zero quark mass, the ground state and a multi-
~quark state at a lattlce site can be degencrat—
ed 1n energy. When all lattice sites are combined
this becomes an infinite degeneracy.
The third problem is formulating the free

quark theory on the lattice. The question is
what to write as the finite difference form of

{-V

or 5/‘?” . The simplest finite differen—
ce form of VM s unfortunately, gives zero

energy to eight different momentum states

J

( the states with Fi::o or = for each 1).

O
This means one has eight guark specles. All

known methods of avoiding the multiplicatlon
destroy chiral symmetry, unleas one uses the
very nonlocal approach of Drell et al. Each
group has their own favorite method for
dealing with the problem. These methods are
always designed to restore chiral symmetry in
the continuum limit.
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POWER COUNTING THEOREM FOR INFRARED
LOGARITEMS IN NON-ABELIAN GAUGE THEORIES

T.Kinoshita and A,Ukawa

Laboratory of Ruclear Stmdies,Cornell University,
Ithaca, New York

In recent years the theory of quarks
coupled to non-Abelian gauge bosens ﬁas emerged
as a promlsing field theoretical iodel for
understanding the spectrosoopy of hadrons and
thelr reactlons. In spite of 1ts qualitative
sucoesses, however, the baslio premlise that
quarks and gluons themselves are permanently
bound within hadrons and never appear as
asymptotic partioles 1s yet to be verified.

It has been speculated 73/ that the
severe infrared divergence of non-—Abelian
gauge theories, as 1s lndicated by the growth
of the effeotive gauge coupling constant at
large distances, may provide a mechanism for
such confinement. The viability of this idea
bas been demonstrated in 2-dimensional gauge
theories 72/ in which free guarks are indeed
eliminated from the particle spectrum because
cf infrared divergence.

(However, this may be due to the low di-
mensionality of the space-~time, having nothing
to do with the non—Abellan nature of the
gauge group., Thus, there may be no easy gene—
ralization of these results to the 4—~dimensio-
nal case).

On the other hand, the information on the
4-dimensional oase 1s rather limited at present:
Conrwall and Tiktopoulos /3/ have attempted
to sum up the leading infrared logarithms.
Other recent works are concerned with the study
of relatively low orders or direoted toward
an alternate verification or extension of the

oanoellation theorem /445,6,7/

« Thase works,
however, do not answer the questions concerning
the nature of infrared singularitlies of non-
Abellan gauge theorles such as 1, What are

the differences of non-Abelian gauge theories
and QED? 2. Does the Btoch-Nordsieck scheme

work 1n such a theory? 3. What 13 the large



distanoe behaviour of quark-antiquark
potential? 4. Do thelr theories intrinsically
require non-perturbative approach?

As the first step for analyszing their
problem, we have developed within the Feyrman
diagras framework a general method for preoi-
sely determining the power of infrared loga~
Tithms for arbitrary diagrams /% | 1t 1s
applied speoifioally to the quark sleotromag-—
netlio form factor shown in Fig.l in whioh
quarks have finite mass 11 and the momentum

tranafer ?: P'— P" 1s also finite.

P P“ —~——— quark line
~rrmmrnnn  gluonr line
f ~ — ——— golour singlet
g=p-p" ourrent

Fig.l
The result of our analysis may be stated ( with
some over—simplifioatlon for the sake of
olarity) as follows:

Bower counting theorem. Let G
arbitrary {P1 colour singlet ourrent-fermion-

be an
~fermion vertéx diagram and let [ Dbe the
oorresponding renormalired Feymman amplitude
for whioh all renormalirations ( exoept for the
fermion mass which 1s renormalized on the mass
shell)
point /'4 « Suppose ( the ®electrio"™ form
) FG behaves as

Fo = allaX) s ..
in the limit in which an appropriately ohosen
infrared cut~off temds to sero, where a.
depends on CI/Z ’ mz ’ /Mz
ooupling oonstant g only. Then we have
mG. =

are performed at an off-mass~shell

faotor of

and the gauge

the number of nontrivial
infrared singular subdliagrams
o2 G .

To explain the oontent of this theorem, we

must define some words,

T4

i. Infrared singular subdliagram. It can be
shown that the only subdlagrams of G ( inclu—
ding G 1tself) which are infrared singular
ares the following:

LA A A

Fig.2
1i. A1l digrams of Fig.2a are nontrivial
1.8, contridute one uwnit to Mg .

111. Diagrams of Fig.2b,0 are nontrivial
if and only if they contain no triple—gluon

vertex like

11503

iv, Diagrams of Flg.2d,e,f count as L
nontrivial infrared singular subdiagram where
/. 1s the marimum number of nonoverlapping’ >/
ultraviolst divergent subdiagrams within such
a: subdiagram.
To illustrate this theorem, the values
of IM¢ for some simple diagrams are shown

in !15.4.
! | i
! i ttmg= L
! t

i
Me=1 me=2!
mS: 2

‘m‘=2

Pig.4 (me-2
Ontli;io of the provf. The Feyaman

amplitude o oorresponding to the dlagram G
of Fig.l oan be expreassed in the form

Fe_sg"%(L-ZZi)ﬂdii Je(2), @)
o

1€6 e
where z,,. 2o, .- are Teymman Darameters.
The diagrams with quark loops are found to be
less infrared-singular than those of the same
order without quark loops. Thus, we shall

consider only the dlagrams shown in Flg.5:



G=D®P where P oconsiats
of gquark lines only
and D consists of

gluon lines onIy.

Fig. 5

For such diegrams all infrared diﬂrgenoes arie
se from the rogion ef parametric space where
Z;>0 forall . € P
Thus, the infrared divergent part of |
is contalned in the 1ntosfa1
239(&"7—3‘3 ﬂ‘l"ig du-2z,)[1dz J (@, ¢))
ep iep Jed T €D
'hore‘ 30 1s a small fixed pesitive constant.
If we introduce the funotion
T, @3- 220 [Tz, Ja (2>,
€D
which 1s a funotion of Z/

&)

s belenging to the
quark path P only , Tc be vritten as

Fo=l005-220 N 42, 3,

Tep cep
Rowy, to deal first with the infrared

NSy (4

divergenoces arising from guark self—enorgy and

quark vertex parts, let us consider the soale

transfermatien
/ ’ / 5
Zl;'_ = GZ':J. ) 2"2 = Pzil‘ y e Z)‘e = P Zie ( )
where 2 i, %) is an arbitrary subset
of P o Then, we find fer o =0

~d
\TJ)--? () K(F°W°r o'i' e\,\? ,»* d_$0>‘ 6)

Wo obtain the following relation between Z
ana 4 :

Lemma. (1) ol </ (1) ol=¢ holas
if and only 12 ;, ... 2, make up a continu-
ous quark path of an infrared singuler sub-
diagram ( see Fig.2).

To 1llustrate this lemma, consider the
following diagram:

3 Fig.6

TS

For the continuous guark paths ;i 2 3_} 12 j

and {3} we £1ma

T, (24,2:,2) —> , d=£€=3, (18)

(21, +Z,rEy )3

A et b=z, (MO
2, +Z; ! (70)
4 - =4
—_— Z} , J

Thus, (7a) gives a logarithmic divergence on
integratien over Z, , £, , £, , (7T0) gives a
finito result, and (7o) is logarithmic but
actuslly becomes finite beocause of the infrared
suppression of the three-gluon vertex ( see
Fig.3). The integrations over the remaining
quark paths }1)7 , jz} » }2,3) are allm?rared
finlte,

This lemma leads to the restrictien of
infrared divergent subdiagrams inmvelvimg quark
lines to those of Pig.2a,b,c.

FProm this analysis it fellows that the
infrared singular part of J__-D facterizes inte
a product of eentridbution of all infrared diver—
gent subdiagrams. This property emables us to
prove the theerem with the help of 'a.?d,'s
identity and mathematical imduction. - °

The infrared singularities a.ri-ing freu the
gluon diagrams of Fig.2d,e,f oan be incinded
in the thoorem making use of the singularity
family introdueed by Speer /107

Rewmarks, 1. This theorem is stated for the
Feymman gauge. 1f etker gauge are used, it must
be modified accordingly, 2. For simplioity it
18 stated for the “eleotric" form factoer only.
For the "magnetic® form faoter, the power of b\
must be reduced by eme, 3, It is formulated for
the oase ef massive guarks and fixed @2 + Othor
interesting cases such as massless quarks and
the leading behaviour for very large @2 ocan be
analyzed by a slight modification of our tech-
nique. 4. In the oase where &
subdiagrams of Fig.2a,b the theorem shews that
tho leading infrared singular diagrams are

eontains only

restricted to those whioh are planar and hawe

nests of these subdliagrams, Sueh a8 struoture of



leading diagrams 1s found to persist even

after subdiagrams of Fig. 2c¢,d,e,f are inoclu-
ded. Thus, all leading diagrams can be generatel
by a set of Dyson-Sohwinger integral equations.
This may be useful for the purpose of summing
up the leading infrared singularities. It may
also serve as a starting point of searoch for a
renormalization group like equations for

infrared divergenoe.
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MACROSCOPIC INFLUENCE ON THE SPONTANROUS
SYMMETRY BREAKING IN QUANTUM FIELD THEORY
D.A.Kirzhnitz
P.N.Lebedev Physical Institute,Moscow,USSR

I. Introduction

The aim of this rgport 1s to give the brief:
review of the results concerning macrosoo-

pic influenoe ( heating, oompression, external
field and ourrent) on elementary particles
systems with spontaneous symmetry breaking. *
The study of this problem has been stimulated
by recent progress in unified renormalizabdle
theary of elementary particles. Typically

it appears that at some values of external
parameters ( temperature, fleld, density,
current) a phase transition with symmetry
restoratlion takes place. There exists a profound
and far going analogy with phase transition

in many body physilos especially with supercon-
duotivity Dphenomenon (sC). Some applioations
to Cosmology are also oonsidered in this report.

2. The model

The Higgs model 18 used for desoription
of broken symmetry . ‘
1 2 2 1
L=y (A2 AN | D¢l + ™
T, 2 A 4 ‘
+ f:;jl‘?\ - E‘lf\ + L+w1-cr|)
where fDM=’3/,.+{§ A/.. )\<<.L,g<<i-
phis 18 a relativistio analogue of Ginzburg-—
-Landau theory of SC. From eq. (1) one can obtain

the effective potential V(o) ( energy or

free energy) in the "external field" & =<¢Y>
The equilibrium oondition 1is
VLS Ao - W T+ T =0 )
~No T F ’
where [ 18 diagrams of the ourrent of the
field CP .

At small g the Higgs mechanism gives

o, #0 beoause of Bose-Einstein oondensation of
2

L

2

hE R W

*) For more dotails and References see LG =
Lebedev Group= A.D.Linde + repporteur,

Annals of Physics,N.Y. ( in press)

2
¢ —quanta ( see fig.1l) and mz‘,vlm >o)m;~3

Té6



