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To achieve scalable universal quantum computing, we need to implement a universal set of logical
gates fault-tolerantly, for which the main difficulty lies with non-Clifford gates. We demonstrate that
several characteristic features of the reconfigurable atom array platform are inherently well-suited for
addressing this key challenge, potentially leading to significant advantages in fidelity and efficiency.
Specifically, we consider a series of different strategies, including magic state distillation,
concatenated code array, and fault-tolerant logical multi-controlled-Z gates, leveraging key platform
features such as nonlocal connectivity, parallel gate action, collective mobility, and native multi-
controlled-Z gates. Our analysis provides valuable insights into the efficient experimental realization of

logical gates, serving as a guide for the full-cycle demonstration of fault-tolerant quantum

computation with reconfigurable atom arrays.

The implementation of reliable large-scale quantum computing holds
great promise for significant technological advancements but poses
substantial challenges in practice, as quantum systems are inherently
susceptible to noise and errors. A crucial idea for tackling this problem
is quantum error correction (QEC)'~, wherein the central element is
quantum codes that encode the logical information of quantum sys-
tems. Logical error rates can be suppressed by the error detection and
correction procedure. To implement large-scale general-purpose
quantum computation in practice, we further need to be able to execute
a universal set of quantum gates at the level of logical qubits fault-
tolerantly. The most straightforward fault-tolerant logical gates are
those implemented by transversal gates upon codes, which take the
form of tensor products of gates acting on disjoint physical subsystems
like individual code qubits. Unfortunately, a no-go theorem of Eastin
and Knill’ states that transversal operators on any nontrivial QEC code
cannot be universal, which calls for other approaches for fault-tolerant
(FT) logical gates. In general, Clifford gates represent the “easy” part—
they can be classically simulated efficiently”® and are relatively
straightforward to protect and implement fault-tolerantly. However, to
achieve universal quantum computation, it is necessary to include non-
Clifford gates such as T and CCZ gates, which represent the main
bottleneck. To address this problem, multiple frameworks have been

proposed and developed, including magic state distillation (MSD)*”,
code concatenation'®", and code switching'*".

From a practical viewpoint, the FT implementation of non-Clifford
logical gates faces fundamental obstacles when the system architecture or
interaction structure is restricted to two spatial dimensions (2D) or lower,
which is more feasible in various experimental platforms. In particular, it is
well known that for 2D stabilizer codes'* (such as the surface code'”™"” which
has been a leading candidate for realizing fault tolerance) and even sub-
system codes', gates that can be implemented transversally or indeed with
constant-depth quantum circuits are restricted to the Clifford group. As a
result, FT non-Clifford logical gates are expected to be especially difficult to
implement due to the necessity of long-range interactions and remain lar-
gely unstudied in experiments (The recent seminal work ref. 19 demon-
strates the logical CCZ gate on the specific case of [[8, 3, 2]] quantum error-
detecting code, yet it does not form a systematic fault-tolerant scheme).
Here, we consider the reconfigurable atom array quantum processor, an
emerging hardware architecture’" that enables highly parallel and dyna-
mically all-to-all gates, thereby overcoming the aforementioned geometric
locality constraint.

Specifically, we propose and analyze several hardware-efficient
schemes for fault-tolerantly implementing non-Clifford gates with recon-
figurable atom arrays. The primary ones that we will elaborate on include
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magic state distillation, concatenated code array, and FT logical multi-
controlled-Z gates. Remarkably, all of these approaches capitalize on certain
characteristic features of the atom array experimental platform, particularly
the reconfigurability and parallel efficient control, which enable significant
advantages; see Table 1 for a summary. We will describe the implementation
methods and analyze their experimental feasibility in detail, from which it
will become evident how the native features of the platform are particularly
favorable for implementing non-Clifford gates.

Results

Magic state distillation

Magic state distillation (MSD) and injection constitutes a major approach to
achieve FT universal logical gates. Roughly speaking, the protocol refers to
the procedure of distilling certain non-stabilizer states to arbitrary fidelity
from noisy states (which may have suffered from storage error) offline, and

directly “injecting” them into the circuit to realize non-Clifford gates’, both
steps using only Clifford gates. This method is based on assuming ideal
Clifford gates as their fault tolerance can be achieved straightforwardly, and
focus on dealing with noisy non-Clifford resources.

Here we consider the T gate (i.e. T = exp(—ino®/8)), a standard non-
Clifford gate that forms a universal gate set together with Clifford gates. It
can be implemented with the ancilla |T) = |0) + ¢"/4|1), as shown in
Fig. 1(a). Here, to distill the ancilla, we consider the scheme using the [[15, 1,
3]] quantum Reed-Muller (QRM) code that has transversal logical T. We
consider the distillation scheme shown in Fig. 1(b) which consumes 15 noisy
ancillae and outputs 1 more accurate ancilla. An EPR pair (|00) 4 [11))/+/2
is prepared and one qubit is encoded into the 15-qubit code. Then a
transversal T gate is applied using the input noisy ancillae. Finally, all 15
qubits are measured in the X basis. If any of the four X stabilizers is not
satisfied, the output will be discarded, otherwise one may apply a Z operator

Table 1 | Summary of the major schemes for the efficient fault-tolerant implementation of non-Clifford gates considered in this
article and the characteristic features of the reconfigurable atom array platform that can significantly enhance their efficiency

Non-local connectivity Parallel gate action Collective mobility Native multi-controlled-Z

Magic state distillation v v 4
Concatenated code array v v v
FT multi-controlled-Z codes v v v v

The rows correspond to different schemes for fault-tolerant non-Clifford gates, and the columns correspond to features of the reconfigurable atom array platform. Here, non-local connectivity refers to the
reconfigurable architecture that allows non-local gates®’; parallel gate action refers to the parallel grid illumination that realizes parallel single qubit rotations'*“’; collective mobility refers to the transport of

multiple qubits via moving 2D acousto-optic deflectors (AOD), which can be used to perform parallel entangling CZ gates in a zone with global Rydberg excitation laser*’; native multi-controlled-Z refers to

the experimental realization of a multi-qubit gate by moving multiple atoms into Rydberg blockage regime, e.g. CCZ by preparing three atoms in the nearest-neighbor blockade regime®.

a b
|0) 4+ e'™/4 1) 1 XS
EPR
al0) +B[1) —— &
C

main thread of universal FTQC

U

ancilla factory

noisy logical ancillae
* — ,-:-:.'

X

¢ —

« —> I

encoding

Fig. 1 | Illustration of magic state distillation and its role in universal fault-
tolerant quantum computation. a A Clifford circuit for the implementation of a T'
gate with an ancilla state. Note that the input qubit is destructively measured and the
ancillary qubit serves as the output. b Illustration of magic state distillation. One qubit
of an entangled pair is encoded into the [[15, 1, 3]] quantum Reed-Muller code and a
logical T gate is applied via transversal T" gates. Each T' gate is implemented using a
noisy ancilla. After measurement on the 15-qubit code and a conditioned Z on the
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other qubit of the EPR pair, the latter qubsit is transformed to a more accurate ancilla.
¢ Universal fault-tolerant quantum computation (FTQC) with magic state distillation.
The ancilla factory supplies noisy ancillae that are encoded to QEC codes of various
sizes and undergo many-round distillation until the desired fidelity is achieved. The
produced ancillae are then maintained by standard error correction procedure for
quantum memory. When alogical T'is required in the main thread of the computation,
a good ancilla is moved out from the factory to the computation region.
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Fig. 2 | Effect of two-qubit gate error on distillation of T gates obtained from
Monte Carlo simulation. a, b Rate of successful rounds and output noise as a
function of input noise, under different fidelities ("Fc,” in legend) of two-qubit CZ
gates with independent Z errors on each qubit. Break-even condition that output
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noise equals to input noise is indicated by the black solid line in b. ¢, d Rate of
successful rounds and output noise as a function of key gate fidelity (see main text),
under different fidelities of other CZ gates.

conditioned on the product of all X measurements which is exactly the
logical X measurement (There is an alternative scheme: encode a |+) =
(10) + [1))/+/2 to the 15-qubit QRM code, apply a transversal T, and then
decode to extract the information in the 15 qubits to one qubit. This scheme
uses one less qubit but take twice the number of Clifford gates, which is
slower and more sensitive to Clifford errors). See Section "Errors in Clifford
gates in magic state distillation" for more details.

Eventually, we would like to carry out magic state distillation on a
logical level such that qubits in circuit 1(b) are protected by quantum codes,
that is, all the “qubit” in the previous paragraph refers to logical qubit
encoded in some codes (for example surface codes). The fault-tolerant
universal quantum computation architecture using this logical level dis-
tillation is illustrated in Fig. 1(c). A more feasible short-term goal is to distill
T ancillae on a physical level, as a demonstration of both the distillation
scheme and the experiment techniques.

For physical level distillation, since the [[15, 1, 3]] QRM code is a 3D
code, it is inefficient to implement the encoding using local gates in 2D since
we need many swap gates for long-range CNOT gates, which not only takes
more time but also introduces more errors. The reconfigurability of atom
arrays can provide significant advantages. For distillation at the logical level
using the surface code, non-local logical CNOT gates between two surface
codes are required. Even if lattice surgery techniques™ are used to imple-
ment logical CNOT gate locally between adjacent code blocks, the non-
locality in the distillation circuit still requires the additional logical swaps,

each using 3 CNOT gates by lattice surgery, making the overhead much
larger.

To provide a first estimation of the feasibility of MSD on reconfigurable
atomic systems, we consider a simplified error model where independent Z
errors can occur on each qubit when applying a CZ gate. This simplification
is based on the error analysis on realistic platforms™. We simulate one
distillation round 100 times at different input ancilla noise and CZ gate
fidelity. Figure 2a, b reveal the performance of MSD when all CZ gates have
the same gate fidelity, which can serve as a reference for near-term
experiments. Especially at the state-of-the-art CZ gate fidelity 99.5%", one
can achieve break-even when the input infidelity is higher than 1% (2 0.75%
according to our analytical result). Note that, since 1% is much higher than
the error of single-qubit rotation in recent techniques, distillation at the
physical level serves more as a proof-of-principle demonstration than a
practical procedure.

Figure 2¢, d reveals a remarkable observation: when the input noise is
2%, a point at which 99% CZ fidelity achieves break-even (b), only by
improving the fidelity of 5 key gates to 99.5% can we achieve break-even
when all other CZ gates still have the fidelity of 98%. In fact, our analytic
computation shows that the linear dependence of the output error on the CZ
error comes totally from the 5 key gates. If these key gates have gate fidelity
(1—g)*, (that is, a Z error can occur on each qubit with probability g when
applying the gate), while other CZ gates have fidelity (1—p)’, the leading
order of the output error is 3.5¢. This linear dependence can be further
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e atom in static tweezer
@ atom in mobile tweezer

Fig. 3 | Parallel implementation of a universal set of logical gates by code con-
catenation. A logical qubit is encoded in the [[7, 1, 3]] Steane code concatenated
with the [[15, 1, 3]] QRM code forming a 7 x 15 atom array (dark blue circles) held by
an array of static tweezers generated with a spatial light modulator (SLM, red circles),
where each row is a 15-qubit code and a physical “qubit” for the 7-qubit code. To
apply CNOT gates transversally between two rows, say rows 1 and 6, one can use an
array of mobile tweezers generated with AOD to shift one row of atoms to the
neighbor sites of the other row (green arrow). One then turns off the tweezers,
applies a row of Hadamard gates on the target line, turns on a pulse to apply CZ gates
on the atom pairs closer than the Rydberg blockade radius simultaneously, and
applies Hadamard gates on the target line again. To apply physical CNOT gates
simultaneously between two columns, say columns 5 and 9, one can move one
column of atoms to the neighbor of the other (purple arrow). The other operations
are similar.

suppressed using a flag protocol**”’; see Section "Errors in Clifford gates in

magic state distillation". Our analysis suggests that, at the fault-tolerant level,
costs can be reduced by focusing on the improvement of these key gates,
comparing with the former cost analysis where all CZ gates are equally
protected.

Concatenated code array
Code concatenation offers another approach to bypass the Eastin-Knill
theorem to achieve universal FT gates, which is also particularly fit for the
atom array platform. The essential idea is to “combine” different FT gate sets
of different codes'’. Consider two codes C; and C, such that the union of
their transversal gate sets is universal. We concatenate these two codes such
that each physical qubit in C, is encoded as a logical qubit for C,. For a small
example, we can take C; tobe the [[7, 1, 3]] Steane code and C, the [[15,1,3]]
QRM code". C; has transversal gate set {H, S, CNOT} while C, has trans-
versal gate set {T, CNOT}. We can arrange the physical qubits intoa 7 x 15
array, with each row forming the 15-qubit code while the collection of rows
corresponding to the 7-qubit code; see Fig. 3. To implement a logical S or
CNOT, we can apply the gate qubit-wise: a qubit-wise S is a logical S for the
15-qubit code, and a qubit-wise S" is a logical S for the 7-qubit code; similar is
the CNOT gate. To implement a logical T, which is not transversal for the
7-qubit code, we need to apply 4 CNOT gates and 1 T gate at the physical
level of the 7-qubit code, which are transversal for the 15-qubit code: errors
can only propagate within individual columns. To implement a logical H,
which is transversal for the 7-qubit code but not transversal for the 15-qubit
code, we need to apply a logical H gate, which amounts to 14 CNOT gates
and 1 H gate, for each 15-qubit code: errors can only propagate within
individual rows™. Both C; and C, have distance 3 but neither has a trans-
versal universal gate set. Nevertheless, we can implement a universal gate set
fault-tolerantly in the concatenated code with an effective distance of 3.
The parallel gate action and the collective mobility features of the
atom arrays are ideal for implementing a concatenated code array
scheme. For instance, in the logical T and H implementation, CNOT
gates between two rows or columns can be performed in parallel via
transport-based entangling gates”, see Fig. 3 for details. To demonstrate
the experimental feasibility, we give an estimation for the time cost of
logical T and H based on the architecture and technology demonstrated

in”, utilizing a system of acoustic optical deflectors (AOD). This system
enables a simultaneously movement of an entire row or column of the
tweezers array. In the atom arrays, two atoms are separated by roughly 10
um. Two adjacent sites in static tweezer are separated by less than 2 um.
According to ref. 27, at the length scale of the separation of several atoms,
the average moving velocity of atoms is roughly 0.5m/s under the
requirement that fidelity is well preserved. We use this value for esti-
mating the time cost and neglect the acceleration profile that can be
tuned for futher optimization. The typical moving time is thus at the
order of some 20 ys. Besides moving the atoms there are other processes,
including the pulse implementing CZ gates, which lasts for roughly 200xs
< 20 s, and transferring between spatial light modulator (SLM) and
AOD tweezers which takes roughly 100 ~ 200 ps'’. Only the last proce-
dure is relevant to our time estimation. For logical T gate, 4 cycles of
CNOT gates are needed'®”, involving row movements R,(7 — 6),
Rs(6 — 1), Rg(1 — 6), R;(6 — 7), where Ri(j — k) means moving the ith
row of atoms from row j to row k, taking roughly 20 ps, 100 us, 100 ps,
20 s, respectively, adding up to 0.24 ms for moving only and 0.84 ms
with transferring time included (taking transferring time as 150 ps). For
logical H gate, 8 cycles of CNOT gates are needed™. In the worst case that
after each step columns are moved back to its original position, it takes
roughly 3.76ms to implement the logical H gate, comparing to an order
of seconds for the decoherence time of an atom qubit. The time cost can
be further reduced by optimizing the moving strategy based on different
computational task at a software level, as well as using time-optimal
control techniques at a hardware level.

Fault-tolerant logical multi-controlled-Z gates
One advantage of the reconfigurable atom array platform is the natural
physical implementation of multi-controlled-Z gates, denoted by C"Z
where m is the number of control qubits, which are non-Clifford when
m 2 2. Due to this feature, we are tempted to consider C"Z gates which are
suited to certain important scenarios (e.g., generating hypergraph states™
which are representative many-body entangled magic states™) and generally
provide an alternative choice of non-Clifford gates for circuit compilation.
Stabilizer codes based on triorthogonal matrices, such as the [[15, 1, 3]],
[[49, 1, 5]], and a family of [[3k + 8, k, 2]] triorthogonal codes, support
logical CCZ gates implemented by transversal physical CCZ gates™”.
Additionally, the 3D surface code on the rectified cubic lattice, which
exhibits a similar triorthogonal structure, has logical CCZ gates imple-
mented by transversal physical CCZ gates’'. This concept has been further
generalized to the 4D octaplex tessellation, enabling the logical CCCZ gate to
be implemented by transversal physical CCCZ gates”. Generally, the D-
dimensional toric code permits logical non-Pauli gates from the D-th level of
the Clifford hierarchy'. The duality between color codes and toric codes™
enables logical C”"'Z gates in the D-dimensional toric code through
transversal R,, gates up to a Clifford circuit, where
Ry, := diag (1, exp(2mi/2P)), saturating the Bravyi-Kénig bound'’. Fur-
thermore, we consider the D-dimensional (1, D — 1)-toric code on the
hypercubic tessellation where the physical system consists of one qubit per
edge, and the stabilizers are X-star (product of X incident at a vertex) and Z-
plaquette (product of Z around a face) terms. It contains 0-dimensional
excitations (i.e., particles) and (D — 2)-dimensional excitations. As dis-
cussed in detail in Section "Fault-tolerant logical C”"'Z gates in D-dimen-
sional toric codes" the logical C”™'Z gates can be implemented fault-
tolerantly with a constant-depth circuit of physical C°'Z gates. This
approach has the advantage that the implementation is straightforward and
can be generalized directly to higher dimensions, without the need for
intricate higher-dimensional rectifications or tessellations. It is worth
emphasizing the suitability of high-dimensional codes and multi-con-
trolled-Z gates for the reconfigurable atom array platform. To achieve
universality, we may use such codes in code-switching or code concatena-
tion strategies. In this platform, these exotic high-dimensional codes can
offer unique implementation advantages and greater flexibility for gate
choice, further enhancing their utility in practical quantum computing.
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Fig. 4 | Circuit for magic state distillation of T ancilla. The key gates, CNOT
between output and qubit 1, CNOTjy;, CNOT}; ;, CNOT;;, CNOT5, are
labelled red.

Discussion

Implementation of non-Clifford gates is costly but indispensable for fault-
tolerant universal quantum computation. In this article, we describe how the
native features of the reconfigurable atom array platform can lead to unique
advantages in fault-tolerantly implementing non-Clifford gates. In parti-
cular, we provide detailed analyses for magic state distillation and code
concatenation methods. Moreover, motivated by the unique feasibility of
multi-controlled-Z gates in this platform, we specifically discuss codes that
use them to realize FT logical multi-controlled-Z.

Besides the methods analyzed in detailed in this article, there are other
schemes for FT universal gates. A well-established one is code switching'>*,
which enables transversal universal gates through gauge fixing. This
approach also inevitably involves codes beyond 2D so the reconfigurability
of the atom array is again crucial. It could also be worthwhile to further
explore the usage of relevant methods such as flag qubits™** and just-in-time
decoding™*.

On the other hand, it would be valuable to systematically benchmark
and compare the resource costs of different approaches for fault tolerance in
the reconfigurable atom platform as well as other platforms, in light of the
comparison between e.g. MSD and code-switching with color codes” in the
literature. Furthermore, our discussion of the implementation of different
types of non-Clifford gates offer flexibility for circuit compilation, opening
up further opportunities to optimize the cost of logical quantum compu-
tation. Broadly speaking, we consider further investigation into the imple-
mentation cost in conjunction with different compilation schemes and
features of experimental platforms important and valuable.

There are also various other proposals exploring different aspects of
quantum computing with the reconfigurable atom array platform, including
converting leakage errors that are dominant on atomic systems to erasure
errors™, utilizing the biased error structure introduced by some conversion
protocol to achieve better fault-tolerant performance™”, implementing
highly non-local quantum LDPC codes via reconfiguration of atoms"’, and

surface code architectures enhancing logical qubit connectivity by moving
atoms”. With the rapid advancements of experimental technologies, now is
an opportune time to explore and implement different methods which may
pave the way for practical quantum computing.

Methods

Errors in Clifford gates in magic state distillation

In this subsection we discuss in some detail the effect of Clifford errors in
magic state distillation of T ancilla. We use the [[15, 1, 3]] quantum
Reed-Muller code with check matrix

- o101 01 01010101
H, = 0110011001 1O0O0T11 7
0001 11100O0O0OT1T1TI1]'1
1O O 0O0OOO 01 1 1 1 1 1 1 1]
rr o101 0 1 0 1 0 1 0 1 0 17
0601 100110O01T1TUO0OTU0OTI11
000111100001 111
06000O0OO0OO0OTI1 1111111 @
H, = 06001 00O0T1O0O0OO0OT1ITUO0OO0O0OT1
06000O01O0T1O0O0OO0OOOTI1IO0T1
00 0O0OO0OO0OOTI1TO0OTITUO0OTI1O0T1
00 0O0O1T1O0O0OO0O0OUO0OTO0OTI1
000O0OO0OOOOOTI1IT1O0O0T1T1
LO OO OO OO0 0 O0OO0OO0OT1TT1 1 1]

where each row in Hx defines an X stabilizer which has the identity operator
Ion sites with 0 while X on sites with 1. For example, the first row in Hx gives
the stabilizer X;X;X5X;XoX;1X13X;s. Similarly, rows in H,, define the Z
stabilizers. One logical qubit encoded in this code is

4 4

~ I+ - I+
0 =[]~ 5 000, =[]0 @

i=1

where S is the ith X stabilizer. It is straightforward to verify that

TT®15|6> =10), T[T = eiﬂ/4|i>’ 3)
indicating that this code has a transversal logical T implementation via a bit-
wise physical T" gate.

The detailed circuit for distillation' is shown in Fig, 4. The circuit starts
from an EPR pair (first two lines), then one of the entangled qubits is
encoded into a 15-qubit code, followed by a transversal T gate and X-basis
measurement for each qubit in the 15-qubit code. The measurement results
are used to calculate four X stabilizers shown in Eq. (1) as well as the logical X
operator, which is the product of X operators on the 15 qubits. If any of the
four stabilizers is not + 1, the output is discarded. Finally a Pauli Z gate may
be performed on the output qubit conditioned on the measurement out-
come of the logical X operator. As discussed in the main text, we consider
the major class of error, that is, the Z error on the CZ gates, which is
modelled as

Ep)=CZ(1—plp+pI®ZpIRZ+ZRIpZ@® )+ p*Z® ZpZ @ Z)CZ'. (4)

The Choi gate fidelity is Fc, = (1—p)>. A CNOT gate can be obtained from a
CZ gate by conjugating an H on the target qubit, which converts the Z error
to an X one. In this error model, we see that
 The Zerror on the control qubit when entangling the output qubit with
qubit 1 will directly come into the final result, yielding a Z error.
¢ The five X errors on the target qubit 1 will be spread to qubits 1, 2, 3, 12,
13,14, 15 as X; X5, X5X1,X13X14X; 5 since CNOT(XI)CNOT = XX. Since
T'X = e "™XST', where the factor is irrelevant while acting an X before
measuring X has no effect, this error is equivalent to acting S on the 7
qubits. A straightforward calculation using equation (2) shows that this

npj Quantum Information | (2024)10:136


www.nature.com/npjqi

https://doi.org/10.1038/s41534-024-00945-3

Article

0) —p — 00— Mz
[+) output
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Fig. 5 | Using flag qubit gadgets to detect errors on qubit 1. Here only the relevant
gates in the distillation circuit are shown. The flag qubit gadgets are colored blue. If
an X error occurs on qubit 1 within the flag qubit gadgets, their corresponding flag
qubit will be measured — 1 and this round of distillation should be discarded.

However, a Z error on the control qubit (1) of the leftmost blue CNOT gate can be
propagated to qubits 1, 5, 7, 8, 11, which is a logical Z operator. As a result, this flag
gadget can reduce the linear dependence of the output error from 3.5p to 2.5p.

is a logical S" gate, which will be teleported to the output qubit. An S'

error with probability g contributes 0.54 to the output error.

+ Other errors, including those in implementing T" using noisy ancillae,
are not spread, reducing linearly the rate of success while the con-
tribution to the output error is at a higher order.

From the first two points, we see that if the gate fidelity is (1—p)*, the

output qubit will be found with a Z error at probability p, and an S error

at probability 5p, yielding an output fidelity 1 — 3.5p. Higher order

contribution can come from two-qubit gates other than these 5

key gates.

The effect of measurement error can be converted to that of an error in
the preceding T gates, which turns out to be a less serious problem. To see
this, let’s write down the channel of a projective X measurement™, which
maps a quantum register to a pair consisting of the quantum register itself
and a classical “record”,

My(p) = (I, pIl,, +) + (IT_pIl_, —). (5)

Here I, = (1 £ X)/2. A measurement with error rate p can be modelled by

Ms(pp) = (1= p)[(TLpTL, , +) + (TLpIT, =) ] + p[ (T pIT, =) + (TLpIL, +)].

(©)

Since IT, = ZII Z, the measurement error is equivalent to a pair of Z errors
correlated in time, happening before and after the projection. However,
since we are doing single-qubit measurements so that the measured qubit,
after projection, ceases to entangle with any other qubits, the Z error after the
projection has no effect on our distillation result. Therefore, the erroneous
measurement is equivalent to the channel

My(p) = My (1 = plp + pZpZ). @)

This is nothing but a Z error before a perfect measurement. If the T gate error
rate is ¢, while measurement error rate is p, their influence to the distilled
state is equivalent to € = € 4+ p and p = 0. In conclusion, measurement errors,
which are dominant in atomic platform, have the same effect as the T gate
errors which are designed to be protected in MSD.

We can use a flag gadget to further reduce this linear dependence, see
the blue part of Fig. 5. This flag gadget can detect whether there is an error on
qubit 1 from CNOT gates between qubit 1 and qubits 5, 7, 8, 11, hence
eliminate the contribution to the output error from these four gates.
However, error on qubit 1 from the first CNOT between qubit 1 and the flag
qubit can contribute linearly to the output error, since this error is propa-
gated by the four following CNOT gates to a logical Z error. Therefore, our
flag gadget can reduce the number of key gates to 2 and reduce the output
error from 3.5p to 2.5p, where (1—p)” is the fidelity of the key gates. See Fig. 6
for a numerical simulation.

a b
1.0
1.00 1 ”’\\ -§- noflag -§- noflag
\\ flag 5084 3.5p
0.95 Se g flag
« >
< \\ S 0.6 25p
S X
2 0.90 1 Sa [
© v o 0.4
~e °
N =]
N a
0.85 N £ 021
“»
0.80 - 0.0 1 /

0.0 0.05 0.1 015 0.2 0.25
p (x0.001)

0.0 0.05 0.1 0.15 0.2 0.25
p (x0.001)

Fig. 6 | Effects of flag gadgets. The rate (a) and output error (b) with and without
flag gadgets, with data obtained by 200 rounds Monte Carlo simulation for each
point. The input ancillae are accurate. The rate is suppressed linearly with flag since
several single CNOT error now contributes linearly to the — 1 flag measurement
instead of the output error. The output error shows a behaviour of 3.5p and 2.5p with
or without flag gadget, respectively.

Numerical simulation of MSD

In simulating the errors of Clifford gates in MSD, we randomly introduce
rotation errors subject to a proper Gaussian distribution instead of ran-
domly introducing Pauli errors. To see how this works, note that on a
density matrix

1
p=sU+pX+pY+p.2), ®)
a Pauli Z error with probability p is given by the error channel

1
E(pip) = (1 = plp + pZpZ =5 (I +p.Z+ (1-2p) (pxX + pyY)).
)

On the other hand, consider a rotation with angular distribution f,

R(pif) = / A0 (6)e /2 pe10%/2
1 . .
= / d0f(9)5 (I +p,Z+ <px cosf+p, sm@)X + (p), cosf —p, sme) Y).

(10)

If fis an even function, the two channels are the same under the condition

cosf=1—2p. (11)
Specially, if f is a Gaussian distribution with standard deviation o, the
equivalence condition becomes

(12)

which reduces to ¢ = 2,/p for small error rates.

The advantage of such a simulation procedure is that it converges more
quickly than directly simulating radom Pauli errors. To simulate a Z error
channel with error rate p, one may randomly choose to do nothing with
probability 1 — p, or to apply a Z gate with probability p. To see how many
rounds are needed to obtain this average output, we need to consider the
variance of the output. Actually, in our simulation, there are two possible
outputs with probabilities

%(I—l—pZZ%—(PxX*'PyY))’ with 1 —p,

(13)
% (I +p.Z = (PxX +pyY)),

with p.
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The fidelity of these two outputs (that is, their overlap with the input state)
are respectively 1 and (1+p? —(p} +p}))/4. The average fidelity is

L+ p* + (1 —2p)p2 + py))/ 4. The variance of the fidelity is
\ / p(1 —p)p2 + pz)/ 2. On the other hand, one may also simulate the

random rotatlon w1th a Gaussian distributed angle,

—92 20?
/d@ 192/2 7192/2. (14)

For a single 6, the output is

p= (I +p,Z+ (px cos 0 + p, sin 9>X + (py cos 0 — p, sin 9) Y>7

(15)

NIP—‘

correspondmg to ﬁdehty (14 p2 + cos 6(p? + pz)) /4. The average fidelity
is (1+4p2+e/ 2(p +p;))/4. Now the variance of the fidelity is
(P2 + pz)(l —e )/ 4f For small p, the ratio of the variances between
these two sampling procedures is \/2p/(1 — p). If p = 0.5%, to achieve the
same stability, the rotation sampling requires 1/ 14 of the rounds required by
the naive Z sampling. The error bars in our data reflect this variance.

Furthermore, this simulation procedure is more realistic since errors
are introduced by fluctuations in the experiments, which are continuously
distributed. The stability of the simulation result, which is better than that
simulated by introducing discrete Pauli errors, should reflect the real sta-
bility when doing the experiments using physical qubits. However, in the
ultimate goal of distillation with logical qubits, mid-circuit error-correcting
procedure can transfer the errors to discrete Pauli errors, leading to a larger
variance in the output fidelity.

Fault-tolerant logical C°~'Z gates in D-dimensional toric codes
This section introduces a simple method for topologically protected FT
logical C"~'Z gates in D-dimensional toric codes using physical C*'Z gates.
As an example, we start with two layers of 2D toric codes on the square
lattice. One logical X, gate in the first layer and another logical Z, in the
second layer are

-(16)

The CZ gate between logical qubsits in the two different layers of toric codes is

17)

the product of two physical CZ gates on each face, where the labels 1, 2
indicate which layer it acts on. Two CZ gates correspond to two different
paths from a corner of a square to the opposite corner.

This construction can be extended to three dimensions. Consider three
layers of 3D toric codes. Logical X gates become membrane operators, while
logical Z and CZ gates are the same as the 2D toric code. Define logical X

and logical CCZ, , ; as

X3 X3 X,
(18)

X X X,

‘3
e

el = ¥
VAl N 1)
10—-/1 02

2

11 ccz

where logical CCZ, , 5 is the product of six CCZ gates in each cube. The
labels 1, 2, 3 indicate which layer it acts on, and the six CCZ gates represent
six paths from one corner to the opposite corner on a cube. One can verify
that
@112.3 Y3 @1,213 = Y3 @1,2' (20)
This construction applies to the D-dimensional hypercube directly, where
CP7'Z gates act on the edges of each path from one vertex to the opposite
corner. In group cohomology language, the logical @12 and CCZ, , ; can
be expressed by the cocycles la ua, €e HX(Z,%7Z,,R/Z) and
al Uay,Ua, € H(Zy %X 7y X Z,, R/Z) In D dimensions, the loglcal c’
~'Z gate corresponds to the cocycle a,Ua,VU --- Uap € HX(ZD R/ 7).
The details can be found in refs. 44-46.

Data availability
The simulation data for error analysis of magic state distillation is available
at https://github.com/Florestan-Eusebius/error_msd.

Code availability
The codes used for simulating magic state distillation is available at https://
github.com/Florestan-Eusebius/error_msd.
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