather use (17.81) at punctures. This underlines again that the discussion here does not provide

a satisfactory answer.
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and thus also no direct access to entropy calculations at the moment. The biggest un-

certainty certainly is that no quantisation of higher-dimensional Chern-Simons theory

with a non-Abelian gauge group is known.

17.5.2 Reduction to U(1)

In view of quantisation, the U(1) Chern Simons theory of course is distinguished by

its lack of local degrees of freedom also in higher dimensions. The natural question

arises why not to reformulate the boundary degrees of freedom accordingly. This ques-

tion will be pursued in this section, but as we will see, we did not succeed in giving

a satisfactory description of the boundary degrees of freedom with this structure group.

Two routes suggest themselves: 1) Gauge fix the SO(D + 1) Chern Simons theory

we obtained in the course of this thesis down to SO(2), or 2) impose the gauge fixing

directly at the level of the boundary symplectic structure and rewrite it in terms of an

SO(2) Chern Simons theory.

Concerning the first route, note that gauge fixing cannot change the number of phys-

ical degrees of freedom. Naturally, one would expect the SO(D + 1) Chern Simons

theory on the boundary to have local degrees of freedom. If this turns out to be true,

gauge fixing to SO(2) cannot be possible, simply because this would imply a change of

number of degrees of freedom. But as we commented on in the previous section 17.5.1,

the boundary condition might render the boundary degrees of freedom finite even for

the structure group SO(D+ 1), so there would be at least no immediate contradiction.

However, it is easy to see that the SO(D + 1) invariant tensor used to construct the

Chern Simons theory, namely εI1...ID+1 , does not admit a gauge fixing to SO(2) and

therefore, the first route fails. We will follow route 2) in what follows.

We introduce the gauge fixing nI = g0iδIi , sJ = g1jδJj , where i, j ∈ {0, 1} and g ∈ SO(2).

Let us use the usual parametrisation of rotations by an angle φ, g00 = g11 = cosφ,

g01 = −g10 = sinφ. The boundary contribution to the symplectic structure reads in

this gauge

δ[1s̃
Iδ2]nI = δ[1

√
h δ2]φ. (17.84)

In the SO(D+ 1) case, to show that a Chern Simons symplectic structure arises on the

horizon cross sections, it was important that
√
h and the Euler density are essentially

the same. Introducing an SO(2) connection Aα, the analogue of this requirement would
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read

√
h = εα1...α2nFα1α2 ...Fα2n−1α2n , (17.85)

where Fαβ = 2∂[αAβ]. It follows that δ
√
h = 2nεα1...α2n (∂[α1

δAα2]) Fα3α4 ...Fα2n−1α2n

and therefore (upon partial integration)

δ[1s̃
Iδ2]nI = 2nεα1...α2n (δ[1Aα1) (δ2]∂α2φ) Fα3α4 ...Fα2n−1α2n . (17.86)

With the additional requirement that A = dφ, this would become the symplectic struc-

ture of an SO(2) Chern Simons theory on the boundary. However, from this requirement

we also conclude that F = 0, which is in contradiction with (17.85), and therefore also

our second route fails. It thus seems that we have to stick to the SO(D + 1) theory

on the boundary and one should try to make progress with its quantisation as outlined

above.
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18

Conclusions and outlook

18.1 Summary

In this thesis, we succeeded in constructing a canonical connection formulation of gen-

eral relativity in any spacetime dimension D + 1 ≥ 3, based on the gauge group

SO(D + 1) or SO(1, D). The choice of gauge group, being SO(4) or SO(1, 3) in four

spacetime dimensions, already makes explicit that the theory is genuinely different

from the SU(2) Ashtekar Barbero formulation. Our presentation interrelates this new

formulation with several other, well-known Hamiltonian formulations of general rela-

tivity and shows how it arises rather naturally from them. To this end, we derived

the formulation both using Hamiltonian methods, i.e. extending the ADM phase space

appropriately, as well as by performing a detailed canonical analysis of the Palatini

action and applying the procedure of gauge unfixing to get rid of the appearing second

class constraints.

The theory of course is subject to the usual spatial diffeomorphism and Hamiltonian

constraint, but the latter is necessarily more complicated than the one of the SU(2)

Ashtekar Barbero theory. This more complicated form is needed in order to allow for

first class simplicity constraints, which enter the Hamiltonian picture as a new ingredi-

ent and play a central role in both derivations. These three sets of constraints together

with the Gauß constraint familiar from usual LQG constitute all first class constraints

of the system.

The Hamiltonian route towards the new variables is more general in that it allows

for the introduction of a free parameter β, similar to but different from the Barbero
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Immirzi parameter γ. Moreover, the internal (ζ) and spacetime (s) signature are not

necessarily tied to each other, but rather all four possible combinations thereof can be

chosen. This is particularly important regarding quantisation, enabling us to work with

the compact gauge group SO(D + 1) for both, Euclidean and Lorentzian general rela-

tivity in D + 1 dimensions. It is this SO(D + 1) formulation which ultimately features

all the properties needed for loop quantisation. The background independent quan-

tisation techniques developed in LQG for spatially diffeomorphism invariant theories

of connections are formulated independently of the number of dimensions and choice

of compact structure group, and further results like the implementation of Gauß and

spatial diffeomorphism constraint as well as results on the Hamiltonian constraint and

the uniqueness of the representation generalise to arbitrary dimensions (cf. e.g. [62]

and references therein).

The simplicity constraints constitute a novelty in canonical LQG research, but ac-

tually have a long history in its covariant cousin, the spin foam models [185, 188, 189].

Being constructed from discretised B-fields (spin foams) or singularly smeared fluxes

(canonical approach) which are non-commutative, they lead to anomalies at the quan-

tum level. Various proposal are available in the literature on how to deal with this issue,

but some use special properties of the groups SU(2), SO(4) and SO(1, 3) which do not

hold in higher dimensions and some are simply not applicable in the canonical picture.

We proposed some new but still incomplete ideas towards a satisfactory solution to this

issue in the canonical picture, and will comment on open problems in section 18.2.

We furthermore showed that the framework can be extended further to all standard

model matter fields and also to various kinds of other fields appearing in (higher di-

mensional) supergravity theories. The coupling of gauge bosons (for arbitrary compact

structure groups) as well as scalar fields can literally be copied from the 3+1 dimen-

sional treatment in [45, 46]. Dirac fermions need a special treatment at the classical

level in the Lorentzian case, since we have to exchange the Lorentzian by the Euclidean

Clifford algebra in order to obtain a compact structure group for general relativity.

We showed that this can be accomplished, and after this classical manipulation, the

quantisation known from 3+1 dimensions can be applied.

Turning to supergravity theories, many new fields arise to complete the super multi-

plets, most prominently, the spin 3/2 Rarita Schwinger field (“gravitino”). Compared

to Dirac fermions, a new technical challenge arises: supersymmetry usually demands
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this field to be a Majorana fermion. The corresponding Majorana condition in the

Hamiltonian picture leads to a non-trivial Dirac anti-bracket, which on the one hand

hugely complicates the switch of the structure group SO(1, D) to SO(D+1) and on the

other hand calls for a quantisation different from that for the Dirac field. We showed

that, using an auxiliary field known from the linear simplicity constraint, the internal

signature switch is still possible and a background independent Hilbert space represen-

tation for the Rarita Schwinger field is provided. Our methods also extend to spin 3/2

Majorana Weyl, spin 1/2 Dirac Weyl and spin 1/2 Majorana fermions. On the bosonic

side, typical new fields are e.g. Abelian higher p-form fields and, exemplarily, we stud-

ied the quantisation of the three form gauge field (“three index photon”) of d = 11,

N = 1 supergravity. Due to a Chern Simons term in the corresponding supergravity

action, this field becomes self-interacting and a non-standard ∗-algebra of observables

with respect to the (equivalent of the) Gauß constraint arises. The resulting Weyl al-

gebra allows a state of the Narnhofer-Thirring type. These findings allow for the LQG

type quantisation of at least a subset of supergravity theories, including the arguably

interesting cases of d = 11 N = 1, d = 10 N = 1 and d = 4 N = 8 supergravity.

Finally, as a first application of the developed framework, we took a first step in di-

rection of a quantum gravity derivation of the famous Bekenstein Hawking formula for

the black hole entropy also in higher dimensional LQG. Concretely, we derived a suit-

able boundary condition as well as the boundary symplectic structure for undistorted

non-rotating isolated horizons in 2(n + 1) dimensional spacetimes and showed that it

yields an SO(2(n+ 1)) Chern Simons theory.

18.2 Discussion of open problems and directions for fur-

ther research

Finally, we want to give a (non-exhaustive) list of open problems and interesting direc-

tions for further research.

1. Implementation of the simplicity constraints and connection to spin

foams

Regarding vacuum general relativity, the simplicity constraint is the most unsettled

point in our analysis. Classically, it is equivalent to work with the linear or the quadratic

version of the constraint, or even use a mixing of both. At the quantum level, concep-

tual differences appear (the quadratic constraint operators not forming a closed algebra
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while the linear do) and each case has to be studied individually and, in particular,

dynamical stability of a tentative solution has to be checked. Each implementation

has advantages and disadvantages: the quadratic constraint has the appealing feature

that it leads to simple irreps of SO(D + 1) on the edges [169], which in any dimension

are labelled by only one integer and therefore allow for a natural map to SU(2) irreps.

For D = 3, this in particular fits nicely with the SU(2) edge labels of usual canonical

LQG. However, the quadratic constraint is anomalous at vertices and, to avoid the

Barrett Crane solution, we either need to use a master constraint or implement only

a maximally commuting subset of the constraints. The latter option, while leading

to a (natural) unitary map to the Ashtekar Lewandowski Hilbert space, needs further

study (Can it be shown rigorously that we are allowed to drop the non-commuting

constraints? Are those which are dropped possibly solved weakly? Can the chosen

subset be made dynamically stable? Why are the Hilbert spaces for all dimensions of

the “same size”?). These questions are discussed in [5] in more detail than we do in this

thesis, but no final answers are provided. The master constraint on the other hand is

rather complicated and since the results from spin foams suggest that there are possible

easier solutions, those should be preferred if they can be rigorously implemented.

The linear constraint is actually non-anomalous (except for additional introduction

of the Barbero Immirzi parameter in D = 3), but strong implementation leads to a

one-dimensional intertwiner space and is troublesome at the edges.

Mixing both proposals, one obtains simple representations at the edges, but again

a complicated master constraint has to be implemented at the vertices (still, its advan-

tage when compared to the quadratic simplicity master constraint is the access to the

unit vector field N I needed for supergravity).

For further research, we think that it is interesting to study in detail the implementation

of the simplicity constraint in the spin foam literature regarding their applicability in

the Hamiltonian picture (a first comparison of the results above to spin foam methods

has already been given in [5]) and generalisability to higher dimensions. Eventually,

this will lead to new developments in the both fields and build new bridges between

them. In particular the classical formulation presented in section 9.3, when reintroduc-

ing the Barbero Immirzi parameter γ with both, the linear and the quadratic simplicity

constraint in D = 3, mimics the classical starting point of the new spin foam models

as much as a Hamiltonian formulation possibly can. This suggests that one can also

302



18.2 Discussion of open problems and directions for further research

make stronger contact also at the quantum level (although an implementation of the

simplicity constraint found following this route might have the disadvantage of being

not generalisable to higher dimensions due to the peculiar role played by γ).

Some open points concerning a contact to spin foams are: in the Euclidean theory,

when strongly implementing the quadratic simplicity constraints, we actually recover

the boundary Hilbert space of the original Barrett-Crane model: SO(4) spin networks

with simple representations at the edges and the unique Barrett-Crane intertwiner at

the vertices. This would be very appealing if we did not know about the problems with

the Barrett Crane model, and if the intertwiner spaces would not be too small when

compared with the kinematical Hilbert space of standard LQG.

Turning to the new models [186–190], the Immirzi parameter and the linear simplicity

constraints enter the picture, and with them the γ-simple SO(4) representations, where

still one SU(2) label suffices to label the SO(4) irreps, but left- and right handed spins

are no longer equal, and, most prominently, the EPRL intertwiner space are introduced.

It is argued in [5] how the EPRL intertwiner space could arise also in the canonical

picture, but these results remain to be made rigorous, and an equivalent of the γ simple

representation was not shown to arise in the canonical picture for neither the quadratic

nor the linear simplicity constraints.

In the Lorentzian theory, of course the apparent difference between the SO(1,3) based

EPRL model and the canonical SO(4) theory of section 9.3 is the gauge group. From

a canonical point of view, this difference is necessary since background independent

quantisation methods have not been developed for non-compact gauge groups so far.

Actually, Alexandrov started a line of research studying SO(1,3) canonical LQG and

introduced so called projected spin networks [303, 304] in which the non-compact gauge

group is projected down to SU(2). Although definitely a challenging quest, perhaps

contact can be made by making his proposals mathematically precise.

Finally, it is interesting to study if the gauge unfixing terms in the Hamiltonian play

any role for spin foam models, where the second class partner of the simplicity con-

straints usually is neglected (see, however, [305, 306]). The reason is that this second

class partner is a secondary constraint (cf. 5.2), i.e. needed in order that the primary

simplicity constraint is preserved by the dynamics. However, in spin foams the simplic-

ity constraints are implemented at every time step and it is generally argued that the

303



18. Conclusions and outlook

secondary constraints are therefore not needed. Recently the time evolution operator

in spin foams has been shown to be of the form PTP [307], where P projects onto the

solutions of the primary simplicity constraints. This leads to conjecture that in the

continuum limit one should actually recover the gauge unfixed Hamiltonian introduced

in this work.

2. Supergravity theories - limitations of the presented treatment

Our considerations for supergravity theories are not completely general since for our

treatment of the Majorana Rarita Schwinger field, we used a real representation of the

Lorentzian Clifford algebra, which does not exist in any dimension.

Furthermore, the list of fields we studied is not exhaustive: in some supergravity the-

ories, anti- or symplectic Majorana fermions appear, and some feature non-Abelian

higher p-forms or non-compact gauge groups (cf. e.g. [134]). While the different

Majorana fermions probably only need a minor generalisation of the framework we

outlined, the latter two pose genuine barriers. The last hinders the application of the

rich machinery developed for background independent quantisation of gauge theories

with compact structure groups, if one is not able to exchange the non-compact group

by a compact one like we did in the case of the gravitational field. Higher non-Abelian

p-form fields probably call for further development in the field of higher gauge theory

[308].

In some supergravity theories, the algebra of local supersymmetry generators closes

only when using the equations of motion, otherwise being second class. We do not

know how to deal with these on-shell formulations, and can only speculate that again

gauge unfixing might offer a way to construct a corresponding off-shell formulation.

Finally, our treatment of the Rarita Schwinger field probably is also not the most

elegant one. In particular, the attractive feature of former treatments of loop super-

gravity [112], employing an Osp(1|2) connection combining both, bosonic and fermionic

degrees of freedom, is lost. Maybe a formulation in terms of superfields would be more

appealing.

3. Supergravity theories - quantum constraint algebra

For supergravity theories, it would be highly desirable to have a faithful representa-

tion of the super Dirac algebra at the quantum level. Forgetting for a moment the
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additional problems posed by the non-existence of an operator corresponding to the

diffeomorphism constraint and the presence of the other constraints, this implies the

reproduction of the additional Poisson brackets {S,S} ∝ S + H , {S,H } ∝ S and

{H ,H } ∝ S (cf. e.g. [120, 265]).

This, in a sense, is both, a blessing and a curse: while it is probably tremendously

complicated to study the quantum algebra, these requirements might be that strong

that they actually reduce the quantisation ambiguities in both, the Hamiltonian and

the supersymmetry constraint. As testbed, three dimensional supergravity suggests

itself, coming with huge simplifications both, in the bosonic as well as in the fermionic

sector (cf. [309, 310] for previous approaches to loop quantisation of d = 3 supergrav-

ity), and in particular allowing for a study of this issue independent of the simplicity

constraint problem, which does not exist in d = 3.

4. Cosmology

Loop quantum cosmology, the quantisation of various cosmological models with LQG

methods, has been extraordinary successful. Not only does it lead to a rather generic

resolution of singularities present in classical and the older Wheeler deWitt quantum

cosmology, e.g. the big bang singularity which instead is replaced by a quantum bounce

at minimal finite volume of the universe, but also its effective dynamics have been shown

to be in favor of inflation compatible with the 7 years WMAP data (see e.g. [41, 42]

and references therein). Revisiting these cosmological models within the new higher

dimensional, possibly supersymmetric approach, allows for a study of several open

question for the full theory in much simpler model systems, like how to obtain an ef-

fective four dimensional theory from higher dimensions or how to break supersymmetry.

On the other hand, the cosmological sector of string theory has been studied extensively

(cf. e.g. [96, 97]) and thus could be a first point of contact of string theory with the

framework of higher dimensional LQG proposed here.

5. Black holes

As another early point of contact to string theory, black holes in higher dimensions

suggest themselves. While they are studied in string theory (in particular, the first

derivation of the black hole entropy formula from string theory was performed for su-

persymmetric black holes in five dimensions [98]), this was so far not possible in LQG

due to the restriction to D = 3. While we made first steps in that direction, there
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are several open problems, most prominently, the quantisation of the (non-topological)

higher dimensional SO(D + 1) Chern Simons theory on the boundary and role of the

simplicity constraint we commented on in section 17.5. These have to be settled before

rigorous state counting and a derivation of the entropy formula, possibly with logarith-

mic corrections, come into reach.

Experience from the D = 3 case suggests that, to reproduce the right prefactor 1/4

of the leading order term in the entropy formula, one has to fix the new parameter

β, which most probably will depend on the dimensionality of spacetime. In more re-

cent work, there have been found ways to reproduce 1/4 without fixing of the Barbero

Immirzi parameter [285, 311]. This could possibly be recovered in higher dimensions

using the freedom in the boundary connection we commented on in section 17.3.

The logarithmic corrections in D = 3 are independent of γ and therefore seem to

give a more stringent benchmark which might be used as a cross check if the quan-

tisation of the boundary degrees of freedom is correct. However, there seems to be

less consensus on what the prefactor of these logarithmic corrections should be: there

are general arguments (cf. [312, 313]), that the logarithmic corrections should to be

−3/2 log(A/4) independent of the spacetime dimension, which is supported by calcu-

lations in different models. This prefactor −3/2 was also found in the LQG derivation

using SU(2) as gauge group, the U(1) case, instead, leads to −1/2 (cf. e.g.[43] and

references therein). However, this does not indicate that the SU(2) treatment of Perez

and collaborators is favoured. In fact, there are also many (non-loop) derivations of

the factor −1/2 (see e.g. [314] and references therein). Finally, very recent calculations

by Sen [315] using Euclidean gravity methods lead to an again different value of the

prefactor. The issue is, to the best of the author’s knowledge, unsettled.

Furthermore, there is an extension of the isolated horizon framework to supersym-

metry [316, 317]. The study of supersymmetric black holes and the role played by

supersymmetry in the subsequent entropy derivation suggest itself for further research.

When treating non-supersymmetric isolated horizons, the Hamiltonian constraint usu-

ally does not need to be taken into account since the lapse function vanishes at the

horizon. The constraint algebra displayed in 3. leads one to the conjecture that either

also the supersymmetry constraint needs not to be taken into account or both have to.

Finally, since no hair theorems for four dimensions generally fail in higher dimensions,
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there is a whole “zoo” of black hole solution to be explored (cf. e.g. [318]). In par-

ticular, it is argued that the black hole entropy actually should depend on the horizon

topology, more precisely on the Euler characteristic χ, which seems to nicely fit with

the results obtained here. However, there seems to be no consensus on how topology

enters the entropy formula: when studying exotic topologies, there are results from

LQG [319] as well as results not employing loop techniques [320–322] indicating that

only the sub-leading terms should depend on topology. In contrary, [323] finds that the

leading order term depends on χ. To hopefully give answers to these questions in the

future, of course we first have to make progress on the quantisation of the boundary

degrees of freedom.

6. Recovering “every day life” physics

Of course, starting from a higher dimensional, possibly supersymmetric theory of quan-

tum gravity poses the immediate question of how to recover an effective, four dimen-

sional and non-supersymmetric theory, and in particular, if problems similar to the

“landscape” in string theory emerge. So far, we only have the observation that the

implementation of a maximally commuting set of simplicity constraints in chapter 11.2

suggests that the dimensionality of spacetime might be irrelevant at the kinematical

quantum level, only reemerging at the semiclassical level (or possibly through dynam-

ics).

The study of this issue definitely is an ambitious project: before it can be attacked,

one probably needs to make progress on 1. and 3., and furthermore, sufficient control

on the semiclassical sector of the theory needs to be gained.

7. Connection to string theory

While certainly not the least interesting, the connection to string theory is definitely a

hard and long term goal. Even with a future, further developed loop quantum super-

gravity (LQSG) at hand, the comparison at the level of supergravity is only indirect. In

particular, there is still no “string in higher dimensional LQSG”, and the quantisation

methods in string theory are still (at least a priori) background dependent. Therefore,

we think that, parallel to LQSG, the research direction started in [93] of a loop quan-

tisation of string theory should be further developed.

Apart from the already mentioned contact points, cosmology and black holes, an in-

teresting but more speculative application we have in mind is a test of the conjectured
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AdS/CFT correspondence by e.g. loop quantising type IIB supergravity on a 10d man-

ifold (AdS5× S5?) and compare it with a loop quantisation of N = 4 super Yang-Mills

theory. Progress in this direction would probe the non-perturbative limit of the con-

jectured equivalence [85–87] of type IIB string theory on AdS5 × S5 and N = 4 super

Yang-Mills theory on the four-dimensional boundary of AdS5.

In conclusion, many technical problems remain so far unsettled by our work and def-

initely deserve further studies, but also many interesting new research directions are

opened up. We hope that this work leads to a stronger bridge between canonical LQG

and spin foam models, stimulates a further development of LQSG in any dimensions

and ultimately contributes to an enhanced exchange between strings and loops in the

future.
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A

Variational formulae

In this appendix, we will collect various variational formulae which will be helpful for

calculations in the main text.

Inverse metric and determinant: Since δ(gµνg
νρ) = (δgµν)gνρ + gµν(δgνρ) = 0,

we have

δgµν = −gµρgνσδgρσ. (A.1)

For the determinant of the metric, we find using Jacobi’s formula

δg = ggµνδgµν , (A.2)

δ
√
|g| = 1

2
√
|g|
δ|g| = 1

2

√
|g|gµνδgµν , (A.3)

where in the last step, it was important that the metric is non-degenerate.

Christoffel symbols: Two affine connections differ by a tensor field of rank (1,2).

Therefore, one expects that also the variation of the Christoffel symbols yields a tensor

field, which is indeed the case and was, to the best of the author’s knowledge, first

observed in [147].

δΓρµν =
1

2
δ [gρσ (∂µgνσ + ∂νgµσ − ∂σgµν)]

=
1

2
gρσ (∂µδgνσ + ∂νδgµσ − ∂σδgµν)− 1

2
gραgσβδgαβ (∂µgνσ + ∂νgµσ − ∂σgµν)

=
1

2
gρσ (∇µδgνσ +∇νδgµσ −∇σδgµν) . (A.4)

The final expression shows that the variation actually is a tensor field. The easiest way

to comprehend the last step in the above calculation is to work backwards, writing out

309



A. Variational formulae

the covariant derivatives explicitly and simplifying the resulting expression reproduces

the second line.

Riemann tensor, Ricci tensor, Ricci scalar: For the variation of the Riemann

tensor, we find

δRµνρ
σ = −2δ

(
∂[µΓσν]ρ − Γλ[µ|ρΓ

σ
ν]λ

)
= −2∇[µδΓ

σ
ν]ρ. (A.5)

Contracting this equation with δνσ, we obtain for the variation of the Ricci tensor

δRµρ = −2∇[µδΓ
ν
ν]ρ, (A.6)

Contraction of (A.6) with the inverse metric and using (A.4), we find

gµρδRµρ = ∇µ (∇ρδgµρ −∇µgρσδgρσ) , (A.7)

which yields the surface term in the variation of the Einstein Hilbert action in section

2.1. Finally, we find for the Ricci scalar

δR = δ(gµρRµρ) = ∇µ∇ρδgµρ −∇µ∇µgρσδgρσ −Rµρδgµρ. (A.8)

Laplacian: For the variation of the Laplacian ∆ = gµν∇µ∇ν of a scalar field φ, we

find using (A.1, A.2, A.4)

δ∆φ = δ
(
gµν∂µ∂νψ − gµνΓρµν∂ρφ

)
= ∆δφ− (δgµν)∇µ∇νφ−

(
∇µδgµν −

1√
|g|
∇νδ

√
|g|

)
∇νφ. (A.9)

Vielbein and related variations: If, instead of a metric, one works with a (co)-

vielbein, the following formulas might be helpful. Their derivation is straight forward.

δeµI = −eµJeνIδeνJ , (A.10)

δe = eeµIδeµI , (A.11)

δgµν = 2e(µ
Iδeν)I , (A.12)

δ|g| = 2e2eµIδeµI , (A.13)

gµνδgµν = 2eµIδeµI . (A.14)
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Therefore, if we work with a densitised (co)-vielbein EµI := eeµI , we have

δEµI = 2eeµ[I|eν|J ]δeνJ , (A.15)

δeµI = e

(
1

d− 1
EµIEνJ − EνIEµJ

)
δEνJ , (A.16)

where EµI = 1
eeµI . Note that e = (detE)

1
(d−1) holds. The first line follows easily from

the above equations and for the second we merely have to invert the matrix appearing

in the first line. More importantly for this work, if we work with a hybrid vielbein (or

its densitised version EaI :=
√
qeaI , cf. section 3.2.3 for notation), we have

δeaI =
(
ζnInJqab − eaJebI

)
δebJ , (A.17)

δ
√
q =
√
qeaKδeaK , (A.18)

δEaI =
√
q
(
ζnInJqab + 2ea[I|eb|J ]

)
δebJ , (A.19)

δeaI =
√
q

(
ζ(EaKEbK)−1nInJ +

1

D − 1
EaIEbJ − EbIEaJ

)
δEbJ , (A.20)

δqab = 2e(a|Iδeb)
I = −1

q
G−1
ab cd(δqq

cd) = −2

q
G−1
ab cdE

cIδEdI , (A.21)

where η̄IJ = EcIE
c
J and ζnInJ = ηIJ−η̄IJ , and furthermore

√
q = (det(EcLEdL))

1
2(D−1)

holds. G−1
ab cd here and in the following is the same matrix that appeared in (2.16).

Finally, when working with πaIJ = 2n[IEa|J ], 2ζqqab = πaIJπbIJ , as in sections 4.2, 5.2

and part II, we have

δqqab = ζπ(a|IJδπ|b)IJ , (A.22)

δq =
ζ

D − 1
qπaIJδπ

aIJ , (A.23)

δqab = −ζ
q
G−1
ab cdπ

cIJδπdIJ , (A.24)

δπaIJ =

[
1

q
qabPIJ KL −

ζ

2
πaKLπbIJ

]
δπbKL. (A.25)

To derive these, the previous formulae are helpful. We used the notation πaIJ =
1
q qabπ

b
IJ and in the last equation, we introduced the projector PIJ KL := ηK[I η

L
J ] −

ζ
2πaIJπ

aKL, which projects orthogonal to πaIJ , PIJ KLπaKL = 0.

Vielbein compatible spin connection: As for the Christoffel symbol, the variation

of ΓµIJ should yield a tensor. Indeed, we find after some simple algebra using (A.4,
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A.10)

δΓµIJ = δ
(
eν[I|∇µeν|J ]

)
= eν[I|∇

Γ
µδeν|J ] − eν[I|∇

Γ
ν δeµ|J ] − eν [Ie

ρ
J ]eµ

K∇Γ
[νδeρ]K . (A.26)

Curvature tensors: In general, we find for SO(D+1) or SO(1, D) curvature tensors

FµνIJ

δFµνIJ = 2δ
(
∂[µAν]IJ +Aµ[I|

KAνK|J ]

)
= 2∇A[µδAν]IJ . (A.27)

It is instructive for the unfamiliar reader to rederive (A.8) from the variation of eµIeνJ

RµνIJ using (A.26, A.27) and various other formulas above.
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B

Spatial - temporal

decompositions

In the following, we collect and derive formulas helpful for D + 1 decompositions of

spacetime tensors.

Gauß Codacci equations: In section 2.2.1, we used the famous Gauß Codacci equa-

tions to express (D+1)R in terms of (D)R and the extrinsic curvature Kµν , which we will

derive in the following. We follow [62] and start with noting that for a spatial covector

uµ, we have, using the definition of the covariant spatial derivative in 2.2.1, the fact

that ∇ annihilates gµν and that qµν = gµν − snµnν ,

(D)Rµνρ
σuσ = [Dµ, Dν ]uρ = 2qµ

′

[µq
ν′

ν]q
ρ′
ρ (∇µ′qν

′′
ν′ q

ρ′′

ρ′ ∇ν′′uρ′′)

= 2qµ
′

[µq
ν′

ν]q
ρ′
ρ

[
−s(∇µ′nν′nν

′′
)qρ
′′

ρ′ ∇ν′′uρ′′ − sq
ν′′
ν′ (∇µ′nρ′nρ

′′
)∇ν′′uρ′′ +∇µ′∇ν′uρ′

]
= 2qµ

′

[µq
ν′

ν]q
ρ′
ρ

[
−sqν′′ν′ (∇µ′nρ′)nρ

′′∇ν′′uρ′′ +∇µ′∇ν′uρ′
]

= 2qµ
′

[µq
ν′

ν]q
ρ′
ρ

[
sqν

′′
ν′ (∇µ′nρ′)uρ′′∇ν′′nρ

′′
+∇µ′∇ν′uρ′

]
=
[
2sK[µ|ρKν]

σ + qµ
′
µ q

ν′
ν q

ρ′
ρ

(D+1)Rµ′ν′ρ′
σ′qσσ′

]
uσ, (B.1)

where from line 3 to line 4 we used that qµ
′
µ qν

′
ν ∇[µ′nν′] = 0 due to Frobenius’ theorem,

and from line 4 to 5 that uµ is spatial and therefore nµ∇νuµ = −uµ∇νnµ. This is the

famous Gauß equation. Contracting it, we obtain

(D)R = qµρqνσ(D)Rµνρσ

= s
[
K2 −KµνK

µν
]

+ qµρqνσ(D+1)Rµνρσ. (B.2)
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On the other hand, we have

(D+1)R = gµρgνσ(D+1)Rµνρσ

= (qµρ + snµnρ)(qνσ + snνnσ)(D+1)Rµνρσ

= (qµρqνσ + 2snµnρqνσ)(D+1)Rµνρσ

= qµρqνσ(D+1)Rµνρσ − 2snµqνσ[∇µ,∇ν ]nσ

= qµρqνσ(D+1)Rµνρσ − 2snµ[∇µ,∇ν ]nν , (B.3)

and for the last term we have

2nµ∇[µ∇ν]n
ν = 2∇[µ(nµ∇ν]n

ν)− 2(∇[µn
µ)(∇ν]n

ν)

= 2∇[µ(nµ∇ν]n
ν)−K2 +KµνK

µν , (B.4)

where in the last step we used

∇µnµ = gµν∇µnν = (qµν + snµnν)∇µnν
= qµν∇µnν = K, (B.5)

(∇µnν)(∇νnµ) = (∇µnρ)(∇νnσ)gµσgνρ

= (∇µnρ)(∇νnσ)(qµσ + snµnσ)(qνρ + snνnσ)

= (∇µnρ)(∇νnσ)qµσqνρ

= KµνK
µν . (B.6)

Here, we repeatedly used that nµ∇νnµ = 1
2(∇νnµnµ) = 0. Combining (B.2, B.3, B.4),

one arrives at the Codacci equation

(D+1)R = (D)R− s[KµνK
µν −K2]− 4s∇[µ(nµ∇ν]n

ν). (B.7)

Spin connection and its curvature: For the spatial components of the spin con-

nection, we find

qµ
′
µ Γµ′

IJ = qµ
′
µ e

ν[I∇µ′eνJ ]

= qµ
′
µ (||eν[I + snνn[I)∇µ′(||eνJ ] + snνn

J ])

= ||eν[IDµ
||eν

J ] + sn[IDµn
J ] − 2sn[I ||eν|J ]Kµν

= ΓH
µ
IJ − 2sn[I ||eν|J ]Kµν , (B.8)

where we defined

ΓH
µ
IJ := ||eν[IDµ

||eν
J ] + sn[IDµn

J ], (B.9)
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which upon pulling back to the spatial manifold σ becomes the hybrid spin connection

[103] introduced in appendix C.

For the projection of the spin connection on the timelike unit normal nµ, we simi-

larly find

nµΓµ
IJ = nµeν[I∇µeνJ ]

= nµ(||eν[I + snνn[I)∇µ(||eν
J ] + snνn

J ])

= ||eν[I∇n||eνJ ] + sn[I∇nnJ ] − 2sn[I ||eν|J ]∇nnν
= ||eν[I∇n||eνJ ] + sn[I∇nnJ ] + 2n[I ||eν|J ]Dν logN , (B.10)

where in the last line, we used that (see e.g. [62, page 55])

∇nnµ = − s

N
DµN . (B.11)

For its curvature, we immediately find from (C.10)

eµIeνJRµνIJ = eµI (D+1)Rµνρ
νeρI

= (D+1)R

= (D)R− s[KµνK
µν −K2]− 4s∇[µ(nµ∇ν]n

ν)

= ||eµI ||eνJRH
µνIJ − s[KµνK

µν −K2]− 4s∇[µ(nµ∇ν]n
ν), (B.12)

where we used (B.7) in the third step and RH
µν
IJ = (D)Rµνρσ

||eρI |||eσJ and RH
µν
IJ

denotes the curvature of ΓH
µ
IJ .
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C

(Hybrid) spin connection and

generalisations

This appendix is taken from [10]. We will introduce several connections relevant for the

main text, namely the spin connection compatible with the vielbein, Peldán’s “hybrid”

spin connection [103] and extensions thereof to higher dimensional internal space.

C.1 Vielbein compatible spin connection

It is a well-known fact that, given an SO(D) vielbein ea
i in D dimensions (or, equiva-

lently, an SO(D + 1) or SO(1, D) vielbein in D + 1 dimensions), there exists a unique

spin connection Γaij [e] compatible with it, which is obtained by solving

0
!

= DΓ
aeb

i = Daeb
i + Γ[e]a

i
jeb

j (C.1)

for Γ[e]aij , where Da denotes the torsion free metric compatible covariant derivative.

These are D3 equations for D2(D−1)
2 unknowns Γ[e]aij , but D2(D+1)

2 of these, namely

2e(b|
iDΓ

ae|c)i = Daqbc = 0, are identically satisfied (or, if we do not fix the affine

connection, can be solved for the D2(D+1)
2 components of Γabc). Therefore, the number

of equations equals the number of unknowns, and we can solve for

Γ[e]aij = eb[iDaeb|j]. (C.2)

Note that an equivalent requirement in this case is the torsion freeness condition

0
!

= DΓ
[aeb]

i, (C.3)
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C. (Hybrid) spin connection and generalisations

which constitutes D2(D−1)
2 independent equations for the D2(D−1)

2 unknowns Γ[e]aij .

Its curvature Rab
ij satisfies

Rabcd = Rab
ijeciedj , (C.4)

Rab
ij = Rabcde

ciedj , (C.5)

which will be needed in the main text. These equations can be easily derived from

0 = [DΓ
a, D

Γ
b]ec

i = Rabc
ded

i +Rab
i
jec

j . (C.6)

C.2 Peldán’s hybrid connection

Starting from a Lagrangian formulation of general relativity on a D + 1 dimensional

space time manifold, the natural gauge group is SO(1, D) or SO(D+1) for the Lorentzian

or Euclidean theory, respectively. When passing to the corresponding Hamiltonian sys-

tem, a D + 1 split is performed and we are naturally led to consider a SO(1, D) or

SO(D + 1) vielbein ea
J on the D dimensional spatial manifold, which we call hybrid

vielbein (cf. also chapter 3). However, from the Hamiltonian perspective, the signa-

ture of the internal space ζ is not necessarily tied to the space time signature s, since

we can always start with an SO(D) vielbein on the spatial slice and introduce gauge

degrees of freedom corresponding either to SO(1, D) or SO(D + 1). In the following,

we will therefore treat internal and space time signature independently. Peldán [103]

investigated if one could define a compatible connection also for this hybrid vielbein.

We have

0
!

= DH
a eb

J = Daeb
J + ΓH[e]a

J
Keb

K , (C.7)

which constitutes D2(D+1) equations for D2(D+1)
2 unknowns ΓH[e]a

IJ . However, again

the D2(D+1)
2 equations 2e(b|

IDH
ae|c)I = Daqbc = 0 are identically satisfied, and again,

the number of equations matches the number of unknowns. We actually can solve for

the unique “hybrid” spin connection,

ΓH[e]aIJ = eb[IDaeb|J ] + ζn[IDanJ ], (C.8)

where nI is the unique (up to sign) unit normal to the hybrid vielbein, nIeaI = 0,

nInJηIJ = ζ, and ζ again denotes the internal signature, ζ = −1 for SO(1, D) and +1

for SO(D + 1). Note that the sign ambiguity is absent in ΓH[e]aIJ since nI appears

quadratically.

In this case, the conditions

0
!

= DH
[aeb]

J (C.9)

318



C.3 Extensions to higher dimensional internal space

are insufficient [103], being only D2(D−1))
2 independent equations. Again, since

0 = [DH
a , D

H
b ]ec

I = Rabc
ded

I +RH
ab
I
Jec

J , (C.10)

0 = [DH
a , D

H
b ]nI = RH

ab
I
Jn

J , (C.11)

we have

Rabcd = RH
ab
IJecIedJ , (C.12)

RH
ab
IJ = Rabcde

cIedJ . (C.13)

The superscript “H” on ΓH and RH will be skipped in several formulae throughout this

thesis, since already the index structure distinguishes the hybrid from the usual spin

connection.

C.3 Extensions to higher dimensional internal space

Now we want to extend this result to a higher dimensional internal space, which is nec-

essary for black hole applications in part V, since we have to deal with the vielbein on

the D−1 dimensional inner boundaries of the spatial slice, and also allows for the con-

struction of SO(p,D+q) gauge theories (p ≥ 0, q ≥ 0, p+q 6= 0) of gravity in section 9.2.

We will start quite general by introducing an Rp,D+q – valued vielbein ea
J in D dimen-

sions (note that in this section, we will have I, J,K... = 1, ..., D + k), ea
Ieb

JηIJ = qab

where ηIJ = diag(−, ...,−︸ ︷︷ ︸
p

,+, ...,+︸ ︷︷ ︸
D+q

) and p+q = k, and ask for a so(p,D+q) connection

ΓH
aIJ annihilating eJa . We have

0
!

= DH
a eb

J = Daeb
J + ΓH

a
J
Keb

K , (C.14)

corresponding to D2(D + k) equations to determine ΓH
aIJ . However, these equations

are not all independent, since

0 = e(c|
IDH

a e|b)I (C.15)

are identically satisfied due to the antisymmetry of the so(p,D+ q) connection and the

metric compatibility of Da. The result are

D2(D + k)−D2(D + 1)/2 = D2((D − 1)/2 + k) (C.16)
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C. (Hybrid) spin connection and generalisations

independent equations for the

D(D + k)(D + k − 1)/2 (C.17)

unknowns ΓH
aIJ . It is clear that ΓH

aIJ cannot be determined uniquely for any k, since

the number of equations grows, for fixed D, linearly with k, while the connection

components grow quadratically. More precisely, equating both, we obtain (C.16) =

(C.17) ⇔ Dk(k − 1)/2 = 0, i.e. the connection is only uniquely determined for the

gauge groups SO(D), corresponding to k = 0, and SO(1, D) or SO(D + 1) for k = 1.

Let us study the indeterminacy for k > 1 in more detail. First we “complete” the

vielbein by choosing an orthonormal set of k unit vectors ni
I , i = 1, ..., k, normal to

the vielbein, i.e. ni
IeaI = 0 ∀i = 1, ..., k and ni

Inj
JηIJ = ηij ∀i, j = 1, ..., k where

ηij = diag(−, ...,−︸ ︷︷ ︸
p

,+, ...,+︸ ︷︷ ︸
q

)1. The indices i, j, ... will be raised and lowered using this

metric and its inverse ηij . Then we can decompose ΓH
aIJ according to

ΓH
aIJ = ΓaIJ + 2ni[I|Γ

i
a|J ] + ni[I|nj|J ]Γ

ij
a, (C.18)

where summation over repeated indices i, j is understood and ΓaIJni
J = 0 ∀i = 1, ..., k,

Γ
i
aJnj

J = 0 ∀i, j = 1, ..., k. Inserting this decomposition of ΓH
aIJ into (C.14), we find

that Γija simply drops out and therefore cannot be solved for, and the number of

its components, Dk(k − 1)/2 since it is antisymmetric in i, j, precisely matches the

indeterminacy. For the other components, one obtains

ΓaIJ = eb[I|η̄J ]KDaeb
K , (C.19)

Γ
i
aJ = η̄JKDan

iK , (C.20)

where η̄IJ := eaIe
a
J . Inserting back into (C.18), we find

ΓH
aIJ = 2eb[I|Daeb|J ] − eb[I η̄J ]KDaeb

K + ni[I|nj|J ]Γ
ij
a (C.21)

and therefore a Dk(k − 1)/2 – parameter family of connections annihilating ea
I . To

obtain a unique connection, we have to add additional requirements, e.g. we could

demand that Γija = 0 ∀ i, j = 1, ..., k (these requirements are independent of the choice

of “completion” for the vielbein {niI}ki=1). This connection Γ1
aIJ would be special in

that it would only depend on ea
I ,

Γ1
aIJ = 2eb[I|Daeb|J ] − eb[I η̄J ]KDaeb

K . (C.22)

1Actually, we can as well specify k − 1 vectors, since the last one, nk
I , is already determined (up

to sign) by the mentioned requirements.
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C.3 Extensions to higher dimensional internal space

Having in mind the application to black holes, we will proceed differently. For a fixed

extension, the extra conditions we impose are DH
a ni

I = 0 ∀i = 1, ..., k − 11 (these

requirements are sensitive to the choice of completion). Again, these conditions are not

all independent. We have eb
IDH

a niI = 0 and n(i
IDH

a nj)I = 0 already satisfied, which

results in D(k − 1)(D + k) − (D2(k − 1) + Dk(k − 1)/2) = Dk(k − 1)/2 independent

equations. This equals the number of undetermined components Γija. Solving for these,

we find

Γija = −n[i
IDan

j]I (C.23)

and

Γ0
aIJ [e, n] := eb[I|Daeb|J ] + ni[I|Dani|J ] (C.24)

as the unique connection annihilating the chosen completion of ea
J . This connection

has several nice properties. For all connection of the family, we have

RHabIJec
IedJ = Rabc

d, (C.25)

RHabIKni
I η̄KJ = 0, (C.26)

which follows from contraction of

0 = [DH
a , D

H
b ]ec

I = RHab
I
Jec

J +Rabc
ded

I . (C.27)

But for this connection Γ0, we additionally have

R0
ab
I
Jni

J = [D0
a, D

0
b ]ni

I = 0 (C.28)

and therefore

R0
abIJ = Rabc

d ecIedJ . (C.29)

From the right hand side of (C.29), we see that, while Γ0
aIJ depends on the choice of

{niI}ki=1, R0
abIJ is independent of n, determined completely by ea

I and its first and

second derivatives. Explicitly, choosing a different completion {ñiI}ki=1 of ea
I , which is

related to {niI}ki=1 by a SO(p, q) transformation g via ñi = gi
jnj , we find

Γ0
aIJ [e, ñ] = Γ0

aIJ [e, n] +KaIJ , (C.30)

KaIJ := gikn
k

[I|nl|J ]Dagi
l, (C.31)

1Note that, since nk
I is given by ea

I , ni
J , i = 1, ..., k−1, up to sign, it is automatically annihilated

by Da if the latter are.
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and

R0
abIJ [Γ0[e, ñ]] = R0

abIJ [Γ0[e, n]] + 2D0[e, n][aKb]IJ + [Ka,Kb]IJ = ... = R0
abIJ [Γ0[e, n]].

(C.32)

For even dimensions D = 2n, it follows from (C.29)

εK1...KkI1J1...InJn εa1b1...anbn R0
a1b1I1J1

...R0
anbnInJn = E(D)εi1...ikni1

[K1 ...nik
Kk], (C.33)

the right hand side of which is also manifestly invariant under SO(p, q) rotations and

where E(D) denotes the D - dimensional Euler density

E(D) :=
1
√
q
εa1b1...anbnεc1d1...cndnRa1b1c1d1 ...Ranbncndn . (C.34)

Note that R0
abIJ is not the only curvature tensor constructed from ea

I only. Of course,

the connection Γ1
aIJ we considered earlier, obtained by choosing Γija = 0, is constructed

solely from ea
I and so is the corresponding curvature tensor, but it fails to satisfy

(C.29). More precisely, we find

R1
abIJ = R0

abIJ + 2(η − η̄)K[I(η − η̄)J ]Lq
cd(D[a|ec

K)(D|b]ed
L). (C.35)

322



D

The Lie algebras so(1, D) and

so(D + 1)

This appendix is mostly taken from [2]. We generalise a so(1, 3) structure constant

identity given in [103] to so(1, D) or so(D + 1). In our notation,

(TAB)I J = ηI [AηB]J (D.1)

denotes the generators of so(1, D) or so(D+ 1) in the fundamental representation. The

antisymmetric index pair AB labels the D(D + 1)/2 generators, I and J are matrix

indices, also antisymmetric. In the following, a generator TAB will always have a label,

but the matrix indices will be mostly suppressed. Insertion of the definitions shows

that the generators satisfy the usual Lorentz algebra

[TAB, TCD]I J = 2ηA][C

(
TD][B

)I
J =: fAB,CD,

EF (TEF )I J (D.2)

with

fAB,CD,EF = −2ηB][CηD][EηF ][A = −2Tr (TABTCDTEF ) . (D.3)

We further define the Cartan-Killing metric

qIJ,KL = ηI[KηL]J ⇔ −Tr (TABTCD) = (TAB)IJ qIJ,KL (TCD)KL (D.4)

and the object

(q∗M )IJ,KL =
1

2
ε M
IJKL (D.5)

defining the dual

T ∗MAB = (q∗M )AB,
CDTCD (D.6)
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generators. We note that self-duality is a concept reserved for 3 + 1 dimensions.

These definitions lead us to the main result of this appendix:

fAB,CD,IJfEF,GH,
IJ =

1

2
qAB,EF qGH,CD +

ζηMN

2(D − 3)!
(q∗M )AB,EF (q∗N )GH,CD

− (EF ↔ GH), (D.7)

where ηMN := ηM1[N1|ηM2|N2|...ηMD−3|ND−3] is defined with total weight one and ζ = −1

(+1) for so(1, D) (so(D + 1)) as before. It can be proven by carefully inserting the

definitions and writing out explicitly each term.

Using these definitions, we can rewrite

[Λ,Ω]IJ = ΛABΩCDfAB,CD,
I
J , (D.8)

Tr (ΛΩΞ) = −1

2
ΛABΩCDΞEF fAB,CD,EF , (D.9)

and use (D.7) to simplify certain calculations in the main text.
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E

Gamma matrices

This appendix is taken from [4]. The properties of the gamma matrices can be found in

most textbooks on quantum field theory, see, for instance, [324]. Their basic property

is the Clifford algebra

{γI , γJ} = 2ηIJ , (E.1)

where ηIJ is the flat Minkowski metric of a spacetime with signature (p, q). From this

relation alone, one deduces,

[ΣIJ , γK ] = −iγIηJK + iγJηIK (E.2)

and

i[ΣIJ ,ΣKL] = ηLJΣKI − ηLIΣKJ + ηJKΣIL − ηIKΣJL, (E.3)

where ΣIJ := − i
4 [γI , γJ ]. ΣIJ thus constitutes a representation of the Lie algebra

so(p, q) on spinor space.

Furthermore, the expression {γK ,ΣIJ} = −iγ[KγIγJ ] is completely antisymmetric in

I, J,K.

It is noteworthy that ΣIJ is a Hermitian matrix for Euclidean signature. In general,(
ΣIJ

)†
= ηIIηJJΣIJ , which becomes important when dealing with Lorentzian signa-

ture, i.e. the boost part of the Gauß constraint is purely rotational as Σ0i + (Σ0i)† = 0.

Explicit representations of the gamma matrices exist for all dimensions D+ 1 ≥ 2, see,

for instance, [325], or [326]. A generalisation of left- and right-handed spinors exists

for D + 1 even and is spelled out e.g. in [6].
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F

Higher dimensional Newman

Penrose formalism

In this appendix, which is taken from [10], we will very briefly introduce the higher

dimensional Newman Penrose formalism as far as it is needed for the purpose of this

thesis. Firstly, the Riemann tensor can be decomposed as follows

R(D+1)
µνρσ = C(D+1)

µνρσ +
2

D − 1

(
R

(D+1)
[µ|ρ g|ν]σ −R

(D+1)
[µ|σ g|ν]ρ

)
− 2

D(D − 1)
g[µ|ρg|ν]σR

(D+1)

= C(D+1)
µνρσ +

2

D − 1

(
J

(D+1)
[µ|ρ g|ν]σ − J

(D+1)
[µ|σ g|ν]ρ

)
+

2

D(D + 1)
g[µ|ρg|ν]σR

(D+1),

(F.1)

where C
(D+1)
µνρσ denotes the (D+ 1) Weyl tensor and J

(D+1)
µν := R

(D+1)
µν − 1

D+1gµνR
(D+1)

the tracefree Ricci tensor. In a given null frame {l, k, {mI}}, l2 = k2 = l ·mI = k ·mI =

0, l · k = −1, mI · mJ = η̄IJ , we will use the following notation (cf. [327]) for the

components of the Weyl tensor

Ψ0101 := C(D+1)
µνρσ lµkν lρkσ, Ψ010I := C(D+1)

µνρσ lµkν lρmσ
I ,

Ψ011I := C(D+1)
µνρσ lµkνkρmσ

I , Ψ01IJ := C(D+1)
µνρσ lµkνmρ

Im
σ
J ,

Ψ0I0J := C(D+1)
µνρσ lµmν

I l
ρmσ

J , Ψ0I1J := C(D+1)
µνρσ lµmν

Ik
ρmσ

J ,

Ψ0IJK := C(D+1)
µνρσ lµmν

Im
ρ
Jm

σ
K , Ψ1I1J := C(D+1)

µνρσ kµmν
Ik

ρmσ
J ,

Ψ1IJK := C(D+1)
µνρσ kµmν

Im
ρ
Jm

σ
K , ΨIJKL := C(D+1)

µνρσ mµ
Im

ν
Jm

ρ
Km

σ
L. (F.2)

We will use analogous notation for the (D + 1) Riemann tensor if convenient. From

curvature tensor symmetries and tracelessness, the relations

Ψ0I0
I = Ψ1I1

I = 0, Ψ0[IJK] = Ψ1[IJK] = ΨI[JKL] = 0, Ψ0101 = −Ψ0I1
I ,
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F. Higher dimensional Newman Penrose formalism

Ψ010J = −Ψ0IJ
I , Ψ011J = Ψ1IJ

I , Ψ0I1J =
1

2

(
Ψ01IJ + ΨIKJ

K
)

(F.3)

can be derived [327]. For the components of the tracefree Ricci tensor J
(D+1)
µν , we

introduce the notation

Φ00 = J (D+1)
µν lµlν , Φ01 = J (D+1)

µν lµkν , Φ0I = J (D+1)
µν lµmν

I ,

Φ11 = J (D+1)
µν kµkν , Φ1I = J (D+1)

µν kµmν
I , ΦIJ = J (D+1)

µν mµ
Im

ν
J , (F.4)

and, because of tracelessness, it holds that

2Φ01 = ΦI
I . (F.5)
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G

Details on calculations for part V

This appendix is taken from [10] and provides calculational details for several deriva-

tions of part V.

G.1 Symplectic structure via the Palatini action

In this appendix, we provide calculational details for showing (17.41),∫
∆
δ[1Σ
←
IJδ2]A←IJ

= 2

∫
∆

{
d
[
δ[1s̃

Iδ2]nI
]

+
1

(D − 1)!
δ[1ε

D−1 ∧ δ2]ω
l

}
. (G.1)

We will contract any of the three lines of (17.38) separately with (17.24) and multiply

them by −1
(D−1)! . For the first line, we find

(D − 1)εIJK1...KD−1

[
mL ∧mK2 ∧ ... ∧mKD−1(imLδ[1m

K1)
]

∧
[
δ2]Γ

0IJ − 2(δ2]ω)l[IkJ ] − 2ωδ2](l
[IkJ ])

]
= (D − 1)εIJK1...KD−1

lIkJ
[
mL ∧mK2 ∧ ... ∧mKD−1(imL ¯̄ηK1Mδ[1mM )

]
∧
[
−2kI′dΓ0δ2]l

I′ − 2δ2]ω
]

+ (D − 1)εIJK1...KD−1

[
mL ∧mK2 ∧ ... ∧mKD−1(−imL lK1kMδ[1mM )

]
∧
[
2kJdΓ0δ2]l

I − 2kJω(δ2]l
I)
]

+ (D − 1)εIJK1...KD−1

[
mL ∧mK2 ∧ ... ∧mKD−1(−imLkK1 lMδ[1mM )

]
∧
[
2lJdΓ0δ2]k

I + 2lJω(δ2]k
I)
]

= − 2(D − 1)εIJK1...KD−1
lIkJδ[1m

K1 ∧mK2 ∧ ... ∧mKD−1 ∧
[
kI′dΓ0δ2]l

I′ + δ2]ω
]

− 2(D − 1)εIJK1...KD−1
lIkJmM ∧mK2 ∧ ... ∧mKD−1

∧
[
δ[1k

MdΓ0δ2]l
K1 − ω(δ[1k

M )(δ2]l
K1)
]
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− 2(D − 1)εIJK1...KD−1
lIkJmM ∧mK2 ∧ ... ∧mKD−1

∧
[
δ[2l

MdΓ0δ1]k
K1 + ω(δ[2l

M )(δ1]k
K1)
]

= − 2δ[1ε
D−1 ∧

[
d(kI′δ2]l

I′) + δ2]ω
]

− 2(D − 1)2εIJK1[K2...KD−1|l
IkJm|M ] ∧mK2 ∧ ... ∧mKD−1

∧
[
δ[1k

MdΓ0δ2]l
K1 − ω(δ[1k

M )(δ2]l
K1)
]

− 2(D − 1)εIJK1...KD−1
lIkJmM ∧mK2 ∧ ... ∧mKD−1

∧
[
δ[2l

MdΓ0δ1]k
K1 + ω(δ[2l

M )(δ1]k
K1)
]

= − 2δ[1ε
D−1 ∧

[
d(kI′δ2]l

I′) + δ2]ω
]

− 2(D − 1)εIJMK2...KD−1
lIkJmK1 ∧mK2 ∧ ... ∧mKD−1

∧
[
δ[1k

MdΓ0δ2]l
K1 − ω(δ[1k

M )(δ2]l
K1)
]

− 2(D − 1)εIJK1...KD−1
lIkJmM ∧mK2 ∧ ... ∧mKD−1

∧
[
δ[2l

MdΓ0δ1]k
K1 + ω(δ[2l

M )(δ1]k
K1)
]

= − 2δ[1ε
D−1 ∧

[
d(kI′δ2]l

I′) + δ2]ω
]

− 2(D − 1)εIJK1K2...KD−1
lIkJmM ∧mK2 ∧ ... ∧mKD−1

∧
[
δ[1k

K1dΓ0δ2]l
M + δ[2l

MdΓ0δ1]k
K1 − ω(δ[1k

K1)(δ2]l
M ) + ω(δ[2l

M )(δ1]k
K1)
]

= − 2δ[1ε
D−1 ∧

[
d(kI′δ2]l

I′) + δ2]ω
]

− 2(D − 1)εIJK1[K2...KD−1|l
IkJmM ∧mK2 ∧ ... ∧mKD−1 ∧ dΓ0(δ[1k

K1δ2]l|M ])

= − 2δ[1ε
D−1 ∧

[
d(kI′δ2]l

I′) + δ2]ω
]

+ 4εJK1K2...KD−1M l
[IkJ ]mM ∧mK2 ∧ ... ∧mKD−1 ∧ dΓ0(δ[1k

K1δ2]lI)

− 2εIJMK2...KD−1
lIkJmM ∧mK2 ∧ ... ∧mKD−1 ∧ d(δ[1k

K1δ2]lK1)

= − 2δ[1ε
D−1 ∧

[
d(kI′δ2]l

I′) + δ2]ω
]

− 2εJK1MK2...KD−1
lJkK1mM ∧mK2 ∧ ... ∧mKD−1 ∧ dΓ0(lNδ[1k

NkIδ2]lI)

− 2εD−1 ∧ d(δ[1k
K1δ2]lK1)

= − 2δ[1ε
D−1 ∧

[
d(kI′δ2]l

I′) + δ2]ω
]

+ 2εD−1 ∧ dΓ0((kNδ[1lN )(kIδ2]lI))

− 2εD−1 ∧ d(δ[1k
K1δ2]lK1)

= − 2d
[
(δ[1ε

D−1kI′)(δ2]l
I′)
]
− 2δ[1ε

D−1 ∧ δ2]ω. (G.2)
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Similar calculations of the same length show that for the second and third line of (17.38)

contracted with (17.24), we obtain

− (D − 1)(D − 2)εIJK1...KD−1
lK1 k ∧mL ∧mK3 ∧ ... ∧mKD−1(imLδ[1m

K2)

∧
[
δ2]Γ

0IJ +
2

D − 1
(δ2]l

[I)m|J ]θk

]
=− 2(D − 2)εIJK1...KD−1

d
[
lIkJk ∧mM ∧mK3 ∧ ... ∧mKD−1

(
(imM δ[1m

K2)δ2]l
K1
)]

,

(G.3)

and

− (D − 1)εIJK1...KD−1

(
−lK1(ilδ[1k) + (δ[1l

K1)
)
k ∧mK2 ∧ ... ∧mKD−1

∧
[
δΓ0IJ +

2

D − 1

(
(δl[I)m|J ]θk + l[I(δm|J ])θk

)]
=− 2(D − 1)εIJK1...KD−1

d
[
lIkJk ∧mK2 ∧ ... ∧mKD−1

(
ilδ[1k + kMδ[1lM

)
δ2]l

K1
]

,

(G.4)

respectively. Summing up the three lines, we arrive at (17.41) rescaled by the factor
−1

(D−1)! introduced before.

G.2 Symplectic structure independent of the internal sig-

nature

In this appendix, we provide calculational details for showing that under the assump-

tion1 δE
(2n)
√
h

= 0 (2n = D − 1), we have

2
E(2n)

√
h

(δ[1s̃
I)(δ2]nI) = nεIJKLM1N1...Mn−1Nn−1εαβα1β1...αn−1βn−1

(
δ[1Γ0

αIJ

) (
δ2]Γ

0
βKL

)
×

R0
α1β1M1N1

...R0
αn−1βn−1Mn−1Nn−1

,

(G.5)

where Γ0
αIJ is the generalised hybrid connection and R0

αβIJ the corresponding curvature

tensor which are given in appendix C.3.

1Note that this requirement for an UDNRIH is equivalent to restricting to histories with a fixed

value of the horizon area, δAS = 0, which can be seen as follows: Since E(2n) = f(v)
√
h, by integrating

both sides over S we obtain f(v) = f = 〈E(2n)〉
AS

actually is independent of v since both, AS and 〈E(2n)〉

are. Therefore, we have δE
(2n)
√
h

= δ 〈E
(2n)〉
AS

= − 〈E
(2n)〉
A2
S

δAS , where we used that the topology of S is

fixed.
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Starting with (G.5), we first calculate

δ

(
E(2n)

√
h

)
= δ

(
1

h
εα1β1...αnβnεγ1δ1...γnδnRα1β1γ1δ1 ...Rαnβnγnδn

)
= −(δ log h)

E(2n)

√
h

+
n

h
εα1β1...αnβnεγ1δ1...γnδn

(
−2hδ1ε1Dα1δΓ

ε1
β1γ1

+Rα1β1γ1
ε1δhδ1ε1

)
×

Rα2β2γ2δ2 ...Rαnβnγnδn

= −(δ log h)
E(2n)

√
h

− 2n

h
εα1β1...αnβnεγ1δ1...γnδn (Dα1Dγ1δhβ1δ1)Rα2β2γ2δ2 ...Rαnβnγnδn

+
n

h
εα1β1...αnβnεγ1δ1...γnδnRα1β1γ1

ε1 (δhδ1ε1)Rα2β2γ2δ2 ...Rαnβnγnδn

= −(δ log h)
E(2n)

2
√
h

− 2n

h
εα1β1...αnβnεγ1δ1...γnδn (Dα1Dγ1δhβ1δ1)Rα2β2γ2δ2 ...Rαnβnγnδn . (G.6)

In the second line, we just explicitly wrote down all variations appearing using (A.5).

In the third, we used (A.4) and in the last step, we used

n

h
εα1β1...αnβnεγ1δ1...γnδnRα1β1γ1

ε1 (δhδ1ε1)Rα2β2γ2δ2 ...Rαnβnγnδn =
E(2n)

2
√
h

(δ log h) .

(G.7)

This last identity can be verified as follows:

n

h
εα1β1..αnβnεγ1δ1..γnδnRα1β1γ1

ε1 (δhδ1ε1)Rα2β2γ2δ2 ..Rαnβnγnδn

=− n

h
εα1β1..αnβnε[γ1|δ1..γnδn

(
δhε1|ζ1]

)
hδ1ε1Rα1β1γ1ζ1Rα2β2γ2δ2 ..Rαnβnγnδn

=
n

2h
εα1β1..αnβn

[(
δhε1δ1

)
εγ2δ2..δnζ1γ1 + 2(n− 1) (δhε1γ2) εδ2..δnζ1γ1δ1

]
× hδ1ε1Rα1β1γ1ζ1Rα2β2γ2δ2 ..Rαnβnγnδn

=
nE(2n)

2
√
h

(δ log h)− n(n− 1)

h
εα1β1..αnβnεγ1δ1..γnδnR ε1

α1β1γ1
(δhδ1ε1)Rα2β2γ2δ2 ..Rαnβnγnδn ,

(G.8)

where in the first step, we used hεζδhδε = −hδεδhεζ , then we added zero by adding

all terms necessary that the expression in the second line becomes antisymmetric in

γ1, δ1, ..., γn, δn, ζ1 and immediately subtracting them again. Since these are D indices
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in dimension D−1, the antisymmetrisation vanishes and we are left with the subtracted

terms. The first of these gives, using hδεδh
δε = −δ log h, the first term in the fourth

line, while the remaining ones, after renaming indices, reproduce up to numerical fac-

tors the expression we started with. Comparing the first and the last line of (G.8), one

easily infers (G.7).

Next, we will calculate δΓ0
αIJ :

δΓ0
αIJ =

(
δΓ0

αKL

)
ηKIη

L
J

=
(
δΓ0

αKL

) (
¯̄ηKI + ζnKnI + sKsI

) (
mβLmβJ + ζnLnJ + sLsJ

)
= ¯̄ηK [I

[ ((
δD0

αm
β
K

)
−
(
D0
αδm

β
K

)
−
(
δΓβαγ

)
mγ
K

)
mβ|J ]

+ 2ζ
((
δD0

αnK
)
−
(
D0
αδnK

))
n|J ] + 2

((
δD0

αsK
)
−
(
D0
αδsK

))
s|J ]

]
+ ζn[IsJ ]

[
nK
((
δD0

αsK
)
−
(
D0
αδsK

))
− sK

((
δD0

αnK
)
−
(
D0
αδnK

))]
= ¯̄ηK [Imβ|J ]

[
−
(
D0
αδm

β
K

)
−
(
δΓβαγ

)
mγ
K

]
− 2ζ ¯̄ηK [InJ ]

(
D0
αδnK

)
− 2¯̄ηK [IsJ ]

(
D0
αδsK

)
− 2ζn[IsJ ]

(
D0
αn

KδsK
)

(G.9)

where in the second step we used ηIJ = ¯̄ηIJ + ζnInJ + sIsJ and ¯̄ηIJ = mβ
ImβJ , in

the third that (δΓ0
αIJ)mβJ =

(
δD0

αm
β
I

)
−
(
D0
αδm

β
I

)
−
(
δΓβαγ

)
mγ
I and corresponding

equations for n, s, and finally in the fourth step we used that Γ0
αIJ annihilates the hybrid

vielbein and n, s. This way of expressing δΓ0
αIJ is convenient for several reasons. First

of all, we explicitly separated the (bar bar), (bar n), (bar s) and (n s) terms. Since the

two variations of Γ0
αIJ in (G.5) are contracted with an ε, which is bar projected on all

other indices (remember R0
αβIJ = R̄0

αβIJ , cf. C), the only contributions will come from

(bar bar) · (n s) and (bar n) · (bar s) terms. Secondly, many of the terms are such

that covariant derivates D0
α appear explicitly. This simplifies further manipulations

like partial integrations, since almost all appearing objects are annihilated by D0
α.

Furthermore, since S already is a boundary, no boundary terms appear when partially

integrating. Using (G.9), we thus find

nεIJKLM2N2...MnNnεαβα2β2...αnβn
(
δ[1Γ0

αIJ

) (
δ2]Γ

0
βKL

)
R0
α2β2M2N2

...R0
αnβnMnNn

= nεIJKLM2N2...MnNnεαβα2β2...αnβnR0
α2β2M2N2

...R0
αnβnMnNn

×
[
8ζnI ¯̄ηJJ ′

(
D0
αδ[1n

J ′
)
sK ¯̄ηLL′

(
D0
βδ2]s

L′
)

+4ζ ¯̄ηI
′
ImδJ

((
D0
αδ[1m

δ
I′

)
+
(
δ[1Γδαγ

)
mγ
I′

)
nKsL

(
D0
βn

P δ2]sP
)]

=− 4n√
h
εγδγ2δ2...γnδnεαβα2β2...αnβnRα2β2γ2δ2 ...Rαnβnγnδn
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×
[
2mγJ

(
D0
αδ[1n

J
)
mδL

(
D0
βδ2]s

L
)
−
(
D0
γδ[1hαδ

) (
Dβn

P δ2]sP
)]

=− 4n

h
εγδγ2δ2...γnδnεαβα2β2...αnβnRα2β2γ2δ2 ...Rαnβnγnδn

×
[
2mγJ

(
D0
αδ[1n

J
)
mδL

(
D0
βδ2]s̃

L
)
−
(
D0
αD

0
γδ[1hβδ

)
nP
(
δ2]s̃P

)]
=− 8n

h
εγδγ2δ2...γnδnεαβα2β2...αnβnRα2β2γ2δ2 ...RαnβnγnδnmγJ

(
D0
αδ[1n

J
)
mδL

(
D0
βδ2]s̃

L
)

−

[
2

(
δ[1
E(2n)

√
h

)
+
E(2n)

√
h

(
δ[1 log h

)]
nP
(
δ2]s̃P

)
. (G.10)

In the third line, note that the term containing D0
αδm

β
I vanishes, since when partially

integrating, we obtain a term of the form
(
D0

[αD
0
β]n

P δsP

)
, which vanishes due to

torsion freeness. In the second step, we used

εIJM1N1...MnNnnIsJm
γ1
M1m

δ1
N1 ...m

γn
Mnm

δn
Nn =

ζ√
h
εγ1δ1...γnδn (G.11)

and again (A.4). In the third step, we densitised sI (note that sI is always contracted

such that variations on the density
√
h drop out), partially integrated in the last sum-

mand and interchanged the indices α and β. In the fourth step, we replaced the second

summand in square brackets using (G.6).

Now we will have a closer look at the left hand side of (G.5).

2
E(2n)

√
h

(δ[1s̃
I)(δ2]nI) = 2E(2n)(δ[1s

I)(δ2]nI) +
E(2n)

√
h
s̃I(δ[1 log h)(δ2]n

I)

= 2E(2n)(δ[1s
I)(δ2]nI) +

E(2n)

√
h
nI(δ[1s̃I)(δ2] log h). (G.12)

Here, in the first step we varied sI and the density
√
h independently. In the second

step, we interchanged the variations and used sIδn
I = −nIδsI in the second summand.

For the first summand, we find

2E(2n)(δ[1s
I)(δ2]nI)

= − 2√
h
εα1β1...αnβnεγ1δ1...γnδnRα1β1γ1δ1 ...Rαnβnγnδn(δ[1n

I)(δ2]sI)

= −2ζεα1β1...αnβnεIJK1L1...KnLnR0
α1β1K1L1

...R0
αnβnKnLnnIsJ(δ[1n

M )(δ2]sM )

= −4ζεα1β1...αnβnεIJK1L1...KnLnR0
α1β1K1L1

...R0
αnβnKnLnnIs[J(δ[1n

M )(δ2]s|M ])

= −4ζεα1β1...αnβn(δ[1n
[M )εI|J ]K1L1...KnLnR0

α1β1K1L1
...R0

αnβnKnLnnIsJ(δ2]sM )

= −2ζεα1β1...αnβn
(
(δ[1n

I)εK1L1...KnLnMJ + 2n(δ[1n
K1)εL1...KnLnMJI

)
×R0

α1β1K1L1
...R0

αnβnKnLnnIsJ(δ2]sM )
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= −4ζnεα1β1...αnβnεL1...KnLnMJIR0
α1β1K1L1

(δ[1n
K1)R0

α2β2K2L2
...R0

αnβnKnLnnIsJ(δ2]sM )

= 8ζnεα1β1...αnβnεL1...KnLnMJI(D0
α1
D0
β1
δ[1nL1)R0

α2β2K2L2
...R0

αnβnKnLnnIsJ(δ2]sM )

= −8n

h
εα1β1...αnβnεγ1δ1...γnδnR0

α2β2γ2δ2 ...R
0
αnβnγnδnmδ1

J(D0
β1
δ[1nJ)mγ1

L(D0
α1
δ2]s̃L),

(G.13)

which shows that (G.12) coincides with (G.10) iff δ
(
E(2n)
√
h

)
= 0. Here, in the first

step, we used the defining equation for E(2n) and in the second step we used (G.11)

and (C.29). In the third step, we antisymmetrise in the lower pair of indices J and

M . Note that the additional term vanishes since sJδsJ = 0 and the epsilon tensor

enforces δsJ to be projected into that direction. The fifth line is exactly the same as

the fourth, we just moved δnM to the front and antisymmetrised the upper indices

J and M instead of the lower ones. Now we again antisymmetrise the D + 2 upper

indices M, I, J,K1, L1, ...,KnLn, which gives zero, and subtract the term we added for

antisymmetrisation again. The first of these, the first summand in the round brackets

in line 6, gives zero due to nIδnI = 0. The others all give the same term of the

form R0
αβKLδn

L = 2D0
[αD

0
β]δnK , which we used in the second to last line. One more

integration by parts in the last line, again using (G.11) and densitising sI gives the

final result.

G.3 Symplectic structure for the SO(4) based Beetle-Engle

connection

For D = 3, we will show that one can bypass the restriction to spherically symmetric

isolated horizons in complete analogy to the treatment of Beetle and Engle [281],

2〈E(2)〉(δ[1s̃
I)(δ2]nI) = εIJKLεαβ

(
δ[1AαIJ

) (
δ2]AβKL

)
, (G.14)

where 〈E(2)〉 :=
∫
S d

2xE(2) coincides, up to constant factors, with the Euler character-

istic of the intersection of the Isolated Horizon with the spatial slices, and AαIJ was

defined in (17.69). The assumption δE
(2)
√
h

= 0 is then replaced by δ〈E(2)〉 = 0, which

however is already enforced by our choice of topology of the horizon.

To prove (G.14), we start by noting that

εIJKLεαβ
(
δ[1AαIJ

) (
δ2]AβKL

)
= εIJKLεαβ

[(
δ[1Γ0

αIJ

) (
δ2]Γ

0
βKL

)
+ 2

(
δ[1Γ0

αIJ

) (
δ2]KβKL

)
+
(
δ[1KαIJ

) (
δ2]KβKL

)]
=: A+B + C, (G.15)
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where we introduced the abbreviations A, B, C for the three summands. The first

summand in square brackets is, up to factors, the restriction to D = 3 of what we just

calculated above,

A = εIJKLεαβ
(
δ[1Γ0

αIJ

) (
δ2]Γ

0
βKL

)
=

2E(2)

√
h

(δ[1s̃
I)(δ2]nI)− 2

(
δ[1
E(2)

√
h

)
nP
(
δ2]s̃P

)
. (G.16)

Next, we need to calculate

δKαIJ = δ
(

2mα[Imβ|J ]h
βγ(Dγψ)

)
= 2mα[Im

β
J ](Dβδψ) + 4(δm[α|K)mβ][J ¯̄ηKI]h

βγ(Dγψ) + 2mα[Imβ|J ](δh
βγ)(Dγψ)

+ 4ζ(δm[α|K)mβ][Jn
KnI]h

βγ(Dγψ) + 4(δm[α|K)mβ][Js
KsI]h

βγ(Dγψ),

(G.17)

where we again split the (bar bar) terms (second line) from the (bar n), (bar s) terms

(third line). Since no (n s) terms appear, we find for C

C = εIJKLεαβ
(
δ[1KαIJ

) (
δ2]KβKL

)
= 32ζεIJKLεαβ(δ[1m[α|M )mγ]Jn

MnIh
γε(Dεψ)(δ2]m[β|N )mδ]Ls

NsKh
δζ(Dζψ)

= −32
√
hεαβ(δ[1m[α|M )εγ][δ(δ2]mβ]N )nMhγε(Dεψ)sNhδζ(Dζψ)

= 0, (G.18)

where in the second step we used

εIJKLnIsJmαKmβL = ζ
√
hεαβ (G.19)

and the last equality is easily obtained when explicitly writing out all antisymmetrisa-

tions. For B, we find using (G.9) and (G.17)

B = 2εIJKLεαβ
(
δ[1Γ0

αIJ

) (
δ2]KβKL

)
= 2εIJKLεαβ

{[
−2ζnIsJ

(
Dαn

Mδ[1sM
)][

2mβKm
γ
LDγδ2]ψ + 2mβKmγL(δ2]h

γδ)Dδψ

+4(δ2]m[β|N )mγ]L ¯̄ηNKh
γδDδψ

]
+
[
−2ζ ¯̄ηM [InJ ]

(
Dαδ[1nM

)] [
4(δ2]m[β|N )mγ]Ls

NsKh
γδDδψ

]
+
[
−2¯̄ηM [IsJ ]

(
Dαδ[1sM

)] [
4ζ(δ2]m[β|N )mγ]Ln

NnKh
γδDδψ

]}
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G.3 Symplectic structure for the SO(4) based Beetle-Engle connection

= −8
√
hεαβ

{(
Dαn

Mδ[1sM
) [
εβγh

γδDδδ2]ψ + 2(δ2]m[β|N )εε|γ]m
εNhγδDδψ

+εβγ(δ2]h
γδ)Dδψ

]
+2mεM

(
Dαδ[1nM

)
(δ2]m[β|N )εε|γ]s

NhγδDδψ

−2mεM
(
Dαδ[1sM

)
(δ2]m[β|N )εε|γ]n

NhγδDδψ
}

= −8
√
h
{(
Dαn

Mδ[1sM
) [
−Dαδ2]ψ + 2(δ2]mβN )m[α|NDβ]ψ − (δ2]mβN )mαNDβψ

−(δ2]h
αδ)Dδψ

]
+2
(
Dαδ[1nM

)
(δ2]mβN )sNm[α|MDβ]ψ −

(
Dαδ[1nM

)
(δ2]mβN )sNmαMDβψ

−2
(
Dαδ[1sM

)
(δ2]mβN )nNm[α|MDβ]ψ +

(
Dαδ[1sM

)
(δ2]mβN )nNmαMDβψ

}
= −8

√
h
{(
Dαn

Mδ[1sM
) [
−Dαδ2]ψ − (δ2]mβN )mβNDαψ − (δ2]h

αδ)Dδψ
]

+
(
Dαδ[1nM

)
(δ2]s

N )¯̄ηN
MDαψ −

(
Dαδ[1sM

)
(δ2]n

N )¯̄ηN
MDαψ

}
= −8

√
h
{(
nMδ[1sM

) [
DαD

αδ2]ψ +Dα((δ2] log
√
h)Dαψ) +Dα((δ2]h

αδ)Dδψ)
]

+
(
Dαδ[1nMδ2]s

N
)

¯̄ηN
MDαψ

}
= −8

√
h
{(
nMδ[1sM

) [
∆δ2]ψ + (Dαδ2] log

√
h)Dαψ + (δ2] log

√
h)∆ψ

−(δ2]hαδ)D
αDδψ − (Dαδ2]hαδ)D

δψ
]
− (δ[1nM )(δ2]s

M )∆ψ
}

= −8
√
h

{(
nMδ[1sM

)
(δ2]∆ψ)− 1√

h
(δ[1nM )

[√
h(δ2]s

M ) + sM (δ2]

√
h)
]

∆ψ

}
= −8

{(
nMδ[1s̃M

)
(δ2]∆ψ)− (δ[1nM )(δ2]s̃

M )∆ψ
}

,

and since we assumed that ∆ψ = 1
4

(
E(2)
√
h
− 〈E(2)〉

)
and δ〈E(2)〉 = 0, we find

= −2

{(
nMδ[1s̃M

)(
δ2]
E(2)

√
h

)
+ (δ[1s̃M )(δ2]n

M )

(
E(2)

√
h
− 〈E(2)〉

)}
. (G.20)

Here, in the second line, we inserted the expressions for δΓ0
αIJ and δKαIJ (G.9,

G.17). Note that since δKαIJ does not contain (n s) terms, the (bar bar) terms of

δΓ0
αIJ drop out. In the third step, we used (G.19) and ¯̄ηIJ = mαIm

β
J , and in the

fourth step, epsilon identities were used and antisymmetrisations in (β, γ) were written

out explicitly. When furthermore writing out the antisymmetrisations in (α, β), we

find that several terms cancel (step 5) and additionally used (δmαI)n
I = −(δnI)mαI ,

(δmαI)s
I = −(δsI)mαI and mαIm

α
J = ¯̄ηIJ . In the sixth step, the upper line is partially

integrated and we used (δmαI)m
αI = 1

2(δhαβ)hαβ = 1√
h
δ
√
h, and the two summands

of the lower line are combined into one term. The seventh step consists of writing out
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G. Details on calculations for part V

all individual appearing in the square brackets explicitly and partially integrating the

last term. In step 8, we used (A.9) and the remaining steps are straightforward.

Combining (G.16), (G.20) and (G.18), we find immediately

εIJKLεαβ
(
δ[1AαIJ

) (
δ2]AβKL

)
= −2E(2)

√
h

(δ[1n
I)(δ2]s̃I) + 2

(
δ[1
E(2)

√
h

)
nP
(
δ2]s̃P

)
− 2

{(
nMδ[1s̃M

)
(δ2]

E(2)

√
h

) + (δ[1s̃M )(δ2]n
M )

(
E(2)

√
h
− 〈E(2)〉

)}
= 2〈E(2)〉(δ[1s̃M )(δ2]n

M ). (G.21)
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