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Abstract: Quantum Markov chains (QMCs) and open quantum random walks (OQRWs) represent
different quantum extensions of the classical Markov chain framework. QMCs stand as a more
profound layer within the realm of Markovian dynamics. The exploration of both QMCs and OQRWSs
has been a predominant focus over the past decade. Recently, a significant connection between QMCs
and OQRWs has been forged, yielding valuable applications. This bridge is particularly impactful
when studying QMCs on tree structures, where it intersects with the realm of phase transitions in
models naturally arising from quantum statistical mechanics. Furthermore, it aids in elucidating
statistical properties, such as recurrence and clustering. The objective of this paper centers around
delving into the intricate structure of QMCs on Cayley trees in relation to OQRWs. The foundational
elements of this class of QMCs are built upon using classical probability measures that encompass
the hierarchical nature of Cayley trees. This exploration unveils the pivotal role that the dynamics
of OQRWs play in shaping the behavior of the Markov chains under consideration. Moreover,
the analysis extends to their classical counterparts. The findings are further underscored by the
examination of notable examples, contributing to a comprehensive understanding of the outcomes.

Keywords: Quantum Markov chains; open quantum random walk; probability; Cayley tree

MSC: 47N50; 81V25; 47190

1. Introduction

QMCs were introduced by L. Accardi in [1,2], and subsequently, they have been stud-
ied by many authors in the 1D case [3-8]. Important applications of QMCs have been
investigated [7,9-12]. Namely, significant use cases of Markov chains in modeling collabo-
rative interactions for detecting proteins within biological systems have been explored in
prior studies, as evidenced by research, such as [13-17].

Motivated by the theory of Dobrushin’s Markov random fields [18], several extensions
of QMCs to graphs and trees have been suggested [19,20]. Namely, a quantum phase
transitions approach to QMCs on Cayley trees has been investigated [21,22]. Quantum
Markov states (QMSs) [3] are particular QMCs. The tree extension of QMSs has been
described in detail [23].
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Over the past few decades, quantum random walks [24-31] have been extensively
studied due to their usefulness as powerful tools for constructing quantum algorithms.
From a probabilistic perspective, open quantum random walks (OQRWs) [32-37] represent
a natural and direct extension of classical Markov chains, exhibiting many interesting
statistical and physical properties.

Recently, a significant connection between QMCs and OQRWSs has been
established [38—40]. In [41], the study focused on investigating QMCs on trees associ-
ated with OQRWs in relation to phase transition phenomena. Moreover, a mean entropy
formulae for the associated tree-indexed QMS has been calculated (see also [42,43]). In
addition, the concept of stopping rules for QMCs on trees has been explored in [44,45].
Additionally, in [46], the recurrence problem for a specific class of QMCs on trees was
studied with a connection to phase transitions in an Ising-type model. In [47], the notion of
recurrence was associated with QMCs on trees in conjunction with OQRWs.

In this paper, we explore a new class of quantum Markov chains (QMCs) on the
semi-infinite Cayley tree of order. We express their correlations using classical probability
measures that are not Markovian. For each density matrix p, a probability measure P, is
naturally assigned to the space of trajectories A" as follows:

. . . 1 Ty iu3 i”2 iuz* iu3* Ty *
Pp(lull et ,lum) - (Pm) (Bi”nz—l o Bi”z Bi”lpul Bi”l Bi”z o Bi“m—l) @
for specific edge-paths 11 ~ 1y ~ - ~ uy in the Cayley tree.

The obtained characterization of a QMC extends the results of previous works [41,47,48].
We point out that the hierarchical structure of the Cayley tree is essentially used in express-
ing the considered QMCs, as well as in defining the associated classical probability measure.

It should be emphasized that this work opens up possibilities for further investigations
on OQRWs. Potential future research directions include exploring the action of symmetry
groups on general QMCs on Cayley trees, studying phase transitions, investigating recur-
rence in the sense of [47], examining ergodic properties, and exploring entropy for the class
of QMCs studied in this paper. These topics will be the focus of forthcoming studies.

The structure of this paper is outlined as follows. After the preliminary Section 2, we
proceed to Section 3 where we introduce QMCs on trees. Section 4 presents a structure
theorem for generalized QMCs associated with OQRWs. Finally, Section 5 is dedicated to ex-
pressing the classical probability measures associated with the QMCs under consideration.
Section 6 is devoted to some illustrative examples.

2. Preliminaries on Trees

By IX = (V,E) (k € N), we denote the semi-infinite regular tree (Cayley tree) of
order k. The vertex 0 € V represents its root. The nearest-neighbor nodes u,v € V are
denoted as u ~ v if and only if < u,v >€ E. A path on the tree is a finite list of pairwise
distinct vertices 1y ~ up ~ - -+ ~ uy, where m is referred to as the length of the path. The
distance d(u, v) between two vertices u, v € V is defined as the length of the unique path
joining them.

A coordinate structure (see Figure 1) is naturally assigned to I'X : each vertex x € W,
is identified with an n-tuple x = ({1, ..., ¢, ), where (e {1,...,k} for 1 < j < n. The root
0 is represented as (0). The elements of the nth level W), can be listed as follows:

Put
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To each vertex u = (41, 03,...,¢,) € Wy, we associate the unique path joining it to the root
o0 as follows:

o~ up = (b)) ~ug = (b1, la) ~ -y 1= (b1, lo, - by 1) ~u
The direct successors set of u is defined by
S(u):{UEWn_H : uwv}:{(u,f) : 6:1,2,-~~,k} (2)
Foru' = (¢},0,,...,0,,) € Wy, we define
wou' = (b, by, by, 03,05, L) € Wy

In particular, u oo = u. Let V;, be the set of vertices v whose unique path joining v to o
contains u = ({1, 43, -+ ,£y). In other words,

Vu:{v:uou’:u’GV}; 3)
Let Vi.n = Vi, N Ay, The sub-tree F’fm = (Vy, Ey), with vertex set V4, is isomorphic to 1"’;. Define
wy(u') :=uou 4)

The map a,, defines a graph isomorphism [49] from T'X. into F’fm.

(1,2,2) (2,1,1)
(1,2,1) (2,1,2)
(1,1,2) 2 2 (2,2,1)
AN e
(1,1) (2,2)
— Iy 2 — T~

(1,1,1) \ / (2,2,2)

(0)

Figure 1. Coordinate structure on Fi .

3. Quantum Markov Chains on Trees

For each u € V, let A, be a C*-algebra of observables on the site 1 with unit 1,,. Define
Ap, = Qyen, Au for each n. We then have the embedding

AAn = AAn ® IWn+1 C Ap

n+1

where for each bounded region F C V, we have Ir = ®,,cr 1,,. The local algebra associated
with the increasing net { A, },>0 is denoted as

AV,loc :T U AAn

neN
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and the associated quasi-local algebra is given by

C*
-AV = -AV,loc

For further details about quasi-local algebras, we refer to [50].

The set of states of a C*-algebra A is denoted as S(.A). Consider unital C*-algebras

C and B, where C is a subset of BB, and B is a subset of 4. It is important to note the

following definitions:

* A quasi-conditional expectation [51] is a linear map E : A — B that is completely
positive and identity-preserving, satisfying the condition E(ca) = cE(a) foralla € A
andc € C.

* A (Markov) transition expectation is a linear map between two unitary C*-algebras that
is completely positive and identity-preserving.

For a specific transition expectation denoted by &y, from A TN Ay, , the map de-

fined as

Ep, = id-AAn71 ® Ew, (5)

is a transition expectation with respect to the triplet Ay, | C Ap, C Ap, E
The hierarchical structure of the Cayley tree is evident from the following equation:

Wiy = I_I S(”) (6)

ueWy

This equation allows us to consider local transition expectations (see [23]), denoted by
Eu, from Ay 5y into A, We then define the map

Ep = ® Eu (7)

ueWy

which provides a transition expectation from A Apypiq I0EO Aw, -

]
Definition 1. A (backward) quantum Markov chain (QMC) on Ay is characterized by the triplet
(o, (En)n>0, (hu)n), where we have the following:

* ¢ € S(Ay) is the initial state;

*  Foreach n, the map &, is a transition expectation from AA[M w1 into Ay, ;

e Foreachn, hy, € Aw, + is a positive boundary condition.

The limit

¢(a) = lim gy Ep, 0 En, 00 En, (/2.anl/2) @

exists in the weak-*-topology for each a € Ay and defines a state ¢ on Ay, where E,, is the quasi-
conditional expectation given by (5) for every k € N. In this case, the state ¢ defined by (8) is also
referred to as a quantum Markov chain (QMC). The triplet (¢o, €, h) is called the tree-homogeneous
OMC on Ay.

Remark 1. The definition above introduces quantum Markov chains on trees as a triplet that
generalizes the definitions considered in [22] by incorporating boundary conditions. Additionally,
it extends the recent unified definition of quantum Markov chains in the one-dimensional case [5]
to trees.

Let A be a unital C*-algebra with identity 1. For each u € V, we define A, = A. The
graph isomorphism «;, given by (4) can be extended to an isomorphism from Ay to Ay,
as follows:

a;( ® ax> B - “Z;)l(y) ©)

XEA, XENAy YE€Nun
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Here, for each a € A, we define a;,(a) := a®) = <®Uev\{u} Iv) ® a, which means
that a appears as the u-th component of the infinite tensor product. The notation a; !
represents the inverse isomorphism of «,, mapping A, to A,. Finally, let Ef,_l be the

inverse isomorphism from Ay, to Ay [48].

4. Main Result

Consider a connected graph with a countable vertex set A. Let H and K be two
separable Hilbert spaces. We define {|i),i € A} as an orthonormal basis of K indexed by
the graph A. Furthermore, let A = B(H ® K).

For each vertex x € V, we associate the C*-algebra of observable A, = a,(A).
Additionally, for each pair (i,j) € AZ, the transition from the state vector |j) to the state
vector |i) is represented by an operator B]i € B(H), satisfying the following:

Y Bj'Bj = T(3). (10)
ieA

Consider the density operator p € B(H ® K) of the form

p=Y pi@li)il; p1eBH)".
ieEA

In the sequel, for the sake of simplicity of the calculations, it is assumed that p; # 0 for
alli € A (see [39], Remark 4.5 for other kinds of initial states).
Let us consider the following:

M =Bl [i)(j| € B(H®K) (11)

Following [39,41], one defines

, 1
A= — — o2 1\(j|, ijeA (12)
j Tr(p])mP] DGl i

For each u € V, we set

K] = @ ( Ml* ® Al 6 A{o}US(o) (13)
veS(o

Consider the symmetric group &y1, which consists of permutations on the set
{0,1,---,k}. Each permutation o € &y, defines an automorphism, denoted by ¢, on
Afo1Us(0)- This automorphism can be represented as a linear extension of the follow-

ing mapping:
T 8(0,0) @ A(0,1) @+ D Ao ) 7 A(0,0(0)) © Bo,0(1)) @ @ B(o,0(k)) (14)

Lemma 1. Let 0 € &y yq. The map defined by

ga(ﬂl) = ’ ;Az TI'O] (K;U(H)K;*), ac A{o}us(o) (15)
1,])€

is a Markov transition expectation from Aoy s() into A,. Moreover,

& (a(o,O) ® A(0,1) Q- ® Ao,k ) Z <H (P] (u,o(2)) > M;:*a(o,a(o))Mj‘ (16)
(ij)end
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forevery ai, € Ay, i=0,1,--- k. Here,
1 Ny
9j(b) = WTr(Pf@ )jlb); Wb e B(H) @ B(K) (17)

Proof. The map ¢ is completely positive from Ay, 5(,) into itself. Moreover, the Kraus
map K:=}; K; . K;* and the partial trace Tr,) are completely positive. Then,

&7 =TryoKoo

is a composition of completely positive maps.
Leta =040 ®a,1) @ - @agx; according to (13), (11), and (15), one has

£%a) = ) T ( (o>>®ﬂ<o,a<1>>"'®“<o,a<k>>K§*)
(i,j)eN?

“((zo)2))
(i,j)eN? (i,j)eN?

Yo M age0) M [T Te(Afa,e() Af)-
()22 =1

From (12) for each ¢ € {1,...,k}, one has
Te(Alao ) AF) = Tr (Al Alagy,) ) = WTr(p]- @ |j)Gilay")
This leads to (16). On the other hand, because ¢;(1) = 1

gU(IA{o}us<o>) - D M; M;'
(i)eA?

Dy (B el (Belhil)

(i,j)eN?

= ¥ (BB el

(i,j)eN?

= Y (BI'B) @ 1)

ieA
= 1y,
Therefore, £7 is a Markov transition expectation. This finishes the proof. [

For each u € V, we consider the shifted transition expectation
ES =y o0& oy " (18)
from -A{u}us(u) into A,,. Form € Nand (i, iy,...,im) € A™, one defines
im lm i3 i
B(iy, iz, ..., im) = B" B ; - B2B? (19)
The subsequent probability measure encompasses the open OQRW dynamics, taking into
account the hierarchical structure of the Cayley trees via edge-paths.

1

]P)Pil (il,iz,...,im) = (1011

)Tr<B(i1, 2, im)pi, B (i1, 2, .., im)> (20)
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Foreach /€ {1,2,..., k}, we introduce the following subsets of vertices:

Wm;g:{x:(ﬁl ..... ln) EWm + Ly, by €4{1,2,...,k} and Emzf}

n

An;é = U Wm;é

m=1

Denote

m times

In particular, for x = o, we denote (0, ¢("™)) simply as (¢(™)). For each x € A,, we denote
the largest integer ., such that (x, £("x)) € A. Specifically, if x € W; for some j < n,
then my,;, = n — j. Please refer to Figure 2 for an illustration of the elements of A, in the
case of the Cayley tree with order 3.

(2,2,2)
(2,2,1) (2,2,3)
. 2(2,1,3) N | y (2,3, 1)2 y
T
AN /
(2,1,3) — (2* 1) (2’3) T (27373>

N ‘ 7

(1,3,3) (3,1,1)
(1,3,2) N\ ‘ /0 (3,1,2)
- 1,3 (0) 3,1 -

(1,3,1) — ( ~_ > -~ ) T (3,1,3)

_ / \ (3.9) _(3,2,1)
//’/ (1,1) (3,3) \.\\(3,2,2)
7N\ /1N (3,2,3)
(1’1’3%171q2§1,1,1) (3,3,3) (3,3,1)

Figure 2. Coordinate structure on Fi with highlight of elements of A,,.,, with {5 = 2.

The set of vertices in which the coordinates do not incorporate ¢ as an element is
defined by

Ny = {Uz(fl,gz,"',@m) . méeN, gi#f, Vi:l,z,...,m} (21)
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In particular, for each n € N, we denote
Npo = Ay NNy
For every u € Ay, we set
N, :=way(Ny) ={uov : veN}; Nypso := Ny N Ay

Theorem 1. Let 0 € &y q such that £ := ¢(0) # 0. In the notations of (12), (11), and Lemma 1,
if ¢y is a state on A,, the triple (¢o,E7,h = 1,) defines quantum Markov chains ¢” on Ay.
Moreover, for each n and a = @ e, u

=Y T [eMloigigw)ei@) TT o] @

icEA (l})tEAA”?é YEN,,

H [ H Ppi (1“/ (M)) Ppil (zu, (v,6)7+ '/i(y,g(mv;n)))ﬁoiu(av)]?ill(au)

UEN, ; VEN,u0

where
M(Z l( /s - (/) ) = B*(i’i(f)""’i(ﬂ)(”)) (l l( ATARRY (/) ) |l><l| (23)
Proof. Let us first prove the existence of the limit (8) for

En,=iday ©& i &= @ &

ueWy
and hy, = Ty,. Letng € N. Fora = a, ® aw, ® - - - ®@ aw, € Ap, and m > n, one has
E‘/T\m (a® IAnH»l\Am) =a®&En(ly, ®1w,,,) =a® Ip,0\A,
It follows that

oo (a) = (pDoEXOOEj'\Io...OE‘f\m(a)
= (pooE‘;\OoEf\lo...oEim_l(a)

= (pooE‘;\OoEj'\l o...oEin(a)

Then, the strongly finite limit defined by (8) exists and gives rise to a positive functional ¢“.
Based on Lemma 1, the map &, is completely positive and implements a quantum channel
with intermediate purification (CPIP). Therefore, ¢7 = (¢, £7,1,) represents a quantum
Markov chain (QMC) on Ay . Furthermore, we obtain the following:

@7 (a) = 9o (Eo(awy - - - (En1(aw,_, (Enlaw, @ Twu11)))))) (24)

One has

i* i 1 i*
P | LMj aMj | = T )Tr Zp]u @ |ju) (ju| M} au M}
i,j p]u
= Tr <Z p]u ® |]M ]u|Ml aU)

(P u

(1) 1 —  Tr ZBZ p]uBi " ® |1) (i|ay
(p]u) Ju
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We are going to show by induction on p that

En—p (”anp ® En—pi (”anpﬂ e Enlay, @T) - - ))

® (2 Z M(lul (u[) i(u,(g)(mu;n)))fl’iu(au) H ?iu(”x) (25)

uEanp iy€EA ( )GAVVOA xENum;g
H i, (a0) H sz (lU' (w,l) ) IP)Piz; (iU' Z'(w,f)f R i(w,g(mw;n))) @i, (”w))
UeVuﬂAn ¢ wGerN

Starting with the case p = 1. Foru € W,,_j and v € S(u). Letu € W,,_ and v € W,,, and
for each b € A, one has

folb) ==& (b R @ @1 (ZM’ M’) 9;(b)

(10)

2 Y g0y @ 1) (1 (0)-
j

One can see that ¢;(f»(av)) = ¢;(av). Then,

51(47 (au & ® 55(117;@1)) (1:6) gg (llu ® ® fv(av))

veS(u) veS(u)

Z M;‘li uéo ]u q)]” (ﬂu) H q)ju (ali)‘

i ju veS(u)\{(ul)}
One has
= ZB]u Bl” ® |ju) (juldj i,
= BB @ 7).
It follows that

&y (ﬂu ® Q) &(a® 1)) = ZB}:*B}: @) Gleja)pilann)  TT  ¢iao)
ij

veS(u) veS(u)\{(n0)}

It follows that

5(an 1®5n(llwn®1 ® ga(au@) ® g(T av®1)

ueW,_1 veS(u)

ueW, 1 \ ij veS(u)\{(u,l

Let us suppose that the induction hypothesis stated in (25) is valid for a specific value of p.
In this case, it implies that

= (ZB;*B;(@|]'><]'|§0j(au)§0i(ﬂ(u,a) H( )}q)j(uv)).
u,l

gnfp (aWn_p & 5n7p+l (awn—p+1 - Enlaw, ® 1) )) ® Ay,
uEWy—p

where
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Ay = Z Z M(iy, i L, 0)r s ‘(u (g)(mu;n)))(l’iu (”u) H Goiu(ax)

[SVAN ( )EAV”QA XENu;n;f

IT o) T P, (ivri(w,e))'”fp’p,-,, (iv,i(w,é)f-~-/i(w,amw,-n)))ﬁl’i,,(ﬂw)-

veVy QA,,'[ weNv;n;f

From the induction hypothesis (25), one finds
E"*F’*l (aWn—p—l ® S”_P (awnfp ® E"*F’Jrl (aWn—p-H T E”(awn ® I) e )))

- ® &(uw ®Au) E Yy M aoMigy@) T (Al

teWy_p—1 ues(t it jt ueS((LO\{(t,0)}
One has

M AppMy = ) 1 BIYBi . e oyen) Bligee), (o (oymeony B @ i) (] 6 e
o) (iy)en" 0

g (@en) TT gipn(e) TT gutee) IT P, (iorigun) -

XEN(,0);; veVyNA, . WE Ny,
]Ppiv (1},, i(w,ﬁ)r cee i(w,g(mw;n))) Pi, (“w)
(19) .
= ) Y, MGuige,. ) Siign Piey @) TT @i, (02)

60 (i,)en 60 XEN(10)mi0

H @i, (av) H [Pp,-v (iv/ i(w,é)) o 'Ppiv (iv/ i(w,@)r- oy i(w,g(mw;n))) (Piv(aw))

UevumAn,[ weNv;n;é
and
pi(Ay) = ) Y @i (Mg, ) @i (@) TT @i, (ax)
iyEA ( )EAVllﬁA xeNu;n;i
1__[ i, (lly) H PP;‘U (ivr Z‘('w,é)) Y IP>Piv (17)’ (wl)r==+r i(w,ﬂ"’mﬂ)) Pi, (llw)
veEVLNA, . WE Ny
(20)
= Z 2 ]P)Piu (lu/ (u f) (u ( ) mu;n) ))(5if,iu (Piu (au> H (Piu (ﬂx)
i EA (i )GAVMOA XEN,.0
[T ¢i() [T P, (ivf i(w,é)) Py, (ivf L,y -s i(w,ﬂmww)) i, ()
‘UEVuﬁAnl weNv;n;/@
(23) .o .
- Z Z ]P)Pit (Zt/l(u,f)/ . '/l(u,(g)(mu;n)))q)it (ﬂu) H q)it (llx)
iyENA (in )GAVuﬁA XEN0
H (Piv (ﬂv) H Ppiv (ip, l(w,é)) e PPiv (lv, (w [) .y i(w,z(mw;n))) q)lv (aw)
veVuﬂAM WENv;n;l

Summing up, one gets

En,p,l (ﬂanpq & En—p (awnfp ® gnprrl (aWn—pH &y (aWn ® I) .. >))

= ® ( Z Z M(itli(t,ﬁ)/- : "i(t,( )mtn ))q’zt(at) H (Pit(ax)

FEWy_po1 itGA( )EAVtMA XE€ Ny

[T ei@a) TT Po,(ioiwe) - Poy, (o i) - i(w,gwwm)))qﬂiv(ﬂw))

veVINA,, ¢ WENy .0
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This proves that (25) holds for any integer p < n. In particular, for p = n, one obtains the
expression of

Eo(aw, @ Ex(aw, @ -~ En(a, ®T)---))
=L L (Mloiton, it nm)ei(a) TT ¢(a)

10 €A (i) et *E e
TT 9ilao) TT Po, Goritwey) = Poy, (oricweys -y 9 (000))-
vEN, ¢ WEN, ;¢

By applying the initial state ¢, to the expression above, we obtain (22). This step concludes
the proof. [

Remark 2. In the notation of Theorem 1, the case o(0) = 0 has been studied in [41]. In that
situation, the QMC ¢ is represented by

@' (a) = ¢y (ZM]@*%M;) I vi(ao). (26)
ij veS(u)
For any localized element a = @,,cp,, au, here
pi0) = —— Y Te(BoBl @ i) i b). 27)
Tr(pj) ica T

Meanwhile, the case 0(0) # 0 leads to the QMC given by (22) which has a much more sophisti-
cated structure.

Remark 3. The equation (22) reveals that the essential constituents of the QMC ¢ are formed by
the probability measures (1). Consequently, the correlations of the QMC under study are governed
by the OQRW dynamics. In the subsequent section, we will observe that this substantial reliance of
the QMC on the OQRW dynamics is further demonstrated by focusing on a diagonal subalgebra.

5. Classical Probability Associated with OQRW

In this section, we examine the classical probability measures associated with the
quantum Markov chains described in Theorem 1. Consider the set QO = AV equipped with
the cylindrical o-algebra F. Let e = {[i) };ca denote an orthonormal basis for K. We define
D, as the diagonal subalgebra of B(K) spanned by the projections |i) (i|.

Given a state ¢ on Ay, we associate a classical probability measure y, on (Q, F),
which operates on atomic events (ix)yeca, as follows.

o ((i)sean)) = o @ (@i (1))
XEAy

From (17) and (11), one finds
9i (T @11 (il) = 6y

The classical probability u (i) associated with the QMC ¢ () given by (26) is the following:

oo (()ven,) = ¢o(Mi(Tr@ lio)(iol) TT i, (T © [i) (il )6,

MGA[L”]

= 470(17'[ ® |10><10|) 1__[ 5io;iu'

uEA[l/,,]

Let 0 € &1 and let ¢(?) be the QMC given by (22). The probability measure y 9@

associated with ¢(%) is given by
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toior ((ix)xenn ) = $o (B (Gori(ey (o) Bliosigry -+ i) @ lio) ol ) TT 01y 28)

xGN,,//

T 11 P%(mqwﬁ-~R%quwy””%wmm0&ﬂw

ueNpy veNu;n;(

Remark 4. The distinction between the two QMCs go(id) and q)(” ) becomes evident in the expres-
sions of their corresponding classical probability measures u i) and y @) Specifically, when
restricted to the cylinder A™, the distribution i) focuses solely on the atomic events (ix)yen,
where iy = i, for every x € Ay,. On the other hand, the distribution Hol ) assigns probabilities to
all atoms (iy) e, that satisfy the condition

VJC S An;f, vy (S NX}H;Z’ ix = Zy
as depicted in Figure 2.

6. Application to OQRW on Z,

In this section, we consider A = Zp := Z/pZ = 0,1,--- ,p — 1, where p > 0 is an
integer. Let H = C? and K be an infinite-dimensional Hilbert space with an orthonormal
basis (|i))i € A. We assume that B, C € B(#) satisfy B*B 4+ C*C = 1. We define

B, ifi=j+1;

é: C, ifi=j—1; (29)
0, otherwise.

In the following, we will represent i as i for simplicity. We will maintain the same notations
as in the previous sections and focus on the case where k = 2, specifically the Cayley tree
Fi. Let £ = 2. The set A, consists of the vertices in the form u = (¢1, /5, - - - ,€],2) where
je{l,...,n—1}and f1,05,...,¢; € {1,2}. It can be observed that |A,5| = 2""!. Asa
result, it divides the set A,,.

6.1. Example 1

Let us consider H as the complex vector space of dimension 2, denoted by C?. Let
10 01
=lo o) e=[oo]
be the transition operators. By performing a straightforward computation, we can establish
that B and C satisfy the equation B*B + C*C = 1. By utilizing the identities B> = B,

BC = C, and C%? = CB = 0, it becomes evident that the only indices (i, ip,...,in) € A",
where m € N, for which the quantity

B(i1, iy, ..., im) = Bi" B"1...BB3B2

Im—1 tm-2 1

is non-zero correspond to iy 1 =iy +1forallk €2,...,m—1.
More specifically, for each i € A, we have

B(i,i+1,...,i+m)=B
B(i,i—1,i,i+1,...,i+m—-2)=C

For (iy,ip,...,im) € A"\ (i,i+1,...,i4+m),(i,i—1,i,i+1,...,i+m—2);,i € A, we
have B(iy,iz,...,im) = 0.
Consider the density

p=Y piwli)i

ieA
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where p; = [ Pin pi2 } € My(C) = B(H). It follows that the probability (20) satisfies

Pi21  Pi22
By, (i1, i) = T (B0t i i) B (1,2 im))
! Tr(pi,)
which is given by
Tr(Bp;, B e .
I:F(r(;i)), ifig =i +1,Veke{l,...,m—1};
Py, (i1,i2,.--,im) = .
Pz 1/ 2/ rtm TI‘(CPI‘ C ) . . ) ) )
1 W, 1f12:11—1and1k+1:zk+1,Vk€{2,...,m—1};
0, otherwise.

Piy 11 ifig, g =i +1,Vke {1,...,m—1};

Piy,111TPi 227
1 1

— Piy,22
Pij1tPiy 22”7

ifizzilflandik_;,_l:ik+1,Vk€{2,...,7}’1*1},‘

0, otherwise.

6.2. Example 2

Take as above H = C? and consider the transition operators
00 01
=V o) e=[o]

A simple calculation shows that B and C satisfy the identity B*B + C*C = 1. Using
the identities, B2 = C2 = 0, and

0 0 1 0
sc=[00], =1 0]

We can easily deduce that the only non-zero words formed by picking letters from the
alphabet {B, C} are of the form

(BO)XB=B, (BC)*=BC, (CB)*=CB and (CB)*C=C.

This leads us to consider two distinct cases, depending on whether m is even or odd. If m
is odd, we have

B, i1=iz3=...=igpandib =i =...=i,_1=11+1
B(iy,ig, ... im) =X C, i1 =i3=...=igandip =iy = ... =ip_1 =01 — 1
0, otherwise.
Then, using B* = C, we obtain

Tr(BpC)

Tr(o) ’ i1:i3:...:imandi2:i4:“_:im71:i1+1
i i i Te(CoB) . _ . , - ' ‘
Pp(l1,12,...,lm) = rT(r(z)), h=iz=...=igandip =iy =... =iy 1 =i — 1

0, otherwise.
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If m is even, we have

BC, i1=i3=...=igq1andip=i4=... =i =11 +1
B(i1,ig,...,im) = CB, iy =i3=...=ip_jandip =iy =...=ip =13 —1
0, otherwise.

and
Tr(BCoCB . . ) ] ‘ .
(T‘sz’ 11 =13 = .:1m_1and12:14:,__:1m:11+1
i1 1 1 Tr(CBpBC . . . ) ] . '
PP(Zl/IZI-..,lm): I.(TZ))’ ll:la:"':lm_landlzzlllz-~-:lm21171
0, otherwise.

7. Discussion

The complete understanding of the structure of general quantum Markov chain sys-
tems (QMCSs) associated with open quantum random walks (OQRWs) has been achieved.
Contrary to the previous works, the correlation functions of the present QMCSs are heavily
influenced by the dynamics of OQRWs. The probability measures defining these sequences
establish potentially non-Markovian dynamics, which presents a significant avenue for
future research. Exploring the entropy of this class of QMCSs and investigating their
diagonalizability also pose intriguing questions for further exploration. Nevertheless,
considering the recent advancements in this field, numerous other pertinent challenges are
now approachable, including topics such as phase transitions, recurrence, clustering, and
ergodic properties.
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