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Global spacetime topology outside global k-monopole

Ilham Prasetyo1 and Handhika S Ramadhan2

Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia,
Depok 16424, Indonesia.

E-mail: 1ilham.prasetyo51@ui.ac.id, 2hramad@ui.ac.id

Abstract. We obtain gravitational field solutions far from the core (f ≈ 1) of nonlinear global
k-monopoles in an asymptotically dS/AdS spacetime. Specifically we consider two explicit
examples, K(X) = −X − β−2X2 and K(X) = −X/(1 +X1/3/β2/3). Using different ansatz for
metric, we obtain metric spacetime for conical topology or compactification.

1. Introduction
Monopole is a non-contractible point defect, π2(M) 6= I [1, 2]. Global monopole has divergent
energy due to the absence of gauge field. When coupled to gravity, it exhibits a peculiar feature:
it exerts no gravitational force on the surrounding matter, save from the tiny mass at the core [3].
However the global geometry is not Euclidean; the space around monopole suffers from deficit
solid angle ∆ ≡ 8πGη2. The existence of deficit angle renders the existence of a critical value of
ηcrit ≡ 1/

√
8πG, beyond which the deficit angle consumes the entire solid angle. It is suggested

in [4] that the spacetime around critical global monopole may degenerate into a cylinder; the
two angular dimensions compactify into a 2-sphere. Investigation for its higher-dimensional
counterpart in [5, 6] shows instead that this cigar geometry can be realized when the staticity
assumption is relaxed. Thus, compactification solution can be perceived as an inflating (non-
static) super-critical solution written in some particular gauge. In 4d, it is shown numerically
in [7] that regular solutions can still exist up to η .

√
3/8πG. The singularity above that value

is interpreted as the appearance of topological inflation [8, 9].
Global k-monopole has been studied in [10, 11], while its gravitational field is investigated

in [12, 13]. There, the authors showed that qualitatively the gravitational property of Barriola-
Vilenkin (BV) monopole still holds. The difference is that their mass can be negative or positive
(which results in whether the gravitational field is repulsive or attractive), depending on the
specific model of k-term considered. Despite their numerical results, the regime outside the
monopole can be studied using the vacuum approximation, where the Higgs field is approximated
as |φ| ≈ η. In this approximation the analytical solutions can be found. In [14] we showed
gravitational solutions for exterior of several global k-monopoles. Here in this paper we report
our finding and add some more discussion on other variation of k-monopole. We focus only on
two types of k-monopole models discussed in Ref. [10].

2. Black hole solutions
In this section we use metric tensor

ds2 = A(r)2dt2 −B(r)2dr2 − r2
(
dθ2 + sin2 θ dφ2

)
, (1)
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whose components of Ricci tensor are

Rtt =
1

B2

(
A′′

A
− A′B′

AB
+

2A′

rA

)
,

Rrr =
1

B2

(
A′′

A
− A′B′

AB
− 2B′

rB

)
, (2)

Rθθ =
1

B2

(
1

r2
+
A′

rA
− B′

rB

)
− 1

r2
= Rφφ,

with A′ ≡ dA/dr and B′ ≡ dB/dr.

2.1. Gravitational field of the first type of global k-monopole
First we begin with the Action [13, 15, 16]

S =

∫
d4x
√
−g
(
R− 2Λ

16πG
+K(X)− λ

4
(φaφa − η2)2

)
, (3)

with scalar field φa = η f(r) xa/r, (a = 1, 2, 3 each denotes x1 = r cos θ, x2 = r sin θ cosφ, x3 =
r sin θ sin θ) also

X ≡ −1

2
∂µφa∂µφ

a =
η2

2

(
f ′2

B2
+

2f2

r2

)
, (4)

with f ′ ≡ df/dr.
In this subsection

K(X) ≡ −X − X2

β2
. (5)

with β2 > 0 (limβ2→∞K(X) = −X thus the weak-field limit is achieved). The components of
energy-momentum tensor becomes

T tt = X +
X2

β2
+
λη4

4
(f2 − 1)2 +

Λ

8πG
,

T rr = T tt −
(

1 + 2
X

β2

)
η2f ′2

B2
, (6)

T θθ = T tt −
(

1 + 2
X

β2

)
η2f2

r2
= T φφ .

With exterior solution approximation (r far enough from the core making f ≈ 1 and f ′ ≈ 0)
make the energy-momentum tensor components becomes

T tt = T rr =
η2

r2
+

η4

β2r4
+

Λ

8πG
,

T θθ = T φφ = − η4

β2r4
+

Λ

8πG
. (7)

Due to T tt = T rr we get B = A−1. From the Einstein equation component (tt) we have

B−2 = 1−∆− 2GM

r
+

8πGη4

β2r2
− Λ

3
r2, (8)
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which is valid if r > δ. The core is given by the same method used in Ref. [13] obtaining (31)
which will get us radius of the core

δ =
2

λη2
+

√(
2

λη2

)2

+
4

β2λ
, (9)

the smaller β the thicker the monopole size.
This metric can be rescaled (an example can be seen in Ref. [17]) with

r → r

(1−∆)1/2
, t→ (1−∆)1/2t, (10)

G → G

(1−∆)
, M → M

(1−∆)1/2
, β → (1−∆)1/2β,

into a Reissner-Nördstrom-like metric

ds2 =

(
1− 2GM

r
+

8πGη4

β2r2
− Λ

3
r2

)
dt2 − dr2(

1− 2GM
r + 8πGη4

β2r2
− Λ

3 r
2
) − (1−∆) r2dΩ2

2, (11)

Considering the case Λ = 0, the metric has two roots given by

r± = GM

[
1±

√
1− 8πη4

M2Gβ2

]
, (12)

Real roots exist only if

β2 >
8πη4

GM2
≡ β2

crit, (13)

is satisfied; if not, our solution suffers from naked singularity. When η is much smaller than the
Plank mass, β2

crit → 0. It also requires β & 2/(GM)2 to be satisfied for black hole condition

GM � δ. (14)

Black hole configuration will be produced in the strongly-coupled regime (β2 < 1) when
M & mP . When δ < r−, (12) becomes Reissner-Nördstrom-like horizons and this reduces

to condition (13). Inner and outer horizons coalesce when η =
(
M2Gβ2/8π

)1/4
and the black

hole becomes extremal.
Considering Λ 6= 0, a cosmological horizon will exist. This can be seen by considering a case

of almost-pure global monopole-de Sitter (Λ�M−2) which reads

1 +
8πGη4

β2r2
− Λ

3
r2 ' 0, (15)

whose roots are

r± '

√√√√ 3

2Λ

(
1±

√
1 + 32πGη4Λ

3β2

)
. (16)

These roots make the inner horizon vanish while the cosmological one exist when Λ > 0, and
make the cosmological horizon vanish while the inner one exist when Λ < 0.

6th Asian Physics Symposium IOP Publishing
Journal of Physics: Conference Series 739 (2016) 012062 doi:10.1088/1742-6596/739/1/012062

3



2.2. Gravitational field of the second type of global k-monopole
Now, we consider

K(X) = − X

1 +X1/3/β2/3
, (17)

with β > 0. Components of the energy-momentum tensor are

T tt =

[
X

1 +X1/3/β2/3

]
+
λη4

4
(f2 − 1)2 +

Λ

8πG
,

T rr = T tt +

[
1 + (2/3)X1/3/β2/3

(1 +X1/3/β2/3)2

]
η2f ′2

B2
, (18)

T θθ = T tt +

[
1 + (2/3)X1/3/β2/3

(1 +X1/3/β2/3)2

]
η2f2

r2
= T φφ .

Now as before, we focus on exterior solution which makes

T tt = T rr =
η2/r2

1 + (η/r)2/3/β2/3
+

Λ

8πG
,

T θθ = T φφ = T tt −

[
−1 + (2/3)(η/r)2/3/β2/3

(1 + (η/r)2/3/β2/3)2

]
η2

r2
. (19)

Because T tt = T rr , we again get A = B−1. From the Einstein equation component (tt), we get

(rB−2)′ = 1− 8πGr2

[
η2/r2

1 + (η/r)2/3/β2/3

]
− Λr2. (20)

Integrating it, we get

B−2 = 1− 8πGη2 − 2GM

r
− Λ

3
r2 + 24πGη2 η

βr

[(
βr

η

)1/3

− arctan

{(
βr

η

)1/3
}]

, (21)

with M is a constant of integration.
Since our solution is valid only on the asymptotic regime, we can expand arctan(x1/3) around

r →∞ to yield

arctan(x1/3) ≈ π

2
− 1

x1/3
+

1

3x
− 1

5x5/3
+

1

7x7/3
− · · · . (22)

This results in

B−2 = 1−∆− 2G

r

(
M +

6π2η3

β

)
+

24Gπη8/3

β2/3r2/3
− Λ

3
r2 +O

(
1

r4/3

)
. (23)

The metric can be rescaled with (10) into

ds2 =

[
1− 2G

r

(
M +

6π2η3

β

)
+

24Gπη8/3

β2/3r2/3
− Λ

3
r2

]
dt2

− dr2[
1− 2G

r

(
M + 6π2η3

β

)
+ 24Gπη8/3

β2/3r2/3
− Λ

3 r
2
] − (1−∆)r2dΩ2

2. (24)
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We can see once again that our solution has a deficit in the solid angle given by ∆.
For the case of Λ = 0,

B−2 ≈ 1− 2G

r

(
M +

6π2η3

β

)
+

24Gπη8/3

β2/3r2/3
, (25)

whose real root is

r =
3
√
a+ b

3 3
√

2β3
− 13824 3

√
2π3βη8G3

3
√
a+ b

+
2
(
6π2β2η3G+ β3GM

)
β3

, (26)

with

a ≡ −4478976π5β6η11G4 − 746496π3β7η8G4M, (27)

b ≡
√

285315214344192π9β12η24G9 + (−4478976π5β6η11G4 − 746496π3β7η8G4M)2.

Positive r exists if η > 0 and β 6= 0.
For the case of Λ 6= 0, assuming M−2 � Λ, −(2G/r)(6π2η3/β) + (24Gπη8/3/β2/3r2/3) ≈

(24Gπη8/3/β2/3r2/3) which is reasonable for η < Mp, and 1− Λr2/3 ≈ −Λr2/3, we obtain

B−2 ≈ 24πη8/3G

β2/3r2/3
− Λr2

3
. (28)

Its real root is

r =
2 8
√

233/4π3/8ηG3/8

4
√
βΛ3/8

. (29)

Positive root exists if Λ > 0.
B−2 is valid only in region r > δ. Here δ can be calculated using the same method as in

the previous section. A rough estimate tells us that the size δ can be given as a solution of the
following equation:

− 4πη

(βδ/η)2/3

[
1 +

(
βδ

η

)2/3

+
1

1 + (βδ/η)2/3

]
+ δ2η4λ ≈ 0. (30)

When β → ∞, δ =
√

4π/(λη3), and when β → 0, δ = 2
[
2π/(β2η7λ3)

]1/8
; the larger β the

thinner the monopole size is, the same result as the previous section.
If the blackhole exists in this theory, then it will be Schwarzschild-like rather than Reissner-

Nordstrom-like. By analyzing the condition r > δ we conclude that there are two cases for the
existence of the black hole as follows.

(i) For Λ > 0, the horizon vanishes when β → ∞, but exists when β → 0 if η >
5
√

Λ/(32/5π2/15 5
√
G 5
√
λ).

(ii) For Λ = 0, the horizon exists both when β → ∞, if η > 3
√
π/(G2/3 3

√
λM2/3), and when

β → 0, due to the monopole size grows slower than the horizon (r ∝ β−1 will be bigger
than δ ∝ β−1/4 when β < 1).

3. Compactification solutions
In this section, we employ

ds2 = A(r)2dt2 −B(r)2dr2 − C2
(
dθ2 + sin2 θ dφ2

)
, (31)

with C a constant, whose components of Ricci tensors are

Rtt = Rrr =
1

B2

(
A′′

A
− A′B′

AB

)
,

Rθθ = Rφφ = − 1

C2
, (32)
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3.1. Compactification by the first kind of power-law global monopole
Here we consider compactification with kinetic term corresponds to (5) whose components of
energy-momentum tensor are

T tt = X +
X2

β2
+
λη4

4
(f2 − 1)2 +

Λ

κ
,

T rr = T tt −
(

1 + 2
X

β2

)
η2f ′2

B2
, (33)

T θθ = T tt −
(

1 + 2
X

β2

)
η2f2

C2
= T φφ .

The exterior condition (f ≈ 0) reduces them into

T tt = T rr =
η2

C2
+
β−2η4

C4
+

Λ

κ
,

T θθ = T φφ = −β
−2η4

C4
+

Λ

κ
. (34)

Considering Λ = 0 from the Einstein equation component (tt) we obtain

C2 =
κη4/β2

1− κη2
, (35)

which puts constraint η >
√

1/κ ≡ ηcrit for real C. On the other hand Λ 6= 0 will give us

C2
± =

(1− κη2)±
√

(κη2 − 1)2 − 4Λκη4β−2

2Λ
. (36)

We choose C2
+ which if Λ < 0 then η > 0 and if Λ > 0 then

η ≤ 1√
κ+ 2

√
β−2κ|Λ|

≡ η2. (37)

Before calculating A and B through the Einstein equation component (θθ)

1

B2

[
−A

′′

A
+
A′B′

AB

]
= κT θθ , (38)

we define κT θθ ≡ ±ω2, which is just a constant, the plus and minus sign corresponds to T θθ > 0
and T θθ < 0 respectively, by keeping ω real. We also have a freedom in the metric (31) which we
can fix by choosing ansatz for B.

The first ansatz we choose is B = 1. When T θθ = 0 we get

ds2 = (C1r + C2)2dt2 − dr2 − C2dΩ2
2. (39)

This solution has no singularity at r = 0 and r = −C2/C1 thus securing from naked singularity
and both C1 and C2 can be set into arbitrary value, which allows us to set C1 = 0 and rescale
t̃ ≡ C2t that gives ds2 = dt̃2 − dr2 − C2dΩ2

2. When T θθ 6= 0, this gives us

ds2 =

{
1
ω2 (sin2 χ dt2 − dχ2)− C2dΩ2

2, if T θθ > 0,
1
ω2 (sinh2 χ dt2 − dχ2)− C2dΩ2

2, if T θθ < 0,
(40)
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Table 1. Conditions for the existence of T θθ as a function of η in first kind of power-law monopole
compactification.

T θθ > 0 T θθ = 0 T θθ < 0

Λ > 0 η < η2 η = η2 η > η2

Λ = 0 does not exist η = 1/κ1/4 η 6= 1/κ1/4

Λ < 0 does not exist does not exist η > 0

by defining χ ≡ ωr. These solutions have no singularity at r = nπ/ω with n = 0, 1, 2, ... thus
there exist no naked singularities in these solutions. For T θθ = 0 the solution is the Plebański-
Hacyan metric (M2 × S2) [18], while for T θθ 6= 0 the solutions are Nariai (dS2 × S2) [19] and
Bertotti-Robinson (AdS2 × S2) [20, 21] metrices.

Our second ansatz is B = A−1. This gives us A2 = C2 + C1r − kω2r2 with C1 and C2

constants of integration and k = 1, 0,−1 for T θθ > 0, T θθ = 0, and T θθ < 0 respectively. These
also free from naked singularity thus we can set C1 = 0 and C2 = 1,

ds2 =


(1− ω2r2)dt2 − dr2

(1−ω2r2)
− C2dΩ2

2, if T θθ > 0,

dt2 − dr2 − C2dΩ2
2, if T θθ = 0,

(1 + ω2r2)dt2 − dr2

(1+ω2r2)
− C2dΩ2

2, if T θθ < 0,

(41)

which are also the same results as the previous ansatz.
Now we continue to find the conditions for symmetry-breaking scale. We can solve the

polynomial equations to obtain the range of η that allows the existence of compactification
solutions by substituting the radius solutions (35) and (36) into the T θθ . The results are shown in
table 1. Combining with the conditions for C2 > 0 to happen, we can see which compactification
channels are theoretically possible. We can list the possible compactification channels in this
theory as follows

dS4 −→
{
dS2 × S2,
M2 × S2,

(42)

M4 −→
{

M2 × S2,
AdS2 × S2,

(43)

AdS4 −→ AdS2 × S2. (44)

The flat super-critical global monopole is possible to compactify the spacetime into an M2×S2

but since this is a static spacetime, we conjecture that this channel is unstable [14].

3.2. Compactification by the second kind of power-law global monopole
In general K(X), the Einstein equations are

1

C2
= −κK(X(f ≈ 1)) + Λ, (45)

1

B2

(
A′B′

AB
− A′′

A

)
=

1

C2

(
1− κη2dK

dX
(f ≈ 1)

)
(46)
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Table 2. Conditions for the existence of T θθ as a function of η in the second kind of power-law
monopole compactification.

T θθ > 0 T θθ = 0 T θθ < 0

Λ > 0 η < η3 does not exist η > η3

Λ = 0 η > ηcrit η = 0 or η = ηcrit η < ηcrit

Λ < 0 η > η3 does not exist η < η3

with X(f ≈ 1) = η2/C2. The right hand side of (46) is just a constant, thus the metric solutions
for compactification of this flux is the same as the previous sections. Now we focus on C2. For
this section, K(X) = −X/

[
1 + (X/β2)1/3

]
thus

K(X(f ≈ 1)) = − (η/C)2

(1 + (η/Cβ)2/3)
, (47)

dK

dX
(f ≈ 1) = −

[
1 + (2/3)(η/Cβ)2/3

(1 + (η/Cβ)2/3)2

]
. (48)

The Einstein equations becomes

1

C2
=

[
κ(η/C)2

(1 + (η/Cβ)2/3)
+ Λ

]
, (49)

1

B2

(
A′B′

AB
− A′′

A

)
=

1

C2

(
1 + κη2

[
1 + (2/3)(η/Cβ)2/3

(1 + (η/Cβ)2/3)2

])
. (50)

For now we focused on Λ = 0 which gives us

C2 =
β2/η2

(κη2 − 1)3
, (51)

thus η >
√

1/κ ≡ ηcrit. To find conditions for η at Λ 6= 0, we can consider the cosmological
constant, which is

Λ =
(η/Cβ)2/3 − (κη2 − 1)

C2(1 + (η/βC)2/3)
, (52)

which, while assuming C2 > 0, this will give results as follows. If Λ > 0 then η < η3, and if
Λ < 0 then η > η3, with

η3 ≡

√
1
κ +

3
√

2
3
β2

3
√

9β2C4κ5+
√

3
√

27β4C8κ10−4β6C6κ9
+

3
√

9β2C4κ5+
√

3
√

27β4C8κ10−4β6C6κ9

3√232/3C2κ3
. (53)

The metric solutions are the same as the previous section and we can focus on the conditions
of the symmetry breaking scale. The results are displayed in table 2. Combining with the
conditions for C to be a real number, we get the possible solutions
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dS4

M4

AdS4

 −→ dS2 × S2. (54)

From these results both from the first kind and the second kind of global k-monopole, solutions
for Y4 → Z2 × S2 (each Y and Z can be either de Sitter, Minkowski, or Anti-de Sitter spaces),
which is a spontaneous compactification of 4d global k-monopole in to 2-dimensional spaces of
constant curvatures, are produced. As suggested in [22], these are the four-dimensional analogue
of the flux compactification that had been discussed, for example, in [23, 24]. The 4d space has
a cosmological constant Λ when the 2d space gains the effective corresponding constant given
by ω.

4. Conclusions
In this review, we presented analytical solutions of global k-monopoles which include
cosmological constant for various spacetime topology. We consider two types of k-monopole
with power-law types specifically. It is proposed in [10] that these kind of defects might have
been formed in the very-high-energy regime in the early universe, close to the superstring scale.

For the static case, our results are both analytic and asymptotically dS/AdS versions of
the otherwise numerical solutions studied in [12, 13]. They all suffer from the deficit angle
∆ = 8πGη2, which does not depend on β. We then continue to study the resulting event and
the cosmological horizons that are formed when a black hole swallows these global k-monopoles.
They happen when M & mP .

In the case of the first kind of power-law monopole, we found that both roots are real. The
monopole behaves like a Reissner-Nördstrom black hole with scalar charge. When Λ 6= 0 the
cosmological horizon appears. In the almost-purely-de Sitter case, the inner horizon does not
exist when Λ > 0 so the inside the cosmological horizon is exposed to naked singularity. For
Λ < 0, the horizon becomes Schwarzschild-like since the cosmological horizon disappears.

For the second kind of power-law monopole, we obtain the analytic solution and expand it
asymptotically to in order to better study its horizon by finding its roots. We found one real
root. Thus, unlike the first kind, this monopole behaves like a Schwarzchild black hole due to
having only one horizon. The horizon only appears when Λ ≥ 0.

In flat spacetime, the super-critical global monopole will develop singularity and thus no
static solution exists [5, 6, 7]. To cure this, the monopole is allowed to inflate [5, 6]. Our
investigation shows that super-critical of both the first and second kind of global k-monopoles are
able to compactify its surrounding spacetime into a product of two two-dimensional maximally
symmetric spaces. This is an example of lower-dimensional spontaneous compactification, as
discussed in [22, 25] for example, where in here the 2-sphere is threaded against collapsing by
the flux coming from the scalar field. This singularity-free spacetime is interpreted as non-static
solutions.

In the first kind of power-law monopole, we can have M4 → M2 × S2 (Plebański-Hacyan
compactification) and M4 → AdS2 × S2 (Bertotti-Robinson compactification). Since no static
solution can exist for super-critical monopole, we conjecture that the Plebański-Hacyan solution
is unstable. For Λ 6= 0, we can have a set of possible compactification channels as shown
in table 1. Here all solutions are all subject to the vacuum approximation (f ≈ 1) which
clearly is not an exact condition. It needs to be clarified by numerical analysis whether such
compactification solutions really exist. For the second kind of power law monopole we only have
Nariai compactification (dS2 × S2) from all dS4, M4, and AdS4. This confirms the appearance
of topological inflation. The requirements are shown in table 2.
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