
General Relativity and Gravitation (2011)
DOI 10.1007/s10714-009-0822-x

RESEARCH ARTICLE

Vincenzo Branchina · Dario Zappalà
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Abstract We study the cosmic time evolution of an effective quantum field theory
energy-momentum tensor Tµν and show that, as a consequence of the effective
nature of the theory, Tµν is such that the vacuum energy decreases with time. We
find that the zero point energy at present time is washed out by the cosmological
evolution. The implications of this finding for the cosmological constant problem
are investigated.
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1 Introduction

A generic feature of systems with an infinite (very large) number of degrees of
freedom is that fluctuations at arbitrarily close points are independent. When com-
puting physical quantities, this results in the appearance of divergent terms. This
is the case of quantum field theories, where such terms are generated as soon as
the quantum fluctuations are taken into account. In particular, the calculation of
zero point energies leads to divergences whose leading term, when using an ul-
traviolet (UV) momentum cutoff Λ , goes as Λ 4. According to standard analysis,
these terms contribute to the cosmological constant.

One sometimes takes the point of view that the divergences have no physical
meaning and that the definition of the theory has to be completed by some appro-
priate renormalisation procedure that allows to remove them. In this perspective,
the regularization is just a mathematical step in the calculation of observable quan-
tities.
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From a deeper physical point of view, however, it is more satisfactory to con-
sider a quantum field theory as an effective theory valid up to a certain scale Λ ,
which takes the meaning of “scale of new physics”, and consider a hierarchy of
theories each having higher and higher energy range of validity [1]. This hierar-
chical structure is usually believed to end at the Planck scale MP where a different
theory, most probably string theory, is supposed to replace ordinary quantum field
theories and should account for the unification of gravity with the other inter-
actions. This naturally leads to the idea that, whatever theory describes physics
before the Planck time tP, for t > tP physics is appropriately described by one or
a small number of effective quantum field theories with physical cutoff Λ = MP.

Going back to the problem of divergences, we note that, for the zero point en-
ergies, the physical meaning of the divergences is deeply rooted in the underlying
harmonic oscillator structure of a quantum field theory; this is automatically lost
if we cancel out those terms with the help of a formal procedure such as normal
ordering [2].

Another important ingredient in the formulation of a relativistic quantum field
theory is the selection of the ground state, which is done by referring to the Lorentz
symmetry. According to [3], a Lorentz invariant vacuum |0 > is characterised by
the requirement that P̂µ |0 >= 0, where P̂µ is the field four-momentum operator.
As clearly explained in [4] and [5], however, this statement is too restrictive. This
is easily seen if we consider the energy-momentum tensor of a perfect fluid: Tµν =
(ρ + p)uµ uν −ρgµν (where uµ is the fluid four-velocity, p the pressure and ρ the
energy density). In order to have a Lorentz invariant vacuum, all we need is the
vacuum expectation value of the energy-momentum tensor operator T̂µν to be of
the form:

< 0|T̂µν |0 >=−ρgµν . (1)

Equation (1) contains P̂µ |0 >= 0 as a special case. However, it is more general
and allows for the presence of vacuum condensates.

On the cosmological side (for some reviews on the cosmological constant
problem see [5; 6; 7; 8]), the importance of the quantum field theoretic contri-
bution to the energy momentum tensor that appears in the Einstein equations was
firstly recognised in [9] and [4]. In accordance with the idea that the divergences
are unphysical and have to be discarded, the divergent terms which do not respect
the constraint imposed by Eq. (1) were removed with the help of a renormaliza-
tion procedure (more precisely, Pauli-Villars regulators were used in [4]). Such
a formal approach is thoroughly analysed and criticised in [2]. Still, a popular
prescription (often used nowadays) for the automatic (yet formal) cancellation of
these divergences is the dimensional regularization scheme. In this respect, see
[10] (and also [11] and [12]).

In the present work, we would like to pursue a different point of view. We
consider an effective field theory at a fixed time t with momentum cut-off Λ ,
where t and Λ , as discussed below, are taken to coincide respectively with the
Planck time tP and the Planck scale MP, and then compute the thermal average �
T̂µν � of the energy momentum tensor operator. � T̂µν � contains two additive
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contributions:

� T̂µν �= T m
µν +T v

µν , (2)

where T v
µν is the vacuum expectation value of T̂µν (the superscript v stands for

“vacuum”), while T m
µν corresponds to the equilibrium thermal average of the field

excitations above the vacuum at temperature T (the superscript m stands for “mat-
ter”). For weakly interacting fields, T m

µν can be regarded as the thermal average of
the energy momentum tensor of a gas of non interacting particles. At T = 0, one
clearly has T m

µν = 0.
The vacuum contribution T v

µν is of special interest for our analysis. In fact, due
to the well known form of the Planck (or Fermi-Dirac) distribution, T m

µν is finite
and does not contain any reference to the physical cut-off MP. On the contrary, T v

µν

contains terms proportional to M4
P,m2 M2

P and m4 ln MP, where m is the particle
mass [see Eqs. (10) and (11) below].

According to our effective field theory point of view, in the r.h.s. of the Einstein
equation,

Gµν −λgµν = 8πGTµν , (3)

we consider for Tµν the full contribution coming from Eq. (2), i.e. we take

Tµν ≡� T̂µν �= T m
µν +T v

µν , (4)

without discarding any of the terms that appear in this equation. Finally, starting at
the Planck time t = tP, we follow the cosmic evolution of � T̂µν �, in particular
of T v

µν , with the help of the corresponding Friedman equations.
Let us call ρv the vacuum energy density and pv the vacuum pressure. Had we

considered a renormalization scheme such as dimensional or Pauli-Villars regular-
ization, the coefficient w in the equation of state (EOS) pv = wρv (after discarding
the divergent terms) would have been w = −1 [4; 10; 11; 12]. Accordingly, ρv

would not evolve with time and could be interpreted as the vacuum energy contri-
bution to the cosmological constant. This is the standard view.

Conversely, within our effective field theory approach, where we keep the large
but finite terms proportional to M4

P and M2
P, we get a different EOS for pv and ρv,

namely w = 1/3, as for the relativistic matter case. The immediate implication
of this result is that the zero point energy density of a quantum field red-shifts
with time. Another interesting approach which also leads to a red-shifting vacuum
energy density can be found in [13].

The most natural framework to study the evolution of the effective quan-
tum field is the Friedmann–Robertson–Walker (FRW) metric rather than the flat
Minkowski space–time. However, this would introduce technical complications
due to the formulation of quantum field theories on a non-flat space–time. Since
the essential results we are interested in can be recovered in both approaches, we
adopt the latter description for the sake of simplicity. In the last part of Sect. 3 we
shall briefly come back to the FRW metric to show more in detail that our results
hold even in this case.

Within the framework of our effective field theory approach, a crucial question
to pose is that of setting an initial time at which the effective theory begins to
provide a reliable description of the physical phenomena. A natural choice for
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that is the Planck time tP as it indicates the typical scale at which the gravitational
strength is comparable with the other forces, while at earlier times a non-field
theoretical description of physics is presumably required. At later times (and lower
energy scales), instead, gravity is weaker and it is generally believed that quantum
field theory is a reliable tool to describe the relevant interactions.

The above considerations are at the basis of our fundamental assumption: we
introduce one (or few) fundamental field (fields) at tP with an UV cut-off at MP
and investigate the fate of its (their) zero point energy density. Clearly, this gen-
eral picture could be more specifically implemented by taking particular models.
However, as our aim is that of illustrating our general ideas, we limit ourselves to
the simplest set-up.

In this respect, it is also very important to note that, in the spirit of effective
fields, the effective theories that become relevant below some particular scale, say
Λ � MP, do not provide any novel contribution to the zero point energy density
because their degrees of freedom (dof) have to be regarded as effective dof, de-
rived from those pertaining to the more fundamental theories valid above Λ . The
inclusion of zero point energies of the low energy effective fields would produce
an erroneous result due to a multiple counting of dof.

One last very important point, is that in the higher order computations of any
physical quantity within a specific effective theory [Standard Model (SM), etc.],
the UV cut-off to be used to regularize the loop divergences is the momentum
scale Λ which is the UV limit of validity of the effective theory considered. In
other words, the UV cut-off scale of any low energy theory should not be confused
with the red-shifted energy density of the fundamental field which is decreasing
with the cosmic time. We shall come back to this point at the end of Sect. 3.

The outline of the paper is the following. Section 2 is devoted to the computa-
tion of the pressure and density of an effective field theory in order to determine
its EOS, while the cosmic time evolution of the density will be analyzed in Sect. 3.
Some considerations on the zero point energy of effective field theories are pre-
sented in Sect. 4. The conclusions are contained in Sect. 5.

2 Effective field energy-momentum tensor

Let us begin by considering a free real single component scalar field theory. The
energy-momentum operator is:

T̂µν = ∂µ φ∂ν φ −gµνL = ∂µ φ∂ν φ −gµν

(
1
2

∂µ φ∂
µ

φ − 1
2

m2
φ

2
)

, (5)

and L is the corresponding Lagrangian density.
After considering the standard Fourier decomposition of φ in creation and an-

nihilation operators a†
Ek

and aEk, the energy-momentum tensor Tµν of Eq. (4) (i.e.
the energy-momentum tensor that appears in the r.h.s. of the Einstein equation (3))
is obtained by taking the thermal average of (5) for a statistical equilibrium distri-
bution at temperature T . The non-diagonal terms vanish, while the diagonal ones
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take the form:

T00 = � T̂00 �=
1
V ∑

Ek
∑
n

< n|ρT |n > nEk ωEk +
1
V ∑

Ek

ωEk
2

(6)

Tii = � T̂ii �=
1
V ∑

Ek
∑
n

< n|ρT |n > nEk
(ki)2

ωEk
+

1
V ∑

Ek

(ki)2

2ωEk
, (7)

where � ··· � indicates the quantum-statistical average, |n > is a compact no-
tation for the generic element of the Fock space basis, ρT is the density operator
at temperature T , nEk =< n|a†

Ek
aEk|n >,ωEk =

√
Ek2 +m2 and V is the quantization

volume. By performing the sum over n in Eqs. (6) and (7), we get the matter
and the vacuum contributions to the energy density ρ =� T̂00 � and pressure
p =� T̂i i � (due to rotational invariance, � T̂11 �=� T̂22 �=� T̂33 �):

ρ =
1
V ∑

Ek

nBE ωEk +
1
V ∑

Ek

ωEk
2
≡ ρ

m +ρ
v (8)

p =
1

3V ∑
Ek

nBE

Ek2

ωEk
+

1
3V ∑

Ek

Ek2

2ωEk
≡ pm + pv, (9)

where nBE = nBE (Ek2,T ) is the Bose–Einstein distribution at temperature T . Again,
the superscripts “m” and “v” are for “matter” and “vacuum”, respectively.

The first terms in the r.h.s. of Eqs. (8) and (9), ρm and pm, come from the
thermal average of the number operators a†

Ek
aEk and are the matter contribution to

Tµν . It is worth to note that this is the only contribution usually considered in
Eq. (3): the energy momentum tensor of the relativistic gas of particles. On the
other hand, ρv and pv come from the thermal average of the commutators [a†

Ek
,

aEk], i.e. from c-numbers, and coincide with the vacuum expectation values of the
components of T̂µν . Note also that ρv is nothing but the term which is usually
recognised as the zero point energy contribution to the cosmological constant.
Equations (8) and (9) provide an explicit example of the general relation shown in
Eq. (2).

This elementary computation shows that the matter and the vacuum contri-
butions to Tµν do not come as separate entities. They are the result of a unique
operation, namely the thermal average of the operator T̂µν with respect to the
Bose–Einstein distribution. Both ρ and p contain on the same footing contribu-
tions from the matter and from the vacuum content of the theory. However, while
the first terms in the r.h.s. of Eqs. (8) and (9) are convergent (due to the cutoff
role played by the Bose–Einstein distribution), the second ones, i.e. the vacuum
contributions, diverge. By explicitly performing the computation with the help of
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an UV momentum cutoff we get:

ρ
v =

1
16π2

[
Λ(Λ 2 +m2)

3
2 − Λm2(Λ 2 +m2)

1
2

2

−m4

4
ln

(
(Λ +(Λ 2 +m2)

1
2 )2

m2

)]
, (10)

pv =
1

16π2

[
Λ 3(Λ 2 +m2)

1
2

3
− Λm2(Λ 2 +m2)

1
2

2

+
m4

4
ln

(
(Λ +(Λ 2 +m2)

1
2 )2

m2

)]
. (11)

As we have said before, we are considering the theory defined at the Planck
time tP with the momentum cutoff taken at the Planck scale, i.e. Λ = MP � m.
The ratio between pv and ρv is then essentially 1/3:

pv ∼ ρv

3
. (12)

Moreover, when the matter content is relativistic, this is also the ratio between
pm and ρm and the EOS for the field φ is:

p = pv + pm ∼ ρv +ρm

3
=

ρ

3
. (13)

These results are totally different from the usual ones, where for the vacuum
component one has pv =−ρv, i.e. a value of w which is different from the matter
one. As we have already noted, if we manage to get rid of the quartic and quadratic
divergences with the help of some formal regularization procedure, the remaining
terms in pv and ρv would obey the usual vacuum equation of state with w = −1.
We also note that, as in Eq. (13) w turns out to be ∼ 1/3, the above finding does
not change the well known scaling of ρm.

So far we have considered the simple example of a free theory (see Eq. (5)).
However, these same steps can be repeated for any, even interacting, field theory.
Of course the presence of interaction terms such as gφ 4 induces corrections to
the Lagrangian parameters. In the case of mass, for instance, these corrections are
proportional to gΛ 2 + O(g2). As long as g is perturbative, we expect these terms
not to spoil the above analysis.

3 Time evolution of the vacuum energy density

Up to now we have considered the theory at the Planck time. From now on we
consider the time evolution and, for the sake of simplicity, in the following we
shall consider m2 = 0. As from Eqs. (10) and (11) we see that w = 1/3, we have
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for ρ = ρv + ρm the well known time evolution of relativistic matter, which is
governed by the continuity and Friedman equations:

ρ̇ +3
(

ȧ
a

)
(ρ + p) = 0 (14)(

ȧ
a

)2

=
8πG

3
ρ, (15)

where a(t) is the cosmic scale factor (consistently with the present observations,
we have considered a flat space, k = 0). Note also that in Eq. (15) we have ne-
glected the “classical” (i.e. not originated from quantum vacuum fluctuations) λ

term in the Einstein equation (3). As is well known, the solution of Eq. (14) is:

ρ(t) ∝ a(t)−4. (16)

Although Eq. (14) and the corresponding solution (16) are obtained for ρ =
ρv + ρm, we expect them to hold also for ρv and ρm separately. In fact, when no
matter is present, ρ reduces to ρv so that Eq. (14) is valid for ρv alone. Then, if no
substantial change in the behaviour of ρv is induced by the presence of matter, ρm

satisfies Eq. (14) too. Such a time evolution of ρm is nothing but the well known
evolution of relativistic matter: in the usual treatment, it is obtained by neglecting
ρv in the continuity equation (14).

At early cosmological times (and therefore at high temperatures T ) one has
T � m (we have taken the Boltzmann constant kB = 1) and this corresponds to
the radiation, i.e. relativistic matter, dominated era:

ρ
m(t) =

π2

30
T 4

∝ a−4. (17)

As we noticed above, as long as matter is relativistic, ρm and ρv have the same
scaling (ρm,v ∝ a−4) so that we can write

ρ
v(t) =

ρv(tP)
ρm(tP)

ρ
m(t), (18)

where we have chosen as initial time t = tP, with tP = (MP)−1, the Planck time.
Moreover, from Eq. (17) we have that ȧ/a = −Ṫ/T and Eq. (15) can be written
as: (

Ṫ
T

)2

=
8πG

3

(
1+

ρv(tP)
ρm(tP)

)
ρ

m(t) =
4π3G

45

(
1+

ρv(tP)
ρm(tP)

)
T 4, (19)

By integrating the above equation we get:

T =
(

45
16π3KG

) 1
4

t−
1
2 , (20)

with K = 1 + ρv(tP)/ρm(tP). Note that in the standard approach, where ρv(t) is
not taken into account in the Friedman equation (15), K = 1.
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Let us consider now the theory defined at the Planck time, tP. If the cutoff is
taken to be at the Planck scale, Λ = MP = 1.22×1019GeV , the leading contribu-
tion to the vacuum energy density at tP is:

ρ
v(tP) =

M4
P

16π2 . (21)

From Eqs. (17) and (20) we then find:

ρm(tP)
ρv(tP)

=
3π

2
−1∼ 3.71, (22)

where we have used G = M−2
P = t2

P. In passing, we note that from Eq. (22) we
have that K ∼ 1.27. When this value of K is inserted in Eq. (20), we get a slight
correction to the result obtained in the standard approach, where K = 1.

The relevance of the result contained in Eq. (22), however, lies elsewhere. In
fact, Eq. (18) predicts that, as long as matter is relativistic, the ratio ρm(t)/ρv(t)
is constant and given by Eq. (22). In particular, if we consider a massless field
which is relativistic at any time, this ratio keeps such a value up to the present
time t0. Therefore, ρm(t0) is about four times ρv(t0). As the background photon
density ργ(t) follows precisely this scaling, we find that: ργ(t0)∼ 4ρv(t0). There-
fore, since we know that at present time t = t0 the contribution of ργ(t0) to the
total energy density is negligible, the same must hold true for ρv(t0).

Few comments are in order. As we have already said in the Introduction, our
fundamental assumption is to consider an effective field theory defined at t = tP
with UV cut-off Λ = MP. This is why we have Eq. (21), i.e. ρv(tP) ∼M4

P, which
in turn gives ρm(t)/ρv(t) ∼ 4. It is possible that, within other frameworks and
with other assumptions, one could get a different boundary value ρ

v(tP), although
it would be rather questionable to start with an energy density larger than our
value in Eq. (21), i.e. ρ

v(tP)� M4
P. Then, considering a boundary ρ

v(tP) < M4
P

would simply have the effect of magnifying the washing out of the vacuum energy
density according to the mechanism discussed above. In other words, the choice
ρv(tP)∼M4

P in Eq. (21) gives the highest possible value of ρv(t0) at present time
t0 which, as we have seen above, is ρv(t0)∼ 0.25ργ(t0).1

As T decreases, matter evolves towards the non-relativistic regime (opposite
limit, T � m) where ρm ∝ a−3(t), while ρv continues to follow its previous
scaling, ρv ∝ a−4(t). During this epoch, the expansion of the universe, i.e. its scale
factor a(t), is controlled by non-relativistic matter so that, starting from t = teq,
when ρrel(teq) = ρnrel(teq), the scaling of ρv with t changes.

It is not difficult to estimate the value of ρv at the present time t0. The com-
putation goes as follows. By integrating Eq. (14) for ρv from tP down to teq, i.e.

1 These considerations can be rephrased as follows. If (see the Introduction) we compute ρv(t)
by considering our field theory in a FRW background, for ρv(t) we get ρv(t) ∼ Λ 4 a(t)−4 ∼
M4

P a(t)−4. As ρm(t) ∼ T (t)4 and a(t) ∝ T (t)−1, which means that a(t)T (t) defines a constant
temperature, a(t)T (t) = const. = T1, we immediately have ρv(tP) ∼ (TP/T1)4 M4

P. With our
choice of the boundary ρv(tP) ∼ M4

P one has T1 = TP, while other choices of ρv(tP) lead to a
difference between the values of TP and T1. From the above considerations, the highest vacuum
energy density at present time corresponds to T1 = TP.
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during the radiation era, as a(t)∼ t1/2 we get:

ρ
v(teq) = ρ

v(tP)
(

tP
teq

)2

. (23)

During the successive period, the matter dominated era, it is still ρv ∝ a−4, but
now a(t) ∼ t2/3. Therefore, by integrating Eq. (14) for ρv from teq down to t0 we
have:

ρ
v(t0) = ρ

v(teq)
(

teq

t0

) 8
3
, (24)

so that, at the present time, ρv(t0) is:

ρ
v(t0) = ρ

v(tP)
(

tP
t0

)2

·
(

teq

t0

) 2
3

= ρ
v(tP)

(
tP
t0

)2

·
aeq

a0
. (25)

By inserting now in Eq. (25) ρv(tP) given in Eq. (21), tP ∼ 5× 10−44 s, t0 ∼
2/(3H0), with (H0)−1 ∼ 13.7 Gy and aeq/a0 ∼ 1/3048 [14], we finally find:

ρ
v(t0)∼

(
1.93×10−4 eV

)4
. (26)

We would like to compare now this result for ρv(t0) with the determination of
ργ at present time [14],

ργ(t0)∼
(
2.11×10−4 eV

)4
. (27)

As can be easily checked, compatibly with the numerical uncertainties of the
various quantities involved, the ratio between ργ(t0) and ρv(t0) is in substantial
agreement with the prediction of Eq. (22). As photons are always relativistic, this
is precisely what should be expected from our previous analysis. In fact, as the
measure of ργ is an experimental input totally independent from our analysis, we
can consider this finding as a check on our ideas. Moreover, Eq. (26) shows that,
as is the case for photons, the contribution of ρv is nowadays negligible.

To summarize, we suggest that the cosmological evolution itself provides the
mechanism that dilutes the zero point energy contribution to the total energy den-
sity of the universe down to a value which is negligible if compared to the current
matter and cosmological constant determinations.

Another interesting outcome of our analysis is the following. As already noted,
when the energy momentum tensor of the vacuum is not of the form Tµν ∝ gµν ,
the Lorentz invariance of the theory is lacking. Our <T̂µν > at Planck time has
not a Lorentz invariant form, but the cosmic evolution allows to recover Lorentz
invariance at our time. We think that the connection between our findings and the
whole subject of Lorentz violation at Plank scale is worth of further investigations.

Before ending this section, we would like to add some comments which should
help in making more transparent the entire setup of our proposal. First of all, we
think it is worth to spend some words on the underlying field theoretical frame-
work of our work. As is clear from the previous section, up to now we have con-
sidered a Fock space in a flat Minkowski space–time. Clearly, a more rigorous
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treatment of the problem would have required the use of quantum field theory in
an expanding universe, as is the case (of interest for us) of a FRW background.

As we shall show in a moment, however, it is not difficult to convince ourselves
that such a refinement is irrelevant for the issue under investigation. Actually, we
have deliberately chosen to work on a flat space–time since our goal is to present
the mechanism of the washing out of the zero point energies of the effective field
in the simplest possible framework, avoiding any unnecessary technical detail.

In fact, let us consider a scalar quantum field in a FRW background, a problem
largely investigated in the literature [15; 16; 17; 10]. Regularization procedures
based on “point splitting” or on “adiabatic regularization” both give the same
result for the leading divergences in the vacuum pressure and density, namely
pv = ρv/3.

Clearly, from our effective field theory point of view, the “adiabatic basis” ap-
proach [15; 16], which allows for a mode decomposition, is the most appropriate.
In fact, this property allows for the definition of a Fock space at each time, simi-
larly to what happens in the flat case. Moreover, it is easy to see that the leading
“divergent” term of the vacuum energy density scales as ρv ∼ a(t)−4Λ 4, where
a(t) is the scale factor in the FRW metric and Λ is the UV cut-off. This is nothing
but our result.

In this respect, it is important to stress once again that our results are derived in
the framework of an Effective Field Theory approach. This is completely different
from a renormalized theory, which is the point of view considered in the above
mentioned literature, where the divergent terms are treated as unphysical and are
accordingly cancelled out. In our Effective Theory approach the physical cut-off is
part of the definition of the theory itself and plays an important role in establishing
the physical results. In such a framework, the cut-off dependence of ρv and pv is
an essential physical aspect of our analysis. It is worth to spend some additional
words on this point.

The very notion of Effective Field Theory is related to the presence of a phys-
ical cut-off in the definition of the theory, which plays the role of “scale of new
physics”. Only when the UV completion of this low energy theory is known, the
cut-off can be naturally related to some physical parameter (such as a renormal-
ized mass) of the higher energy theory. In the low energy effective theory, it is just
a (physical) momentum cut-off.

For instance, when in the SM the impact of dimension 5 or 6 operators is
studied, the whole point is the following. The SM is considered as an effective
theory valid up a scale Λ , the physical cut-off, and the ratios which appear in the
expressions for the physical quantities (the so called “suppression factors”) are not
ratios of SM renormalized masses but rather ratios between the physical scale µ

involved in the computation of the quantity under consideration and the cut-off.
The contributions of these dimension 5 or 6 operators are typically suppressed by
µ/Λ and µ2/Λ 2 respectively but, if the cut-off Λ (the scale of new physics) is
not too high, these ratios are not too small and can give sizable contributions to
physical quantities.

Another example of this kind is chiral perturbation theory, where again we
have a low energy effective theory, intrinsically defined with a cut-off, and the
(would be) irrelevant operators coming from the higher terms of the gradient ex-
pansion can give sizable contributions to physical quantities. Again, the ratios that
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appear in this case are not ratios between renormalized masses of a renormalized
theory but rather powers of p2/Λ 2, where Λ is the physical cut-off and p the scale
of the physical process. The cut-off, far from being just a theoretical tool for com-
putation, is physical: it plays the role of “scale of new physics” and enters the
theoretical predictions of physical quantities.

Therefore, our momentum cut-off, rather than being an alternative way of do-
ing computations, is physically and deeply motivated by the effective field theory
point of view.

Let us remind now that in the standard approach, when we compute a generic
physical quantity, the large and potentially dangerous terms which appear because
of the use of such a non-Lorentz invariant cut-off are actually cancelled by suitable
(Lorentz violating) counter-terms, so that eventually the low energy theory is fully
Lorentz covariant. This clearly applies to all phenomena that do not involve the
absolute value of the vacuum energy, namely those observable phenomena which
deal with energy differences and, as is well known, do not show any Lorentz vio-
lating effect up to very high precision, as is for instance the case of atomic spectra.

In this respect, our predictions totally coincide with the usual ones. Our point
is that the only modification to this standard picture concerns the vacuum energy
density which is unrelated to the various interactions and is typically (and cor-
rectly) cancelled with no consequences, for instance, in the description of scatter-
ing processes or of bound states. Our proposal concerns only the zero point energy
contribution to the energy density. Instead of being cancelled with the help of an
“ad hoc” counter-term (a fine tuning problem known as the 120 orders of magni-
tude problem), we have shown that it is possible to interpret this energy density as
a “physical” contribution at early cosmological times and that the corresponding
density at present time is washed out by the evolution and is comparable with the
present energy density of radiation.

4 The counting of the degrees of freedom

Up to now we have considered the cosmological evolution of the (thermal av-
erage of the) energy-momentum tensor of a quantum scalar field starting at the
Planck time tP, with the assumption that at t ∼ tP and E ∼ MP physics is en-
tirely described by one quantum field (or a small number of fields) and that the
known lower energy theories were born during the cosmic time evolution.2 This
assumption appears natural in view of our ideas on the effective nature of parti-
cle physics theories and fits our current views on the cosmological evolution. In
this respect, the lower energy new fields, new dof, are nothing but a convenient
manner to parametrise the theory at a lower scale. Therefore, when computing the
vacuum contribution to the cosmological constant, one should not include the zero
point energies of the effective low energy theories as this would result in a multi-
ple counting of dof. The zero point energies coming from the dof of the original
quantum field already account for the whole contribution to the vacuum energy.

Before we can conclude that our findings can be of some relevance for the
cosmological constant problem, we still have to address another issue. As is well

2 As we have already said, a different (probably string) theory is supposed to describe the
physics at times earlier than tP.
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known, some of our low energy theories, for instance the Higgs sector of the SM,
are characterised by the presence of condensates. In the standard approach, these
terms are considered to give very large contributions to the cosmological constant
as they enter the energy momentum tensor as ρcgµν , where ρc is the vacuum en-
ergy density associated with the condensate. However, according to our previous
discussion, there are no such additional terms as the whole contribution is already
contained in the zero point energies of the original theory. Again, taking into ac-
count these terms would result in a double counting of dof. A similar point of
view has already been expressed within a different approach to the cosmological
constant problem [18].

Below we try to elucidate the arguments of the previous two paragraphs with
the
help of an example inspired to the work on the top quark condensates of Bardeen
et al. [19].

Following [19], let us consider a Nambu Jona-Lasinio theory defined at the
high energy scale Λ by:

Z =
∫

Dψ̄Dψexp
[

i
∫

d4x
(

ψ̄(iγµ
∂µ −M)ψ +

g2

2m2
0

ψ̄ψψ̄ψ

)]
. (28)

An Hubbard-Stratonovic transformation introduces a new scalar field φ so that
Eq. (28) can be rewritten as:

Z =
1

N

∫
Dψ̄DψDφexp

[
i
∫

d4x
(

ψ̄(iγµ
∂µ −M)ψ−

m2
0

2
φ

2 +gψ̄ψφ

)]
,

(29)

where the normalisation factor N ensures the equality of Eqs. (28) and (29).
Obviously, any quartic divergent term which apparently comes from the zero point
energies of φ cannot induce any change in the quartic divergences of Eq. (28) as
they are cancelled by N .

The next step in [19] consists in the integration of the high frequency modes
of the fermion and scalar fields from Λ to the lower energy scale µ:

Z =
Q

N

∫
Dψ̄lDψlDφlexp

[
i
∫

d4x
(

ψ̄l(iγµ
∂µ −M−δM)ψl

+gψ̄lψlφl +
1
2

Zφ ∂
µ

φl∂µ φl −
m2

0 +δm2
0

2
φ

2
l −

λ

24
φ

4
l

)]
(30)

where φl and ψl are the scalar and fermion fields with Fourier components up to µ .
This integration generates new dynamical dof [20] in the Lagrangian of Eq. (30).

This example is relevant to our problem for the following reason. When one
deals with the effective Lagrangian of Eq. (30), the normalisation factor Q/N is
not
considered as one has no knowledge of the higher energy theory. Clearly, this
has no effect in the evaluation of the low energy Green’s functions, i.e. for typical
scattering processes. However, if we compute the vacuum energy from the quartic
divergences of this effective Lagrangian, we end up with a result which differs
from the one obtained from the “fundamental” theory of Eq. (28) because of an
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erroneous counting of the dof. Only if we take into account the normalisation
factor Q/N we recover the original result. Clearly, the same argument applies
when additional contributions to the vacuum energy come from the appearance of
condensates such as, for instance, a vacuum expectation value for φl .

We can also consider an alternative, but equivalent, argument which allows to
understand the suppression of the Λ 4 and the condensate terms. Let us consider
the appearance of a condensate below some temperature TSB through a symme-
try breaking mechanism. The cutoff of the low energy theory which describes the
broken symmetry phase is nothing but the temperature TSB at which the transition
takes place. Moreover, the cutoff and the condensate contributions to ρv and pv

come in the same combination as in Eqs. (10) and (11), where the m4 terms are
now accompanied by the additional v4 condensate contribution (v is the value of
the condensate). As is always the Λ 4 = T 4

SB term which dominates, we obtain for
ρv the same scaling as before, regardless of the Lorentz invariant nature of the con-
densate contribution. Being TSB the cutoff, again we find that these contributions
at present time are suppressed.

5 Summary and conclusions

We have found that if we consider that at the Planck time tP physics is described
by an effective field theory with UV cutoff MP, the corresponding vacuum energy
density undergoes a cosmic scaling that makes it negligible at present time t0 when
compared to non-relativistic matter and cosmological constant densities, much in
the same way as the cosmological scaling makes the photon density negligible
nowadays. The reason for this behaviour is that for an effective field theory <
T̂µν > is such that pv ∼ ρv/3.

Moreover, our analysis predicts a constant ratio, Eq. (22), between the vacuum
and the radiation densities. When the theoretical determination of the vacuum en-
ergy
density at present time, given in Eq. (26) and obtained by a proper rescaling of
the Planck time vacuum density of Eq. (21), is compared with the experimentally
determined photon energy density in Eq. (27), we find substantial agreement with
our prediction. In case one takes the energy density scale in Eq. (21) just as the
maximum acceptable value for this quantity, then the corresponding derived value
at present time, ρv(t0), should be regarded as the upper limit of the present vacuum
energy density.

We believe that this supports the central idea put forward in the present work,
namely that zero point energy and condensate contributions to the universe energy
density are washed out by the cosmological evolution. Moreover, these terms,
being w∼ 1/3, cannot contribute to the cosmological constant, for which we know
that the measured value of w is w∼−1. In our opinion, this result points towards
a gravitational origin of the (measured) cosmological constant.
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