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Abstract: Quantum Markov chains (QMCs) and open quantum random walks (OQRWs) represent

different quantum extensions of the classical Markov chain framework. QMCs stand as a more

profound layer within the realm of Markovian dynamics. The exploration of both QMCs and OQRWs

has been a predominant focus over the past decade. Recently, a significant connection between QMCs

and OQRWs has been forged, yielding valuable applications. This bridge is particularly impactful

when studying QMCs on tree structures, where it intersects with the realm of phase transitions in

models naturally arising from quantum statistical mechanics. Furthermore, it aids in elucidating

statistical properties, such as recurrence and clustering. The objective of this paper centers around

delving into the intricate structure of QMCs on Cayley trees in relation to OQRWs. The foundational

elements of this class of QMCs are built upon using classical probability measures that encompass

the hierarchical nature of Cayley trees. This exploration unveils the pivotal role that the dynamics

of OQRWs play in shaping the behavior of the Markov chains under consideration. Moreover,

the analysis extends to their classical counterparts. The findings are further underscored by the

examination of notable examples, contributing to a comprehensive understanding of the outcomes.

Keywords: Quantum Markov chains; open quantum random walk; probability; Cayley tree

MSC: 47N50; 81V25; 47L90

1. Introduction

QMCs were introduced by L. Accardi in [1,2], and subsequently, they have been stud-
ied by many authors in the 1D case [3–8]. Important applications of QMCs have been
investigated [7,9–12]. Namely, significant use cases of Markov chains in modeling collabo-
rative interactions for detecting proteins within biological systems have been explored in
prior studies, as evidenced by research, such as [13–17].

Motivated by the theory of Dobrushin’s Markov random fields [18], several extensions
of QMCs to graphs and trees have been suggested [19,20]. Namely, a quantum phase
transitions approach to QMCs on Cayley trees has been investigated [21,22]. Quantum
Markov states (QMSs) [3] are particular QMCs. The tree extension of QMSs has been
described in detail [23].
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Over the past few decades, quantum random walks [24–31] have been extensively
studied due to their usefulness as powerful tools for constructing quantum algorithms.
From a probabilistic perspective, open quantum random walks (OQRWs) [32–37] represent
a natural and direct extension of classical Markov chains, exhibiting many interesting
statistical and physical properties.

Recently, a significant connection between QMCs and OQRWs has been
established [38–40]. In [41], the study focused on investigating QMCs on trees associ-
ated with OQRWs in relation to phase transition phenomena. Moreover, a mean entropy
formulae for the associated tree-indexed QMS has been calculated (see also [42,43]). In
addition, the concept of stopping rules for QMCs on trees has been explored in [44,45].
Additionally, in [46], the recurrence problem for a specific class of QMCs on trees was
studied with a connection to phase transitions in an Ising-type model. In [47], the notion of
recurrence was associated with QMCs on trees in conjunction with OQRWs.

In this paper, we explore a new class of quantum Markov chains (QMCs) on the
semi-infinite Cayley tree of order. We express their correlations using classical probability
measures that are not Markovian. For each density matrix ρ, a probability measure Pρ is
naturally assigned to the space of trajectories ΛV as follows:

Pρ(iu1
, iu2 , · · · , ium) =

1

(ρu1
)

(
B

ium
ium−1

· · · B
iu3
iu2

B
iu2
iu1

ρu1
B

iu2
∗

iu1
B

iu3
∗

iu2
· · · B

ium∗
ium−1

)
(1)

for specific edge-paths u1 ∼ u2 ∼ · · · ∼ um in the Cayley tree.
The obtained characterization of a QMC extends the results of previous works [41,47,48].

We point out that the hierarchical structure of the Cayley tree is essentially used in express-
ing the considered QMCs, as well as in defining the associated classical probability measure.

It should be emphasized that this work opens up possibilities for further investigations
on OQRWs. Potential future research directions include exploring the action of symmetry
groups on general QMCs on Cayley trees, studying phase transitions, investigating recur-
rence in the sense of [47], examining ergodic properties, and exploring entropy for the class
of QMCs studied in this paper. These topics will be the focus of forthcoming studies.

The structure of this paper is outlined as follows. After the preliminary Section 2, we
proceed to Section 3 where we introduce QMCs on trees. Section 4 presents a structure
theorem for generalized QMCs associated with OQRWs. Finally, Section 5 is dedicated to ex-
pressing the classical probability measures associated with the QMCs under consideration.
Section 6 is devoted to some illustrative examples.

2. Preliminaries on Trees

By Γk
+ = (V, E) (k ∈ N), we denote the semi-infinite regular tree (Cayley tree) of

order k. The vertex o ∈ V represents its root. The nearest-neighbor nodes u, v ∈ V are
denoted as u ∼ v if and only if < u, v >∈ E. A path on the tree is a finite list of pairwise
distinct vertices u1 ∼ u2 ∼ · · · ∼ um, where m is referred to as the length of the path. The
distance d(u, v) between two vertices u, v ∈ V is defined as the length of the unique path
joining them.

A coordinate structure (see Figure 1) is naturally assigned to Γk
+: each vertex x ∈ Wm

is identified with an n-tuple x ≡ (ℓ1, . . . , ℓm), where ℓj ∈ {1, . . . , k} for 1 ≤ j ≤ n. The root
o is represented as (o). The elements of the nth level Wn can be listed as follows:

Wn = {(ℓ1, ℓ2, · · · , ℓn); ℓj = 1, 2, · · · , k}

Put

Λn =
n⋃

j=1

Wj ; Λ[m,n] =
n⋃

j=m

Wj
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To each vertex u = (ℓ1, ℓ2, . . . , ℓn) ∈ Wn, we associate the unique path joining it to the root
o as follows:

o ∼ u1 = (ℓ1) ∼ u2 = (ℓ1, ℓ2) ∼ · · · un−1 = (ℓ1, ℓ2, · · · , ℓn−1) ∼ u

The direct successors set of u is defined by

S(u) =
{

v ∈ Wn+1 : u ∼ v
}
=
{
(u, ℓ) : ℓ = 1, 2, · · · , k

}
(2)

For u′ = (ℓ′1, ℓ′2, . . . , ℓ′m) ∈ Wm, we define

u ◦ u′ = (ℓ1, ℓ2, · · · , ℓn, ℓ′1, ℓ′2, · · · , ℓ′m) ∈ Wn+m

In particular, u ◦ o = u. Let Vu be the set of vertices v whose unique path joining v to o
contains u = (ℓ1, ℓ2, · · · , ℓn). In other words,

Vu =
{

v = u ◦ u′ : u′ ∈ V
}

; (3)

Let Vu;n = Vu ∩ Λn. The sub-tree Γk
+;u = (Vx, Ex), with vertex set Vx, is isomorphic to Γk

+. Define

αu(u
′) := u ◦ u′ (4)

The map αu defines a graph isomorphism [49] from Γk
+ into Γk

+;u.

(o)

(2)
(2, 2)

(2, 2, 2)

(2, 2, 1)
(2, 1)

(2, 1, 2)
(2, 1, 1)

(1)

(1, 2)

(1, 2, 2)
(1, 2, 1)

(1, 1)

(1, 1, 2)

(1, 1, 1)

Figure 1. Coordinate structure on Γ2
+ .

3. Quantum Markov Chains on Trees

For each u ∈ V, let Au be a C∗-algebra of observables on the site u with unit 1Iu. Define
AΛn

=
⊗

u∈Λn
Au for each n. We then have the embedding

AΛn
≡ AΛn

⊗ 1IWn+1
⊂ AΛn+1

where for each bounded region F ⊂ V, we have 1IF =
⊗

u∈F 1Iu. The local algebra associated
with the increasing net {AΛn

}n≥0 is denoted as

AV,loc =↑
⋃

n∈N

AΛn
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and the associated quasi-local algebra is given by

AV = AV,loc
C∗

For further details about quasi-local algebras, we refer to [50].
The set of states of a C∗-algebra A is denoted as S(A). Consider unital C∗-algebras

C and B, where C is a subset of B, and B is a subset of A. It is important to note the
following definitions:

• A quasi-conditional expectation [51] is a linear map E : A → B that is completely
positive and identity-preserving, satisfying the condition E(ca) = cE(a) for all a ∈ A
and c ∈ C.

• A (Markov) transition expectation is a linear map between two unitary C∗-algebras that
is completely positive and identity-preserving.

For a specific transition expectation denoted by EWn
from AΛ[n,n+1]

to AWn
, the map de-

fined as
EΛn

= idAΛn−1
⊗ EWn

(5)

is a transition expectation with respect to the triplet AΛn−1
⊂ AΛn

⊂ AΛn+1
.

The hierarchical structure of the Cayley tree is evident from the following equation:

Wn+1 =
⊔

u∈Wn

S(u) (6)

This equation allows us to consider local transition expectations (see [23]), denoted by
Eu, from A{u}∪S(u) into Au. We then define the map

En :=
⊗

u∈Wn

Eu (7)

which provides a transition expectation from AΛ[n,n+1]
into AWn

.

Definition 1. A (backward) quantum Markov chain (QMC) on AV is characterized by the triplet
(φo, (En)n≥0, (hn)n), where we have the following:

• φo ∈ S(Ao) is the initial state;
• For each n, the map En is a transition expectation from AΛ[n,n+1]

into AWn
;

• For each n, hn ∈ AWn ,+ is a positive boundary condition.

The limit
ϕ(a) := lim

n→∞
φ0 ◦ EΛ0

◦ EΛ1
◦ · · · ◦ EΛn

(h1/2
n+1ah1/2

n+1) (8)

exists in the weak-*-topology for each a ∈ AV and defines a state ϕ on AV , where EΛk
is the quasi-

conditional expectation given by (5) for every k ∈ N. In this case, the state ϕ defined by (8) is also
referred to as a quantum Markov chain (QMC). The triplet (φo, E , h) is called the tree-homogeneous
QMC on AV .

Remark 1. The definition above introduces quantum Markov chains on trees as a triplet that
generalizes the definitions considered in [22] by incorporating boundary conditions. Additionally,
it extends the recent unified definition of quantum Markov chains in the one-dimensional case [5]
to trees.

Let A be a unital C∗-algebra with identity 1I. For each u ∈ V, we define Au = A. The
graph isomorphism α̃u given by (4) can be extended to an isomorphism from AV to AVu

as follows:

α̃u

(
⊗

x∈Λn

ax

)
=
⊗

x∈Λn

a
(αu(x))
x =

⊗

y∈Λu;n

a
(y)

α−1
u (y)

(9)
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Here, for each a ∈ A, we define α̃u(a) := a(u) =
(⊗

v∈V\{u} 1Iv

)
⊗ a, which means

that a appears as the u-th component of the infinite tensor product. The notation α−1
u

represents the inverse isomorphism of αu, mapping Λu;n to Λn. Finally, let α̃u
−1 be the

inverse isomorphism from AVu to AV [48].

4. Main Result

Consider a connected graph with a countable vertex set Λ. Let H and K be two
separable Hilbert spaces. We define {|i〉, i ∈ Λ} as an orthonormal basis of K indexed by
the graph Λ. Furthermore, let A = B(H⊗K).

For each vertex x ∈ V, we associate the C∗-algebra of observable Ax = α̃x(A).
Additionally, for each pair (i, j) ∈ Λ2, the transition from the state vector |j〉 to the state
vector |i〉 is represented by an operator Bi

j ∈ B(H), satisfying the following:

∑
i∈Λ

Bi∗
j Bi

j = 1IB(H). (10)

Consider the density operator ρ ∈ B(H⊗K) of the form

ρ = ∑
i∈Λ

ρi ⊗ |i〉〈i|; ρ1 ∈ B(H)+.

In the sequel, for the sake of simplicity of the calculations, it is assumed that ρi 6= 0 for
all i ∈ Λ (see [39], Remark 4.5 for other kinds of initial states).

Let us consider the following:

Mi
j = Bi

j ⊗ |i〉〈j| ∈ B(H⊗K) (11)

Following [39,41], one defines

Ai
j :=

1

Tr(ρj)
1/2

ρ1/2
j ⊗ |i〉〈j|, i, j ∈ Λ (12)

For each u ∈ V, we set

Ki
j := α̃o(Mi∗

j )⊗
⊗

v∈S(o)

Ai
j
(v)

∈ A{o}∪S(o) (13)

Consider the symmetric group Sk+1, which consists of permutations on the set
{0, 1, · · · , k}. Each permutation σ ∈ Sk+1 defines an automorphism, denoted by σ, on
A{o}∪S(o). This automorphism can be represented as a linear extension of the follow-
ing mapping:

σ : a(o,0) ⊗ a(o,1) ⊗ · · · ⊗ a(o,k) 7→ a(o,σ(0)) ⊗ a(o,σ(1)) ⊗ · · · ⊗ a(o,σ(k)) (14)

Lemma 1. Let σ ∈ Sk+1. The map defined by

Eσ(a) = ∑
(i,j)∈Λ2

Tro]

(
Ki

jσ(a)Ki
j
∗
)

, a ∈ A{o}∪S(o) (15)

is a Markov transition expectation from A{o}∪S(o) into Ao. Moreover,

Eσ
(

a(o,0) ⊗ a(o,1) ⊗ · · · ⊗ a(o,k)

)
= ∑

(i,j)∈Λ3

(
k

∏
ℓ=1

ϕj(a(u,σ(ℓ)))

)
Mi∗

j a(o,σ(0))Mi
j (16)
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for every a(o,i) ∈ A(o,i), i = 0, 1, · · · , k. Here,

ϕj(b) :=
1

Tr(ρj)
Tr
(

ρj ⊗ |j〉〈j| b
)

; ∀b ∈ B(H)⊗B(K) (17)

Proof. The map σ is completely positive from A{o}∪S(o) into itself. Moreover, the Kraus

map K := ∑i,j Ki
j · Ki

j
∗

and the partial trace Tro] are completely positive. Then,

Eσ = Tro] ◦ K ◦ σ

is a composition of completely positive maps.
Let a = a(o,0) ⊗ a(o,1) ⊗ · · · ⊗ a(o,k); according to (13), (11), and (15), one has

Eσ(a) = ∑
(i,j)∈Λ2

Tru]

(
Ki

ja(o,σ(0)) ⊗ a(o,σ(1)) · · · ⊗ a(o,σ(k))K
i
j
∗
)

= Tru]




 ∑

(i,j)∈Λ2

Ki
j


a


 ∑

(i,j)∈Λ2

Ki
j




∗


= ∑
(i,j)∈Λ2

Mi∗
j a(o,σ(0))Mi

j

k

∏
ℓ=1

Tr(Ai
ja(o,σ(ℓ))Ai∗

j ).

From (12) for each ℓ ∈ {1, . . . , k}, one has

Tr(Ai
ja(o,ℓ)Ai∗

j ) = Tr
(

Ai∗
j Ai

ja(o,ℓ)

)
=

1

Tr(ρj)
Tr
(

ρj ⊗ |j〉〈i|a
(u,ℓ)
ℓ

)

This leads to (16). On the other hand, because ϕj(1I) = 1

Eσ(1IA{o}∪S(o)
) = ∑

(i,j)∈Λ2

Mi
j
∗

Mi
j

(11)
= ∑

(i,j)∈Λ2

(
Bi

j
∗
⊗ |j〉〈i|

)(
Bi

j ⊗ |i〉〈j|
)

= ∑
(i,j)∈Λ2

(
Bi

j
∗
Bi

j

)
⊗ |j〉〈j|

= ∑
i∈Λ

(
Bi

j
∗
Bi

j

)
⊗ 1IB(K)

(10)
= 1IAo

.

Therefore, Eσ is a Markov transition expectation. This finishes the proof.

For each u ∈ V, we consider the shifted transition expectation

Eσ
u = α̃u ◦ E

σ ◦ α̃u
−1 (18)

from A{u}∪S(u) into Au. For m ∈ N and (i1, i2, . . . , im) ∈ Λm, one defines

B(i1, i2, . . . , im) = Bim
im−1

B
im−1
im−2

· · · Bi3
i2

Bi2
i1

(19)

The subsequent probability measure encompasses the open OQRW dynamics, taking into
account the hierarchical structure of the Cayley trees via edge-paths.

Pρi1
(i1, i2, . . . , im) :=

1

Tr(ρi1)
Tr
(

B(i1, i2, . . . , im)ρi1 B∗(i1, i2, . . . , im)
)

(20)
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For each ℓ ∈ {1, 2, . . . , k}, we introduce the following subsets of vertices:

Wm;ℓ =
{

x = (ℓ1, . . . , ℓm) ∈ Wm : ℓ1, . . . , ℓm−1 ∈ {1, 2, . . . , k} and ℓm = ℓ

}

Λn;ℓ :=
n⋃

m=1

Wm;ℓ

Denote
(x, ℓ(m)) := (x, ℓ, . . . , ℓ︸ ︷︷ ︸

m times

)

In particular, for x = o, we denote (o, ℓ(m)) simply as (ℓ(m)). For each x ∈ Λn, we denote
the largest integer mx;n such that (x, ℓ(mx;n)) ∈ Λ. Specifically, if x ∈ Wj for some j ≤ n,
then mx;n = n − j. Please refer to Figure 2 for an illustration of the elements of Λn;2 in the
case of the Cayley tree with order 3.

(o)

(3)

(3, 3)

(3, 3, 3)
(3, 3, 2)

(3, 3, 1)

(3, 2)

(3, 2, 3)

(3, 2, 2)

(3, 2, 1)

(3, 1)
(3, 1, 3)

(3, 1, 2)

(3, 1, 1)
(2)

(2, 3) (2, 3, 3)

(2, 3, 2)

(2, 3, 1)

(2, 2)

(2, 2, 3)
(2, 2, 2)

(2, 2, 1)

(2, 1)

(2, 1, 3)

(2, 1, 2)

(2, 1, 3)

(1)

(1, 3)

(1, 3, 3)

(1, 3, 2)

(1, 3, 1)

(1, 2)
(1, 2, 3)

(1, 2, 2)

(1, 2, 1)

(1, 1)

(1, 1, 3)
(1, 1, 2)

(1, 1, 1)

Figure 2. Coordinate structure on Γ3
+ with highlight of elements of Λm;ℓ0

with ℓ0 = 2.

The set of vertices in which the coordinates do not incorporate ℓ as an element is
defined by

Nℓ :=
{

v = (ℓ1, ℓ2, · · · , ℓm) : m ∈ N, ℓi 6= ℓ, ∀i = 1, 2, . . . , m
}

(21)
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In particular, for each n ∈ N, we denote

Nn;ℓ = Λn ∩ Nℓ

For every u ∈ Λℓ, we set

Nu;ℓ := αu(Nℓ) = {u ◦ v : v ∈ Nℓ}; Nu;n;ℓ := Nu;ℓ ∩ Λn

Theorem 1. Let σ ∈ Sk+1 such that ℓ := σ(0) 6= 0. In the notations of (12), (11), and Lemma 1,
if φo is a state on Ao, the triple (φo, Eσ, h = 1Io) defines quantum Markov chains ϕσ on AV .
Moreover, for each n and a =

⊗
u∈Λn

au :

ϕσ(a) = ∑
io∈Λ

∑
(it)t∈Λ

Λn;ℓ

[
φo

(
M(io, i(ℓ), . . . , i(ℓ)(n))

)
ϕio (ao) ∏

x∈Nn;ℓ

ϕio (ax)
]

(22)

∏
u∈Λn,ℓ

[
∏

v∈Nu;n;ℓ

Pρiu

(
iu, i(v,ℓ)

)
· · ·Pρiu

(
iu, i(v,ℓ), . . . , i(v,ℓ(mv;n))

)
ϕiu(av)

]
ϕiu(au)

where

M(i, i(ℓ), . . . , i(ℓ)(n)) = B∗(i, i(ℓ), . . . , i(ℓ)(n))B(i, i(ℓ), . . . , i(ℓ)(n))⊗ |i〉〈i| (23)

Proof. Let us first prove the existence of the limit (8) for

EΛn
= idAΛn−1

⊗ En ; En =
⊗

u∈Wn

Eσ
u

and hn = 1IWn
. Let n0 ∈ N. For a = ao ⊗ aW1

⊗ · · · ⊗ aWn
∈ AΛn

and m > n, one has

Eσ
Λm

(a ⊗ 1IΛm+1\Λm
) = a ⊗ Em(1IWm

⊗ 1IWm+1
) = a ⊗ 1IΛm\Λn

It follows that

ϕσ
m(a) := ϕo ◦ Eσ

Λ0
◦ Eσ

Λ1
◦ . . . ◦ Eσ

Λm
(a)

= ϕo ◦ Eσ
Λ0

◦ Eσ
Λ1

◦ . . . ◦ Eσ
Λm−1

(a)

...

= ϕo ◦ Eσ
Λ0

◦ Eσ
Λ1

◦ . . . ◦ Eσ
Λn

(a)

Then, the strongly finite limit defined by (8) exists and gives rise to a positive functional ϕσ.
Based on Lemma 1, the map En is completely positive and implements a quantum channel
with intermediate purification (CPIP). Therefore, ϕσ ≡ (φo, Eσ, 1Io) represents a quantum
Markov chain (QMC) on AV . Furthermore, we obtain the following:

ϕσ(a) = ϕo

(
E0

(
aW0

. . .
(
En−1

(
aWn−1

(En(aWn
⊗ 1IWn+1))

))))
(24)

One has

ϕju

(

∑
i,j

Mi
j
∗
av Mi

j

)
=

1

Tr(ρju)
Tr

(

∑
i,j

ρju ⊗ |ju〉〈ju|M
i
j
∗
av Mi

j

)

=
1

Tr(ρju)
Tr

(

∑
i,j

Mi
jρju ⊗ |ju〉〈ju|M

i
j
∗
av

)

(11)
=

1

Tr(ρju)
Tr

(

∑
i

Bi
ju

ρju Bi
ju

∗
⊗ |i〉〈i|av

)
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We are going to show by induction on p that

En−p

(
aWn−p

⊗ En−p+1

(
aWn−p+1

· · · En(aWn
⊗ 1I) · · ·

))

=
⊗

u∈Wn−p

(
∑

iu∈Λ

∑
(iv)∈Λ

Vu∩Λn;ℓ

M(iu, i(u,ℓ), . . . , i(u,(ℓ)(mu;n)))ϕiu(au) ∏
x∈Nu;n;ℓ

ϕiu(ax) (25)

∏
v∈Vu∩Λn,ℓ

ϕiv(av) ∏
w∈Nv;n;ℓ

Pρiv

(
iv, i(w,ℓ)

)
· · ·Pρiv

(
iv, i(w,ℓ), . . . , i(w,ℓ(mw;n))

)
ϕiv(aw)

)

Starting with the case p = 1. For u ∈ Wn−1 and v ∈ S(u). Let u ∈ Wn−1 and v ∈ Wn, and
for each b ∈ A, one has

fv(b) := Eσ
v

(
b ⊗ 1I(v,1) ⊗ · · · ⊗ 1I(v,k)

)
(16)
=

(

∑
i,j

Mi
j
∗

Mi
j

)
ϕj(b)

(10)
= ∑

j

1IB(H) ⊗ |j〉〈j|ϕj(b).

One can see that ϕj( fv(av)) = ϕj(av). Then,

Eσ
u


au ⊗

⊗

v∈S(u)

Eσ
v (av ⊗ 1I)


 (16)

= Eσ
u


au ⊗

⊗

v∈S(u)

fv(av)




= ∑
iu ,ju

Miu
ju

∗
f (a(u,ℓ0)

)Miu
ju

ϕju(au) ∏
v∈S(u)\{(u,ℓ)}

ϕju(av).

One has

Miu
ju

∗
f (a(u,ℓ))Miu

ju
= Miu

ju

∗

(

∑
j

1IB(H) ⊗ |j〉〈j|

)
Miu

ju

= ∑
j

Biu
ju

∗
Biu

ju
⊗ |ju〉〈ju|δj,iu

= Biu
ju

∗
Biu

ju
⊗ |ju〉〈ju|.

It follows that

Eσ
u


au ⊗

⊗

v∈S(u)

Eσ
v (av ⊗ 1I)


 = ∑

i,j

Bi∗
j Bi

j ⊗ |j〉〈j|ϕj(au)ϕi(a(u,ℓ)) ∏
v∈S(u)\{(u,ℓ)}

ϕj(av).

It follows that

En(an−1 ⊗ En(aWn
⊗ 1I)) =

⊗

u∈Wn−1

Eσ
u


au ⊗

⊗

v∈S(u)

Eσ
v (av ⊗ 1I)




=
⊗

u∈Wn−1


∑

i,j

Bi∗
j Bi

j ⊗ |j〉〈j|ϕj(au)ϕi(a(u,ℓ)) ∏
v∈S(u)\{(u,ℓ)}

ϕj(av)


.

Let us suppose that the induction hypothesis stated in (25) is valid for a specific value of p.
In this case, it implies that

En−p

(
aWn−p

⊗ En−p+1

(
aWn−p+1

· · · En(aWn
⊗ 1I) · · ·

))
=

⊗

u∈Wn−p

Au,

where
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Au := ∑
iu∈Λ

∑
(iv)∈Λ

Vu∩Λn;ℓ

M(iu, i(u,ℓ), . . . , i(u,(ℓ)(mu;n)))ϕiu(au) ∏
x∈Nu;n;ℓ

ϕiu(ax)

∏
v∈Vu∩Λn,ℓ

ϕiv(av) ∏
w∈Nv;n;ℓ

Pρiv

(
iv, i(w,ℓ)

)
· · ·Pρiv

(
iv, i(w,ℓ), . . . , i(w,ℓ(mw;n))

)
ϕiv(aw).

From the induction hypothesis (25), one finds

En−p−1

(
aWn−p−1

⊗ En−p

(
aWn−p

⊗ En−p+1

(
aWn−p+1

· · · En(aWn
⊗ 1I) · · ·

)))

=
⊗

t∈Wn−p−1

Eσ
t

(
at ⊗

⊗

u∈S(t)

Au

)
(18)
= ∑

it ,jt

M
jt∗
it

A(t,ℓ)M
jt
it

ϕit(at) ∏
u∈S((t,ℓ)\{(t,ℓ)}

ϕit(Au).

One has

M
jt∗
it

A(t,ℓ)M
jt
it

= ∑
i(t,ℓ)

∑
(iu)∈Λ

V(t,ℓ)∩Λn

B
jt∗
it

B(i(t,ℓ),...,(t,(ℓ)mt;n ))
∗B(i(t,ℓ),...,(t,(ℓ)mt;n ))B

jt
it
⊗ |it〉〈it| δjt ,i(t,ℓ)

ϕi(t,ℓ)
(a(t,ℓ)) ∏

x∈N(t,ℓ);n;ℓ

ϕi(t,ℓ)
(ax) ∏

v∈Vu∩Λn,ℓ

ϕiv(av) ∏
w∈Nv;n;ℓ

Pρiv

(
iv, i(w,ℓ)

)
· · ·

Pρiv

(
iv, i(w,ℓ), . . . , i(w,ℓ(mw;n))

)
ϕiv(aw)

(19)
= ∑

i(t,ℓ)

∑
(iu)∈Λ

V(t,ℓ)∩Λn

M(it, i(t,ℓ),...,(t,(ℓ)mt;n )) δjt ,i(t,ℓ)
ϕi(t,ℓ)

(a(t,ℓ)) ∏
x∈N(t,ℓ);n;ℓ

ϕi(t,ℓ)
(ax)

∏
v∈Vu∩Λn,ℓ

ϕiv(av) ∏
w∈Nv;n;ℓ

Pρiv

(
iv, i(w,ℓ)

)
· · ·Pρiv

(
iv, i(w,ℓ), . . . , i(w,ℓ(mw;n))

)
ϕiv(aw)

)

and

ϕj(Au) = ∑
iu∈Λ

∑
(iv)∈Λ

Vu∩Λn;ℓ

ϕju(M(iu, i(u,ℓ), . . . , i(u,(ℓ)(mu;n))))ϕiu(au) ∏
x∈Nu;n;ℓ

ϕiu(ax)

∏
v∈Vu∩Λn,ℓ

ϕiv(av) ∏
w∈Nv;n;ℓ

Pρiv

(
iv, i(w,ℓ)

)
· · ·Pρiv

(
iv, i(w,ℓ), . . . , i(w,ℓ(mw;n))

)
ϕiv(aw)

(20)
= ∑

iu∈Λ

∑
(iv)∈Λ

Vu∩Λn;ℓ

Pρiu
(iu, i(u,ℓ), . . . , i(u,(ℓ)(mu;n)))δit ,iu ϕiu(au) ∏

x∈Nu;n;ℓ

ϕiu(ax)

∏
v∈Vu∩Λn,ℓ

ϕiv(av) ∏
w∈Nv;n;ℓ

Pρiv

(
iv, i(w,ℓ)

)
· · ·Pρiv

(
iv, i(w,ℓ), . . . , i(w,ℓ(mw;n))

)
ϕiv(aw)

(23)
= ∑

iu∈Λ

∑
(iv)∈Λ

Vu∩Λn;ℓ

Pρit
(it, i(u,ℓ), . . . , i(u,(ℓ)(mu;n)))ϕit(au) ∏

x∈Nu;n;ℓ

ϕit(ax)

∏
v∈Vu∩Λn,ℓ

ϕiv(av) ∏
w∈Nv;n;ℓ

Pρiv

(
iv, i(w,ℓ)

)
· · ·Pρiv

(
iv, i(w,ℓ), . . . , i(w,ℓ(mw;n))

)
ϕiv(aw).

Summing up, one gets

En−p−1

(
aWn−p−1

⊗ En−p

(
aWn−p

⊗ En−p+1

(
aWn−p+1

· · · En(aWn
⊗ 1I) · · ·

)))

=
⊗

t∈Wn−p−1

(
∑

it∈Λ

∑
(iv)∈Λ

Vt∩Λn;ℓ

M(it, i(t,ℓ), . . . , i
(t,(ℓ)(mt;n))

)ϕit(at) ∏
x∈Nt;n;ℓ

ϕit(ax)

∏
v∈Vt∩Λn,ℓ

ϕiv(av) ∏
w∈Nv;n;ℓ

Pρiv

(
iv, i(w,ℓ)

)
· · ·Pρiv

(
iv, i(w,ℓ), . . . , i(w,ℓ(mw;n))

)
ϕiv(aw)

)
.
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This proves that (25) holds for any integer p ≤ n. In particular, for p = n, one obtains the
expression of

E0

(
aW0

⊗ E1

(
aW1

⊗ · · · En(aWn
⊗ 1I) · · ·

))

= ∑
io∈Λ

∑
(iv)∈Λ

Λn;ℓ

(
M(io, i(o,ℓ), . . . , i(o,(ℓ)(n)))ϕio (ao) ∏

x∈Nn;ℓ

ϕio (ax)

∏
v∈Λn,ℓ

ϕiv(av) ∏
w∈Nv,n,ℓ

Pρiv

(
iv, i(w,ℓ)

)
· · ·Pρiv

(
iv, i(w,ℓ), . . . , i(w,ℓ(mw;n))

)
ϕiv(aw)

)
.

By applying the initial state φo to the expression above, we obtain (22). This step concludes
the proof.

Remark 2. In the notation of Theorem 1, the case σ(0) = 0 has been studied in [41]. In that
situation, the QMC ϕ is represented by

ϕ(id)(a) = φ0

(

∑
ij

Mi
j
∗
av Mi

j

)

∏
v∈S(u)

ψj(av). (26)

For any localized element a =
⊗

u∈Λn
au, here

ψj(b) =
1

Tr(ρj)
∑
i∈Λ

Tr
(

Bi
jρjB

i
j
∗
⊗ |i〉〈i| b

)
. (27)

Meanwhile, the case σ(0) 6= 0 leads to the QMC given by (22) which has a much more sophisti-
cated structure.

Remark 3. The equation (22) reveals that the essential constituents of the QMC ϕσ are formed by
the probability measures (1). Consequently, the correlations of the QMC under study are governed
by the OQRW dynamics. In the subsequent section, we will observe that this substantial reliance of
the QMC on the OQRW dynamics is further demonstrated by focusing on a diagonal subalgebra.

5. Classical Probability Associated with OQRW

In this section, we examine the classical probability measures associated with the
quantum Markov chains described in Theorem 1. Consider the set Ω = ΛV equipped with
the cylindrical σ-algebra F . Let e = {|i〉}i∈Λ denote an orthonormal basis for K. We define
De as the diagonal subalgebra of B(K) spanned by the projections |i〉〈i|.

Given a state ϕ on AV , we associate a classical probability measure µϕ on (Ω,F ),
which operates on atomic events (ix)x∈Λn

as follows.

µϕ

(
(ix)x∈Λn

)
)
= ϕ

( ⊗

x∈Λn

(1IH ⊗ |ix〉〈ix|)
(x)
)

From (17) and (11), one finds

ϕj

(
1IH ⊗ |i〉〈i|

)
= δi,j.

The classical probability µϕ(id) associated with the QMC ϕ(id) given by (26) is the following:

µϕ(id)

(
(ix)x∈Λn

)
= φo

(
Mio (1IH ⊗ |io〉〈io|

)
∏

u∈Λ[1,n]

ϕiu

(
1IH ⊗ |iu〉〈iu|

)
δio ,iu

= φo(1IH ⊗ |io〉〈io|) ∏
u∈Λ[1,n]

δio ,iu .

Let σ ∈ Sk+1 and let ϕ(σ) be the QMC given by (22). The probability measure µϕ(σ)

associated with ϕ(σ) is given by
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µϕ(σ)

(
(ix)x∈Λn

)
= φo

(
B∗(io, i(ℓ), . . . , i(ℓ)(n))B(io, i(ℓ), . . . , i(ℓ)(n))⊗ |io〉〈io|

)
∏

x∈Nn;ℓ

δix ,io (28)

∏
u∈Λn;ℓ

∏
v∈Nu;n;ℓ

Pρiv

(
iu, i(v,ℓ)

)
· · ·Pρiv

(
iu, i(v,ℓ), . . . , i(v,ℓ(mv;n))

)
δiv ,iu .

Remark 4. The distinction between the two QMCs ϕ(id) and ϕ(σ) becomes evident in the expres-
sions of their corresponding classical probability measures µϕ(id) and µϕ(σ) . Specifically, when

restricted to the cylinder ΛΛn , the distribution µϕ(id) focuses solely on the atomic events (ix)x∈Λn

where ix = io for every x ∈ Λn. On the other hand, the distribution µϕ(σ) assigns probabilities to

all atoms (ix)x∈Λn
that satisfy the condition

∀x ∈ Λn;ℓ, ∀y ∈ Nx;n;ℓ, ix = iy

as depicted in Figure 2.

6. Application to OQRW on Zp

In this section, we consider Λ = Zp := Z/pZ = 0, 1, · · · , p − 1, where p > 0 is an
integer. Let H = C2 and K be an infinite-dimensional Hilbert space with an orthonormal
basis (|i〉)i ∈ Λ. We assume that B, C ∈ B(H) satisfy B∗B + C∗C = 1I. We define

Bī
j̄
=





B, if i = j + 1;

C, if i = j − 1;
0, otherwise.

(29)

In the following, we will represent i as i for simplicity. We will maintain the same notations
as in the previous sections and focus on the case where k = 2, specifically the Cayley tree
Γ2
+. Let ℓ = 2. The set Λn;2 consists of the vertices in the form u = (ℓ1, ℓ2, · · · , ℓj, 2), where

j ∈ {1, . . . , n − 1} and ℓ1, ℓ2, . . . , ℓj ∈ {1, 2}. It can be observed that |Λn;2| = 2n−1. As a
result, it divides the set Λn.

6.1. Example 1

Let us consider H as the complex vector space of dimension 2, denoted by C2. Let

B =

[
1 0
0 0

]
, C =

[
0 1
0 0

]

be the transition operators. By performing a straightforward computation, we can establish
that B and C satisfy the equation B∗B + C∗C = 1I. By utilizing the identities B2 = B,
BC = C, and C2 = CB = 0, it becomes evident that the only indices (i1, i2, . . . , im) ∈ Λm,
where m ∈ N, for which the quantity

B(i1, i2, . . . , im) = Bim
im−1

B
im−1
im−2

· · · Bi3
i2

Bi2
i1

is non-zero correspond to ik+1 = ik + 1 for all k ∈ 2, . . . , m − 1.
More specifically, for each i ∈ Λ, we have

{
B(i, i + 1, . . . , i + m) = B

B(i, i − 1, i, i + 1, . . . , i + m − 2) = C

For (i1, i2, . . . , im) ∈ Λm \ (i, i + 1, . . . , i + m), (i, i − 1, i, i + 1, . . . , i + m − 2); , i ∈ Λ, we
have B(i1, i2, . . . , im) = 0.

Consider the density
ρ = ∑

i∈Λ

ρi ⊗ |i〉〈i|
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where ρi =

[
ρi,11 ρi,12

ρi,21 ρi,22

]
∈ M2(C) ≡ B(H). It follows that the probability (20) satisfies

Pρi1
(i1, i2, . . . , im) =

1

Tr(ρi1)
Tr
(

B(i1, i2, . . . , im)ρi1 B∗(i1, i2, . . . , im)
)

which is given by

Pρi1
(i1, i2, . . . , im) =





Tr(Bρi1
B)

Tr(ρi1
)

, if ik+1 = ik + 1, ∀k ∈ {1, . . . , m − 1};

Tr(Cρi1
C∗)

Tr(ρi1
)

, if i2 = i1 − 1 and ik+1 = ik + 1, ∀k ∈ {2, . . . , m − 1};

0, otherwise.

=





ρi1,11

ρi1,11+ρi1,22
, if ik+1 = ik + 1, ∀k ∈ {1, . . . , m − 1};

ρi1,22

ρi1,11+ρi1,22
, if i2 = i1 − 1 and ik+1 = ik + 1, ∀k ∈ {2, . . . , m − 1};

0, otherwise.

6.2. Example 2

Take as above H = C2 and consider the transition operators

B =

[
0 0
1 0

]
, C =

[
0 1
0 0

]
.

A simple calculation shows that B and C satisfy the identity B∗B + C∗C = 1I. Using
the identities, B2 = C2 = 0, and

BC =

[
0 0
0 1

]
, CB =

[
1 0
0 0

]
.

We can easily deduce that the only non-zero words formed by picking letters from the
alphabet {B, C} are of the form

(BC)kB = B, (BC)k = BC, (CB)k = CB and (CB)kC = C.

This leads us to consider two distinct cases, depending on whether m is even or odd. If m
is odd, we have

B(i1, i2, . . . , im) =





B, i1 = i3 = . . . = im and i2 = i4 = . . . = im−1 = i1 + 1

C, i1 = i3 = . . . = im and i2 = i4 = . . . = im−1 = i1 − 1

0, otherwise.

Then, using B∗ = C, we obtain

Pρ(i1, i2, . . . , im) =





Tr(BρC)
Tr(ρ)

, i1 = i3 = . . . = im and i2 = i4 = . . . = im−1 = i1 + 1
Tr(CρB)

Tr(ρ)
, i1 = i3 = . . . = im and i2 = i4 = . . . = im−1 = i1 − 1

0, otherwise.
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If m is even, we have

B(i1, i2, . . . , im) =





BC, i1 = i3 = . . . = im−1 and i2 = i4 = . . . = im = i1 + 1

CB, i1 = i3 = . . . = im−1 and i2 = i4 = . . . = im = i1 − 1

0, otherwise.

and

Pρ(i1, i2, . . . , im) =





Tr(BCρCB)
Tr(ρ)

, i1 = i3 = . . . = im−1 and i2 = i4 = . . . = im = i1 + 1
Tr(CBρBC)

Tr(ρ)
, i1 = i3 = . . . = im−1 and i2 = i4 = . . . = im = i1 − 1

0, otherwise.

7. Discussion

The complete understanding of the structure of general quantum Markov chain sys-
tems (QMCSs) associated with open quantum random walks (OQRWs) has been achieved.
Contrary to the previous works, the correlation functions of the present QMCSs are heavily
influenced by the dynamics of OQRWs. The probability measures defining these sequences
establish potentially non-Markovian dynamics, which presents a significant avenue for
future research. Exploring the entropy of this class of QMCSs and investigating their
diagonalizability also pose intriguing questions for further exploration. Nevertheless,
considering the recent advancements in this field, numerous other pertinent challenges are
now approachable, including topics such as phase transitions, recurrence, clustering, and
ergodic properties.
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